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Rheumatoid arthritis (RA) is a disease of chronic systemic inflammation (SI). In the present study, we used four datasets to explore
whether methylation-derived neutrophil-to-lymphocyte ratio (mdNLR) might be a marker of SI in new onset, untreated, and
treated prevalent RA cases and/or a marker of treatment response to the tumour necrosis factor inhibitor (TNFi) etanercept.
mdNLR was associated with increased odds of being a new onset RA case (OR= 2.32, 95% CI = 1.95–2.80, P < 2 × 10−16) and
performed better in distinguishing new onset RA cases from controls compared to covariates: age, gender, and smoking status.
In untreated preclinical RA cases and controls, mdNLR at baseline was associated with diagnosis of RA in later life after
adjusting for batch (OR= 4.30, 95% CI = 1.52–21.71, P = 0 029) although no association was observed before batch correction.
When prevalent RA cases were treated, there was no association with mdNLR in samples before and after batch correction
(OR= 0.34, 95% CI = 0.05–1.82, P = 0 23), and mdNLR was not associated with treatment response to etanercept (OR= 1.10,
95% CI = 0.75–1.68, P = 0 64). Our results indicate that SI measured by DNA methylation data is indicative of the recent onset
of RA. Although preclinical RA was associated with mdNLR, there was no difference in the mean mdNLR between preclinical
RA cases and controls. mdNLR was not associated with RA case status if treatment for RA has commenced, and it is not
associated with treatment response. In the future, mdNLR estimates may be used as a valuable research tool to reliably estimate
SI in the absence of freshly collected blood samples.

1. Introduction

Rheumatoid arthritis (RA) is the most common inflam-
matory arthropathy, characterized by chronic systemic
inflammation (SI) [1]. The pathophysiology of RA involves
a complex interplay between different cells including leuko-
cytes, synovial fibroblasts, chondrocytes, and osteoclasts that
leads to loss of immune homeostasis [1]. Of all the cells
implicated in the pathophysiology of RA, neutrophils possess
the greatest cytotoxic potential owing to their ability to
release degradative enzymes and reactive oxygen species

[2]. They are activated by exposure to immune complexes,
rheumatoid factors, and cytokines in synovial fluid [3]. In
addition, the neutrophils interact with macrophages, den-
dritic cells (DCs), natural killer cells, mesenchymal stem cells,
and lymphocytes influencing innate and adaptive immune
responses leading to SI [3, 4]. Circulating blood cell compo-
nents such as white blood cell and mean platelet volume are
considered putative biomarkers of inflammatory activity
[5, 6]. Clinically, this inflammatory activity can be mea-
sured by acute phase proteins [7], although recent studies
have shown that aberrant neutrophil-to-lymphocyte ratio
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(NLR) may be used as a marker of SI in the development of
coronary heart diseases [8, 9], solid tumours [10], and auto-
immune diseases like Takayasu’s arteritis [11] and RA [12].
Under certain circumstances such as anti-IL-6 therapy when
C-reactive protein (CRP) levels are less useful in monitoring
inflammation, NLR has been shown to be a better marker of
evaluating disease activity in patients with RA [13]. However,
leukocyte measures are not readily available in many studies,
especially from prospective population-based cohorts due
to archiving of blood samples. This limits the evaluation
of immune parameters and immunomodulation which
are of immense importance in a chronic disease research
setting [14]. Two recent studies have shown the utility of
a methylation-derived NLR (mdNLR) index from periph-
eral blood DNA as an alternative measure of NLR and
have applied this as a marker of cancer development and
progression [15, 16].

We hypothesized that SI in RA could be assessed by
measuring mdNLR and could be used as a research tool for
assessing SI especially in a chronic disease setting without
the need for fresh samples. Further, we hypothesized that
treatment for RA might reduce any association between RA
and mdNLR. In this regard, we tested if mdNLR might be
associated with treatment response to the tumour necrosis
factor inhibitor (TNFi) etanercept.

2. Materials and Methods

Figure 1 provides an outline of the study design.

