Chlamtác, E., Dinitz, M., Konrad, C., Kortsarz, G., \& Rabanca, G. (2018). The Densest \$k\$-Subhypergraph Problem. SIAM Journal on Discrete Mathematics, 32(2), 1458-1477. https://doi.org/10.1137/16M1096402

Publisher's PDF, also known as Version of record

Link to published version (if available):
10.1137/16M1096402

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via SIAM at
https://epubs.siam.org/doi/abs/10.1137/16M1096402. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

THE DENSEST k-SUBHYPERGRAPH PROBLEM*

EDEN CHLAMTÁČ ${ }^{\dagger}$, MICHAEL DINITZ ${ }^{\ddagger}$, CHRISTIAN KONRAD ${ }^{\S}$, GUY KORTSARZ®, AND GEORGE RABANCA ${ }^{\|}$

Abstract

The densest k-subgraph ($\mathrm{D} k \mathrm{~S}$) problem and its corresponding minimization problem smallest p-edge subgraph ($\mathrm{S} p \mathrm{ES}$) have come to play a central role in approximation algorithms. This is due both to their practical importance and to their usefulness as a tool for solving and establishing approximation bounds for other problems. These two problems are not well understood, and it is widely believed that they do not admit a subpolynomial approximation ratio (although the best-known hardness results do not rule this out). In this paper we generalize both $\mathrm{D} k \mathrm{~S}$ and $\mathrm{Sp} p \mathrm{ES}$ from graphs to hypergraphs. We consider the densest k-subhypergraph ($\mathrm{D} k \mathrm{SH}$) problem (given a hypergraph (V, E), find a subset $W \subseteq V$ of k vertices so as to maximize the number of hyperedges contained in W), and define the minimum p-union ($\mathrm{M} p \mathrm{U}$) problem (given a hypergraph, choose p of the hyperedges so as to minimize the number of vertices in their union). We focus in particular on the case where all hyperedges have size 3 , as this is the simplest nongraph setting. For this case we provide an $O\left(n^{4(4-\sqrt{3}) / 13+\epsilon}\right)<O\left(n^{0.697831+\epsilon}\right)$-approximation (for arbitrary constant $\epsilon>0$) for $\mathrm{D} k \mathrm{SH}$ and an $\tilde{O}\left(n^{2 / 5}\right)$-approximation for $\mathrm{M} p \mathrm{U}$. We also give an $O(\sqrt{m})$-approximation for $\mathrm{M} p \mathrm{U}$ in general hypergraphs. Finally, we examine the interesting special case of interval hypergraphs (instances where the vertices are a subset of the natural numbers and the hyperedges are intervals of the line) and prove that both problems admit an exact polynomial-time solution on these instances.

Key words. dense, hypergraph, approximation

AMS subject classification. 68 W 25

DOI. 10.1137/16M1096402

1. Introduction. Two of the most important outstanding problems in approximation algorithms are the approximability of the densest k-subgraph problem ($\mathrm{D} k \mathrm{~S}$) and its minimization version, the smallest p-edge subgraph problem ($\mathrm{S} p \mathrm{ES}$ or min$\mathrm{D} k \mathrm{~S})$. In $\mathrm{D} k \mathrm{~S}$ we are given as input a graph $G=(V, E)$ and an integer k, and the goal is to find a subset $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right|=k$ which maximizes the number of edges in the subgraph of G induced by V^{\prime}. In the minimization version, $\mathrm{S} p \mathrm{ES}$, we are given a lower bound p on the number of required edges, and the goal is to find a set $V^{\prime} \subseteq V$ of minimum size so that the subgraph induced by V^{\prime} has at least p edges. These problems have proved to be extremely useful: For example, a variant of $\mathrm{D} k \mathrm{~S}$ was recently

[^0]used to obtain a new cryptographic system [3]. The same variant of the $\mathrm{D} k \mathrm{~S}$ problem was shown to be central in understanding financial derivatives [4]. The best-known algorithms for many other problems involve using an algorithm for $\mathrm{D} k \mathrm{~S}$ or $\mathrm{S} p \mathrm{ES}$ as a black box (e.g., $[26,18,13]$).

Despite decades of work, there is still a large gap between the best-known approximability and inapproximability bounds. The first approximation ratio for $\mathrm{D} k \mathrm{~S}$ was $O\left(n^{2 / 5}\right)$ [21] and was devised in 1993. The state-of-the-art approximation for $\mathrm{D} k \mathrm{~S}$ is $O\left(n^{1 / 4+\epsilon}\right)$ for arbitrarily small constant $\epsilon>0$ [7], and the best-known approximation for $\mathrm{S} p \mathrm{ES}$ is $O\left(n^{3-2 \sqrt{2}+\epsilon}\right)$ for arbitrarily small constant $\epsilon>0$ [10]. Given the slow improvement over 23 years, it is widely believed that $\mathrm{D} k \mathrm{~S}$ and $\mathrm{S} p \mathrm{ES}$ do not admit better than a polynomial approximation ratio. Furthermore, the existing approximation guarantees are tight assuming the recently conjectured hardness of finding a planted dense subgraph in a random graph (for certain parameters) [7, 10]. However, there has been very little progress towards an actual proof of hardness of approximation. It is clear that they are both NP-hard, but that is all that is known under the assumption that $P \neq N P$. Under much stronger complexity assumptions it is known that they cannot be approximated better than some constant [19, 14] or any constant [1], but this is still a long way from the conjectured polynomial hardness.

The believed hardness of $\mathrm{D} k \mathrm{~S}$ and Sp ES has been used many times to give evidence for hardness of approximation. For example, consider the Steiner k-forest problem in which the input is an edge weighted graph, a collection of q pairs $\left\{s_{i}, t_{i}\right\}_{i=1}^{q}$, and a number $k<q$. The goal is to find a minimum cost subgraph that connects at least k of the pairs. It is immediate to see that Sp ES is a special case of the Steiner k-forest problem, ${ }^{1}$ and hence it seems highly unlikely that the Steiner k-forest problem admits a better than polynomial approximation ratio.

Given the interest in and importance of $\mathrm{D} k \mathrm{~S}$ and $\mathrm{S} p \mathrm{ES}$, it is somewhat surprising that there has been very little exploration of the equivalent problems in hypergraphs. A hypergraph is most simply understood as a collection E of subsets over a universe V of vertices, where each $e \in E$ is called a hyperedge (so graphs are the special case when each $e \in E$ has cardinality 2). In general hypergraphs, the obvious extensions of $\mathrm{D} k \mathrm{~S}$ and $\mathrm{S} p \mathrm{ES}$ are quite intuitive. In the densest k-subhypergraph ($\mathrm{D} k \mathrm{SH}$) problem we are given a hypergraph (V, E) and a value k, and the goal is to find a set $W \subseteq V$ of size k that contains the largest number of hyperedges from E. In the minimum p-union $(\mathrm{M} p \mathrm{U})$ problem we are given a hypergraph and a number p, and the goal is to choose p of the hyperedges to minimize the size of their union.

Clearly these problems are at least as hard as the associated problems in graphs, but how much harder are they? Can we design nontrivial approximation algorithms? Can we extend the known algorithms for graphs to the hypergraph setting? Currently, essentially only lower bounds are known: Applebaum [2] showed that they are both hard to approximate to within n^{ϵ} for some fixed $\epsilon>0$, assuming that a certain class of one-way functions exist. But it was left as an open problem to design any nontrivial upper bound (see footnote 5 of [2]).
1.1. Our results. In this paper we provide the first nontrivial upper bounds for these problems. Let n denote the number of vertices and m denote the number of hyperedges in the input hypergraph. Our first result is an approximation for Minimum p-Union in general hypergraphs.

THEOREM 1.1. There is an $O(\sqrt{m})$-approximation for the $M p U$ problem.

[^1]We then switch our attention to the low rank case since this is the setting closest to graphs. In particular, we focus on the 3 -uniform case, where all hyperedges have size at most 3. In this setting it is relatively straightforward to design an $O(n)$ approximation for $\mathrm{D} k \mathrm{SH}$, although even this is not entirely trivial (the optimal solution could have size up to k^{3} rather than k^{2} as in graphs, which would make the trivial algorithm of choosing $k / 3$ hyperedges only an $O\left(n^{2}\right)$-approximation rather than an $O(n)$-approximation as in graphs). We show that by very carefully combining a set of algorithms and considering the cases where they are all jointly tight we can significantly improve this approximation, and obtain the following theorem.

Theorem 1.2. For every constant $\epsilon>0$, there is an $O\left(n^{4(4-\sqrt{3}) / 13+\epsilon}\right) \leq$ $O\left(n^{0.697831+\epsilon}\right)$-approximation for the DkSH problem on 3 -uniform hypergraphs.

Adapting these ideas to the minimization setting gives an improved bound for $\mathrm{M} p \mathrm{U}$ as well.

Theorem 1.3. There is an $\tilde{O}\left(n^{2 / 5}\right)$-approximation for the $M p U$ problem on 3 -uniform hypergraphs.

It is worth noting that any f-approximation for $\mathrm{D} k \mathrm{SH}$ can be used to give an $\tilde{O}(f)$-approximation for $\mathrm{M} p \mathrm{U}$ (see Theorem 2.6), so Theorem 1.3 gives a significant improvement over this black-box reduction from Theorem 1.2.

Finally, we define an interesting special case of $\mathrm{D} k \mathrm{SH}$ and $\mathrm{M} p \mathrm{U}$ that can be solved exactly in polynomial time. Suppose we have an interval hypergraph: a hypergraph in which the vertices are a finite subset of \mathbb{N} and each hyperedge is an interval of the real line (restricted to the vertices). Then we show that a dynamic programming algorithm can be used to actually solve our problems.

THEOREM 1.4. DkSH and MpU can be solved in polynomial time on interval hypergraphs.
1.2. Related work. As discussed, the motivation for these problems mostly comes from the associated graph problems, which have been extensively studied and yet are still poorly understood. The $\mathrm{D} k \mathrm{~S}$ problem was introduced by Kortsarz and Peleg [21], who gave an $O\left(n^{2 / 5}\right)$ ratio for the problem. Feige, Kortsarz, and Peleg [15] improved the ratio to $O\left(n^{1 / 3-\epsilon}\right)$ for ϵ that is roughly $1 / 60$. The current best-known approximation for $\mathrm{D} k \mathrm{~S}$ is $O\left(n^{1 / 4+\epsilon}\right)$ for arbitrarily small constant $\epsilon>0$, due to Bhaskara et al. [7]. For many years the minimization version, $\mathrm{S} p \mathrm{ES}$, was not considered separately, and it was only relatively recently that the first separation was developed: Building on the techniques of [7] but optimizing them for the minimization version, Chlamtáć, Dinitz, and Krauthgamer [10] gave an $O\left(n^{3-2 \sqrt{2}+\epsilon}\right)$-approximation for $\mathrm{S} p \mathrm{ES}$ for arbitrarily small constant $\epsilon>0$. The state-of-the-art hardness bounds depend on the precise hardness assumption used, but the strongest are due to Manurangsi [25], who recently showed that under the Exponential Time Hypothesis (ETH) there is no $n^{1 /(\log \log n)^{c}}$-approximation to either $\mathrm{D} k \mathrm{~S}$ or $\mathrm{S} p \mathrm{ES}$ for some universal constant c, and under the stronger Gap-ETH there is no $n^{f(n)}$-approximation for any function $f(n) \in o(1)$.

