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Highlights: 

• A simulation method for SVGM with consideration of local site effects is developed.

• Both geometric and material nonlinear are considered in seismic analysis of the bridge.

• Uniform excitation is an alternative for seismic design of bridges on simple terrain.

• Multi-support excitation is necessary for large bridges on irregular terrain.

• The seismic design methods and codes for large bridges should be modified by applied SVGM.
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Abstract: Many very large bridges with high piers and long spans are under rapid construction in 

mountainous regions especially in Western China.  However, the current seismic design methods in 

China are based on a code which only applies to bridges with span up to 150 m.  To evaluate the risk of 

the inapplicable design method and the influence of spatially variable ground motions (SVGM) on the 

seismic response of very large bridges, a high-pier, long-span, continuous RC frame bridge is 

numerically studied.  This study considers whether multiple support excitation can be simplified into 

specific uniform excitation cases while guaranteeing the conservative seismic demands for this bridge.  

Non-stationary SVGM on both bedrock and the surface of multiple soil layers are simulated including 

wave passage effects, coherency effects and site amplification effects.  The nonlinear dynamic finite 

element model of the bridge is analysed for two groups of earthquake motions, namely group 1 - bedrock 

and group 2 - ground surface excitations.  Each group contains three different excitations, i.e. i) multiple 

support excitation ii) the largest and iii) the smallest accelerations from the SVGM.  The relative 

displacements, internal force responses and ultimate damage modes are obtained and compared.  For 

this bridge the uniform ground motion input with the largest accelerations provides conservative seismic 

demands for most structural components when the site amplification effect is not considered (group 1).  

However, for the ground surface motions, where site amplification needs to be taken into account (group 



2), in several cases the uniform ground motion with the largest accelerations results in lower response 

than that predicted when considering SVGM.  The present results indicate that only when the bridges 

are located on ideal simple topography where site effects have little influence, the uniform excitation 

with the largest accelerations taken from the SVGM may be an alternative input for seismic analysis.  

However, for bridges on complex terrain, where site effects can significantly amplify the ground motions 

at the bedrock, SVGM need to be applied as input for the seismic analysis.  As spatial variability of 

input motion is not a mandatory requirement in the Chinese bridges design code, these results suggest 

that the existing design code for very large bridges should be modified accordingly.

Keywords: Spatially variable ground motions (SVGM); High-pier and long-span bridges; Seismic 

response; Nonlinear analysis; Multiple support excitation

1. Introduction

Recently many high-pier, long-span, continuous RC frame bridges have been constructed in 

mountainous regions, especially in Western China.  These bridges are able to overcome the difficulties 

of providing transport facilities through deep valleys, and their high structural integrity can help to 

prevent catastrophic failure [1].  The Hezhang Bridge has piers up to 195 m high and the Beipanjiang 

Bridge has spans up to 290 m long, and more high-pier, long-span, continuous RC frame bridges are 

likely to be constructed in these mountainous regions [2].

Earthquakes occurring in mountainous regions can lead to catastrophic consequences.  For example, 

many high-pier long-span bridges, serving as vital traffic arteries, were seriously damaged during the 

Wenchuan Earthquake on May 12, 2008.  This not only significantly impeded the fast response of 

earthquake relief, but also resulted in long-term impacts to the regional traffic due to the difficulty of 

repair.  A proper design should be able to enhance the resistance of bridge structures to seismic actions 

and reduce the damage effects.  Unfortunately, understanding of the seismic behaviour of such large 

bridges is markedly insufficient.  These high-pier, long-span continuous RC frame bridges in 

mountainous regions usually have box girder superstructures and thin-walled hollow piers with more 

than two fixed joints between the main piers and the girder [1-5].  This results in a more complex seismic 



performance compared to normal road bridges.  In particular, the piers of these large bridges usually 

have high flexibility to dissipate earthquake energy while the girders are designed to be more rigid in 

order to avoid excessive vertical deflections due to gravity.  Moreover, high-pier, long-span continuous 

RC frame bridges often have asymmetric configurations to adapt to the irregular topography, resulting 

in different dynamic responses and failure modes compared to traditional symmetric beam bridges.  

Current practices of designing this type of bridges have to be based on guidelines or codes that only 

cover bridges up to a limited size and limited range of site parameters.  For example, the China guideline 

for the seismic design of highway bridges [6] only applies to bridges with spans up to 150 m.  No design 

principles or provisions for high-pier, long-span bridges are available yet. 

