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Abstract: Human activities during the Anthropocene result in habitat degradation that has been 15 

associated with biodiversity loss and taxonomic homogenisation of ecological communities. 16 

Here we estimated effects of eutrophication and heavy metal contamination, separately and in 17 

combination, in explaining zooplankton species composition during the past 125-145 years using 18 

analysis of daphniid diapausing egg banks from four lakes in the Northeastern USA. We then 19 

examined how these community shifts influenced patterns of diversity and homogenisation. 20 

Analysis of past lake production (via subfossil pigments) and metal contamination (via 21 

sedimentary metals) demonstrated that eutrophication alone (19-39%) and in combination with 22 

metal pollution (17-54%) explained 36-79% of historical variation in daphniid species relative 23 

abundances in heavily fertilised lakes. In contrast, metal pollution alone explained the majority 24 

(72%) of historical variation in daphniid assemblages at the oligotrophic site. Several species 25 

colonisation events in eutrophying lakes resulted in increased species richness and gamma 26 

diversity through time. At the same time, daphniid assemblages in three eutrophied lakes became 27 

more similar to each other (homogenised) but this pattern was only seen when accounting for 28 

species presence/absence. We did not observe consistent patterns of divergence between the 29 

assemblages in the eutrophying lakes and the low-nutrient reference site. Given the pervasive 30 

nature of fertilisation and metal pollution and the sensitivity of cladocerans to these factors, we 31 

suggest that many inhabited lake districts may already exhibit similar patterns of daphniid 32 

assemblage shifts.  33 

Key words: biotic homogenisation, Jaccard similarity, eutrophication, Daphnia, heavy metals, 34 

palaeolimnology 35 

 36 
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Introduction 38 

We have entered the Anthropocene, an era during which human activities can profoundly 39 

influence the Earth’s geological, chemical, and biological processes at a global scale [1]. One 40 

pervasive signature of land use change in this human dominated era is the increasing release and 41 

accumulation of chemical pollution in the environment. At the same time, biodiversity loss has 42 

been precipitous, and this has long been cited as a consequence of widespread anthropogenic 43 

environmental changes, including chemical pollution [2,3]. However, it can be difficult to 44 

causally link pollution with changes in species diversity. In addition, increasing biotic 45 

homogenisation of communities in human impacted environments is an emerging pattern gaining 46 

increasing recognition [4,5]. As developed landscapes begin to predominate on Earth, sensitive 47 

endemic species are often lost while human-tolerant species spread, a pattern that can reduce 48 

biotic diversity at regional scales. Such assemblage shifts have been observed in a number of 49 

groups and habitat types around the world including plants [6], molluscs [7], fish [8], amphibians 50 

and reptiles [9]. One hypothesis is that habitat degradation associated with agricultural and urban 51 

activity homogenises the physical landscape and thus its constituent ecological communities 52 

[10,11].  53 

Human activities routinely change nutrient influx to lakes and can have transformative 54 

impacts on aquatic ecosystems [12]. Elevated nutrient input directly increases phytoplankton 55 

productivity and can favour blooms of toxic cyanobacteria [13], while increased phytoplankton 56 

biomass indirectly alters aquatic ecosystems by creating deep-water anoxia which can cause 57 

extensive fish kills [14] and phosphorus (P) release from sediments [12]. While eutrophication 58 

may proceed steadily, the ecological response of higher trophic level taxa such as invertebrates 59 

and fish can be complex, non-linear, or even threshold-like [15–17]. These long-term effects of 60 
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nutrient accumulation on lake communities have been well documented (e.g., [18–20]), but are 61 

typically studied in isolation from other stressors such as heavy metals (but see [21]). Yet, 62 

nutrients and other chemical contaminants of freshwaters occur together, thus it is important to 63 

understand their joint impacts on ecological communities. 64 

Industrial development has increased the release of heavy metals (e.g., mercury [Hg], 65 

cadmium [Cd], lead [Pb], chromium [Cr], copper [Cu], zinc [Zn]) into the environment [22] 66 

where they accumulate in lake basins, even in remote locations (e.g., [23–25]). Moreover, Cu has 67 

been widely applied as an algaecide in eutrophic lakes [26]. While heavy metals occur naturally, 68 

at elevated concentrations most heavy metals, even essential elements such as Zn [27], are toxic 69 

to living organisms. Toxicological testing has generated a large body of information about short-70 

term effects of individual metals on organisms in controlled laboratory environments (e.g. US 71 

EPA’s ECOTOX database: https://cfpub.epa.gov/ecotox). Yet how effects of heavy metals play 72 

out over multi-decadal time scales in field conditions remains uncertain and represents an 73 

important research frontier for ecotoxicology [28]. 74 

Freshwater zooplankton are often sensitive to alterations of the chemical environment 75 

and offer an excellent model system to study the unique and interactive effects of eutrophication 76 

and metal pollution. In particular, Daphnia species are keystone herbivores in lake food webs 77 

