
 López Pulgarín, E. J., Irmak, T., Variath Paul, J., Meekul, A., Herrmann, G.,
& Leonards, U. (2018). Comparing Model-Based and Data-Driven
Controllers for an Autonomous Vehicle Task. In Towards Autonomous
Robotic Systems: 19th Annual Conference, TAROS 2018, Bristol, UK July
25-27, 2018, Proceedings (pp. 170-182). (Lecture Notes in Artificial
Intelligence; Vol. 10965). Springer, Cham. https://doi.org/10.1007/978-3-
319-96728-8_15

Peer reviewed version

Link to published version (if available):
10.1007/978-3-319-96728-8_15

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at https://link.springer.com/chapter/10.1007/978-3-319-96728-8_15 . Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/160810681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-96728-8_15
https://doi.org/10.1007/978-3-319-96728-8_15
https://doi.org/10.1007/978-3-319-96728-8_15
https://research-information.bris.ac.uk/en/publications/comparing-modelbased-and-datadriven-controllers-for-an-autonomous-vehicle-task(6b74c54b-2d81-48a1-8e1e-e2794d1cbb7d).html
https://research-information.bris.ac.uk/en/publications/comparing-modelbased-and-datadriven-controllers-for-an-autonomous-vehicle-task(6b74c54b-2d81-48a1-8e1e-e2794d1cbb7d).html

Comparing Model-based and Data-driven
controllers for an autonomous vehicle task

Erwin Jose Lopez Pulgarin1(0000-0001-9927-6688), Tugrul Irmak1, Joel
Variath Paul1, Arisara Meekul1, Guido Herrmann1(0000-0001-5390-4538), and

Ute Leonards2(0000-0001-6143-7466)

1 Mechanical Engineering, University of Bristol, Bristol, UK
erwin.lopez@bristol.ac.uk, g.herrmann@bristol.ac.uk,

2 Experimental Psychology, University of Bristol, Bristol, UK
ute.leonards@bristol.ac.uk

Abstract. The advent of autonomous vehicles comes with many que-
stions from an ethical and technological point of view. The need for
high performing controllers, which show transparency and predictabi-
lity is crucial to generate trust in such systems. Popular data-driven,
black box-like approaches such as deep learning and reinforcement lear-
ning are used more and more in robotics due to their ability to process
large amounts of information, with outstanding performance, but rai-
sing concerns about their transparency and predictability. Model-based
control approaches are still a reliable and predictable alternative, used
extensively in industry but with restrictions of their own. Which of these
approaches is preferable is difficult to assess as they are rarely directly
compared with each other for the same task, especially for autonomous
vehicles. Here we compare two popular approaches for control synthesis,
model-based control i.e. Model Predictive Controller (MPC), and data-
driven control i.e. Reinforcement Learning (RL) for a lane keeping task
with speed limit for an autonomous vehicle; controllers were to take con-
trol after a human driver had departed lanes or gone above the speed
limit. We report the differences between both control approaches from
analysis, architecture, synthesis, tuning and deployment and compare
performance, taking overall benefits and difficulties of each control ap-
proach into account.

1 Introduction

Current trends in automotive driver-assist systems indicate an increase in vehicle
autonomy, making cars more like robots. Even when considering current robotics
standards for personal robots like ISO 13482:2014 [8], semi-autonomous and
autonomous vehicles fall into the categories of Person Carrier Robots.

Autonomous and semi-autonomous vehicles are areas of relevant commercial
interest, with a multitude of ethical and technical challenges yet to be solved.
One issue that remains unsolved is how to create controllers that integrate a
large amount of heterogeneous sensor data (e.g. cameras, range sensors, vehicle
sensors and driver sensors) and that are able to deal with highly complex and
changing environments.