In addition, during an earthquake event these long-span structures can also experience different 

ground motion excitations at each support point [7], which is known as spatially variable ground motions 

(SVGM) including wave passage effects, coherency effects and local site effects.  Previous studies [1-

5, 8-9] of large continuous RC frame bridges have indicated that the structural configuration and the 

spectral characteristics of the input motions have significant influence on the seismic response.  There 

might be potential risks in using an inapplicable design code and ignoring the influence of SVGM when 

calculating the seismic response of large bridges in mountainous regions.  Multi-support excitation is, 

unfortunately, beyond the scope of existing seismic design codes [10], expect Eurocode 8 that requires 

to consider the effects of SVGM when soil properties along a continuous bridge vary or the length of 

the continuous girder exceeds an appropriate limiting length [11].  SVGM are usually simulated through 

theoretical or semi-empirical power spectral density functions and coherency functions [12, 13].  

However, most of these models can only roughly reflect the influence of local site effect.  For valley 

topography with varying site conditions, Safak [14] obtained the vertical transfer function of shear 

waves in a horizontal medium layer based on the theory of seismic wave propagation.  By applying the 

transfer function to the original spectral representation method, the spatially correlated ground motions 

can then be generated taking into account multiple soil layers and all site conditions.

Extensive numerical [1, 3-5, 10, 15-19] and experimental [20-23] studies have been conducted on the 

influence of multiple support excitation on bridges.  A parametric analysis on the sensitivity of bridge 

response to SVGM conducted by Sextos et al. [24] indicates that the dynamic behaviour of bridges 



subjected to SVGM cannot be adequately reproduced by uniform excitations, and site effects are an 

important part of the dynamic analysis process.  However, like most previous studies, the pier height of 

the bridges studied only ranges from 4 m to 24 m, and the earthquake excitation is only applied in the 

transverse direction.  Insufficient studies on the seismic performance of high-pier, long-span, continuous 

RC frame bridges under SVGM can be found in the literature.  Therefore it is essential to carry out 

detailed seismic analysis to evaluate the different structural responses using uniform or SVGM for 

proper design of high-pier, long-span, continuous RC frame bridges.  To accomplish this task, nonlinear 

dynamic analyses of an existing high-pier long-span continuous RC frame bridge are conducted in the 

present study.  Both uniform and SVGM are taken into consideration in the numerical simulations.  In 

particular, non-stationary SVGM on both bedrock and the surface of multiple soil layers are simulated 

including wave passage, coherency and site amplification effects.  The structural responses including 

relative displacements, internal forces and damage modes of structural elements under different 

excitations are compared.  Based on the results and analysis, suggestions are proposed to give direct 

solution for seismic design and facilitate the rapid construction of the high-pier, long-span continuous 

RC frame bridges in mountainous regions. 

2. Construction details of the prototype

The high-pier, long-span continuous RC frame bridge selected in this study is Longtanhe Bridge 

located in Hubei, China [25].  Until recently it was one of the largest high-pier, long-span continuous 

RC frame bridges, but there are now dozens of new continuous RC frame bridges larger than this, with 

many more being built in mountainous regions especially in western China [2].  The seismic analyses 

presented in this paper will be particularly significant and relevant when considering the seismic 

capacity of these larger bridges.

 Longtanhe Bridge is situated on varying site conditions as shown in Fig. 1, and has five spans (1@106 

m, 3@200 m and 1@106 m, respectively).  All piers of the bridge are cast by C50 concrete.  The two 

high piers, namely Pier 2 and Pier 3, comprise double columns (with a spacing of 9 metres) connected 

by two tie beams.  The columns have variable hollow rectangular cross sections, with a slope of 100:1 

in longitudinal direction, and slopes of 100:1, 60:1 and 40:1 from top to bottom in transverse direction.  

The configurations of the column cross section are presented in details in Fig. 1.  There are two HRB335 



reinforcement layers in the piers, i.e., 20 mm diameter deformed bars at 150 mm spacing are embedded 

in the inside layer, and 32 mm diameter deformed bars at 150 mm spacing are embedded in the outside 

layer.  By embedding Grade 270 low-relaxation pre-stressing strands within the C50 box girder, tri-axial 

tension control stress of 1395 MPa is applied.  More details about this bridge can be found in [25].

Spatial variability of input motion is not a mandatory requirement in the Chinese bridges design code, 

and it is usually simplified into multiple support excitation without considering site amplification effects.  

However as aforementioned, site conditions may have significant influence on the seismic response of 

bridges.  Thus SVGM on both bedrock and ground motions are applied to the seismic analyses in this 

study to investigate the necessity of considering SVGM.

3. Spatially variable ground motions (SVGM)

3.1 SVGM on bedrock

Ground motions at different locations on bedrock can be assumed to be a zero mean stationary 

stochastic process with the same power spectral density and simulated using the Clough-Penzien model 

[26]:
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where S0 is the constant power spectral density of white noise; Hg(ω) is the Kanai-Tajimi filter function, 

with ωg and ξg as the central frequency and damping ratio, respectively.  Hf(ω) is a high-pass filter 

applied to exaggerate the low-frequency component, with ωf and ξf as the central frequency and damping 

ratio respectively.

