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THE DENSEST k-SUBHYPERGRAPH PROBLEM∗

EDEN CHLAMTÁČ† , MICHAEL DINITZ‡ , CHRISTIAN KONRAD§ , GUY KORTSARZ¶,

AND GEORGE RABANCA‖

Abstract. The densest k-subgraph (DkS) problem and its corresponding minimization problem
smallest p-edge subgraph (SpES) have come to play a central role in approximation algorithms.
This is due both to their practical importance and to their usefulness as a tool for solving and
establishing approximation bounds for other problems. These two problems are not well understood,
and it is widely believed that they do not admit a subpolynomial approximation ratio (although the
best-known hardness results do not rule this out). In this paper we generalize both DkS and SpES
from graphs to hypergraphs. We consider the densest k-subhypergraph (DkSH) problem (given a
hypergraph (V,E), find a subset W ⊆ V of k vertices so as to maximize the number of hyperedges
contained in W ), and define the minimum p-union (MpU) problem (given a hypergraph, choose p
of the hyperedges so as to minimize the number of vertices in their union). We focus in particular
on the case where all hyperedges have size 3, as this is the simplest nongraph setting. For this case

we provide an O(n4(4−
√

3)/13+ε) < O(n0.697831+ε)-approximation (for arbitrary constant ε > 0) for
DkSH and an Õ(n2/5)-approximation for MpU. We also give an O(

√
m)-approximation for MpU

in general hypergraphs. Finally, we examine the interesting special case of interval hypergraphs
(instances where the vertices are a subset of the natural numbers and the hyperedges are intervals of
the line) and prove that both problems admit an exact polynomial-time solution on these instances.

Key words. dense, hypergraph, approximation
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1. Introduction. Two of the most important outstanding problems in approx-
imation algorithms are the approximability of the densest k-subgraph problem (DkS)
and its minimization version, the smallest p-edge subgraph problem (SpES or min-
DkS). In DkS we are given as input a graph G = (V,E) and an integer k, and the
goal is to find a subset V ′ ⊆ V with |V ′| = k which maximizes the number of edges in
the subgraph of G induced by V ′. In the minimization version, SpES, we are given a
lower bound p on the number of required edges, and the goal is to find a set V ′ ⊆ V of
minimum size so that the subgraph induced by V ′ has at least p edges. These prob-
lems have proved to be extremely useful: For example, a variant of DkS was recently
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THE DENSEST k-SUBHYPERGRAPH PROBLEM 1459

used to obtain a new cryptographic system [3]. The same variant of the DkS problem
was shown to be central in understanding financial derivatives [4]. The best-known
algorithms for many other problems involve using an algorithm for DkS or SpES as a
black box (e.g., [26, 18, 13]).

Despite decades of work, there is still a large gap between the best-known approx-
imability and inapproximability bounds. The first approximation ratio for DkS was
O(n2/5) [21] and was devised in 1993. The state-of-the-art approximation for DkS is
O(n1/4+ε) for arbitrarily small constant ε > 0 [7], and the best-known approximation

for SpES is O(n3−2
√

2+ε) for arbitrarily small constant ε > 0 [10]. Given the slow
improvement over 23 years, it is widely believed that DkS and SpES do not admit
better than a polynomial approximation ratio. Furthermore, the existing approxi-
mation guarantees are tight assuming the recently conjectured hardness of finding a
planted dense subgraph in a random graph (for certain parameters) [7, 10]. However,
there has been very little progress towards an actual proof of hardness of approxi-
mation. It is clear that they are both NP-hard, but that is all that is known under
the assumption that P 6= NP . Under much stronger complexity assumptions it is
known that they cannot be approximated better than some constant [19, 14] or any
constant [1], but this is still a long way from the conjectured polynomial hardness.

The believed hardness of DkS and SpES has been used many times to give evidence
for hardness of approximation. For example, consider the Steiner k-forest problem in
which the input is an edge weighted graph, a collection of q pairs {si, ti}qi=1, and a
number k < q. The goal is to find a minimum cost subgraph that connects at least k
of the pairs. It is immediate to see that SpES is a special case of the Steiner k-forest
problem,1 and hence it seems highly unlikely that the Steiner k-forest problem admits
a better than polynomial approximation ratio.

Given the interest in and importance of DkS and SpES, it is somewhat surprising
that there has been very little exploration of the equivalent problems in hypergraphs.
A hypergraph is most simply understood as a collection E of subsets over a universe
V of vertices, where each e ∈ E is called a hyperedge (so graphs are the special case
when each e ∈ E has cardinality 2). In general hypergraphs, the obvious extensions
of DkS and SpES are quite intuitive. In the densest k-subhypergraph (DkSH) problem
we are given a hypergraph (V,E) and a value k, and the goal is to find a set W ⊆ V
of size k that contains the largest number of hyperedges from E. In the minimum
p-union (MpU) problem we are given a hypergraph and a number p, and the goal is
to choose p of the hyperedges to minimize the size of their union.

Clearly these problems are at least as hard as the associated problems in graphs,
but how much harder are they? Can we design nontrivial approximation algorithms?
Can we extend the known algorithms for graphs to the hypergraph setting? Currently,
essentially only lower bounds are known: Applebaum [2] showed that they are both
hard to approximate to within nε for some fixed ε > 0, assuming that a certain class
of one-way functions exist. But it was left as an open problem to design any nontrivial
upper bound (see footnote 5 of [2]).

1.1. Our results. In this paper we provide the first nontrivial upper bounds for
these problems. Let n denote the number of vertices and m denote the number of
hyperedges in the input hypergraph. Our first result is an approximation for Minimum
p-Union in general hypergraphs.

Theorem 1.1. There is an O(
√
m)-approximation for the MpU problem.

1Given an instance (G = (V,E), p) of SpES, create an instance of Steiner k-forest on a star with
V as the leaves, uniform weights, a demand pair for each edge in E, and k = p.
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1460 CHLAMTÁČ, DINITZ, KONRAD, KORTSARZ, AND RABANCA

We then switch our attention to the low rank case since this is the setting clos-
est to graphs. In particular, we focus on the 3-uniform case, where all hyperedges
have size at most 3. In this setting it is relatively straightforward to design an O(n)-
approximation for DkSH, although even this is not entirely trivial (the optimal so-
lution could have size up to k3 rather than k2 as in graphs, which would make the
trivial algorithm of choosing k/3 hyperedges only an O(n2)-approximation rather than
an O(n)-approximation as in graphs). We show that by very carefully combining a
set of algorithms and considering the cases where they are all jointly tight we can
significantly improve this approximation, and obtain the following theorem.

Theorem 1.2. For every constant ε > 0, there is an O(n4(4−
√

3)/13+ε) ≤
O(n0.697831+ε)-approximation for the DkSH problem on 3-uniform hypergraphs.

Adapting these ideas to the minimization setting gives an improved bound for
MpU as well.

Theorem 1.3. There is an Õ(n2/5)-approximation for the MpU problem on
3-uniform hypergraphs.

It is worth noting that any f -approximation for DkSH can be used to give an
Õ(f)-approximation for MpU (see Theorem 2.6), so Theorem 1.3 gives a significant
improvement over this black-box reduction from Theorem 1.2.

