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Predicting Out-of-View Feature Points for Model-Based
Camera Pose Estimation

Oliver Moolan-Feroze and Andrew Calway1

Fig. 1: Example showing camera pose estimation given an incomplete view of an object. Left) Incomplete view of a chair
that has been cropped from a larger image. Centre) Chair feature points extracted using our CNN. Locations of features
outside of the cropped area have been predicted. Right) Camera pose has been computed and the object model projected
back into the original image.

Abstract— In this work we present a novel framework that
uses deep learning to predict object feature points that are out-
of-view in the input image. This system was developed with
the application of model-based tracking in mind, particularly
in the case of autonomous inspection robots, where only partial
views of the object are available. Out-of-view prediction is
enabled by applying scaling to the feature point labels during
network training. This is combined with a recurrent neural
network architecture designed to provide the final prediction
layers with rich feature information from across the spatial
extent of the input image. To show the versatility of these out-
of-view predictions, we describe how to integrate them in both
a particle filter tracker and an optimisation based tracker. To
evaluate our work we compared our framework with one that
predicts only points inside the image. We show that as the
amount of the object in view decreases, being able to predict
outside the image bounds adds robustness to the final pose
estimation.

I. INTRODUCTION
Presented with an incomplete view of an object, a human

is able to make predictions about the structure of the parts
of the object that are not currently visible. This allows us to
safely navigate around large objects and enables us to predict
the effects of various manipulations on smaller objects. Both
of these skills are important areas of investigation for robotics
researchers. In this work, we look at the problem of out-
of-view prediction in the context of model-based tracking,
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where the camera pose (location and orientation) is estimated
from incomplete views of a known object. In a typical model-
based tracker, features are extracted from an image in the
form of points, lines, or other higher level cues. By matching
these features to a representation of the tracked model, a
estimate of the camera pose can be computed. Key to this
process is that a sufficient number of features are extracted
so as to be able to get a robust pose estimate. When only a
partial view of the object is available, the number of visible
features is reduced and consequently tracking performance
is affected. By predicting out-of-view, we expand the set of
possible correspondences, and increase the robustness of the
tracking.

One area where this is particularly important is for au-
tonomous inspection. In this application, it is often necessary
for the inspection platform to be close to the surface to collect
useful data. This results in large areas of the structure falling
out-of-view of the inspection platform’s cameras. Being able
to predict this missing structure will enable a more robust
tracking, which in-turn provides safe navigation as well
as making possible post-inspection data processing such as
image stitching and 3D reconstruction.

The main contribution of this work is our out-of-view
feature point prediction method which is based on a Convolu-
tional Neural Network (CNN). The architecture is modelled
around the encoder-decoder design where the output of the
network is a set of heatmaps where a higher intensity value
corresponds to a higher confidence of feature point loca-



tion. Typically these networks produce a direct relationship
between locations on the input image and locations on the
output heatmap. We proposed to break this relationship by
scaling the labels to bring a greater extent of the object into
the heatmaps than is contained within the input image.

In Section II we review the previous literature on the
use CNNs in both tracking and feature point extraction. In
Section III we detail our method for feature point prediction
using CNNs and how these predictions can be integrated into
a tracking system. In Section IV we present a set of exper-
iments to show how out-of-view predictions produce more
robust pose estimates when dealing with partial views and
present some example results of the predictions integrated
into a particle filter tracker. Finally, in Section V we give
some conclusions and our goals for future work.

II. RELATED WORK

The research applying deep learning to camera pose es-
timation can be split into two groups: those that take an
end-to-end approach where pose is regressed directly from
an input image, and those that use deep learning as an
intermediary step that can be integrated into a traditional
tracking framework. Of the end-to-end group, the first work
to tackle this is in [1]. The authors build a end-to-end
pose regression network named PoseNet which consists of
a convolutional part, based in the VGG [2] style, with two
dense blocks appended to regress the translation and rotation.
This is trained using views accompanied with pose labels
computed using structure from motion (SFM). Through
leveraging transfer learning, they are able to train a network
which can predict pose in both indoor and outdoor scenes
using only a small number of labelled images. The authors
expand on this in [3], where they explore the use of Bayesian
Deep Learning to provide a measure of uncertainty alongside
the pose estimate. Having uncertainties is beneficial in a
localisation framework as they provide a means to reject
estimates as incorrect if the certainty is low. In [4], this
work is further expanded through the use of a novel loss
function. In the previous PoseNet methods, the network was
trained by minimising the mean squared error between the
network output and the label, where the label contains an
translation and a rotation represented as a quaternion. As
the difference in scale of these two values can be large,
an arbitrary weighting factor is used when combining the
differences in the loss function. To address this, the authors
train the network in a “geometrical” way by minimising
the mean squared differences between scene points when
projected through the network output and label using a
pinhole camera model. This removes the need for arbitrarily
chosen weighting values.

