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Abstract 

Prediction of design hydrographs is key in floodplain mapping using hydraulic models, which are either 

steady-state or unsteady. The former, which only requires an input peak, substantially overestimates the 

volume of water entering the floodplain compared to the more realistic dynamic case simulated by the 

unsteady models that require the full hydrograph. Past efforts to account for the uncertainty of boundary 

conditions using unsteady hydraulic modeling have largely been based on a joint flood frequency-shape 

analysis, with only a very limited number of studies using hydrologic modeling to produce the design 

hydrographs. This study therefore presents a generic probabilistic framework that couples a hydrologic 

model with an unsteady hydraulic model to estimate the uncertainty of flood characteristics. The 

framework is demonstrated on the Swannanoa River watershed in North Carolina, U.S. Given its 

flexibility, the framework can be applied to study other sources of uncertainty in hydrologic models and 

other watersheds. 

Key Words: Floodplain mapping, Hydrologic modeling, Unsteady hydraulic modeling, Uncertainty 

analysis. 

1 Introduction 

Reliable flood risk assessment, estimation of insurance rates and planning for mitigation measures require 

detailed spatio-temporal information about flood characteristics such as depth and velocity. Given the 

rarity of extreme flooding, hydraulic models are typically applied to derive these flood characteristics and 

produce floodplain hazard maps. Since these models are prone to uncertainties, the predicted flood 

characteristics (e.g., depth and velocity) will themselves be uncertain. Overlooking the uncertainty of 

predicted flood characteristics has major influences on predicted inundation (Bales and Wagner 2009, Di 

Baldassarre et al. 2010). This can result in underestimated or overestimated flood risk (Kalyanapu et al. 

2012) and incomplete representation of the effectiveness of flood mitigation measures, thereby leading to 

the selection of suboptimal alternatives during the decision-making process (Meyer et al. 2009). 

Uncertainty in flood modeling arises from the input variables, choice of performance measures to 

test the model efficiency, calibration/validation data as well as uncertainties over the model structure and 

parameters (Krzysztofowicz and Kelly 2000, Krzysztofowicz and Herr 2001, Pappenberger et al. 2006, 

Smemoe et al. 2007, Liu and Gupta 2007, McMillan et al. 2010, Di Baldassarre and Montarari 2009, 

Aronica et al. 2012b, Saint-Geours et al. 2014). A particular area of concern is how to incorporate the 

uncertainty of design hydrographs in floodplain mapping, which can be the most influential factor in 

inundation modeling (Schaffenberg and Kavvas 2011, Savage et al. 2016b, Bermúdez et al. 2017). When 

a steady-state hydraulic model is applied, a peak discharge is required for input, while a full hydrograph is 

required as the upstream boundary condition for an unsteady simulation. Previous research using steady-

state simulation has applied a peak discharge estimated from flood frequency analysis (e.g., Smemoe et 
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al. 2007). Steady-state simulation, which is the common practice for floodplain mapping in the U.S., only 

provides information on an envelope of flood depth and extent and is unable to provide any information 

about flood wave dynamics. Steady-state models also tend to overestimate flood depths and extent 

because the floodplain is assumed to fill instantaneously compared to the more realistic dynamic case 

(Neal et al. 2013, Ruiz-Bellet et al. 2017). 

Unsteady hydraulic models therefore provide a fuller picture of flood dynamics by predicting 

detailed information on time-variant flood characteristics. Past uncertainty analysis efforts via unsteady 

models have largely been based on a joint flood frequency-shape analysis, with only a very limited 

number of studies using ensembles of hydrologic models to provide uncertain hydraulic model boundary 

conditions (e.g., Pappenberger et al. 2005, Bermúdez et al. 2017, Breinl et al. 2017). However, those 

studies that have used hydrologic models to provide boundary conditions in this way have not done so 

with the intention of creating design hydrographs. Instead, studies that have produced unsteady design 

hydrographs have either derived a single hydrograph attribute, peak (e.g., Kalyanapu et al. 2012, Aronica 

et al. 2012b, Neal et al. 2013), or two attributes, peak and volume (Aronica et al. 2012a, Candela and 

Aronica 2017), through a flood frequency analysis and later fitted a synthetic time series to these 

attributes (shape analysis). This approach requires making additional assumptions and may increase the 

likely flow computation error (Morris et al. 2009). A shape analysis to obtain the full hydrograph is 

somewhat arbitrary (Aronica et al. 2012b) and ignores different timings of the contributing flow sources 

as an additional source of uncertainty (Neal et al. 2013). In addition, a single attribute or combination of 

multiple attributes can provide a limited description of plausible flood events. Another limitation of this 

approach is the need for long set of observed flow data, which is not always available (Rogger et al. 

2012). In watersheds where future changes in land use (e.g., urbanization) and stream condition (e.g., 

levee construction) are expected, a flood frequency analysis is often not a reliable approach to estimate 

design floods (Viglione et al. 2009). Another limitation of this approach is that it is not spatially explicit 

and is only applicable to particular geographical points where a stream gauge is available. Application of 

a hydrologic model to transform design rainfall to derive the complete design hydrograph may be less 

subjective, paving the way for an automated floodplain mapping through coupling hydrologic and 

hydraulic models. 

One concern about using ensembles of hydrologic models to derive the upstream boundary 

condition of the hydraulic models is the high computational cost needed by hydraulic models to route 

numerous hydrographs through the downstream areas (Vacondio et al. 2014). In particular, application of 

multi-dimensional unsteady hydraulic models for probabilistic analysis is expensive and requires 

computationally efficient models that are still not widely available (Alfonso et al. 2016, Teng et al. 2017). 

