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Abstract—Solving the deterministic discrete ordinates neutral
particle transport equation is a computationally expensive ap-
plication. On an unstructured mesh, the discontinuous Galerkin
finite element method is used for discretisation of the spatial
domain. Additionally, an upwind dependency is applied forming
wavefront sweeps across the spatial mesh for each iteration of the
solve. We present a new mini-app, UnSNAP, which can be used
to investigate the performance of arbitrarily high-order finite
element unstructured transport on modern architectures. A new
schedule appropriate for such architectures is presented. Finally,
we show performance results for the mini-app on CPUs with
high numbers of cores.

Index Terms—deterministic discrete ordinates transport, finite
element, discontinuous Galerkin, sweep, unstructured mesh

I. INTRODUCTION

The deterministic discrete ordinates neutral particle trans-
port equation is a Boltzmann balance equation that models
how neutral particles move and interact through a mesh of
materials of varying properties. The solution of this transport
equation is computationally intensive, mainly resulting from
the inversion of the streaming-collision operator and the data
dependency imposed in the construction of the numerical
method for approximate solution. The solution to the equation
is of high dimensionality: space, energy, direction and option-
ally time; and as such demands a large memory footprint,
often using the full capacity of the available memory. For
machines which must run this class of application, it is often
the memory demands of the neutral particle transport codes
that determine the memory capacity of the system. Although
one could select one of the many off-the-shelf linear solver
libraries to solve this equation, due to the high dimensionality
and convergence properties, it is typical to write codes which
solve this equation specifically. The solution of transport is
relatively expensive, as can be seen on a survey of the usage of
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United States Department of Energy supercomputing systems
where it was estimated that 50-80% of simulation time is taken
up by solution of the transport equation [1].

The Discrete Ordinates (Sn) Application Proxy (SNAP)
from Los Alamos National Laboratory was developed to
understand the performance of a transport code [2]. The
mini-app uses artificial problem data which is auto-generated
based on input parameters. SNAP operates on a structured,
regular Cartesian grid and utilises a finite difference spatial
discretisation method. The performance of SNAP has been
extensively studied [3]–[5].

Unstructured meshes are however commonly used in com-
putational science. They offer better representation of complex
geometries than structured meshes. An unstructured mesh must
detail the connectivity of these cells so that neighbours are
listed explicitly rather than defined implicitly as per a struc-
tured mesh. However, the simple finite difference method used
for structured meshes is unsuitable for solving the equation
on unstructured meshes, where each cell is represented as
a hexahedron (a potentially deformed cube). A higher order
finite element discretisation is used instead.

In this paper we investigate the performance of the solution
of the transport equation on an unstructured mesh using the
discontinuous Galerkin finite element method. The SNAP
mini-app is extended to support unstructured meshes solved
using this finite element method.

In particular, we make the following contributions:
• We have developed a discontinuous Galerkin finite el-

ement implementation of the deterministic discrete or-
dinates transport mini-app SNAP, nicknamed UnSNAP.
This will enable a holistic approach to understanding the
performance of such codes on advanced architectures.

• Arbitrarily high order Lagrange elements are used within
the mini-app which enables us to investigate the perfor-
mance characteristics of both low and high order finite
elements. To this end, we evaluate the relative cost of
the local matrix assembly and solution using a simple
hand-written small dense linear solve and the Intel Math
Kernel Library.



• A sweep schedule is presented which allows for high
levels of parallelism on each process within the MPI
distributed spatial domain. This will ensure that sufficient
concurrent work is available to leverage the increasing
parallel demands of advanced multi- and many-core ar-
chitectures.

• Initial performance results of the UnSNAP mini-app are
presented on the latest CPUs which have a high core
count. These results highlight the areas of future study of
the performance of this algorithm.