A large variety of control algorithms and approaches has been proposed to
solve this problem in both real and simulated environments[19] [13] [21]. We
can divide them into two categories, model based and data-driven. The former
category belongs to a classical approach for industrial control; it uses a plant
model and represents a mathematical description of the dynamics surrounding
the system with a controller shaping those dynamics to meet a set of predefined
requirements. The latter is based on an approach from computer science inspired
by the human process of learning, subsequent decisions[7] and actions, i.e. the
current artificial intelligence paradigm; available measurements or estimations
are used to create a relation between the way we can manipulate the system
(actions) and its measurements (states) by rewarding or punishing certain be-
haviours, with limited to no knowledge about the system itself.

In the domain of autonomous and semi-autonomous systems, some of the pro-
minent algorithms used in each category are Model Predictive Control (MPC)[15]
[10] for the model-based and Reinforcement Learning [3] [18] by actor-critic al-
gorithms like Deep Deterministic Policy Gradients (DDPG) for the data-driven
models.

Both approaches have their own benefits and hindrances during the possible
stages of control design (i.e. analysis, architecture design, synthesis, tuning and
deployment), requiring sets of skills and resources (e.g. computational time); yet
to the best of our knowledge, they have never been directly compared for a set of
identical tasks related to autonomous vehicles. Automatic control of the speed
of a vehicle (i.e. cruise control) and maintaining a vehicle in the centre of the
lane (i.e. lane keeping) are typical common tasks for autonomous vehicles and
subsequent advanced driver assistance systems (ADAS). For automatic control
systems, it is often the case that initialisation time is prohibitively long as in the
range of seconds. For vehicle control and ADAS, it means that the controllers
need to be run in parallel whilst the human is driving, and control be switched
either manually or automatically. Switching between controllers is not a trivial
task. The transients caused by controller switching can produce instabilities. The
non-responsiveness of the vehicle to the ADAS inputs while the human driver is
in control could cause actuator saturation. An abrupt handover of control to the
ADAS could result in a violent response of the vehicle such as a spin, collision or
loss of control. Speed has been linked to switching performance in autonomous
vehicles scenarios [21].

In this paper, we applied separately MPC and DDPG to a cruise control and
lane keeping task for a semi-autonomous vehicle or Advanced Driver Assist Sy-
stem (ADAS)[9]. Specifically, the task requires to switch control from a human
driver to an automatic controller based on a performance metric. Here we pre-
sent a one-on-one comparison between the two design methodologies during the
different steps of the process and analyse the obtained performance; comments
and ideas on how to improve each controller are also provided. Concepts around
control design, the different control design approaches, algorithms and simula-
tion models are explained in Section 2 and 3. Section 4 analyses and compares
the results, and Section 5 talks about conclusions and future work.

2 Simulation Environment

The Open Car Racing Simulator [2] (TORCS) is an open source software. It
allows to create its own artificial ”drivers” that use virtual sensors to gather
information about the road and the state of the vehicle; it also enables custo-
mized tracks and to connect to it through third party software (e.g. Python,
MATLAB) with external pluggins, facilitating testing and prototyping.

The artificial driver controls steering wheel angle, throttle and brake com-
mands. It implements a rich set of virtual measurements as sensor input. The
sensors provide translational velocity in all 3 axis, 4 sensor readings of rotational
wheel speed, number of engine cycles per minute, normalised position on track
with regard to track width, angle of the long axis of the car relative to centre
line of track and 19 sensor readings of track edge and car (i.e. laser radar).

Only the data-driven controller required the laser sensor input to work, whe-
reas the model-based controller could work without it.

We used a variety of tracks with different difficulty levels (i.e. more aggressive
geometry and thinner track width) to estimate the reliability of our two systems.
Twelve different tracks were used in the experiment, with track widths ranging
from 10 to 15 m, track length ranging from 2000 to 6000 m and curvatures
ranging in average from 0.0016 to 0.02 m−1 with a maximum of 0.087 m−1.