2.1. Study Samples

2.1.1. New Onset RA Dataset. The raw methylation data
and covariates for rheumatoid arthritis cases and controls
were obtained from the publicly available Gene Expression
Omnibus submitted dataset GSE42861 which was part of
the Epidemiological Investigation of Rheumatoid Arthritis

(EIRA) study [17, 18]. Only incident RA cases were invited
for the study within the years 1996–2009 from middle
Sweden. The controls matched by sex, age, smoking status,
and residence area were selected from the same population
as previously described [17]. Cells for isolating DNA were
obtained from the patients during their first visit to the rheu-
matology department before giving any disease-modifying
antirheumatic drugs (DMARDs) [19]. Methylation data were
generated on DNA isolated from EDTA-treated blood
samples of anticitrullinated protein antibody- (ACPA-) asso-
ciated subtype of rheumatoid arthritis and controls using the
Illumina HumanMethylation450 BeadChip array [17]. In the
new onset RA dataset, of the 689 samples available for
analysis (controls = 335, cases = 354), we removed 2 outlier
samples (for mdNLR) and 2 samples with no information
on smoking status, leaving us with 685 samples for the final
analysis including 352 ACPA-associated RA cases and
333 controls.

2.1.2. Preclinical RA Dataset. To assess whether mdNLR can
be used as a predictive biomarker of future RA diagnosis in
individuals who were disease-free at the time of blood collec-
tion, we used data from the Avon Longitudinal Study of
Parents and Children (ALSPAC). DNA samples were col-
lected when the women in the study were pregnant, which
was 18 years prior to completing a questionnaire ascertaining
RA status. The women were asked whether they had ever
been diagnosed with RA by a doctor and what year they
had first been diagnosed. HumanMethylation 450K Bead-
Chip array data for roughly 1000 women were generated as
part of the Accessible Resource for Integrated Epigenomics
Studies (ARIES) project [20]. Of these, a random sample of
200 women who had never been diagnosed with any form
of arthritis 18 years after enrolment were classified as
“disease-free” controls for the purposes of the current study.
A further 48 women were selected as “preclinical RA” cases
(14 from the original ARIES study plus 34 ALSPAC women

New onset RA dataset
(n = 689)

Preclinical RA dataset
(n = 248)

Prevalent treated RA dataset
(n = 221)

TNFi response dataset
(n = 71)

New onset RA dataset
(n = 685)

Analysis for association
of mdNLR with RA case-

control status

Analysis for association
of mdNLR with RA case-

control status

Analysis for association
of mdNLR with RA case-
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Analysis for association
of mdNLR with TNFi

treatment response

Infinium Human Methylation 450K Bead Chip
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Figure 1: An overview of the study design.
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who had contributed a blood DNA sample during pregnancy
but had not been included in ARIES). These women did not
have a diagnosis of RA during pregnancy but received a diag-
nosis of RA later in life. Samples with missing values for
covariates age and smoking status were removed, leaving 46
preclinical RA cases and 198 controls for the final analysis.

2.1.3. Prevalent Treated RA Dataset. ALSPAC women also
provided a blood sample at a follow-up clinic 18 years after
pregnancy, around the same time that they completed the
questions on RA diagnosis. HumanMethylation 450K data
were available for 21 women with prevalent RA at this time
point (15 from the original ARIES project plus 6 women
who were not included in ARIES). All prevalent RA cases
in this sample were assumed to be undergoing treatment
for RA. A random sample of 200 controls (defined as women
who reported that they had never been diagnosed with any
form of arthritis) was also selected from the ARIES subsam-
ple. Samples with missing values for covariates age and
smoking status were removed, leaving 20 prevalent RA cases
and 176 controls for the final analysis.

2.1.4. Treatment Response Dataset. To assess whether
mdNLR can be used as a predictive biomarker of response
to the tumour necrosis factor inhibitor (TNFi) etanercept in
RA, we used the Biologics in Rheumatoid Arthritis Genetics
and Genomics Study Syndicate (BRAGGSS) dataset, a pro-
spective longitudinal study of response to biologic therapies
in patients with RA. Illumina HumanMethylation 450K
BeadChip array was used to generate DNA methylation data
from pretreatment whole blood samples [21]. The DNA
methylation dataset consisted of 36 very good responders
(i.e., with clinical remission of their disease) and 35 nonre-
sponders. Efficacy to TNFi was determined following 6
months on drug using established EULAR response criteria.
The sample selection and preparation have been described
previously [21]. Fifteen samples with missing information
on smoking status were removed from the main analysis
leaving 56 samples for the final analysis.

