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Abstract The COMMD proteins are a conserved family of proteins with central roles in

intracellular membrane trafficking and transcription. They form oligomeric complexes with each

other and act as components of a larger assembly called the CCC complex, which is localized to

endosomal compartments and mediates the transport of several transmembrane cargos. How

these complexes are formed however is completely unknown. Here, we have systematically

characterised the interactions between human COMMD proteins, and determined structures of

COMMD proteins using X-ray crystallography and X-ray scattering to provide insights into the

underlying mechanisms of homo- and heteromeric assembly. All COMMD proteins possess an a-

helical N-terminal domain, and a highly conserved C-terminal domain that forms a tightly

interlocked dimeric structure responsible for COMMD-COMMD interactions. The COMM domains

also bind directly to components of CCC and mediate non-specific membrane association. Overall

these studies show that COMMD proteins function as obligatory dimers with conserved domain

architectures.

DOI: https://doi.org/10.7554/eLife.35898.001

Introduction
The COMMD (Copper Metabolism Murr1 (Mouse U2af1-rs1 region 1) Domain) proteins are highly

conserved in metazoans and unicellular protozoa (Burstein et al., 2005; Maine and Burstein, 2007).

There are ten family members that play key roles in intracellular trafficking and in the regulation of

transcription (Burstein et al., 2005; Maine and Burstein, 2007). A hallmark of the COMMD family

members is a highly conserved C-terminal sequence of ~70–80 amino acids called the COMM

domain, which has no known structure. The N-terminal domain of these proteins, which we refer to

as the HN (helical N-terminal) domain, is more variable in sequence across the ten proteins, and is

proposed to ascribe unique functions to the different family members (Burstein et al., 2005;

Maine and Burstein, 2007). Despite the high degree of conservation and the important roles of

COMMD proteins in membrane trafficking and cell signalling, little is known about their structures or

their specific molecular functions.

In humans, all ten members of the COMMD family (Commd1-Commd10) are expressed broadly

in many tissues (Burstein et al., 2005; van De Sluis et al., 2002). Much of our current understanding

of the COMMD proteins is derived from studies of the founding family member Commd1. An in-

frame deletion in exon 2 of the COMMD1 gene was first identified in Bedlington terrier dogs with
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hepatic copper toxicosis (van De Sluis et al., 2002; Tao et al., 2003). In accordance with the link of

Commd1 to copper metabolism, it was reported to bind to Cu(II), implying that COMMD family

members might serve as metal binding proteins (Narindrasorasak et al., 2007), although this was

questioned by subsequent studies. Commd1 has also been shown to associate with both ATP7A and

ATP7B and is thought to mediate their trafficking from endosomes to the plasma membrane

(Materia et al., 2012). In humans, ATP7A and ATP7B are responsible for controlling intracellular Cu

(II) accumulation (Tao et al., 2003; Materia et al., 2012; Vonk et al., 2011; Miyayama et al., 2010;

Phillips-Krawczak et al., 2015) and are involved in conditions related to copper toxicity including

Wilson’s disease (Wang et al., 2011), suggesting an alternative role for Commd1 in copper homeo-

stasis. In line with a more general function in intracellular trafficking, Commd1 depletion causes a

marked reduction in surface levels of low-density lipoprotein receptor (LDLR), with increased endo-

somal accumulation leading to a concomitant increase in cholesterol levels (Bartuzi et al., 2016).

Although COMMD proteins are expected to be structurally similar, there may be non-redundant

trafficking roles mediated by different members of the family. For example, Commd9 is deleted in

patients with Wilms tumour-aniridia syndrome (WAGR) syndrome, and appears to interact specifi-

cally with Notch2 to regulate its surface abundance by shuttling the receptor away from the lyso-

somal degradative pathway (Li et al., 2015). Members of the COMMD family have also been linked

to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) transcriptional regulation,

hypoxia adaptation, and regulation of intracellular sodium concentration via interactions with the

epithelial sodium channels (ENaCs) (de Bie et al., 2006; Liu et al., 2013; Maine et al., 2009).

COMMD proteins have been found to exist in an endosome-associated complex with the coiled-

coil domain-containing proteins CCDC22 and CCDC93, which has been termed the CCC (COMMD,

CCDC22, CCDC93) complex. In addition, functional proteomics and bioinformatics have indepen-

dently shown that the CCC complex can associate with a stable heterotrimeric assembly of VPS29,

C16orf62 and DSCR3, to form a larger macromolecular complex dubbed the ‘Commander’ or CCC/

Retreiver complex (Mallam and Marcotte, 2017; Wan et al., 2015; McNally et al., 2017). Other

proteins such as SNX17, RanBP1, SH3GLB1 and FAM45a are also thought to associate with the

Commander complex (Wan et al., 2015; Dey et al., 2015; Hein et al., 2015; Huttlin et al., 2015).

Further complexity arises from evidence that COMMD proteins can form homo- and heterodimers

through their COMM domains (Burstein et al., 2005). Although Commd9 and Commd5 associate

directly with each other (Wan et al., 2015), it remains unclear whether the COMMD proteins interact

physically with each other more generally, or how this relates to their assembly with CCDC22 and

CCDC93 in CCC and the larger Commander complex.

In this study we provide a comprehensive and systematic analysis of the structural, biophysical

and biochemical properties of the COMMD family of proteins, and their recruitment to the CCC

complex. These analyses show that COMMD proteins form family-wide homo- and heterodimers

through their C-terminal COMM domains. The crystal structure of the COMM domain from Commd9

reveals an intimately interlocked a/b homodimeric structure, which involves formation of a large and

conserved hydrophobic interface. The crystal structure of the N-terminal domain of Commd9 shows

an all a-helical structure, and using small angle X-ray scattering we establish that homodimers of full-

length Commd1, Commd7 and Commd9 adopt similar tertiary architectures. Intriguingly, the

COMMD proteins show clear structural homology to a poorly characterised protein found in chla-

mydial species of bacteria. Further biochemical studies show that C-terminal COMM domains have

pleiotropic roles in both recruitment of CCDC22 and CCDC93 via their N-terminal calponin homol-

ogy-like (NN-CH) domains, and in binding non-specifically to negatively charged phospholipids.

Results

COMMD proteins form homodimers via the C-terminal COMM domain
As a first step towards assessing the self-assembly activities of COMMD proteins, we studied the

biophysical properties of recombinant full-length COMMD proteins in solution. Of all COMMD pro-

teins we tested Commd1, Commd7 and Commd9 (Figure 1—figure supplement 1) were readily

purified and tractable for biophysical analyses. We measured their molecular weights by analytical

size exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). This

showed that Commd1, Commd7 and Commd9 form homodimers and are monodisperse in solution
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(Figure 1A,B). SEC-MALLS data suggests that dimerization is likely to be a general property of the

COMMD family members. To determine the domains required for homodimerisation we performed

SEC-MALLS analyses of isolated HN and COMM domains. While the Commd1 and Commd9 HN

domains behave as monomers, Commd1 and Commd9 COMM domains exist as dimeric species

(Figure 1B,C). This data shows that the COMM domain is both required and sufficient to mediate

COMMD protein dimerization.

Structural analysis of the COMMD proteins
We next sought to determine the X-ray crystallographic structures of COMMD proteins. However,

although crystals of various full-length COMMD proteins grew rapidly, their diffraction quality was
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Figure 1. COMMD proteins dimerize through the C-terminal COMM domain. (A) Cartoon representation of COMMD proteins, and the MALLS profile

of Commd1 (black), Commd7 (red) and Commd9 (blue) showing Commd proteins are dimers in solution (B) Comparison of the theoretical molecular

weight of the COMMD proteins and the experimentally measured molecular weight. (C) MALLS analyses of the COMM and HN domain shows that the

protein dimerisation occurs through the C-terminal COMM domain of the COMMD proteins as represented schematically. (D) Ribbon representation of

the dimeric Commd9 COMM domain (residues 115–198) chain A (yellow) and chain B (blue). (E) The structure of the COMM domain dimer is analogous

in orientation to a left-handed handshake.

DOI: https://doi.org/10.7554/eLife.35898.002

The following figure supplement is available for figure 1:

Figure supplement 1. Schematic representations of bacterial expression constructs used in this study.

DOI: https://doi.org/10.7554/eLife.35898.003
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not sufficient for structure determination. Therefore a divide-and-conquer approach was taken to

determine structures of the two individual domains of the protein, the conserved C-terminal COMM

domain, and the variable N-terminal HN domain.

Crystal structure of the Commd9 C-terminal COMM domain
We determined the crystal structure of the Commd9 COMM domain to 2.2 Å resolution by single-

wavelength anomalous dispersion (SAD). The overall structure of the Commd9 COMM domain is

composed of two cone-shaped chains that are tightly intertwined with each other to form a globular

dimeric module (Figure 1D, Table 1). Each monomer is comprised of an N-terminal three-stranded

b-sheet capped by an a-helix, with the overall arrangement making an open, hairpin-like structure. A

simple analogy for the COMM domain dimer is that it resembles a left-handed handshake, where

the sheet and helix from each monomer represent the interlocked palms and thumbs of each hand

respectively (Figure 1E). The overlapping C-terminal a-helices of each chain bury a large hydropho-

bic surface area of approximately 2100 Å2 (nearly 1/3rd of the monomer surface area) supporting the

notion that the native state of COMMD proteins is to form dimers via the COMM domain.