3 Control Design Approaches

Creating a control system is a complex process that involves several stages from
the study and comprehension of the problem to the implementation of the obtai-
ned solution using a mathematical representation. The necessary steps will be
taken as the important criteria for our comparison between the two different
control approaches:

Analysis deals with understanding the system through looking at specific
objectives (e.g. reference tracking, regulation control) and the requirements at
hand. Both, system actions and system states (i.e. sensed or estimated system
variables), respectively, are examined as well as the relationship between them.

Architecture Design has to do with selecting the structure of the propo-
sed algorithm that meets the desired requirements. This step might involve the
control law that will be implemented by the controller, and any or all initial
parameter values for the control architecture (e.g. weights, starting point, look
ahead time).

Synthesis deals with creating the controller with the architecture selected,
generating a functional model that can enforce the control objective and requi-
rements, to test and validate its performance.

Tuning involves the evaluation of the synthesized controller and the optimi-
zation of its performance. It deals with improving the controller in individual or
all its performance requirements by means of tuning optimizing any value that
does not change the architecture of the controller (e.g. weights, factors).

Deployment deals with taking the designed controller into the real appli-
cation and establish how it can be best used with both sensors, actuators and
an automatic computer.

3.1 Model Predictive Controller

Model Predictive Control (MPC) is an advanced technique that deals with a
short term optimal target problem by combining a prediction and a control
strategy. It approximates future behaviours of the target plant, compares the
predicted state of the plant with a set of predefined objectives and computes the
optimal control inputs to achieve the objectives, whilst respecting the plant’s
constraints.

MPCs have been successful in semi-autonomous and autonomous vehicles,
as they can handle Multi-Input-Multi-Output (MIMO) systems with controller
input and state variable constraints while considering the non-linear dynamics
of vehicles [17].

They use an explicit internal model which is often a simplification of the
actual system/plant dynamics to predict the outputs at future time instances
(prediction horizon). The dynamics of any given system in discrete time can be
expressed in the state-space form as:

xk+1 = Axk +Buk (1)

yk+1 = CAxk + CBuk + dk+1 (2)

x is the state vector of system variables, A the system matrix, y the output
vector of observed variables, B the input matrix, u the control input vector, C
the output matrix, k the time step and d the disturbance matrix.

At each control interval, the prediction horizon is shifted towards the future
and a new set of predictions is made. Further details can be seen in [16].

For situations where time-varying plant characteristics exist, two of the many
approaches for MPC implementation are: Implicit MPC with a linearised model
around an operating model and Adaptive MPC with a model being updated at
run time [11].

Published MPC algorithms for autonomous vehicles are often adaptive and
use dynamic vehicle models (LPV) with a non-linear tyre model. Still, the use of
kinematic models (i.e. linearised models around an operating point) for lateral
control has been proposed and studied[12], showing that kinematic models with
discretization time of 200ms show similar performance to dynamic models with
discretization time of 100ms.

Bicycle Model The dynamics of a road vehicle are complex[12], involving 3
translational and 3 rotational degrees of freedom (DOF’s), which are often inter-
dependent due to the nature of the vehicle’s suspension. The coordinate system
used during our modelling of the vehicle followed the ‘SAE International: Vehi-
cle Dynamics Terminology J670E’ [1]. The non-linear nature of the suspension
system, the effects of aerodynamic drag and lift forces and the nature of contact
condition between the tyres and the road surface add additional complexity. The
vehicle dynamics for the purposes of this project can be de-coupled in the lon-
gitudinal and lateral directions to produce independent mathematical models of
either kinematic or dynamic nature.

Lateral dynamics of the vehicle can be simplified by approximating them
to a 2 DOF bicycle model representing the lateral and yaw motions. A few

assumptions are made for the application of this simplified model, like constant
longitudinal velocity, small slip angles (i.e. tyres operate in the linear region),
no aligning moments in the tyres, no road gradient or bank angles, no lateral or
longitudinal load transfer and no rolling or pitching motions. These assumptions
are only valid at low speeds as the tyres experience significant slip and load
transfers when cornering at high speeds.