2.2. Data Preprocessing and Estimating Proportion of
Leukocyte Cell Types

2.2.1. New Onset RA Dataset. The raw data was normalized
using subset-quantile within array normalization (SWAN)
algorithm [22]. We removed bad quality probes (detection
P > 0 01), probes containing SNPs in the CpG interrogation
site or single-nucleotide extension site, cross-reactive probes,
and probes on chromosomes X and Y [23]. Proportions of
leukocyte subtypes—granulocytes, monocytes, and lympho-
cytes (CD4+T cells, CD8+T cells, B cells, and NK cells)—were
estimated by (i) the “estimateCellCounts” function imple-
mented in the Bioconductor package minfi [24] according
to the Houseman method [25] and (ii) an optimized
reference-based cell mixture deconvolution methodology
IDOL [26]. Methylation-derived neutrophil-to-lymphocyte
ratio (mdNLR) was estimated by dividing estimated propor-
tions of granulocytes by lymphocytes as previously described
[15]. Previous studies have reported a strong agreement
between mdNLR and cytological NLR estimates instilling

confidence in the DNA methylation-based estimates of leu-
kocytes and methylation-derived SI [15, 16].

2.2.2. Preclinical RA and Prevalent Treated RA Datasets.
Peripheral blood samples were collected according to
standard procedures, spun, and frozen at −80°C. Isolated
DNA was bisulphite converted using the Zymo EZ DNA
Methylation™ kit (Zymo, Irvine, CA). Following conversion,
the genome-wide methylation status of over 485,000 CpG
sites was measured using the Illumina HumanMethylation
450K BeadChip assay according to the standard protocol.
The arrays were scanned using an Illumina iScan, and
initial quality review was assessed using GenomeStudio
(version 2011.1). Quality control of ARIES samples has
been described previously [15]. Data for both time points
(during pregnancy and 18 years after) and both subsamples
(ARIES and extra samples from ALSPAC) were preprocessed
as a single set in R (version 3.0.1) with the wateRmelon
package according to the subset-quantile normalization
approach [22]. The mdNLR was calculated as described
above using the “estimateCellCounts” generated using the
Houseman method in minfi [24, 25]. Data for the preva-
lent treated RA dataset and the preclinical RA dataset were
normalized together.

2.2.3. Treatment Response Dataset. Seventy-one samples were
available for the assessment of mdNLR as a biomarker of
response to TNFi (etanercept) therapy. The raw data were
preprocessed and normalized as previously described [21].
The proportion of leukocyte subtypes was estimated by “esti-
mateCellCounts” function implemented in minfi, and
mdNLR was derived as described above.

2.3. Statistical Analyses. The analyses were performed using
the statistical software R (version 3.4.0). Univariate and mul-
tivariate logistic regression was performed to test the associ-
ation between mdNLR and RA status. A Wilcoxon rank sum
test was performed to test if RA cases and controls differed in
the levels of DNA methylation at five sites that have recently
been identified as CpGs arising during myeloid differentia-
tion that could serve as surrogates for mdNLR [16].

In the new onset RA dataset, Liu et al. reported an imbal-
ance between the number of cases and controls run per date
which may potentially confound our analysis. Surrogate var-
iable analysis is used for identifying, estimating, and incorpo-
rating sources of variation in gene expression and DNA
methylation analysis [27, 28]. To identify technical sources
of variation, we performed SVA and derived ten surrogate
variables in the new onset dataset. Individuals’ age, gender,
and smoking status have been previously shown to be associ-
ated with the risk of developing RA [29, 30]. Hence, we
incorporated age, gender, and smoking status along with 10
surrogate variables in the statistical model. The ability of
mdNLR to classify RA cases from controls was assessed using
Receiver Operating Characteristic (ROC) curves and the cor-
responding area under the ROC curve (AUC) values using
the R package pROC [31]. For the preclinical and prevalent
treated RA datasets, multivariate logistic regression was
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Table 1: Sample characteristics of datasets.