A. Related work

The Tycho 2 mini-app implements linear discontinuous
Galerkin finite elements in the solution of the transport equa-
tion on an unstructured grid of tetrahedral elements [6]. The
focus of our study is on hexahedral meshes — the complexities
of sweeping triangular meshes are well known [7]. Tycho 2
has also been designed to study the scheduling properties of
the transport equation, building on the work of Pautz [8]. The
schedules proposed by Pautz are designed to ensure that the
upwinding dependency is maintained and that dependencies
are satisfied as quickly as possible as the sweep progresses
across the mesh. Our port of SNAP to unstructured meshes
will allow for a holistic study of both the performance of the
solve as well as the scheduling of parallel work.

The UMT2013 mini-app performs transport calculations
on an unstructured grid but uses a unique upstream corner-
balance spatial discretisation [9]. It is a rather large mini-app
at approximately 50,000 lines of Fortran, C and C++ and is
therefore not flexible enough to be used as a research vehicle
for our purposes. In particular, it is not feasible to replace
the corner-balance method with the finite element method in
this code. For comparison, SNAP consists of 4,000 lines of
Fortran (according to their counting script), and the UnSNAP
mini-app introduced in this paper consists of 3,000 of C++.

II. SPATIAL DISCRETISATION OF THE TRANSPORT
EQUATION

The stationary transport equation is solved for the unknown
angular flux ψ in space ~r, angle Ω̂ and energy E. The total
material cross sections are given by σ, with the scattering
cross sections σs. The cross sections relate to the material
properties and describe the probability that a neutral particle
will interact with the material. The total cross section σ is
the chance of an interaction occurring from absorption or a
change in direction or energy. The scattering cross section σs
describes the chance of the interaction resulting in a change
of direction and/or energy.

Ω̂ · ~∇ψ(~r, Ω̂, E) + σ(~r,E)ψ(~r, Ω̂, E) =

qex(~r, Ω̂, E) +

∫
dE′

∫
dΩ′σs(~r,E

′ → E, Ω̂′ · Ω̂)ψ(~r, Ω̂′, E′)

The left hand side of the equation describes the loss of
particles; the streaming term captures the loss of particles due
to their movement out of the domain, and the loss of particles

due to interaction with the material is described in the collision
term. The right hand side describes the gain in particles; a fixed
source contribution is given by qex and represents a gain in
particles that come from outside the physics modelled by the
equation; these particles may come from the material itself
or from outside the boundary. Added to this is the gain of
particles into a particular direction and energy and is given by
the scattering source. It is often convenient to notate the right
hand side as S(~r, Ω̂, E).

The equation is discretised in angle using discrete ordinates
and in energy using the multi-group approximation. A detailed
explanation of the derivation and discretisation of the transport
equation can be found in Lewis and Miller [7] and readers
unfamiliar with transport are referred to this text.

The solution of the transport equation is via simple iterations
on the scattering source, and as such is an iterative method.
Jacobi iterations are used to solve the group-to-group coupling
in the source term.

A. Finite difference in space

For the finite difference discretisation of the transport equa-
tion, simple diamond difference equations are defined and
included with the transport equation to create a system of
equations. These extra equations state that the value of the
angular flux ψ in the centre of each cell is equal to the average
of the solution on each opposite pair of sides.

The finite difference equations are substituted into the
streaming operator, forming an upwinding dependency, al-
lowing the equation to be solved at the cell centre given
known values on the boundaries of adjacent cells. This data
dependency causes a sweep across the mesh for each angle.
The diamond difference equations are such that the cell centred
value is equal to the average of the top and bottom edge values
and simultaneously equal to the average of the left and right
edge fluxes. A sweep is performed for each angle Ω̂ with the
incoming cell edges/faces chosen appropriately to respect the
angle direction through the cell.

B. Finite element in space

The discontinuous Galerkin finite element method is used
to discretise the spatial domain into Lagrange hexahedral ele-
ments (cubes). The finite element method involves multiplying
the transport equation by a test function and integrating over
the area of the element (cell), integrating the gradient term by
parts. An assembly of one small linear system per element,
per group, per angle is formed. Table I shows the matrix size
for a number of finite element orders, along with the storage
space required for the matrix using double precision floating
point values (FP64).