While defined slightly differently, $\mathrm{D} k \mathrm{SH}$ and $\mathrm{M} p \mathrm{U}$ were introduced earlier by Applebaum [2] in the context of cryptography: He showed that if certain one-way functions exist (or that certain pseudorandom generators exist), then $\mathrm{D} k \mathrm{SH}$ is hard to approximate within n^{ϵ} for some constant $\epsilon>0$. Based on this result, $\mathrm{D} k \mathrm{SH}$ and $\mathrm{M} p \mathrm{U}$ were used to prove hardness for other problems, such as the k-route cut problem [12]. To the best of our knowledge, though, there has been no previous work on algorithms for these problems.

Since the publication of the preliminary version of this paper [9], there has been one follow-up paper [11] which directly considers some (though by no means all) of the problems that we discuss here. In particular, [11] improves Theorem 1.1 by giving an $O\left(m^{1 / 4+\varepsilon}\right)$-approximation for $\mathrm{M} p \mathrm{U}$. They do this by designing new algorithms that generalize the "log-density" framework that was used for $\mathrm{D} k \mathrm{~S}[7]$ and $\mathrm{S} p \mathrm{ES}[10]$ to the hypergraph setting. Since the log-density framework is beyond the scope of this paper, we refer the interested reader to [11] for a more detailed description. Their ideas and techniques are not particularly sensitive to the size of the hyperedges, though, so their paper does not offer any improvement over our main result, Theorem 1.2 for $\mathrm{D} k \mathrm{SH}$ on 3-uniform hypergraphs. However, [11] does note that their improvement for the general case can be "plugged in" (in a black-box way) to our algorithm for 3-uniform $\mathrm{M} p \mathrm{U}$, improving our $\tilde{O}\left(n^{2 / 5}\right)$-approximation to a $\tilde{O}\left(n^{3 / 8}\right)$-approximation. Since the main ideas of the improved algorithm are from this paper (with only a black-box addition from [11]), we provide a short overview of the improvement in Appendix C, as well as a slightly more detailed comparison to this paper.
1.3. Organization. We begin in section 2 with some preliminaries, showing the basic relationships between the problems. In section 3 we give our $O(\sqrt{m})$ approximation for $\mathrm{M} p \mathrm{U}$ in general hypergraphs. We then focus on small-rank hypergraphs, giving an $O\left(n^{4 / 5}\right)$-approximation for $\mathrm{D} k \mathrm{SH}$ on 3-uniform hypergraphs in section 4 , which we then improve to roughly $O\left(n^{0.698}\right)$ in section 5 . We follow this in section 6 with our improved bound for Mp U on 3 -uniform hypergraphs. Finally, in section 7 we show how to solve both problems exactly in polynomial time on interval hypergraphs. We conclude in section 8 with some open questions for future work.
2. Preliminaries and notation. A hypergraph $H=(V, E)$ consists of a set V (the vertices) together with a collection $E \subseteq 2^{V}$ (the hyperedges), where each hyperedge is a subset of V. We will typically use $n=|V|$ and $m=|E|$ to denote the number of vertices and hyperedges, respectively. The degree of a vertex in a hypergraph is the number of hyperedges which contain it. Given a subset $V^{\prime} \subseteq V$, the subhypergraph of H induced by V^{\prime} is $H\left[V^{\prime}\right]=\left(V^{\prime}, E_{H}\right)$, where $E_{H}=\{e \in E$: $\left.e \subseteq V^{\prime}\right\}$. For a subset of hyperedges $E^{\prime} \subseteq E$, we write $V\left(E^{\prime}\right)$ to denote the set of vertices contained in at least one hyperedge of E^{\prime}, i.e., $V\left(E^{\prime}\right):=\bigcup_{e \in E^{\prime}} e$. We say that H is α-uniform if $|e|=\alpha$ for all $e \in E$ and that the rank of H is $\max _{e \in E}|e|$ (i.e., the smallest α such that all edges have cardinality at most α). A hyperedge e is covered by a set of vertices V^{\prime} if $e \subseteq V^{\prime}$.

The main problems that we will consider are the following.
Definition 2.1. Given a hypergraph $H=(V, E)$ and an integer k, the $D k S H$ problem is to find a set $V^{\prime} \subseteq V$, with $\left|V^{\prime}\right|=k$, such that the number of edges in $H\left[V^{\prime}\right]$ is maximized.

Definition 2.2. Given a hypergraph $H=(V, E)$ and an integer p, the $M p U$ problem is to find a set $E^{\prime} \subseteq E$, with $\left|E^{\prime}\right|=p$, such that $\left|\cup_{e \in E^{\prime}} e\right|$ is minimized.

Note that on 2-uniform hypergraphs, these two problems are the classic graph problems $\mathrm{D} k \mathrm{~S}$ and $\mathrm{S} p \mathrm{ES}$, respectively.

A special class of hypergraphs that we will consider are interval hypergraphs, defined as follows.

Definition 2.3. H is a interval hypergraph if is isomorphic to a hypergraph $H^{\prime}=(V, E)$, where V is a finite subset of \mathbb{N} and for each $e \in E$ there are values $a_{e}, b_{e} \in \mathbb{N}$ such that $e=\left\{i \in V: a_{e} \leq i \leq b_{e}\right\}$.
2.1. Relationship between problems. We begin by proving some relatively straightforward relationships between the two problems. We first make the obvious observation that a solution for one problem implies a solution for the other.

Observation 2.4. If there exists a polynomial-time algorithm that solves the $\mathrm{D} k \mathrm{SH}$ problem for any k on a hypergraph H, then there exists a polynomial-time algorithm that solves the $\mathrm{M} p \mathrm{U}$ problem on the hypergraph H. Similarly, if there is an algorithm that solves $\mathrm{M} p \mathrm{U}$ on H, then there is an algorithm that solves $\mathrm{D} k \mathrm{SH}$ on H.

The relationship is not quite so simple when we instead are approximating the problems, but it is relatively straightforward to show that a relationship still exists. This is given by the following lemma, which will also prove to be useful later.

Lemma 2.5. If there exists an algorithm which in a hypergraph H containing a subhypergraph with k vertices and p hyperedges finds a subhypergraph $\left(V^{\prime}, E^{\prime}\right)$ with $\left|V^{\prime}\right| \leq f k$ and $\left|E^{\prime}\right| \geq\left|V^{\prime}\right| p /(k f)$, we can get an $O(f \log p)$-approximation for $M p U$.

Since any f-approximation algorithm for $\mathrm{D} k \mathrm{SH}$ satisfies the conditions of the lemma, as an immediate corollary we get the following.

ThEOREM 2.6. If there is an f-approximation for $D k S H$, then there is an $O(f \log p)$-approximation for $M p U$.

Proof of Lemma 2.5. Let $(H=(V, E), p)$ be an instance of $\mathrm{M} p \mathrm{U}$, and let \mathcal{A} be an algorithm as described in the lemma. We assume without loss of generality that we know the number of nodes k in the optimal solution (since we can just try all possibilities for k) and hence that there exists a set $V^{*} \subseteq V$ with $\left|V^{*}\right|=k$ such that V^{*} covers at least p hyperedges. Initialize $E^{\prime}=\emptyset$, and consider the following algorithm for $\mathrm{M} p \mathrm{U}$ that repeats the following until $\left|E^{\prime}\right| \geq p$:

1. Let $V^{\prime}=\mathcal{A}(H, k)$, and let $E^{\prime \prime}$ be the hyperedges of H covered by V^{\prime}.
2. Let $E^{\prime} \leftarrow E^{\prime} \cup E^{\prime \prime}$.
3. Remove $E^{\prime \prime}$ from H (remove only the edges, not the corresponding vertices).

We claim that this is an $\tilde{O}(f)$-approximation for $\mathrm{M} p \mathrm{U}$. Indeed, suppose that at iteration i we added x_{i} vertices and that at the beginning of the iteration, we had already added $p-p_{i}$ edges to the solution. In particular, that means that at least p_{i} of the original hyperedges contained in V^{*} were not yet removed. This then implies that the number of edges added in iteration i was at least $x_{i} \cdot p_{i} /(k f)$. Thus, the number of edges we still need to add after iteration i is $p_{i+1} \leq p_{i}-x_{i} \cdot p_{i} /(k f)=p_{i}\left(1-x_{i} /(k f)\right)$. Thus, by induction, after t iterations, the number of hyperedges we need to add is bounded by

$$
p_{t+1} \leq p \prod_{i=1}^{t}\left(1-x_{i} /(k f)\right) \leq p \exp \left(-\sum_{i=1}^{t} x_{i} /(k f)\right) .
$$

Thus, as soon as the total number of vertices added exceeds $k f \ln p$ for the first time, the number of edges will exceed p. Since the last iteration adds at most $k f$ vertices, we are done.

A standard argument also shows a (more lossy) reduction in the other direction.
THEOREM 2.7. If there is an f-approximation for $M p U$ on α-uniform hypergraphs, then there is an $O\left(f^{\alpha}\right)$-approximation for $D k S H$ on α-uniform hypergraphs (when $\alpha=O(1)$).

Proof. Let $(H=(V, E), k)$ be an instance of $\mathrm{D} k \mathrm{SH}$ where H is α-uniform, and let \mathcal{A} be an f-approximation algorithm for $\mathrm{M} p \mathrm{U}$ on α-uniform hypergraphs. We can assume without loss of generality that we know the number of hyperedges p which
are contained in the optimal solution since we can just try all possibilities for p. We first use \mathcal{A} with the correct guess of p to get a subhypergraph (\hat{V}, \hat{E}) with $|\hat{V}| \leq k f$ and $|\hat{E}| \geq p$.

We then build an auxiliary hypergraph with vertex set $V^{\prime}=\hat{V} \times[\alpha]$ and hyperedge set E^{\prime} defined by creating a hyperedge $\left\{\left(v_{\pi(1)}, 1\right),\left(v_{\pi(2)}, 2\right), \ldots,\left(v_{\pi(\alpha)}, \alpha\right)\right\}$ for each hyperedge $\left\{v_{1}, v_{2}, \ldots, v_{\alpha}\right\} \in \hat{E}$ and each permutation π of $[\alpha]$. Note that $\left|V^{\prime}\right| \leq k f \alpha$ (since we essentially made α copies of each vertex) and $\left|E^{\prime}\right| \geq p \alpha$! (since we created $\alpha!$ copies of each hyperedge).