Finally, we define an interesting special case of DkSH and MpU that can be solved
exactly in polynomial time. Suppose we have an interval hypergraph: a hypergraph
in which the vertices are a finite subset of N and each hyperedge is an interval of
the real line (restricted to the vertices). Then we show that a dynamic programming
algorithm can be used to actually solve our problems.

Theorem 1.4. DkSH and MpU can be solved in polynomial time on interval hy-
pergraphs.

1.2. Related work. As discussed, the motivation for these problems mostly
comes from the associated graph problems, which have been extensively studied and
yet are still poorly understood. The DkS problem was introduced by Kortsarz and
Peleg [21], who gave an O(n2/5) ratio for the problem. Feige, Kortsarz, and Pe-
leg [15] improved the ratio to O(n1/3−ε) for ε that is roughly 1/60. The current
best-known approximation for DkS is O(n1/4+ε) for arbitrarily small constant ε > 0,
due to Bhaskara et al. [7]. For many years the minimization version, SpES, was not
considered separately, and it was only relatively recently that the first separation was
developed: Building on the techniques of [7] but optimizing them for the minimization

version, Chlamtáč, Dinitz, and Krauthgamer [10] gave an O(n3−2
√

2+ε)-approximation
for SpES for arbitrarily small constant ε > 0. The state-of-the-art hardness bounds
depend on the precise hardness assumption used, but the strongest are due to Manu-
rangsi [25], who recently showed that under the Exponential Time Hypothesis (ETH)
there is no n1/(log logn)c-approximation to either DkS or SpES for some universal con-
stant c, and under the stronger Gap-ETH there is no nf(n)-approximation for any
function f(n) ∈ o(1).

While defined slightly differently, DkSH and MpU were introduced earlier by
Applebaum [2] in the context of cryptography: He showed that if certain one-way
functions exist (or that certain pseudorandom generators exist), then DkSH is hard
to approximate within nε for some constant ε > 0. Based on this result, DkSH
and MpU were used to prove hardness for other problems, such as the k-route cut
problem [12]. To the best of our knowledge, though, there has been no previous work
on algorithms for these problems.
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Since the publication of the preliminary version of this paper [9], there has been
one follow-up paper [11] which directly considers some (though by no means all) of the
problems that we discuss here. In particular, [11] improves Theorem 1.1 by giving an
O(m1/4+ε)-approximation for MpU. They do this by designing new algorithms that
generalize the “log-density” framework that was used for DkS [7] and SpES [10] to the
hypergraph setting. Since the log-density framework is beyond the scope of this paper,
we refer the interested reader to [11] for a more detailed description. Their ideas and
techniques are not particularly sensitive to the size of the hyperedges, though, so their
paper does not offer any improvement over our main result, Theorem 1.2 for DkSH
on 3-uniform hypergraphs. However, [11] does note that their improvement for the
general case can be “plugged in” (in a black-box way) to our algorithm for 3-uniform
MpU, improving our Õ(n2/5)-approximation to a Õ(n3/8)-approximation. Since the
main ideas of the improved algorithm are from this paper (with only a black-box
addition from [11]), we provide a short overview of the improvement in Appendix C,
as well as a slightly more detailed comparison to this paper.

1.3. Organization. We begin in section 2 with some preliminaries, showing
the basic relationships between the problems. In section 3 we give our O(

√
m)-

approximation for MpU in general hypergraphs. We then focus on small-rank hy-
pergraphs, giving an O(n4/5)-approximation for DkSH on 3-uniform hypergraphs in
section 4, which we then improve to roughly O(n0.698) in section 5. We follow this in
section 6 with our improved bound for MpU on 3-uniform hypergraphs. Finally, in
section 7 we show how to solve both problems exactly in polynomial time on interval
hypergraphs. We conclude in section 8 with some open questions for future work.

2. Preliminaries and notation. A hypergraph H = (V,E) consists of a set
V (the vertices) together with a collection E ⊆ 2V (the hyperedges), where each
hyperedge is a subset of V . We will typically use n = |V | and m = |E| to denote
the number of vertices and hyperedges, respectively. The degree of a vertex in a
hypergraph is the number of hyperedges which contain it. Given a subset V ′ ⊆ V ,
the subhypergraph of H induced by V ′ is H[V ′] = (V ′, EH), where EH = {e ∈ E :
e ⊆ V ′}. For a subset of hyperedges E′ ⊆ E, we write V (E′) to denote the set of
vertices contained in at least one hyperedge of E′, i.e., V (E′) :=

⋃
e∈E′ e. We say

that H is α-uniform if |e| = α for all e ∈ E and that the rank of H is maxe∈E |e|
(i.e., the smallest α such that all edges have cardinality at most α). A hyperedge e is
covered by a set of vertices V ′ if e ⊆ V ′.

The main problems that we will consider are the following.

Definition 2.1. Given a hypergraph H = (V,E) and an integer k, the DkSH
problem is to find a set V ′ ⊆ V , with |V ′| = k, such that the number of edges in H[V ′]
is maximized.

Definition 2.2. Given a hypergraph H = (V,E) and an integer p, the MpU
problem is to find a set E′ ⊆ E, with |E′| = p, such that | ∪e∈E′ e| is minimized.

Note that on 2-uniform hypergraphs, these two problems are the classic graph
problems DkS and SpES, respectively.

A special class of hypergraphs that we will consider are interval hypergraphs,
defined as follows.

Definition 2.3. H is a interval hypergraph if it is isomorphic to a hypergraph
H ′ = (V,E), where V is a finite subset of N and for each e ∈ E there are values
ae, be ∈ N such that e = {i ∈ V : ae ≤ i ≤ be}.
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2.1. Relationship between problems. We begin by proving some relatively
straightforward relationships between the two problems. We first make the obvious
observation that a solution for one problem implies a solution for the other.

Observation 2.4. If there exists a polynomial-time algorithm that solves the DkSH
problem for any k on a hypergraph H, then there exists a polynomial-time algorithm
that solves the MpU problem on the hypergraph H. Similarly, if there is an algorithm
that solves MpU on H, then there is an algorithm that solves DkSH on H.

The relationship is not quite so simple when we instead are approximating the
problems, but it is relatively straightforward to show that a relationship still exists.
This is given by the following lemma, which will also prove to be useful later.

Lemma 2.5. If there exists an algorithm which in a hypergraph H containing a
subhypergraph with k vertices and p hyperedges finds a subhypergraph (V ′, E′) with
|V ′| ≤ fk and |E′| ≥ |V ′|p/(kf), we can get an O(f log p)-approximation for MpU.

Since any f -approximation algorithm for DkSH satisfies the conditions of the
lemma, as an immediate corollary we get the following.

Theorem 2.6. If there is an f -approximation for DkSH, then there is an
O(f log p)-approximation for MpU.

Proof of Lemma 2.5. Let (H = (V,E), p) be an instance of MpU, and let A be
an algorithm as described in the lemma. We assume without loss of generality that
we know the number of nodes k in the optimal solution (since we can just try all
possibilities for k) and hence that there exists a set V ∗ ⊆ V with |V ∗| = k such
that V ∗ covers at least p hyperedges. Initialize E′ = ∅, and consider the following
algorithm for MpU that repeats the following until |E′| ≥ p:

1. Let V ′ = A(H, k), and let E′′ be the hyperedges of H covered by V ′.
2. Let E′ ← E′ ∪ E′′.
3. Remove E′′ from H (remove only the edges, not the corresponding vertices).