Table 1. Summary of crystallographic structure determination statistics.*

Commd9 HN domain (1–117) Commd9 COMM domain (115–198)

Data collection

Space group P 1 I 4

28.5 Å, 35.6 Å, 54.3 Å; 79.4 Å, 79.4 Å, 58.5 Å

Unit cell dimensions (a,b,c; a,b,g ) 104.0˚, 93.3˚, 91.1˚ 90˚, 90˚, 90˚
Remote Inflection

Wavelength (Å) 0.9762 0.9796 0.9787

Total reflections 172817 146841 131332

Resolution range (Å) 19–84 – 1.55 (1.58) 19–84 – 1.55 (1.58) 47.13–2.17 (2.24)

Mean I/sigma(I) 16.9 (5.2) 25.2 (9.3) 26.7 (4.9)

R-merge 0.10 (0.54) 0.06 (0.18) 0.06 (0.5)

Unique reflections 27698 27442 9689

Multiplicity 6.2 (6.0) 5.4 (5.3) 13.6 (11.8)

Anomalous Multiplicity 3.1 (3.1) 2.6 (2.7) 6.9 (6.1)

Mn(I) half-set correlation CC(1/2) 0.99 (0.89) 0.99 (0.98) 0.99 (0.95)

Completeness (%) 91.9 (54.9) 91.0 (52.7) 99.7 (96.4)

Anomalous Completeness (%) 89.6 (50.3) 88.1 (48.1) 99.3 (93.0)

Wilson B-factor 8.4 18.6 53.1

Refinement

R-work 0.13 (0.25) 0.24 (0.30)

R-free 0.16 (0.33) 0.28 (0.35)

Resolution range (Å) 26.28–1.55 30.36–2.17

Number of atoms 2078 1268

Protein atoms 1784 1259

RMS(bonds) 0.009 0.002

RMS(angles) 1.158 0.549

Ramachandran favored (%) 100 98.06

Ramachandran outliers (%) 0 0

Average B-factor 13.11 85.61

*Highest resolution shell is shown in parentheses.

DOI: https://doi.org/10.7554/eLife.35898.004
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COMMD proteins dimerise via a conserved hydrophobic interface in
the COMM domain
In Figure 2 the interface that mediates Commd9 dimerisation is examined in closer detail. Using

CONSURF (Ashkenazy et al., 2016; Landau et al., 2005), the most evolutionarily conserved resi-

dues in Commd9 were mapped onto the structure. There is a very high degree of sequence conser-

vation seen in the hydrophobic core of the Commd9 COMM domain, particularly along the a-helical

surface mediating dimerisation (Figure 2A). Multiple sequence alignment of the COMM domains of

all the COMMD proteins demonstrates conservation of many hydrophobic amino acids, particularly

leucine residues (Figure 2B). The high degree of conservation, and high degree of hydrophobicity

within the dimerization interface strongly suggests that all of the COMMD proteins will form obliga-

tory dimeric structures through similar mechanisms. We attempted to mutate several interfacial

Figure 2. Structural mechanism underpinning the COMMD dimerization. (A) A surface map of the conserved and variable residues of the Commd9

COMM domain showing the hydrophobic core is highly conserved while the surface residues are more variable, confirming the importance of

dimerization for COMMD stability. These calculations are made using the Consurf server (Ashkenazy et al., 2010) on chain A. (B) A combined

sequence alignment and secondary structure comparison of COMM domains of all the human COMMD proteins highlights that the C-terminal COMM

domain is highly conserved across the COMMD family of proteins. Residues marked by asterisk depict conservation of amino acids that decorate the

dimerization interface. Alignments were made with ESPript 2.2 (http://espript.ibcp.fr/ESPript/ESPript/) (Gouet et al., 2003) (C) Representation of dimer

interface of Commd9 COMM domain highlighting key residues (chain A, worm in blue) making main chain-main chain, stacking, salt bridge interactions

with the electrostatic surface (chain B).

DOI: https://doi.org/10.7554/eLife.35898.005
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residues, but both the full-length mutated COMMD proteins and isolated COMM domains were

aggregated due to poor protein solubility (not shown). This provides further support for the essential

nature of dimer formation.

Crystal structure of the Commd9 N-terminal HN domain
We next determined the structure of the Commd9 N-terminal domain by X-ray crystallography to a

resolution of 1.55 Å using multi-wavelength anomalous dispersion. Overall, the Commd9 N-terminal

domain has a globular architecture and is composed of a six-helix bundle with a meander topology

(Figure 3A, Table 1). We therefore refer to this domain as the HN (Helical N-terminal) domain. The

overall structure of the HN domain has a similar all a-helical fold to the equivalent domain of

Commd1, which was previously determined by NMR (Figure 3B) (Sommerhalter et al., 2007). Com-

pared to Commd1 however, the HN domain of Commd9 has an additional a-helix at its N-terminus

that packs down on top of the structure, and a large disordered loop in Commd1 is better resolved

in Commd9. In Commd9 the a4 helix forms a central core element that extends the length of the

HN domain. In Commd1 however, the equivalent helix is bent and oriented differently. This could be
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Figure 3. Structure of the N-terminal HN domain of Commd9. (A) Cartoon representation of Commd9 HN domain (1–116) crystal structure crystallized

at pH 4.9 showing a globular structure. (B) NMR structure of the Commd1 HN domain (PDB ID 2H2M) (Sommerhalter et al., 2007) shown in cartoon

diagram in the same orientation as Commd9 in Figure 3A left panel. The Commd1 HN domain lacks the first helix (a1) and appears to have a kinked

helix a4, but overall shares the same topology. (C) Sequence conservation of Commd9 HN domain mapped on the structure using CONSURF.

DOI: https://doi.org/10.7554/eLife.35898.006

The following figure supplement is available for figure 3:

Figure supplement 1. Sequence alignments of HN domain of all the human and zebrafish COMMD proteins.

DOI: https://doi.org/10.7554/eLife.35898.007

Healy et al. eLife 2018;7:e35898. DOI: https://doi.org/10.7554/eLife.35898 6 of 29

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.35898.006
https://doi.org/10.7554/eLife.35898.007
https://doi.org/10.7554/eLife.35898


due to the absence of the a1 helix to provide stability, or might also be due to an insufficient num-

ber of restraints in this region used for NMR structure calculations. However, the topology of the

five shared a-helices (a2-a6) is similar overall. Comparing the HN domains of Commd1 and

Commd9 using DALI (Holm and Laakso, 2016; Holm and Rosenström, 2010) showed structural

similarity (DALI Z-score >3) with an RMSD of 3.2 Å over 83 Ca atoms.

The electrostatic surface of the Commd9 HN domain reveals the presence of two basic patches

and a negatively charged region, but it is not clear yet what their functional significance might be

(Figure 3—figure supplement 1A). Mapping sequence conservation of the Commd9 HN domain

across species shows conserved surface residues mainly in the a1 helix region (Figure 3C). The

N-terminal regions of the COMMD proteins are quite variable in sequence across the ten family

members (although they are well conserved in paralogous proteins across species), and this has led

to it being referred to as a variable domain or VARD (Maine and Burstein, 2007). Bioinformatics

and secondary structure analyses of the human COMMD proteins however, shows that in all of the

family members the HN domain is very likely to share the same a-helical topology, as well as across

various species of Commd9 (Figure 3—figure supplement 1B,C). In support of this, the HN domain

of human Commd3 shows a strong a–helical l signal when examined using far-UV circular dichroism

spectroscopy (not shown). The exception to this is human Commd6, which does not possess an HN

domain at all, although Commd6 orthologs in other species such as fish and amphibians do (Fig-

ure 3—figure supplement 1C).

Solution structures of COMMD proteins reveal a conserved
homodimeric structure
In the absence of high-resolution crystal structures of full-length COMMD proteins, we employed

SEC-SAXS to obtain solution structural information regarding the architectures of homodimeric

Commd1, Commd7 and Commd9 proteins (Figure 4; Figure 4—figure supplement 1; Figure 4—

figure supplement 2; Table 2). The scattering curves and pair distribution functions (P(r)s) both sig-

nify a relatively globular structure. Ab initio structures of these calculated from the SAXS data reveal

compact but elongated molecules. We next performed rigid body fitting of the SAXS data with the

program SASREF (Petoukhov and Svergun, 2005), using the crystal structures of the Commd9 HN

and COMM domains for Commd7 and Commd9 whereas Commd1 HN and Commd9 COMMD

domain was used for generating the Commd1 model. The resulting models obtained by this

approach were superimposed on the SAXS envelope. The theoretical scattering profiles of Commd1,

Commd7 and Commd9 models, and the ab initio molecular envelopes are in good agreement with

the experimental scattering data with low c2 values. These studies suggest that the COMMD pro-

teins, including Commd9 are homodimers with an elongated shape in solution.

COMMD proteins are structurally related to a unique protein from
chlamydial species
The COMMD proteins share no detectable sequence homology to any other proteins. However,

structural comparison of the Commd9 COMM domain to the structures in the Protein Data Bank

(PDB) using DALI (Holm and Laakso, 2016; Holm and Rosenström, 2010) did identify low scoring

(DALI Z-score >2.5) structural matches to the PH domain of human pleckstrin as well as the phox

homology (PX) domain (DALI Z-score >3) of yeast Grd19. Interestingly, it is clear from these compar-

isons that the COMM domain has a similar topology to core fragments of the larger PX and PH

structures (Figure 4—figure supplement 3). A closer structural match however was identified with

the Pur-a (purine-rich element binding protein) repeat domain (DALI Z-score >4.5), a whirly-like

nucleic acid binding fold (Graebsch et al., 2009; Weber et al., 2016) (Figure 4—figure supplement

4A). Overlay of the Commd9 COMM domain with repeats of Pur-a reveals a similar fold with a

RMSD of 2.5 Å over nearly 50 Ca atoms.