Modelling the front pair of wheels as a single unit assumes that the steering
angles on the left and right sides of the vehicle are the same. Automobiles in
general use Ackerman geometry to ensure that the steering angles of the left and
right wheels are such that they arc around a common instantaneous rolling centre
for the vehicle. During cornering, the tyre’s velocity has a component normal to
the tyre plane, in addition to the component in the direction of motion. This
is because the tyre experiences deformation and slip in the lateral direction.
The angle between the direction of heading and the direction of travel (or ratio
of lateral and longitudinal components of velocity) is known as slip angle. The
cornering stiffness is defined as the ratio of change in lateral force and the change
in slip angle. In commercial vehicles, the cornering stiffness of the front wheels is
greater than that of the rear wheels, as it is implemented in this model. Further
details available in [4].

Longitudinal dynamics govern the forward motion of the vehicle, con-
strained in the XZ plane. The longitudinal motion of the chassis accounts for
aerodynamic drag and variations in the road incline to obtain a force balance
like:

Fforward = M
d

dt
Vx + Faerodynamic + Frolling + Fgravitational + Ffriction (3)

Faerodynamic is aerodynamic drag, Frolling rolling resistance, Fgravitational

gravitational forces at slopes and Ffriction are frictional forces due to other
mechanical losses of energy in the system. Vehicle parameters include mass M =
1150 kg, density of air ρ = 1.225 kg/m3, drag coefficient CD = 0.8, equivalent
frontal area AF = 1.92 m2, rolling resistance coefficients Cr0/Cr1 = 10−2/10−4,
coefficient of frictional damping Cv = 7, cornering stiffness of front tyre Cf = 27
kN/rad, cornering stiffness of rear tyre Cr = 21 kN/rad, distance of front and
rear tyres (from centre of gravity) lf = lr = 1.9 m and moment of inertia about
z-axis Iz = 960 kgm2.
Control Structure An Implicit MPC for lateral and an Adaptive MPC for
longitudinal motion were created to control the vehicle.

For lateral control, the expression of the lateral force balancing equations
in terms of lateral error ye and heading error ψe produce:

ẏe

ÿe

ψ̇e

ψ̈e

 =

0 1 0 0

0 − (Cf+Cr)
MVx

0 −Vx − Cf lf−Crlr
MVx

0 0 0 1

0 −Cf lf−Crlr
IzVx

0 −Cf l
2
f+Crl

2
r

IzVx

ye

ẏe

ψe

ψ̇e

+

0
Cf

M

0
Cf lf
Iz

 δf (4)

The obtained expression is a function of the longitudinal velocity of the car
Vx. An Implicit MPC with a linearised model and an Adaptive MPC were tested.

The Implicit MPC was linearised about an operating point of 10m/s with a set of
bounds for the manipulated variables (MV). Both controllers performed almost
identically. Adaptive MPC is computationally intensive and runs into numerical
errors at high velocities (> 90km/h). As there is no significant performance
advantage in switching to an adaptive controller, the implicit MPC is selected
[11].

The used control parameters were: Prediction Horizon (Hp = 30), Control
Horizon (Hc = 5) and Sampling time (Ts = 20ms). The used tuning parameters
were: MV min/max = −0.66/0.66rad, MV Rate min/max = −0.8/0.8rads/s,
MV Scale factor = 8, Qn = diag[1 0.5], Rn = 2.

The longitudinal controller regulates the throttle and brakes to achieve
its desired forward velocity. Both Implicit MPC and Adaptive MPC were tested,
with the former having limited accuracy obtained due to not accommodating the
variance of throttle demand with road terrain. The Adaptive MPC implements
a dynamic model of the forward dynamics incorporating gravitational, aerodyn-
amic and rolling resistances. The Linear Parameter-Varying Model (LPV) used
depends on Angle of incline (Slope) α, Pedal constant Fp, Gear ratio Gr, Throttle
input u, Longitudinal velocity Vx and the other longitudinal parameters. It can
be expressed as:[

V̇x

]
=

[
−
(
g(sin(α)+Cr0)

V x
+ (ρCDAFVx+2Cv)

2M

)] [
Vx

]
+
[
FpGr

]
uf (5)

To reduce cornering tendencies due to turning whilst maintaining a stable
cruise velocity, a strategy to adapt the velocity output demand was implemented.
Road curvature is used to reduce the velocity whilst turning to improve vehicle
handling. The minimum value between the cruise velocity and a threshold is
used as a final cruise velocity. Empirical testing revealed that a threshold of
0.3/abs(RoadCurvature) produced the best results.