However, recent advances in the computational capabilities of hydraulic models (e.g., JFLOW-GPU by 
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Lamb et al. [2009], Flood2D-GPU by Kalyanapu et al. [2011], and RiverFlow2D GPU by Hydronia LLC 

[2016]) can assist floodplain managers in efficiently using probabilistic analyses. Considering these 

advances in unsteady simulation, ensembles of hydrologic models can be utilized to predict hydrographs, 

which can then be coupled with hydraulic models for probabilistic inundation modeling. Coupled 

hydrologic and hydraulic modeling provides a comprehensive representation of flood wave routing over 

the simulation boundary by accounting for the backwater effects of the floodplains in damping and 

delaying flows (Bravo et al. 2012). 

 A further limitation in floodplain mapping practice, which is caused by employing steady-state 

models, is that the uncertainty is often reported for maximum flood depth and extent without spatially 

quantifying the uncertainty of other risk-influencing characteristics that vary over time. Although these 

other characteristics are correlated to flood depth, detailed information on them may be crucial for reliable 

risk estimation and rational decision making (Dang et al. 2011, Qi and Altinakar 2011a, 2011b, 2012, 

Ahmadisharaf et al. 2015). In particular, floodplain mapping efforts (Romanowicz and Beven 2003, Bates 

et al. 2004, Quinn et al. 2013, Buahin et al. 2017, Faghih et al. 2017, Papaioannou et al. 2017) have been 

rather limited to maximum inundation extent, wherein the floodplain boundary was determined as a flood 

probability map, a more reliable alternate to a single definitive inundation extent. Despite limited efforts 

(e.g., Aronica et al. 2012b, Savage et al. 2016b), the uncertainty of other flood characteristics has not been 

studied extensively. 

 The overarching objective of this paper is therefore to develop a generic probabilistic framework 

to derive the uncertainty of flood characteristics—extent, depth, velocity, duration, arrival time and time 

of maximum inundation—by coupling a hydrologic model with a two-dimensional (2D) unsteady 

hydraulic model. Two uncertainty sources—design rainfall depth and antecedent moisture condition 

(AMC)—are considered to demonstrate the probabilistic framework. These sources are exemplars to 

illustrate the framework and the extension to consider a fuller range of uncertainty sources is relatively 

trivial due to versatility of the presented scheme. Through application of an unsteady hydraulic model, we 

also seek to investigate whether the temporal variation of the uncertainty of flood characteristics is 

negligible. The framework is illustrated for the rainfall-driven overbank flooding event which took place 

on the Swannanoa River watershed in the state of North Carolina, U.S. 

2 Methodology 

The research objective is achieved by developing a probabilistic framework for spatial uncertainty 

analysis of flood characteristics (Figure 1). The framework utilizes three modules: a hydrologic model to 

generate an ensemble of hydrographs, an unsteady hydraulic model for inundation modeling, and an 

uncertainty analysis tool to estimate the uncertainty of flood characteristics on a cell-by-cell basis. These 

models are linked, such that outputs from the hydrologic model are fed into the hydraulic model and the 
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outputs (flood characteristics) of the latter feed into the geospatial uncertainty analysis tool. Latin 

Hypercube Sampling (LHS) (McKay et al. 1979) is applied to propagate the uncertainty of hydrologic 

model inputs (rainfall depth and AMC herein) to the output hydrographs. Using an ensemble of 

hydrographs in the hydraulic model results in an ensemble of flood characteristics—depth, velocity, 

duration, arrival time and time of maximum inundation—that are later processed via the geospatial 

analysis tool and are characterized through empirical cumulative distribution functions (ECDFs) in each 

grid cell. The ultimate deliverable of the developed framework is a map showing the uncertainty of each 

flood characteristic. The remainder of the Methodology section, which discusses the framework modules 

in detail, is organized as follows. An overall picture of the hydrologic model, including primary inputs, 

uncertain variables, simulation of overland flow, channel routing and uncertainty propagation method to 

predict stochastic design hydrographs, is given in Subsection 2.12.1. Inundation modeling using the 2D 

unsteady hydraulic model is described in Subsection 2.22.2. The proposed approach to perform the spatial 

uncertainty analysis is discussed in Subsection 2.32.3. 

 

Figure 1. Schematic of the probabilistic framework for spatial uncertainty analysis of flood 

characteristics. 

LHS: Latin Hypercube Sampling; AMC: Antecedent moisture condition; PDF: Probability density 

function; UM: Uncertainty map. 

2.1 Hydrologic Modeling Module 

A semi-distributed hydrologic model, which was developed in the GoldSim® environment (GoldSim 

Technology Group 2017), is applied here to simulate hydrologic processes. GoldSim® is a dynamic 

simulation software with applications ranging from water resources management to financial predictions, 

and provides a versatile user-friendly graphical user interface for probabilistic modeling. The model 

divides the entire watershed into a number of subwatersheds that are interconnected by river reaches. 

Rainfall time series in tandem with the characteristics of river cross sections (e.g., geometry, bed slope 

and Manning’s roughness) and subwatersheds (e.g., area, hydrologic soil group and land use) are taken as 

model inputs and hydrographs are generated at the outlets of subwatersheds and on the river reaches. To 

simulate rainfall-runoff process, the Snyder’s unit hydrograph (Snyder 1938) and Natural Resources 

Conservation Service (NRCS) Curve Number (CN) (NRCS 1986) are used as the transform and rainfall 

excess methods, respectively. In application of the NRCS method, the ratio of potential maximum 

retention to initial abstraction is set to 0.05 as suggested by Woodward et al. (2003). While the use of 

NRCS method for sub-daily simulations have been questioned by some researchers (e.g., Garen and 

Moore 2005, Grimaldi et al. 2013b, Grimaldi and Petroselli 2015), past successful applications showed its 
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efficiency even in for sub-daily time steps (e.g., Grimaldi et al. 2013a). In addition, as discussed by 

Grimaldi et al. (2013a), application of the NRCS method for sub-daily simulations does not affect the 

findings of a comparative analysis, as is the case in our probabilistic application. The Muskingum channel 

routing method (U.S. Army Corps of Engineers [USACE] 1936) is employed to route the flow through 

the streams. A rainfall time series can be assigned to each subwatershed. Groundwater processes are not 

taken into account in this model. The developed hydrologic model does not compute the baseflow, but 

takes the baseflow data calculated from the Web-based Hydrograph Analysis Tool (WHAT) (Lim et al. 