[29] that respond strongly to eutrophication because of changes in resource availability [30], 78 

phytoplankton size structure and grazing sensitivity [15], and exposure to cyanobacterial toxins 79 

[31], among other factors. Daphniids are also sensitive to heavy metal exposure, although 80 

susceptibility to individual elements varies among species [32]. Despite these observations, 81 

relatively little is known of how planktonic invertebrate community composition has varied with 82 
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anthropogenic forcing over a century of eutrophication and metal contamination in much of the 83 

industrialised world (but see [21,33]).  84 

In this study, we use lake sediment archives to examine long-term (ca. 145 years) 85 

ecological responses of daphniid zooplankton assemblages to nutrient fertilisation and heavy 86 

metal contamination. Both stressors are common consequences of anthropogenic land use, are 87 

known to affect zooplankton, and leave unique signatures in lake sediments, allowing their 88 

effects on lake biota to be studied over long time spans [34,35]. We estimated the relative 89 

influence of these pollutants on temporal patterns of daphniid species composition in these lakes 90 

and determined whether the effects of these contaminants resulted in the loss of diversity or 91 

assemblage shifts seen in other taxonomic groups in human dominated landscapes. 92 

 93 

Materials and methods 94 

Lake selection: Four study lakes in Connecticut, USA, were chosen representing a wide range of 95 

nutrient influx over the past eighty years [36,37] (electronic supplementary material (ESM) 1: 96 

table S1). Based on historic total phosphorus (TP) records, Black Pond has remained 97 

oligotrophic and serves as a low-nutrient reference site, whereas Alexander Lake has become 98 

mesotrophic, in part due to P supply from sediments. Cedar Pond and Roseland Lake have both 99 

become hypereutrophic and are listed as impaired for recreation (both lakes) and the support of 100 

aquatic life (Cedar) by the United States Environmental Protection Agency. Typical of lakes in 101 

the region (ESM1: table S2), all study lakes are relatively small and shallow, but vary in physical 102 

and chemical characteristics as well as the degree of historical changes in land use within their 103 

watersheds [38] (ESM1: text S1, table S1). We restricted our study to lakes without landlocked 104 
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alewives (Alosa pseudoharengus) to avoid confounding influences of change in trophic regimes 105 

arising from management of zooplanktivorous fish stock [39,40] (ESM1: text S2).   106 

  Sediment collection and dating: Methods for sediment collection, sectioning, storage, and 107 

establishment of geochronology are described in detail elsewhere [38]. Briefly, 12.5-cm diameter 108 

sediment cores were collected from the deepest basin of each lake by SCUBA divers. Cores were 109 

sectioned at 1.5-cm intervals and stored in the dark at 4°C for examination of daphniid 110 

diapausing egg densities. Sediments for examination of photosynthetic pigments and nutrients 111 

were frozen. Rogalski [38] estimated sediment ages for these study lakes based on changes in 112 

210
Pb radioisotope activity with depth (ESM2: figure S1). 113 

Heavy metal analysis: Sediment concentrations of Cd, Cr, Cu, Pb, and Zn were measured 114 

by inductively coupled plasma-mass spectrometry (Thermo Finnigan Element 2 high resolution 115 

ICP-MS) following extraction by hot block acid digestion. Sediment Hg concentrations were 116 

measured by atomic absorption spectrometry (Direct Mercury Analyzer DMA80). Additional 117 

methodological details are published elsewhere [38].  118 

Nutrient and subfossil pigment analyses: Total carbon and total nitrogen composition of 119 

sediments were measured on whole freeze-dried sediments. Samples of 2-10 mg dry mass were 120 

packed into tin capsules and introduced into a NC-2500 elemental analyser. Nitrogen and C 121 

components of sediments were oxidised completely at 1000°C in a furnace to convert organic 122 

constituents into simple nitrogen-based gases and CO2. Elemental mass ratios were estimated 123 

using combustion data. Sedimentary pigments were extracted, filtered, and dried under N2 gas 124 

following the standard procedures of Leavitt and Hodgson [35] (ESM2: text S3).  125 

  Daphniid community structure: Historical changes in species composition were 126 

quantified using sedimentary banks of diapausing eggs for taxa in the Daphniidae family [41], a 127 
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group of filter-feeding crustacean zooplankton that are keystone herbivores in lakes [29] and 128 

preserve well in lake sediments [20,41]. Diapausing eggs (encased in ephippia) were isolated by 129 

filtering whole sediments through 50-μm mesh and examining the retained filtrate under a 130 

dissecting microscope at 10× power. All ephippia were examined with a compound microscope 131 

at 100× and 400× power to compare gross morphology and finer details of specimens. In most 132 

cases, ephippia were identified from sediment subsamples until at least 50 specimens (median 133 

