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Abstract

Background: Identifying phenotypic correlations between complex traits and diseases can provide useful etiological
insights. Restricted access to much individual-level phenotype data makes it difficult to estimate large-scale phenotypic
correlation across the human phenome. Two state-of-the-art methods, metaCCA and LD score regression, provide an
alternative approach to estimate phenotypic correlation using only genome-wide association study (GWAS) summary
results. Results: Here, we present an integrated R toolkit, PhenoSpD, to use LD score regression to estimate phenotypic
correlations using GWAS summary statistics and to utilize the estimated phenotypic correlations to inform correction of
multiple testing for complex human traits using the spectral decomposition of matrices (SpD). The simulations suggest that
it is possible to identify nonindependence of phenotypes using samples with partial overlap; as overlap decreases, the
estimated phenotypic correlations will attenuate toward zero and multiple testing correction will be more stringent than in
perfectly overlapping samples. Also, in contrast to LD score regression, metaCCA will provide approximate genetic
correlations rather than phenotypic correlation, which limits its application for multiple testing correction. In a case study,
PhenoSpD using UK Biobank GWAS results suggested 399.6 independent tests among 487 human traits, which is close to
the 352.4 independent tests estimated using true phenotypic correlation. We further applied PhenoSpD to an estimated
5,618 pair-wise phenotypic correlations among 107 metabolites using GWAS summary statistics from Kettunen’s
publication and PhenoSpD suggested the equivalent of 33.5 independent tests for these metabolites. Conclusions:
PhenoSpD extends the use of summary-level results, providing a simple and conservative way to reduce dimensionality for
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2 PhenoSpD for phenotypic correlation estimation and multiple testing correction

complex human traits using GWAS summary statistics. This is particularly valuable in the age of large-scale biobank and
consortia studies, where GWAS results are much more accessible than individual-level data.

Keywords: Phenotypic correlation, multiple testing, LD score regression, MetaCCA, Genome-wide association study,
Summary Statistics

Introduction

Phenotypic correlations between complex human traits and dis-
eases can provide useful etiological insights into the under-
standing of mechanisms across the human phenome. However,
a lack of individual-level phenotype data makes it difficult to es-
timate the phenotypic correlations between human traits and
diseases. Fortunately, we are now in the post genome-wide as-
sociation study (GWAS) era, in which many GWAS summary re-
sults are openly accessible for a large number of human diseases
and traits [1]. It can therefore be valuable to use these genetic
association summary statistics to reconstruct total phenotypic
correlations across the human phenome. The key assumptions
here are that phenotypic correlation comprises both genetic and
nongenetic (environmental) components and that the genetic
association information is able to capture both genetic and non-
genetic components of the phenotypic correlation [2].

Here, we consider two methods that can be used (but were
not designed) to estimate phenotypic correlations using GWAS
summary statistics as by-products of the main purposes of those
methods. First, MetaCCA [3] is a multivariate meta-analysis tool
that allows multivariate representation of both genotype and
phenotype. As a by-product, metaCCA estimates the phenotypic
correlation between two traits based on a Pearson correlation be-
tween two univariable regression coefficients (betas) across a set
of genetic variants. Second, bivariate linkage disequilibrium (LD)
score regression [2] is a state-of-the-art approach to estimate ge-
netic correlations between a pair of traits. As a consequence,
the bivariate LD score regression approach allows estimation of
phenotypic correlation among the overlapping samples of two
GWASs. Assuming the genetic and nongenetic components of
two phenotypes are independent, the genetic covariance matrix
(built up by the beta coefficients of the genetic association test)
will capture the genetic effects, while the error covariance ma-
trix (built up by the error term of the genetic association test)
will capture the environmental (nongenetic) effects. Using a bi-
variate LD score regression model, we are able to capture both
(genetic correlation will be represented by the slope of the re-
gression model and phenotypic correlation will be represented
by the intercept of the regression model) [2].

Large-scale genetic association databases such as MR-Base
[4] and LD Hub [5] have harmonized GWAS summary-level re-
sults for roughly 1,700 human traits. This provides a timely
opportunity to estimate the phenotypic correlation structure
across a wide range of high-dimensional, complex molecular
traits, such as metabolites, that are potentially highly correlated.
Bonferroni correction would markedly overcorrect for the in-
flated false-positive rate in such correlated datasets, resulting
in a reduction in power. An appropriate method to correct for
multiple testing among human traits and diseases is the spec-
tral decomposition of matrices (SpD) [6, 7]. Here, we combine LD
score regression with SpD to estimate the number of indepen-
dent tests using only summary-level GWAS data.