2005). 

 To employ the hydrologic model in the probabilistic framework, a probability density function 

(PDF) is assigned to the uncertain variables. We focus on the uncertainty of design hydrograph, induced 

by two inputs of the hydrologic models: rainfall depth and AMC, both of which have substantial impact 

on the predicted hydrograph (Singh 1997, Merwade et al. 2008) and flood characteristics (Smemoe et al. 

2007; Aronica et al. 2012b). In particular, many researchers have found AMC to be the most influential 

parameter in hydrograph prediction (among others, De Michele and Salvadori 2002) even in severe 

storms (Marchi et al. 2010). Thus, the uncertainty of both variables needs to be incorporated for reliable 

floodplain mapping. We acknowledge the presence of other uncertainties (e.g., model structure) in 

hydrologic modeling, but a comprehensive uncertainty analysis would make a clear demonstration of the 

framework more difficult. Selection of these two important drivers is an effort to illustrate our proposed 

framework and extension to other uncertainties should be a relatively trivial step. However, a sensitivity 

analysis (Section 2.1.12.1.1) was done to show the importance of the two selected uncertain variables in 

the hydrologic model. 

A uniform PDF was assigned to the design rainfall depth since it does not assume any prior 

knowledge about parameter uncertainty (Beven and Binley 1992). To demonstrate the uncertainty 

attributed to the AMC, three classes, dry (AMC I), normal (AMC II) and wet (AMC III) (NRCS 1986) are 

taken into account. A discrete PDF is used to perturb the uncertainty of AMC in line with previous 

research (e.g., De Michele and Salvadori 2002), with each AMC class is assumed to have a probability of 

0.33. 

LHS with random point in strata was applied for uncertainty propagation using the GoldSim® 

built-in Monte Carlo simulation toolbox (GoldSim Technology Group 2017). This is an efficient 

sampling method (Helton and Davis, 2003) and is commonly preferred to the standard Monte Carlo 

method because a smaller sample size is required for numerical convergence (Melching 1995, Hall et al. 

2005, Janssen 2013). Yu et al. (2001) showed that LHS could converge with 10 times fewer realizations 

than the standard Monte Carlo method. At each LHS realization, the hydrologic model generates a 

hydrograph, resulting in an ensemble of hydrographs. Each of these hydrographs is fed into the hydraulic 
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modeling module. The model was validated in the case of Swannanoa River watershed by Ahmadisharaf 

(2016) against Hurrican Ivan flood event in September 2004. Multiple goodness-of-fit measures, 

including Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970), percent bias (PBIAS), coefficient of 

determination (R2), index of agreement (d) (Willmot 1984) and root mean square error (RMSE), were 

used to test the model efficiency. The validation suggested that the model satisfactorily predict the 

streamflow, with NSE of 0.56, PBIAS of -25.4%, PBIAS of -25.4%, R2 of 61.4%, d of 0.86 and RMSE of 

1.26 m3/s (based on the criteria recommended by Moriasi et al. [2007]). The hydrologic model has been 

also successfully applied for watershed-scale hydrologic modeling by Ahmadisharaf et al. (2015, 2016). 

Additional details on the hydrologic model can be found in Ahmadisharaf (2016). In addition to the 

validation against this historical event, the simulated peak magnitudes for eight 24-hr design storms—2-

yr, 5-yr, 10-yr, 25-yr, 50-yr, 100-yr, 200-yr and 500-yr—were compared with flood frequency results of a 

stream gauge at Swannanoa watershed outlet (Weaver et al. 2009). It was found that the simulated range 

of peak values (5th - 9th) in all these eight events falls inside the 90% prediction interval by Weaver et al. 

(2009). 

2.1.1 Sensitivity Analysis of the Hydrologic Model 

A sensitivity analysis was conducted to evaluate the importance of the selected two uncertain variables on 

the outputs of the hydrologic model. A dimensionless sensitivity index, the elasticity index (EI) (Loucks 

et al. 2005), was used to measure the sensitivity of the hydrograph attributes (peak, time to peak and 

volume) with respect to the model input and parameters. Our goal was to justify that both rainfall depth 

and AMC are relevant and important in hydrograph simulation compared to other sources of uncertainty 

in the hydrologic model such as model parameters. Alongside the rainfall depth and AMC, we tested 

multiple model parameters, including Snyder's unit hydrograph (storage coefficient, ratio of base time to 

time to peak and lag time) and Muskingum channel routing (Manning's coefficient of the channels and 

celerity weight) parameters. The results of this analysis for the 100-yr design storm showed that the peak 

discharge is mostly influenced by rainfall depth (EI = 1.47), but ratio of base time to time to peak in the 

Snyder’s unit hydrograph is more influential for time to peak and hydrograph volume (EI of 1.08 and 

20.79, respectively). While rainfall depth does not affect time to peak (EI = 0.00), AMC has a minor 

influence on it (EI = 0.02). Aside from this hydrograph attribute, peak and volume are more influenced by 

rainfall depth (EI of 1.47 and 1.40, respectively) than AMC (EI of 0.48 and 0.47, respectively). This 

analysis reveals that the selected uncertain variables are of importance for prediction of the hydrograph 

attributes, but the impact of other potential uncertain parameters should be borne in mind. 

2.2 Hydraulic Modeling Module 

The hydraulic modeling module uses a 2D unsteady hydrodynamic model named Flood2D-GPU 

(Kalyanapu et al. 2011). Developed in NVIDIA’s CUDA programming environment, it is a physically-
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based model that solves the linear hyperbolic Saint Venant equations using a first-order accurate upwind 

difference scheme to generate flood depths and velocities (Kalyanapu et al. 2011). The equations are 

developed from the Navier-Stokes equations by integrating the momentum and continuity equations over 

the flow depth. To discretize the governing 2D shallow water equations, an upwind finite difference 

numerical scheme is employed since it yields non-oscillatory solutions through the careful inclusion of 

numerical diffusion. A staggered rectangular grid stencil is used to define the computational boundary, 

with horizontal/vertical velocities on the edges of the grid cell and water depth in the grid cell center. The 

Courant-Friedrichs-Lewy condition is used to constrain the future model time step. 