73) per sediment slice were enumerated, beginning with surface sediment and examining 134 

alternate sediment sections over the past 125-145 years. For the earliest time period from Black 135 

and Alexander lakes, only 42 and 46 ephippia were available for counting, respectively. 136 

 We identified ephippia to species by hatching animals from a subset of viable eggs 137 

representing all morphological types found in the four lakes. Intact ephippia were incubated in 138 

COMBO freshwater medium [42] using spring light and temperature conditions (14:10h light: 139 

dark, 15°C). Hatchlings were cultured in COMBO medium and fed Scenedesmus obliquus until 140 

they reached maturity and could be identified to species. We then matched daphniid species 141 

identity to the six ephippial morphotypes based on characteristics of the ephippia from which the 142 

hatchlings originated (ESM3: text S4). Historical species densities in subfossil daphniid 143 

assemblages were based on combined counts of empty and intact ephippia present in the 144 

sediments, unless ephippia were crushed or too decomposed to be identified (1.1% of counts).  145 

 Relative importance of eutrophication and metals: We used multivariate statistical 146 

analyses to quantify the relative importance of heavy metal contamination and eutrophication in 147 

explaining variation in daphniid species composition through time. Owing to the large number of 148 

variables describing changes in metal contamination and eutrophication, principle components 149 

analysis (PCA) was conducted on data from each lake to reduce each type of pollution to a 150 
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univariate index (ESM4: table S3). We used PC1 axis loading scores of metals and of 151 

eutrophication as explanatory variables in a redundancy analysis (RDA) predicting daphniid 152 

zooplankton assemblage structure (Hellinger-transformed species abundances). In Cedar Pond, 153 

temporal patterns of Cu contamination greatly differed from the other metals and were not 154 

reflected in the metals PC1. In this case, Cu was excluded from the metals PCA and was 155 

included as a separate predictor, in addition to the eutrophication and metals PC1 scores. 156 

Following Borcard et al. [43] and using adjusted R
2
, we used variance partitioning to determine 157 

the amount of variance in community structure explained by metals, eutrophication, and a 158 

combination of these stressors [44]. Monte Carlo permutation tests (10,000 permutations) were 159 

used to test the significance of these associations. RDA and variance partitioning were conducted 160 

separately for each lake using data from 6-9 time periods per lake.  161 

Taxonomic similarity analysis: Studies of taxonomic homogenisation typically compare 162 

community similarity between two time intervals to gauge whether the communities have 163 

become more similar over time [45]. We used this approach to compare overall changes in 164 

daphniid community composition among the four study lakes since ca. 1860, a period of 165 

significant change in regional metal contamination and eutrophication [23,38,46]. We recognize 166 

that estimates of historical change in the relative abundance of daphniids in an egg bank reflect 167 

both variation in the past density of animals in the water column as well as their tendency to 168 

produce ephippia through sexual reproduction, a factor which can vary through time and among 169 

species [47]. We estimated overall changes in community similarity using the Jaccard similarity 170 

index (J). This measure based on species presence and absence is commonly used in studies of 171 

biotic homogenisation [48] and allowed us to characterise community changes related to the 172 

colonisation or local extinction of species. Similarity values range from 0 to 1, with 1 173 
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representing complete overlap in species composition and 0 representing no shared species 174 

between two sites. We tested whether daphniid communities became more taxonomically 175 

homogeneous over time among pollution-impacted lakes by subtracting historic baseline J values 176 

(ca. 125-145 years BP) from modern (surface sediment) values. We also assessed whether the 177 

communities in the heavily eutrophied lakes diverged from to the reference community in Black 178 

Pond over time.  179 

Our data set also enabled a more detailed examination of temporal shifts in daphniid 180 

composition in the four lakes since ca. 1860. We conducted PCA using Hellinger transformed 181 

daphniid species densities in all four lakes. PCA biplots allowed us to visualize the timing and 182 

nature of any patterns of convergence and divergence in community composition among the four 183 

study lakes. In addition, we calculated the Euclidean distance between historic and modern 184 

daphniid assemblages in each lake, using the first three PC axis scores (based on a scaling that 185 

preserves Euclidean distances in multidimensional space). We subtracted modern from historic 186 

PCA distances, such that a positive difference indicated an increase in similarity between 187 

assemblages over time. We conducted PCA, RDA, and variance partitioning using the package 188 

vegan [49] with the statistical software R version 3.0.2 [50].  189 

Species richness trends: We made rarefied estimates of species richness at each time 190 

period based on random subsamples of 42 ephippia (smallest sample size of any of the lakes/ 191 

time periods). This analysis was conducted using the rarefy function in the R package vegan.  192 

