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Deep Learning for Exploration and Recovery
of Uncharted and Dynamic Targets from UAV-like Vision

William Andrew1, Colin Greatwood2 and Tilo Burghardt1

Abstract— This paper discusses deep learning for solving
static and dynamic search and recovery tasks – such as the
retrieval of all instances of actively moving targets – based on
partial-view Unmanned Aerial Vehicle (UAV)-like sensing. In
particular, we demonstrate that abstracted tactic and strategic
explorational agency can be implemented effectively via a
single deep network that optimises in unity: the mapping
of sensory inputs and positional history towards navigational
actions. We propose a dual-stream classification paradigm that
integrates one Convolutional Neural Network (CNN) for sensory
processing with a second one for interpreting an evolving long-
term map memory. In order to learn effective search behaviours
given agent location and agent-centric sensory inputs, we
train this design against 400k+ optimal navigational decision
samples from each set of static and dynamic evolutions for
different multi-target behaviour classes. We quantify recovery
performance across an extensive range of scenarios; including
probabilistic placement and dynamics, as well as fully random
target walks and herd-inspired behaviours. Detailed results
comparisons show that our design can outperform naı̈ve, inde-
pendent stream and off-the-shelf DRQN solutions. We conclude
that the proposed dual-stream architecture can provide a uni-
fied, rationally motivated and effective architecture for solving
online search tasks in dynamic, multi-target environments. With
this paper we publish3 key source code and associated models.

I. INTRODUCTION

In this work, we propose a map-based, unified deep
learning framework (see Fig. 1) applicable to recovery tasks
in structured environments where an agent with local sens-
ing and spatial-temporal long-term memory is tasked with
visiting within a confined space as quickly as possible each
of a known-size set of static or dynamically moving targets.

In the special case where agents return and target loca-
tions are fully known over time and space, the task can
be mapped to the static or dynamic Travelling Salesman
Problem (TSP) [2], respectively. Practical solutions for this
problem class have in the past been computed using Dynamic
Programming [3] or Ant Colony System optimisation [4].

We consider a more realistic scenario, where target lo-
cations are initially unknown, consequently requiring ex-
ploratory agency. The search for targets with unknown
locations typically arises in search and rescue (SAR) ap-
plications [5], [6], [7]. Here specifically, application of the
proposed methodology is motivated by requirements to dis-
cover constituent positions of dynamic herds in confined-area
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Fig. 1. Unified Dual-Stream Deep Architecture for Search and Recov-
ery Tasks. The proposed design models the interpretation of sensory (tac-
tical) and historic navigational (strategic) information within a single deep
network (dotted yellow), which allows for unified back-propagation of
navigation decision errors across both domains. Starting at the top right, the
flow chart shows the agent’s sensory input I , that is either (a) an abstracted,
or (b) rendered, nearby environment sample. The input is processed via
(c) a sensory/visual CNN utilising a basic AlexNet [1] design. In a second,
parallel stream an evolving positional history memory M (holding either
(d) spatial, or (e) spatial-temporal, long term information) is used as tensor
input into (f) a network interpreting explorational histories. Both streams
are concatenated into (g) a shallow integration network that culminates in a
SoftMax map towards a score vector output V over the possible navigational
actions a ∈ A. During training, the entire deep network (dotted yellow) is
optimised based on triples (I,M, V ) using one-hot encoding of V given a
and cross-entropy loss. During inference at time step t, the network receives
a sensory input I and (h) selects the top-ranking navigational action a based
on V , which is (i) performed and, in-turn, (j) the positional history M is
updated. In order to initiate a next iteration time-step t+1, a new sensory I
is sampled from the environment E closing the operational loop.

outdoor farming, such that close-up UAV-based visual animal
identification can take place [8]. The described recovery
task may classically be interpreted as a partially-observable
Markov decision process (POMDP), described in various
surveys on visually-motivated robotic navigation [9], [10]
prior to deep learning. However, in this paper, we propose to
cast the task into a framework for optimising deep recurrent
classification. That is, mapping positional history and current
sensory inputs to new navigational actions via a single Deep
Neural Network (DNN). Similar to Zhang et al. [11] in

https://data.bris.ac.uk/data
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their recent work on reinforcement learning for exploration,
we integrate explicit long-term memory into the design,
experimenting with both storage of spatial as well as spatial-
temporal information (see Figure 1 (d) and (e)).