Despite the advantages of 2D hydraulic models over one-dimensional (1D) models, such as better 

topographic representation, more accurate simulation of flow paths and consideration of lateral 

interactions between channel and floodplain (Horritt and Bates 2002, Qi and Altinakar 2012, Jung and 

Merwade 2015), high computational cost often hinders their application for probabilistic analysis in 

practical applications (Teng et al. 2017). Flood2D-GPU takes the advantages of graphics processing unit 

(GPU) and provides a significantly reduced computational time (by 80-88 times) compared to CPU-based 

models (Kalyanapu et al. 2011). It is thus advantageous for probabilistic analyses where high 

computational cost is expected. The model was validated against the Taum Sauk dam breach flood event 

using F<2> statistic (Bates and De Roo 2000) as well as overestimation and underestimation of the 

inundation extent (Kalyanapu et al. 2011). This validation revealed the excellent performance by the 

model with F<2> = 75.1%, 15.3% overestimation and 13.1% underestimation of the flood extent. 

Additionally, Flood2D-GPU was successfully applied in simulation of riverine (Kalyanapu et al. 2012, 

2015, Yigzaw et al. 2013, Ahmadisharaf et al. 2015, 2016) and dam break flooding (Kalyanapu et al. 

2011, Ahmadisharaf et al. 2013). 

Required datasets for Flood2D-GPU are: (i) a DEM for terrain representation; (ii) Manning’s 

roughness; and (iii) hydrograph at the source location as the upstream boundary condition. The 

downstream boundary condition is Neumann (free flow condition), in which the gradient at the outlet is 

equal to zero. The velocity of the adjacent upstream cells is equated. Raw outputs include the flow depth 

and velocity at different time steps during the simulation. These results are post-processed to derive the 

maps of maximum flood depth and velocity as well as flood duration, arrival time and time of maximum 

inundation (corresponding time of maximum flood depth) using a geospatial toolbox within ArcGIS™ 

and a series of MATLAB scripts. A threshold of 0.67 m is considered in the computation of arrival time 

(USACE 2015a). 

While Flood2D-GPU is a computationally efficient physically-based model for inundation 

modeling, the following limitations should be taken into account: (i) lateral flows downstream of the 

source location cannot be incorporated, which is likely not a serious issue in simulation of large flood 



9 

 

events; (ii) the surface roughness of the entire computational domain is uniformly characterized with a 

Manning’s coefficient (Hunter et al. 2007); and (iii) the disadvantage of using Neumann condition is that 

the downstream boundary condition is less constrained than a stage condition, but it does not have a 

significant impact since the free flow boundary is moved downstream for the computational domain. This 

also avoids the need to predict upstream inflow and downstream stage in a consistent way as noted by 

Bermúdez et al. (2017). Ongoing research attempts to address the above mentioned limitations. 

2.3 Uncertainty Analysis Module 

A modified format of the measure proposed by Jin et al. (2010) is used to estimate the uncertainty of the 

flood characteristics. The modified measure is called Relative Interval Length (RIL) and is computed as a 

function of the lower and upper limits as well as the median of a given hydraulic model output. The 

original measure by Jin et al. (2010) was called ‘average RIL’ and was proposed for calibration of 

probabilistic hydrologic models. The RIL is a normalized measure, and provides a comparative 

uncertainty band for flood characteristics with various units and is computed through the following 

equation: 

RIL =
xU − xL

x̃
 (1) 

where xL and xU are the lower and upper percentiles, respectively; and �̃� is the median value. The 

greater the RIL, the more the uncertainty and vice versa. Taking the lower and upper quartiles as xL and 

xU yields the widely used measure of the ratio of interquartile range (IQR) to the median. Here, the 5th and 

95th percentiles are used as the lower and upper limits in line with many previous inundation modeling 

studies (among others, Pappenberger et al. 2005, Jung and Merwade, 2012). A similar measure has been 

used by many researchers (e.g., Castro-Bolinaga and Diplas 2014) to quantify the uncertainty of 

inundation maps. 

 To perform the geospatial uncertainty analysis, Equation (1)(1) is applied to quantify the 

uncertainty of flood characteristics in each grid cell. A MATLAB script is implemented to conduct the 

geospatial uncertainty estimation and ArcGIS is used to visualize the maps. 

2.3.1 Comparative Analysis on the Uncertainty of Flood Characteristics 

For comparative analysis of the uncertainty, we divide flood characteristics based on the spatial and 

temporal variation (Table 1). The characteristics are divided into two main groups with respect to the 

spatial variation: (i) space-variant: those which vary with geographic location, which includes flood 

depth, velocity, duration, arrival time and time of maximum inundation; and (ii) spatially lumped: those 

that represent an overall characteristic of the entire area of interest, which includes maximum flood extent 

as well as average maximum depth and velocity. The two latter are calculated by taking the spatial mean 

of depth and velocity in the flooded grid cells in each random sample. From a temporal perspective, the 
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characteristics are divided into two groups: (i) time-variant: those which vary over time, which includes 

flood depth, velocity and extent; and (ii) temporally lumped: These are, respectively, characteristics that 

represent an overall flood behavior over time or take a single value over the simulation period. These are 

duration, arrival time and time of maximum inundation. Since the hydraulic model runs with a dynamic 

time step (see Subsection 2.22.2), we did not perform a detailed temporal analysis on a time step basis, 

but rather investigate the temporal mean (over the simulation time) of the time-variant characteristics 

(temporal mean of extent, depth and velocity) and the difference with temporal maximum. A comparison 

between the temporal mean and maximum magnitudes of the time-variant characteristics provides a 

measure of the time dependency of the uncertainty. The least and most uncertain characteristics are 

identified in both the spatial and temporal analysis. In all these comparative analyses, only the flooded 

cells are included. Through these experiments, the importance of spatial and temporal dimensions in 

uncertainty analysis of floodplain maps is investigated. Subsequently, the importance of spatial 

uncertainty analysis and unsteady hydraulic models is explored. 

