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ABSTRACT: The hydraulic conductivity characteristics of the materials which 
comprise pavement structures are linked to in service performance. This paper briefly 
reviews a series of well-known models to predict hydraulic conductivity. An approach 
which makes use of the grading entropy coordinates is also studied. The database 
includes information on the gradation, hydraulic conductivity and porosity 
characteristics for over 150 gravel mixtures. Comparison of the studied models reveals 
that the ‘Kozeny-Carman’ model gives the best predictions when considering the 
entire database.  The results of the regression analysis reveal that for granular mixtures 
comprising greater than 50% sand, the ‘Shepherd’ or ‘Hazen’ approaches may be 
preferred. However, for mixtures comprising less than with 50% sand, the ‘Kozeny- 
Carman’ and ‘grading entropy’ approaches are preferred. 
 
INTRODUCTION 
 
Water ingress into road pavements is potentially detrimental to the mechanical 
properties of the structure (e.g., Kandhal & Rickards, 2001; Mallick & El-Korchi, 
2008; Thom, 2014; Ghabchi et al., 2015). Engineers need to make rapid assessments 
of the hydraulic conductivity of pavement materials. This paper follows a detailed 
laboratory study which compared the ‘Hazen’, ‘Shepherd’, ‘Kozeny-Carman’ and 
‘Chapuis’ models along with a regression model that uses the grading entropy 
coordinates (Feng, 2017; Feng et al. 2018a). Feng (2017) and Feng et al. (2018a) 
presented results on only one material but testing was conducted over a wide range 
gradations. This paper aims to investigate the relative merits for the aforementioned 
models using a larger database of experimental observations. 
 
 
Traditional Models for Hydraulic Conductivity 
The hydraulic conductivity k (in Length.Time-1) is given by (e.g., Craig, 2004, p.31): 
 
݇ ൌ ఊ

ఓ
 (1)            ܭ

 
Where ߤ (in Mass.Time-1.Length-1) are the unit weight and the dynamic viscosity of 
the permeant respectively, and K (in Length2) is the intrinsic permeability.  
 
The ‘Hazen’ formula (e.g., Hazen, 1893, p.553) is one of the most commonly-used 
models which can be expressed as follows: 
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݇ ൌ ሺ0.7 ൅ ଵ଴ܦுܥሻݐ0.03
ଶ          (2) 

 
where t is the temperature in degrees Celsius, D10 represents the sieve aperture through 
which ten percent of the material passes, and CH is an empirical coefficient.  
 
Shepherd (1989) presented a modification to the ‘Hazen’ approach using an equation 
of the following form:  
 
݇ ൌ ுௌ݀௘௙௙ܥ

௔             (3) 
 
where a (for most materials) generally varies from 1.65 to 1.85 (according to 
Shepheard 1989), ܥுௌ is a regression constant, ݀௘௙௙ is the representative particle size 
(which for consistency is taken in this paper to be D10). 
 
The ‘Kozeny-Carman’ formulation (Carman, 1937, 1939; Kozeny, 1927) is another 
well-known semi-empirical model to describe hydraulic conductivity. Carrier (2003) 
gives a variant of this formulation, shown as Eq. (4): 
 

݇ ൌ ሺఊ
ఓ
ሻሺ ଵ

஼಼ష಴
ሻሺ ଵ

ௌಲ
మሻሺ

௘య

ଵା௘
ሻ                     (4) 

 
where CK-C is an empirical coefficient (which can be taken as approximately 5), SA is 
the specific surface area per unit volume of particles, and e is the void ratio. 
 
Chapuis (2004, 2012) developed an amalgamated permeability model for non-plastic 
sand by combining aspects of the ‘Kozeny-Carman’ and ‘Hazen’ approaches. Using a 
database, Chapuis (2004) found Eq. (5) statistically: 

 

݇ሺܿ݉ ⁄ݏ ሻ ൌ 2.4622ሾܦଵ଴
ଶ݁ଷ ሺ1 ൅ ݁ሻሿ⁄

଴.଻଼ଶହ
        (5) 

 
where the D10 is in mm. Chapuis (2004) suggested that Eq. (5) only provides good 
predictions for natural soils with 0.003mm< D10< 3mm and 0.3< e< 1 (137 out of 166 
of the collected database in this study fit both criteria). 