Methods
Overview of PhenoSpD

Fig. 1 illustrates the key steps of the proposed pipeline,
PhenoSpD, as follows: (1) harmonize GWAS summary results
from the same sample; (2) apply the harmonized GWAS results
to LD score regression to estimate the phenotypic correlation
matrix of the traits; and (3) apply the SpD approach to the phe-
notypic correlation matrix and estimate the number of indepen-
dent variables among the traits.

Simulation of phenotypic correlation estimation

First, we simulated the influence of the number of single nu-
cleotide polymorphisms (SNPs), sample sizes of two GWASs, and
sample overlap between two GWASs on the accuracy of the phe-
notypic correlation estimation. As shown in Fig. 2, we first cre-
ated two samples A and B with different numbers of individuals
(from 300 to 10,000 individuals), where the sample overlap be-
tween sample A and B ranged from 10% to 90%. We assumed
complex human traits were influenced by both genetic and en-
vironmental factors, so we simulated the phenotype data of two
correlated human traits (phenotype 1 and phenotype 2 with a
phenotypic correlation of –0.7) based on varying numbers of ge-
netic factors (ranging from 10 to 10,000 SNPs), different LD struc-
ture (r2 between 0 and 0.9), and 100 environmental factors. We
then assigned the phenotypic correlation to its genetic and envi-
ronmental components, each of which explained 10% to 90% of
the total phenotypic variance. These genetic and environmental
components were further assigned to each of the genetic and en-
vironmental factors in the model randomly. We also simulated
two extreme cases where either the genetic or environmental
components dominate the phenotypic correlation. After simu-
lating the two phenotypic traits and the genotypic data in sam-
ples A and B, we conducted four GWASs (GWASs of phenotype 1
in samples A and B; GWASs of phenotype 2 in samples A and B)
and recorded the summary statistics of these GWASs. To mea-
sure the accuracy of phenotypic correlation using GWAS sum-
mary statistics, we (1) calculated the observational phenotypic
correlation (the Pearson correlation) between trait 1 and trait 2
in samples A and B separately and (2) estimated the phenotypic
correlation between trait 1 and trait 2 in the overlapped samples
using both metaCCA and LD score regression. We simulated step
(2) 100 times and estimated the mean and standard deviation of
the estimated phenotypic correlations. Finally, we compared the
estimated phenotypic correlation with the observational pheno-
typic correlation and recorded the deviation between observed
and estimated correlations. To demonstrate the simulation sys-
tematically, we explored the influence of the following proper-
ties: sample size; sample overlap; unbalanced sample size in
samples A and B; number of SNPs; and LD. The R script for this
simulation is provided as a Supplementary File (simulation.R).
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Figure 1: Flowchart of PhenoSpD.

Figure 2: Demonstration of the simulation. For two samples A and B, we sim-
ulated the genotype data and phenotype data of two correlated human traits,
phenotype 1 and phenotype 2. The sample overlap between sample A and sam-

ple B ranged from 10% to 90% in this simulation.

Validation of phenotypic correlation estimation using
real GWAS data

We further tested the accuracy of the phenotypic correlation es-
timation using GWAS summary statistics of 487 traits from the
UK Biobank [8] (Supplementary Table S2). We calculated the ob-
servational phenotypic correlation using the actual phenotype
data (Supplementary Table S4), which was used as a benchmark
to evaluate the accuracy of our phenotypic correlation estimates
using LD score regression.

In addition, we tested whether the number of causal variants
(which are tagged by the genetic association signals) may affect
the accuracy of the phenotypic correlation using four pairs of
metabolites from Shin et al. [9]. The four pairs of metabolites
were selected because they have a wide range of observed phe-
notypic correlation from 0.2 to 0.85. To validate the accuracy, we
compared the observed phenotypic correlation with the phe-
notypic correlation estimated by LD score regression. To con-
sider the number of causal variants in this validation, we set
up eight groups of SNPs based on their effects on the traits. The
eight groups were all GWAS SNPs; SNPs with Chi square statis-
tics (square of Z scores) smaller than 40; SNPs with X2 <30; SNPs
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4 PhenoSpD for phenotypic correlation estimation and multiple testing correction

with X2 <20; SNPs with X2 <10; SNPs with X2 <3.84; SNPs with
X2 <2.69; and SNPs with X2 <1. In other words, we progressively
reduced the number of casual variants from the model and eval-
uated the impact of this on the accuracy of the phenotypic cor-
relation estimation.