Table 1. Variation of the flood characteristics with space and time. 

 

3 Case Study 

The probabilistic framework is demonstrated using the Swannanoa River watershed located in Buncombe 

County, in the state of North Carolina, U.S. The watershed, which is a part of the larger French Broad 

River basin, is located in the western North Carolina Mountains, from Asheville to Montreat. The area is 

selected due to its proximity to the southeastern coast of the U.S., which exposes it to the potential path of 

flood-causing hurricanes and tropical storms. There are developed areas in the watershed, with the City of 

Asheville being the most urbanized area. Figure 2 shows the study area including the computational 

domain and cities, as well as the U.S. states and counties. The watershed is non-tidal and overbank 

flooding occurs regularly in the watershed. Land cover is predominantly forest. The average ground slope 

is 20.9% within the selected computational domain and 21.4% in the floodplains (some areas have a slope 

of greater than 45%), implying a hilly case. Time of concentration of the watershed is estimated as 17.3 hr 

(City of Asheville 2006). The area has experienced several harmful floods in the past, including the 1916, 

1928, 1940, 1964, 1977 and 2004 events. The most severe flooding occurred in 2004 during hurricanes 

Francis and Ivan and resulted in damage to infrastructure of $54 million, 11 fatalities and significant 

disruption to the communities in the watershed (USACE 2015b). While there are warning systems in the 

watershed, no certified flood control reservoir or levee is located in the region. The 33.3 km Swannanoa 

River reach, which is bounded by an area of 343.9 km2 upstream of its confluence and French Broad 

River, is selected for this study. The 100-yr (1% annual exceedance probability) rainfall-driven overbank 

flooding is analyzed. In the U.S. (and many other countries), this recurrence interval is the standard 
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design event (base flood) used by the Federal Emergency Management Agency (FEMA), to develop flood 

insurance rate maps (FIRMs). One U.S. Geological Survey (USGS) stream gauge, Biltmore 

(USGS#03451000) which has been operated since 1985, is located in the watershed outlet. Lack of an 

upstream stream gauge does not allow for development of an upstream design hydrograph through a flood 

frequency analysis. Therefore, hydrologic modeling is needed to derive the design hydrograph. Two 

National Oceanic and Atmospheric Administration (NOAA) rain gauges are located in the watershed and 

are used in hydrologic modeling. 

 

Figure 2. Watershed location along with the computational domain and inflow location for hydraulic 

modeling. 

4 Results 

4.1 Hydrologic Modeling 

For hydrologic modeling, the watershed is delineated into 35 subwatersheds, consistent to the hydrologic 

model development presented in the watershed report by the City of Asheville (2006), and the initial 

parameters of the subwatersheds (e.g., CN, lag time and Manning’s roughness of the channels) were taken 

from the same report. Among these parameters, ratio of base time to time to peak and storage coefficient 

in the Snyder’s unit hydrograph as well as CN were selected as calibration parameters based on the model 

sensitivity by Ahmadisharaf (2016). The sensitivity was quantified via the EI. The nearest gaging 

approach was used to account for the spatial heterogeneity of rainfall depth, wherein the Swannanoa 

(#318448) represents the upstream areas (20 subwatersheds) and Asheville (#310301) does so for the 

downstream areas (15 subwatersheds). The deterministic hydrologic model was calibrated by 

Ahmadisharaf (2016) against three flood events measured at the study watershed outlet. The model was 

found to satisfactorily predict the streamflow (Moriasi et al. 2007), with NSE > 0.77, |PBIAS| < 18.7%, R2 

> 76.8%, d > 0.93 and RMSE < 0.59 m3/s. As discussed in Subsection 2.12.1, the model validation was 

judged to be satisfactory. The reader is referred to Ahmadisharaf (2016) for additional details on model 

calibration and validation in the study area. 

In implementation of the hydrologic model ensemble, the lower/upper confidence bounds and 

deterministic values for the 24-hr, 100-yr design event are taken from NOAA Atlas 14.2 (Bonnin et al., 

2004) and are used as the minimum and maximum of the uniform PDF (RIL= 0.16) of the rainfall depth. 

NRCS type II is chosen as the temporal rainfall pattern according to the NRCS (1986) suggestions for the 

study region. It is a dimensionless 24-hr rainfall distribution that was originally developed using the 

National Weather Service duration-frequency data and additional local storm data. To avoid the 

generation of unrealistic storm events, correlation between the storm depth and AMC was analyzed. A 

poor correlation was found (Pearson’s correlation coefficient < 0.04) and therefore, no correlation was 
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used to relate these two variables in the LHS application. One-hundred realizations of LHS are settled. To 

ensure that the number of LHS realizations is adequate, the ECDFs of the hydrograph attributes and 

estimated uncertainty bands are then compared with those from 1000 realizations. The analysis confirms 

that the generated hydrographs are not significantly different (less than 0.4% variation in the uncertainty 

of maximum peak, time to peak and volume) when the number of realizations increases. Therefore, the 

framework application proceeded with 100 LHS realizations. 