We claim that this is an Õ(f)-approximation for MpU. Indeed, suppose that at
iteration i we added xi vertices and that at the beginning of the iteration, we had
already added p−pi edges to the solution. In particular, that means that at least pi of
the original hyperedges contained in V ∗ were not yet removed. This then implies that
the number of edges added in iteration i was at least xi ·pi/(kf). Thus, the number of
edges we still need to add after iteration i is pi+1 ≤ pi−xi ·pi/(kf) = pi(1−xi/(kf)).
Thus, by induction, after t iterations, the number of hyperedges we need to add is
bounded by

pt+1 ≤ p
t∏
i=1

(1− xi/(kf)) ≤ p exp

(
−

t∑
i=1

xi/(kf)

)
.

Thus, as soon as the total number of vertices added exceeds kf ln p for the first time,
the number of edges will exceed p. Since the last iteration adds at most kf vertices,
we are done.

A standard argument also shows a (more lossy) reduction in the other direction.

Theorem 2.7. If there is an f -approximation for MpU on α-uniform hyper-
graphs, then there is an O(fα)-approximation for DkSH on α-uniform hypergraphs
(when α = O(1)).

Proof. Let (H = (V,E), k) be an instance of DkSH where H is α-uniform, and
let A be an f -approximation algorithm for MpU on α-uniform hypergraphs. We can
assume without loss of generality that we know the number of hyperedges p which
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are contained in the optimal solution since we can just try all possibilities for p. We
first use A with the correct guess of p to get a subhypergraph (V̂ , Ê) with |V̂ | ≤ kf
and |Ê| ≥ p.

We then build an auxiliary hypergraph with vertex set V ′ = V̂ ×[α] and hyperedge
set E′ defined by creating a hyperedge {(vπ(1), 1), (vπ(2), 2), . . . , (vπ(α), α)} for each

hyperedge {v1, v2, . . . , vα} ∈ Ê and each permutation π of [α]. Note that |V ′| ≤ kfα
(since we essentially made α copies of each vertex) and |E′| ≥ pα! (since we created
α! copies of each hyperedge).

For each i ∈ [α], let Vi ⊆ V ′ be the set of vertices of the form (v, i), i.e., the
set V̂ × {i}. Note that every hyperedge in E′ contains exactly one vertex from each
Vi. Now we run a simple greedy algorithm on this new hypergraph. We will build a
solution (V ∗, E∗) as follows. We initially set V ∗ = ∅ and E∗ = E′. Then in iteration
i, we choose the k/α nodes from Vi that are in the most hyperedges in E∗ and add
them to V ∗ and remove from E∗ every hyperedge which does not have any of these
nodes. After α iterations we are finished.

Clearly after this completes, |V ∗| = k. Moreover, since in each iteration we select
the best k/α nodes from a set of size |V̂ | ≤ kf , it is obvious that after any iteration
i the size of E∗ is at least a (k/α)/(kf) = 1/(αf) fraction of its size after iteration
i − 1. Thus, at the end of this algorithm every hyperedge in E∗ is contained in
V ∗, and |E∗| ≥ pα!/(αf)α. Now if we simply project V ∗ back onto V̂ (i.e., onto
the first coordinate) we get a vertex set of size at most k which contains at least
|E∗|/(α!) ≥ p/Ω(fα) hyperedges, as desired.

3. MpU in general hypergraphs. The algorithm presented in this section
requires a subroutine that returns a densest subhypergraph (without the cardinality
bound on the size of the subhypergraph). More formally, we need a polynomial-time
algorithm DSH(G) which returns a subset of hyperedges so that

|DSH(G)|
|V (DSH(G))|

≥ |E′|
|V (E′)|

for every E′ ⊆ E. In the graphical setting (where each hyperedge has cardinality two),
this subproblem corresponds to the densest subgraph problem, for which Goldberg
gave a polynomial-time algorithm in 1984 [17]. In Appendices A and B we give
two different polynomial-time algorithms for the hypergraph setting. The first, in
Appendix A, uses a reduction to network flows. The second, in Appendix B, is based
on a straightforward adaptation of a linear programming approach for the graph case
due to Charikar [8]. For the remainder of this section, we thus assume that we have
a polynomial-time implementation DSH(G) at our disposal.

Our algorithm (Algorithm 1) consists of two phases. In the first phase, it itera-
tively adds edges E′′ to an initially empty set E′ until E′ exceeds the size p−

√
m. The

set E′′ is the edge set of a densest subhypergraph in the subhypergraph (V,E \ E′).
If E′′ is large so that |E′ ∪E′′| > p, then an arbitrary subset of E′′ is added to E′ so
that E′ has the desired size p. Then, in the second phase, we add the p− |E′| edges
of E \ E′ of minimum cardinality to E′ (ties broken arbitrarily), and the algorithm
returns set E′.

Theorem 3.1. Algorithm 1 is a (2
√
m)-approximation algorithm for MpU.

Proof. Let OPT ⊆ E be an optimal solution, and let r = |V (OPT )|. Let E′i
denote the set E′ in the beginning of the ith iteration of the repeat loop. Suppose
that the algorithm runs in l rounds. Then E′l+1 is the set E′ after the last iteration
of the loop but before the nodes selected in line 9 are added.
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1464 CHLAMTÁČ, DINITZ, KONRAD, KORTSARZ, AND RABANCA

Algorithm 1. 2
√
m-approximation algorithm for the MpU problem.

Data: Hypergraph G = (V,E) with m = |E|, parameter p
1 E′ ← {};
2 repeat
3 E′′ ← DSH((V,E \ E′));
4 if |E′|+ |E′′| ≤ p then
5 E′ ← E′ ∪ E′′;
6 else
7 Add arbitrary p− |E′| edges from E′′ to E′;

8 until |E′| ≥ p−
√
m;

9 E′′ ← subset of p− |E′| edges of E \ E′ of minimum cardinality;
10 E′ ← E′ ∪ E′′;
11 return E′;

Consider an arbitrary iteration i ≤ l, and let E′′ ← DSH((V,E \ E′)) as in
the algorithm. Note that by the condition of the loop, we have |E′i| ≤ p −

√
m.

Furthermore, we have

|E′′|
|V (E′′)|

≥ |OPT \ E′i|
|V (OPT \ E′i)|

≥ p− |E′i|
r

since E′′ is the edge set of a densest subhypergraph in (V,E \ E′i). Then

|V (E′′)| ≤ |E′′|r
p− |E′i|

≤ |E′′|r
p− p+

√
m

=
|E′′|r√
m

.

Thus, we have |V (E′i+1)| ≤ |V (E′i)|+
|E′′|r√
m

(note that this inequality also captures

the case when only a subset of E′′ is added to E′ in line 7). Now, note that the sets
E′′ of any two different iterations are disjoint, and thus the sizes of the sets E′′ of the
different iterations sum up to at most m. We thus obtain the bound:

|V (E′l+1)| ≤ mr√
m

=
√
mr.