Intriguingly, the clearest structural matches to Commd9 are two closely related proteins from the

bacterial species Chlamydia trachomatis (CT584) and Chlamydia pneumoniae (Cpn0803)

(Barta et al., 2013; Stone et al., 2012) (DALI Z-scores > 7.5). CT584 and Cpn0803 are orthologous

proteins found only in chlamydia. They are modular proteins with an a-helical N-terminal domain

and an a/b C-terminal domain, both of which are structurally analogous to the respective HN and

COMM domains of Commd9 (Figure 4—figure supplement 4B,C). The only major difference in the
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C-terminal structures is the presence of two additional a-helices at the C-terminus of the bacterial

proteins (Figure 4—figure supplement 4B). The N-terminal domains of the chlamydial proteins also

have an analogous overall topology to the HN domain, except that the bacterial proteins lack a1

and a5 (Figure 4—figure supplement 4C). Like the COMMD molecules the chlamydial proteins pos-

sess a core dimeric structure formed by the C-terminal domains, with an overall architecture that is

very similar to that of Commd9 determined by SAXS (Figure 4—figure supplement 4D). In addition

both chlamydial proteins appear to form hexameric assemblies via trimerisation of the core dimer

structure (Figure 4—figure supplement 4E) (discussed further below).

COMMD proteins bind promiscuously to each other
There are now a number of high-throughput proteomics studies that point to the existence of a

large multi-subunit assembly containing all of the COMMD family proteins (Mallam and Marcotte,

2017; Wan et al., 2015; McNally et al., 2017; Dey et al., 2015; Hein et al., 2015; Huttlin et al.,

2015). This is also well supported by several more targeted studies demonstrating that COMMD

proteins associate with each other in both endogenous and over-expression conditions (Wan et al.,
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DOI: https://doi.org/10.7554/eLife.35898.008

The following figure supplements are available for figure 4:

Figure supplement 1. SEC-SAXS profiles of Commd1, Commd7 and Commd9.

DOI: https://doi.org/10.7554/eLife.35898.009

Figure supplement 2. The solution structures of Commd1 and Commd7 determined by SAXS.

DOI: https://doi.org/10.7554/eLife.35898.010

Figure supplement 3. Structural comparison of the COMM domain of Commd9 with other similar modules.

DOI: https://doi.org/10.7554/eLife.35898.011

Figure supplement 4. Structural similarity of COMMD proteins to Pur-a repeats and chlamydial proteins.

DOI: https://doi.org/10.7554/eLife.35898.012
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Table 2. Summary of SAXS structural parameters.

Commd1 Commd7 Commd9

Data collection parameters

Instrument Australian Synchrotron SAXS/WAXS beamline
with Dectris PILATUS 1M detector

Wavelength (Å) 1.0332

Beam geometry (mM) 250 � 130

Camera length (m) 1.6

q-range (Å�1) 0.011–0.251

Absolute scaling method Comparision with scattering from 1 mm H2O

Normalization To transmitted intensity by beam-stop counter

Method for monitoring radiation damage Dose maintained below 210 Gy

Exposure per frame (s) 1

Sample temperature (K) 283

Sample configuration SEC-SAXS with sheath-flow cell

Flow-rate (ml/min) 0.25

Structural parameters

Guinier analysis

I(0) (cm�1) 0.04 ± 0.00 0.03 ± 0.00 0.02 ± 0.00

Rg (Å) 29.26 ± 0.25 28.86 ± 0.60 27.61 ± 0.79

qmin (Å�1) 0.01 0.01 0.01

qRg max (Å�1) 1.3 1.3 1.3

P(r) analysis

I(0) (cm�1) 0.04 ± 0.0004 0.029 ± 0.0003 0.02

Rg (Å) 30.37 ± 0.59 29.5 ± 0.53 28.26 ± 0.67

Dmax (Å) 101.47 99.47 96.99

q range (Å�1) 0.011–0.251 0.011–0.251 0.011–0.251

Porod volume (Å�3) 71951 65393 67180

Dry volume calculated from sequence (Å�3) 25848 27271 26622

Shape model-fitting results

Gasbor (default paramters, 20 calculations

q range (Å�1) for fitting 0.011–0.251 0.011–0.251 0.011–0.251

Symmetry, anisotropy assumptions P2, none P2, none P2, none

NSD (standard deviation) 0.16 (0.004) 1.04 (0.55)

c2 range, CORMAP P values 0.15–0.20, 0.11 0.14–0.17, 0.47 0.14–0.15, 0.14

Atomistic modelling

Crystal structures PDB entry 2H2M and 6BP6 PDB entry 4OE9 and 6BP6 PDB entry 4OE9 and 6BP6

q range for all modelling 0.011–0.251 0.011–0.251 0.011–0.251

CRYSOL (with default parameters)

No constant subtraction

c2 0.31 0.72 1.14

Predicted Rg (Å) 30.85 30.54 31.88

Vol (Å), Ra (Å), Dro (eÅ�3) 53643, 1.40, 0.007 46010, 1.400, 0.075 57201, 1.400, 0.007

FoXS

c2, CORMAP P values 0.52, 0.99 0.78, 0.99 0.99, 0.93

Predicted Rg (Å) 30.82 29.18 31.84

c1,c2 1.03, 0.29 1.05, 4.0 1.04, 1.20

Table 2 continued on next page
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2015; McNally et al., 2017). In the majority of cases these interactions were found using co-immu-

noprecipitation strategies, although it has also been shown that heterodimeric complexes are

formed upon bacterial co-expression of Commd1-Commd6, Commd1-Commd5 and Commd9-

Commd5 (Wan et al., 2015). To study these pairwise interactions systematically we initially

attempted a GST pull down assay with purified His-tagged Commd1 and all of the GST-tagged

COMMD members. However, we did not observe any significant interactions using this approach

(not shown). Next, we assessed whether co-translation would lead to heterodimeric interactions.

GST-baits (all COMMDs) were co-expressed in E. coli with selected His-tagged preys (Commd1, 7, 9

and 10) followed by affinity purification using glutathione sepharose beads (Figure 5A, Figure 5—

figure supplement 1). Western blotting was used to confirm interactions unambiguously as GST and

His-tagged COMMD proteins are similar molecular weights. GST-Commd8 was not included in these

experiments due to the tendency of this protein to degrade. This assay reveals that all of the

COMMD proteins are able to co-assemble with each other in a highly promiscuous manner, while

the lack of binding using separately purified proteins suggests that no exchange occurs between

pre-formed homodimeric proteins. In general there is little specificity seen in the heteromeric com-

plexes formed, although Commd10 binds most strongly to Commd2 and Commd5 and only weakly

with Commd9, while Commd9 binds weakly to Commd6.

Previous reports have shown that the COMM domain alone may be sufficient to allow interactions

between COMMD proteins (Burstein et al., 2005). To test this we next performed our co-expression

GST-pull down assays with His-tagged COMM domains of Commd1 and Commd9 and the HN

domain of Commd1 as prey. While no interaction was observed between any COMMD proteins and

the N-terminal domain of Commd1, strong interactions were seen for C-terminal COMM domains of

Commd1 and Commd9 mirroring the full-length proteins (Figure 5A). Overall, our data indicates

that COMMD proteins form promiscuous homo- and heterodimeric complexes through their C-ter-

minal COMM domains. The fact that COMMD-COMMD interactions could only be reconstituted

after co-translation suggest that these complexes most likely involve the formation of dimeric struc-

tures analogous to that seen in the Commd9 COMM domain crystal structure.

Reconstitution of stable heteromeric COMMD complexes
Our GST pulldown experiment demonstrates that Commd10 preferentially binds to Commd2 and

Commd5. To assess the stoichiometry of heteromeric Commd complexes, we co-expressed GST-

Commd5 with Commd10-His and purified the complex by sequential affinity purification using gluta-

thione sepharose and TALON beads. The eluted complex was subjected to size exclusion chroma-

tography (SEC) to obtain a 1:1 stoichiometric complex. The SEC fractions under the peak clearly

show reconstitution of a 1:1 Commd5-Commd10 complex (Figure 5B).

Table 2 continued

Commd1 Commd7 Commd9

Molecular mass determination

Estimated MW from Porod volume 41387 Da 38094 Da 39099 Da

Calculated MW from MALLS 40400 Da 53000 Da 47800 Da

Calculated MW from sequence 21362 Da (42724 Da for dimer) 22540 Da (45080 Da for dimer) 21819 Da (43639 Da for dimer)

Software employed

Primary data reduction Australian Synchrotron SAXS/WAXS
data reduction package (Scatterbrain)

Data Processing PRIMUS and GNOM

Ab initio modeling GASBOR

Validation and averaging DAMAVER

Computation of models SASREF

Envelope representations PyMOL

DOI: https://doi.org/10.7554/eLife.35898.013
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Figure 5. COMMD proteins form an array of homo and heterodimers via the C-terminal COMM domain. (A) A representative Coomassie image

showing the relative expression of the GST fusion COMMD proteins (top). Blots probed with anti-His6 antibody demonstrating the direct pair-wise

interactions of the COMMD protein family (bottom). A schematic representation of COMMD-COMMD interaction as demonstrated by the pull-downs.