For each $i \in[\alpha]$, let $V_{i} \subseteq V^{\prime}$ be the set of vertices of the form (v, i), i.e., the set $\hat{V} \times\{i\}$. Note that every hyperedge in E^{\prime} contains exactly one vertex from each V_{i}. Now we run a simple greedy algorithm on this new hypergraph. We will build a solution $\left(V^{*}, E^{*}\right)$ as follows. We initially set $V^{*}=\emptyset$ and $E^{*}=E^{\prime}$. Then in iteration i, we choose the k / α nodes from V_{i} that are in the most hyperedges in E^{*} and add them to V^{*} and remove from E^{*} every hyperedge which does not have any of these nodes. After α iterations we are finished.

Clearly after this completes, $\left|V^{*}\right|=k$. Moreover, since in each iteration we select the best k / α nodes from a set of size $|\hat{V}| \leq k f$, it is obvious that after any iteration i the size of E^{*} is at least a $(k / \alpha) /(k f)=1 /(\alpha f)$ fraction of its size after iteration $i-1$. Thus, at the end of this algorithm every hyperedge in E^{*} is contained in V^{*}, and $\left|E^{*}\right| \geq p \alpha!/(\alpha f)^{\alpha}$. Now if we simply project V^{*} back onto \hat{V} (i.e., onto the first coordinate) we get a vertex set of size at most k which contains at least $\left|E^{*}\right| /(\alpha!) \geq p / \Omega\left(f^{\alpha}\right)$ hyperedges, as desired.
3. $\mathbf{M p U}$ in general hypergraphs. The algorithm presented in this section requires a subroutine that returns a densest subhypergraph (without the cardinality bound on the size of the subhypergraph). More formally, we need a polynomial-time algorithm $\operatorname{DSH}(\mathrm{G})$ which returns a subset of hyperedges so that

$$
\frac{|\mathrm{DSH}(G)|}{|V(\operatorname{DSH}(G))|} \geq \frac{\left|E^{\prime}\right|}{\left|V\left(E^{\prime}\right)\right|}
$$

for every $E^{\prime} \subseteq E$. In the graphical setting (where each hyperedge has cardinality two), this subproblem corresponds to the densest subgraph problem, for which Goldberg gave a polynomial-time algorithm in 1984 [17]. In Appendices A and B we give two different polynomial-time algorithms for the hypergraph setting. The first, in Appendix A, uses a reduction to network flows. The second, in Appendix B, is based on a straightforward adaptation of a linear programming approach for the graph case due to Charikar [8]. For the remainder of this section, we thus assume that we have a polynomial-time implementation $\operatorname{DSH}(G)$ at our disposal.

Our algorithm (Algorithm 1) consists of two phases. In the first phase, it iteratively adds edges $E^{\prime \prime}$ to an initially empty set E^{\prime} until E^{\prime} exceeds the size $p-\sqrt{m}$. The set $E^{\prime \prime}$ is the edge set of a densest subhypergraph in the subhypergraph ($V, E \backslash E^{\prime}$). If $E^{\prime \prime}$ is large so that $\left|E^{\prime} \cup E^{\prime \prime}\right|>p$, then an arbitrary subset of $E^{\prime \prime}$ is added to E^{\prime} so that E^{\prime} has the desired size p. Then, in the second phase, we add the $p-\left|E^{\prime}\right|$ edges of $E \backslash E^{\prime}$ of minimum cardinality to E^{\prime} (ties broken arbitrarily), and the algorithm returns set E^{\prime}.

Theorem 3.1. Algorithm 1 is a $(2 \sqrt{m})$-approximation algorithm for $M p U$.
Proof. Let $O P T \subseteq E$ be an optimal solution, and let $r=|V(O P T)|$. Let E_{i}^{\prime} denote the set E^{\prime} in the beginning of the i th iteration of the repeat loop. Suppose that the algorithm runs in l rounds. Then E_{l+1}^{\prime} is the set E^{\prime} after the last iteration of the loop but before the nodes selected in line 9 are added.

```
Algorithm 1. \(2 \sqrt{m}\)-approximation algorithm for the \(\mathrm{M} p \mathrm{U}\) problem.
    Data: Hypergraph \(G=(V, E)\) with \(m=|E|\), parameter \(p\)
    \(E^{\prime} \leftarrow\{ \} ;\)
    repeat
        \(E^{\prime \prime} \leftarrow \operatorname{DSH}\left(\left(V, E \backslash E^{\prime}\right)\right) ;\)
        if \(\left|E^{\prime}\right|+\left|E^{\prime \prime}\right| \leq p\) then
            \(E^{\prime} \leftarrow E^{\prime} \cup E^{\prime \prime} ;\)
        else
            Add arbitrary \(p-\left|E^{\prime}\right|\) edges from \(E^{\prime \prime}\) to \(E^{\prime}\);
    until \(\left|E^{\prime}\right| \geq p-\sqrt{m} ;\)
    \(E^{\prime \prime} \leftarrow\) subset of \(p-\left|E^{\prime}\right|\) edges of \(E \backslash E^{\prime}\) of minimum cardinality;
    \(E^{\prime} \leftarrow E^{\prime} \cup E^{\prime \prime} ;\)
    return \(E^{\prime}\);
```

Consider an arbitrary iteration $i \leq l$, and let $E^{\prime \prime} \leftarrow \operatorname{DSH}\left(\left(V, E \backslash E^{\prime}\right)\right)$ as in the algorithm. Note that by the condition of the loop, we have $\left|E_{i}^{\prime}\right| \leq p-\sqrt{m}$. Furthermore, we have

$$
\frac{\left|E^{\prime \prime}\right|}{\left|V\left(E^{\prime \prime}\right)\right|} \geq \frac{\left|O P T \backslash E_{i}^{\prime}\right|}{\left|V\left(O P T \backslash E_{i}^{\prime}\right)\right|} \geq \frac{p-\left|E_{i}^{\prime}\right|}{r}
$$

since $E^{\prime \prime}$ is the edge set of a densest subhypergraph in $\left(V, E \backslash E_{i}^{\prime}\right)$. Then

$$
\left|V\left(E^{\prime \prime}\right)\right| \leq \frac{\left|E^{\prime \prime}\right| r}{p-\left|E_{i}^{\prime}\right|} \leq \frac{\left|E^{\prime \prime}\right| r}{p-p+\sqrt{m}}=\frac{\left|E^{\prime \prime}\right| r}{\sqrt{m}}
$$

Thus, we have $\left|V\left(E_{i+1}^{\prime}\right)\right| \leq\left|V\left(E_{i}^{\prime}\right)\right|+\frac{\left|E^{\prime \prime}\right| r}{\sqrt{m}}$ (note that this inequality also captures the case when only a subset of $E^{\prime \prime}$ is added to E^{\prime} in line 7). Now, note that the sets $E^{\prime \prime}$ of any two different iterations are disjoint, and thus the sizes of the sets $E^{\prime \prime}$ of the different iterations sum up to at most m. We thus obtain the bound:

$$
\left|V\left(E_{l+1}^{\prime}\right)\right| \leq \frac{m r}{\sqrt{m}}=\sqrt{m} r
$$

In the second phase, we select at most \sqrt{m} edges $E^{\prime \prime}$ of minimum cardinality among $E \backslash E^{\prime}$. Clearly, the edge with maximum cardinality among those is at most r (if it was larger, then $|V(O P T)|$ would be larger as well) and thus $\left|V\left(E^{\prime \prime}\right)\right| \leq \sqrt{m} r$. The neighborhood of the returned set of our algorithm is hence at most $2 \sqrt{m} r$, which gives an approximation factor of $2 \sqrt{m}$.
4. $\mathrm{D} k \mathrm{SH}$ in 3-uniform hypergraphs. In this section, we consider the $\mathrm{D} k \mathrm{SH}$ problem in 3-uniform hypergraphs. We develop an $O\left(n^{4 / 5}\right)$-approximation algorithm here and show in section 5 how to improve the approximation factor to $O\left(n^{0.697831+\epsilon}\right)$ for any $\epsilon>0$ by replacing one of our subroutines with an algorithm of Bhaskara et al. [7].

Throughout this section, let $H=(V, E)$ be the input 3-uniform hypergraph. Let $K \subseteq V$ denote an optimal solution, i.e., a subset of vertices such that $H[K]$ is a densest k-subhypergraph. The average degree of $H[K]$ is denoted by $d=3|E(H[K])| / k$. We say that a hyperedge is optimal if it is contained in $H[K]$.
4.1. Overview of our algorithm. Let $K_{1} \subseteq V$ be a set of $k / 3$ vertices of largest degree (ties broken arbitrarily), Δ be the minimum degree of a node in K_{1}, and $H^{\prime}=H\left[V \backslash K_{1}\right]$. Note that the maximum degree in H^{\prime} is Δ.

Suppose first that at least half of the optimal hyperedges contain at least one vertex of K_{1}. Then the following lemma shows that we can easily achieve a much better approximation than we are aiming for.

Lemma 4.1. Suppose that at least half of the optimal hyperedges contain a vertex of K_{1}. Then we can achieve an $O\left(n^{1 / 4+\varepsilon}\right)$ approximation for any $\varepsilon>0$.

Proof. By our assumption, there is a set P of optimal hyperedges of size at least $d k / 6$ such that every edge in P intersects K_{1}. Consider two cases.

Case 1. For at least half the edges $e \in P$, we have $\left|e \cap K_{1}\right| \geq 2$. Denote the set of these edges by P^{\prime}. For every vertex $u \in V$, let its K_{1}-weight be the number of pairs $\{v, x\}$ such that $v, x \in K_{1}$ and $\{u, v, x\}$ is a hyperedge. Then by our assumption, the vertices in K have average K_{1}-weight at least $\left|P^{\prime}\right| / k \geq d / 12$. Choosing $2 k / 3$ vertices greedily (by maximum K_{1}-weight) gives (along with K_{1}) a k-subhypergraph with at least $d k / 18$ hyperedges.

Case 2. $\quad P^{\prime \prime}=P \backslash P^{\prime}$ contains at least half the hyperedges in P. Note that $\left|e \cap K_{1}\right|=1$ for every $e \in P^{\prime \prime}$. For every pair of vertices $u, v \in V \backslash K_{1}$, let its $K_{1-}{ }^{-}$ weight be the number of vertices $x \in K_{1}$ such that $\{u, v, x\}$ is a hyperedge, and let G be the graph on vertices $V \backslash K_{1}$ with these edge weights. Then any k^{\prime}-subgraph of G with total edge weight w corresponds to a $\left(\left|K_{1}\right|+k^{\prime}\right)$-subhypergraph of H with at least w hyperedges, and, in particular, G contains a k-subgraph with average weighted degree at least $2\left|P^{\prime \prime}\right| / k \geq d / 6$, which can be easily pruned (randomly or greedily) down to a $2 k / 3$-subgraph with average weighted degree $\Omega(d)$. Thus, we can run the $\mathrm{D} k \mathrm{~S}$ approximation algorithm of Bhaskara et al. [7] ${ }^{2}$ and find a $2 k / 3$-subgraph of G with total weight at least $k d / n^{1 / 4+\varepsilon}$, which in turn gives a $\left(\left|K_{1}\right|+2 k / 3=\right) k$-subhypergraph of H with a corresponding number of hyperedges.