In the second phase, we select at most
√
m edges E′′ of minimum cardinality

among E \E′. Clearly, the edge with maximum cardinality among those is at most r
(if it was larger, then |V (OPT )| would be larger as well) and thus |V (E′′)| ≤

√
mr.

The neighborhood of the returned set of our algorithm is hence at most 2
√
mr, which

gives an approximation factor of 2
√
m.

4. DkSH in 3-uniform hypergraphs. In this section, we consider the DkSH
problem in 3-uniform hypergraphs. We develop an O(n4/5)-approximation algorithm
here and show in section 5 how to improve the approximation factor to O(n0.697831+ε)
for any ε > 0 by replacing one of our subroutines with an algorithm of Bhaskara
et al. [7].

Throughout this section, let H = (V,E) be the input 3-uniform hypergraph. Let
K ⊆ V denote an optimal solution, i.e., a subset of vertices such that H[K] is a densest
k-subhypergraph. The average degree of H[K] is denoted by d = 3|E(H[K])|/k. We
say that a hyperedge is optimal if it is contained in H[K].
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4.1. Overview of our algorithm. Let K1 ⊆ V be a set of k/3 vertices of
largest degree (ties broken arbitrarily), ∆ be the minimum degree of a node in K1,
and H ′ = H[V \K1]. Note that the maximum degree in H ′ is ∆.

Suppose first that at least half of the optimal hyperedges contain at least one
vertex of K1. Then the following lemma shows that we can easily achieve a much
better approximation than we are aiming for.

Lemma 4.1. Suppose that at least half of the optimal hyperedges contain a vertex
of K1. Then we can achieve an O(n1/4+ε) approximation for any ε > 0.

Proof. By our assumption, there is a set P of optimal hyperedges of size at least
dk/6 such that every edge in P intersects K1. Consider two cases.

Case 1. For at least half the edges e ∈ P , we have |e∩K1| ≥ 2. Denote the set of
these edges by P ′. For every vertex u ∈ V , let its K1-weight be the number of pairs
{v, x} such that v, x ∈ K1 and {u, v, x} is a hyperedge. Then by our assumption, the
vertices in K have average K1-weight at least |P ′|/k ≥ d/12. Choosing 2k/3 vertices
greedily (by maximum K1-weight) gives (along with K1) a k-subhypergraph with at
least dk/18 hyperedges.

Case 2. P ′′ = P \ P ′ contains at least half the hyperedges in P . Note that
|e ∩ K1| = 1 for every e ∈ P ′′. For every pair of vertices u, v ∈ V \ K1, let its K1-
weight be the number of vertices x ∈ K1 such that {u, v, x} is a hyperedge, and let
G be the graph on vertices V \K1 with these edge weights. Then any k′-subgraph of
G with total edge weight w corresponds to a (|K1|+ k′)-subhypergraph of H with at
least w hyperedges, and, in particular, G contains a k-subgraph with average weighted
degree at least 2|P ′′|/k ≥ d/6, which can be easily pruned (randomly or greedily) down
to a 2k/3-subgraph with average weighted degree Ω(d). Thus, we can run the DkS
approximation algorithm of Bhaskara et al. [7]2 and find a 2k/3-subgraph of G with
total weight at least kd/n1/4+ε, which in turn gives a (|K1|+2k/3 =)k-subhypergraph
of H with a corresponding number of hyperedges.

In the more difficult case, at least half of the optimal hyperedges are fully con-
tained in H ′. Exploiting the fact that the maximum degree in H ′ is ∆ and trading
off multiple algorithms, we show in the following subsection how to obtain an O(n

4
5 )-

approximation algorithm in this case.

4.2. An O(n4/5)-approximation. We start with a greedy algorithm similar
to the greedy algorithm commonly used for DkS [21, 15, 7].

Algorithm 2 selects a subset K2 of k/3 vertices v with largest K1-degree, i.e.,
the number of hyperedges incident to v that contain at least one vertex of K1. Then
a subset K3 of k/3 vertices w with largest (K1,K2)-degree is selected, where the
(K1,K2)-degree of w is the number of hyperedges containing w of the form {w, x, y}
with x ∈ K1 and y ∈ K2. Note that the sets K1,K2, and K3 are not necessarily
disjoint, and the returned set may thus be smaller than k.

The following lemma gives a lower bound on the average degree guaranteed by
this algorithm. It is a straightforward extension of similar algorithms for graphs.

Lemma 4.2. Algorithm 2 returns a k-subhypergraph with average degree Ω(∆k2/n2).

Proof. By choice of K1 and definition of ∆, every vertex in K1 has degree at least
∆, and so the total number of edges containing vertices in K1 is at least ∆|K1|/3 =
∆k/9 (since we could potentially be double-counting or triple-counting some edges).

2Strictly speaking, the algorithm in [7] is defined for unweighted graphs, but one can easily adapt
it by partitioning the edges into O(logn) sets with similar edge weights and running the algorithm
separately on every set of edges, thus losing only an additional O(logn) factor in the approximation.
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Algorithm 2. Greedy algorithm for DkSH in 3-uniform hypergraphs.

Data: 3-uniform Hypergraph H = (V,E), parameter k, vertex set K1 ⊆ V
of size k/3

1 For every v ∈ V , let its K1-degree be |{e ∈ E | v ∈ e, e ∩K1 6= ∅}|;
2 K2 ← a set of k/3 vertices of highest K1-degree (K1 and K2 may intersect);
3 For any u ∈ V , let its (K1,K2)-degree be the number of edges of the form

(u, v, x) ∈ E such that v ∈ K2 and x ∈ K1;
4 K3 ← a set of k/3 vertices of highest (K1,K2)-degree. (K3 may intersect K1

and/or K2);
5 return K1 ∪K2 ∪K3;

If we were to choose n vertices for K2, there would be at least ∆k/9 edges con-
taining both a vertex in K1 and a vertex in K2 (as noted above). Choosing k/3
vertices greedily out of n yields a set K2 such that there are at least ∆k/9 · (k/3)/n =
∆k2/(27n) such edges.

Finally, choosing the k/3 vertices with the largest contribution (out of n) for
K3 ensures that there will be at least ∆k2/(27n) · (k/3)/n = Ω(∆k3/n2) edges in
E ∩K1 ×K2 ×K3, giving average degree Ω(∆k2/n2).

We now offer a second algorithm, which acts on H ′ and is based on neighborhoods
of vertices.

Algorithm 3. A neighborhood-based algorithm for DkSH in 3-uniform hy-
pergraphs.

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameter k.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, x) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do

4 Gd̂v ← Gv;

5 while there exists a vertex u in Gd̂v of degree < d̂ do

6 delete u from Gd̂v;

7 Sd̂v ← a set of (k − 1)/2 vertices with highest degree in Gd̂v;

8 T d̂v ← a set of (k − 1)/2 vertices with the most neighbors in Sd̂v ;

9 return The densest among all subhypergraphs H ′[{v} ∪ Sd̂v ∪ T d̂v ] over all

choices of v, d̂;

Algorithm 3 exploits the bound on the maximum degree in H ′ to find a dense
hypergraph inside the neighborhood of any vertex of degree Ω(d) in K by considering
the neighborhood of a vertex as a graph. Pruning low-degree vertices in this graph
(which would not contribute many hyperedges to K) helps reduce the size of the graph
and makes it easier to find a slightly denser subgraph. Since the vertices of K and
their degrees are not known, the algorithm tries all possible vertices.