The angular flux is approximated as a linear combination
of trial basis functions which exist at nodes within the cell.
For linear elements, each of the trial functions is associated
with a vertex of each cell, as shown in Figure 1a. Higher
order elements add additional nodes on the edges, faces
and within the volume of the cell. A value for the angular
flux ψ is computed at each of the nodes in each cell. The



TABLE I: Size of local matrix for different finite element
orders

Order Matrix size FP64 footprint (kB)

1 8× 8 0.5
2 27× 27 5.7
3 64× 64 32.0
4 125× 125 122.1
5 216× 216 364.5
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Fig. 1: 2D discontinuous elements

discontinuous nature of the discretisation means that where
points on adjacent elements share one physical position as in
Figure 1b, they are treated as separate unknowns in the global
finite element solution; at mesh convergence we would expect
these values to be equal.

An upwinding scheme equivalent to that employed in the
finite difference method is used to determine which fluxes are
known from neighbouring cells and included on the right hand
side b, and those unknowns for which coefficients are included
in the matrix A.

C. Trade-offs between the methods

As can be seen from the descriptions of the spatial decom-
positions, the finite difference (FD) method is relatively simple
compared to the finite element method (FEM). The FD method
involves the inversion of the transport equation and evaluation
of the diamond difference relations for the outgoing fluxes.
The number of floating point operations for each diamond
difference relation is just a single multiply-add. In contrast,
the FEM requires many more floating point operations, in
particular for the solve of the small matrices.

Using LAPACK’s dgesv for solution requires 0.67N3

operations; in 3D where N = 8 this is over 300 FLOPS.
Higher order elements will produce many more FLOPS still.
The assembly of the linear system for each cell/angle/group
also requires additional floating point operations. Therefore
much more work is required to solve the flux for the finite
element method on the same sized grid.

The FEM stores a solution for the angular flux on each
node of the cells in the grid for each angular direction and
energy group. The FD method on the other hand has a single
value per grid cell for each angular direction and energy group.
Neighbour fluxes are stored as temporary variables and are not
significant to the memory footprint. The memory overhead for

a 3D mesh for linear finite elements is therefore 8 times that of
the FD method. Discrete ordinates transport has an enormous
memory footprint, proportional to the product of the size of
each dimension in the problem. Therefore for a fixed mesh size
the finite element solution requires much more memory than
the finite difference solution.

However, the FEM approach provides a higher-order ac-
curacy solution than FD. The linear finite elements used here
are third-order accurate, whereas the finite difference approach
is second-order accurate. Higher order elements will provide
increased levels of accuracy with further reduced error. In
practice therefore for a given error, the finite element method
allows the use of larger cells and thus coarser grids; fewer
cells are required to provide a suitable answer, resulting in a
reduced memory footprint.

Although both methods may be used on a structured grid
(our previous work explored FEM on a structured mesh [3]),
the FEM is also applicable to unstructured meshes. The node
positions in the elements allow the cell to be deformed to
create an irregular shape rather than a regular cube. The
method even supports elements with curved edges and faces.
As such more complicated geometries may be constructed.

III. PARALLEL IMPLEMENTATION

The SNAP mini-app is used as the basis for our unstruc-
tured version, which we have nicknamed UnSNAP. UnSNAP
uses the same artificial data, source calculation and iteration
structure as SNAP. The unstructured mesh is formed by
first forming the original SNAP mesh but storing it in an
unstructured format, maintaining appropriate lists of cell-to-
cell dependencies in a new mesh data structure. The reliance
on this data structure for resolving neighbouring element
connectivity is a key differentiator between the treatment of
a structured and unstructured grid. Each cell is based on
a hexahedral element (like a cube); each face has a single
neighbouring element. To ensure that the mesh is truly treated
as unstructured, a new input option allows the mesh to be
twisted slightly along a single axis, and therefore each cell is
no longer a perfect cube.