(B, C, D) Representative Coomassie images showing the reconstitution of full length Commd5-Commd10 complex, full length Commd5-Comm domain

Figure 5 continued on next page
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Since the COMM domain singularly mediates the formation of homo- and heteromeric complexes

of COMMD proteins, we also attempted to make the complex using the full-length Commd5 and

COMM domain of Commd10 and COMM domains of Commd5 and Commd10 respectively. Indeed,

highly pure and stoichiometric species were isolated confirming the role of the COMM domain in

COMMD complexes (Figure 5C,D). Several Commd proteins form COMM domain dependent

homodimers and this prompted us to investigate the biophysical properties of Commd5-Commd10

complexes. SEC-MALLS analysis of Commd5-Commd10 reveals that the complex is highly monodis-

perse in solution. Although the combined theoretical molecular weight of these proteins is 47.5 kDa,

the experimental mass was calculated to be 85 kDa, which suggests the existence of a Commd5-

Commd10 heterotetramer (Figure 5E,F). Along the same lines, the Commd5-Commd10 COMM

domain complex appears to also form a heterotetrameric assembly (Figure 5E,F). Altogether, these

data raises two possibilities. First, COMM domains of Commd5 and Commd10 form homodimers

and assemble together as a tetramer. Second, the Comm domain of Commd5 and Commd10 when

expressed together form heterodimers ultimately forming the larger heterotetramer. In both

of these scenarios, COMMD proteins are seemingly interacting with each other through a second

binding interface on the COMM domain that is potentially distinct from the dimerization interface.

The COMM domains bind the calponin homology domains of CCDC22
and CCDC93
Central to the endosomal trafficking function of COMMD proteins is their assembly into the CCC

complex (Mallam and Marcotte, 2017; Wan et al., 2015). CCDC22 and CCDC93 are large proteins

predicted to contain N-terminal divergent calponin homology domains (NN-CH) and C-terminal

coiled-coils (Schou et al., 2014), and are critical components of the CCC complex (Phillips-

Krawczak et al., 2015; Bartuzi et al., 2016; Wan et al., 2015). A Commd1 knock out causes loss of

CCDC22/CCDC93 (Phillips-Krawczak et al., 2015; Bartuzi et al., 2016). Therefore, we set out to

examine whether CCDC22/CCDC93 directly interact with COMMDs, and their mode of association.

Using the co-translation pull down assay, we found that Commd1, 7 and 10 bind to both CCDC22

and CCDC93 directly (Figure 6A, Figure 5—figure supplement 1). Commd9 in contrast appears to

recognize CCDC93 specifically. We next performed domain-truncations and conducted the binding

assay with isolated calponin homology-like domains (NN-CH) and C-terminal coiled coil regions of

CCDC22 and CCDC93. Interestingly, CCDC22 and CCDC93 bind to COMMDs chiefly through the

NN-CH domain. Consistent with the previous literature (Phillips-Krawczak et al., 2015;

Starokadomskyy et al., 2013), we also observed relatively weaker interaction bands for the C-termi-

nal coiled coil domain of CCDC22 and CCDC93. Our data also shows that similar to COMMD-

COMMD interaction, COMMD-CCDC22/CCDC93 binding occurs through the COMM domain.

In contrast to interactions between COMMD family members, which require co-expression for

assembly, we find that CCDC22 and CCDC93 interaction with pre-formed COMMD dimers occurs

spontaneously in vitro (Figure 6B). GST-pull down experiments conducted by mixing the purified

GST-NN-CH domain of CCDC22 and CCDC93 with full length Commd1 and Commd9 as well as the

COMM domains showed a similar binding pattern to what was observed after co-expression

(Figure 6A,B). Specifically, Commd1 and Commd9 bind more strongly to the N-terminal NN-CH

domain of CCDC93 in comparison to CCDC22. Moreover, this assay also suggests that Commd1

has stronger affinity than Commd9 for CCDC proteins. The interaction of the CCDC22

and CCDC93 NN-CH domains with the COMM domain of Commd1 was recapitulated and quanti-

fied using biolayer interferometry (BLiTz). A dose-dependent increase in the binding of the COMM

Figure 5 continued

of Commd10 complex and complex of COMM domains of Commd5 and Commd10 respectively. (E, F) MALLS analyses of full length Commd5-

Commd10 complex and Commd5-COMM domain of Commd10 complex showing the complexes potentially form heterotetramers based on the

calculated molecular weight of the complexes.

DOI: https://doi.org/10.7554/eLife.35898.014

The following figure supplement is available for figure 5:

Figure supplement 1. Raw files of SDS-PAGE gels and western blots of COMMD-COMMD and COMMD-CCDC interactions.

DOI: https://doi.org/10.7554/eLife.35898.015
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domain of Commd1 with NN-CH of CCDC22 and CCDC93 was observed, and the affinity (Kd) was

calculated to be 10.3 and 14.6 mM respectively (Figure 6C,D).

Figure 6. COMMD proteins bind directly to the N-terminal NN-CH domains of CCDC22 and CCDC93 via the COMM domain. (A) A representative

coomassie gel of GST fusion protein expression in a co-expression set-up (Top). Anti-His6 blots of the GST pull down demonstrating direct interactions

between the COMMD family proteins and the Coiled-coil domain proteins 22 and 93 (Bottom). (B) GST pull down demonstrating the binding capacity

of the N-terminal domain of CCDC22 and 93 to Commd1 and Commd9 as well as their respective COMM domains. (C and D) Binding of the Commd1

COMM domain to the N-terminal domains of CCDC22 (C) and CCDC93 (D) measured at varying concentrations using the BLiTz system. Binding

kinetics we calculated using Sigma Plot (Systat Software Inc.).

DOI: https://doi.org/10.7554/eLife.35898.016
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Commd proteins bind to CCDC22 and CCDC93 via a conserved site
To identify the molecular determinants that govern the interaction between the COMM domain of

COMMDs and NN-CH domain of CCDC22 and CCD93, we used cross-linking mass spectrometry

(MS) in combination with pull down experiments. Non-deuterated BS3 cross-linker was used to

crosslink full-length Commd9 with the NN-CH domain of CCDC93. Due to the availability of HN and

COMM domain structures, Commd9 was chosen for these experiments. The NN-CH domain of

CCDC22 could not be used as it does not contain any lysine residues. Upon crosslinking, three major

bands (labeled as 1, 2 and 3) in the Commd9 and NN-CH domain of CCDC93 mixture were

Figure 7. COMMD proteins bind to NN-CH domain of CCDC93 via the conserved WRVD motif in the COMM domain. (A) Cross-linking of Commd9,

NN-CH domain of CCDC93 and the mixture of two with BS3 for 30 min at room temperature. Three distinguishable SDS-PAGE gel bands were excised

in the complex mixture sample (indicated by the number 1, 2 and 3) for MS analysis. In parallel, a cross-linking reaction between Commd9 and

lysozyme was performed under the same condition. (B) Cross-link map for Commd9 in complex with the NN-CH domain of CCDC93. Intermolecular

and intramolecular cross-linked peptides are labelled as black and brown dot lines respectively. (C and D) Ribbon representation of the Commd9 HN

(C) and (D) COMM domain structures with mapped intramolecular and intermolecular cross-linked lysine residues (in spheres). In the Commd9 COMM

domain, K133 and K152 are part of a contiguous surface that includes the side-chains of the conserved residues 128WRVD131 (indicated with sticks).

DOI: https://doi.org/10.7554/eLife.35898.017

The following figure supplement is available for figure 7:

Figure supplement 1. Cross-linking of zfRetromer complex.

DOI: https://doi.org/10.7554/eLife.35898.018
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observed, which were excised for MS analysis (Figure 7A). Lysozyme was used as a negative control,

and a similar presence of bands 1 and 3 suggest they are likely to be cross-linked dimers and tet-

ramers of Commd9 alone (Figure 7A). This observation was further supported by inspection the MS

spectra and xQuest database (Table 3). Analyses of MS data from band 2 revealed 5 unique cross-

links, and 3 of these pairs connected Commd9 and NN-CH domain of CCDC93 (Figure 7B and

Table 3). Mapping of these pairs onto the crystal structures of Commd9 showed that all three lysines

(K100, K133 and K152) were located on the surface accessible to the solvent (Figure 7C,D). Notably,

K133 and K152 are located on contiguous surfaces of the b-sheets of the COMM domains

(Figure 7D), suggesting a likely binding surface for the CCDC93 NN-CH domain. This surface also

includes the side-chains of the conserved residues 128WRVD131, with Trp128 in particular being

strictly conserved across the entire Commd family (Figure 2B).

To minimize the possibility that the cross-linked peptides captured were non-specific interactions

caused by BS3, we also performed a cross-linking reaction using the unrelated VPS26 – VPS29 –

VPS35 retromer complex from zebrafish (hereafter designated as zfRetromer) as a positive control.

Inspection of the xQuest database and the MS spectra reveal a total of 18 cross-linked peptides

(Table 4). VPS26 and VPS29 mainly cross-linked to two opposite regions of VPS35, which is in good

agreement with the known crystal structures of Retromer (Figure 7—figure supplement 1). This

implies that the cross-links we observe between Commd9 and CCDC93 are specific.

COMMD proteins associate non-specifically with negatively charged
phospholipids
COMMD proteins are peripheral membrane proteins commonly associated with endosomal com-

partments (Phillips-Krawczak et al., 2015; Bartuzi et al., 2016; Wan et al., 2015; McNally et al.,

2017; Burkhead et al., 2009; Drévillon et al., 2011). To examine if COMMD family proteins pos-

sess membrane-binding properties we performed qualitative liposome-pelleting assays with purified

Table 3. Identified cross-linked peptides of Commd9 and NN-CH domain of CCDC93.