Lemma 4.3. If H ′ contains a k-subhypergraph with average degree d′ = Ω(d), then
Algorithm 3 returns a k-subhypergraph with average degree Ω(d2/(∆k)).
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Proof. Since at the end of the algorithm we take the densest induced subhyper-
graph of H ′ (among the various choices), it suffices to show that there is some choice

of v and d̂ which gives this guarantee. So let v be an arbitrary vertex in K with degree
(in K) at least d′. We know that Gv contains a subgraph with at most k vertices

and at least d′ edges, so its average degree is at least 2d′/k. Setting d̂ = d′/(2k),
we know that the pruning procedure can remove at most k · d′/(2k) = d′/2 out of
the d′ edges in this subgraph, so the subgraph still retains at least d′/2 edges. On
the other hand, we know that Gv has at most ∆ edges (since we have assumed the

maximum degree in H ′ is at most ∆), and therefore the same holds for the graph Gd̂v,

in which the minimum degree is now at least d′/2k. This means that Gd̂v has at most
2∆/(d′/2k) = O(∆k/d) vertices.

Since there exists a k-subgraph of Gd̂v with Ω(d) edges, the greedy choice of Sd̂v
must give some set in which at least Ω(d) edges are incident. The greedy choice of

T d̂v then reduces the lower bound on the number of edges by a ((k− 1)/2)/|V (Gd̂v)| =
Ω(d/∆) factor, giving us Ω(d2/∆) edges. However, by the definition of Gv, together
with v, these edges correspond to hyperedges in H ′. Thus, the algorithm returns a
k-subhypergraph with Ω(d2/∆) hyperedges, or average degree d2/(∆k).

Combining the various algorithms we have seen with a trivial algorithm and choos-
ing the best one gives us the following guarantee.

Theorem 4.4. There is an O(n4/5)-approximation for DkSH in 3-uniform hy-
pergraphs.

Proof. By Lemma 4.1, if at least half the optimal edges intersect K1, then we can
achieve a significantly better approximation (namely, n1/4+ε). Thus, from now on
let us assume this is not the case. That is, H ′ still contains a k-subhypergraph with
average degree Ω(d). Again, recall that the maximum degree in H ′ is at most ∆.

By Lemma 4.2, Algorithm 2 gives us a k-subhypergraph with average degree
d1 = Ω(∆k2/n2). On the other hand, applying Algorithm 3 to H ′ will give us a
k-subhypergraph with average degree d2 = Ω(d2/(∆k)) by Lemma 4.3.

Finally, we could choose k/3 arbitrary edges in H and the subhypergraph induced
on the vertices they span, giving us average degree d3 ≥ 1. Thus, the best of the three
will give us a k-subhypergraph with average degree at least

max{d1, d2, d3} ≥ (d2
1d

2
2d3)1/5 = Ω((∆2k4/n4 ·d4/(∆2k2))1/5) = d·Ω((k2/d)1/5/n4/5).

Since we must have k2/d ≥ 1, the above gives an O(n4/5)-approximation.

5. An improved approximation for 3-uniform DkSH. In section 4 we gave
an O(n4/5) approximation which combined a greedy algorithm with Algorithm 3,
which looked for a dense subgraph inside a graph defined by the neighborhood of a
vertex in H. To find this dense subgraph, we used a very simple greedy approach.
However, we have at our disposal more sophisticated algorithms, such as that of
Bhaskara et al. [7]. One way to state the result in that paper (see Bhaskara’s Ph.D.
thesis for details on this version [6]) is as follows.

Theorem 5.1. In any n-vertex graph G, for any α ∈ [0, 1], if k = nα, then DkS
in G can be approximated within an nεk1−α factor in time nO(1/ε) for any ε > 0.

The n1/4+ε guarantee of [7] follows since for any α ∈ [0, 1], we have k1−α =
nα(1−α) ≤ n1/4.

Using this guarantee instead of the simple greedy algorithm for DkS, we get the
following improved algorithm for 3-uniform Densest k-Subhypergraph.
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Algorithm 4. A DkS-based algorithm for DkSH in 3-uniform hypergraphs.

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameters k and ε > 0.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, v) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do

4 Gd̂v ← Gv;

5 while there exists a vertex u in Gd̂v of degree < d̂ do

6 Delete u from Gd̂v;

7 K d̂
v ← the vertex set returned by the algorithm of Bhaskara et al. [7]

on the graph Gd̂v with parameters k − 1 and ε;

8 return The densest among all subhypergraphs H ′[{v} ∪K d̂
v ] over all choices

of v, d̂;

The approximation guarantee in this final algorithm is given by the following
lemma.

Lemma 5.2. Let H ′ be an n-vertex 3-uniform hypergraph with maximum degree
≤ ∆, containing a k-subhypergraph of average degree d′, and let α, β be such that
k = nα and ∆k/d′ = nβ. Then Algorithm 4 returns a k-subhypergraph of H of
average degree

Ω

(
d′

nε+α(2−α/min{β,1})

)
.

Proof. As in the proof of Lemma 4.3, we can deduce that for at least some choice

of v and d̂, the graph Gd̂v has at most min{n,O(∆k/d′)} = O(nmin{1,β}) vertices and
contains a k-subgraph with average degree Ω(d′/k).

By Theorem 5.1, since k = nα = Ω(|V (Gd̂v)|α/min{1,β}), the algorithm of [7] will

return a (k − 1)-subgraph of Gd̂v with average degree

Ω

(
d′/k

nεk1−α/min{β,1}

)
= Ω

(
d′

nε+α(2−α/min{β,1})

)
.

As noted in the proof of Lemma 4.3, this corresponds to a k-subhypergraph of H ′

with the same guarantee.

Remark 5.3. In the notation of Lemma 5.2 we have ∆/d′ = nβ−α, which implies
that β ≥ α (since ∆ ≥ d′).

Trading off the various algorithms we have seen, we can now prove the guarantee
stated in Theorem 1.2.

Theorem 5.4 (Theorem 1.2 restated). For every constant ε > 0, there exists

a polynomial-time algorithm that achieves an O(n4(4−
√

3)/13+ε) ≤ O(n0.697831+ε)-
approximation for DkSH in 3-uniform hypergraphs.

Proof. By Lemma 4.1, if at least half the optimal edges intersect K1, then we can
achieve a significantly better approximation (namely, n1/4+ε). Thus, from now on
let us assume this is not the case. That is, H ′ still contains a k-subhypergraph with
average degree Ω(d). Again, recall that the maximum degree in H ′ is at most ∆.
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As before, let α, β be such that k = nα and ∆k/d = nβ . By Lemma 4.2, Algo-
rithm 2 gives us a k-subhypergraph with average degree

d1 = Ω(∆k2/n2) = Ω

(
d

(d/∆)n2/k2

)
= Ω

(
d

nα−βn2−2α

)
= Ω

(
d

n2−α−β

)
.