 193 

Results 194 

Heavy metal contamination: The timing and magnitude of metal contamination differed among 195 

lakes and metals [38] (figure 1, ESM4: figure S2). Metal contamination typically increased 196 
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beginning in the early 1900s and either levelled off or continued to rise over time. The exception 197 

is Cedar Pond, where metals peaked earlier and declined in recent decades. The largest changes 198 

occurred in Cu, Cd, and Hg, metals known to be highly toxic to cladoceran zooplankton [51,52]. 199 

Concentrations of Cu increased rapidly between the 1940s-90s and remained elevated in 200 

Roseland Lake owing to consistent annual application of hundreds of kg of copper sulphate 201 

(CuSO4) to manage nuisance phytoplankton blooms (personal communication, Putnam County, 202 

CT Water Department). Based on changes in sediment Cu contamination, we believe this 203 

practise also occurred in Cedar Pond but ceased after the 1980s, although documentation of 204 

practises is unavailable. Cd and Hg contamination likely entered the lakes through regional 205 

atmospheric deposition resulting from industrial activity, including fossil fuel burning [22,53]. 206 

Overall, sediment concentrations of copper in Roseland Lake (ca. 1980s-modern sediments), 207 

copper in Cedar Pond (at its peak in ca. 1982) and lead in Cedar Pond (ca. 1916-1969) reached 208 

levels above probable effect concentrations (i.e. harmful effects to aquatic life are considered 209 

likely; ESM4: figure S2) [54].  210 

Eutrophication: The degree and timing of anthropogenic eutrophication also varied 211 

among lakes and roughly followed trajectories expected from regional monitoring programs 212 

(figure 1, table S1, ESM4: figure S3). Analysis of multiple pigment and nutrient biomarkers 213 

suggests that eutrophication was minimal in Black Pond, moderate in Roseland Lake, and 214 

substantial in Alexander Lake and Cedar Pond. Eutrophication proceeded steadily over the past 215 

century in Cedar Pond and Roseland Lake and was more pronounced over the past 50 years in 216 

Alexander Lake (figures 1, S3). In all cases, sediment C: N ratio declined to some extent during 217 

the past 100 years, consistent with increased deposition of phytoplankton biomass [55]. Subfossil 218 

pigment concentrations were relatively unchanged during the past 125-145 years in Black Pond 219 
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(23% increase in total pigments), increased moderately in Roseland Lake (172% increase), and 220 

rose substantially in Alexander Lake and Cedar Pond (334% and 405%, respectively) (figure 221 

S3). Increases in the pigment okenone, produced by obligately anaerobic photosynthetic purple 222 

sulphur bacteria, indicate that anoxia extended into the photic zone with increasing regularity in 223 

Cedar Pond (after 1900) and Alexander Lake (after 1950). The relative concentration of subfossil 224 

pigments produced by cyanobacteria (myxoxanthophyll, canthaxanthin, echinenone) increased in 225 

Cedar and secondarily Roseland, but remained unchanged in Alexander Lake and Black Pond 226 

(ESM4: figure S3).  227 

 Daphniid community composition: Five Daphnia (D. ambigua, D. catawba, D. mendotae, 228 

D. parvula and D. pulicaria) and one Ceriodaphnia species were identified in the four lakes. 229 

Ceriodaphnia ephippia were rarely viable and were therefore identified to the genus level. D. 230 

mendotae and D. pulicaria colonised Cedar Pond by the 1930s, while D. mendotae colonised 231 

Roseland and Alexander Lakes by the 1970s and 1990s respectively (figure 1). D. pulicaria was 232 

absent from the sediment record in Cedar Pond beginning in the 1960s and was seen again in the 233 

sediments ca. 2004-2011. D. pulicaria was present in low abundances from the beginning of the 234 

sediment record in Alexander Lake. Overall, large-bodied D. pulicaria and D. mendotae were 235 

rare (1-5% relative abundance) for as long as 80 years before rapidly increasing in abundance 236 

over the past 10-30 years. Aside from these colonisation and population expansion events, 237 

daphniid assemblages remained remarkably consistent in species relative abundances, 238 

particularly prior to 1950 (figure 1). Local extinction occurred in only one instance 239 

(Ceriodaphnia in Roseland, which comprised <1% of the community in 1904). Ceriodaphnia 240 

was generally uncommon when present and declined in abundance in all lakes.  241 
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 Influence of environmental change on community structure: Variance partitioning with 242 

redundancy analysis revealed that the abundance of daphniid species in nutrient-polluted lakes 243 

was strongly associated with variation in nutrients, either alone or in concert with metal 244 

pollution. Eutrophication alone explained 18.7-39.1% of historical community variation, while 245 

the combined (statistically-inseparable) effects of eutrophication and metals explained an 246 

additional 17.3-53.6% of the variation (table 1). In contrast, variation in the daphniid assemblage 247 

in oligotrophic Black Pond was associated strongly with changes in metal contamination alone 248 