The auto power spectral density function of each spatially correlated point in a one-dimensional 

earthquake field consisting n points on the ground surface and the cross power spectral density function 

between two arbitrary points can be presented as [27]:
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where Hj(iω) and Hk(iω) are the site transfer function of two arbitrary points j and k on the ground 

surface, directly reflecting the influence of local site conditions on the wave propagation, and * means 



complex conjugate.  For the ground motions on bedrock Hj(iω)=Hk(iω)=1; γj’k’(iω) is the coherency 

function, showing the coherency effect of ground motions at point j’ and point k’.  Based on records 

from seismic arrays, several coherency function models have been proposed [8, 28].  

The stationary stochastic time history of SVGM can be described using the n×n power spectral density 

matrix [7]:
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where the diagonal elements  are auto power spectral functions of frequency ω.  The ( ) ( )1,2, ,jjS j nω = …

rest elements  are complex cross-power spectral functions of frequency ( ) ( )i , 1,2, , ,jkS j k n j kω = ≠…

ω.  The power spectral density matrix S(iω) is a positive definite Hermite matrix and can be decomposed 

using the Cholesky factorization [8]:
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The SVGM can be simplified into a one-dimensional stationary stochastic process U(t) with multiple 

variables [29]:
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According to the original spectrum representation method [8], the earthquake acceleration time 

histories  at an arbitrary point could be expressed as:( ) ( )1,2, ,ju t j n= …
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phase of the generated acceleration time histories, whose frequency spectrum coincides with the target 



spectrum in Eq. (2).  N is the number of discretized frequency points;  is the upper cut-off frequency, uω

 is the frequency increment and .   is the independent stochastic phase angle u= Nω ωΔ =i iω ωΔ iϕ

between 0 and 2π [30].  The stationary ground motion model is often multiplied by an envelope function 

f(t) to achieve the non-stationary process [31]:

 (8)( ) ( ) ( )j jx t f t u t= ⋅

3.2 SVGM on the ground surface 

The amplitude of earthquake ground motions can be significantly amplified when penetrating soft 

soil, which is known as the site amplification effect and can lead to crucial structural damage. However, 

research on the frequency spectrum of ground motion waves during the vertical propagation process 

through multiple soil layers is limited.  Based on the theory of seismic wave propagation, Safak obtained 

the vertical transfer function of shear waves in horizontal medium layers [14].  For bedrock overlaid by 

a single soil layer, the relationship between the arbitrary point j on ground surface and the corresponding 

vertical projection point j’ on bedrock can be expressed by a transfer function as:
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where  and  are the Fourier transforms of the time histories  and  at surface (i )jU ω ' (i )jU ω ( )ju t ' ( )ju t

point j and bedrock point j’, respectively.  The damping ratio  denotes the attenuation effect caused jξ

by energy dissipation during the propagation process.   is the propagation time of seismic j j jh vτ =

waves from point j’ to point j.   is the reflection coefficient of the upwards travelling waves within jr

the soil layer, which is computed using Eq. (10):
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This transfer function can be extended to a general function [14] for site conditions where bedrock is 

overlaid by m layers of soil (m≥2):
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where I is the 2m×2m unit matrix; Ω is the 2m×2m coefficient matrix, which is related to the reflection 

and penetration coefficient r of each soil layer.  Ω1 is the matrix obtained by replacing the column vector 

corresponding to u1 with (1, 0, 0, 0, …, 0, 0, 0)T in matrix Ω.  Λ is the 2m×2m diagonal matrix, in which 

the diagonal elements are comprised of the filtration coefficient λ caused by the damping of each soil 

layer, i.e., diag(Λ)=(λm, λm, λm-1, λm-1,…, λ2, λ2, λ1, λ1), and:
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where T is the time interval; other variables are the same as previously mentioned.

Using the above parameters and equations and inputting the corresponding soil parameters, the 

transfer function HQm(iω) describing the filtration of a multi-layer soil can be solved.  Finally, by 

substituting Eq. (9) or Eq. (11) into Eq. (2) and using the SVGM model proposed in section 3.1, the 

spatially variable ground motions with consideration of the local site effects can be obtained. More 

detailed validation is presented in [32].