Predicted mass (Da) Observed mass (Da) Error (ppm) xQuest score Cross-linked peptides

Sample 1: Commd9 - Commd9

2751.419 2751.407 2.3 21.10 VDIK(133)TSSDSISR-VDIK(133)TSSDSISR

2305.209 2305.206 3.0 20.35 ASSK(21)DVVR-VDIK(133)TSSDSISR

4316.319 4316.306 3.2 18.78 DLSSAEAILALFPENFHQNLK(95)NLLTK(100)IILEHVSTWR

3266.789 3266.782 1.8 18.67 NLLTK(100)IILEHVSTWR-VDIK(133)TSSDSISR

2820.589 2820.579 2.4 17.28 ASSK(21)DVVR-NLLTK(100)IILEHVSTWR

3648.889 3648.881 1.0 15.22 LVDLDWRVDIK()TSSDSISR-VDIK(133)TSSDSISR

3202.679 3202.677 2.0 14.22 ASSK(21)DVVR-LVDLDWRVDIK(133)TSSDSISR

2571.299 2571.288 4.1 12.78 IQEDPSLCGDK(163)PSISAVTVELSK(175)

1859.009 1859.006 2.7 12.40 ASSK(21)DVVR-ASSK(21)DVVR

Sample 2: Commd9 - CCDC93

2998.479 2998.476 1.5 16.86 VDIK(133)TSSDSISR AIETK(131)EEMGDYIR

3513.859 3513.842 1.4 14.74 NLLTK(100)IILEHVSTWR AIETK(131)EEMGDYIR

4772.479 4772.501 5.1 7.11 MAVPTCLLQMK(152)IQEDPSLCGDKPSISAVTVELSK IK(45)GLSPFDK

Commd9 - Commd9

2820.589 2820.583 1.1 18.60 ASSK(21)DVVR-NLLTK(100)IILEHVSTWR

CCDC93 - CCDC93

3569.679 3569.675 0.3 14.92 AIETK(131)EEMGDYIR-SYSVSQFQK(148)TYSLPED

Sample 3: Commd9 - Commd9

2820.589 2820.599 4.6 20.02 ASSK(21)DVVR-NLLTK(100)IILEHVSTWR

2305.209 2305.226 5.8 19.51 ASSK(21)DVVR-VDIK(133)TSSDSISR

DOI: https://doi.org/10.7554/eLife.35898.019
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COMMD proteins (Figure 8A, Figure 8—figure supplement 1). The assay shows that Commd1

associates relatively non-specifically with various negatively charged membranes, including PC/PE

liposomes doped with different phosphoinositides, generic Folch lipids from brain extracts, and lipo-

somes containing 30% phosphatidylinositolserine (PS). We observed a similar binding characteristic

for Commd7, but Commd10 showed a relatively strong interaction with Folch liposomes as well as

di- and tri- phosphorylated phosphoinositide species.

In contrast to the other family members, Commd9 appears to associate weakly if at all with the

membranes tested (Figure 8A). A comparative analysis of the electrostatic surface of the COMM

domain of Commd9 and a homology model of the COMM domain of Commd1 (constructed using

the COMM domain of Commd9 as the template) shows that the Commd1 COMM domain exhibits a

basic patch on its surface composed of solvent-exposed positively charged residues that are absent

in Commd9 (Figure 8B,C). To test if this basic surface on Commd1 is involved in membrane recruit-

ment, we made a triple mutant in the putative lipid-binding site (R133Q, H134A and K167A). In lipo-

some-pelleting assays this mutant shows a drastic reduction in membrane interaction (Figure 8A).

Using BLiTz we next quantified the interactions of Commd1 and Commd9 with different phos-

phoinositide-containing membranes. While Commd1 possesses a higher level of binding response

for phosphoinositides PI(3)P and PI(4,5)P2 compared to Folch and PS containing membranes,

Commd9 showed little association with any of the lipids tested, in line with the liposome-pelleting

assay (Figure 8—figure supplement 2). We performed a concentration-dependent binding series

with a selection of liposomes and Commd1 to calculate the dissociation constants of these interac-

tions. Commd1 binds to a variety of liposomes with similar affinities in the range of 1–10 mM, which

is in agreement with the qualitative results from pelleting assays (Figure 8D,E,F,G and H). Confirm-

ing the importance of the basic patch on the Commd1 COMM domain, no interaction was observed

Table 4. Identified cross-linked peptides of zfRetromer.

Predicted mass (Da) Observed mass (Da) Error (ppm) xQuest score

Intermolecular cross-linked peptides zfVPS26 zfVPS29 zfVPS35

2929.569 2929.550 8.0 13.20 APEK(301)
MR

K(90)
VADLYELVQYAGNIIPR

1844.019 1844.040 9.4 10.12 SKYHLK(188) NK(38)LMDALK

1342.809 1342.805 4.9 9.99 MRK(304)R K(127)DILK

1756.069 1756.070 2.8 9.83 FK(23)KLLVPGK WEKK(556)

3809.959 3809.982 7.1 8.01 GDFDENLNYPEQK(73)
VVTVGQFK

TQCALAASK(659)LLK

Intramolecular cross-linked peptides zfVPS26 – zfVPS26

1441.829 1441.819 3.3 28.12 VNINVK(57)QTSK(61)R

1630.869 1630.863 4.6 26.54 TAELK(30)TEEGK(35)LEK

1247.689 1247.679 2.1 26.15 DVNK(266)K(267)FSVR

2571.239 2571.229 4.3 22.06 TEEGK(35)LEK(38)HYLFYDGESVSGK

3241.639 3241.662 7.0 20.14 K(25)TAELKTEEGK(35)LEKHYLFYDGESVSGK

3626.859 3626.875 5.8 19.78 K(214)EMTGIGPSTTTETETVAK-YFK(288)QQEIVLWR

844.489 844.487 4.4 18.66 K(25)TAELK(30)

1014.549 1014.544 1.4 12.32 K(297)APEK(301)MR

Intramolecular cross-linked peptides zfVPS29 - zfVPS29

1184.749 1184.736 5.9 18.59 FK(23)KLLVPGK(30)

Intramolecular cross-linked peptides zfVPS35 – zfVPS35

1607.729 1607.726 3.3 22.38 ENSSSDDK(552)WEKK(556)

844.469 844.449 6.9 19.26 EK(208)REK(211)

2245.219 2245.215 5.1 18.55 LLDEAVQAVK(24)VQSFQMK(31)R

1255.699 1255.688 2.5 17.69 LLK(662)K(663)PDQCR

DOI: https://doi.org/10.7554/eLife.35898.020
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Figure 8. COMMD proteins bind membrane phospholipids but this is not required for endosomal recruitment. (A) Commd1, Commd1 (R133Q, H134A,

K167A), Commd7, Commd9 and Commd10 were incubated with POPC (100%), POPC/POPE (90:10, molar ratio), POPC/POPE/POPS (60:10:30, molar

ratio) and POPC/POPE/PIP (80:10:10, molar ratio) liposomes doped with different phosphoinositides to perform liposome pelleting assay by

ultracentrifugation and subsequent protein content analysis of the supernatant (S) and pellet (P) fractions. (B) (Left) Homology model of Commd1

COMM domain shown as a transparent electrostatic surface overlaid with the ribbon representation, highlighting the residues crucial for forming the

positively charged lipid-binding pocket. Inset shows the close up of the lipid-binding pocket. (Right) The electrostatic surface representation of

Commd9 COMM domain, highlighting the absence of basic patch. (C) Sequence alignment of Commd1 and Commd9 COMM domains. Red asterisks

mark the positively charged amino acids constituting the basic patch on Commd1, which are absent in Commd9. (D–H) Binding of liposomes

containing various phosphoinositides to Commd1 measured at different concentrations and Commd1 (R133Q, H134A, K167A) using the BLiTz system.

Binding kinetics was calculated using sigma-plot (Systat Software Inc.). (I) Lentiviral constructs of GFP-tagged Commd1 and Commd1 (R133Q, H134A,

K167A) were transfected into HeLa cells and colocalisation with the Fam21 WASH subunit imaged by confocal immunofluorescence microscopy. The

mutant Commd1 is still recruited to endosomes, presumably due to incorporation into heteromeric COMMD complexes and the CCC/Retreiver

subunits.

DOI: https://doi.org/10.7554/eLife.35898.021

The following figure supplements are available for figure 8:

Figure supplement 1. Raw files of SDS-PAGE gels of liposome pelleting assay with COMMD proteins.

Figure 8 continued on next page
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with the Commd1 triple mutant. Altogether, the COMM domain of COMMD proteins appears to be

a central hub for both protein-protein and protein-membrane interactions.

We next assessed the importance of the Commd1 membrane-binding surface for its cellular local-

ization. GFP-tagged Commd1 wild type and mutant were expressed in HeLa cells following lentiviral

transduction (Figure 8I). As seen previously, Commd1 is localized to endosomal puncta, and colocal-

ises with the WASH complex subunit Fam21. Surprisingly however, the mutant Commd1 is also colo-

calised with Fam21 on endosomes, despite being defective for membrane binding in vitro. We

propose therefore that this site on Commd1 may instead be important for non-specific membrane

interactions and perhaps for the orientation of the CCC complex on endosomes, but in the context

of the assembled complex with other COMMD proteins it is not required for specific recruitment to

PtdIns3P-enriched endosomal compartments.

Discussion
The COMMD proteins were recently identified as conserved and central components of the CCC

complex (Mallam and Marcotte, 2017; Wan et al., 2015; McNally et al., 2017), a large endosome-

associated assembly that regulates cell surface recycling of various transmembrane receptors

(McNally et al., 2017; Phillips-Krawczak et al., 2015; Bartuzi et al., 2016; Wan et al., 2015).

Despite the high degree of conservation of the COMMD proteins, and the CCC complex more gen-

erally, little is known about the structures or the stoichiometries of the component subunits, or how

these proteins assemble together to control membrane recruitment and protein trafficking. In this

study we provide the first insights into the architecture of the COMMD proteins, and the mecha-

nisms that underpin the previously reported interactions between the various family members.