3.2 Reinforcement Learning

Reinforcement Learning is based on the idea that reinforcement, if given in the
form of a reward or punishment, will help to optimise a behavioural response.
This process of behavioural adaptation (learning) aims to maximise the cumu-
lative reward extracted from the environment. The agent is said to navigate a
Markov decision process (MDP)[20], as defined by the five tuple 〈S, A, R, P, γ〉: S
is the set of states, A is the set of actions, R is the expected reward given a state
action pair, Ras = E[rt | St = s, At = a], P is the state transition probability ma-
trix Pass′ = E[St+1 = s′ | St = s, At = a] and γ is the discount factor in domain
[0,1].

The goal of the agent is to extract the most reward from the MDP by deciding
on the best action, given the state it is in. The actions of an agent, given the
state it is in, are determined by the agent’s policy. MDPs are time invariant
and depend only on the current state and not the state history. Solving an
MDP means finding an optimal policy which yields the optimal value. Policy
evaluation can be done by Monte-Carlo (MC) Backup and Temporal Difference
(TD) Backup[20]. Policy control, the process of iteratively finding a better policy,

can be done by algorithms such as SARSA or Q-learning[22], which creates a
Q-value Q that relates actions a and states s through a reward.

As the number of states and actions increases, the number of table entries
required increases exponentially. Physical systems are controlled in a continuous
state action space, creating the need for continuous function approximators.

For physical systems, the idea of actor-critic was introduced [23]. The actor
is the policy which is updated every iteration. The critic is the Q value, which
is updated every iteration. Initial implementations also had the critic being up-
dated by minimising the mean square difference between the approximation and
the computed evaluated values. The actor is a Gaussian distribution over acti-
ons, given state where the mean and standard deviation is parametrised by a
linear sum of weighted features.

The policy parameters are updated to maximise the cumulative reward ex-
tracted from the MDP, where each state transition yields a reward. The mag-
nitude of this reward is determined by the reward function. Therefore, the re-
ward function implicitly describes the optimal behaviour. Poorly designed reward
functions can lead to oscillations in policy and convergence to poor policies. Ge-
nerally, reward functions which give continuous reward are better behaved than
those that have a large delay. An example of this is chess. A move in mid game
can lead to victory later, but it may not be easy to identify the utility of this
singular move among the whole trajectory.
Control Structure An actor critic reinforcement learning (RL) technique was
used to develop a continuous state-action controller. The method used was based
on deep deterministic policy gradient (DDPG) algorithm [14], integrating an
additional Proportional-Integral loop to improve tracking performance.

The action value (critic) function and the policy (actor) are both approxi-
mated by two neural networks (NN) with two hidden layers each and a linear
rectifier (relu) activation function. For the first and second hidden layer, 300 and
600 nodes were selected respectively based on improvements done on the original
implementation [14]. The algorithm uses all 29 sensor inputs. The critic input to
the first layer is the state and to the second layer is the action. The output is the
action value. The matrice’s weights are initialized using Xavier[5] initialisation.
Policy parameters are tuned online using stochastic gradient descent.

The vehicle was trained on the track with the widest variety of turns (ie.
straight, cambered, inclined and sharp). This increases the generality of the
trained algorithm to other tracks. The aim of the DDPG is to control a vehicle
to safely travel at a user specified cruising velocity, Vt whilst reducing the lateral
distance from the centreline of the track, |ye|.