Study Characteristics Reference group Comparison group P value

New onset RA (GSE42861) (n = 689)
Reference: Liu et al. [17]

Controls (n = 335) ACPA-associated cases (n = 354)

Mean mdNLR (SD) 2.02 (1.37) 4.67 (6.28) <2×10–16#

Mean age (range) 52.75 (20–70) 51.15 (18–69) 0.10#

Gender

Males 96 (29%) 101 (29%) 0.99@

Females 239 (71%) 253 (71%)

Smoking

Current 89 (27%) 111 (31%) 0.27@

Former 108 (32%) 120 (34%)

Never 101 (30%) 92 (26%)

Occasional 35 (10%) 31 (9%)

NA 2 (1%) 0 (0%)

Preclinical RA (ALSPAC sample during
pregnancy) (n = 248)
Reference: Relton et al. [20]

Controls (n = 200) Cases (n = 48)

Mean mdNLR (SD) 2.78 (1.30) 2.65 (1.37) 0.55#

Mean age (range) 29.32 (16–41) 29.30 (21–40) 0.79#

Number of missing age 1 1

Smoking

Current 25 (13%) 7 (15%) 0.64@

Former 49 (24%) 13 (27%)

Never 125 (62%) 27 (56%)

NA 1 (1%) 1 (2%)

Mean time to diagnosis
in years (SD)

— 13.6 (4.8) NA

Prevalent treated RA (ALSPAC 18 years
after pregnancy) (n = 221)
Reference: Relton et al. [20]

Controls (n = 200) Cases (n=21)

Mean mdNLR (SD) 1.35 (0.68) 1.30 (0.41) 0.97#

Mean age (range) 47.42 (35–59) 48.45 (40–58) 0.31#

Number of missing age 21 1

Smoking

Current 11 (6%) 4 (19%) 0.11@

Former 75 (37%) 8 (38%)

Never 111 (55%) 9 (43%)

NA 3 (2%) 0 (0%)

TNFi response dataset (BRAGGSS) (n = 71)
Reference: Plant et al. [21]

Good responders
(n = 36)

Poor responders
(n = 35)

Mean mdNLR (SD) 2.09 (1.15) 2.22 (1.84) 0.57#

Mean age (range) 54.6 (28–78) 59.9 (36–87) 0.07#

Gender

Males 8 (22%) 6 (17%) 0.77@

Females 28 (78%) 29 (83%)

Smoking

Current 5 (14%) 4 (11%) 0.70@

Former 14 (39%) 10 (29%)

Never 11 (31%) 12 (34%)
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performed to test the association between mdNLR and RA
status (either current or future).

The statistical model was adjusted for individuals’ age,
smoking status, and bisulphite conversion plate. In the
treatment response dataset, the association between mdNLR
at the beginning of the treatment and response at 3 months
was evaluated using a multivariate logistic regression model
adjusting for individuals’ age, gender, smoking status, use
of DMARDs, and disease activity score 28.

3. Results

3.1. Sample Characteristics. The sample characteristics
including demographic and epidemiological data for all four
datasets are shown in Table 1. New onset RA, preclinical, and
treated prevalent RA cases did not differ from controls in
terms of mean age and smoking status (Table 1). In the
treatment response dataset, the nonresponders were older
and had a higher health assessment questionnaire score
compared to good responders (Table 1).

3.2. mdNLR Is Elevated at Rheumatoid Arthritis Disease
Onset. In the new onset RA dataset, we compared the
mdNLR derived using two different algorithms (“estimate-
CellCounts” and IDOL) and found that the two methods
of estimating mdNLR were highly correlated (r = 0 87,
P < 2 × 10−16, Supplementary Figure 1). For this reason, the

mdNLR derived using “estimateCellCounts” was used for
further analyses.