 For hydrologic modeling of the design event, only the 139.6 km2 drainage area of the inflow 

location (see Figure 2), is simulated on a 10 min time step. The 100 generated hydrographs are identically 

shaped because the selected uncertain variables (rainfall depth and AMC) do not substantially affect the 

timing attributes of the hydrograph that are rather sensitive to variables such as surface roughness and 

watershed slope (McCuen 2009), which are not considered uncertain in this paper that is methodological 

in focus. The simulated peak at the inflow location of the hydraulic model (see Figure 2) ranges from 

278.4 to 637.9 m3/s (RIL=0.64). The predicted 5th – 95th range closely matches the 90% prediction 

interval of the 100-yr peak magnitude through USGS regionalized regression equations (Weaver et al., 

2009), with both lower and upper bounds be slightly overestimated (279.5 m3/s vs. 285.6 m3/s and 614.5 

m3/s vs. 627.2 m3/s). The time to peak has a slight variation from 14.9 to 15.0 hr (RIL=0.02), while the 

hydrograph volume ranges from 7.1x106 to 1.5x107 m3 (RIL=0.60). The ensemble hydrographs are used 

as inputs in the hydraulic model (Figure 3). 

 

Figure 3. 100-yr design hydrographs at inflow location (upstream boundary of hydraulic model). 

4.2 Hydraulic Modeling 

The deterministic hydraulic model was calibrated by Ahmadisharaf et al. (2015) against August 1994 

flood event using peak discharge and travel time accuracy measures (Schubert and Sanders 2012). A peak 

discharge of 164.8 m3/s was recorded on August-17 at 2:00 PM in the Biltmore station located in the 

watershed downstream. The calibration of Flood2D-GPU suggested an optimal Manning’s value of 0.05 

(spatially uniform for the entire computational domain). With this Manning’s value, the model 

satisfactorily simulated the peak and time to peak with 0.8% and 12.8% absolute error, respectively. The 

reader is referred to Ahmadisharaf et al. (2015) for additional details on model calibration. The USGS 

National Elevation Dataset DEM (https://nationalmap.gov/elevation.html) with a spatial resolution of 30 

m is used based on the general recommendations by Savage et al. (2016a) for probabilistic inundation 

modeling and Ahmadisharaf et al. (2013) for Flood2D-GPU application in the study watershed. To ensure 

the DEM appropriately represents the channel geometry, we estimated the cross-sectional area error at 

multiple cross-sections on the main river. Our investigation revealed that the DEM has an average 

channel cross-sectional area error of smaller than 5.3% and is judged to satisfactorily the channel cross-

https://nationalmap.gov/elevation.html
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sections. A threshold depth of 0.1 m is used is used to distinguish between unflooded (dry) and flooded 

(wet) grid cells following previous flood modeling applications (e.g., Aronica et al. 2002, Savage et al. 

2016b) and the DEM vertical accuracy (Gesch et al. 2014). The hydrographs from the hydrologic model 

are used as the upstream boundary condition. 

 The calibrated hydraulic model is applied to the 100-yr design flood of the Swannanoa River 

watershed for the ensemble of hydrographs. Each ensemble member has a hydrograph duration of 120 hr 

and the number of computational cells is approximately 200,000. Running the model for the 100 

realization ensemble takes about three days on a computer with two Intel Xeon DP Six Core X5690 3.46 

GHz Processors, 32 GB RAM, one PNY NVIDIA Quadro™ FX5800 graphics card with 240 CUDA 

streaming processors. The same simulation on a CPU-based model would require about 80 times longer 

(approximate estimation by Kalyanapu et al. [2011]). Running the model results in 100 inundation maps. 

An ensemble of flood extent (maximum and temporal mean), depth (maximum, average maximum and 

temporal mean), velocity (maximum, average maximum and temporal mean), duration, arrival time and 

time of maximum inundation is generated subsequently. The predicted 100-yr peak discharge at Biltmore 

station falls inside the estimated range through frequency analysis by Weaver et al. (2009). 

4.3 Uncertainty Analysis of Flood Characteristics 

4.3.1 Uncertainty Analysis of Spatially Lumped Flood Characteristics 

The ECDF of the maximum flood extent as well as average maximum depth and velocity is presented 

alongside the box-and-whisker plot in Figure 4. Using Equation (1)(1), an RIL of 0.23, 0.30 and 0.13 is 

computed for the maximum flood extent as well as average maximum depth and velocity, respectively, 

suggesting that of the three spatially lumped characteristics, velocity is the least uncertain and depth is the 

most. The uncertainty of average maximum depth and maximum extent is close, and both are nearly two 

times wider than the uncertainty of rainfall depth. All of the spatially lumped flood characteristics are less 

uncertain than peak and volume of the hydrograph. 

 

Figure 4. Empirical cumulative distribution of the spatially lumped flood characteristics: (a) maximum 

extent, (b) average maximum depth, and (c) average maximum velocity. 

4.3.2 Uncertainty Analysis of Space-Variant Flood Characteristics 

The ECDF of the space-variant flood characteristics (depth, velocity, duration, arrival time and time of 

maximum inundation) is constructed in each grid cell and corresponding RILs are calculated via Equation 

(1)(1). An uncertainty map is developed for each characteristic (Figure 5). The smallest spatial range of 

RIL is 0.04-0.72 and belongs to arrival time, while velocity shows the widest range (0.00-5.12). Arrival 

time has also the lowest spatial mean RIL (0.13), while depth has the highest (0.64). The overall greater 
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uncertainty of depth can be attributed to the selected uncertain inputs, rainfall depth and AMC, which 

mostly affect the peak and volume of the hydrograph, but not the shape. Consequently, the time-

dependent flood characteristics are less affected. 

 

Figure 5. Uncertainty map of the space-variant flood characteristics: (a) maximum depth, (b) maximum 

velocity, (c) duration, (d) arrival time, and (e) time of maximum inundation. 

 A cell-by-cell analysis of the uncertainty maps is also performed to investigate how the spatial 

mean of RIL is compared to its values in the inundation area. In 45.4%, 42.1%, 42.4%, 64.3% and 57.3% 

of the inundation area, the uncertainty of flood depth, velocity, duration and arrival time as well as time of 

maximum inundation is greater than their corresponding spatially averaged uncertainty. These numbers 

suggest that using a spatially lumped value to represent the uncertainty (taking an average) can be 

misleading and the spatial dimension needs to be incorporated for uncertainty analysis of floodplain 

mapping. For flood depth and velocity, this can be further be observed by comparing the spatial mean of 

the uncertainty of maximum flood depth and velocity (Figure 4) against the uncertainty of their average 

maximum (Figure 3). 