Based on the simulation and real case validation, we listed
our traits selection criteria in Supplementary Table S1.

Estimating the phenotypic correlations

Within our GWAS summary results database containing roughly
1,700 human traits, we selected 107 metabolites from Kettunen
et al. [10] as a real case application since these complex molec-
ular traits are potentially highly correlated. We then applied LD
score regression to these 107 metabolites to estimate the pheno-
typic correlation matrix (Supplementary Table S3), which meets
the suggested minimum parameters of the LD score regression
method (traits with large sample size [e.g., N >5000], good SNP
coverage [e.g., number of SNPs >200,000], and heritable [e.g., Z
score of the SNP heritability >2]).

Multiple testing correction for human traits

We applied the SpD approach to estimate the number of inde-
pendent tests among the 107 metabolites and 487 UK Biobank
traits. The observed phenotypic correlations and correlations
estimated by LD score regression were used as input for the
SpD approach. We implemented the R code of the well-known
method SNPSpD [6, 7] to estimate the number of independent
traits using the phenotypic correlation matrix as input (Fig.1).
The output of the SpD function is the estimated number of in-
dependent tests.

Results
Evaluation of phenotypic correlation estimation using
simulated and real GWAS summary data

Tables 1 and 2 show the influence of changing various param-
eters on the accuracy of the phenotypic correlation estimation
for metaCCA and LD score regression, respectively. Our general
observations from the simulation are that since the genetic as-
sociation information is able to capture both genetic and non-
genetic components of the phenotypic correlation, we can es-
timate such correlation for any human trait, even for nonheri-
table traits. Also, we should apply LD score regression to esti-
mate phenotypic correlation in a one-sample setting (i.e., where
all GWAS are performed in the same sample). It is possible to
identify nonindependence of phenotypes using GWAS results
from samples with only a partial overlap; however, as overlap
decreases, correlations will attenuate toward zero. In addition,
metaCCA will provide approximate genetic correlations rather
than phenotypic correlation, which limits its application in our
approach to evaluating multiple testing.

One important question here is how the genetic and envi-
ronmental factors affect the phenotypic correlation estimation.
As shown in Table 1, we found that when the environmental
components dominate the phenotypic correlation, the metaCCA
estimates will bias toward the null. In addition, when the ge-
netic component dominates, metaCCA estimates will bias to-
ward the genetic correlation. This fits the assumption that the
genetic covariance matrix (built from the beta coefficients from
two GWASs) will only capture the genetic effects. MetaCCA used
the beta coefficients to estimate the correlation, which approxi-
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6 PhenoSpD for phenotypic correlation estimation and multiple testing correction

mately estimates the genetic correlation within the overlapped
samples. This is consistent with the simulation results in Table
1.

In contrast to metaCCA, LD score regression estimates both
the genetic covariance matrix and the nongenetic covariance
matrix (the error variance in the estimates of effects). In other
words, given a bivariate setting (two GWASs), the slope of the
LD score regression represents the genetic correlation, while the
intercept term of the LD score regression represents the pheno-
typic correlation. This is consistent with the results in Table 2.
We also found that the accuracy of the correlation estimation
of LD score regression is mainly influenced by the proportion of
overlapping individuals between two GWAS studies. For exam-
ple, the deviation between observed and estimated phenotypic
correlation improved from 83.3% to 6.1% when the percentage of
sample overlap between two samples increased from 10% to 90%
(Table 2). In addition, we observed that the number of SNPs in-
cluded in the model will also influence the accuracy of the phe-
notypic correlation estimation. We also found that if all tested
SNPs were from one or a few LD blocks (in other words, in high LD
with each other), the accuracy of the phenotypic correlation will
decrease (Table 2). Based on these two observations, we recom-
mend including SNPs from as many genomic regions as possible
to maximize the accuracy of the estimation. Finally, we observed
that sample size of the GWAS influences the accuracy of the es-
timation, so we included GWASs with sample sizes of more than
5000 (Table 2).