In the more difficult case, at least half of the optimal hyperedges are fully contained in H^{\prime}. Exploiting the fact that the maximum degree in H^{\prime} is Δ and trading off multiple algorithms, we show in the following subsection how to obtain an $O\left(n^{\frac{4}{5}}\right)$ approximation algorithm in this case.
4.2. An $\boldsymbol{O}\left(\boldsymbol{n}^{4 / 5}\right)$-approximation. We start with a greedy algorithm similar to the greedy algorithm commonly used for $\mathrm{D} k \mathrm{~S}[21,15,7]$.

Algorithm 2 selects a subset K_{2} of $k / 3$ vertices v with largest K_{1}-degree, i.e., the number of hyperedges incident to v that contain at least one vertex of K_{1}. Then a subset K_{3} of $k / 3$ vertices w with largest $\left(K_{1}, K_{2}\right)$-degree is selected, where the $\left(K_{1}, K_{2}\right)$-degree of w is the number of hyperedges containing w of the form $\{w, x, y\}$ with $x \in K_{1}$ and $y \in K_{2}$. Note that the sets K_{1}, K_{2}, and K_{3} are not necessarily disjoint, and the returned set may thus be smaller than k.

The following lemma gives a lower bound on the average degree guaranteed by this algorithm. It is a straightforward extension of similar algorithms for graphs.

Lemma 4.2. Algorithm 2 returns a k-subhypergraph with average degree $\Omega\left(\Delta k^{2} / n^{2}\right)$.
Proof. By choice of K_{1} and definition of Δ, every vertex in K_{1} has degree at least Δ, and so the total number of edges containing vertices in K_{1} is at least $\Delta\left|K_{1}\right| / 3=$ $\Delta k / 9$ (since we could potentially be double-counting or triple-counting some edges).

[^2]```
Algorithm 2. Greedy algorithm for \(\mathrm{D} k \mathrm{SH}\) in 3-uniform hypergraphs.
 Data: 3-uniform Hypergraph \(H=(V, E)\), parameter \(k\), vertex set \(K_{1} \subseteq V\)
 of size \(k / 3\)
 For every \(v \in V\), let its \(K_{1}\)-degree be \(\left|\left\{e \in E \mid v \in e, e \cap K_{1} \neq \emptyset\right\}\right|\);
 \(K_{2} \leftarrow\) a set of \(k / 3\) vertices of highest \(K_{1}\)-degree (\(K_{1}\) and \(K_{2}\) may intersect);
 3 For any \(u \in V\), let its \(\left(K_{1}, K_{2}\right)\)-degree be the number of edges of the form
 \((u, v, x) \in E\) such that \(v \in K_{2}\) and \(x \in K_{1}\);
 \(4 K_{3} \leftarrow\) a set of \(k / 3\) vertices of highest \(\left(K_{1}, K_{2}\right)\)-degree. (\(K_{3}\) may intersect \(K_{1}\)
 and/or \(K_{2}\));
 return \(K_{1} \cup K_{2} \cup K_{3}\);
```

If we were to choose $n$ vertices for $K_{2}$, there would be at least $\Delta k / 9$ edges containing both a vertex in $K_{1}$ and a vertex in $K_{2}$ (as noted above). Choosing $k / 3$ vertices greedily out of $n$ yields a set $K_{2}$ such that there are at least $\Delta k / 9 \cdot(k / 3) / n=$ $\Delta k^{2} /(27 n)$ such edges.

Finally, choosing the $k / 3$ vertices with the largest contribution (out of $n$ ) for $K_{3}$ ensures that there will be at least $\Delta k^{2} /(27 n) \cdot(k / 3) / n=\Omega\left(\Delta k^{3} / n^{2}\right)$ edges in $E \cap K_{1} \times K_{2} \times K_{3}$, giving average degree $\Omega\left(\Delta k^{2} / n^{2}\right)$.

We now offer a second algorithm, which acts on $H^{\prime}$ and is based on neighborhoods of vertices.

```
Algorithm 3. A neighborhood-based algorithm for DkSH in 3-uniform hy-
pergraphs.
 Data: 3-uniform Hypergraph \(H^{\prime}=\left(V^{\prime}, E^{\prime}\right)\) and parameter \(k\).
 foreach vertex \(v \in V\) do
 \(G_{v} \leftarrow(V \backslash\{v\},\{(u, x) \mid(v, u, x) \in E\}) ;\)
 foreach integer \(\hat{d} \in[k-1]\) do
 \(G_{v}^{\hat{d}} \leftarrow G_{v} ;\)
 while there exists a vertex \(u\) in \(G_{v}^{\hat{d}}\) of degree \(<\hat{d}\) do
 delete \(u\) from \(G_{v}^{\hat{d}}\);
 \(S_{v}^{\hat{d}} \leftarrow\) a set of \((k-1) / 2\) vertices with highest degree in \(G_{v}^{\hat{d}}\);
 \(T_{v}^{\hat{d}} \leftarrow\) a set of \((k-1) / 2\) vertices with the most neighbors in \(S_{v}^{\hat{d}}\);
 return The densest among all subhypergraphs \(H^{\prime}\left[\{v\} \cup S_{v}^{\hat{d}} \cup T_{v}^{\hat{d}}\right]\) over all
 choices of \(v, \hat{d}\);
```

Algorithm 3 exploits the bound on the maximum degree in $H^{\prime}$ to find a dense hypergraph inside the neighborhood of any vertex of degree $\Omega(d)$ in $K$ by considering the neighborhood of a vertex as a graph. Pruning low-degree vertices in this graph (which would not contribute many hyperedges to $K$ ) helps reduce the size of the graph and makes it easier to find a slightly denser subgraph. Since the vertices of $K$ and their degrees are not known, the algorithm tries all possible vertices.

Lemma 4.3. If $H^{\prime}$ contains a $k$-subhypergraph with average degree $d^{\prime}=\Omega(d)$, then Algorithm 3 returns a $k$-subhypergraph with average degree $\Omega\left(d^{2} /(\Delta k)\right)$.

Proof. Since at the end of the algorithm we take the densest induced subhypergraph of $H^{\prime}$ (among the various choices), it suffices to show that there is some choice of $v$ and $\hat{d}$ which gives this guarantee. So let $v$ be an arbitrary vertex in $K$ with degree (in $K$ ) at least $d^{\prime}$. We know that $G_{v}$ contains a subgraph with at most $k$ vertices and at least $d^{\prime}$ edges, so its average degree is at least $2 d^{\prime} / k$. Setting $\hat{d}=d^{\prime} /(2 k)$, we know that the pruning procedure can remove at most $k \cdot d^{\prime} /(2 k)=d^{\prime} / 2$ out of the $d^{\prime}$ edges in this subgraph, so the subgraph still retains at least $d^{\prime} / 2$ edges. On the other hand, we know that $G_{v}$ has at most $\Delta$ edges (since we have assumed the maximum degree in $H^{\prime}$ is at most $\Delta$ ), and therefore the same holds for the graph $G_{v}^{\hat{d}}$, in which the minimum degree is now at least $d^{\prime} / 2 k$. This means that $G_{v}^{\hat{d}}$ has at most $2 \Delta /\left(d^{\prime} / 2 k\right)=O(\Delta k / d)$ vertices.

Since there exists a $k$-subgraph of $G_{v}^{\hat{d}}$ with $\Omega(d)$ edges, the greedy choice of $S_{v}^{\hat{d}}$ must give some set in which at least $\Omega(d)$ edges are incident. The greedy choice of $T_{v}^{\hat{d}}$ then reduces the lower bound on the number of edges by a $((k-1) / 2) /\left|V\left(G_{v}^{\hat{d}}\right)\right|=$ $\Omega(d / \Delta)$ factor, giving us $\Omega\left(d^{2} / \Delta\right)$ edges. However, by the definition of $G_{v}$, together with $v$, these edges correspond to hyperedges in $H^{\prime}$. Thus, the algorithm returns a $k$-subhypergraph with $\Omega\left(d^{2} / \Delta\right)$ hyperedges, or average degree $d^{2} /(\Delta k)$.

Combining the various algorithms we have seen with a trivial algorithm and choosing the best one gives us the following guarantee.

Theorem 4.4. There is an $O\left(n^{4 / 5}\right)$-approximation for $D k S H$ in 3-uniform hypergraphs.

Proof. By Lemma 4.1, if at least half the optimal edges intersect $K_{1}$, then we can achieve a significantly better approximation (namely, $n^{1 / 4+\varepsilon}$ ). Thus, from now on let us assume this is not the case. That is, $H^{\prime}$ still contains a $k$-subhypergraph with average degree $\Omega(d)$. Again, recall that the maximum degree in $H^{\prime}$ is at most $\Delta$.

By Lemma 4.2, Algorithm 2 gives us a $k$-subhypergraph with average degree $d_{1}=\Omega\left(\Delta k^{2} / n^{2}\right)$. On the other hand, applying Algorithm 3 to $H^{\prime}$ will give us a $k$-subhypergraph with average degree $d_{2}=\Omega\left(d^{2} /(\Delta k)\right)$ by Lemma 4.3.

Finally, we could choose $k / 3$ arbitrary edges in $H$ and the subhypergraph induced on the vertices they span, giving us average degree $d_{3} \geq 1$. Thus, the best of the three will give us a $k$-subhypergraph with average degree at least
$\max \left\{d_{1}, d_{2}, d_{3}\right\} \geq\left(d_{1}^{2} d_{2}^{2} d_{3}\right)^{1 / 5}=\Omega\left(\left(\Delta^{2} k^{4} / n^{4} \cdot d^{4} /\left(\Delta^{2} k^{2}\right)\right)^{1 / 5}\right)=d \cdot \Omega\left(\left(k^{2} / d\right)^{1 / 5} / n^{4 / 5}\right)$.
Since we must have $k^{2} / d \geq 1$, the above gives an $O\left(n^{4 / 5}\right)$-approximation.
5. An improved approximation for $\mathbf{3}$-uniform $\mathbf{D} \boldsymbol{k S H}$. In section 4 we gave an $O\left(n^{4 / 5}\right)$ approximation which combined a greedy algorithm with Algorithm 3, which looked for a dense subgraph inside a graph defined by the neighborhood of a vertex in $H$. To find this dense subgraph, we used a very simple greedy approach. However, we have at our disposal more sophisticated algorithms, such as that of Bhaskara et al. [7]. One way to state the result in that paper (see Bhaskara's Ph.D. thesis for details on this version [6]) is as follows.

Theorem 5.1. In any n-vertex graph $G$, for any $\alpha \in[0,1]$, if $k=n^{\alpha}$, then $D k S$ in $G$ can be approximated within an $n^{\varepsilon} k^{1-\alpha}$ factor in time $n^{O(1 / \varepsilon)}$ for any $\varepsilon>0$.

The $n^{1 / 4+\varepsilon}$ guarantee of [7] follows since for any $\alpha \in[0,1]$, we have $k^{1-\alpha}=$ $n^{\alpha(1-\alpha)} \leq n^{1 / 4}$.

Using this guarantee instead of the simple greedy algorithm for $\mathrm{D} k \mathrm{~S}$, we get the following improved algorithm for 3 -uniform Densest $k$-Subhypergraph.