We observed an elevated neutrophil and decreased
lymphocyte count in new onset RA patients compared to
controls (Figure 2(a)). The mean mdNLR for controls was
2.0, compared to 4.7 in new onset RA cases (Figure 2(b)).
In a multivariate logistic regression model, a higher mdNLR
index was associated with increased odds of being an RA case
(OR=2.32, 95% CI= 1.95–2.80, P < 2 × 10−16) as shown in
Table 2. Further, we found that all five CpGs associated with
myeloid differentiation (suggested to be a surrogate for
mdNLR) were hypomethylated in RA cases compared to
controls (Supplementary Table 1, Supplementary Figure 2).
On its own, mdNLR was able to distinguish RA cases from
controls with an AUC of 0.80 (95% CI= 0.77–0.83), which
was higher than covariates alone including individuals’ age,
gender, and smoking status (AUC=0.56 ,95% CI= 0.52–
0.60, P < 2 × 10−16 for a difference between the two AUCs).
Including the covariates with mdNLR did not improve the
ROC curve, and AUC remained at 0.80 (95% CI= 0.77–
0.84) (Figure 3).

3.3. Elevated mdNLR Is Associated with Increased Odds of
Being a Preclinical RA Case. We found increased odds of
being a preclinical RA after adjusting for batch effects
(ORadj = 4.30, 95% CI= 1.52–21.71, P = 0 029; Table 2).
We did not observe a difference in the mean mdNLR
between preclinical RA case and controls (Table 1). There

Table 1: Continued.

Study Characteristics Reference group Comparison group P value

NA 6 (16%) 9 (26%)

Mean DAS28 score (SD) 5.7 (0.70) 5.5 (1.14) 0.28#

Mean HAQ score (SD) 1.7 (0.52) 2.0 (0.59) 0.06#

#Wilcoxon rank sum test; @Fisher’s exact test or Chi-squared test.
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Figure 2: Leukocyte cell subtypes and mdNLR in new onset RA cases and controls. (a) Estimated proportions of leukocyte subtypes
(monocytes, neutrophils, and lymphocytes) in controls and new onset RA cases. (b) Higher mdNLR SI index in new onset RA cases
compared to controls (P < 2 2e − 16).
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was no association between mdNLR in pregnancy and time
to RA diagnosis (Supplementary Figure 3), and mdNLR
had limited diagnostic ability to discriminate preclinical
RA from controls in this small sample (Supplementary
Figure 4(a)).

3.4. mdNLR Is Not Associated with Treated Rheumatoid
Arthritis. Women with RA who were assumed to be using
DMARDs had a lower mean mdNLR compared to controls
(Table 1), but confidence intervals around the odds ratio

crossed the null in multivariate model adjusted for batch
(OR=0.34, 95% CI=0.05–1.82, P = 0 23; Table 2). In a
ROC analysis, mdNLR was unable to discriminate RA cases
from controls (Supplementary Figure 4(b)).

3.5. mdNLR Is Not Associated with TNFi Treatment Response.
A higher mdNLR index was not associated with increased
odds of being a poor responder to TNFi (etanercept) treat-
ment compared to a good responder (OR=1.10, 95%
CI=0.75–1.68, P = 0 64; Table 2).

Table 2: Association between mdNLR and rheumatoid arthritis status.