In order to focus on the core of the proposed methodology
and to be able to operate on tractable computational grounds,
we abstract from real-world layouts to (1): model time dis-
cretely, (2): represent space as a simple two-dimensional grid
world and (3): assume grid-cell agent localisation to be re-
solved perfectly. Proposed as early as 1990 [12], grid worlds
remain popular for exploring the viability of AI solutions
today [13], [11]. In our work, agent-centric visual sampling
– approximating a low-flying UAV with a downward-facing
camera – is generated either from (1): occupancy of local
sub-grids of the world as content-independent abstractions,
or (2): rendering from 3D Gazebo simulations [14], [11] for
domain-specific, high-resolution images of particular target
and environment content (e.g. grazing cattle herds).

Principal contributions of this work can be summarised as:
• A novel dual-steam CNN-based navigation paradigm

and architecture for discovering the positions of static
or dynamic targets in uncharted environments.

• Demonstrable out performance of implemented base-
lines when training on optimal navigation decisions.

• Proof of concept across conducted experiments in mean-
ingful feature learning within a realistic simulation
environment applicable to real-world UAV scenarios.

II. FURTHER RELATED WORK

A. Categorisation for Navigation

Robotic navigational research naturally relies heavily on
the categorisation of sensory input. In visually-motivated
navigation, approaches can largely be categorised into map-
based and mapless navigation [9], [10]. Mapless vision
approaches – with no global environment representation –
can be found to: be based in optical-flow [15] and template
appearance matching [16], [17], track landmark features [18],
[19] and more recently relevant, directly classify visual input
via CNNs [20], [21]. In this work, we formulate a 2D
global approximation of the environment (storing visited
positions) inspired by occupancy grid maps [22], [23], [24],
as opposed to post-exploration map-building approaches [25]
and topological map representations [26].

B. Deep Reinforcement Learning for Exploration

Seminal work in deep reinforcement learning (DRL) oc-
curred in 2013 when researchers from DeepMind Technolo-
gies used DNNs as an approximator for learning control
policies from high-dimensional sensory input such as images.
Trained with a variant of Q-learning towards the goal of
replicating human-level performance in playing Atari 2600
games, the term Deep Q-Network (DQN) was coined [27],
[28]. Deep Recurrent Q-Networks (DRQN) [29] extend this
work in a recurrent design for partial agent-environment
observability with the utilisation of a Long-Short Term Mem-
ory (LSTM) layer [30] in place of the first post-convolutional
fully connected layer. These works gave rise to a new

genre of reinforcement learning research, and aligned with
this work: learning agent navigation in complex [31] and
similar [32] environments, map-less navigation [33] achieved
visually [34] or via other sensor measurements. One partic-
ularly noteworthy paper employs DRL towards target-driven
visual agent navigation in simulated indoor environments
[35] – bearing resemblance with the problem at hand here.

One could even argue that our work falls well under the
domain of classical reinforcement learning, yet we propose
its application here to be unnecessarily complex and inten-
sive; within generated episodes, target locations (containing
reward) can be known (even though computationally expen-
sive due to TSP’s complexity bounds) and a globally optimal
path that visits all targets whilst minimising path length can
be inferred (see Section IV). Put differently, an understanding
of what constitutes a good solution is known and we can
train against this. We will demonstrate this knowledge to
be a strong basis for DNN training, accelerating the learning
process and making it applicable to sample sets considerably
smaller than those required to employ DRQN successfully.

III. PROBLEM FORMALISATION

A. Base Case – Static Target Recovery

For target recovery in a grid world E under discrete time t,
let E be defined as a rectangular 2D matrix with dimensions
w × h. The agent G and static targets ri ∈ R both have
discrete coordinates (x, y) within the map boundaries 0 ≤
x < w, 0 ≤ y < h where x, y ∈ Z. Exactly |R| targets
are placed according to some unknown (possibly random)
distribution P in this world. Note that G may take position
anywhere, whilst multiple targets cannot occupy the same
map position: ∀i, j ∈ |R| : rix 6= rjx ∧ riy 6= rjy

where i 6= j and i, j ∈ I.
(1)