On the other hand, by Lemma 5.2, Algorithm 4 to H ′ will give us a k-subhypergraph
with average degree

d2 = Ω

(
d

nε+α(2−α/min{β,1})

)
.

Let us analyze the guarantee given by the best of Algorithms 2 and 4. First,
consider the case of β > 1. In this case, taking the best of the two gives us approxi-
mation ratio at most nε+min{2−α−β,α(2−α)} ≤ nε+min{1−α,α(2−α)}. It is easy to check
that this minimum is maximized when α = (3 −

√
5)/2 giving approximation ratio

n(
√

5−1)/2+ε ≤ n0.618034+ε, which is even better than our claim.
Now suppose β ≤ 1. In this case, the approximation guarantee is nε+min{h1,h2},

where h1 = 2−α−β and h2 = α(2−α/β). If α ≥ 2/3, then it can be checked that we
always have h1 ≤ h2 for any β ∈ [α, 1], in which case we have approximation factor
at most nε+2−2/3−2/3 = n2/3+ε, which is again better than our claim. On the other
hand, if α ≤ (3 −

√
5)/2, then h2 ≤ h1 for any β ≤ 1, and so for this range of α we

get approximation factor at most nε+α(2−α) ≤ n(
√

5−1)/2, which as we have noted is
also better than our claim. Finally, if α ∈ ((3 −

√
5)/2, 2/3), then a straightforward

calculation shows that

min{h1, h2} =

{
h1 if β ≥ 1− 3α

2 +
√

1− 3α+ 13α2/4
h2 otherwise

and that the value of min{h1, h2} is maximized at this threshold value of β. And
so for α in this range we have min{h1, h2} ≤ 1 + α/2 −

√
1− 3α+ 13α2/4, which is

maximized at α = 18+2
√

3
39 ≈ 0.55, giving approximation ratio nε+4(4−

√
3)/13.

6. MpU in 3-uniform hypergraphs. In this section we explore MpU (the
minimization version of DkSH) and give the following guarantee:

Theorem 6.1. There is an Õ(n2/5)-approximation algorithm for MpU in 3-uniform
hypergraphs.

Note that this is significantly better than the O(n4(4−
√

3)/13+ε) ≈ O(n0.697831+ε)-
approximation we would get by reducing the problem to DkSH via Theorem 2.6 and
applying the approximation algorithm from Theorem 1.2.

In this problem, we are given a 3-uniform hypergraph H = (V,E), and a parame-
ter p, the number of hyperedges that we want to find. Let us assume that the optimal
solution, P ⊆ E, has k vertices (i.e., | ∪e∈P e| = k). We do not know k, but the
algorithm can try every possible value of k = 1, . . . , n, and output the best solution.
Thus, we assume that k is known, in which case the average degree in the optimum
solution is d = 3p/k.

Recall that it is not necessary to get p edges in one shot. By Lemma 2.5, it is
enough to find any subhypergraph of size at most kn2/5 with average degree at least
Ω(d/n2/5).

We follow along the lines of DkSH by choosing vertex set K1 to be the kn2/5

vertices of largest degree. The following lemma (corresponding to Lemma 4.1 for
DkSH) shows that if at least half the edges in P intersect K1, then by Lemma 2.5 we
are done.
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Lemma 6.2. Suppose that at least half of the optimal edges contain a vertex of
K1. Then we can find a subhypergraph with at most O(kn2/5) vertices and average
degree at least Ω(d/n2/5).

Proof. By our assumption, there is a set of optimal hyperedges P ′ ⊂ P of size at
least dk/6 such that every edge in P ′ intersects K1.

As in the proof of Lemma 4.1, if at least half the edges in P ′ intersect K1 in more
than one vertex, then we can easily recover a set of k vertices which along with K1

contain at least Ω(p) = Ω(kd) hyperedges. Since |K1| = kn2/5, this subgraph has
O(kn2/5) vertices and average degree Ω(d/n2/5) as required.

Thus, we may assume that at least half the edges in P ′ intersect K1 in exactly one
vertex. Then again as in Lemma 4.1, we define a graph G on vertices V \K1 where
every pair of vertices u, v ∈ V \K1 is an edge with weight |{x ∈ K1 | (u, v, x) ∈ E}|.
Once again, subgraphs of G with total edge weight w correspond to a subhypergraphs
of H with at least w edges, and in particular, G contains a k-subgraph with average
weighted degree at least Ω(d). Thus, running the SpES approximation of [10] (or,
more precisely, the weighted version [13]) gives a subgraph with at most kf vertices
and total edge weight at least Ω(kd) for some f = n0.17+ε (which is well below n2/5).
Once again, the corresponding subhypergraph has at most |K1| + kf = O(kn2/5)
vertices, and so the average degree is at least Ω(d/n2/5) as required.

Thus, we will assume from now on that at least half of the hyperedges in P do
not contain at least one vertex from K1, i.e., that H ′ = H[V \K1] still contains at
least half the hyperedges in P .

As with DkSH, we now proceed with a greedy algorithm. Starting with the
same vertex set K1 defined above, it follows from Lemma 4.2 that if we run Al-
gorithm 2 on H with parameter n2/5k, then we get a subhypergraph on O(kn2/5)
vertices induced on sets K1,K2,K3 such that if the minimum degree in K1 (which
bounds the maximum degree in V \ K1) is ∆, then the subhypergraph has average
degree Ω(∆k2n4/5/n2). The total number of hyperedges in this subhypergraph is
Ω(∆k3n6/5/n2) = Ω(∆k3/n4/5). If this is at least p = dk/3, then we are done. Thus,
we will assume from now on that ∆k3/n4/5 = O(dk), that is,

∆ = O

(
dn4/5

k2

)
.(1)

We reuse Algorithm 3 on H ′, which gives us the following guarantee.

Lemma 6.3. Applying Algorithm 3 to the above hypergraph H ′ with parameter

k̂ =
k
√
p∆

d
=

√
k3∆

3d

returns a subhypergraph with at most kf vertices and average degree at least d/f for
some

f = O(max{k, n2/5/
√
k}).

Proof. As in the proof of Lemma 4.3, we can deduce that for at least some choice

of v and d̂, the graph Gd̂v has at most O(∆k/d) vertices and has minimum degree at
least Ω(d/k).

Note that we may not even have k̂ vertices in Gd̂v. If we do have at least k̂ vertices,

then the greedy choice of Sd̂v gives us Ω(k̂d/k) edges incident in the set (in fact, any
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choice of Ω(k̂) vertices would do). The greedy choice of T d̂v then reduces the number

of edges by (in the worst case) a k̂/(∆k/d)-factor, giving us a total number of edges

Ω

(
k̂ 2d2

∆k2

)
= Ω(p).

Thus, in this case, we only need to bound the size of the subgraph. By (1), we can

bound k̂ as.

k̂ =

√
k3∆

3d
= O

(√
dn4/5

k2
· k

3

d

)
= O

(
k · n

2/5

√
k

)
,

which proves the lemma for this case.

If we do not have k̂ vertices in Gd̂v, then the algorithm simply returns Gd̂v itself,

which has at most k̂ = O(k ·n2/5/
√
k) vertices and average degree at least Ω(d/k), as

required.
As noted in the proof of Lemma 4.3, this corresponds to a subhypergraph of H ′

with the same guarantee.