Study Variables OR (95% CI) P value

New onset RA (GSE42861) (n = 685)∗

mdNLR 2.32 (1.95–2.80) <2×10−16

Age 1.00 (0.98–1.01) 0.81

Gender

Female Reference NA

Male 0.82 (0.52–1.28) 0.38

Smoking status

Current Reference NA

Former 0.90 (0.55–1.47) 0.67

Occasional 0.92 (0.45–1.86) 0.81

Never 0.68 (0.41–1.13) 0.14

Preclinical RA (ALSPAC sample during pregnancy) (n = 244)@

mdNLR 4.30 (1.52–21.71) 0.029

Age 1.00 (0.79–1.25) 0.996

Smoking status

Current Reference NA

Former 0.03 (0.00–1.50) 0.105

Never 0.07 (0.00–0.73) 0.043

Prevalent treated RA (ALSPAC 18 years after pregnancy) (n = 196)@

mdNLR 0.34 (0.05–1.82) 0.23

Age 0.97 (0.82–1.15) 0.81

Smoking status

Current Reference NA

Former 0.19 (0.01-2.67) 0.23

Never 0.15 (0.01–1.77) 0.15

TNFi response dataset (BRAGGSS) (n = 56)@

mdNLR 1.10 (0.75–1.68) 0.64

Age 1.03 (0.98–1.09) 0.26

Gender

Female Reference NA

Male 0.60 (0.10–3.00) 0.54

Smoking status

Current Reference NA

Former 0.56 (0.10–3.18) 0.51

Never 1.02 (0.19–5.69) 0.98

DAS28 0.62 (0.28–1.25) 0.20

Use of DMARDs 1.86 (0.31–15.15) 0.51
∗Model was in addition adjusted for 10 surrogate variables. @Model was in addition adjusted for batch.
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4. Discussion

In this investigation of four datasets, we have identified
mdNLR as a marker of SI and RA status. We were able to
demonstrate the utility of mdNLR as a marker of chronic SI
in untreated RA, which is in line with the findings of previous
studies [12, 32]. The mdNLR had an improved diagnostic
ability over age, sex, and smoking alone, although the poor
performance of the covariates may be explained by the
original study design, which matched cases and controls on
smoking status. We also found associations between RA
status and methylation at five myeloid differentiation CpGs,
which may potentially indicate myeloid suppression [16].
This finding may reflect the presence of myeloid-derived
suppressor cells (MDSCs) in RA cases. MDSCs are known
to act as suppressors of antitumour immune responses
[33, 34] and have been shown to play a role in arthritic
progression in mice and RA patients [35]. Interestingly,
we found that pregnant women with elevated mdNLR had
increased odds of being a preclinical RA compared to
disease-free pregnant women, suggesting that mdNLR may
have some utility in identifying RA before clinical features
manifest. However, it should be noted that prior to batch
effect correction, there was no difference in the meanmdNLR
between RA cases and controls suggesting that any difference
between the two groups are potentially masked by batch
effects. These findings would need replication in an indepen-
dent dataset. Similarly, we found no association between
mdNLR and time to diagnosis; this may be due to low statis-
tical power in this small dataset.

We found lower (nonsignificant) mdNLR in treated RA
cases compared to controls; these findings are not surprising
because treatment with DMARDs is hypothesized to reduce
inflammation [36] and would therefore affect mdNLR. For
example, a recent meta-analysis showed that treatment with
TNFi reduces SI [37]. TNF is a key cytokine in the

inflammatory response, stimulating both its own production
and the production of many other inflammatory cytokines. It
has been shown to have a dominant role in RA, hence the
rationale for TNF inhibition as a therapeutic target in RA
[38]. We hypothesized that a high inflammation index at
the baseline (reflected by a high mdNLR) may be associated
with TNFi treatment response. However, our finding of no
association between mdNLR and response to the TNFi
etanercept suggests that response to TNFi may be predomi-
nantly a genetically and/or epigenetically driven process
independent of the baseline SI. Although with the limited
sample size, we are unable to conclusively prove the role
of SI in TNFi treatment response.

Strengths of our study include the use of four datasets,
giving us the ability to explore varied roles for mdNLR in
untreated, treated, and preclinical RA cases, as well as in
relation to treatment response. We carried out multivariate
analyses adjusting for appropriate potential confounders
and sources of variation. For example, smoking is suggested
to play a critical role in the development of RA through
altered immunologic function [1], and our recent study
identified an altered number of immune cells in response to
smoking [39]. The original study that generated the new
onset RA dataset attempted to control potential confounding
by smoking by matching cases and controls on smoking
status [17]. In our analyses, we further adjusted models for
smoking status to address any residual confounding that
may have occurred due to smoking.