(adj. R
2
 = 72%). Copper was a significant predictor (p=0.047, F=2.92) of daphniid species 249 

abundances in Cedar Pond in an RDA model that included eutrophication (PC1). Variation 250 

partitioning showed that copper explained 14.8% (adj. R
2
) of the variation in the daphniid 251 

assemblage in Cedar that was not explained by eutrophication (table 1). RDA biplots indicate 252 

that two species, D. mendotae and D. pulicaria, were associated with states of high 253 

phytoplankton abundance (figure 2b-d), while both species were absent from unproductive Black 254 

Pond (figure 1). D. puliciaria was also associated with low copper time periods in Cedar Pond 255 

(figure 2c). Ceriodaphnia was characteristic of low metal and low nutrient regimes (figure 2).     256 

Community similarity among lakes: The daphniid assemblages in strongly eutrophying 257 

lakes (i.e., Alexander, Roseland, and Cedar) became more similar to one another over the past 258 

125-145 years, as evidenced by a positive change in J over this time interval (figure 3a). 259 

Community comparisons between the eutrophying lakes and the low-nutrient reference 260 

community in Black Pond were less consistent. The daphniid assemblages in Cedar Pond and 261 

Alexander Lake diverged from that in Black Pond (figure 3b), while the daphniid assemblage in 262 

eutrophied Roseland Lake became more similar to that in Black Pond.  263 
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 PCA showed that over the past century the assemblages in Alexander Lake, Cedar Pond, 264 

and Roseland Lake followed similar trajectories along PC axis 3 (figure 4, ESM4: table S4), a 265 

pattern which reflects the colonisation and increase of D. pulicaria and D. mendotae in these 266 

eutrophying lakes through time. The assemblage in the low nutrient site Black Pond did not 267 

change along the PC3 axis, as neither of these species were ever present in the sediment record. 268 

At the same time, the assemblages in Alexander Lake, Cedar Pond and Black Pond shifted 269 

towards the left along PC axis 1, indicating an increase in D. catawba and a decrease in 270 

Ceriodaphnia and D. ambigua. The assemblage in Roseland shifted in the opposite direction 271 

along the PC1 axis. Additional information on daphniid assemblage shifts along PC axes 1-2 and 272 

2-3 are provided in figure S4 (ESM4).  273 

 Euclidean distances calculated using the first three PC axis scores showed that overall the 274 

Alexander and Roseland daphniid assemblages became more similar while diverging from the 275 

assemblage in Cedar Pond (Figure 3a). The assemblages in Alexander Lake and Cedar Pond 276 

diverged from the assemblage in the low nutrient site, Black Pond (figure 3b), while the 277 

assemblage in eutrophying Roseland Lake became more similar to that in Black Pond.  278 

Species richness: The low-nutrient reference lake Black Pond maintained three daphniid 279 

species throughout the ca. 150-year record. Species richness increased in the three eutrophying 280 

lakes, with two species gained in Roseland and Cedar and one gained in Alexander over the 281 

historic record. Similar patterns were recorded using rarefied species richness estimates (ESM4: 282 

figure S5). 283 

Discussion  284 

Land use change resulting in habitat loss and modification is often associated with biodiversity 285 

loss and homogenisation of the world’s biota [2,4]. Here we demonstrate that nutrient and heavy 286 
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metal pollution, two widespread forms of chemical pollution associated with anthropogenic 287 

activities, explained key changes in the composition of daphniid zooplankton assemblages over 288 

the past ~140 years. However, contrary to expectations, these responses resulted in an overall 289 

increase in species richness in eutrophying lakes owing to colonisation by large-bodied daphniid 290 

taxa. While we observed some evidence of homogenisation of daphniid assemblages in three 291 

eutrophying lakes, this pattern depended on the similarity measure used, and patterns of 292 

divergence from the low-nutrient reference site were inconsistent. Overall, eutrophication was 293 

the dominant force explaining historical changes in community structure in fertilised lakes (table 294 

1, figure 2 b-d). Contamination by metals alone explained subtle shifts in species relative 295 

abundances in the oligotrophic reference lake. While caution is warranted when extrapolating 296 

based on patterns observed in four study lakes, the pervasive nature of lake eutrophication 297 

[12,46], and metal contamination [22], combined with the sensitivity of cladocera to both factors 298 