Possible agent actions a ∈ A are the four possible naviga-
tion directions for non-boundary coordinates: forward (−y),
backward (+y), left (−x), right (+x) or A = {f, b, l, r},
respectively, for a top-left origin. Particular actions are in-
applicable in case they would move the agent outside the
map (e.g. if Gx = Gy = 0, corresponding possible actions
are A|G = {b, r}, ∀w, h > 0). Performing one particular
action (e.g. ‘move right one unit’, or x := x+ 1) is defined
to take one agent step in discrete time t. The agent is deemed
to have recovered a target ri iff Gx = rix∧Gy = riy at some
time-step tj . A recovery solution S to an episode (i.e. visiting
all ri ∈ R) is defined as an ordered action sequence given
initial agent coordinates (e.g. S = [f, f, l, b, r, r, b], Ginitx =
Ginity = 1). An episode terminates in S once full target
visitation is achieved, or in failure due to time expiry: t > te.
The quality of a solution S is defined by its cardinality |S|,
the quality of explorational agency is defined as the aver-
age solution quality (e.g. measured as target recovery rate)
computed by scenario sampling given P .

Per time step, let the agent G be provided with two
observable inputs: its own current position (Gx, Gy) in
coordinates of E, and an agent-centric 3 × 3 grid image I
resolving target occupancy in E topologically adjacent to G’s



(a) 0 ≤ τ ≤ 10 (b) 20 ≤ τ ≤ 30 (c) 40 ≤ τ ≤ 50

Fig. 2. Examples of Solved Testing Episodes. We depict 75 example episodes where the agent (trained on our base case: Random (PT)) has recovered all
targets at varying degrees of efficiency (avg. 19 steps for 5 targets over 20k samples – compared to lawn-mower pattern requiring ≥ 41 steps). (Red): target
positions uniformly randomly generated (specifying P ) at the beginning of an episode, (blue): past agent positions, (green): current/finishing agent position,
and (black): unvisited grid positions. Instances are sorted (a) - (c) according to the difference in generated and optimal solution lengths τ = |S| − |SGO|.

location – in essence, neighbouring targets and unoccupied
cells can be sensed (see Figure 1 (a)). For the base case, this
abstracts from realistic visual inputs (such as Figure 1 (b))
and provides a content-independent problem isolation of
tactical sensing from more fine-grained visual recognition
tasks. The current position is continuously recorded to keep
a w × h spatial occupancy map M up-to-date, encoding
for each position of world E: 1) if exploration has taken
place, and 2) if the agent is currently located there (see
Figure 1 (d)). M in this form provides long-term positional
history. Given this setup, the problem can be stated as: how
well can we optimise the quality of explorational agency (see
examples depicted in Figure 2) by learning information of P
using only samples of navigation decisions (I,M, a)?
B. Dynamic Case – Actively Moving Target Recovery

Here the base case is extended for target motion over time.
Targets now apply individual actions ai ∈ Aext at velocity
1
su/t (spatial grid units per time-step) – whereas the agent
displaces at velocity 1u/t. We select s = 3, given s>1 makes
agent-target visitation eventually always possible. The action
set is extended here to include action ‘do nothing’ denoted
by n yielding Aext = {f, b, l, r, n} to permit optimised
agent-target path intersection. Furthermore, single cell target
occupation conditions given in Equation 1 are mandated
∀ti ∈ {t0, t1, ..., te}. Architectural and temporal modifica-
tions are enacted on the agent’s memory such that both agent
and recovery locations are encoded spatiotemporally in the
map (see Figure 1 (e)), i.e. time annotations are memorised.
These modifications are made to allow the system to learn
about the uncertainty of target locations by relating agent
paths over time and spatiotemporal recovery points along
these paths – note that this information reveals properties of
target motion beyond placement statistics according to P .

IV. GROUND TRUTH SYNTHESIS

To yield ground-truth solutions to generated episodes
for the purpose of training data synthesis of appropriate
navigation decisions (I,M, a), we employ the use of two
strategies detailed as follows.
A. Fast Approximation: Closest Unvisited Target (CU)

Approximative solutions can be generated fast by deter-
mining the position of the closest unvisited target ri ∈ R,

selecting an appropriate action a ∈ A towards visiting ri

and repeating until all targets have been visited. This forms
an approximation in a nearest-neighbour fashion to any
environment configuration irrespective of w, h, or |R|.

Action selection is determined by first finding angle θ
between the agent G and the closest unvisited target ri using:

θ = atan2(riy −Gy, rix −Gx). (2)

Second, the action a ∈ A is selected via π
2 -wide intervals:

a =



rand({f, r}), if θ = π
4

rand({b, r}), if θ = −π
4

rand({b, l}), if θ = − 3π
4

rand({f, l}), if θ = 3π
4

f, if π
4
< θ < 3π

4

b, if − 3π
4
< θ < −π

4

l, if 3π
4
< θ < − 3π

4

r, otherwise.