```
Algorithm 4. A DkS-based algorithm for DkSH in 3-uniform hypergraphs.
 Data: 3-uniform Hypergraph \(H^{\prime}=\left(V^{\prime}, E^{\prime}\right)\) and parameters \(k\) and \(\varepsilon>0\).
 foreach vertex \(v \in V\) do
 \(G_{v} \leftarrow(V \backslash\{v\},\{(u, x) \mid(v, u, v) \in E\}) ;\)
 foreach integer \(\hat{d} \in[k-1]\) do
 \(G_{v}^{\hat{d}} \leftarrow G_{v} ;\)
 while there exists a vertex \(u\) in \(G_{v}^{\hat{d}}\) of degree \(<\hat{d}\) do
 Delete \(u\) from \(G_{v}^{\hat{d}}\);
 \(K_{v}^{\hat{d}} \leftarrow\) the vertex set returned by the algorithm of Bhaskara et al. [7]
 on the graph \(G_{v}^{\hat{d}}\) with parameters \(k-1\) and \(\varepsilon\);
 return The densest among all subhypergraphs \(H^{\prime}\left[\{v\} \cup K_{v}^{\hat{d}}\right]\) over all choices
 of \(v, \hat{d}\);
```

The approximation guarantee in this final algorithm is given by the following lemma.

Lemma 5.2. Let $H^{\prime}$ be an n-vertex 3 -uniform hypergraph with maximum degree $\leq \Delta$, containing a $k$-subhypergraph of average degree $d^{\prime}$, and let $\alpha, \beta$ be such that $k=n^{\alpha}$ and $\Delta k / d^{\prime}=n^{\beta}$. Then Algorithm 4 returns a $k$-subhypergraph of $H$ of average degree

$$
\Omega\left(\frac{d^{\prime}}{n^{\varepsilon+\alpha(2-\alpha / \min \{\beta, 1\})}}\right) .
$$

Proof. As in the proof of Lemma 4.3, we can deduce that for at least some choice of $v$ and $\hat{d}$, the graph $G_{v}^{\hat{d}}$ has at most $\min \left\{n, O\left(\Delta k / d^{\prime}\right)\right\}=O\left(n^{\min \{1, \beta\}}\right)$ vertices and contains a $k$-subgraph with average degree $\Omega\left(d^{\prime} / k\right)$.

By Theorem 5.1, since $k=n^{\alpha}=\Omega\left(\left|V\left(G_{v}^{\hat{d}}\right)\right|^{\alpha / \min \{1, \beta\}}\right)$, the algorithm of [7] will return a ( $k-1$ )-subgraph of $G_{v}^{\hat{d}}$ with average degree

$$
\Omega\left(\frac{d^{\prime} / k}{n^{\varepsilon} k^{1-\alpha / \min \{\beta, 1\}}}\right)=\Omega\left(\frac{d^{\prime}}{n^{\varepsilon+\alpha(2-\alpha / \min \{\beta, 1\})}}\right) .
$$

As noted in the proof of Lemma 4.3, this corresponds to a $k$-subhypergraph of $H^{\prime}$ with the same guarantee.

Remark 5.3. In the notation of Lemma 5.2 we have $\Delta / d^{\prime}=n^{\beta-\alpha}$, which implies that $\beta \geq \alpha$ (since $\Delta \geq d^{\prime}$ ).

Trading off the various algorithms we have seen, we can now prove the guarantee stated in Theorem 1.2.

Theorem 5.4 (Theorem 1.2 restated). For every constant $\varepsilon>0$, there exists a polynomial-time algorithm that achieves an $O\left(n^{4(4-\sqrt{3}) / 13+\varepsilon}\right) \leq O\left(n^{0.697831+\varepsilon}\right)$ approximation for DkSH in 3-uniform hypergraphs.

Proof. By Lemma 4.1, if at least half the optimal edges intersect $K_{1}$, then we can achieve a significantly better approximation (namely, $n^{1 / 4+\varepsilon}$ ). Thus, from now on let us assume this is not the case. That is, $H^{\prime}$ still contains a $k$-subhypergraph with average degree $\Omega(d)$. Again, recall that the maximum degree in $H^{\prime}$ is at most $\Delta$.

As before, let $\alpha, \beta$ be such that $k=n^{\alpha}$ and $\Delta k / d=n^{\beta}$. By Lemma 4.2, Algorithm 2 gives us a $k$-subhypergraph with average degree

$$
d_{1}=\Omega\left(\Delta k^{2} / n^{2}\right)=\Omega\left(\frac{d}{(d / \Delta) n^{2} / k^{2}}\right)=\Omega\left(\frac{d}{n^{\alpha-\beta} n^{2-2 \alpha}}\right)=\Omega\left(\frac{d}{n^{2-\alpha-\beta}}\right)
$$

On the other hand, by Lemma 5.2, Algorithm 4 to $H^{\prime}$ will give us a $k$-subhypergraph with average degree

$$
d_{2}=\Omega\left(\frac{d}{n^{\varepsilon+\alpha(2-\alpha / \min \{\beta, 1\})}}\right) .
$$

Let us analyze the guarantee given by the best of Algorithms 2 and 4. First, consider the case of $\beta>1$. In this case, taking the best of the two gives us approximation ratio at most $n^{\varepsilon+\min \{2-\alpha-\beta, \alpha(2-\alpha)\}} \leq n^{\varepsilon+\min \{1-\alpha, \alpha(2-\alpha)\}}$. It is easy to check that this minimum is maximized when $\alpha=(3-\sqrt{5}) / 2$ giving approximation ratio $n^{(\sqrt{5}-1) / 2+\varepsilon} \leq n^{0.618034+\varepsilon}$, which is even better than our claim.

Now suppose $\beta \leq 1$. In this case, the approximation guarantee is $n^{\varepsilon+\min \left\{h_{1}, h_{2}\right\}}$, where $h_{1}=2-\alpha-\beta$ and $h_{2}=\alpha(2-\alpha / \beta)$. If $\alpha \geq 2 / 3$, then it can be checked that we always have $h_{1} \leq h_{2}$ for any $\beta \in[\alpha, 1]$, in which case we have approximation factor at most $n^{\varepsilon+2-2 / 3-2 / 3}=n^{2 / 3+\varepsilon}$, which is again better than our claim. On the other hand, if $\alpha \leq(3-\sqrt{5}) / 2$, then $h_{2} \leq h_{1}$ for any $\beta \leq 1$, and so for this range of $\alpha$ we get approximation factor at most $n^{\varepsilon+\alpha(2-\alpha)} \leq n^{(\sqrt{5}-1) / 2}$, which as we have noted is also better than our claim. Finally, if $\alpha \in((3-\sqrt{5}) / 2,2 / 3)$, then a straightforward calculation shows that

$$
\min \left\{h_{1}, h_{2}\right\}= \begin{cases}h_{1} & \text { if } \beta \geq 1-\frac{3 \alpha}{2}+\sqrt{1-3 \alpha+13 \alpha^{2} / 4} \\ h_{2} & \text { otherwise }\end{cases}
$$

and that the value of $\min \left\{h_{1}, h_{2}\right\}$ is maximized at this threshold value of $\beta$. And so for $\alpha$ in this range we have $\min \left\{h_{1}, h_{2}\right\} \leq 1+\alpha / 2-\sqrt{1-3 \alpha+13 \alpha^{2} / 4}$, which is maximized at $\alpha=\frac{18+2 \sqrt{3}}{39} \approx 0.55$, giving approximation ratio $n^{\varepsilon+4(4-\sqrt{3}) / 13}$.
6. $\mathbf{M p} \mathbf{U}$ in 3-uniform hypergraphs. In this section we explore $\mathbf{M p U}$ (the minimization version of $\mathrm{D} k \mathrm{SH}$ ) and give the following guarantee:

TheOrem 6.1. There is an $\tilde{O}\left(n^{2 / 5}\right)$-approximation algorithm for $M p U$ in 3 -uniform hypergraphs.

Note that this is significantly better than the $O\left(n^{4(4-\sqrt{3}) / 13+\epsilon}\right) \approx O\left(n^{0.697831+\epsilon}\right)$ approximation we would get by reducing the problem to $\mathrm{D} k \mathrm{SH}$ via Theorem 2.6 and applying the approximation algorithm from Theorem 1.2.

In this problem, we are given a 3 -uniform hypergraph $H=(V, E)$, and a parameter $p$, the number of hyperedges that we want to find. Let us assume that the optimal solution, $P \subseteq E$, has $k$ vertices (i.e., $\left|\cup_{e \in P} e\right|=k$ ). We do not know $k$, but the algorithm can try every possible value of $k=1, \ldots, n$, and output the best solution. Thus, we assume that $k$ is known, in which case the average degree in the optimum solution is $d=3 p / k$.

Recall that it is not necessary to get $p$ edges in one shot. By Lemma 2.5, it is enough to find any subhypergraph of size at most $k n^{2 / 5}$ with average degree at least $\Omega\left(d / n^{2 / 5}\right)$.

We follow along the lines of $\mathrm{D} k \mathrm{SH}$ by choosing vertex set $K_{1}$ to be the $k n^{2 / 5}$ vertices of largest degree. The following lemma (corresponding to Lemma 4.1 for $\mathrm{D} k \mathrm{SH})$ shows that if at least half the edges in $P$ intersect $K_{1}$, then by Lemma 2.5 we are done.

Lemma 6.2. Suppose that at least half of the optimal edges contain a vertex of $K_{1}$. Then we can find a subhypergraph with at most $O\left(k n^{2 / 5}\right)$ vertices and average degree at least $\Omega\left(d / n^{2 / 5}\right)$.

Proof. By our assumption, there is a set of optimal hyperedges $P^{\prime} \subset P$ of size at least $d k / 6$ such that every edge in $P^{\prime}$ intersects $K_{1}$.

As in the proof of Lemma 4.1, if at least half the edges in $P^{\prime}$ intersect $K_{1}$ in more than one vertex, then we can easily recover a set of $k$ vertices which along with $K_{1}$ contain at least $\Omega(p)=\Omega(k d)$ hyperedges. Since $\left|K_{1}\right|=k n^{2 / 5}$, this subgraph has $O\left(k n^{2 / 5}\right)$ vertices and average degree $\Omega\left(d / n^{2 / 5}\right)$ as required.

Thus, we may assume that at least half the edges in $P^{\prime}$ intersect $K_{1}$ in exactly one vertex. Then again as in Lemma 4.1, we define a graph $G$ on vertices $V \backslash K_{1}$ where every pair of vertices $u, v \in V \backslash K_{1}$ is an edge with weight $\left|\left\{x \in K_{1} \mid(u, v, x) \in E\right\}\right|$. Once again, subgraphs of $G$ with total edge weight $w$ correspond to a subhypergraphs of $H$ with at least $w$ edges, and in particular, $G$ contains a $k$-subgraph with average weighted degree at least $\Omega(d)$. Thus, running the $\mathrm{S} p \mathrm{ES}$ approximation of [10] (or, more precisely, the weighted version [13]) gives a subgraph with at most $k f$ vertices and total edge weight at least $\Omega(k d)$ for some $f=n^{0.17+\varepsilon}$ (which is well below $n^{2 / 5}$ ). Once again, the corresponding subhypergraph has at most $\left|K_{1}\right|+k f=O\left(k n^{2 / 5}\right)$ vertices, and so the average degree is at least $\Omega\left(d / n^{2 / 5}\right)$ as required.