We further tested the accuracy of phenotypic correlation es-
timation by comparing the observed phenotypic correlations
(Supplementary Table S4) using real phenotype data from UK
Biobank [8] and the estimated phenotypic correlation (Supple-
mentary Table S5) using UK Biobank GWAS results via LD score
regression. Fig. 3 shows that the estimated phenotypic correla-
tions using LD score regression are consistent with the observed
phenotypic correlations (r2 = 0.71). The exception is that some
traits with large observed correlation have estimated correlation
toward the null. Two possible interpretations of this discrepancy
are that the phenotypic correlations of some UK Biobank traits
were poorly estimated and potentially mis-specified due to lim-
ited sample size or that due to missingness of the phenotype
measurements, the sample overlap was limited between some
UK Biobank traits.

Fig. 4 illustrates the influence of the number of causal vari-
ants (which are tagged by the genetic association signals) on
the accuracy of the phenotypic correlation using four pairs of
metabolites from Shin et al. [13]. There is a clear trend that
the estimated phenotypic correlations were further away from
the observed phenotypic correlation when more and more vari-
ants with real effects were removed from the model. Based on
this real case study, we recommend including all SNPs from the
GWAS when estimating phenotypic correlation using LD score
regression.

A practical comparison between metaCCA and LD score
regression on estimating phenotypic correlation

Both LD score regression and metaCCA have advantages and
limitations when used to estimate phenotypic correlation. In
this section, we summarize the practical difference between the
two to inform PhenoSpD users on how to choose the appropriate
methods.

LD score regression is designed to estimate genetic correla-
tion (the slope of the regression model) between a pair of hu-
man traits. As a by-product, it also provides the pairwise phe-

notypic correlation estimation (the intercept of the regression
model) with standard errors. It is influenced by sample overlap
(when there is no sample overlap between two GWASs, the phe-
notypic correlation estimation will be zero). However, its appli-
cation is limited to traits with large sample size (e.g., N >5,000),
good SNP coverage (e.g., number of SNPs >200,000), and herita-
ble (Z score of SNP heritability >2) to fit the assumptions of LD
score regression [11].

MetaCCA can be applied to almost all GWASs (e.g., in our sim-
ulation, the sample size >300 and the number of SNPs >1,000).
However, it provides the approximate genetic correlation rather
than the phenotypic correlation. We consider it can only be ap-
plied to the situation in which phenotypic and genetic correla-
tion line up very well, such as metabolites [12]. It only provides
the central estimation of the phenotypic correlation but no stan-
dard error and P value of the correlation. In addition, the method
does not adjust the influence of sample overlap; to maximize the
accuracy of the phenotypic correlation estimation, we could put
GWASs with good sample overlap into a group and only apply
metaCCA to each group of GWASs (rather than cross groups).

The phenotypic correlations of the human metabolome

In a real case study, we applied LD score regression to the hu-
man metabolome. We estimated 5,618 pair-wise phenotypic cor-
relations among these 107 metabolites from Kettunen et al. [10]
More details of the metabolites are listed in Supplementary Ta-
ble S3. The phenotypic correlations among 107 metabolites and
487 UK Biobank traits estimated by LD score regression are pre-
sented in Supplementary Tables S5 and S6.

Multiple testing correction of the human phenome

Table 3 shows the number of independent traits for two high-
dimensional, complex human traits datasets. PhenoSpD using
GWAS results suggested 399.6 independent tests among 487
traits from UK Biobank, which is close to 352.4 independent
tests estimated using real phenotypic correlation. For metabo-
lites from Kettunen et al., PhenoSpD suggested 33.5 as the num-
ber of independent tests for theses metabolites, which greatly
reduced the dimensionality for these complex molecular traits.

Discussion

In this study, we present an integrative method, PhenoSpD, that
allows phenotypic correlation estimation and multiple testing
correction for human phenome using GWAS summary statis-
tics. We illustrate the application of PhenoSpD by estimating the
phenotypic correlation structure and number of independent
tests of 107 metabolites from Kettunen’s study [10] and 487 UK
Biobank traits for the very first time. These results showcase the
ability of PhenoSpD to estimate an appropriate phenotypic cor-
relation and multiple testing correction for complex and molec-
ular traits when samples overlap between the GWASs.