COMMD proteins form obligatory dimers, and interact with each other in promiscuous homo- and

heterodimeric arrangements via the C-terminal COMM domain. Furthermore this small domain is

essential for pleiotropic interactions with both the CCC proteins CCDC93 and CCDC22, and with

negatively charged phospholipid membranes. The solution structures of Commd1, Commd7 and

Commd9 reveal a modular architecture with the a-helical N-terminal HN domains arranged as flexi-

ble appendages to the C-terminal COMM domain dimers. Previous studies had described the N-ter-

minal region as a variable domain that could provide functional diversity to the COMMD proteins,

due to the low level of sequence homology in this region across the family. Our biophysical, struc-

tural and bioinformatics analyses however show that the HN domain is a structurally conserved fea-

ture shared by all COMMD family members.

The architecture of the COMMD proteins revealed here bears a remarkable resemblance to the

orthologous CT584 and Cpn0803, Chlamydia-specific proteins from C. trachomatis and C. pneumo-

nia respectively. The function of these proteins is unknown, although there is evidence that Cpn0803

can interact with phospholipids as well as components of the Type III secretion system responsible

for injection of bacterial effectors into the host cytoplasm (Stone et al., 2012). What does the

homology of COMMD proteins to these chlamydial proteins imply? Chlamydial species are intracel-

lular pathogens that reside inside a membrane vacuole called the inclusion. During their life cycle

they secrete many effectors that can hijack the intracellular trafficking and signalling machinery of

the host cell to promote survival (Elwell et al., 2016; Mirrashidi et al., 2015; Fischer et al., 2017;

Pruneda et al., 2016). We speculate therefore that the CT584/Cpn0803 proteins may be secreted

effectors with a potential to mimic or modify COMMD protein functions, although this remains to be

confirmed. The evolutionary relationship of the COMMD proteins to the chlamydial homologues is

also an interesting question. Several chlamydial proteins are believed to have evolved through hori-

zontal gene transfer from eukaryotic hosts, such as SWIB domain-containing proteins and Swi/Snf2

helicases (Bastidas and Valdivia, 2016; Stephens et al., 1998), and it is possible that the CT584/

Cpn0803 genes have been acquired in a similar fashion. Both CT584 and Cpn0803 form hexameric

structures composed of a trimer of dimers, with the N-terminal domains providing the primary

Figure 8 continued

DOI: https://doi.org/10.7554/eLife.35898.022

Figure supplement 2. Binding comparison of Commd1 and Commd9 with liposomes using BLiTz.

DOI: https://doi.org/10.7554/eLife.35898.023
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interface for trimer formation (Barta et al., 2013; Stone et al., 2012) (Figure 4—figure supplement

4E). While full-length recombinant Commd1, Commd7 and Commd9 proteins analysed here form

homodimers, it is tempting to speculate that the N-terminal domains of COMMD proteins will con-

tribute to formation of higher-order heteromeric assemblies that are present in the 600 kDa CCC

complexes isolated from cultured cells (Wan et al., 2015), the stoichiometries and structures of

which remain to be determined.

Although the COMMD proteins play a central role in endosomal membrane trafficking as compo-

nents of the CCC complex, they have also been implicated in a number of other cellular processes.

The gene encoding Commd1 (originally called Murr1) was originally identified in dogs with copper

toxicosis, which has been mechanistically linked to interactions with the Wilson disease ATPase pro-

tein ATP7B (Tao et al., 2003). Most prominently, Commd1 has been shown to be a potent inhibitor

of the transcription factor NF-kB, a master regulator of inflammation, and other COMMD proteins

also display similar activities (Maine and Burstein, 2007; de Bie et al., 2006; Ganesh et al., 2003;

Bartuzi et al., 2013). Commd1 acts downstream of the inhibitory IkB kinase (Ganesh et al., 2003),

and is believed to associate with NF-kB subunits at chromosomal loci and promote NF-kB ubiquiti-

nation by Cullin family ubiquitin ligases for degradation (Maine et al., 2007; Mao et al., 2011). A

similar function has been proposed for Commd1 regulation of the HIF-1a transcription factor

(van de Sluis et al., 2007, 2010, 2009). The COMM domain fold is structurally related to the repeat

domains found in the PUR (purine-rich element binding protein) family protein Pur-a

(Graebsch et al., 2009; Weber et al., 2016). Pur-a contains three such repeat domains, the first two

of which form an intramolecular ‘dimer’ while the third forms an intermolecular dimer (Weber et al.,

2016) that both resemble the dimeric COMM domain topology. Pur-a is a nucleic acid binding pro-

tein that plays important roles in the transcription of neuronal genes (Gallia et al., 2000;

White et al., 2009), and is associated with GGGGCC-containing inclusions in ALS-FTD patients

(Xu et al., 2013). The similarity of the COMM domain with Pur-a suggests the intriguing possibility

that COMMD proteins could also interact with DNA and/or RNA to regulate transcription, although

it should be noted that the specific DNA binding site in Pur-a (Weber et al., 2016) is not conserved

in the COMMD proteins (Figure 4—figure supplement 3A).

The CCC complex and associated COMMD proteins are predominantly localised to early endoso-

mal membranes (Phillips-Krawczak et al., 2015; Bartuzi et al., 2016; Wan et al., 2015;

McNally et al., 2017; Burkhead et al., 2009; Drévillon et al., 2011). The mechanism of membrane

recruitment of the complex however is unknown. Most intracellular trafficking complexes rely on

binding to proteins such as the Rab GTPases and membrane lipids such as phosphoinositides for

their spatio-temporal recruitment to specific compartments (Cullen, 2011). COMMD proteins show

significant but non-preferential binding to a variety of negatively charged lipids, and these interac-

tions appear to be maintained by the COMM domain. Our data also highlights that the HN domain

is dispensable for membrane association, which is in line with the work of Burkhead et al.

(Burkhead et al., 2009). The membrane-binding surface of Commd1 in vitro is composed of resi-

dues from both molecules of the homodimer, but interestingly this does not appear essential for

endosomal localisation of Commd1 in cells. This suggests that the ability of COMMD proteins to

associate with membranes is only one part of a more complicated array of interactions controlling

specific endosomal membrane recruitment, likely involving different lipid binding properties of het-

erodimeric COMMD proteins and other CCC complex subunits. Supporting a role for other subunits

and complexes in specific endosomal localisation of the CCC complex, the depletion of CCDC93 or

the WASH complex subunit Fam21 both lead to a loss of Commd1 from endosomes (Phillips-

Krawczak et al., 2015), while the depletion of CCDC22 causes a redistribution of Commd1 and

Commd10 (Starokadomskyy et al., 2013).

The ability to self-assemble and form heteromeric complexes is a core property of the COMMD

proteins identified in some of the very first studies (Burstein et al., 2005). Our work provides a clear

structural explanation for how homo- and heterodimers are formed by the different family members,

and begins to suggest mechanisms for how different domains could contribute to the formation of

larger assemblies, how they associate with biological membranes, and how they become incorpo-

rated into the CCC complex through interactions with the CCDC proteins. As COMMD-containing

complexes emerge as key regulators of cellular trafficking, signalling and transcription, the details of

these molecular interactions and the systems that regulate them remain outstanding questions to be

answered.
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Materials and methods

Antibodies and phospholipids
The monoclonal mouse anti-His antibody was purchased from Genscript Corporation (catalog no.

A00186, 1:5000). Goat anti-mouse IgG HRP was from Life Technologies (Catalog no. A16072,

1:1000). POPC (1-palmitoyl-2oleoyl-sn-glycero-3-phosphocholine) (catalog no. 850475P), POPE (1-

palmitoyl-2oleoyl-sn-glycero-3-phosphoethanolamine) (catalog no. 850757P), DOPS (1,2-dioleoyl-

snglycero-3-phosphoserine) (catalog no. 850150P) and biotinylated POPE (1-palmitoyl-2oleoyl-sn-

glycero-3-phosphoethanolamine-N-(biotinyl)) (catalog no. 870285P) were purchased from Avanti

Polar Lipids. PI (1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol)) (catalog no. P-0016), PI(3)P (1,2-

dioctanoyl-sn-glycero-3-(phosphoinositol-3-phosphate)) (catalog no. P-3016), PI(4)P (1,2-dioleoyl-sn-

glycero-3-phospho-(1’-myo-inositol-4’-phosphate)) (catalog no. P-4016), PI(5)P (1,2-dioleoyl-sn-glyc-

ero-3-phospho-(1’-myo-inositol-5’-phosphate)) (catalog no. P-5016), PI(3,4)P2 (1,2-dioctanoyl-sn-glyc-

ero-3-phospho-(1’-myo-inositol-3’,4’-bisphosphate)) (catalog no. P-3416), PI(3,5)P2 (1,2-dioctanoyl-

sn-glycero-3-phospho-(1’-myo-inositol-3’,5’-bisphosphate)) (catalog no. P-3516), PI(4,5)P2 (1,2-dio-

ctanoyl-sn-glycero-3-phospho-(1’-myo-inositol-4’,5’-bisphosphate)) (catalog no. P-4516) and PI(3,4,5)

P3 (1,2-dioctanoyl-sn-glycero-3-phospho-(1’-myo-inositol-3’,4’,5’-trisphosphate)) (catalog no. P-3916)

lipids were obtained from Avanti Polar Lipids, Inc.