Thus, we will assume from now on that at least half of the hyperedges in $P$ do not contain at least one vertex from $K_{1}$, i.e., that $H^{\prime}=H\left[V \backslash K_{1}\right]$ still contains at least half the hyperedges in $P$.

As with $\mathrm{D} k \mathrm{SH}$, we now proceed with a greedy algorithm. Starting with the same vertex set $K_{1}$ defined above, it follows from Lemma 4.2 that if we run Algorithm 2 on $H$ with parameter $n^{2 / 5} k$, then we get a subhypergraph on $O\left(k n^{2 / 5}\right)$ vertices induced on sets $K_{1}, K_{2}, K_{3}$ such that if the minimum degree in $K_{1}$ (which bounds the maximum degree in $V \backslash K_{1}$ ) is $\Delta$, then the subhypergraph has average degree $\Omega\left(\Delta k^{2} n^{4 / 5} / n^{2}\right)$. The total number of hyperedges in this subhypergraph is $\Omega\left(\Delta k^{3} n^{6 / 5} / n^{2}\right)=\Omega\left(\Delta k^{3} / n^{4 / 5}\right)$. If this is at least $p=d k / 3$, then we are done. Thus, we will assume from now on that $\Delta k^{3} / n^{4 / 5}=O(d k)$, that is,

$$
\begin{equation*}
\Delta=O\left(\frac{d n^{4 / 5}}{k^{2}}\right) \tag{1}
\end{equation*}
$$

We reuse Algorithm 3 on $H^{\prime}$, which gives us the following guarantee.
Lemma 6.3. Applying Algorithm 3 to the above hypergraph $H^{\prime}$ with parameter

$$
\hat{k}=\frac{k \sqrt{p \Delta}}{d}=\sqrt{\frac{k^{3} \Delta}{3 d}}
$$

returns a subhypergraph with at most $k f$ vertices and average degree at least $d / f$ for some

$$
f=O\left(\max \left\{k, n^{2 / 5} / \sqrt{k}\right\}\right)
$$

Proof. As in the proof of Lemma 4.3, we can deduce that for at least some choice of $v$ and $\hat{d}$, the graph $G_{v}^{\hat{d}}$ has at most $O(\Delta k / d)$ vertices and has minimum degree at least $\Omega(d / k)$.

Note that we may not even have $\hat{k}$ vertices in $G_{v}^{\hat{d}}$. If we do have at least $\hat{k}$ vertices, then the greedy choice of $S_{v}^{\hat{d}}$ gives us $\Omega(\hat{k} d / k)$ edges incident in the set (in fact, any
choice of $\Omega(\hat{k})$ vertices would do). The greedy choice of $T_{v}^{\hat{d}}$ then reduces the number of edges by (in the worst case) a $\hat{k} /(\Delta k / d)$-factor, giving us a total number of edges

$$
\Omega\left(\frac{\hat{k}^{2} d^{2}}{\Delta k^{2}}\right)=\Omega(p)
$$

Thus, in this case, we only need to bound the size of the subgraph. By (1), we can bound $\hat{k}$ as.

$$
\hat{k}=\sqrt{\frac{k^{3} \Delta}{3 d}}=O\left(\sqrt{\frac{d n^{4 / 5}}{k^{2}} \cdot \frac{k^{3}}{d}}\right)=O\left(k \cdot \frac{n^{2 / 5}}{\sqrt{k}}\right)
$$

which proves the lemma for this case.
If we do not have $\hat{k}$ vertices in $G_{v}^{\hat{d}}$, then the algorithm simply returns $G_{v}^{\hat{d}}$ itself, which has at most $\hat{k}=O\left(k \cdot n^{2 / 5} / \sqrt{k}\right)$ vertices and average degree at least $\Omega(d / k)$, as required.

As noted in the proof of Lemma 4.3, this corresponds to a subhypergraph of $H^{\prime}$ with the same guarantee.

We can now prove the main theorem.
Proof of Theorem 6.1. By Lemmas 6.3 and 2.5, to prove the theorem it suffices to show that $\max \left\{k, n^{2 / 5} / \sqrt{k}\right\}=O\left(n^{2 / 5}\right)$. Since clearly $n^{2 / 5} / \sqrt{k} \leq n^{2 / 5}$, let us consider the parameter $k$. By definition of $d$ and $\Delta$, we clearly have $d \leq \Delta$; thus, by (1) we have

$$
d \leq \Delta=O\left(\frac{d n^{4 / 5}}{k^{2}}\right)
$$

which implies $k=O\left(n^{2 / 5}\right)$, and so the theorem follows.
7. Interval hypergraphs. We show now that $\mathrm{D} k \mathrm{~S}$ and $\mathrm{M} p \mathrm{U}$ can be solved in polynomial time on interval hypergraphs. We only give an algorithm for $\mathrm{M} p \mathrm{U}$; a similar algorithm for $\mathrm{D} k \mathrm{~S}$ follows then from Observation 2.4.

As defined in section 2, a hypergraph $H=(V, E)$ is an interval hypergraph if $V \subseteq \mathbb{N}$ and for each $e \in E$ there are integers $a_{e}, b_{e}$ such that $e=\left\{i \in V: a_{e} \leq i \leq b_{e}\right\}$. Solving $\mathrm{M} p \mathrm{U}$ on $H$ can be interpreted as finding $p$ intervals with minimum joint support.

Theorem 7.1. $\mathrm{M} p \mathrm{U}$ is solvable in polynomial time on interval hypergraphs.
Proof. Let $b_{1}, \ldots, b_{m}$ be the largest elements in hyperedges $e_{1}, \ldots, e_{m}$, respectively, and assume that $b_{i} \leq b_{j}$ for any $i<j$. Similarly let $a_{1}, \ldots, a_{m}$ be the smallest elements in $e_{1}, \ldots, e_{m}$, respectively.

We present a dynamic programming algorithm which calculates for each $j \leq i$ the optimal solution to an instance of $\mathrm{M} p \mathrm{U}$ on the hyperedges $e_{1}, \ldots, e_{i}$ with $p=j$ under the constraint that $e_{i}$ belongs to the solution. Let $A[i, j]$ store the value of this optimal solution. Assume that the values of $A$ have been computed for all $i^{\prime}, j^{\prime}$ with $j^{\prime} \leq i^{\prime}<i$. We show how to compute $A[i, j]$ for any $j \leq i$.

We partition the hyperedges $e_{1}, \ldots, e_{i}$ in three sets $A_{i}, B_{i}, C_{i}$ with $A_{i}$ containing all hyperedges disjoint from $e_{i}, B_{i}$ containing all hyperedges intersecting but not contained in $e_{i}$, and $C_{i}$ containing $e_{i}$ and all hyperedges included in $e_{i}$ (see Figure 1). Therefore, we have

1. $b_{i^{\prime}}<a_{i}$ for all $e_{i^{\prime}} \in A_{i}$;
2. $a_{i^{\prime}}<a_{i} \leq b_{i^{\prime}}$ for all $e_{i^{\prime}} \in B_{i}$;
3. $a_{i} \leq a_{i^{\prime}} \leq b_{i^{\prime}} \leq b_{i}$ for all $e_{i^{\prime}} \in C_{i}$.


Fig. 1. Partitioning of hyperedges induced by $e_{i}$. The dotted edges form set $A_{i}$, the dashed edge forms set $B_{i}$, and the elements of $C_{i}$ are represented by continuous edges. The set $C_{i^{\prime}}$ is also shown in dashed pattern.

Clearly, for every $j \leq\left|C_{i}\right|$ we have $A[i, j]=\left|e_{i}\right|$ since by definition of $A, e_{i}$ is included in the solution, and adding any other $j-1$ sets from $C_{i}$ to the solution does not increase the size of the union. In the remainder of the proof, when we refer to an optimal solution corresponding to $A\left[i^{\prime}, j^{\prime}\right]$ for some indices $i^{\prime}$ and $j^{\prime}$ we always mean a solution that uses the maximum number of sets in $C_{i^{\prime}}$.

For any $t \geq 0$ and $j=t+\left|C_{i}\right|$, the optimal solution contains exactly $t$ sets in $A_{i} \cup B_{i}$. Fix an optimal solution $O P T_{i}$ corresponding to $A[i, j]$, and let $e_{i^{*}}$ be the hyperedge with largest $b_{e_{i^{*}}}$ in $O P T_{i}$ that does not belong to $C_{i}$. We show that

$$
\begin{equation*}
A[i, j]=A\left[i^{*}, j-\left|C_{i} \backslash C_{i^{*}}\right|\right]+\left|e_{i} \backslash e_{i^{*}}\right| . \tag{2}
\end{equation*}
$$

Then, by considering every hyperedge with index $i^{\prime}<i$ as the possible $i^{*}$ in (2) and taking the minimum value, one can compute $A[i, j]$ in linear time.

To complete the proof, we argue why (2) holds. First, observe that a solution with value $A[i, j]$ exists. Indeed, by adding all elements of $C_{i} \backslash C_{i^{*}}$ to an optimal solution for $A\left[i^{*}, j-\left|C_{i} \backslash C_{i^{*}}\right|\right]$ we obtain a solution for $A[i, j]$ covering exactly $\left|e_{i} \backslash e_{i^{*}}\right|$ additional elements. Next, assume that the value of $A[i, j]$ is less than that of (2). Then we can obtain a solution for $A\left[i^{*}, j-\left|C_{i} \backslash C_{i^{*}}\right|\right]$ by removing from $O P T_{i}$ all the elements in $\left|C_{i} \backslash C_{i^{*}}\right|$ to obtain a solution with value at most $A[i, j]-\left|e_{i} \backslash e_{i^{*}}\right|$, contradicting the fact that $A\left[i^{*}, j-\left|C_{i} \backslash C_{i^{*}}\right|\right]$ is the value of an optimal solution.
8. Open problems. The most obvious open problems involve improving our achieved approximation bounds. Even in the graph case ( $\mathrm{D} k \mathrm{~S}$ and SpES ) there is a large gap between the known upper and lower bounds (polynomial upper bound and subpolynomial lower bounds), but there are lower bounds given by the "log-density" framework $[7,10,11]$. While this framework is beyond the scope of this paper, it is not hard to adapt some of the ideas from [7] to the hypergraph setting (and indeed, this was the main idea in [11]), giving a variety of lower bounds in this framework. In particular, it predicts that no sublinear in $n$ approximation is possible for $\mathrm{M} p \mathrm{U}$ and that the best approximation as a function of $m$ is should be $m^{1 / 4}$ (which was recently matched by [11], improving over our $O(\sqrt{m})$-approximation). In $c$-uniform hypergraphs it gives lower bounds of $n^{(c-1) / 4}$ for $\mathrm{D} k \mathrm{SH}$ and $n^{1-2 /(\sqrt{c}+1)}$ for $\mathrm{M} p \mathrm{U}$. For $c=3$, for example, these lower bounds give $n^{1 / 2}$ and $n^{2-\sqrt{3}}=n^{0.2679 \ldots}$, respectively (contrast with our current guarantees of $n^{0.6978 \ldots}$ and $n^{0.4}$, respectively, the latter of which has been improved by [11] to $n^{0.375+\varepsilon}$ for arbitrarily small $\varepsilon$ ). The existing algorithmic approaches for the graph case, which match the log-density lower bounds, do not seem to easily carry over to hypergraphs, and it remains an interesting challenge to match the log-density-based predictions for hypergraphs of bounded rank.