The end-to-end pose regression has been adapted by Clark
et.al. [5] to take advantage of the temporal smoothness
between video frames to improve pose estimates. The authors
stack a series of Long Short-term memory (LSTM) layers
after the convolutional part of the network, which are able
to integrate features from previous time steps to improve
the robustness of the pose estimates. They show that this

information provides large accuracy improvement over the
original PoseNet method. Recurrent neural networks (RNNs)
are also used in [6] where they are applied to visual odome-
try. The authors state that the recurrent units implicitly learn
the motion dynamics of the system, eliminating the need for
complex geometrical pipelines.

At this time, there remain a number of problems with the
end-to-end learning of camera pose. The most prohibitive
of these is that pose-labelled images are need to train the
network. This data is often hard to obtain, and a sufficient
amount of it is needed to train models that will generalise
well. Furthermore, as shown in the evaluation of the cited
papers, traditional geometric based tracking methods still
outperform the end-to-end models.

The work in [7] addresses these problems by choosing
not to directly regress the pose of the camera, and instead
uses a CNN to extract model feature points in the form of
a set of heatmaps. The peaks of the heatmaps are chosen as
feature locations, and the values of the peaks indicate the
location uncertainty. Given a known 3D model, the pose of
the camera is then estimated through a minimization process.
To generate the heatmaps the authors borrow the stacked
hourglass network architecture [8], which combines multiple
encoder-decoder networks one after the other. This enables
the learning of long range relationships between feature
points. This network architecture was initially proposed for
the task of human pose estimation which is where we find
the state-of-the-art in feature point estimation.

The use of CNNs in the extraction of joint locations for
human pose estimation is well established. Except for the
work in [9], which directly regresses the (x, y) locations
of the joints, the majority of the methods – as well as our
own work – produce heatmaps of the locations. As explained
in [10], the reason for this is that during training the direct
regression method does not internalise as well the spatial re-
lationships between the points. Indeed, much of the literature
in this field is aimed at producing methods that can leverage
the spatial relationships to produce accurate predictions. This
is achieved in [8] by the stacking of multiple encoder-
decoder networks. In [11], the authors propose a sequential
architecture that applies multiple CNNs one after the other
to iteratively improve the point predictions. This is combined
with intermediate supervision of the learning at each stage
to improve training. Carreira et. al. [12] address this through
the use of an iterative process which fine-tunes the prediction
output over a number of iterations. Each iteration seeks
only to make small positive corrections to the output of
the previous iteration. In [13], another iterative method is
proposed which uses temporal information from video in the
form of optical flow fields to improve point prediction over
a number of frames. One of the problems with a stacked
or iterative method is the extra computational overhead
required, which depending on the size of the network can
be prohibitive for a tracking based system.



Fig. 3: Example labels for different produced by different
scale values. On the left is the input image showing a partial
view of a chair. To the right are labels that are produced
using s values of 1, 1

2 , 1
3 , 1

4 . The smaller the scale value,
the larger number of out-of-view points are brought into the
label.

III. METHODS

A. Method Overview

In this section we will describe our method for camera
pose estimation from partial views of an object. Similar to the
work in [7], our method is split into two parts. First, given an
image containing an incomplete view of the tracked object,
2D feature points corresponding to 3D locations on the object
are extracted from the image using a CNN. Second, the
locations of the 2D features are used to compute the pose of
the camera. As the focus of this work is predicting out-of-
view feature points, the majority of this section is devoted to
the first part. We do however describe two methods by which
the predictions can integrated into a tracking framework:
one based on a particle filter, and one based on direct
optimisation.

B. Predicting out-of-view feature points using CNNs

In our system, we represent the tracked object as a set
of 3D points Pm = {pm1 , . . . , pmn } ∈ R3. These points are
chosen so as to correspond to easily identifiable locations as
well as to provide enough 3D structure to be able to robustly
estimate the pose. Using a pinhole camera model with a
translation t, rotation R, and camera intrinsics K we can
project the model points Pm to a set of corresponding 2D
points Pc = {pc1, . . . , pcn} ∈ R2 on the image plane using

pci = K [R|t] pmi . (1)

In a model-based tracking system, the goal is to extract the
locations of Pc and from these, compute the translation t
and rotation R.