Molecular biology and cloning
All the constructs cloned into bacterial expression plasmids are listed in Figure 1—figure supple-

ment 1. Briefly, DNA encoding full-length human Commd proteins and CCDC22 and, 93 was cloned

into the pGEX-4T-2 plasmid for expression as N-terminal GST-tagged fusion proteins. Full length

Commd1, 7 and 9 were also cloned into the pET30b(+) vector with a C-terminal His6 tag by Gen-

script Corporation. Commd1 HN domain (1-114), Commd1 COMM (116-190), Commd9 HN domain

(1- 116), Commd9 COMM (115-198), CCDC22_N (1-139), CCDC22_C (194-627), CCDC93_N (17-

155) and CCDC93_C (239-630) were artificially synthesized by Genscript Corporation and cloned

into both pGEX-6P-1 and pET30b(+) plasmid as N-terminal GST tagged and C-terminal His6 tagged

fusion proteins respectively. Genscript Corporation generated all the mutants used in this study. The

construct used in crystallization of Commd9 HN domain (1-117) was cloned into pDEST17 with an

N-terminal His6 tag.

Recombinant protein expression and purification
The bacterial expression plasmids were transformed into Escherichia coli BL21-CodonPlus (DE3)-

RIPL competent cells (Agilent). The bacterial cultures were grown in LB until OD600nm reached 0.6.

The cultures were cooled to 18˚C before inducing protein expression by adding 0.5 mM isopro-

pylthio-b-galactoside (IPTG) and allowed to grow for 16 h (Ghai et al., 2011). The cells were har-

vested by centrifugation at 6000 � g for 5 min at 4˚C and the harvested cell pellet was resuspended

in lysis buffer [20 mM Tris (pH 8.0), 500 mM NaCl, 10% glycerol, 0.2% IGEPAL, 50 mg/mL benzami-

dine, 100 units DNaseI, and 1 mM b-mercaptoethanol]. Cells expressing His6-fused proteins were

resuspended in lysis buffer supplemented with 20 mM imidazole (pH 8.0). The cells were lysed by

mechanical disruption at 30 kpsi using a Constant systems cell disrupter. The lysate was clarified by

centrifugation at 50,000 � g for 30 min at 4˚C. Proteins were purified using affinity chromatography

from the clarified lysate.

His-tagged proteins were purified on a nickel-NTA (Clonetech) gravity column and eluted with

500 mM imidazole in buffer containing 150 mM NaCl, 20 mM Tris (pH 8.0) and 1 mM b-mercaptoe-

thanol. GST-tagged proteins were purified on a glutathione-Sepharose (GE healthcare) gravity col-

umn and eluted with 10 mM glutathione, 150 mM NaCl, 20 mM Tris (pH 8.0) and 1 mM b-

mercaptoethanol or the GST tag was cleaved with the addition of thrombin or precision protease

cleavage on to the beads with overnight incubation at room temperature. Finally, proteins were sub-

jected to size exclusion chromatography using a superdex-200 16/60 Hiload column or superdex-75

16/60 Hiload column attached to an AKTA pure (GE Healthcare).

The Commd5-Commd10 complexes were reconstituted by co-transformation of GST-Commd5 or

GST-tagged COMM domain of Commd5 with Commd10-His or His-tagged COMM domain of

Commd10 into Escherichia coli BL21 (DE3) competent cells (Agilent). The cells were cultured,
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harvested and lysed as described above. The complexes were first purified using glutathione sephar-

ose beads and the GST tag was cleaved using prescission protease. The eluted fractions were then

mixed with equilibrated TALON beads to obtain a 1:1 stoichiometric complex. The complexes were

eluted by supplementation of 200 mM Imidazole (pH 8.0) in the wash buffer. The eluted proteins

were subjected to size exclusion chromatography using a superdex-200 16/60 Hiload column.

For crystallization, SAXS, and MALLS experiments, proteins were buffer exchanged into 10 mM

Tris (pH 8.0), 100 mM NaCl and 2 mM DTT using SEC. For the structure determination of Commd9

COMM domain, the protein was labeled with selenomethionine using the method described by Van

Duyne et al (Van Duyne et al., 1993). zfVPS26, zfVSP29 and zfVPS35 were expressed separately in

E. coli BL21 (DE3) cells grown in LB at 37˚C, and protein expression was induced at an OD600 of

0.7–0.8 by the addition of 1 mM IPTG. Cells were harvested after 18 hr of growth at 18˚C. Cell pel-
lets of overexpressed zfVPS26, zfVSP29 and zfVPS35 were mixed and purified using standard metal

affinity, glutathione affinity and size-exclusion chromatography techniques to obtain the purified ret-

romer complex. The size-exclusion buffer contains 50 mM HEPES (pH 7.5), 150 mM NaCl, 2 mM

DTT.

Multi-angle laser light scattering
The molecular mass of the COMMD proteins was determined by size exclusion chromatography on

an AKTA pure (GE Healthcare) connected to a multi angle laser light scattering and, differential

refractive index (RI) detector. The protein samples were gel-filtered in a buffer containing 25 mM

Tris (pH 8.0), 300 mM NaCl and 2 mM DTT that had been filtered (0.22 mm) and degassed. Measure-

ments of full-length COMMD proteins were made using a superdex-200 increase 5/150 column (GE

Healthcare) at a flow rate of 0.25 ml/min with in-line UV, MALLS, and RI detectros (Dawn Heleos II

and Optilab reX, respectively, Wyatt Technology Corp) for MW characterization. Measurements of

the COMMD COMM and HN domains were made using a superdex-75 5/150 column (GE Health-

care) at a flow rate of 0.25 ml/min. UV, MALLS and RI data were collected and analysed using the

ASTRATM software (Wyatt Technology) (Folta-Stogniew, 2006) to compute the molecular mass.

Crystallisation, data collection and structure determination
The Commd9 COMM domain was buffer-exchanged into 10 mM Tris (pH 8.0), 100 mM NaCl, 2 mM

DTT, and concentrated to 8 mg/ml for crystallisation at 20˚C. The protein was supplemented with 10

mM DTT before setting up hanging-drop crystallization screens using a mosquito liquid handling

robot (TTP LabTech). Commd9 COMM was crystallised in 0.1 M HEPES (pH 7.0), 6% Jeffamine

M-600.

In the case of the Commd9 HN domain, protein was buffer exchanged into 50 mM HEPES (pH

8.0), 200 mM NaCl, 1 mM tris (2-carboxyethyl) phosphine (TCEP) and initial crystallisation screens

were set up at 12 mg/ml at 18 ˚C. Crystals of the HN domain were obtained in 0.2 M citric acid (pH

4.9), 28% MME-PEG5000 in a hanging drop setup respectively. Data were collected at the Australian

Synchrotron MX1 and MX2 Beamlines. iMOSFLM (Battye et al., 2011) was used to integrate the

data, and AIMLESS (Evans and Murshudov, 2013) was used for data scaling in the CCP4 suite

(Winn et al., 2011). The Commd9 COMM domain structure was solved using single anamolous dis-

persion (SAD), and the phases were calculated using the peak wavelength data of selenium with

AUTOSOL using the PHENIX suite (Adams et al., 2010; Terwilliger et al., 2009). The solution from

AUTOSOL was built using autobuild (Terwilliger et al., 2008) and the resulting model was rebuilt

with COOT (Emsley and Cowtan, 2004) followed by repeated refinement runs and model building

with PHENIX (Adams et al., 2010) and COOT (Emsley and Cowtan, 2004). The Commd9 HN

domain structure was determined using multiwavelength anamolous dispersion (MAD) and the

phases were obtained using the program SOLVE. Model building and refinement was done using

COOT and PHENIX refine.

Small angle X-ray scattering
In line SEC-SAXS measurements on homogeneous protein samples (assessed using MALLS) were

performed at the SAXS/WAXS beamline at the Australian Synchrotron using a superdex-200 increase

5/150 column (GE Healthcare), and Pilatus 1M detector (Dectris). The scattering data were measured

in a q range of 0.011 to 0.4 Å at 12 keV using a 1.6 m camera length. Samples were loaded on to

Healy et al. eLife 2018;7:e35898. DOI: https://doi.org/10.7554/eLife.35898 21 of 29

Research article Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.35898


the size exclusion column that was equilibrated with 10 mM Tris (pH 8.0), 100 mM NaCl, 2 mM DTT

and 5% Glycerol. Data reduction was performed using the ScatterBrain program (written and pro-

vided by the Australian Synchrotron; available at http://www.synchrotron.org.au). The buffer frames

were averaged after assessing the statistical equivalence using CorMap p values with a significance

threshold (a) of 0.01. The averaged buffer scattering was subtracted from statistically similar data

from Commd proteins elution peak. Rg was evaluated using the Guinier approximation and was

found to be consistent under the elution peak. Primary data processing was performed in Primus

using the ATSAS suite (version 2.6) (Petoukhov et al., 2012). Pair distance distribution P(r) of

Commd proteins was determined using GNOM. C2 symmetry was assumed in generating low-resolu-

tion three-dimensional Ab initio envelopes using the program GASBOR (Kozin and Svergun, 2001).

DAMAVER (Volkov and Svergun, 2003) was used to average the 20 independent models generated

by GASBOR. Rigid body modeling was performed using SASREF (Petoukhov and Svergun, 2005)

and the partial scattering amplitudes were calculated with CRYSOL (Svergun et al., 1995). The ab

initio models were superimposed on to the rigid body modeled structures using SUPCOMB

(Kozin and Svergun, 2001).