 
The Grading Entropy Method 
The ‘grading entropy’ approach allows a grading curve to be represented vectorially 
on the normalised grading entropy diagram (Figure 1). The coordinates are calculated 
using: 
 

ܣ ൌ
∑ ௫೔ሺ௜ିଵሻ
ಿ
೔సభ

ேିଵ
                   (6) 

 

ܤ ൌ െ
∑ ௫೔ ୪୭୥మ ௫೔
ಿ
೔సభ

௟௢௚ே
                (7) 

 
where ‘A’ is the relative base entropy, ‘B’ is the normalised entropy increment, N is 
the fraction number, and xi is the relative frequency of fraction i. Lőrincz et al. (2005) 
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and Singh (2014) provide more extensive commentary on the origins and details of the 
‘grading entropy’ approach. Using a similar database to that presented in Vardanega et 
al (2017), Feng et al (2018b) performed multiple linear regression analysis to a large 
database of hydraulic conductivity measurements on asphalt concrete using the 
grading entropy co-ordinates as predictors. Feng et al. (2018a) performed similar 
analysis for a set of laboratory data on a single gravel and found Equation (8):  
 
݇20°C	ሺmm s⁄ ሻ ൌ ݎ				 ଶ.ଷ଴ିܤଽ଴.଼ܣ145.47 ൌ 0.95, ܴଶ ൌ 0.90, ݊ ൌ 30, ݌ ൏ 0.0001   (8) 
 
Like the ‘Hazen’ and ‘Shepherd’ approaches no measurement of void ratio is included 
in this approach. 
 

DATABASE  

 
Table 1 shows the list of ten publications used to source the information for inclusion 
in the database studied in this paper. 164 hydraulic conductivity tests are included in 
the database. The test methods (where stated in the original publication), material 
types, void ratios and gradation parameters of each data source are given in Table 1. 
The collected database comprises mostly sands and gravels with D10 generally ranging 
from 0.001mm to 10mm and void ratio (e) ranging from 0.23 to 1.13. The collected 
hydraulic conductivity data were converted to intrinsic permeability K (in mm2) based 
on the water temperatures reported in the original publications (ranging from 10 
to 20°C).  
 

ANALYSIS 
 
Complete Database 
Data from different sources are shown with different markers on Figure 2 to 6. The 
numbering of the data entries follows that given in Table 1. 
 
Hazen (Hazen, 1893) 
Figure 2 shows the regression function linking between K and D10

2 for the database: 
 
ሺmmଶሻܭ ൌ ଵ଴ܦ0.00054

ଶ				ݎ ൌ 0.82, ܴଶ ൌ 0.68, ݊ ൌ 164, ݌ ൏ 0.0001    (9) 
 
The K-predicted is plotted against K-measured in Figure 2. The plot shows that 110 
out of 164 data points lie between the ±75% bounds (red dashed lines), about 40.8% of 
the total data points fall above the line of equality (45 degree line) while around 59.2% 
of the points fall beneath. Figure 2 indicates Eq. (9) generally under-predicts K. 
 
Shepherd (Shepherd, 1989) 
‘Shepherd’ model gives essentially the same result as Eq. (9) (for the data analysed in 
this paper), the regression result between lnK and lnD10 can be rearranged to: 
 
ሺmmଶሻܭ ൌ ଵ଴ܦ0.00059

ଵ.ଽଽ						ݎ ൌ 0.87, ܴଶ ൌ 0.75, ݊ ൌ 164, ݌ ൏ 0.0001 (10) 
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The K-predicted versus K-measured (Figure 3) shows that 108 out of 164 of the total 
points fall within the ±75% margin, 42.7% of the total points lie above the line of 
equality, while the remainder (57.3%) of the points lie below. Similar to Eq. (9), the 
Eq. (10) also slightly under-predicts the value in this database. 
 