We can now prove the main theorem.

Proof of Theorem 6.1. By Lemmas 6.3 and 2.5, to prove the theorem it suffices to
show that max{k, n2/5/

√
k} = O(n2/5). Since clearly n2/5/

√
k ≤ n2/5, let us consider

the parameter k. By definition of d and ∆, we clearly have d ≤ ∆; thus, by (1) we
have

d ≤ ∆ = O

(
dn4/5

k2

)
,

which implies k = O(n2/5), and so the theorem follows.

7. Interval hypergraphs. We show now that DkS and MpU can be solved in
polynomial time on interval hypergraphs. We only give an algorithm for MpU; a
similar algorithm for DkS follows then from Observation 2.4.

As defined in section 2, a hypergraph H = (V,E) is an interval hypergraph if
V ⊆ N and for each e ∈ E there are integers ae, be such that e = {i ∈ V : ae ≤ i ≤ be}.
Solving MpU on H can be interpreted as finding p intervals with minimum joint
support.

Theorem 7.1. MpU is solvable in polynomial time on interval hypergraphs.

Proof. Let b1, . . . , bm be the largest elements in hyperedges e1, . . . , em, respec-
tively, and assume that bi ≤ bj for any i < j. Similarly let a1, . . . , am be the smallest
elements in e1, . . . , em, respectively.

We present a dynamic programming algorithm which calculates for each j ≤ i
the optimal solution to an instance of MpU on the hyperedges e1, . . . , ei with p = j
under the constraint that ei belongs to the solution. Let A[i, j] store the value of this
optimal solution. Assume that the values of A have been computed for all i′, j′ with
j′ ≤ i′ < i. We show how to compute A[i, j] for any j ≤ i.

We partition the hyperedges e1, . . . , ei in three sets Ai, Bi, Ci with Ai containing
all hyperedges disjoint from ei, Bi containing all hyperedges intersecting but not
contained in ei, and Ci containing ei and all hyperedges included in ei (see Figure 1).
Therefore, we have

1. bi′ < ai for all ei′ ∈ Ai;
2. ai′ < ai ≤ bi′ for all ei′ ∈ Bi;
3. ai ≤ ai′ ≤ bi′ ≤ bi for all ei′ ∈ Ci.
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Ci′

ei

ei′

Fig. 1. Partitioning of hyperedges induced by ei. The dotted edges form set Ai, the dashed
edge forms set Bi, and the elements of Ci are represented by continuous edges. The set Ci′ is also
shown in dashed pattern.

Clearly, for every j ≤ |Ci| we have A[i, j] = |ei| since by definition of A, ei is
included in the solution, and adding any other j− 1 sets from Ci to the solution does
not increase the size of the union. In the remainder of the proof, when we refer to an
optimal solution corresponding to A[i′, j′] for some indices i′ and j′ we always mean
a solution that uses the maximum number of sets in Ci′ .

For any t ≥ 0 and j = t + |Ci|, the optimal solution contains exactly t sets in
Ai ∪ Bi. Fix an optimal solution OPTi corresponding to A[i, j], and let ei∗ be the
hyperedge with largest bei∗ in OPTi that does not belong to Ci. We show that

A[i, j] = A[i∗, j − |Ci \ Ci∗ |] + |ei \ ei∗ |.(2)

Then, by considering every hyperedge with index i′ < i as the possible i∗ in (2) and
taking the minimum value, one can compute A[i, j] in linear time.

To complete the proof, we argue why (2) holds. First, observe that a solution with
value A[i, j] exists. Indeed, by adding all elements of Ci\Ci∗ to an optimal solution for
A[i∗, j−|Ci \Ci∗ |] we obtain a solution for A[i, j] covering exactly |ei \ ei∗ | additional
elements. Next, assume that the value of A[i, j] is less than that of (2). Then we can
obtain a solution for A[i∗, j − |Ci \ Ci∗ |] by removing from OPTi all the elements in
|Ci \Ci∗ | to obtain a solution with value at most A[i, j]− |ei \ ei∗ |, contradicting the
fact that A[i∗, j − |Ci \ Ci∗ |] is the value of an optimal solution.

8. Open problems. The most obvious open problems involve improving our
achieved approximation bounds. Even in the graph case (DkS and SpES) there is a
large gap between the known upper and lower bounds (polynomial upper bound and
subpolynomial lower bounds), but there are lower bounds given by the “log-density”
framework [7, 10, 11]. While this framework is beyond the scope of this paper, it is
not hard to adapt some of the ideas from [7] to the hypergraph setting (and indeed,
this was the main idea in [11]), giving a variety of lower bounds in this framework.
In particular, it predicts that no sublinear in n approximation is possible for MpU
and that the best approximation as a function of m is should be m1/4 (which was
recently matched by [11], improving over our O(

√
m)-approximation). In c-uniform

hypergraphs it gives lower bounds of n(c−1)/4 for DkSH and n1−2/(
√
c+1) for MpU. For

c = 3, for example, these lower bounds give n1/2 and n2−
√

3 = n0.2679..., respectively
(contrast with our current guarantees of n0.6978... and n0.4, respectively, the latter of
which has been improved by [11] to n0.375+ε for arbitrarily small ε). The existing
algorithmic approaches for the graph case, which match the log-density lower bounds,
do not seem to easily carry over to hypergraphs, and it remains an interesting challenge
to match the log-density–based predictions for hypergraphs of bounded rank.
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There is also an interesting connection between MpU/DkSH and the Small-Set
Vertex Expansion (SSVE) problem [5, 23, 22]. In SSVE, we are given a graph G
and a parameter δ and are asked to find a set V ′ ⊆ V with |V ′| ≤ δn in order to

minimize |{v∈V \V
′:v∈Γ(v)}|
|V ′| . Given a graph G, consider the collection of neighborhoods

Ê = {Γ(v) : v ∈ V } and the hypergraph H = (V, Ê). If we let p = δn, the MpU
problem (choosing p hyperedges in H to minimize their union) is quite similar to the
SSVE problem. The main difference is that SSVE only “counts” nodes that are in
V \V ′, while MpU would also count nodes in V ′. It is known [24] that this special case
of MpU reduces to SSVE, so it is no harder than SSVE, but it is not clear how much
easier it is. This motivates the study of MpU when hyperedges are neighborhoods in
an underlying graph. Recently a (1 + ε, Õ(

√
n))-bicriteria approximation for SSVE

was given in [11], but improving this (and in particular giving a true approximation)
is an interesting future direction.

Appendix A. Densest subhypergraph via network flows. In this section,
we give a polynomial-time implementation of DSH. Given a hypergraph H = (V,E),
we will work with the bipartite incidence graph G = (E, V, F ) of H, where F =
{(e, v) ∈ E × V : v ∈ e}. For a graph G = (V,E) and a vertex v ∈ V , we use
ΓG(v) to denote the set of nodes adjacent to v, and for a subset V ′ ⊆ V , we let
ΓG(V ′) = ∪v∈V ′Γ(v).