The reward function [14] R(s) = Vl(cos θ − | sin θ| − |ye|) was used. Vl is the
component of the vehicle’s longitudinal velocity in the direction of the track.
θ is the yaw angle. Additionally, a negative reward was given if the vehicle
left the track. Lastly, the simulation was reset if no progress was made after 500
simulation steps. Only 2 of every 3 controllers synthesized had good performance
(i.e. algorithm converged).

The DDPG allows for the development of a robust model-free controller for
a high speed racer. However, it does not yield well to constraining the cruising

speed to a user reference. To tackle this, the DDPG+PI controller was develo-
ped which uses both reinforcement learning and classical proportional-integral
control to overcome the limitations of both methods. A proportional gain of 8
and an integral gain of 0.05 were empirically obtained for the PI component.
This allows good levels of robust tracking of the velocity and track demand.

4 Comparative Evaluation

The obtained compliant controllers showed similar nominal performance, follo-
wing different design methodologies and taking different amounts of effort and
resources in each stage.

4.1 Design procedure comparison

For the model-based controller or MPC:

– Analysis: A great deal of effort must be put into a mathematical model of
the car and its movement in a dynamic framework. This is a time-consuming
task, requiring a great amount of specialized knowledge.

– Architecture: Changes are restricted to the type of MPC being implemen-
ted (e.g. MPC, optimal MPC) and its parameters, which are generally not
many.

– Synthesis: Time and computational resources are linked to the complexity
of the mathematical formulation. It deals with automatically generating a
code that solves a mathematical equation inside the control loop. The code
could be too large and the equation too slow or unfeasible to be solved;
Nonetheless, this can be included and validated before synthesis and dealt
with.

– Tuning: Parameters can be manually tuned and are intuitive to the problem
being solved, as they increase or decrease the size of the equation to be solved.

– Deployment: It needs a solver for an equation to be run inside the control
loop, which could be difficult or unfeasible to do in a final implementation.
Our implementation did not suffer of these problems, but running two MPCs
simultaneously was computationally intensive.

For the data-driven controller or DDPG+PI:

– Analysis: No great amount of previous knowledge or expert knowledge is
required. Just a small amount of information about the situation itself and
how the states could be related is necessary to formulate a reward function.

– Architecture: After choosing a control architecture, no further work is
necessary, and the algorithm can be implemented. The architecture itself
allows for integration of any input into the controller. Yet, the selection of
control structure is closely intertwined with a successful synthesis process.
Careful iterative tests are needed to augment the right input signals and add
any necessary control structures (e.g. additional PID blocks).

– Synthesis: Takes a large amount of time and computational power, as trai-
ning requires replay and repetition of the driving scenario.

– Tuning: Takes a large amount of time, mainly due to the time it takes to
synthesise each controller. Tuning of the parameters is not intuitive, and a
rework of the reward function could be unpredictable in terms of design time
and obtained performance.

– Deployment: It only needs to use the matrix weights, with sequential mul-
tiplication of the sensor inputs to create the control rule inside the control
loop. Hence, the controller was easily portable between Python and MAT-
LAB.

MPC does not have a native way of dealing with a great number of sensors,
if the model does not incorporate them. RL can accommodate these sensors as
part of the architecture. RL cannot accommodate big tracking errors or adapt
to very different scenarios from the one the training was done, reason why adhoc
methods like the PI controller improve the nominal performance.

Initial tests led to both controllers producing instabilities when control was
given to them from human driving. As suggested in previous studies [21], a speed-
dependent transition window (e.g. faster switching at higher speeds) with a 1st

order transfer function was implemented. Smooth transitions were generated,
and instabilities were avoided.

4.2 Speed Limit Violation

The vehicle is driven over a speed limit by a human driver past 2 different
pre-defined maximum velocities (100km/h and 110km/h), with the controllers
taking over and reducing the speed to 70km/h and 90km/h respectively.