[15,32], suggest that daphniid zooplankton assemblages in other lake regions with ubiquitous 299 

agricultural or urban development may have followed similar trajectories [12].  300 

Although daphniid species composition and relative abundances responded to both 301 

eutrophication and metal contamination in study lakes, effects of nutrients were paramount in the 302 

nutrient-rich sites, both uniquely and in combination with metal contamination (table 1). We 303 

observed colonisation by D. mendotae and D. pulicaria in eutrophying lakes and shifts in relative 304 

abundance of other taxa (figures 1, 2 and 4), but no extirpation of native species. Elevated 305 

phytoplankton abundance due to eutrophication is expected to favour large-bodied Daphnia such 306 

as D. pulicaria and D. mendotae [30], consistent with their absence from the oligotrophic 307 

reference lake and low densities prior to eutrophication. This species sorting from the regional 308 

species pool fostered a gain of taxonomic diversity, both in terms of species richness per site 309 
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(alpha) and the total number of species found across sites (gamma). Further, our estimates of 310 

changes in historical diversity may represent a minimum value, as we did not correct for 311 

increased sediment accumulation rates and dilution of subfossils which can occur in both modern 312 

sediments and with eutrophication [56]. 313 

Temporal patterns of D. mendotae and D. pulicaria colonisation and population 314 

fluctuations appeared to exhibit a threshold response to fertilisation. Although colonisation of 315 

these species occurred early in the sedimentary record of eutrophying lakes, substantial increases 316 

in relative abundances of these taxa were restricted to the past 10-30 years, after eutrophication 317 

had progressed substantially (figure 1). Large-bodied D. mendotae and D. pulicaria may require 318 

high algal abundance to achieve stable dominance [57,58]. Interestingly, colonisation and 319 

establishment of D. galeata, a species closely related to D. mendotae, also appears to require a 320 

eutrophication threshold in European lakes [33].  321 

Spatial dispersal of Daphnia resting eggs undoubtedly enabled the colonisation of new 322 

species in the eutrophying lakes; however, it seems unlikely that an increase in dispersal alone 323 

would explain the recent rapid increase in D. mendotae and D. pulicaria. Owing to their large 324 

body size, increased dispersal opportunities might make colonisation by these species more 325 

likely, but other smaller taxa in our assemblages should disperse even more frequently. In a 326 

study of colonisation patterns of Midwestern USA reservoirs, D. pulicaria and other large-327 

bodied cladocerans were also slower to colonise [59]. Allen et al. attributed this pattern to 328 

reduced dispersal ability in larger-bodied cladocerans [59]; however, it is also likely that the 329 

increasing eutrophic status of these reservoirs favoured establishment of these large species.  330 

In eutrophying Cedar Pond, elevated Cu concentrations were associated with the 331 

disappearance of D. pulicaria for several decades; this species reappeared and flourished when 332 
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Cu levels approached baseline levels (figures 1, 2c). As densities of D. pulicaria were near the 333 

detection limit throughout much of the record in Cedar, it is possible that this species was not 334 

absent but rather extremely rare in the 1960s-90s. The rapid rise in Cu in Cedar in the 1950s-335 

1980s, particularly separately from other metals, is consistent with the idea that CuSO4 algaecide 336 

was applied to Cedar Pond during this period of D. pulicaria’s absence. Similarly, we 337 

hypothesize that application of CuSO4 may have prevented D. pulicaria from establishing and 338 

flourishing in eutrophying Roseland Lake.  339 

Interestingly, with the exception of copper in Cedar Pond, pollution with metals alone 340 

had no measurable unique effect on daphniids in fertilised lakes, even though the magnitude of 341 

change in metal influx was apparently similar to or greater than that of nutrients associated with 342 

eutrophication, and several metals reached potentially-toxic levels (ESM4: figure S2). Effects of 343 

metal contamination alone resulted in subtle shifts in community structure only in oligotrophic 344 

Black Pond. Overall, Ceriodaphnia was strongly negatively associated with metal increases 345 

(figure 2) and has declined in all lakes where present (figure 1). This is consistent with 346 

laboratory findings that Ceriodaphnia usually exhibits high sensitivity to chemicals during in 347 

vivo toxicity trials [32]. One possible explanation for the relative lack of importance of metals is 348 

that rapid evolutionary responses of the Daphnia assemblages have obscured ecological impacts 349 

of metals. However, an empirical study of Daphnia populations in these lakes actually found 350 

evidence of maladaptation to metal contamination [60]. 351 

Despite the paramount effect of nutrients, variance partitioning analysis suggested that 352 

daphniid community composition was sensitive to the combined effects of fertilisation and metal 353 

pollution (table 1). This could occur because synchronous changes in metal contamination and 354 

eutrophication make it impossible to statistically tease apart their relative influences. However, it 355 
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is also possible that metals and eutrophication have a synergistic effect on daphniid species 356 

patterns. Such a synergy could arise because eutrophication favours lower oxygen content in 357 

deep water, thereby elevating metal release from sediments [61]. Consistent with this 358 

interpretation, we note that the carotenoid okenone from obligately-anaerobic purple sulphur 359 

bacteria was more common in both Cedar Pond and Alexander Lake after several decades of 360 

fertilisation, indicating repeated periods of anoxia in these lakes. In addition, fertilisation was 361 

accompanied by other changes in water chemistry that may have influenced metal toxicity [46]. 362 