The spatial mesh needs to be distributed between MPI
processors, and the original SNAP approach to this is used.
A 2D decomposition of the 3D domain is performed, similar
to the KBA style decomposition for a structured grid [10], as
this was shown to often be optimal for sweeping unstructured
meshes [11]. This decomposition occurs during the construc-
tion of the mesh derived from the structured mesh, and so
more complex mesh partitioning could be avoided.

SNAP considers that energy groups may be swept con-
currently, and we retain this assumption for UnSNAP. SNAP
also allows angles within an octant to be solved concurrently,
but octants are swept in turn. This is also true for a 3D
unstructured grid.

An overview of the algorithm is shown in Figure 2. For
each angular direction in the problem, a sweep schedule is
constructed by following the outgoing faces of the elements.
This schedule can then be followed, where for each element



for all angular directions do
for all elements in angle schedule do

for all energy groups do
Assemble matrix A from Sn quadrature, cross sec-
tions and element basis functions
Assemble vector b from source terms, element basis
functions and upwind neighbour ψ
Solve Aψ = b

end for
end for

end for

Fig. 2: Pseudocode for solving the transport equation

the angular flux for all energy groups can be calculated using
the finite element method. The central computation at the heart
of the sweep requires the construction and solution of a small
dense linear system: assembling a matrix A and a vector b to
form Aψ = b and solving for the angular flux, ψ.

A. Sweep schedule

The solution of the transport equation requires a sweep of
the spatial domain for each angular direction. Unlike many
grid-based methods, all cells cannot be solved concurrently
due to an upwinding dependency between cells, and therefore a
schedule is needed to determine the order in which cells can be
solved. For an unstructured mesh, the order in which the cells
must be computed may be unique for each angular direction;
for a structured mesh the order is identical for all angular
directions in a given octant. This sweep schedule forms a
directed graph, which should be acyclic; for our first version
of UnSNAP no mechanism to break cycles is implemented
as this is a focus of future work. The order in which the
graph is traversed, and thus the order in which the cells are
updated, is determined by the choice of a sweep schedule. As
the graph is distributed between processors according to the
spatial decomposition, one must consider the scheduling of
work locally (on-process) and globally (between-process).

1) Global scheduling: A parallel block Jacobi schedule is
chosen for processor-to-processor coupling. This results in a
halo exchange every iteration in order to share the outgoing
data between processor domains. The convergence rate will
therefore depend on the number of MPI ranks selected. Note
that each process can begin computation on its own subdomain
concurrently, unlike with the KBA schedule in the SNAP mini-
app where processors must wait to begin work.

Garrett has previously investigated the convergence proper-
ties of a parallel block Jacobi spatial decomposition where it
was found that this approach, as expected, did not converge
as quickly as sweeps which respect the upwinding depen-
dency between processor boundaries [6]; however this was
only tested for small scale runs and the performance of the
solve itself was not considered. One of UnSNAP’s goals is
therefore to enable a robust investigation on a variety of
architectures into the effect of the Jacobi schedule on the time
to solution rather than simple scalability or convergence rates.

Additionally, the focus on enabling on-node parallelism will
allow for reduced numbers of MPI ranks which should limit
the degradation in convergence rates associated with a large
number of Jacobi blocks resulting from high numbers of MPI
ranks.