The limitations of our study are as follows. First, we were
unable to identify independent datasets in which to replicate
our findings. This could be attributed to the fact that most
of the published and publicly available RA datasets have
genome-wide DNA methylation data on specific cell types
like T and B lymphocytes [40, 41] or fibroblast-like synovio-
cytes [42] which cannot be used to derive mdNLR. Second, in
the new onset RA dataset, we were only able to adjust for the
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Convariates only (AUC = 0.56, 95% CI = 0.56–0.60)
mdNLR only (AUC = 0.80, 95% CI = 0.77–0.83)
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Figure 3: Diagnostic ability of mdNLR to distinguish new onset RA cases and controls. Each ROC curve was generated from a
different classifier: shown below the figure with the area under the ROC curve (AUC) values. Covariates included age, gender, and
smoking status.
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variables that were publicly available, which included age,
gender, and smoking status. However, we believe that by
using surrogate variables, we were able to capture and adjust
the potential sources of heterogeneity that are not captured
by variables included in the model. Third, we were unable
to compare mdNLR to NLR due to the absence of directly
measured blood cell type proportions for the studied datasets.
Although, confidence in our measured methylation-derived
SI is strengthened by previous studies that have validated
the use of methylation-derived cell counts in estimating SI
[16, 26]. Fourth, in the ALSPAC sample, we assumed that
all prevalent RA cases were undergoing some form of treat-
ment because they all reported that they had been diagnosed
by a doctor; however, treatment and dosage data were not
available. Finally, we were unable to adjust for the ACPA
levels for the preclinical RA dataset as the ACPA levels were
not measured for the samples in the ALSPAC dataset.

The NLR is routinely derived from absolute neutrophil
and lymphocyte counts from a complete blood count in RA
patients. We envisage that mdNLR will be useful for epi-
demiologists as a research tool to investigate SI using
archival blood samples in the absence of cell-based NLR esti-
mates. Our confidence in estimating mdNLR as a measure of
systemic inflammation is strengthened by previous studies
that have reported a high concordance between cell-based
and methylation-derived NLR [16, 26].

5. Conclusions

In conclusion, we have demonstrated that mdNLR is elevated
during RA disease onset, but not in prevalent cases. This may
be reflective of a higher SI in RA patients prior to DMARD
therapy. Our findings would be useful in estimating SI espe-
cially in prospective studies where the estimates of leukocyte
subtypes were not recorded at recruitment. It remains to be
tested if mdNLR measures SI independent of acute phase
proteins such as CRP. In the future, it would be interesting
to validate our findings in a large prospective study of RA
and note how early we can detect SI during the disease devel-
opment. Finally, we would be interested in testing if mdNLR
may be a useful tool to evaluate SI in a chronic disease
research setting, especially in large prospective studies with
archived blood samples.

Data Availability

ALSPAC data management policies do not permit datasets
to be made publicly available due to data confidentiality
and the potential to identify individual study participants
from the data. Data used will be made available following
an approved request from the ALSPAC executive (alspac-
exec@bristol.ac.uk). The ALSPAC data management plan
is available online: http://www.bristol.ac.uk/media-library/
sites/alspac/documents/researchers/data-access/alspac-data-
management-plan.pdf. BRAGGSSdata is available on request
from Professor Anne Barton (anne.barton@manchester.
ac.uk) or is available from the corresponding author
upon request.
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Supplementary Materials

Supplementary Table 1: mean methylation (beta values) of
mdNLR-associated CpGs in new onset RA cases and con-
trols. Supplementary Figure 1: correlation between two algo-
rithms for estimating mdNLR. x-axis represents mdNLR
estimated by minfi function (“estimateCellCounts”), and
y-axis represents mdNLR estimated by IDOL algorithm.
Supplementary Figure 2: comparison of the myeloid-
associated CpGs between new onset RA cases and controls.
x-axis indicates the myeloid differentiation, mdNLR-
associated CpGs. y-axis indicates the DNAmethylation levels
(beta values) for each CpG site in new onset RA cases and
controls. Supplementary Figure 3: relationship between
mdNLR in preclinical RA cases at baseline (during preg-
nancy) and time to diagnosis of RA. Supplementary Figure
4: diagnostic ability of mdNLR to distinguish preclinical
and prevalent treated RA cases and controls. Each ROC
curve was generated from a different classifier: shown on
the left hand top corner along with the area under the
ROC curve (AUC) values for (a) preclinical and (b) preva-
lent treated RA cases and controls. Covariates included age
and smoking status (all participants were female).
(Supplementary Materials)
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