As stated in Section I, the aim of this work is to enable the
prediction of points that lie out-of-view of the input image.
To this end, we use a CNN which takes an RGB image I
as input and produces a set of heatmaps H = {h1, . . . , hn},
where each map hi corresponds to a different feature point
pci . The type of heatmap produced by the CNN in [7] have
a direct spatial relationship to the input image. That is, the
2D pixel coordinates of a feature on the image should be
the same as the coordinates of the peak in the heatmap. This
is achieved during the training process. For each training
image, a heatmap is produced by placing a 2D Gaussian
on the image coordinates of each feature. In our work, to
force the network to predict out-of-view points, we produce
the heatmaps differently by generating a new set of feature

locations Ps = {psi , . . . , psn} by applying a scaling and offset
determined by a value s

psi = s · pci +
(N − s ·N)

2
, (2)

where N is the dimensions of the input image. These new
points are then taken as the 2D locations of the Gaussians
used to create the heatmaps. The effect of this operation is
to reduce the size of the object within the heatmap, which
consequently bring more of objects points into view. The
value s can be seen as a zooming operation, where values
of s less than 1 will produce heatmaps that contain more of
the object than the input image. Given s = 1, labels will be
produced that are the same as the work in [7] and will retain
the one-to-one spatial relationships. Examples of different
labels corresponding to different values of s can be seen in
Fig. 3.

The type of CNN architecture that we use is based on
the encoder-decoder style. The encoder part consists of a
series of convolutional filters followed by max-pooling layers
which sequentially reduce the resolution of the input and
draw in feature information from an increasingly greater
spatial area of the image. The deconvolutional part of the
network takes the filter activations at the smallest resolution
and applies a set of linear upsampling layers followed by
more convolutions which increase the spatial resolution back
to its original size. This type of network is commonly used
in semantic segmentation methods such as [14] as well as
joint location prediction for human pose estimation [8].

One of the key effects of this type of network is accu-
mulation of features from a broad area of the input image
during the encoding section, which can go on to influence
the predictors in the final layer. In our application where
only partial views of the object are visible, this is doubly
important, as often, only a small amount of useful visual in-
formation is contained within the image. To be able to make
robust predictions it is important that the decoder section
of the network has access to as much of this information
as possible. In a stacked network or an iterative network,
the long range information is incorporated by producing and
operating on multiple intermediate predictions. However, as
more the networks are stacked, or more iterations performed,
the amount of time it takes to make predictions increases,
making real time tracking impossible. Another method of
increasing the amount of feature information available is
to have the encoder greatly reduce the spatial resolution of
the input before applying the decoding. However, we found
that this reduces the robustness of the predictions as well as
increasing processing time.

To address this issue in a computationally inexpensive
way we took inspirations from the work in [15] and add
a set of RNN layers to the network at the end of the
encoder section and before the decoder. These RNNs named
ReNet layers comprise a series of horizontal RNNs which
sweep the features left and right followed by vertical RNNs
which sweep the features up and down. During training,
these layers learn which features are important and can



Fig. 4: Diagram showing the architecture of the network. Input image is on the left and an RGB representation of the
multi-channel output is on the right.

TABLE I: CNN network details

Conv 3x3 (64), Batchnorm, ReLU
Max-pooling 2D

Conv 3x3 (128), Batchnorm, ReLU
Max-pooling 2D

Conv 3x3 (256), Batchnorm, ReLU
Max-pooling 2D

Conv 3x3 (512), Batchnorm, ReLU
Max-pooling 2D

Horizontal Bi-directional GRU, (256)
Vertical Bi-directional GRU, (256)

Horizontal Bi-directional GRU, (256)
Vertical Bi-directional GRU, (256)

Upsampling 2D
Conv 3x3 (512), Batchnorm, ReLU

Upsampling 2D
Conv 3x3 (256), Batchnorm, ReLU

Upsampling 2D
Conv 3x3 (128), Batchnorm, ReLU

Upsampling 2D
Conv 3x3 (64), Batchnorm, ReLU

Conv 1x1 (num classes)
Sigmoid

pass them onto difference spatial locations as needed. This
provides the decoder part access to features from any area
of the input image without adding excessive computational
overhead or adversely affecting prediction performance. We
make one change to the implementation of the ReNet layers
as presented in [15] in that we concatenate the output of the
encoder onto the output of the ReNet layers. We found that
without doing so, the network was unable to train. A diagram
giving an overview of the network is shown in Fig. 4. The
details of the network can be found in Table I

C. Tracking

In this section we will describe how we use the feature
point predictions with two different tracking systems. The
simplest way of doing this is through the use of a particle
filter. In this system, at time step t the pose of a camera is

defined by a set of particles, with each particle providing
a 3D translation t and 3D rotation R, represented as a
quaternion q. The pose is accompanied by a support value
w, which indicates the degree of confidence in the pose. A
singular pose estimate can be obtained through a weighted
average over the particles.