There is also an interesting connection between $\mathrm{M} p \mathrm{U} / \mathrm{D} k \mathrm{SH}$ and the Small-Set Vertex Expansion (SSVE) problem [5, 23, 22]. In SSVE, we are given a graph $G$ and a parameter $\delta$ and are asked to find a set $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right| \leq \delta n$ in order to minimize $\frac{\left|\left\{v \in V \backslash V^{\prime}: v \in \Gamma(v)\right\}\right|}{\left|V^{\prime}\right|}$. Given a graph $G$, consider the collection of neighborhoods $\hat{E}=\{\Gamma(v): v \in V\}$ and the hypergraph $H=(V, \hat{E})$. If we let $p=\delta n$, the $\mathrm{M} p \mathrm{U}$ problem (choosing $p$ hyperedges in $H$ to minimize their union) is quite similar to the SSVE problem. The main difference is that SSVE only "counts" nodes that are in $V \backslash V^{\prime}$, while $\mathrm{M} p \mathrm{U}$ would also count nodes in $V^{\prime}$. It is known [24] that this special case of $\mathrm{M} p \mathrm{U}$ reduces to SSVE , so it is no harder than SSVE, but it is not clear how much easier it is. This motivates the study of Mp U when hyperedges are neighborhoods in an underlying graph. Recently a $(1+\varepsilon, \tilde{O}(\sqrt{n}))$-bicriteria approximation for SSVE was given in [11], but improving this (and in particular giving a true approximation) is an interesting future direction.

Appendix A. Densest subhypergraph via network flows. In this section, we give a polynomial-time implementation of DSH. Given a hypergraph $H=(V, E)$, we will work with the bipartite incidence graph $G=(E, V, F)$ of $H$, where $F=$ $\{(e, v) \in E \times V: v \in e\}$. For a graph $G=(V, E)$ and a vertex $v \in V$, we use $\Gamma_{G}(v)$ to denote the set of nodes adjacent to $v$, and for a subset $V^{\prime} \subseteq V$, we let $\Gamma_{G}\left(V^{\prime}\right)=\cup_{v \in V^{\prime}} \Gamma(v)$.

Finding the densest subhypergraph in $H$ corresponds to finding a subset $E^{\prime} \subseteq E$ in $G$ of minimum vertex expansion, i.e., $E^{\prime}$ such that $\frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|}$ is minimized. Minimally expanding subsets of this kind have previously been used (e.g., in [20, 16]) in communication settings where computation time is disregarded, but in our context we need a polynomial-time algorithm. We therefore present a polynomial-time implementation for DSH using network flows. An alternative algorithm can be derived from a straightforward adaptation of a linear programming approach for the graph case due to Charikar [8] to our setting (see Appendix B for more details).

Let $N_{q}=\left(\tilde{G}, c_{q}, s, t\right)$ be a flow network with directed bipartite graph $\tilde{G}=(E \cup$ $\{t\}, V \cup\{s\}, \tilde{F})$, capacities $c_{q}$ parameterized by a parameter $q$ with $\frac{m}{n}<q<m$, source $s$, and sink $t$ as follows (and as illustrated in Figure 2):

1. Vertex $s$ is connected to every $e \in E$ via directed edges (leaving $s$ ) with capacity 1.
2. Every $v \in V$ is connected to $t$ via a directed edge (directed towards $t$ ) with capacity $q$.
3. Edges from $F$ are included in $\tilde{F}$ and directed from $E$-vertex to $V$-vertex with capacity $\infty$.
Denote by $C^{*}$ a minimum $s$ - $t$ cut in $N_{q}$, and let $\operatorname{val}\left(C^{*}\right)$ be the value of the cut. Since cutting all edges incident to vertex $s$ results in a cut of value $m$, the min-cut value is at most $m$ and thus finite, and, in particular, no edge connecting $E$ to $V$ is included in the min-cut. Denote by $E_{s}$ the set of $E$-vertices that, when removing the cut-edges from the graph, are incident to $s$, and let $E_{t}=E \backslash E_{s}$. Let $V_{s}=\Gamma_{G}\left(E_{s}\right)$, and let $V_{t}=V \backslash V_{s}$. Since removing $C^{*}$ from $\tilde{G}$ separates $s$ from $t$, all outgoing edges from $V_{s}$ are included in $C^{*}$. Furthermore, since $C^{*}$ is a minimum cut, none of the edges leaving $V_{t}$ are contained in the cut. The resulting structure is illustrated on the right in Figure 2. The value of the cut is computed as follows:

$$
\begin{equation*}
\operatorname{val}\left(F^{*}\right)=\left|E_{t}\right|+q \cdot\left|V_{s}\right| \tag{3}
\end{equation*}
$$

We prove now a property connecting the value of a minimum cut to the expansion of a subset of $E$. This property allows us then to define an efficient algorithm for DSH.


Graph $G$
$E_{t}$
$V_{t}$

Fig. 2. Left: Input graph G. Center: Network $N_{q}$. Right: Min-s-t-cut. Gray edges are cut edges.

Lemma A.1. Let $q$ be such that $\frac{m}{n}<q<m$. Then

$$
\operatorname{val}\left(F^{*}\right)<m \Leftrightarrow \exists E^{\prime} \subseteq E: \frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|}>q
$$

Proof. Suppose that $\operatorname{val}\left(F^{*}\right)<m$. We prove that $E^{\prime}=E_{s}$ fulfills the claimed property. The value of the cut $\operatorname{val}\left(F^{*}\right)$ is computed according to (3) as

$$
m>\operatorname{val}\left(F^{*}\right)=\left|E_{t}\right|+q \cdot\left|V_{s}\right|=m-\left|E_{s}\right|+q \cdot\left|V_{s}\right|=m-\left|E^{\prime}\right|+q \cdot\left|\Gamma_{G}\left(E^{\prime}\right)\right|
$$

which implies $\frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|}>q$ as desired.
Suppose now that there is a $E^{\prime} \subseteq E$ such that $\frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|}>q$. Then the set of edges $C$ consisting of those that connect $s$ to $E \backslash E^{\prime}$ and those that connect $\Gamma_{G}\left(E^{\prime}\right)$ to $t$ form a cut. We compute $\operatorname{val}(C)$ :

$$
\operatorname{val}(C)=\left|E \backslash E^{\prime}\right|+q\left|\Gamma_{G}\left(E^{\prime}\right)\right|=m-\left|E^{\prime}\right|+q\left|\Gamma_{G}\left(E^{\prime}\right)\right|<m-\left|E^{\prime}\right|+\left|E^{\prime}\right|=m .
$$

The fact that $\operatorname{val}\left(C^{*}\right) \leq \operatorname{val}(C)$ completes the proof.
Lemma A. 1 allows us to test whether there is a subset $E^{\prime} \subseteq E$ such that $\frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|}>$ $q$ for some value of $q$. For every set $E^{\prime} \subseteq E$, we have $\frac{\left|E^{\prime}\right|}{\left|\Gamma_{G}\left(E^{\prime}\right)\right|} \in\left\{\frac{a}{b}: a \in\right.$ $\{1, \ldots, m\}, b \in\{1, \ldots, n\}\}$. We could thus test all values $\frac{a}{b}-\epsilon$ for $a \in\{1, \ldots, m\}, b \in$ $\{1, \ldots, n\}$ and a small enough $\epsilon$ in order to identify the desired set (or use a binary search to speed up the process). Since computing a min-cut can be done in polynomial time, we obtain the following theorem.

Theorem A.2. Algorithm DSH can be implemented in polynomial time.
Appendix B. Densest subhypergraph via linear programming.
We use hypergraph notation in this section. So the goal is to find a set $E^{\prime} \subseteq E$ which minimizes $\left|\cup_{e \in E^{\prime}} e\right| /\left|E^{\prime}\right|$ over all choices of $E^{\prime}$ (so there is no requirement that $\left.\left|E^{\prime}\right|=p\right)$.

We use the following LP relaxation, which is a straightforward adaptation of Charikar's [8] algorithm for graphs:

$$
\begin{array}{rlr}
\mathrm{LP}=\min & \sum_{i \in V} x_{i} & \\
\text { s.t. } & \sum_{e \in E} y_{e}=1 & \\
& x_{i} \geq y_{e} & \forall e \in E, i \in e \\
& x_{i} \geq 0 & \forall i \in V \\
& y_{e} \geq 0 & \forall e \in E .
\end{array}
$$

Consider the following simple rounding algorithm:

- Pick $r \in_{R}[0,1]$ uniformly at random.
- Let $E^{\prime}=\left\{e \in E \mid x_{e} \geq r\right\}$.
- Let $V^{\prime}=\bigcup_{e \in E^{\prime}} e$.

Clearly, for every vertex $e \in E$ we have

$$
\operatorname{Prob}\left[e \in E^{\prime}\right]=y_{e}
$$

Also, for every vertex $i \in V$ we have

$$
\operatorname{Prob}\left[i \in V^{\prime}\right]=\max _{e \ni i} y_{e} \leq x_{i}
$$

Therefore, by linearity of expectation, we have

$$
\mathbb{E}\left[\mathrm{LP} \cdot\left|E^{\prime}\right|-\left|V^{\prime}\right|\right] \geq \mathrm{LP} \cdot 1-\mathrm{LP}=0
$$

and this is obviously still true when we condition the expectation on $\left|E^{\prime}\right|>0$ (a positive probability event), so with positive probability, we get a pair $\left(V_{0}, E_{0}\right)$ such that $E_{0} \neq \emptyset, V_{0}=\bigcup_{e \in E_{0}} e$, and $\left|V_{0}\right| /\left|E_{0}\right| \leq$ LP. The rounding is trivially derandomized by trying $r=y_{e}$ for every vertex $e \in E$.