(3)

where rand(X) randomly selects an element x ∈ X .
B. Optimal Solution: Permutation of Targets (PT)

Globally-optimal solution(s) are some ordering on R that
are associated with minimal |S| for a given Ginitx , Ginity . A
target ordering can be transformed into navigation decisions
by using Equations 2 and 3. The number of possible or-
derings is factorially dependent on the cardinality of the
target set, that is, within O(|R|!). Episode-specific, opti-
mal target sequence orderings are generated via exhaustive
search, whose runtime intrinsically degrades exponentially
with growing |R|, but is independent of dimensions w × h.
Experimental implications are discussed in Section VI-A and
related performance data is summarised in Figure 3.

V. IMPLEMENTATION

A. Architectural Details

As introduced, Figure 1 illustrates and explains the end-to-
end deep architecture used here. The reader can observe there
that network output consists of a class membership score
vector V with |V | = |A| and

∑
v∈V = 1 as enforced by a

final SoftMax layer. In general, the model-selected action a ∈
A is taken to be the maximal-likelihood value of V . Note
that, if enacting a results in the agent moving outside of the
environment boundaries, a random valid action is performed
instead and equally, loop-detection may also alter action
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Fig. 3. Ground-truth Synthesis – Comparison of Strategies CU vs PT.
Comparison of ground-truth synthesis methods for newly randomly gener-
ated episodes. At each value of |R|, 100 additional episodes were generated
and solved. (Left): average ground-truth solution quality |S| for generated
solutions against the number of targets |R|. (Middle): average time required
for solution generation against the number of targets. (Right): normalised
histogram for the difference in generated solution length between CU and
PT for 100 instances for each |R| ∈ [2, 8].

selection (see Figure 1 (h)). Furthermore, note that the grid
occupancy/visitation map M (see Figure 1 (e)) intrinsically
forms spatiotemporal memory for the agent with explicitly-
defined architecture. This is as opposed to popular recurrent
units such as gated recurrent units (GRU) [36] and long-
short term memory (LSTM) [30] where the encoding and
selection of temporal knowledge is implicit and hidden. Since
all information of the path can contribute to learning infor-
mation about P and target movements, full explicit long-
term memory should intuitively perform well without such
designs. Furthermore, since all training instances are mod-
elled temporally independent/non-correlated, standard batch-
based training can be employed here as opposed to resource-
intensive back-propagation methods for recurrent architec-
tures such as back-propagation through time (BPTT) [37]
and real-time recurrent learning (RTRL) [38].

B. Infinite Loop Detection
An inherent property of model output (i.e. next-step action

selection) is the potential for performing infinite agent loops.
In their simplest forms, infinite loops are easily detectable via
direct substring search into past actions (e.g. {f, b, f, b, ...},
{r, b, l, f, ...}). However, specific substring rules for more
complex loop formations – consisting of many actions – are
difficult to formulate and do not generalise well. Instead,
loop detection here is primitively indicated in the event that
the agent visits a particular grid coordinate α times (we
empirically set α = 3 to minimise solution length).

Upon indication of a loop, action selection control (see
Figure 1 (h)) is given to an alternate algorithm, which in turn
navigates the agent towards the closest preferred unvisited
location in the occupancy map M for current Gx, Gy . This
is achieved by examining occupancy map values surrounding
the agent in a βinit = 1 radius. Unvisited locations in that ra-
dius vote to determine the next action. If no unvisited cell
exists within that radius value β, it is incremented β := β+1.

C. Training Setup
Synthetic training data produced by the selected ground-

truth synthesis method is utilised to train the dual-stream
DNN model defined previously. For training end-to-end, a
single instance (I,M, a) consists of inputs: agent-centric
visual input I and occupancy grid map M , whilst the out-
put is an one-hot action-class vector encoding ground-truth
action a used for back-propagation. To verify pure ground-
truth classification performance, k = 10-fold cross validation
is performed over the respective experimental dataset. At
each fold ki, training is performed for 50 epochs over the
partitioned training set with weights initialised randomly
from a truncated normal distribution and using a batch size
of 64. Costs are optimised via categorical cross-entropy
loss using stochastic gradient descent (SGD) with momen-
tum [39] and a fixed learning rate e = 0.001. Mean and
standard deviation of cross-validated classification accuracies
for each experiment (if applicable) are given in Table I: (h).
D. Baseline Algorithms

We implement three baseline methodologies to compare
our dual-stream, unified deep learning approach against:

1) Naı̈ve Solution (NS): As a simple, naı̈ve strategy
to provide a primitive baseline, we employ an algorithm
whereby if (1): an unvisited target is currently present within
the visual field (verified by examining M ), select an angle-
appropriate action towards it using Equation 3. Otherwise,
(2): navigate towards a next unvisited location using the
voting strategy given in Section V-B (otherwise used to break
loops), and repeat (1) until the episode terminates.