Kozeny-Carman (Carman, 1937) 

Regression of K with 
ఊ

ఓ
. ଵ

ௌಲ
మ .

௘య

ଵା௘
 (denoted as K-C function in Figure 3) gave Eq. (11): 

 

ሺmmଶሻܭ ൌ 0.015	 ఊ
ఓ
ൈ ଵ

ௌಲ
మ ൈ

௘య

ଵା௘
ݎ					 ൌ 0.97, ܴଶ ൌ 0.93, ݊ ൌ 164, ݌ ൏ 0.0001 (11) 

 
where the specific surface (SA) is calculated based on the method introduced by 
Chapuis and Légaré (1992). The corresponding predicted versus measured plot (Figure 
4) shows that 97 out of 164 of the total points locate within the ±75% margins, 61.0% 
of the data points lie above the line of equality while the rest of the data points fall 
beneath. Eq. (11) generally over-predicts the measurements contained in this database. 
 
Chapuis (Chapuis, 2004) 
The fitted correlation linking lnK and ln[D10

2e3/(1+e)] can be rearranged to give: 
 

ሺmmଶሻܭ ൌ 0.0023ሺ஽భబ
మ௘య

ଵା௘
ሻ଴.଼ହ			ݎ ൌ 0.79, ܴଶ ൌ 0.63, ݊ ൌ 164, ݌ ൏ 0.0001 (12) 

 
Eq. (12) can be converted using the units adopted in Chapuis (2004, 2012): 
 
݇ሺcm s⁄ ሻ ൌ 2.254ሾܦଵ଴

ଶ݁ଷ/ሺ1 ൅ ݁ሻሿ଴.଼ହ       (13) 
 
The coefficient of 2.254 and the exponent of 0.85 in Eq. (13) generally conform with 
the finding of Chapuis (2004, 2012) who gives 2.4622 and 0.7825 for the coefficient 
and exponent (Eq. 5), note only 1 data source is common between two databases 
analysed. The predicted versus measured plot (Figure 5) shows that 78 out of 164 of 
the total data points fall between the ±75% margins and 43.9% of the data points lie 
above the line of quality while the remainder of the data points (56.1%) fall beneath, 
which indicates that the Eq. (12) gives a slightly skewed (under-predicted) prediction 
of K. 

 
Grading Entropy Model 
The normalized grading entropy coordinates A and B of the whole database were 
calculated using Eqs. (6), and (7). The calculated A and B are then regressed against K, 
the result gives: 
 
ሺmmଶሻܭ ൌ ݎ					଴.ଷସିܤ଺.଴ସܣ0.0048 ൌ 0.83, ܴଶ ൌ 0.69, ݊ ൌ 164, ݌ ൏ 0.0001 (14) 
which can also be expressed as: 
 
݇20°C	ሺmm s⁄ ሻ ൌ  ଴.ଷସ        (15)ିܤ଺.଴ସܣ47.04
The coefficient and exponents obtained based on this database (in Eq. 15) differ with 
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Feng et al. (2018a) (in Eq. 8), which might be due to the diversity of gradation ranges 
and material types involved in this study. Figure 6 shows that 84 out of 164 of the total 
data points lie within the ±75% bounds, and 41.5% of the points fall above the line of 
equality which presents over-predicted results, while 58.5% of the data points, fall 
beneath which give under-predictions of K. 
 
Summary 
All five models over-predict the results for data entry 5 (Wang et al., 2017) which is 
possibly due to the specific type of materials used in this study (calcareous soils). 
Also, noticeable deviation in permeability predictions can be noticed in data source 6 
(Table 6) (Xiao et al., 2013), which may be due to the fact that the gas permeameter 
was used. Based on the regressed results, all five of the studied models have 
sufficiently low p-values (<0.0001) and are statistically significant. The analysis 
results using all five models are summarised in Table 2.  
 