4. Numerical modelling

4.1 Finite element model of the bridge

Most SVGM studies on high-pier long-span bridges employ partially linear models, especially for the 

superstructure, because the long spans usually lead to excessive deformations which makes the 

numerical analysis difficult with an inelastic nonlinear constitutive model.  For this study a refined 

inelastic nonlinear finite element model of the whole bridge was created using ABAQUS.  The 

constitutive and damage evolution properties of the C50 concrete adopted for the simulations are based 

on the code for design of concrete structures [33] as shown in Table 1 and Fig. 2.  The two-scalar plastic-

damage model for concrete proposed by Lee and Fenves [34] is adopted in this study.  Two damage 

indices, namely  for tensile damage and  for compressive damage, ranging from 0 to 1, are tD cD

independently introduced to account for different damage states, defined as:
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where ,  and ,  are stress and strain tensor of tension and compression, respectively.   and tσ tε cσ cε tσ

 are effective tensile and compressive stress;  and  are plastic part of tensile and compressive cσ
p
tε

p
cε

strain;  is initial elastic-stiffness tensor.0E

For computational efficiency and accuracy, S4R four-node shell elements are used to build the piers 

and main girder, and the mesh size is about 1 m × 1 m.  The reinforcing layers are tied into the shell 

elements and B31 beam elements are included to simulate the stiff skeleton in the high piers as shown 

in Fig.1.  An initial stress condition is introduced in the girder to apply the pre-stress.  The finite element 

model of the whole bridge is shown in Fig. 3.  Each end of the bridge is restrained in the transverse 

direction (X), vertical direction (Z), and Y rotation (Ry).  The degree of freedom (DoF) at the connection 

points of piers and the main girders are coupled with the corresponding DoF of the girder, because they 

are fixed as a continuous frame bridge.  Fixed boundary conditions are applied to the bottom of four 

piers.  In this study the soil-structure interaction in different cases is assumed to be unchanged, thus the 

different seismic performance of the bridge subjected to SVGM and uniform ones can be easily 

determined.  Through block-Lanczos method, the first eight natural frequencies and mode shapes of the 

bridge are shown in Fig. 4.  Most modes have dominant transverse deflections owing to the lower 

stiffness in that direction, as this type of bridge usually does [1].

4.2 Earthquake ground motions at the site of bridge

The bridge is sited in a valley about 380 metres wide at the bottom and steep slopes on both sides.  

The soil layers are shown in Fig. 1, and the corresponding characteristic parameters are shown in Table 

2 [6, 25].  The four points (No.1 to No.4) in Fig. 1 on the ground surface correspond to four pier support 

positions.  According to JTG/T B02-01-2008 [6], the parameters in Eq. (1) for the horizontal earthquake 

ground motion on bedrock are:

 (14)2 2
010 rad/s, 0.6, 0.5 rad/s, 0.6, 0.0034m /sg g f f Sω π ξ ω π ξ= = = = =

which correspond to an earthquake with a time duration of 20 s (PGA = 0.2g, PGD = 0.082 m) [35].  

Fig. 5 shows the filtered ground motion power spectral density function on the bedrock.

The coherency effect is calculated using the Sobczyk model [28].  For the ground motions of two 

arbitrary points j’ and k’ on bedrock, the coherency function can be expressed as:
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where the coherency coefficient β is 0.0005, and dj’k’ represents distance between any two support points.  

Assuming the angle α of the incident wave on the bedrock is 60°, the apparent velocity νapp can be taken 

as 1768 m/s based on the characteristics of the bedrock.  It should be noted that the Sobczyk coherency 

model obtained from earthquake records on ground surface is used to model SVGM at bedrock, because 

no information about SVGM at the bedrock is available.  And the same coherency model is used for the 

ground motions in three directions.  The present assumption may lead to some inaccurate estimation of 

coherency loss.  Further research into the influence of coherency function is deemed necessary.  The 

upper cut-off frequency ωu in the simulation process is assigned as 50π rad/s; the time duration T of the 

ground motion is 20 s and the time step dt is 0.01 s.  Based on the aforementioned equations, a 

programme to calculate the SVGM was written, thus the triaxial ground motions at each support point 

of the bridge were obtained.  For instance, the transverse (x axis) ground motion time histories at points 

0’ to 5’ on the bedrock ignoring site effects, where the transfer function is , and those on the ) 1(iQH ω =

ground surface including site effects are shown in Fig. 6.

As shown in Fig. 6(a), the smallest and largest peak ground accelerations (PGAs) of the simulated 

earthquake time histories on bedrock are 1.85 m/s2 (PGA of x5’) and 2.56 m/s2 (PGA of x2’), respectively, 

which are close to the theoretical characteristics of the selected ground motion (PGA = 0.2g).  On the 

ground surface (Fig. 6(b), the smallest and largest PGAs are 1.85 m/s2 (PGA of x5) and 4.46 m/s2 (PGA 

of x2), respectively, indicating the significant site amplification effect brought by the soil layers.  The 

SVGM time histories in the y and z directions (not shown) were calculated using the same equations as 

those in the x direction.  According to GB-50011-2010 code [33], the peak accelerations of triaxial 

ground motions were adjusted in the following ratio: 1 (x axis, transverse): 0.85 (y axis, longitudinal): 

0.65 (z axis, vertical), reducing the PGAs for the y and z axis motions.  This is because as shown in Fig. 