2) Deep Recurrent Q-Network (DRQN): We also imple-
ment off-the-shelf DRQN [29] for comparison employing a
1000-time-step strong experience replay buffer. We establish
this baseline to validate the hypothesis that explorational
agency benefits from known solution samples and the in-
clusion of structured, map-based long-term memory. Visual-
isation of the environment was modified with a white border
surrounding the map used to create the partial visual input I
given to an agent. This serves to provide agent knowledge of
the environment boundaries – which is an implicit property
of the occupancy grid map M ’s architecture for our method.
Additionally, target visitation is visually signified to the agent
who can then no longer receive reward from that target.

3) Split Stream Network (SSN): To validate the motivation
of our proposed dual-stream approach – that explorational
agency benefits from information exchange between sensor
and positional history inputs trained under a single architec-
ture – we split the proposed dual-stream architecture during
training. That is, resulting split stream networks 1 and 2
optimise on (I, a) and (M,a) using network architectures (c)
and (f) as given in Figure 1, respectively. Network outputs
are element-wise summated and normalised to yield the final
action-class score vector used for action selection.

VI. EXPERIMENTS

All experiments were conducted using a 3.6 GHz AMD
8-core Bulldozer CPU with a Nvidia GTX 1080Ti GPU and
32 GB of DDR3 RAM. Throughout experiments, ‘random’



TABLE I
EXPERIMENTAL PERFORMANCE

(a) (b) (c) (d) (e) (f) (g) (h)
Loop

Detected
(%)

>1 Loops
Detected

(%)

>100
Moves

(%)

Optimal
Solution

(%)

≤ 10
Difference

(%)

t > te
Moves

(%)

Target
Recovery Rate

(d/t)

10-fold CV
mAP
(%)

Baselines for NS - - 8.13 0.34 5.96 0 0.260±0.113 -
VI-B Static Recovery DRQN [29] - - 58.09 0.02 2.18 45.56 0.237±0.092 -

(random targets) SSN (PT) 56.31 63.16 23.52 0.66 3.89 0.01 0.217±0.112 68.95±0.256
Learning Random (CU) 37.49 53.01 9.64 2.21 13.76 0 0.262±0.113 67.84±0.237

VI-A Static Random (PT) 32.45 46.78 7.57 2.85 15.72 0 0.265±0.1141 71.15±0.233
+ Recovery Fixed Grid 0.94 100 0.76 99.06 99.06 0.63 0.337±0.054 91.47±0.696

VI-D (agent location Equidistant 54 82.01 19.63 21.78 45.75 0.91 0.333±0.109 83.66±0.182
memorised) Gaussian 24.46 30.17 0.58 39.99 78.61 0.07 0.616±0.143 75.81±0.515

VI-C (simulation) Random (+S) 36.73 44.94 6.88 6.53 35.72 0.164 0.289±0.109 73.97±0.175
(agent+recovery Random (+M) 70.16 78.9 25.55 2.08 12.67 0.59 0.261±0.115 70.17±0.276

VI-E locations Equidistant (+M) 47.59 74.79 7.41 30.25 60.87 0.16 0.380±0.0852 84.99±0.224
memorised) Gaussian (+M) 23.52 63.6 3.28 45.46 78.28 0.15 0.622±0.1413 77.30±0.429
Learning Random Walk - - 79.17 0.08 0.93 12.23 0.155±0.176 60.91±0.418

VI-F Dynamic Herd Walk - - 77.18 0.88 3.18 21.39 0.225±0.128 62.33±0.273
Recovery Herd Walk (+S) - - 61.35 0.12 2.90 5.67 0.203±0.0984 63.26±0.181