For example, laboratory analyses show that daphniid metal sensitivity increases when 363 

accompanied by low concentrations of calcium [62], an element which has declined in Alexander 364 

Lake, Roseland Lake and Black Pond after ca. 1970 [46]. Although further research is needed to 365 

differentiate among these mechanisms, together our findings suggest that complex, hierarchical 366 

interactions between eutrophication and metal pollution may control daphniid community 367 

composition.  368 

Colonisation by D. pulicaria and D. mendotae led to an increase in Jaccard similarity in 369 

the three eutrophying lakes; however, this consistent homogenisation pattern was not observed in 370 

the multivariate ordination of the daphniid assemblages (figure 3a). Shifts in daphniid 371 

composition in the eutrophying lakes followed similar trajectories along PC axis 3 (figure 4). 372 

However, the Euclidian distance, which incorporates variation along the first three PC axes 373 

(figures 4 and S4), showed that eutrophying Alexander and Roseland became more similar, 374 

while both diverged from Cedar (figure 3a). Daphniid assemblages in eutrophying Alexander 375 

Lake and Cedar Pond diverged from the assemblage in the unproductive reference site, Black 376 

Pond (figure 3b); however, daphniids in Roseland became more similar to those in Black Pond. 377 

Although speculative, we suggest the annual application of CuSO4 to control primary 378 
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productivity in Roseland caused the daphniid assemblage to resemble that of the low-nutrient 379 

lake, an undesirable effect as large-bodied Daphnia species are effective biological controls of 380 

phytoplankton production [63].   381 

This study focused on daphniid zooplankton because they are keystone organisms in 382 

freshwater food webs [29], are well preserved in sediments [41], can be identified to species by 383 

hatching and culturing diapausing embryos, and are known to be sensitive to both nutrient and 384 

metal pollution [15,30–32]. However, many other zooplankton species inhabit these lakes, and it 385 

remains unknown how they may have responded to eutrophication and metal contamination. 386 

Similarly, it is difficult to extrapolate from four lakes, including a single reference lake, to a 387 

broader regional trend. However, we note that surveys of regional lakes have demonstrated a 388 

decline in transparency and an increase in nutrient concentration since 1930 [46]. Furthermore, a 389 

2011 survey of 14 Connecticut lakes shows that D. mendotae and D. pulicaria, are usually absent 390 

from oligotrophic lakes in this lake district (ESM5: text S5, table S5, figure S6). Thus, while we 391 

have limited knowledge of historic regional daphniid compositional changes, the frequent 392 

occurrence of these taxa associated with elevated nutrients, combined with the fact that many 393 

lakes have eutrophied, support the idea that the shifts in daphniid composition observed in our 394 

study lakes could be more widespread.  395 

Chemical alteration of the environment by addition of nutrients and metals played a 396 

significant role in explaining the patterns of daphniid zooplankton assemblage shifts documented 397 

here. Eutrophication of lakes is ubiquitous in inhabited regions [12], while contamination with 398 

metals affects lakes in both industrial landscapes [22] and more remote sites [25]. In addition, 399 

application of CuSO4 algaecide is a widespread management practice that still occurs in many 400 

lakes in the US today, despite its high toxicity to aquatic life and limited effectiveness in 401 
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regulating symptoms of eutrophication [64]. In regions of the world where significant land 402 

conversion and/or industrial activity began relatively early (e.g. Europe, Asia), anthropogenic 403 

eutrophication and metal contamination have been impacting lake ecosystems for centuries (e.g., 404 

[65–67]). Given these observations, modest extrapolation of our findings suggests that 405 

eutrophication and metal contamination may have driven long-term shifts in daphniid 406 

zooplankton assemblages in inhabited catchments around the world. Whether such community 407 

responses have occurred and how they might affect the functioning of Daphnia populations in 408 

these lakes are questions that deserve further attention.  409 
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Figure legends: 607 

Figure 1. Changes in daphniid taxa relative abundances, heavy metal contamination, and 608 

eutrophication in the four study lakes over the past 125 years+. Relative abundances of 609 

daphniid taxa over time in the four lakes are based on analysis of diapausing egg banks. 610 