Advantages and limitations of PhenoSpD

There are a few key advantages of PhenoSpD. First, our proposed
approach utilizes the by-products of two established methods—
metaCCA and bivariate LD score regression. We extended the
simulations and real-world application of the by-products of
these two methods and established that metaCCA can only be
applied to metabolites and that bivariate LD score regression
can only be used to estimate phenotypic correlation under cer-
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Figure 3: The comparison between the observed and estimated phenotypic correlations using LD score regression among 487 traits from UK Biobank. Each point is
one trait. The red line is X = Y. Some traits got estimated phenotypic correlation out of bound (correlation more than one). This can occur due to the noises within the
error covariance matrix (built up by the error term of the genetic association test) of a pair of traits.

Figure 4: Validation of the influence of number of causal variants on phenotypic correlation estimation. Four pairs of metabolites (leucine against N1-methyl-3-

pyridone-4-carboxamide, tryptophan, phenylalanine, and valine) from Shin et al. [13] were selected based on their observed phenotypic correlations (0.2, 0.4, 0.6, and
0.85, respectively). Eight sets of SNPs were selected to estimate the phenotypic correlations using LD score regression. The 8 sets were all GWAS SNPs; SNPs with Chi
square statistics (square of Z scores) smaller than 40; SNPs with X2 < 30; SNPs with X2 < 20; SNPs with X2 < 10; SNPs with X2 < 3.84; SNPs with X2 < 2.69; and SNPs

with X2 <1. Notes: Four columns on the x-axis were the four selected pairs of metabolites. The y-axis was the value of the phenotypic correlation. Dark blue points are
the observed phenotypic correlations (noted as rP-OBS). The lighter blue points are the eight groups of SNPs included in the phenotypic correlation estimation using
LD score regression (noted as LDSC X2).
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8 PhenoSpD for phenotypic correlation estimation and multiple testing correction

Table 3: Summary of number of independent traits for the complex human trait networks

First author Category N traits N SNPs N indep

Kettunen et al. Metabolites 107 9 826 292 33.5
UK Biobank All traits 487 10 879 180 399.6

Abbreviations: N traits: number of traits in each molecular network; N SNPs: number of SNPs in each network; and N indep: number of independent tests in each network.

tain conditions (Supplementary Table S1), which adds signifi-
cant value to the previous findings ( [2, 3]).

In addition, we provided a simple and user-friendly tool to
correct for multiple testing for large-scale “omics” data analyses
and phenome-wide association studies (PheWAS). The multiple
testing correction will still be stringent (since limited sample
overlap between two GWASs will drive phenotypic correlation
toward null) but less stringent than Bonferroni correction. This
approach is therefore particularly valuable for GWAS of complex
human traits such as metabolites and large-scale biobanks. As
exemplars, we cleaned and reformatted more than 594 GWAS
traits and precalculated the phenotypic correlation matrix for
these traits from a large-scale “omics” study and UK Biobank
[10, 8]. In the GitHub repository, we also provide the precalcu-
lated phenotypic correlation matrix of 221 × 221 complex hu-
man traits in LD Hub. This greatly simplifies the process of mul-
tiple testing estimation for these traits.

Following is a description of some limitations of PhenoSpD,
which are general limitations when estimating phenotypic cor-
relation using GWAS summary statistics:

(i) One sample setting: The samples of the two GWASs must
be from substantially overlapping samples to effectively es-
timate phenotypic correlation.

(ii) Genetic or environmental components:
(a) For metaCCA, when genetic components appear to

dominate the phenotypic correlation, using beta co-
efficients to estimate phenotypic correlation will bias
the estimation toward the genetic correlation. When
the environmental components (“environment” here
can be either shared environmental contributions or
stochastic phenotypic variation [13]) dominate the phe-
notypic correlation, using beta coefficients to estimate
phenotypic correlation will bias estimates toward the
null. We consider it can only be applied to the situa-
tion in which phenotypic and genetic correlation line
up very well, for example, metabolites [12].

(b) For LD score regression, the method is able to cap-
ture both genetic correlation (which is represented by
the slope of the regression model) and phenotypic cor-
relation (which is represented by the intercept of the
regression model). When environmental factors dom-
inate the phenotypic correlation (which means the
slope of LD score regression is close to zero), the inter-
cept (which is built up using the error term of the SNP-
trait association model) can still reconstruct a substan-
tial component of the phenotypic correlation.