## Appendix C. Comparison to related work on $\mathbf{M p U}$.

Recently, in [11], it was shown that Mp U in general hypergraphs can be approximated to within an $O\left(m^{1 / 4+\varepsilon}\right)$-factor for any constant $\varepsilon>0$, improving over our $O(\sqrt{m})$-approximation. On its own, this algorithm does not improve over our $\tilde{O}\left(n^{2 / 5}\right)$ approximation for $\mathrm{M} p \mathrm{U}$ in 3-uniform hypergraphs, where we could have $m=\Theta\left(n^{3}\right)$, in which case their algorithm only translates to an $O\left(n^{3 / 4+\varepsilon}\right)$-approximation. Their technique uses the log-density framework, which constructs a carefully chosen sequence of vertex sets in the bipartite incidence graph defined by the vertices and hyperedges of the hypergraph. This approach is not particularly sensitive to the size of the hyperedges, and it is unclear how to fine-tune it for 3-uniform hypergraphs.

However, in [11], they also note that their algorithm can be "plugged in" (in a black-box way) to our algorithm for 3 -uniform $\mathrm{M} p \mathrm{U}$, which improves the approximation ratio to $O\left(n^{3 / 8+\varepsilon}\right)$. We briefly sketch their idea here.

We follow along the same lines as in section 6 , with the set $K_{1}$ chosen to be of size $k n^{3 / 8}$. Arguing as before, by using a greedy algorithm with intended approximation ratio $n^{3 / 8}$, instead of (1) we get a bound of $\Delta=O\left(\frac{d n^{7 / 8}}{k^{2}}\right)$. As argued in [11], if our goal is an $f$-approximation, then by some preprocessing we may assume that $d=f n^{\varepsilon}$ for some arbitrarily small constant $\varepsilon>0$. Therefore, we have $d=n^{3 / 8+\varepsilon}$, and our bound translates to $\Delta=O\left(\frac{n^{5 / 4+\varepsilon}}{k^{2}}\right)$. If $k>n^{3 / 8}$, then we have $m=O(n \Delta)=O\left(n^{3 / 2+\varepsilon}\right)$, in which case the algorithm of [11] gives us the claimed $n^{3 / 8+\varepsilon}$-approximation.

Otherwise, we have $k \leq n^{3 / 8}$, in which case we again use Algorithm 3, this time with parameter $\hat{k}=n^{3 / 8} \bar{k}$. Applying a similar analysis as in section 6 , together
with our bounds on $k$ and $\Delta$, one can show that the algorithm gives an $O\left(n^{3 / 8}\right)$ approximation in this case.

## REFERENCES

[1] N. Alon, S. Arora, R. Manokaran, D. Moshkovitz, and O. Weinstein, Inapproximability of Densest $k$-Subgraph from Average Case Hardness, manuscript, 2011.
[2] B. Applebaum, Pseudorandom generators with long stretch and low locality from random local one-way functions, SIAM J. Comput., 42 (2013), pp. 2008-2037.
[3] B. Applebaum, B. Barak, and A. Wigderson, Public-key cryptography from different assumptions, in Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC' 10 , AXM, 2010, pp. 171-180.
[4] S. Arora, B. Barak, M. Brunnermeier, and R. Ge, Complicational Complexity and Information Asymmetry in Finnancial Products, manuscript, 2016.
[5] S. Arora and R. Ge, New tools for graph coloring, in Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques, APPROX 2011, RANDOM 2011, Lecture Notes in Comput. Sci. 6845, L. A. Goldberg, K. Jansen, R. Ravi, and J. D. P. Rolim, eds., Springer, Berlin, Heidelberg, 2011, pp. 1-12.
[6] A. Bhaskara, Finding Dense Structures in Graphs and Matrices, Ph.D. thesis, Princeton University, Princeton, NJ, 2012.
[7] A. Bhaskara, M. Charikar, E. Chlamtac, U. Feige, and A. Vijayaraghavan, Detecting high log-densities: an $\mathrm{O}\left(\mathrm{n}^{1 / 4}\right)$ approximation for densest k -subgraph, in Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, MA, 2010, pp. 201-210.
[8] M. Charikar, Greedy approximation algorithms for finding dense components in a graph, in Proceedings of the Approximation Algorithms for Combinatorial Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, 2000, pp. 84-95.
[9] E. Chlamtac, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca, The densest $k$ subhypergraph problem, in Approximation, Randomization, and Combinatorial Optimization, Algorithms and Techniques (APPROX/RANDOM 2016), LIPIcs. Leibniz Int. Proc. Inform. 60, K. Jansen, C. Mathieu, J. D. P. Rolim, and C. Umans, eds., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2016, pp. 6:1-6:19.
[10] E. Chlamtac, M. Dinitz, and R. Krauthgamer, Everywhere-sparse spanners via dense subgraphs, in 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, NJ, 2012, pp. 758-767.
[11] E. Chlamtác, M. Dinitz, and Y. Makarychev, Minimizing the union: Tight approximations for small set bipartite vertex expansion, in Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, P. N. Klein, ed., SIAM, Philadelphia, PA, 2017, pp. 881-899.
[12] J. Chuzhoy, Y. Makarychev, A. Vijayaraghavan, and Y. Zhou, Approximation algorithms and hardness of the $k$-route cut problem, ACM Trans. Algorithms, 12 (2015), pp. 2:1-2:40.
[13] M. Dinitz, G. Kortsarz, and Z. Nutov, Improved approximation algorithm for Steiner $k$ Forest with nearly uniform weights, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), LIPIcs. Leibniz Int. Proc. Inform. 28, K. Jansen, J. D. P. Rolim, N. R. Devanur, and C. Moore, eds., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014, pp. 115127.
[14] U. Feige, Relations between average case complexity and approximation complexity, in Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, STOC '02, New York, ACM, 2002, pp. 534-543.
[15] U. Feige, G. Kortsarz, and D. Peleg, The dense k-subgraph problem, Algorithmica, 29 (2001), pp. 410-421.
[16] A. Goel, M. Kapralov, and S. Khanna, On the communication and streaming complexity of maximum bipartite matching, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 2012, pp. 468-485.
[17] A. V. Goldberg, Finding a Maximum Density Subgraph, Technical report, Berkeley, CA, 1984.
[18] A. Gupta, M. Hajiaghayi, V. Nagarajan, and R. Ravi, Dial a ride from $k$-forest, ACM Trans. Algorithms, 6 (2010), pp. 41:1-41:21.
[19] S. Кнот, Ruling out ptas for graph min-bisection, dense $k$-subgraph, and bipartite clique, SIAM J. Comput., 36 (2006), pp. 1025-1071.
[20] C. Konrad and A. Rosén, Approximating semi-matchings in streaming and in two-party communication, in Proceedings of the Automata, Languages, and Programming, 40th International Colloquium, ICALP 2013, Riga, Latvia, Part I, 2013, pp. 637-649.
[21] G. Kortsarz and D. Peleg, On choosing a dense subgraph, in 34th Annual Symposium on Foundations of Computer Science, Palo Alto, CA, 1993, pp. 692-701.
[22] A. LOUIS AND Y. MAKARYCHEV, Approximation algorithms for hypergraph small set expansion and small set vertex expansion, in Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), LIPIcs. Leibniz Int. Proc. Inform. 28, K. Jansen, J. D. P. Rolim, N. R. Devanur, and C. Moore, eds., Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2014, pp. 339355.
[23] A. Louis, P. Raghavendra, and S. Vempala, The complexity of approximating vertex expansion, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, 2013, pp. 360-369.
[24] Y. Makarychev, personal communication.
[25] P. Manurangsi, Almost-polynomial ratio eth-hardness of approximating densest $k$-subgraph, in Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, New York, ACM, 2017, pp. 954-961.
[26] Z. Nutov, Approximating steiner networks with node-weights, SIAM J. Comput., 39 (2010), pp. 3001-3022.


[^0]:    *Received by the editors September 29, 2016; accepted for publication (in revised form) January 5 , 2018; published electronically June 28, 2018. A preliminary version of this paper appeared in the Proceedings of the 19th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX 2016).
    http://www.siam.org/journals/sidma/32-2/M109640.html
    Funding: The first author was partially supported by ISF grant 1002/14. The second author was partially supported by NSF grants 1464239 and 1535887 . The third author was supported by EPSRC award EP/N011163/1. The fourth author was partially supported by NSF grants 1218620 and 1540547.
    ${ }^{\dagger}$ Department of Computer Science, Ben Gurion University, Beersheba, Israel (chlamtac@cs. bgu.ac.il).
    ${ }^{\ddagger}$ Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218 (mdinitz@ cs.jhu.edu).
    ${ }^{\S}$ Department of Computer Science, Centre for Discrete Mathematics and Its Applications (DIMAP), University of Warwick, Coventry, UK (c.konrad@warwick.ac.uk).
    ${ }^{\text {§ }}$ Computer Science Department, Rutgers University, Camden, NY, 08102 (guyk@camden. rutgers.edu).

    IIDepartment of Computer Science, The Graduate Center, CUNY, Brooklyn, NY 10017 (grabanca@gmail.com).

[^1]:    ${ }^{1}$ Given an instance $(G=(V, E), p)$ of $\operatorname{SpES}$, create an instance of Steiner $k$-forest on a star with $V$ as the leaves, uniform weights, a demand pair for each edge in $E$, and $k=p$.

[^2]:    ${ }^{2}$ Strictly speaking, the algorithm in [7] is defined for unweighted graphs, but one can easily adapt it by partitioning the edges into $O(\log n)$ sets with similar edge weights and running the algorithm separately on every set of edges, thus losing only an additional $O(\log n)$ factor in the approximation.