Experimental Performance Overview. Row sections in the table group results of our approach across three task categories, and against three baselines,
respectively: VI-B: Baselines for recovery of static, randomly placed targets all outperformed by 1our dual-stream approach; VI-A+VI-D: Static Recovery
attempting to learn recovery under various spatial target distributions P ; VI-C: Using Gazebo Simulations (+S) instead of abstracted sensing; VI-E:
Additionally Memorising Recovery Locations instead of only agent locations, shows superior results for all 2,3non-random target placements; VI-F:
Dynamic Recovery attempting to learn recovery under target motion incl. 4Gazebo simulated herd dynamics. Columns hold the following values: (a): %
of episodes where a loop was detected; and (b): of those cases, % of episodes where another, subsequent loop was detected; (c): % of episodes where the
model required more steps than simply exhaustively exploring every environment position (for fixed w = h = 10); (d): % of episodes where the generated
solution length was equal to the optimum; and (e): % of instances where the model generated a solution less than 10 moves longer than the optimum;
(f): % of instances where time expiry (model failure) occurred with te = 300; (g): µ ± σ target discovery rates (no. of target recoveries per time-step);
(h): 10-fold cross validated ground-truth classification mean average precision mAP±σ.

numbers are generated using the P-RNG Mersenne Twister
algorithm [40]. We fix the number of targets to |R| = 5,
set the environment E dimensions w = h = 10 and un-
less specified otherwise, synthesise 20, 000-episode strong
training datasets per experiment containing approximately
400, 000 instances of (I,M, a) data tuples. Note also that the
agent’s initial position is randomly generated at the beginning
of every episode Ginitx ∈ [0, w − 1], Ginity ∈ [0, h − 1].
Targets remain static throughout episodes (solving the base
case given in Section III-A, where distribution P is two-
dimensional) in all experiments up until those given in Sec-
tion VI-F. For testing, 20, 000 episodes are presented to the
trained models to solve; each model recovery performance is
then measured and reported. Results for all experiments are
given in Table I and evaluated over the following subsections.

A. Episode and Ground Truth Generation

In this experiment, we compare and contrast the afore-
mentioned ground-truth synthesis strategies (see Section IV)
– that is, Closest Unvisited Target (CU) and Permutation
of Targets (PT) – for training data generation utilised for
subsequent model training. Figure 3 illustrates comparative
results on newly-generated episodes with fixed environment
dimensions w = h = 10 and random target distribution.
As theorised for PT, the time required to solve episodes
increases factorially with the number of targets, i.e. O(|R|!),
whilst CU requires negligible linear time (see Figure 3:
(middle)). The tradeoff being that as |R| −→ ∞, the average
difference in generated solution lengths diverge (see Figure
3: (left)) – since PT guarantees optimality. Yet, as illustrated
in Figure 3: (right), employing the CU strategy yields opti-

mality in the majority of instances (∼60%). Comparison of
both training synthesis strategies against validation episodes
demonstrably proves that PT prevails (see both Table I and
Figure 4) in learning the conditions for optimal decisions
given random target distribution. Thus, we employ the PT
approach for episode solution synthesis for all other experi-
ments and establish this result (i.e. using PT) as the base case
benchmark for static, uniformly randomly distributed targets.

B. Baseline Comparison

These experiments evaluate the three implemented base-
line algorithms (see Section V-D) against our proposed
dual-stream architecture. For each algorithm, targets are
uniformly randomly spatially distributed within E. Resulting
performance statistics illustrate under-performance in all
aspects in comparison to our benchmark. The employed
naı̈ve approach (NS) yields highest baseline performance and
is accordingly shown for comparison in Figure 4 against
benchmark results achieved by our solution. Off-the-shelf
DRQN [29] demonstrably performs poorly despite access
to experiences containing decisions leading to reward. This
occurs arguably as a result of the agent having no global
notion of current environment localisation necessary to locate
possible future reward in an overall context. Splitting inputs
into separately-trained neural network streams (SSN) is also
shown to yield poor performance since model exposure to
any single input (I or M ) alone is insufficient in pro-
ducing optimal reasoning (the problem becomes increas-
ingly partially-observable). This being said, knowledge of
occupancy grid M (encoding Gx, Gy , visited cells, etc.)
inherently encodes more information on E than I , which



is reflected in our findings of significantly higher mAP
classification accuracy in the network optimising on (M,a).
Additionally, performing end-to-end training on two separate
networks to address the imbalance attributes significant addi-
tional computation over our proposed network architecture.
C. Simulated Full Visual Input (+S)

To this point, sensory environment observability has been
encoded by small 3× 3 sensory abstractions. To simulate a
more realistic target location recovery assignment – where
visual target detection is no longer trivial – we employ the
task of visual outdoor farming census related to [8]; discov-
ering cattle positions within a field using a quadrotor UAV.