The other schedules proposed by Garrett and Pautz (see
Section I-A) are designed around a lightweight task of solving
a single angle-group-element. Priorities are assigned to each
task, with the optimality of the schedules relying on having
many of these tasks available in order to reduce idle time.
Historically these schedules were developed for the IBM Blue
Gene/Q supercomputer, which consisted of a very large num-
ber of nodes with good nearest-neighbour communication and
low cost (global) synchronisation [12]. The nodes themselves
consisted of simple, energy efficient cores with a small amount
of memory per core, and as such applications were required to
run at very large core counts in order to achieve high aggregate
performance. This trend for many energy efficient cores in
supercomputer design has waned, with the current state-of-
the-art supercomputers being designed around heavyweight
nodes consisting of a high number of complex cores and
often coupled with accelerators such as GPUs. Therefore,
the number of nodes to which an application must scale is
much less than on a Blue Gene/Q. Additionally, each node
must be supplied with sufficient parallel work in order to
leverage the large amount of computing resource available.
The schedules of Pautz are designed to be serial on each node
and therefore have limited applicability on the latest hardware.
As such, although the numerical convergence properties of a
block Jacobi schedule are reduced in comparison to the Pautz
schedules, they provide us with a baseline performance for
heavyweight computational nodes. It is the subject of future
work to explore other schedules.

2) Local scheduling: For the scheduling of work on the
nodes, the standard sweep order is followed without breaking
any dependencies (as has been done for the block Jacobi
scheme as previously stated). Each process therefore computes
a sweep schedule for its own local domain, with each angle in
the Sn quadrature potentially having a unique sweep schedule.
The schedule used in our implementation calculates the tlevel
of each element for each angle (see Pautz for a definition [13]),
and places cells with the same tlevel in a bucket. The buckets
represent the cells on each hyperplane/wavefront as the sweep
progresses across the mesh. For each angle, elements where
the incoming faces are satisfied by problem or neighbouring
boundary conditions can be solved initially and form the
contents of the first bucket. Counters on each of the neigh-
bouring cells on the outgoing faces of these elements are then
incremented to show that their upwind dependency is satisfied.
When a cell’s dependency counter has been incremented
sufficiently to match the number of incoming faces for this
angular direction, it can be placed in the next bucket. This
process continues until all neighbours have been followed.
Note that we have assumed cyclic dependencies do not occur
in our first version of UnSNAP.



B. Sweep schedule concurrency

The concurrency scheme for the processing of this local
sweep schedule will determine the available parallelism on
each MPI rank. Cells within the bucket may be computed
concurrently, but the buckets must be processed in order.
Energy groups may be computed concurrently, along with
angles within the same octant. The assembly and solution of
the finite element matrix for each angle-group-cell introduces
an additional level of potential concurrency (compared to the
structured solve). This concurrency is formed from construct-
ing the matrix and right hand side vector, where the entries
can be updated in parallel, as well as the solution of the small
linear system. It is clear that the matrix size (equivalently el-
ement order) determines the amount of available concurrency.

This block Jacobi schedule allows for each MPI process to
be implemented in a highly parallel way. This is in contrast to
the Pautz schedules which are designed to propagate outgoing
data across the MPI processor grid as soon as possible so as
to reduce idle time. However, this means that each MPI rank
must be capable of processing fine-grained tasks in serial.
Aggregating larger tasks to create more parallelism on the
node destroys the nice properties of the sweep in reducing
processor idle time. As such, the schedule presented in this
paper is more applicable to the ‘fat-nodes’ which form the
basis of modern supercomputer design. Indeed, the available
concurrency in the unstructured mesh is the same as for
a structured mesh, with the additional level introduced by
the finite element matrix solution. Our previous work has
shown that maximal concurrency was required to leverage
high levels of performance of structured transport on GPU
architectures [4], [5], and so retaining this high level of
concurrency for unstructured meshes is also desirable.

The Pautz schedules also determine a priority for each
task. For our schedule this is redundant as the high level
of concurrency means that ‘all’ the outgoing data is made
available at each stage of the sweep and so no choices need
to be made as to which should be computed first to maintain
low idle time.