4, the transverse direction (x) presents smaller stiffness.  In addition to applying SVGM, two uniform 

excitation scenarios were also considered as alternative load cases.  From the SVGM in Fig. 6, the 

triaxial motions with the largest x axis PGAs, generated at the support of Pier 2 (point 2) where the soil 

layers are relatively soft and complex, were considered as a uniform input for a ‘Worst’ case scenario, 



because applying the largest PGA input at all supports might reasonably be assumed to cause the most 

severe damage to the bridge.  Similarly, the ground motions with the smallest PGAs, generated at point 

5, were used as uniform input for the ‘Best’ case scenario, where the smallest PGA is presumed to cause 

the lightest damage to the bridge.  In total three input scenarios of triaxial ground motions on both 

bedrock (group 1) and the ground surface (group 2) are considered in this study, as shown in Table 3, 

taking the x direction as example.

5. Numerical results

The structural responses of the bridge under three excitations are numerically simulated.  Significant 

differences between applied bedrock and ground surface motions can be observed by comparing the 

relative displacements, internal forces and ultimate damage modes of the bridge in different cases as 

detailed below.

5.1 Seismic analysis under ground motions on bedrock (group 1)

In this section, the ground motion accelerations shown in Fig. 6(a) at different supports with the 

smallest and largest SVGM PGAs are considered as the ‘Best’ case and ‘Worst’ case excitations 

respectively, as indicated in Table 3.

5.1.1 Relative displacements

Peak relative displacements at the top of Piers 1 to 4 under the three bedrock excitation scenarios are 

shown in Table 4.  For all the excitation cases the piers have a larger response in the transverse (x) 

direction than that in the y and z directions.  For the SVGM case, in particular, the peak displacement of 

Pier 3 in the x direction is more than 7 times that in the y direction, indicating that the transverse response 

of the bridge piers is a critical aspect of the seismic behaviour of this bridge. 

Looking at the relative displacements presented in Table 4, the ‘Worst’ excitation case generally 

produces the highest displacement demand, as assumed.  In the x direction, the ‘Worst’ case generates 

about a 30% larger relative displacement at the top of high piers than the other two excitation scenarios, 

although it is only 9% larger for the short piers.  In the y direction, the relative displacement of the high 

piers under the ‘Worst’ case motion is approximately three times larger than the other two input motions, 

but the y displacements of Pier 1 under the three excitation scenarios are fairly similar.  In the z direction, 

the vertical displacement of the high piers is about twice as much as that of the short piers, but there is 



little difference between the relative displacement responses under the three excitation scenarios.  These 

results show that the high piers are more responsive than the short piers due to their higher flexibility.

Fig. 7 presents the peak relative transverse (x) displacements for short Pier 1 and high Pier 3 as they 

represent the smallest and largest responses of all the piers.  For Pier 3 (the high pier), the ‘Worst’ case 

excitation clearly produces the largest displacement demand while the ‘Best’ case creates the smallest 

demand at all points up the pier.  However, for Pier 1 (the short pier), whilst the ‘Worst’ case excitation 

does produce a slightly larger response at the top of pier, the relative displacements in the other two 

cases are almost identical and overall, the relative displacement responses of Pier 1 are similar.

5.1.2 Internal forces

Fig. 8 shows the internal force demand envelopes of absolute axial force in the longitudinal (y) 

direction, shear force in the transverse (x) direction and bending moment about x axis of the bridge 

girder under three different excitation cases.  The girder and pier locations are indicated at the bottom 

of each figure.

The ‘Worst’ excitation case creates the highest seismic force demands along most of the bridge girder.  

The peak axial forces occur at the joints between the girder and piers, as well as in the mid-spans.  The 

data show particularly sharp increases at the joints, which are vulnerable points for this bridge under 

seismic excitation.  This is because the joints between piers and girder are fixed in a continuous frame 

bridge, thus they usually suffer from large axial forces and subsequent localised damage.  However, the 

peak shear forces occur at mid-spans also in accordance with the positions where peak relative 

displacements take place.  The curve of bending moments shows similar fluctuation tendency with shear 

forces along the main girder, which are relatively larger at the mid-spans than those at other locations.

5.1.3 Damage analysis

The damage indices ranging from 0 to 1 derived from the numerical results can be used to describe 

the extent of seismic damage to the bridge [34].  The lower and upper bound indicate undamaged and 

completely damaged status, respectively.  The damage modes for the three excitation cases are compared.  

Diagrams of the compressive and tensile damage distributions are shown in Fig. 9 and Fig. 10, 

respectively.  