At each time step, the particles are updated through the
use of a motion model, and for each updated particle the
weight is recomputed. To evaluate the weight of the particle
we use the heatmaps produced by the CNN. We apply (1)
to the model points Pm to get the 2D points Pc and then
apply (2) using the s value we chose during training to get
Ps. We then find the heatmap values at the coordinates of
the points in Ps and sum them

w =

n∑
i

hi (psi ) . (3)

If the projected points lie on a location that has been
predicted to be the location of that feature, it will add a
high value to the weight. Conversely, if a point is projected
to a location where the network hasn’t predicted a feature, a
small value will be added to the weight. After computing the
weights, importance sampling is used which removes parti-
cles that have with low confidence and replicates particles
with high confidence. The benefit of using a particle filters
is that it is simple to implement, fast and integrates well with
the heatmap type of feature point prediction.

The second tracking method that we present is based on an
optimiser. For each image, we compute the predictions using
the CNN. Each heatmap is then normalised such that they
sum to one and then compute the negative log. This converts
the heatmaps into cost images where the smaller the value,
the more likely it corresponds to a location of a particular
feature point. We then compute the pose as a minimisation
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Fig. 5: Plots of the performance of the different network types for reprojection error, translation error and rotation error. For
each view, the amount of object visible was rounded to the nearest 0.1 percent and the median error was computed from
each group.

problem

[R, t]
∗

= arg min
[R,t]

Φ (R, t,Pm,K) , (4)

where Φ is the cost function, which is evaluated by projecting
the points onto the negative log cost images, and summing
the values at the location of the points. The function will
be at a minimum when the projected points align with the
predictions from the CNN. We optimise the function using
gradient descent. This method is beneficial to the particle
filter in that it provides a single pose estimate. We did find
however that it requires a decent initialisation of t and R and
it is necessary to smooth the prediction images to increases
the long range support during optimisation.

IV. EXPERIMENTS

To evaluate the performance of our work we conducted
two sets of experiments. The first set outlined in Section IV-
B empirically evaluates the ability of our method to estimate
the pose of the camera given views of an object with varying
levels of incompleteness. We compare a number of versions
of the proposed network each with difference scale values
s as well as the network proposed in [7]. The second set
of experiments in Section IV-C evaluates the method when
integrated in a particle filter tracking framework. As we do
not have ground truth poses for the tracking sequences we
show the results visually through reprojections of the object
model back onto the input image.

A. Model Training

For our experiments, we used 3 different objects. For the
first experiment we use a chair and for the second we add
a computer monitor, and a computer keyboard. The chair
has 10 feature points, the screen and keyboard each have
4, one for each corner. One of the reasons for including
both the screen and keyboard was to evaluate the method
when there are only a small number of feature points.
To train the networks for each object we capture images

from a number of different views using a standard USB
webcam. For the chair we obtained ∼ 250 images and for
the screen and keyboard we captured ∼ 100 images. The
images were split 80 − 20% to provide a test set so we
know when to stop training. During training we augment
the images using random translations, rotations and scaling.
The networks were optimised using the Adam optimiser [16]
with a learning rate 0f 0.05. As suggested in [14], a dropout
of 0.2 was used in the final 2 layers of the encoder and
first 2 layers of the decoder to reduce model overfitting. The
networks were trained using the PyTorch framework on a
Nvidia GeForce GTX 1060 with training lasting until test
set loss plateaued. This took around 3 days for the chair
network and around 2 days for the screen and keyboard.

B. Pose Recovery Evaluation

To evaluate the performance of the system to recover
pose given incomplete views we acquired a set of images
using a USB webcam (a different camera than the one used
to capture the training data). Each of the views contained
the entirety of the object and were taken from a number
of different viewpoints. For each view we then manually
landmarked the feature points. Using these and the camera
intrinsics we applied the EPnP algorithm [17] to compute
the camera pose for each image. As we wanted to evaluate
the performance using images with varying amounts of the
object in view, we applied random transforms to image.
These transforms included rotations, translations and scaling.
Finally, we cropped the transformed images to a size of
256x256. To determine the amount of the object contained
within the image, we computed the convex hull of the object
feature points after the transformation. We then extract the
area of the hull that was within the image bounds and divide
it by the total area of the hull. This gave us for each view,
a percentage value which ranged from 1.0− 0.3. Overall we
extracted 2500 views. To estimate the pose of the camera
from each view, we first apply the network and compute
the feature point predictions. Next, the prediction image is