Finding the densest subhypergraph in H corresponds to finding a subset E′ ⊆ E
in G of minimum vertex expansion, i.e., E′ such that |E′|

|ΓG(E′)| is minimized. Minimally

expanding subsets of this kind have previously been used (e.g., in [20, 16]) in commu-
nication settings where computation time is disregarded, but in our context we need
a polynomial-time algorithm. We therefore present a polynomial-time implementa-
tion for DSH using network flows. An alternative algorithm can be derived from a
straightforward adaptation of a linear programming approach for the graph case due
to Charikar [8] to our setting (see Appendix B for more details).

Let Nq = (G̃, cq, s, t) be a flow network with directed bipartite graph G̃ = (E ∪
{t}, V ∪ {s}, F̃ ), capacities cq parameterized by a parameter q with m

n < q < m,
source s, and sink t as follows (and as illustrated in Figure 2):

1. Vertex s is connected to every e ∈ E via directed edges (leaving s) with
capacity 1.

2. Every v ∈ V is connected to t via a directed edge (directed towards t) with
capacity q.

3. Edges from F are included in F̃ and directed from E-vertex to V -vertex with
capacity ∞.

Denote by C∗ a minimum s-t cut in Nq, and let val(C∗) be the value of the cut.
Since cutting all edges incident to vertex s results in a cut of value m, the min-cut
value is at most m and thus finite, and, in particular, no edge connecting E to V is
included in the min-cut. Denote by Es the set of E-vertices that, when removing the
cut-edges from the graph, are incident to s, and let Et = E \ Es. Let Vs = ΓG(Es),
and let Vt = V \Vs. Since removing C∗ from G̃ separates s from t, all outgoing edges
from Vs are included in C∗. Furthermore, since C∗ is a minimum cut, none of the
edges leaving Vt are contained in the cut. The resulting structure is illustrated on the
right in Figure 2. The value of the cut is computed as follows:

val(F ∗) = |Et|+ q · |Vs|.(3)

We prove now a property connecting the value of a minimum cut to the expansion
of a subset of E. This property allows us then to define an efficient algorithm for DSH.
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Es Vs

Graph G Network Nq

Et Vt

Fig. 2. Left: Input graph G. Center: Network Nq. Right: Min-s-t-cut. Gray edges are cut edges.

Lemma A.1. Let q be such that m
n < q < m. Then

val(F ∗) < m⇔ ∃E′ ⊆ E :
|E′|

|ΓG(E′)|
> q.

Proof. Suppose that val(F ∗) < m. We prove that E′ = Es fulfills the claimed
property. The value of the cut val(F ∗) is computed according to (3) as

m > val(F ∗) = |Et|+ q · |Vs| = m− |Es|+ q · |Vs| = m− |E′|+ q · |ΓG(E′)|,

which implies |E′|
|ΓG(E′)| > q as desired.

Suppose now that there is a E′ ⊆ E such that |E′|
|ΓG(E′)| > q. Then the set of edges

C consisting of those that connect s to E \ E′ and those that connect ΓG(E′) to t
form a cut. We compute val(C):

val(C) = |E \ E′|+ q|ΓG(E′)| = m− |E′|+ q|ΓG(E′)| < m− |E′|+ |E′| = m.

The fact that val(C∗) ≤ val(C) completes the proof.

Lemma A.1 allows us to test whether there is a subset E′ ⊆ E such that |E′|
|ΓG(E′)| >

q for some value of q. For every set E′ ⊆ E, we have |E′|
|ΓG(E′)| ∈ {

a
b : a ∈

{1, . . . ,m}, b ∈ {1, . . . , n}}. We could thus test all values a
b − ε for a ∈ {1, . . . ,m}, b ∈

{1, . . . , n} and a small enough ε in order to identify the desired set (or use a binary
search to speed up the process). Since computing a min-cut can be done in polynomial
time, we obtain the following theorem.

Theorem A.2. Algorithm DSH can be implemented in polynomial time.

Appendix B. Densest subhypergraph via linear programming.
We use hypergraph notation in this section. So the goal is to find a set E′ ⊆ E

which minimizes | ∪e∈E′ e|/|E′| over all choices of E′ (so there is no requirement that
|E′| = p).

We use the following LP relaxation, which is a straightforward adaptation of
Charikar’s [8] algorithm for graphs:
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LP = min
∑
i∈V

xi

s.t.
∑
e∈E

ye = 1

xi ≥ ye ∀e ∈ E, i ∈ e
xi ≥ 0 ∀i ∈ V
ye ≥ 0 ∀e ∈ E.

Consider the following simple rounding algorithm:
• Pick r ∈R [0, 1] uniformly at random.
• Let E′ = {e ∈ E | xe ≥ r}.
• Let V ′ =

⋃
e∈E′ e.

Clearly, for every vertex e ∈ E we have

Prob[e ∈ E′] = ye.

Also, for every vertex i ∈ V we have

Prob[i ∈ V ′] = max
e3i

ye ≤ xi.

Therefore, by linearity of expectation, we have

E[LP · |E′| − |V ′|] ≥ LP · 1− LP = 0,

and this is obviously still true when we condition the expectation on |E′| > 0 (a pos-
itive probability event), so with positive probability, we get a pair (V0, E0) such that
E0 6= ∅, V0 =

⋃
e∈E0

e, and |V0|/|E0| ≤ LP. The rounding is trivially derandomized
by trying r = ye for every vertex e ∈ E.

Appendix C. Comparison to related work on MpU.
Recently, in [11], it was shown that MpU in general hypergraphs can be ap-

proximated to within an O(m1/4+ε)-factor for any constant ε > 0, improving over our
O(
√
m)-approximation. On its own, this algorithm does not improve over our Õ(n2/5)-

approximation for MpU in 3-uniform hypergraphs, where we could have m = Θ(n3),
in which case their algorithm only translates to an O(n3/4+ε)-approximation. Their
technique uses the log-density framework, which constructs a carefully chosen se-
quence of vertex sets in the bipartite incidence graph defined by the vertices and
hyperedges of the hypergraph. This approach is not particularly sensitive to the size
of the hyperedges, and it is unclear how to fine-tune it for 3-uniform hypergraphs.

However, in [11], they also note that their algorithm can be “plugged in” (in a
black-box way) to our algorithm for 3-uniform MpU, which improves the approxima-
tion ratio to O(n3/8+ε). We briefly sketch their idea here.

We follow along the same lines as in section 6, with the set K1 chosen to be of size
kn3/8. Arguing as before, by using a greedy algorithm with intended approximation

ratio n3/8, instead of (1) we get a bound of ∆ = O(dn
7/8

k2 ). As argued in [11], if our goal
is an f -approximation, then by some preprocessing we may assume that d = fnε for
some arbitrarily small constant ε > 0. Therefore, we have d = n3/8+ε, and our bound

translates to ∆ = O(n
5/4+ε

k2 ). If k > n3/8, then we have m = O(n∆) = O(n3/2+ε), in

which case the algorithm of [11] gives us the claimed n3/8+ε-approximation.
Otherwise, we have k ≤ n3/8, in which case we again use Algorithm 3, this time

with parameter k̂ = n3/8k. Applying a similar analysis as in section 6, together
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with our bounds on k and ∆, one can show that the algorithm gives an O(n3/8)-
approximation in this case.
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