The uncertainty of the five space-variant flood characteristics are compared spatially to identify 

the least (minimum RIL) and most (maximum RIL) uncertain flood characteristic in each grid cell. The 

results of this comparative analysis are given in Figure 6. Flood depth is the most uncertain characteristic 

in more than 65% of the inundation area, while the duration, arrival time and time of maximum 

inundation have the highest uncertainty in less than 11% of the inundation area. These three are the least 

uncertain characteristics in more than 75% (accumulative) of the grid cells, with time of maximum 

inundation being the least uncertain in 32.1% of the study watershed. On the other hand, flood depth is 

not the least uncertain in any of the grid cells. These findings underlie the fact that hydrologic model 

predictions on hydrograph timing attributes (e.g., time to peak) are not very sensitive to the two uncertain 

variables (design rainfall depth and AMC), but these two substantially affect the peak and volume (see 

subsection 4.14.1). Subsequently, the time-dependent flood characteristics are influenced less, while the 

two others (depth and velocity) are affected more. It can also be noticed that although depth is the most 

uncertain characteristic in a majority of the study watershed, the other four space-variant characteristics 

are the most uncertain in nearly one-third of the watershed. Therefore, sole uncertainty analysis of 

maximum flood depth cannot provide a detailed picture of the uncertainty of floodplain maps and more 

attention should be paid to other space-variant flood characteristics. 

 

Figure 6. Percentage of the inundation area that each space-variant flood characteristic is least/most 

uncertain. 
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4.3.3 Uncertainty Analysis of Time-Variant Flood Characteristics 

 The ECDF of the mean flood extent is presented alongside the box-and-whisker plot in Figure 7. 

A RIL of 0.17 is computed through Equation (1)(1), which is close to the uncertainty of rainfall depth, but 

about four times less uncertain than peak and volume of hydrograph. The uncertainty of mean flood 

extent is about two-thirds smaller than its maximum, suggesting that the uncertainty varies over the 

simulation time. 

 

Figure 7. Empirical cumulative distribution of the temporal mean flood extent. 

The uncertainty map of the temporal mean flood depth and velocity is given in Figure 8. Similar 

to the maximum flood depth, which was found to be the most uncertain space-variant characteristic in a 

major portion of the study watershed, mean depth is also the most uncertain characteristic in 80.1% of the 

inundation area. Maximum depth and velocity are more uncertain than their mean in 90.0% and 66.7% of 

the inundation area. The uncertainty of mean depth and velocity can be much smaller than their maximum 

by up to 160 and 39 times. On the other hand, mean depth and velocity can be much more uncertain than 

their maximum by up to six and 51 times. The substantial variation of the uncertainty over the simulation 

time suggests that the uncertainty is rather dynamic, implying that stead-state models cannot capture the 

whole picture of uncertainty and therefore, detailed unsteady hydraulic simulations are needed for 

floodplain mapping. 

 

Figure 8. Uncertainty map of the time-variant flood characteristics: (a) mean depth and (b) mean 

velocity. 

5 Discussion and Conclusions 

The uncertainty of flood characteristics was evaluated using the developed probabilistic framework. Our 

comparative analysis on the uncertainty of flood characteristics revealed that overall, flood depth has the 

widest uncertainty, while time-dependent characteristics (duration, arrival time and time of maximum 

inundation) have the tightest uncertainty, primarily because the selected uncertainties (rainfall depth and 

AMC) do not substantially affect temporal attributes of the hydrograph. However, it was found that the 

least and most uncertain characteristics substantially vary with space and time. This finding concerning 

the temporal variation of the uncertainty corroborates the findings of a previous study by Aronica et al. 

(2012b). Savage et al. (2016b) also found that the sensitivity of the predicted flood characteristics with 

respect to the inputs varies both temporally and spatially. We show that using spatially or temporally 

lumped frameworks to present the uncertainty can misrepresent the uncertainty of flood characteristics. 

Therefore, it is recommended that the space and time dimensions be incorporated into uncertainty 
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analysis studies of floodplain mapping by employing spatio-temporal frameworks and detailed unsteady 

hydraulic models. Our results are, however, strictly valid only for a single case study and subject to our 

assumptions and limitations that are discussed in detail in the forthcoming paragraphs. 

The findings on the relative uncertainty of flood characteristics show the sole contribution of the 

selected uncertain inputs (rainfall depth and AMC). Other uncertain inputs such as channel and watershed 

characteristics, which can affect the hydrograph timing (McCuen 2009) and, in turn, the time-variant 

flood characteristics (Nuswantoro et al. 2016), were not taken into account. Even in terms of rainfall 

depth, only a large storm (100-yr event) and a single duration (24 hr) was studied. We expect that other 

storm severities and durations might result in a different uncertainty of flood characteristics (Bezak et al. 

2018). The uncertainty pertaining to the spatio-temporal variability of rainfall was also not investigated, 

both of which can affect the inundation modeling results (Merwade et al. 2008). We, therefore, suggest 

that our findings should be cautiously replicated to other flood events and watersheds. A more 

comprehensive analysis should be performed to draw more generalized conclusions by cascading all the 

uncertainty sources. However, in the presence of many uncertainty sources, such a study requires 

enormous amount of time and cost, specially via multi-dimensional hydraulic models. 