As can be seen, Fig. 9 shows that the plastic compressive damage is limited to relatively small areas 

of the bridge while in Fig. 10 it can be observed that the plastic tensile damage is much more widespread, 

especially on the bridge girder.  In comparison, the plastic tensile damage in the piers is focused in the 

tie beams between the two columns of the high piers.  The compressive and tensile damage development 

time history curves of the bottom tie beam on Pier 3 shown in Fig. 11 also indicate that, the tensile 

damage of the tie beam is much larger than compressive damage.  The ultimate tensile damage index 

under three excitation scenarios (0.396 for SVGM, 0.698 for the ‘Worst’ cases, and 0.546 for the ‘Best’ 

case) is about 4 to 9 times of the ultimate compressive damage index (0.041, 0.169, and 0.077, 

respectively).

Compared with two uniform excitation cases (the ‘Best’ and ‘Worst’ cases), SVGM results in girder 

damage that tends to shift towards the direction to the shortest Pier 1 as shown in Figs. 9 and 10, which 

alleviates the right part of each span.  Meanwhile, the tensile damage in the tie beams subjected to 

SVGM is reduced by about half in comparison with that subjected to the ‘Worst’ case excitation (Fig. 

11).

Overall, the data and figures show that most components in this bridge have the largest seismic 

response when subjected to the ‘Worst’ case excitation.  For this bridge, the uniform ground motion 

input with the largest PGA (the ‘Worst’ case) provides conservative seismic demands for most structural 

components when the site amplification effect is not considered (on bedrock), which suggests that the 

uniform excitation with the largest PGA taken from the spatially variable ground motions may be an 

alternative input for large bridges located on ideal simple topography where site effects have little 

influence.

5.2 Seismic analysis under ground motions on ground surface (group 2)

In this section, the ground motion accelerations which take the site amplification effects into account 

shown in Fig. 6(b) at different supports with the smallest and largest SVGM PGAs are considered as the 

‘Best’ case and ‘Worst’ case excitations respectively, as indicated in Table 3.

5.2.1 Relative displacements

The peak relative displacements at the top of Pier 1 to Pier 4 under the three ground surface excitation 

scenarios are summarized in Table 5.  Again, for all these excitation cases, the piers have the largest 



responses in the transverse (x) direction.  For the ‘Worst’ case excitation the peak displacement of Pier 

3 in the x direction is more than 18 times larger than that in the y direction.  Particularly for the high 

piers, the ‘Best’ case results in significantly smaller relative displacements at the tops of all the piers 

than those in the other two excitation scenarios.  For example, the relative displacement generated on 

Pier 3 by the ‘Best’ case is only 28.7% of that by the ‘Worst’ case and 34.8% of SVGM cases; and the 

displacements of the piers subjected to ‘Worst’ case excitation are the largest among three excitation 

scenarios except for Pier 4.  However, the data in Table 5 show that the ‘Worst’ case does not always 

produce the highest displacement demand, especially in the y direction.  The relative displacements of 

Piers 2, 3 and 4 under SVGM are approximately 3 to 5 times larger than either the uniform cases.  

However, the displacements of Pier 1 under all three excitation scenarios are quite similar.  Same 

observation can also be found in Section 5.1.  In the z direction, the vertical displacement of the high 

piers is about twice that of short piers, and the ‘Worst’ case leads to the largest displacement response 

of all piers.  Compared to the previous bedrock excitation cases, when the site amplification effect is 

taken into account, the SVGM can lead to some particularly large displacement responses, especially in 

the longitudinal (y) direction of bridge.  These results show that for those bridges on complex terrain 

where site effects can significantly amplify the ground motion waves transferred from bedrock, SVGM 

need to be applied as inputs for any seismic analysis.

Fig. 12 shows the peak relative transverse (x) displacements for short Pier 1 and high Pier 3 as they 

represent the smallest and largest responses of all the piers.  For both piers, the ‘Worst’ case excitation 

produces the largest displacement demand while the ‘Best’ case produces the smallest.  However, for 

Pier 1 (the short pier) the displacements due to SVGM are more similar to the ‘Best’ case, whereas for 

Pier 3 the displacements due to SVGM are almost as bad as the ‘Worst’ case.

5.2.2 Internal forces

Fig. 13 shows the demand envelopes of absolute axial force in the longitudinal (y) direction, shear 

force in the transverse (x) direction and bending moment about x axis of the bridge girder subjected to 

three different excitation cases.  By comparing Figs. 8 and 13, when site amplification effect is 

considered, SVGM creates as much seismic force demand throughout the length of the bridge as the 



‘Worst’ case does.  This is particularly noticeable at the locations where the peak axial forces and shear 

forces take place, which are concentrated at joints and mid-spans.