(iii) Sample size of GWASs: We recommend sample size >5,000
for LD score regression and >300 for metaCCA.

(iv) Number of SNPs: The number of SNPs included in the
model should be more than 200,000 to get a more accurate
correlation estimation.

(v) SNP coverage: Ideally, SNPs across the whole genome
should be included in the model.

Potential application of PhenoSpD

The main application of PhenoSpD is to determine the appro-
priate multiple testing correction for high-dimensional pheno-
typic data from a single cohort or study (e.g., metabolomics [9],
epigenetics [14], transcriptomics [15], and proteomics [16] plat-
forms that assay hundreds to thousands of traits). This approach
is less stringent than the very conservative Bonferroni correc-
tion, which is inappropriate given that many phenotypes are
correlated and not actually independent. In an ideal world, if the
individual-level data for such studies would be easily and read-
ily available, it would be straightforward to determine the phe-
notypic correlations by using-individual-level phenotype data.
However, individual-level phenotype data is not as readily avail-
able as GWAS summary statistics (which are increasingly openly
accessible and downloadable).

Large-scale biobanks, such as UK Biobank [8], are increas-
ingly measuring a large number of phenotypes in the same sam-
ple. It is therefore likely to become more common for large-scale
GWAS studies of diverse phenotypes to be published from the
same set of participants, in contrast to the current situation of
lots of GWAS from different samples with different phenotypic
measurements. The proposed method will be particularly ap-
plicable for these biobanks. For example, recently automated
GWAS of more than 2,400 human traits has been performed in
the UK Biobank, enabling PhenoSpD analysis on a very large
number of individuals (data can be downloaded from [17]).

Moreover, PheWAS is becoming a very popular tool and the
dimensionality of PheWAS will increase greatly in coming years.
We are moving away from single, hypothesis-driven analyses to
high dimensional hypothesis-free PheWAS analyses. Tools such
as PhenoSpD are therefore potentially extremely useful for Phe-
WAS approaches such as MR-PheWAS [18] and MR-Base [4]. To
maximize the value of overlapping samples in published GWAS,
we recommended a specific strategy when applying PhenoSpD.
The strategy is, correlated traits tend to be measured and stud-
ied within the same pool of individuals from a specific con-
sortium. For example, anthropometric traits are mostly meta-
analyzed by the GIANT consortium [19-21]; and most of the
glucose- and insulin-related traits are studied in the MAGIC con-
sortium [22-24]. We could estimate the phenotypic correlations
inside each consortium. In such a way, we will be able to utilize
the overlapping samples to reconstruct part of the phenotypic
correlation.

In general, with the development of resources such as LD Hub
and MR-Base and large-scale phenotyping and GWAS in major
biobanks (e.g., UK Biobank), the proposed method, PhenoSpD,
will become more relevant.

Availability of supporting data

Project name: PhenoSpD
Project home page: https://github.com/MRCIEU/PhenoSpD
License: PhenoSpD is licensed under GNU GPL v3.
All data used in this manuscript are publicly available and can
be downloaded from the following links:
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GWAS results from Shin et al.: http://mips.helmholtz-muenche
n.de/proj/GWAS/gwas/gwas server/shin et al.metal.out.tar.gz
GWAS results from Kettunen et al.: http://www.computationalm
edicine.fi/data#NMR GWAS
UK Biobank GWAS results from Neale Lab: http://www.nealelab
.is/blog/2017/7/19/rapid-gwas-of-thousands-of-phenotypes-f
or-337000-samples-in-the-uk-biobank.
Operating systems: Linux, OS X, Windows
Programming languages: R; R code and documentation for
PhenoSpD V1.0.0 is available online https://github.com/MRCIEU/
PhenoSpD
Research resource identifier: PhenoSpD, RRID:SCR 016359
An archival copy of the GitHub repository is also available via the
GigaScience database, GigaDB [25].

Additional files

PhenoSpD-Supplementary Tables final-v2.xlsx
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GWAS: genome-wide association study; LD: linkage disequilib-
rium; PheWAS: phenome-wide association study; SNP: single
nucleotide polymorphism; SpD: spectral decomposition of ma-
trices.
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