Influence of Particle Size 
To investigate the potential effect of particle size, the whole database is divided into 
two subsets, which are samples with sand component> 50% and samples with sand 
component< 50%. The classification of sand and gravel follows Craig (2004, p. 5). 
The results of the analysis of these two subsets are given in Table 3 and Table 4. 
 
Table 3 shows that for the data subset sand> 50%, ‘Shepherd’ model is favoured based 
on the R2 (= 0.64) as well as the data points (68 out of 96) fall within ±75% prediction 
range, while the ‘Hazen’ formula gives the second highest R2 (= 0.59) and least biased 
predictions (45 over-predicted, 51 under-predicted). 
 
For the data subset with sand< 50% (Table 4), ‘Kozeny-Carman’ model does yield the 
highest R2 (= 0.93) among these fives models, however, the ‘grading entropy’ 
provides the second highest R2 (= 0.74) with most data points (45 out of 68) within 
±75% prediction range and the most symmetrical prediction (38 over-predicted, 30 
under-predicted) but without the need of void ratio (e) measurement. 
 
CONCLUDING REMARKS 
 
Some of the scatters shown in Figure 2 to 6 is inevitably due to the variety of test 
methods for K and e in the database. Despite this the following conclusions may be 
drawn:  
(1) for the database with a wide range of particle sizes (the whole database), the 
‘Kozeny-Carman’ model is favoured for the highest R2 value, while ‘Shepherd’ model 
provides the second highest R2 value and one of the most symmetrical predictions;  
(2) for the data subset with > 50% sand component in the tested mixtures, the 
‘Shepherd’ (highest R2, most points within ±75% margins) and ‘Hazen’ models (most 
symmetrical prediction) are preferred; 
(3) for the data subset with <50% sand component, the ‘Kozeny-Carman’ model 
yields the highest R2. However, the ‘grading entropy’ gives the most symmetrical 
prediction (38 over-predictions and 30 under-predictions) with most points fall within 



    Page 6            

±75% margins. 
Further data may reveal different trends to those found in this paper and additional 
data to study the effect of varying testing procedures may be helpful for future 
research. 
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NOTATION LIST 
 
The following notations are used in this paper (dimension given in brackets): 
A= Relative base entropy; 
B= Normalized entropy increment. 
CH= Hazen empirical coefficient (Length-1.Time-1); 
CHS= Shepherd empirical coefficient; 
CK-C= Kozeny- Carman coefficient; 
CU= Coefficient of Uniformity, ܥ௎ ൌ

஽లబ
஽భబ

; 

݀௘௙௙= Representative particle size 
D10= Effective particle size, for which 10% of the soil is finer (Length); 
e= Void ratio; 
k= Coefficient of permeability (Length.Time-1); 
K= Intrinsic permeability (Length2); 
n= Number of data points; 
N=Number of fractions/successively doubled sieves; 
p= p-value; 
R2= Coefficient of determination; 
SA= Specific surface area per unit volume of particles (Length-1); 
So= Base entropy; 
t= Temperature (in Ԩ) 
xi= Relative frequency of fraction i; 
 ;Unit weight (Force.Length-3) =ߛ
 ;Dynamic viscosity (Mass.Time-1.Length-1) =ߤ
 Density (Mass. Length-3) =ߩ
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TABLES 
 
Table 1.  Summary of database 
 

  

No. Sources 
Air voids 

testing 
method 

Hydraulic 
conductivity 

testing 
method 

Materials type 
as described in 

the original 
publication 

D10 

(mm) 
CU 

(mm) 
e n 

1 
Cabalar and 

Akbulut 
(2016) 