Sometimes the piers, especially high piers, are more vulnerable during earthquakes.  Therefore, the 

absolute internal force demand envelope of Pier 2 is shown in Fig. 14.  The shear force is transverse 

shear force in x direction, and the moment is bending moment force about y axis.  Basically, along the 

entire pier, shear force demands for SVGM are higher than other scenarios.  Especially Fig. 14(a) 

suggests a higher demand in shear forces at the bottom of Pier 2, which is not well captured by the 

identical motions.  As shown in Fig. 14(b), it is quite obvious that the bending moments along the pier 

height are significantly amplified by 3 to 5 times at the connection points of the pier and tie beams, but 

slightly reduced at the clap boards.  The SVGM produces a higher bending moment demand at the upper 

tie beam, while the Worst case generates a higher demand at the lower tie beam.  Although tie beams 

are set to reduce the slenderness ratio of high piers and improve their stability, they result in moment 

concentration and become potential risks to the seismic performance of the bridge.

5.2.3 Damage analysis

The compressive damage and tensile damage distribution diagrams obtained from the numerical 

simulations are shown in Fig. 15 and Fig. 16, respectively.  Overall, most damage is concentrated at the 

mid-spans and in the tie beams between two columns of the high piers, but these load cases also cause 

some tensile damage at the bottom of the short piers.

Similar to the observation in Section 5.1, the tensile damage is spread more widely throughout the 

bridge than the compressive damage.  The compressive damage is mainly located at mid-spans, while 

the tensile damage in the girder is more widely distributed.  However, the stress concentration at the 

ends of the tie beams is severe and high enough to cause fracture.  Figs. 15 and 16 show that the tie 

beams obviously suffer much larger tensile damage than compressive damage.  Therefore the tensile 

damage development time history curves of the upper and bottom tie beams on Pier 3 are shown in Fig. 

17.  It indicates that the uniform input motions result in much lower ultimate tensile damage index (0.283 

for the ‘Worst’ case, and 0.136 for the ‘Best’ case) than that predicted by SVGM (0.708) for the upper 

tie beam.  Under the ‘Worst’ uniform excitation, tensile damage on the upper tie beams seems to be 

relieved while that in the lower ones is aggravated, as compared with SVGM case.  The high piers suffer 



the most from the ground motions with large peak accelerations (SVGM and the ‘Worst’ case).  As the 

piers display different failure modes when subjected to these two excitation cases, it is inadequate to 

consider the uniform excitation, even with the largest peak accelerations as a replacement for SVGM.

By comparing the tensile damage shown in Fig. 10 and Fig. 16, it can be observed that the ground 

surface motions are causing more damage in the tie beams but, more significantly, damage is now also 

occurring in the piers themselves.  This is particularly obvious in the SVGM and ‘Worst’ cases.  The 

very high damage indices in the tie beams suggest that they would suffer from fracture and subsequent 

failure.  Then, without the support from the tie beams, the high piers could easily lose their stability, in 

spite of their high strength capacity and low damaged status, which would pose a threat to the whole 

bridge.

Comparison between Fig. 10 and Fig. 16 also indicates that site effects significantly amplify the 

nonlinear seismic response of this continuous RC frame bridge.  For instance, tensile damage appears 

at the bottom of short piers when the site effect is considered, which vanishes in Fig. 10.  These results 

show that site amplification effects cannot be ignored during seismic analysis, otherwise a significant 

underestimation of dynamic response and damage of the high-pier, long-span bridge can be resulted.  

Overall, for those bridges on complex terrain, where site effects can significantly amplify the ground 

motion waves transferred from bedrock, analysis including spatially variable ground motions is strongly 

recommended as an appropriate input for seismic design.

6. Conclusion

This study qualitatively evaluates whether multiple support excitation can be simplified into a uniform 

one to satisfy the conservative seismic demands for a very large continuous RC frame bridge in 

mountainous regions with complex soil conditions.  The investigations were carried out by means of 

numerical simulations.  Comparisons of the bridge responses under different excitations provide some 

specifications for seismic design and analysis of the high-pier, long-span, continuous RC frame bridges.  

For instance, the tie beams are potential risks to the seismic performance.  When taking site effects into 

consideration, the peak relative transverse displacement at the top of the high pier might be more than 

doubled, and the ultimate tensile damage of the tie beam on high pier is increased by about 20%.



While additional research needs to be conducted for further quantification, the present study provides 

new insights that give significant contribution to the seismic design criteria specifically for high-pier, 

long-span, continuous RC frame bridges as summarized below:

When the site effect is not considered (on bedrock), the uniform ground motion input with the largest 

accelerations provides conservative seismic demands for the bridge, making it suitable as an alternative 

input for seismic analysis of high-pier, long-span, continuous RC frame bridges.  However, this 

approach might result in underestimation of the bridge response when it comes to ground surface 

motions where site amplification has to be accounted.  Accordingly, it is recommended to adopt spatially 

variable ground motions (SVGM) as the input for seismic analysis of such type of bridges on complex 

terrain where site effects can significantly amplify the ground motion waves transferred from bedrock.  