The task is simulated utilising randomly-oriented 3D cattle
models within the Gazebo robot simulation environment [14]
(see Figure 5: (top)). The simulation environment is used to
directly replace the agent’s sensory field I with a 50 × 50
pixel image (see Figure 5: (bottom)) for a 100° FoV camera,
whilst M remains identical in architecture and operation. The
UAV is flown in discrete 2m increments within an x−y-plane
at fixed height z = 3.5m.

The experimental setup remains identical to the bench-
mark case with agent and cattle targets uniformly randomly
spatially distributed. Whilst obtained results (see Table I and
Figure 4) indicate an advantage for the simulator case, these
results are not directly comparable within the setup used,
since environment observability improves in a three dimen-
sional projection beyond 2D gridding given the camera FoV
(see Figure 5: (bottom)), visibility of object shadows, etc.

Whilst efforts could have been made to strictly enforce
agent visibility to a 1 grid ground cell radius (as for the grid
world), this would have failed to model real scenarios well
since visual artefacts (e.g. shadows) are present in real-world
sensing. Note that the employed visual processing CNN
architecture (AlexNet [1]) clearly demonstrates that it can
recover and utilise additional visual information found in
such realistic robotic scenarios (see Table I, Section VI-C).
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Fig. 4. Model Solution Length Difference. Normalised histogram of the
difference in generated solution length using models trained with Closest
Unvisited (CU) and Permutation of Targets (PT) ground-truth synthesis
strategies against the global optimum over 20, 000 test instances. Distribu-
tions when using the naı̈ve solution (NS) and Gazebo simulator [14] (PT+S)
are also included. See Table I for further detailed performance statistics.

Fig. 5. Visual Simulation Environment. (Top): overview of the Gazebo-
powered [14] simulation (+S) environment for a randomly generated static
episode. (Bottom): example 50 × 50 pixel images from the simulated
downward facing UAV camera provided as input to the agent.

D. Learning Static Recovery under Spatial Distributions
Experiments to this point have dealt with fully random

uniform target distributions. Here we show that simpler and
arguably more realistic spatial distributions can also be learnt
(naturally, far more effectively) under the solution proposed
here. We employ three additional distributions as follows:

1) Fixed Grid: As a baseline distribution case, targets
are distributed in a fixed, static grid across episodes (spatial
distribution P is known completely), whilst agent position
initialisation varies as before. Since there are many orders of
magnitude less possible environment initialisation configura-
tions, wh−|R| = (10×10)−5 = 95 – since only the agent
position is varied per-episode – one would expect highly
improved model performance, which indeed turns out to be
the case both in pure ground-truth classification accuracy and
online model performance (see Table I, row ‘Fixed Grid’).

2) Equidistant Grid: Targets are distributed spatially in
a grid that satisfies target-target nearest neighbour (NN)
equidistance (Voronoi-like distribution) – a property that is
observed in real cattle-herd distributions [41]. The position of
the grid in E is varied randomly per-episode and inter-target
NN spacing satisfies 2 grid-unit spacing. Since the grid is
fixed in shape across episodes, positional knowledge of just
two targets provides full information of remaining target po-
sitions. Ergo, the problem is then vastly less complex than the
fully random case, which is reflected in model performance
on this distribution (see Table I, rows ‘Equidistant’).

3) Gaussian: Target positions are sampled from a two-
dimensional Gaussian with constant parameters µx = 3,
µy = 5 and σx = σy = 1 at the beginning of each
episode. Values are sampled from the distribution as required.
Results demonstrably show strong model performance in
efficiently discovering target positions – relatable to an
ability to effectively learn the distributional parameters of the
underlying 2D Gaussian P (see Table I, rows ‘Gaussian’).
E. Memorising Recovery Locations (+M)

In these experiments, the visitation map M is modified
such that target locations are marked upon agent visitation.



0 10 20 30 40 50
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90
A
cc

ur
ac

y
Training

0 10 20 30 40 50
Epochs

Validation

5k
10k
20k
40k
60k
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This small implementation detail leads to improved perfor-
mance upon all tested, non-random target distributions, that
is ‘Equidistant’ and ‘Gaussian’. These improvements occur
intuitively; previously discovered target positions directly en-
code information about a non-random P . This is demonstra-
bly not the case for fully random distributions – knowledge
of randomly positioned target ri reveals no information about
the position of rj , and yields no increase (i.e. slight decrease)
in performance (see Table I, compare rows 4, 5 and 10).