Metals and eutrophication data represent the first PC scores for analyses conducted for each lake 611 

ESM4: table S3 and figures S1-S2 provide additional details and plots of raw data. 612 

 613 

Figure 2. RDA triplots showing significant (α<0.05) relationships between eutrophication 614 

(E) or metal (M) PC1 scores, copper (Cu), in the case of Cedar Pond, and Hellinger 615 

transformed daphniid species densities. High values for M and E indicate higher concentrations 616 

of metals and greater eutrophication respectively. Since only one explanatory variable was 617 

significant in the RDAs of Black, Alexander, and Roseland, it is only possible to display one 618 

RDA axis for these plots. The X axes (RDA 1) show the relationship between eutrophication or 619 

metals and daphniid composition, while the Y axes (PC 1) show unconstrained (residual) 620 

variation. Species scores are represented by abbreviated species names: Ceriodaphnia = CER, D. 621 

ambigua = AMB, D. catawba = CAT, D. mendotae = MEN, D. parvula = PAR, D. pulicaria = 622 

PUL.  Years indicate daphniid composition (site scores) at each time period. 623 

 624 

Figure 3. Changes in similarity between modern and historic daphniid assemblages in the 625 

study lakes. Community similarity measured with PCA is based on 3D Euclidean distances 626 

using PC1-PC3 axis scores. For both Jaccard similarity (J) and PCA distance, increasing values 627 

indicate greater similarity in modern sediments. Decreasing (negative) distances indicate 628 

divergence over time. Panel a compares assemblages in eutrophying lakes; panel b compares 629 
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eutrophying lakes with the low-nutrient reference site, Black Pond. Lake abbreviations: B: 630 

Black, A: Alexander, C: Cedar, R: Roseland. Modern J and PCA distances compare assemblages 631 

in surface sediment (ca. 2011). Historic J and PCA distances compare assemblages ca. 145-115 632 

years before present, matching sediment ages in each lake pair as closely as possible. Years used 633 

in historic comparisons include: B-C 1873-1863, R-B 1863-1873, A-B 1888-1899, A-C 1888-634 

1898, A-R 1888-1863, R-C 1863-1863. 635 

 636 

Figure 4. PCA biplot showing temporal shifts in daphniid assemblage composition in each 637 

lake. The PCA is based on Hellinger transformed species densities estimated from sediment 638 

diapausing egg banks. PC1 and PC3 are plotted to show as much variation in daphniid 639 

community structure as possible, while ensuring that all six taxa were important in 640 

explaining at least one axis of the plot. Biplots of PC axes 1-2 and 2-3 are provided in 641 

ESM4 figure S4. ESM4 table S4 provides additional PCA results. Species scores are 642 

represented by abbreviated species names: Ceriodaphnia = CER, D. ambigua = AMB, D. 643 

catawba = CAT, D. mendotae = MEN, D. parvula = PAR, D. pulicaria = PUL. Site scores are 644 

labelled with the approximate age of the sediment for that time period. Lines are drawn to show 645 

the temporal changes in daphniid composition within each lake. Alexander=blue, Cedar=gold, 646 

Roseland=red, Black=black.  647 

 648 

649 
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Tables: 650 

Table 1. Variance partitioning of RDA-models relating daphniid assemblage structure 651 

(Hellinger transformed species abundances at various time periods) with metal 652 

contamination (PC1) and eutrophication (PC1) (electronic supplementary material, table S2). 653 

Separate analyses were conducted for each lake. Amount of variation explained solely by 654 

eutrophication and metals as well as their overlap is displayed. Overlap between the effects of 655 

nutrients and metals cannot be statistically distinguished, as this variation could be explained by 656 

two independent mechanisms running in parallel. 657 

Lake Index Adj R
2
 F P value 

Black 

Nutrients  0.000 1.00 0.416 

Nutrients + Metals -0.185
a
 -- -- 

Metals  0.716 8.64 0.039 

Alexander 

Nutrients  0.254 5.10 0.064 

Nutrients + Metals 0.536 -- -- 

Metals  -0.038 0.38 0.844 

Cedar 

Nutrients  0.346 4.636 0.017 

Nutrients + Metals 0.135  -- -- 

Metals -0.069 0.280 0.855 

Nutrients + Copper -0.160 -- -- 

Metals + Copper -0.010 -- -- 

Nutrients + Metals + Copper 0.039 -- -- 

Copper 0.148 2.556 0.062 

Roseland Nutrients  0.391 10.54 0.011 
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Nutrients + Metals 0.380 -- -- 

Metals  -0.180 0.570 0.561 

a 
Note that non-significant terms can have a negative adjusted R

2
, which can affect the adjusted 658 

R
2
 of the significant terms. 659 

 660 
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