Co-expression GST pull-downs
BL21-CodonPlus (DE3)-RIPL competent cells were co-transformed with either His6-tagged Commd1,

Commd1 COMM domain, Commd1 HN domain, Commd9, Commd9 COMM domain or Commd10

with each of the GST-tagged proteins of interest (Commd1-10, CCDC22, CCDC22_N (1-139),

CCDC22_C (194-627), CCDC93_N (17-155), CCDC93_C (239-630) and empty pGEX4T-2 vector

(expressing GST). Transformants were selected via overnight growth using triple antibiotic agar

plates. A single colony was picked to initiate the culture and proteins were co-expressed using the

standard protein expression protocol as described above. Proteins were purified by affinity chroma-

tography using glutathione sepharose beads (GE healthcare) and SDS-PAGE was run to visualize

GST-tagged bait proteins. Binding of His-tagged proteins (prey) to GST-tagged (bait) was observed

by Western blotting using mouse anti-His antibody (Genscript). Genscript generated all the mutants

used in this study.

GST pull downs
1 nmol GST-tagged CCDC22_N (1-139) and CCDC93_N (17-155) were mixed with 1 nmol of His-

tagged Commd1 and Commd9, and COMM domains of Commd1 and Commd9 and Commd1 HN

domain, for 1 hr at 4˚C. Protein mixture was then centrifuged at high speed to remove any precipi-

tated proteins. The supernatant was then added to pre-equilibrated (20 mM Tris (pH 8.0), 300 mM

NaCl, 1 mM DTT) glutathione sepharose and allowed to mix for a further 30 min at 4˚C. Beads were

washed five times in the above buffer supplemented with 0.5% triton X100 (Sigma Aldrich). Bound

proteins were analysed by Western blots using mouse anti-His antibody (Genscript).

Chemical Cross-linking coupled with mass spectrometry
For cross-linking, the purified full-length Commd9 and NN-CH domain of CCDC93 mixture at 50

mM in 50 mM Hepes (pH 7.5), 150 mM NaCl were incubated with 100 molar excess of BS3-d0 cross-

linker (Sigma-Aldrich) for 30 min at room temperature. The reaction was quenched by addition of

100 mM Tris-HCl (pH 8.5), and the cross-linked products were analysed by SDS-PAGE and subjected

to MS analysis. A negative control cross-linking reaction was performed between the full-length

Commd9 and lysozyme using the same condition described above. For the positive control cross-

linking reaction, the purified retromer complex at 15 mM was reacted with 100 molar excess of BS3-

d0 cross-linker. BS3-d0 was purchased from Sigma Aldrich (catalog no. S5799). The gel band that

corresponds to the molecular weight of monomeric retromer complex was subjected to MS analysis.

The bands from the SDS-PAGE gels were excised and reduced with dithioerythritol followed by

alkylation with iodoacetamide. Alkylated samples were digested with trypsin (Promega) in 50 mM

ammonium bicarbonate pH 8.0 overnight using an enzyme-to-substrate ratio of 1:100 (w/w) at 37˚C.
The digested samples were extracted using extraction buffer containing 5% formic acid and 50%

acetonitrile followed by sonication for 1 min. The supernatant was then dried down in a vacuum cen-

trifuge and redissolved in 0.1% formic acid prior to analyse by LC-MS/MS. The extracted peptides

were analysed by uHPLC-MS/MS on an Eksigent, Ekspert nano LC400 uHPLC (SCIEX, Canada)
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coupled to a Triple Tof 6600 mass spectrometer (SCIEX, Canada) equipped with a duo microelec-

trospray ion source. In brief, samples were injected onto a 300 mm x 150 mm ChromXP C18 CL 3 mm

column (SCIEX, Canada) at 5 ml/min. The bound peptides were eluted with a gradient using solvent

containing 0.1% formic acid in acetonitrile. 250 ms full scan TOF-MS data was acquired followed by

up to 30 50 ms full scan product ion data in an Information Dependant Acquisition, IDA, mode.

TOFMS data was acquired over the mass range 350–2000 and for product ion ms/ms 100–1600. Ions

observed in the TOF-MS scan exceeding a threshold of 100 counts and a charge state of +2 to +5

were set to trigger the acquisition of product ion, ms/ms spectra of the resultant 30 most intense

ions. Acquisition of all MS/MS samples was performed using Analyst TF 1.7 software (SCIEX, Can-

ada). Inspection of the raw MS data was done using ProteinPilot software (SCIEX, Canada). The

assignment of cross-linked peptides was made based on xQuest database search engine

(Rinner et al., 2008). Trypsin was set as the enzyme used for digestion during sample preparation

with an MS1 tolerance of 10 ppm and MS2 tolerance of 0.2 m/z.

Liposome preparation
All the phosphoinositides were protonated prior to usage. In brief, powdered lipids were resus-

pended in chloroform (CHCl3) and dried under argon. Dried lipids were then left in a desiccator for

1 hr to remove any remaining moisture. Dried lipids were resuspended in CHCl3:Methanol

(MeOH):1N hydrochloric acid in a 2:1:0.01 molar ratio, lipids were dried once again and allowed to

desiccate. Lipids were then resuspended in CHCl3:MeOH in a 3:1 ratio dried once again under

argon. Finally, dried lipids were resuspended in CHCl3 and stored at �20˚C.
Lipid stock solutions were mixed to the desired molar ratios and dried under argon. To prepare

control liposomes POPC and POPE were mixed in a 90:10 molar ratio, for BLiTz experiments lipo-

somes were doped with 0.5% biotinylated POPE. Liposomes containing phosphoinositides were pre-

pared by mixing POPC, POPE and PIPs in a 80:10:10 molar ratio respectively. 30% POPS was used

for POPC:POPE:POPS. Dried lipids were hydrated in 25 mM HEPES (pH 7.2), and 220 mM sucrose

to obtain a suspension of multilamellar liposomes containing sucrose. This solution was then freeze-

thawed five times to produce unilamellar liposomes. Liposomes were then diluted 1:5 in 25 mM

HEPES (pH 7.2), and 125 mM NaCl solution. The solution was then centrifuged at 250,000 g to

remove sucrose from the medium and maintain osmolarity. The pelleted liposomes were resus-

pended in 25 mM HEPES (pH 7.2), and 125 mM NaCl solution to the desired concentration of 0.5

mM. All liposomes were used within 1 day of preparation.

Liposome pelleting
10 mM of the protein of interest was added to a final volume of 200 ml of the liposome solution. This

solution was left at room temperature for 25 min to allow for protein-liposome interaction. After

incubation, the solution was centrifuged at 400,000 g for 30 min. Supernatant and pellet fractions

were separated and the pellet was resuspended in 200 ml of 25 mM HEPES (pH 7.2), and 125 mM

NaCl, samples were then collected for analysis on a precast 4–12% bis-tris gel (Novex) by coomassie

staining.

Biophysical interaction using Bio-layer interferometry (BLiTz)
Protein-lipid and protein-protein interactions were determined using the bio-layer interferometry

from the BLiTz system. Protein-lipid interactions were observed by immobilizing 500 mM of biotiny-

lated liposomes on a streptavidin biosensor. After immobilization, the sensor was washed with buffer

containing 10 mM Tris (pH 8.0), 150 mM NaCl and 0.1% BSA to prevent non-specific association.

Increasing concentrations (12.5, 25, 50 and 100 mM) of protein were added to the sensor and the

change in binding (nm) was measured. Proteins were then allowed to disassociate from the probe in

the buffer previously mentioned. The kinetics of the protein-protein interactions were determined in

the same fashion using 5 mM of His-tagged COMMD1 COMM domain immobilized on a nickel-NTA

probe and increasing protein concentrations of 62.5, 125, 250 and 500 mM. The data was processed

and plotted using the Sigmaplot package (Systat Software Inc.).
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Cell culture
RPE1, HEK293T cells were maintained in DMEM (D5796; Sigma-Aldrich) plus 10% fetal calf serum

(F7524; Sigma-Aldrich) under standard conditions. These cell lines were obtained from America

Type Culture Collection (ATCC). Parental and stable cells lines were negative for mycoplasma by

DAPI staining, and authenticated by STR profiling. Lentivirus particles for producing stably express-

ing cell lines were generated in HEK293T cells using the pXLG3 vector to carry the GFP tagged

Commd1 WT and Commd1 (R133Q, H134A, K167A). Cells were transfected with DNA using polye-

thylenimine (Sigma-Aldrich). Virus was harvested from the growth media 72 hr post transfection.

For stable transduction with lentivirus, cells were seeded at 75,000 per well in six well plates. The

cells were then incubated under normal conditions with titrations of viral supernatant for 72 hr. Cells

were then passaged and expression of the GFP tagged protein of interest assessed by western anal-

ysis. Cell lines that displayed similar expression levels were selected for comparison and those clos-

est to endogenous levels of protein.

Immunofluorescence
RPE1 cells grown on 13 mm coverslips were washed with PBS before being fixed in ice cold 4%

formaldehyde in PBS for 25 min. Cells were permeabilised in 0.1% Triton X-100 (Sigma) for 6 min.

The cells were then blocked with 1% bovine serum albumin (BSA) in 0.01% Triton for 15 min at room

temperature. Primary antibodies were diluted in 1% BSA and samples were incubated for 1 hr at

room temperature. The samples were then incubated with Alexa Fluor conjugated secondary anti-

body and 0.2 mM DAPI for 30 min at room temperature. Coverslips were mounted in Mowiol-

DABCO mounting medium (Sigma). Cells were visualised using a Leica TCS SP5 X confocal micro-

scope (Leica Biosystems).

Data availablity
Coordinates and structure factors for the COMM and HN domain of Commd9 have been deposited

at the Protein Data Bank (PDB) with accession codes 6BP6 (COMM domain Commd9) and 4OE9

(HN domain of Commd9).
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