0 5 10 15 20 25 30 35 40
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T
hr

ot
tle

DDPG+PI
MPC
Switch

(a) (b)

Fig. 1: Controllers takeover from driver due to over speeding at 100 kmh−1 (dot-
ted black line). Throttle (a) and Vehicle velocity (b)

Both controllers manage to take the speed down successfully. Figures 1a and
2a show the change in throttle control signal when controllers take over. Figures
1b and 2b show the resulting change in velocity. Controllers taking-over happen
around a time of 10s. MPC shows a smoother deceleration in all cases. This is
due to the action constraints applied on the rates of throttle and brake usage for
MPC, compared to the possible integral term winds up as the over-speed value
is reached for the RL controller.

0 5 10 15 20 25 30 35 40
Time [s]

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

T
hr

ot
tle

DDPG+PI
MPC
Switch

(a)

0 5 10 15 20 25 30 35 40
Time [s]

0

20

40

60

80

100

120

V
el

oc
ity

 [
km

h-1
]

DDPG+PI
Switch
MPC

(b)

Fig. 2: Controllers takeover from driver due to over speeding at 110 kmh−1 (dot-
ted black line). Throttle (a) and Vehicle velocity (b)

4.3 Lane Departure

The vehicle is driven off track by a human driver at two different velocities
(60km/h and 110km/h), with the controllers taking over once the lateral error
increases over a threshold.

0 5 10 15 20 25 30 35 40
Time [s]

-1

-0.5

0

0.5

1

St
ee

ri
ng

 [
ra

d]

DDPG+PI
Switch
MPC

(a)

0 5 10 15 20 25 30 35 40
Time [s]

-15

-10

-5

0

5

10

L
at

er
al

 E
rr

or
 [

m
]

DDPG+PI
Switch
MPC

(b)

Fig. 3: Controller takeover from driver due to lane departure at 60 kmh−1 (dotted
black line). Steering Wheel Angle (a) and Vehicle lateral error (b)

Both controllers take the vehicle back on track. Figures 3a and 4a show the
change in steering wheel control signal when controllers take over. Figures 3b
and 4b show the resulting change in lateral error. Different performance traits
between controllers and between nominal speeds were obtained, which complies
to the intuitive idea that a car is more difficult to control at higher speeds.
The RL controller shows higher oscillatory behaviour for the steering control,
especially for the low speed case. The MPC controller shows consistently smooth
steering control in both cases, but a more aggressive corrective manoeuvring for
high speeds, which may lead to the vehicle spinning out of control.

The difference in behaviour could be linked to both controllers’ architectures.
The RL controller had a PI controller added on top to overcome its limitations

0 5 10 15 20 25 30 35 40
Time [s]

-1

-0.5

0

0.5

1

St
ee

ri
ng

 [
ra

d]

DDPG+PI
Switch
MPC

(a) (b)

Fig. 4: Controller takeover from driver due to lane departure at 110 kmh−1

(dotted black line). Steering Wheel Angle (a) and Vehicle lateral error (b)

with regards to error tracking, which allowed for better performance, especially
at high speeds, but reduced performance for low speeds; as the RL controller
was trained with higher speeds, tracking low speeds is specially challenging for
it. The MPC controller allows to minimise the magnitude and frequencies of the
lateral and longitudinal acceleration, resulting in smoother rides at all speeds,
but reduced performance at high speeds due to the limitations of its internal
model.

5 Conclusions

The design process for a controller used in semi-autonomous vehicles was pre-
sented, using two different design approaches (one model-based, the other data-
driven). The controllers were directly compared with each other based on their
performance when used to correct a speed limit violation or lane departure si-
tuation created by a human driver.

Both approaches were successful in producing a controller that keeps the
vehicle in the lane and under a certain speed limit. Each had different benefits
due to the design process, mainly with the MPC controller having direct ways to
define control requirements and constraints, intuitive tuning and reduced synthe-
sis time, and with the RL needing no expert knowledge about the model, support
of large number of sensors and the high speed that its final implementation runs
on.