C. Performance characteristics

The runtime is dominated by the assembly and solve of
the local linear system for each angle/element/group. The
assembly of the matrix requires reading from 13 different
arrays to populate the linear system. These arrays are of
different dimensionalities and so the reuse pattern is complex:
for example the Sn cosines have only an angular index and so
the data can be reused for all elements and groups, whereas
the pre-computed integration of basis function pairs are unique
to each element and shared across angles and groups. The
constructed matrices are small and so should be cached.

Vectorisation of the implementation along the element nodes
required using the OpenMP simd constructs as the tested
compilers were not able to auto-vectorise due to perceived
dependencies: a common issue for C/C++ codes where there
is a lack of true Fortran-style multi-dimensional array support.
The assemble/solve routine therefore consists of a number of

vectorised loops, but it otherwise has limited branching. A
data dependent branch occurs for determining if the upwind
contribution should be added to the matrix or right-hand side.

Therefore the rate limiting factor is therefore going to be
memory access. For linear elements, we previously showed
that the Computational Intensity for this routine under the
Roofline model was low (0.25 FLOPs per byte) [3]. For
higher order elements, the number of FLOPs will increase
as described in Section II-C. The access patterns of the arrays
results in heavy reuse of small arrays coupled with limited
reuse (streaming access) of a very large array (angular flux).
Although FP64 values are currently used, it may be possible
to exploit lower precision in different parts of the algorithm;
this is one avenue for future work that UnSNAP enables.

IV. RESULTS

Initial performance results of the UnSNAP mini-app are
presented. Different concurrency schemes for computing the
solution according to the sweep schedule introduced in Sec-
tion III-A are investigated. Additionally, the performance of
the solution of the local dense linear system is explored by
comparing a hand-written Gaussian Elimination route with the
dgesv routine from the Intel Math Kernel Library.

Results were recorded on a single node of a Cray XC40 su-
percomputer, ‘Swan’. The node is a dual-socket configuration
using Intel Xeon Platinum 8176 (Skylake) 28-core at 2.1 GHz
processors with 192 GB of DDR4-2666 memory. The Intel
2018 compiler was used for all results.

A. Parallel schemes

Parallelism within the sweep on each MPI rank can be found
in the following dimensions:
• Element nodes, in assembling and solving the linear

system
• Energy groups
• Elements in the same ‘bucket’ in the sweep order (those

on the same wavefront plane)
• Angles within an octant

The implementation utilises compiler vectorisation over the
element nodes during the assembly and system solve to
ensure that the CPU vector units are utilised. The remaining
dimensions may therefore be threaded to allow for concurrent
execution. Element indices are found via an indirection to
the bucket, and so the order in which elements are accessed
does not follow a simple, regular pattern; their location in
memory will also depend on the element numbering scheme.
The angular and energy dimensions offer more predictable
access as they can be organised in a regular manner in the
various arrays. As such, it is interesting to explore the various
combinations of loop order and their matching data layouts,
along with which of these are threaded; such a methodology
has been previously explored with the KRIPKE mini-app [14].
A single MPI rank was run on the dual-socket system, with the
number of OpenMP threads changes up to the total number
of physical cores (no hyperthreading).

The following problem was used:
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• 16 x 16 x 16 elements
• 36 angles per octant with isotropic scattering
• 64 energy groups, with Source and Material ‘Option 1’
• Linear and cubic finite elements
• Mesh twisting of up to 0.001 radians
• 5 inners and 1 outer

Note that the iteration count selected results in too few
iterations to converge the solution; it does however ensure that
there are multiple iterations of the solve for timing robustness
and that the iteration count is constant.

The UnSNAP source code was updated so that the order of
the loops for the assemble/solve routine are arranged in various
ways. The storage arrays of the angular flux, scalar flux and
source terms were likewise updated to match the loop ordering.
OpenMP directives were added to parallelise different loops.
The results for linear elements are shown in Figure 3 and for
cubic elements in Figure 4. The graphs show the run time of
the assemble/solve routine for varying numbers of threads. The
absolute run times are displayed rather than speedups to allow
a comparison of the different parallel schemes. The legend
describes the order of the loops from outermost on the left
to innermost on the right (the element nodes always present
as a further inner loop and are not shown in the legend). The
bold font denotes the loop was parallelised with OpenMP. For
example, the option ‘angle/element/group’ denotes that the
loop order processes all groups within each element (according
to the schedule) for each angle resulting in the loop order
showing in Figure 2, with the elements in the bucket being
processed in parallel using threads.