- 
constant head 

test 

narli sand 
0.10-
2.29

1.20- 
4.22 

0.52- 
0.87 

16 

crushed stone 
sand

0.10-
2.29

1.20-
4.22 

0.67-
1.02 

16 

2 
Indraratna et 

al. (2012)  
- 

constant head 
test (ASTM 
D2434-68)

river sand 0.3 
1.51-
4.03 

0.61-
0.71 

6 

3 
Mavis and 

Wilsey 
(1936) 

geometric 
constant head 

test 
Iowa river sand 

0.22-
1.81 

1.73-
5.54 

0.50-
0.73 

12 

4 
Morris and 

Johnson 
(1967) 

geometric 
constant/ 

variable head 
test 

water laid 
gravel

1.37-
5.45

1.70-
2.36 

0.61-
0.79 

3 

water laid sand 
0.001-
0.69

1.56-
54.39 

0.39-
0.81 

4 

5 
Wang et al. 

(2017) 
- 

constant head 
penetration 

test
calcareous soil 

0.03-
0.14 

3.30- 
10.00 

0.73-
1.13 

20 

6 
Xiao et al. 

(2013) 
- 

gas 
permeameter 

test

crushed 
aggregate 

0.06-
1.81 

5.67-
142.33 

0.29-
0.35 

5 

7 
Yin et al. 

(1998) 
- 

constant head 
test 

single-sized 
crushed stones

2.35- 
11.00

1.42- 
1.92 

0.40-
0.44 

3 

sand 
0.15-
0.17

2.00-
4.76 

0.45-
0.57 

2 

mechanical 
stabilized 

crushed stones

0.14-
0.23 

15.86-
36.51 

0.23-
0.26 

4 

8 
Dolzyk et al. 

(2014) 
- 

constant head 
test

soil 
0.07-
0.34

1.95-
60.80 

0.3-
0.923

24 

9 
Goetz 
(1971) 

- 
constant head 
test (ASTM 
D2434-68) 

20-30 ottawa 
sand

0.61 1.20 
0.56-
0.72 

8 

2 ns concrete 
sand

0.22 4.62 
0.37-
0.51 

4 

dune sand 0.13 1.88 
0.61-
0.77 

3 

22a gravel 0.15 31.17 
0.25-
0.41 

4 

10 
Feng (2017) 
and Feng et 
al. (2018a) 

WA732.2-
2011/ 

BS1377:2-
1990 

constant head 
test (BS 1377-

5:1990) 

road 
construction 

material (mostly 
crushed 

aggregate)

0.72-
7.02 

1.51-
7.29 

0.53-
0.85 

30 

 Total    164 
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Table 2.  Analysis result of the complete database 
 

n= 164 R2 p-value Within ±75% Over-prediction 
Under-

prediction 
Hazen 0.68 < 0.0001 110 67 97 

Shepherd 0.75 < 0.0001 108 70 94 
Kozeny-Carman 0.93 < 0.0001 97 100 64 

Chapuis 0.63 < 0.0001 78 72 92 
Grading entropy 0.69 < 0.0001 84 68 96 

 
Table 3.  Analysis result of data subset: sand component> 50% 
 

n= 96 R2 p-value Within ±75% Over-prediction 
Under-

prediction 
Hazen 0.59 < 0.0001 68 45 51 

Shepherd 0.64 < 0.0001 73 39 57 
Kozeny-Carman 0.50 < 0.0001 62 24 72 

Chapuis 0.51 < 0.0001 58 43 53 
Grading entropy 0.48 < 0.0001 49 57 39 

 
Table 4.  Analysis result of data subset: sand component< 50% 
 

n= 68 R2 p-value Within ±75% Over-prediction 
Under-

prediction 
Hazen 0.67 < 0.0001 45 21 47 

Shepherd 0.67 < 0.0001 43 29 39 
Kozeny-Carman 0.93 < 0.0001 43 28 40 

Chapuis 0.67 < 0.0001 40 30 38 
Grading entropy 0.74 < 0.0001 45 38 30 
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FIGURES 
 

 
Figure 1 Sketch example of gradation curve interpretation on normalised 

grading entropy diagram 

 
Figure 2 K-predicted versus K-measured using Hazen`s formula 
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Figure 3 K-predicted versus K-measured using Shepherd`s model 

 
Figure 4 K-predicted versus K-measured using Kozeny-Carman`s function
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Figure 5 K-predicted versus K-measured using Chapuis`s model 

 
Figure 6 K-predicted versus K-measured using grading entropy model 