Additionally, only a single case study was used to investigate the uncertainty of the design 

rainfall depth and AMC on flood characteristics as a result of a rainfall-driven overbank flooding. The 

study watershed in this research was mostly hilly (average ground slope of 20.9% in the computational 

domain), where floods are often deep and flashy, and do not last long. Such a deep, rapid and short-lived 

flooding implies high depth, fast velocity and arrival time as well as short duration and time of maximum 

inundation. The derived uncertainty bands for the flood characteristics are expected to vary in a flat 

watershed, where floods are likely shallow, slow-moving and long-duration. Additionally, the study area 

was mostly rural, where surface roughness is relatively high. The estimated uncertainty of the flood 

characteristics likely varies in an urbanized watershed. An analysis of other watersheds was beyond the 

scope of this paper that focused on a spatio-temporal comparative analysis of flood characteristics as a 

result of rainfall depth and AMC. However, our framework is generic and applies not only within the 

watershed, but also in any other flood-prone areas. Focusing on a single case allows certain conclusions to 

be drawn. Additional cases using our developed framework will highlight the impact of storm severity 

and other uncertainty sources on the uncertainty of flood characteristics. More general conclusions about 

the uncertainty of flood characteristics, which is directly related to consequence estimation and decision-

making, can be drawn only through additional research and case study applications. This opportunity can 

be exploited to discover several fundamental issues in hydrologic and hydraulic modeling and flood 

management. 
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In addition to these, the limitations of the hydrologic and hydraulic models should be kept in 

mind. The hydrologic model in this study uses the NRCS method for rainfall-runoff transformation, 

which is an empirical method and does not directly use the actual antecedent soil moisture in the 

computations, but rather classifies AMC into three discrete classes. To further scrutinize the relationship 

between antecedent wetness and hydrograph attributes, physically-based infiltration methods such as 

Green-Ampt (Green and Ampt 1911) or coupled NRCS-Green-Ampt (Grimaldi et al. 2013b) should be 

applied. Advanced unit hydrographs such as width function instantaneous unit hydrograph (Grimaldi et 

al. 2012) could be also investigated in future research. The hydraulic model assumes a spatially uniform 

Manning’s roughness for the entire simulation boundary. Since this parameter represents the resistance to 

flow, an uncertainty is introduced to the simulated flood characteristics. Despite all these limitations and 

the fact that different hydrologic/hydraulic models, events or watersheds might result in different numbers 

and parameters being identified as most sensitive/uncertain, these would not change our key findings, 

which are: (i) demonstration of the probabilistic framework; (ii) the need for unsteady analysis to 

accurately predict flood characteristics; and (iii) substantial variation of uncertainty of these 

characteristics with both time and space. Our study has implications for flood management and 

uncertainty modeling. The uncertainty maps generated through the presented framework can be 

potentially useful in engineering applications such as floodplain mapping and estimation of flood 

insurance rate. These maps explicitly visualize the uncertainty of flood characteristics via a transparent 

measure (RIL) that is understandable for non-mathematicians, thereby serving the flood modelers with an 

efficient tool to communicate the uncertainty of inundation modeling with floodplain managers and 

insurance companies. In the U.S., the framework can potentially assist the FEMA’s National Flood 

Insurance Program (NFIP) and risk Mapping, Assessment and Planning (MAP) program in development 

of FIRMs and proper mitigation actions by explicitly providing the uncertainty of flood characteristics 

other than depth and extent. This is a major step forward in applying 2D unsteady hydraulic models, yet 

there is computational burden to implement these models in any large scale. Smemoe et al. (2007) 

suggested using a probability-based approach to define the floodplain extent and to overcome the inherent 

issues of the deterministic approach. The thorough review by Merwade et al. (2008) suggested using an 

integrated stochastic hydrologic-hydraulic modeling in tandem with GIS to quantify the uncertainty of 

inundation maps. This study further applied a coupled hydrologic and hydraulic modeling approach to 

spatially characterize the uncertainty of the space-variant flood characteristic (not only the extent) via 

ECDFs. Utilizing a 2D unsteady hydraulic model enabled us to derive time-variant flood characteristics 

(not only maximum extent) through an advanced physically-based approach. To illustrate the proposed 

framework, we evaluated the uncertainty of two uncertain variables—rainfall depth and AMC—on flood 

characteristics in the case study of Swannanoa watershed. That said, we did not perform a comprehensive 
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uncertainty analysis and our results are valid for a single case, a given flood magnitude and two specific 

uncertainty sources, causing limitations to extrapolate our findings to other watersheds and flood events. 

6 Summary 

This study demonstrated the application of a generic probabilistic framework that couples a hydrologic 

model with a 2D unsteady hydraulic model to spatially explore the uncertainty of five space-variant 

characteristics— maximum depth, maximum velocity, duration, arrival time and time of maximum 

inundation—alongside three spatially lumped characteristic: maximum extent as well as the average 

maximum flood depth and velocity. Utilizing an unsteady hydraulic model further enabled us to study the 

temporal variation of three time-variant characteristics: extent, depth and velocity. The impact of the 

uncertainty of the design rainfall and AMC on flood characteristics was explored through the developed 

spatial uncertainty analysis framework. An LHS-based hydrologic model produced an ensemble of 

hydrographs that were fed to a 2D unsteady hydraulic model. The 100-yr (base flood) rainfall-driven 

overbank flooding of the Swannanoa River watershed in the state of North Carolina, U.S., was used to 

illustrate the framework. The case study results for this particular flood event indicated that among the 

five space-variant flood characteristic (depth, velocity, duration, arrival time and time of maximum 

inundation), depth and time of maximum inundation are the most and least uncertain in most of the 

inundation area. The temporal variation of the uncertainty of extent, depth and velocity was shown to be 

substantial. The findings on the spatio-temporal variation of uncertainty suggested that using lumped 

frameworks to represent uncertainty can be misleading. Detailed spatio-temporal uncertainty analysis 

frameworks supported by unsteady hydraulic models are needed to provide a holistic picture of the 

uncertainty of floodplain maps and how it varies spatially and temporally. We recommend application of 

unsteady hydraulic models for floodplain mapping and subsequent risk analyses as a more reliable 

alternate to steady-state models. Our findings, however, belong to the case study and a specific flood 

event (100-yr) and need further investigations in future research for other uncertainty sources and study 

watersheds. The presented framework in this paper is flexible and can be employed to study other sources 

of uncertainty in hydrologic models and other watersheds. 
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