Fig. 6: Examples of the tracking results. The estimated pose is used to project the model into the image. Top) Tracking
results where the scale value s = 1. This means that the network is not trying to predict outside of the image. Bottom)
Tracking on the same sequence where scale value s = 2

transformed using the inverse of the transform applied to
create the view. The reason for this is that the transformation
process applied to create a view would mean that the camera
intrinsics would no longer be applicable. After applying
the inverse transform to the predictions, we compute the
pose estimation through the optimisation process detailed in
Section III-C. The pose estimates were then compared to the
poses computed from the manual landmarks using the EPnP
algorithm. In this experiment we evaluated 4 versions of our
own network with s = 1, 1

2 ,
1
3 ,

1
4 . We also compared our

work with the network proposed in [7], which we trained on
the same data and set the label scaling to 1

2 .
To quantify the pose accuracy for the different networks

we directly compare the ground truth with the estimates and
compute the error in the translation as well as the absolute
rotation error. We also compute the difference between the
projection of the model points using the ground truth and
estimated pose values. The results of these evaluations can
be seen in Fig. 5.

The results show that for all the methods evaluated, the
network trained with s = 1 is the least robust to reductions
in the visible percentage of the object, with performances
dropping sharply with percentages lower than 0.8. The com-
parison of this to the networks trained with s < 1 where
performance drops off slower and at a lower percentage
shows the usefulness of predicting out-of-view feature points
when dealing with incomplete views. When comparing the
performances of the methods trained with s < 1, the
conclusions are less clear. We can see that the performance
of the network proposed in [7] when trained with s = 1

2
is slightly worse than the performance of our network with
the same s value, especially at the lower percentages. This
shows that our architecture is better suited to this particular
problem. In addition, our network is considerably faster
than the stacked hourglass architecture. When looking at the

networks trained with the smallest values of s we can see
that they are slightly more robust at the lowest percentages.
This makes sense as they are predicting the largest range of
out-of-view features. However, the smaller s values perform
slightly worse at higher percentages, which we believe is due
to the reduced resolution of the heatmaps that are a result
of the scaling process. These results show that there is a
trade-off when choosing an s value, which depends on the
expected percentage of the object that is likely to be viewed
by the system.

C. Tracking Examples

In this experiment we aim to show the effect of out-of-
view feature point prediction in a tracking framework. To do
this we used two versions of the chair model, one trained
with s = 1 and one trained with s = 1

2 . We also trained
networks for the screen and keyboard, each with s = 1

2 .
To perform the tracking we implemented the particle filter
as described in Section III-C. To show the performance,
we applied the tracker to a set of video sequences of the
different objects. At a number of different time steps we
used the estimated camera pose to project the models into
the original image. The tracking was done on a laptop, with
the particle filter running on an Intel i7 processor, and the
network running on a Nvidia GeForce GTX 1050. For all
examples the tracker ran in real-time with ∼30 fps.

Examples from the sequences for the chair can be seen
in Fig. 6 and for the Keyboard and Screen in Fig. 7. For
the chair example, the top row of images are produced with
s = 1 and the bottom with s = 1

2 . We can see that at
the start where the majority of the chair is in view, both
methods are able to calculate a good pose. However, as the
camera moves closer to the chair, the performance of the
s = 1 model deteriorates and tracking is lost. For the model
where s = 1

2 , tracking remains good. For the screen and



Fig. 7: Tracking results for the other objects. Top) Computer screen and Bottom) computer keyboard

keyboard objects, the tracking is arguably harder, as there are
less feature points to use for tracking. However, the images
show that even in instances where all the corner points fall
outside of the image, tracking is still possible.

V. CONCLUSIONS

In this work, we have presented a novel method for
predicting out-of-view feature points using CNNs with the
aim of enabling camera pose estimation given incomplete
views of an object. We present a tailored CNN architecture
that is able to integrate rich feature information from across
the input image, allowing feature point prediction from this
challenging type of data. In our evaluation we show that
the ability to predict feature points outside of the input
image adds robustness to the pose computation as the amount
of visible object is reduced. We have also shown that in
a tracking scenario, out-of-view point prediction enables
tracking to continue when in-view only prediction does not.

For future work we are interested in expanding our re-
search to deal with class based tracking. That is, being able
to predict object features for all types of an object rather
than just one instance. In addition, we aim to investigate
the more challenging problem of feature point prediction for
articulated and deformable objects.
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