As SVGM is currently not a mandatory requirement in the Chinese bridges design code, usually it is 

simplified as travelling wave without site amplification.  Thus based on the qualitative conclusion from 

this study, the current design code should be updated as soon as possible with additional considerations 

for high-pier, long-span, continuous RC frame bridges for compliance with the rapid construction in 

mountainous regions.
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Fig. 4  Mode frequencies and shapes of the bridge (expanded scale)
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Fig. 6  Simulated non-stationary ground motion acceleration time histories
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(a)  Compressive damage under the ‘Best’ case excitation



(b)  Compressive damage under SVGM excitation

(c)  Compressive damage under the ‘Worst’ case excitation

Fig. 9  Compressive damage for the three bedrock seismic excitation cases (in colour)

(a)  Tensile damage under the ‘Best’ case excitation



(b)  Tensile damage under SVGM excitation

(c)  Tensile damage under the ‘Worst’ case excitation

Fig. 10  Tensile damage for the three bedrock seismic excitation cases (in colour)
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Fig. 11  Damage development curves of the bottom tie beam on Pier 3
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(a)  Compressive damage under the ‘Best’ case excitation

(b)  Compressive damage under the SVGM excitation

(c)  Compressive damage under the ‘Worst’ case excitation

Fig. 15  Compressive damage for the three ground surface seismic excitation cases (in colour)



(a)  Tensile damage under the ‘Best’ case excitation

(b)  Tensile damage under the SVGM excitation

(c)  Tensile damage under the ‘Worst’ case excitation

Fig. 16  Tensile damage for the three ground surface seismic excitation cases (in colour)
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     (a) Upper tie beam                                              (b) Bottom tie beam

Fig. 17  Tensile damage development curves of the tie beams on Pier 3



Table 1  Dynamic parameters of concrete C50

Parameters of model Value Parameters of model Value

Modulus of elasticity E (MPa) 36116 Ultimate compressive stress σcu (MPa) 42.92

Poisson’s ratio ν 0.2 Initial yield tensile stress σt0 (MPa) 3.50

Density ρ (kg/m3) 2650 tensile recovery coefficient wt 0

Dilation angle ψ (°) 30 Compressive recovery coefficient wc 1

Initial yield compressive stress σc0 (MPa) 19.47 Damping ratio ξ 0.05

Table 2  Characteristic parameters of the soil

Soil type Density ρ (g•cm-3) Shear wave velocity ν (m/s) Damping ratio ξ
Bedrock 2.8 1500 0.05

Strongly weathered shale 2.7 700 0.05

Pebble soil 2.1 500 0.1

Gravelly soil 1.8 400 0.1

Table 3  Excitation scenarios of ground motions

Excitation scenarios Ground motion acceleration (transverse direction)

1-SVGM Non-uniform input as shown in Fig. 6(a)

2-the ‘Worst’ case Uniform input using x2’ in Fig. 6(a)on bedrock (group 1)

3-the ‘Best’ case Uniform input using x5’ in Fig. 6(a)

4-SVGM Non-uniform input as shown in Fig. 6(b)

5-the ‘Worst’ case Uniform input using x2 in Fig. 6(b)on ground surface (group 2) 

6-the ‘Best’ case Uniform input using x5 in Fig. 6(b)

Table 4  Peak relative displacements at the top of piers under seismic excitations on bedrock

transverse (x) direction (cm) longitudinal (y) direction (cm) vertical (z) direction (cm)Pier 
number Best SVGM Worst Best SVGM Worst Best SVGM Worst

1 7.23 7.27 7.91 3.12 3.63 3.55 1.83 1.89 1.91
2 12.18 14.96 17.88 2.30 4.02 11.01 3.62 3.42 4.19
3 17.14 18.03 23.52 3.11 2.48 9.31 3.75 2.78 4.12
4 11.46 12.82 13.96 3.21 3.27 10.34 1.39 1.48 1.51



Table 5  Peak relative displacements at the top of piers under seismic excitations on ground surface

transverse (x) direction (cm) longitudinal (y) direction (cm) vertical (z) direction (cm)Pier 
number Best SVGM Worst Best SVGM Worst Best SVGM Worst

1 7.38 9.11 13.98 3.83 4.11 4.29 1.92 2.13 2.41
2 12.31 47.13 51.32 2.71 11.01 4.78 3.51 4.24 5.88
3 17.01 48.82 59.25 3.21 15.63 3.99 3.99 3.60 4.85
4 11.12 28.33 25.18 3.36 11.24 4.01 1.28 1.45 2.65