For Lane departure correction, the RL controller seemed to perform better
than the MPC controller as it changed vehicle position more gradually, resulting
in a less aggressive return to the centreline. For the speed correction, however,
the MPC controller seemed to perform better due to its control constraints,
allowing a gentle deceleration.

The speed-dependent window smoothed the transition between manual hu-
man control and automatic controller; yet the controllers could generate discom-
fort to a human driver which should be considered when designing the controller.
Restricting the vehicle’s acceleration in the xy plane would reduce the possibility
of inducing motion sickness or discomfort[6].

The fact that the model-based controller showed similar performance to the
data-driven controller using less sensors is worth mentioning. This could be re-
lated to the predictive nature of the MPC, which achieves an estimation of the
state of the vehicle further ahead in the track without the laser sensor; this es-
timation would not consider sudden changes, evidenced of that is the reduced
performance of the controller when cornering at high speeds.

References

1. Automotive, S.: Vehicle Dynamics Terminology : J670E (1976)
2. Bernhard Wymann, Rémi Coulom, Christos Dimitrakakis, Eric Espié, Andrew

Sumner: TORCS, The Open Racing Car Simulator (2014), http://www.torcs.org
3. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: Learning affordance for

direct perception in autonomous driving. In: ICCV. pp. 2722–2730. IEEE (2015)
4. Gillespie, T.D.: Vehicle Dynamics. Warren dale (1997)
5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward

neural networks. In: AISTATS. pp. 249–256 (2010)
6. Griffin, M.J.: Handbook of human vibration. Academic press (2012)
7. Haddadin, S., Haddadin, S., Khoury, A., Rokahr, T., Parusel, S., Burgkart, R.,

Bicchi, A., Albu-Schäffer, A.: On making robots understand safety: Embedding
injury knowledge into control. AISTATS 31(13) (Nov 2012)

8. ISO, I.: ISO 13482:2014: Robots and robotic devices – Safety requirements for
personal care robots. International Organization for Standardization (2011)

9. Jacobs, M.: videantis � Handy list of automotive ADAS acronyms
10. Keviczky, T., Falcone, P., Borrelli, F., Asgari, J., Hrovat, D.: Predictive control

approach to autonomous vehicle steering. In: ACC. IEEE (2006)
11. Kim, J.S.: Recent advances in adaptive MPC. In: ICCAS (2010)
12. Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle

models for autonomous driving control design. In: IV. IEEE (2015)
13. Lefevre, S., Carvalho, A., Borrelli, F.: A Learning-Based Framework for Velocity

Control in Autonomous Driving. IEEE T-ASE 13(1) (Jan 2016)
14. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Sil-

ver, D., Wierstra, D.: Continuous control with deep reinforcement learning.
arXiv:1509.02971 [cs, stat] (2015)

15. Lima, P.: Predictive control for autonomous driving. PhD Thesis, PhD thesis,
KTH, 2016. Unpublished thesis (2016)

16. Maciejowski, J.M.: Predictive control: with constraints. Pearson education (2002)
17. Morari, M., H. Lee, J.: Model predictive control: past, present and future. Com-

puters & Chemical Engineering 23(4–5), 667–682 (May 1999)
18. Pomerleau, D.A.: Efficient training of artificial neural networks for autonomous

navigation. Neural Computation 3(1), 88–97 (1991)
19. Shia, V., Gao, Y., Vasudevan, R., Campbell, K., Lin, T., Borrelli, F., Bajcsy, R.:

Semiautonomous Vehicular Control Using Driver Modeling. IEEE ITS (2014)
20. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction, vol. 1. MIT

press Cambridge (1998)
21. VENTURER: VENTURER Trial 1: Planned handover. Tech. rep. (May 2017)
22. Watkins, C.J., Dayan, P.: Q-learning. Machine learning 8(3-4), 279–292 (1992)
23. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. In: Reinforcement Learning, pp. 5–32. Springer (1992)

http://www.torcs.org

	Comparing Model-based and Data-driven controllers for an autonomous vehicle task