F. Learning Dynamic Multi-Target Recovery
Thus far, targets have remained static throughout episodes.

Here we extend our implementation to include individual
target motion in two forms. Formalisation of this, now
dynamic recovery problem, is given in Section III-B. Note
also that infinite loop detection – applicable to the static
recovery task – is disabled here.

1) Random Walk: Targets implement random walk via
random action selection rand(A) with a fixed velocity
of 1

3u/t (one grid unit every 3 time-steps). To determine
globally-optimal solutions towards training data generation,
ε = te = 300 random actions are pre-determined for each
target such that Equation 1 – mandating single grid cell target
occupancy – remains satisfied for every time-step ti ∈ [0, ε].
The yielded matrix containing target coordinates over time is
then exhaustively searched for each possible combination of
future target visitation orderings towards finding the shortest
solution using a full ‘lookahead’ extension of the PT solver.

2) Herd-like Motion: Looking towards more realistic sce-
narios closer to a robotic UAV application in ‘smart farming’,
cattle herd-inspired distribution initialisation and motion is
applied. Targets are initially distributed in an equidistant
grid (as for Section VI-D.2) with random position in E.
Herd-inspired motion is implemented with an overall group
direction di ∈ A randomly selected at the beginning of
each episode. Direction di is applied to each target at
velocity 1

3u/t with a 10% per-individual likelihood that they
instead perform a random action rand(Aext) excluding in-
axis directions for di (e.g. if di = r, Aext = {f, b, n}).

This motion behaviour approximation is supported by
literature observing collective dynamics for grazing cattle
herds [42]. Finally, upon reaching the boundaries of E, a new
group direction di+1 is randomly selected where di 6= di+1.
Identically to random walk, ε = te = 300 individual motion
actions are pre-determined and solved for optimally via the
full ‘lookahead’ extension of the PT solver.

Following network training on the random walk experi-
ment, the so far employed 20, 000-episode dataset cardinality
was found to be insufficient for optimal performance leading
to significant model overfitting (see Figure 6). This observa-
tion illustrates the significant increase in problem complexity
introduced by individual target motion. Increasingly larger
datasets improving validation accuracy were thus synthesised
at the cost of overall computation time. However, reasonable
synthesis, training and evaluation times were quickly ex-
ceeded – we opted to empirically limit dynamic experiment
datasets to 60, 000 episodes as a reasonable accuracy versus
time tradeoff. Findings suggest that there is more validation
accuracy to be gained by providing even larger sets of
episode datasets (see Figure 6, right).

Quantitative ground-truth classification and online model
performance statistics given in Table I demonstrably indicate
the capability of the proposed unified network to generalise
well to the case of individual target dynamics. In particular,
herd-inspired motion generally improves search and recovery
capabilities (see Table I, compare rows 13 vs 14 and 15).

Finally, experimental outcomes to this point culminate in
our last, highlighted experiment: ‘Herd Walk (+S)’, com-
bining target dynamics enacting herd-like motion and visual
sensory input rendered via the cattle-census simulation envi-
ronment (see Section VI-C and Figure 5). As for the static
case, we observe increased environment observability and re-
duced partiality in view compared to the 2D case. Yet, the ex-
periment clearly validates the employed dual-stream, single
network architecture in yielding competitive explorational
decisions whilst processing higher resolution, complex visual
imagery in unity with spatial-temporal navigational memory.

VII. CONCLUSION

This work demonstrates that recovery tasks can be effec-
tively modelled by combining visually-motivated sensing and
map-based positional histories under a single deep classifi-
cation architecture, comprising the combined optimisation of
both information streams in unity. We have shown that this
approach outperforms the various tested baselines including
split stream optimisation. Our proposed architectural choices
demonstrably generalise well to a wide range of scenarios,
target distributions and dynamism given training data com-
prised of good or optimal decision strategies.

Future work will look towards deployment of models de-
veloped to onboard, real-world UAV visual navigation com-
plementing individual target identification tasks. Within this,
the visitation map M will be augmented probabilistically to
account for outdoor UAV localisation variance introduced by
using GPS. Additionally, environment-observability benefits
introduced by varying UAV altitude will be investigated.
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