1) Linear elements: For the linear elements shown in
Figure 3, at high thread counts the fastest scheme threads over
elements in the schedule buckets as well as energy groups.
Notice that in general the ‘angle/group/element’ scheme is
slower than the ‘angle/element/group’ scheme, although they
both have similar run time when using all cores. Note that
although both these schemes have the same parallel work, the

order of the iterations of these two loops differ according to the
OpenMP collapse clause semantics which impacts on the
order of memory accesses. The loop iterations are collapsed
and lexicographically ordered by the inner-most loop. As an
example of these semantics, consider looping over the alphabet
(inner-loop) multiple times whence the iteration space would
be ordered as: (A, 1), (B, 1), . . . , (Z, 1), (A, 2), (B, 2), . . . .
The order in which memory is accessed therefore follows the
serial ordering within each thread, with each thread starting at
a different position in this sequence.

The loop over elements in the bucket results in an indirect
memory access. The same element index is used for all
entries in each SIMD instruction and so this indirection does
not cause vectorisation issues such as gathers. The element
nodes are organised contiguously in memory for each element
as the fastest moving index and so it is always stride one
access to load such data. Energy groups are accessed in a
regular fashion, and again this iteration space is not vectorised
over. The ordering of the array extents determines the strides
between accesses of adjacent values in the iteration space.

Taking the ‘angle/element/group’ scheme running at 56
threads, each thread is likely to be accessing nearly adjacent
cache lines. Similarly, for the ‘angle/group/element’ scheme,
the distance in memory between adjacent element indices is
only 64 bytes. As the element index is calculated indirectly
from the schedule buckets, threads will not be able to stream
data as access will be somewhat random. Access to adjacent
energy groups however is predictable in nature, requesting
each group index in ascending order resulting in a fixed
stride (number of nodes times the number of elements).
Therefore, having energy groups moving faster than elements
in the array extents means that access remains predictable
for larger amounts of memory; 4 kB of stride per element
access rather than only 64 bytes. As such, the unstructured
nature of the mesh resulting in this non-contiguous index-
ing of the elements is likely to be somewhat mitigated.
Indeed, the ‘angle/element/group’ scheme is often the fastest
scheme at smaller thread counts and the schemes with the
‘angle/group/element’ data layout do not show compelling
performance in comparison.

The benefit of collapsing the element and energy group
loops can be seen where the number of elements in the
schedule bucket is small. Without collapsing the loops this
results in limited parallel work just in the element domain.
For small thread counts (say 14), the resulting work im-
balance will be small whereas at high thread counts (say
56) the lack of work limits the scalability, as can be seen
on the ‘angle/element/group’ scheme in Figure 3. By col-
lapsing the threads, more parallel work is made available
even for small bucket sizes shown by the scaling of the
‘angle/element/group’ scheme.

2) Cubic elements: Similar conclusions can be drawn from
the cubic elements shown in Figure 4. The amount of work
has increased compared to the linear elements as a result
of the increase in the number of nodes. The fastest scheme
is again ‘angle/element/group’; the number of elements in
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Fig. 4: Thread scaling of parallel sweep for different loop
orderings for cubic elements

each bucket is the same for both cubic and linear elements
and so the additional parallelism from the energy groups
aids in reducing the runtime. As with linear elements, with-
out parallelising over groups, a similar runtime is attained
at lower thread counts for the ‘angle/element/group’ and
‘angle/element/group’ schemes, but when utilising all cores
available the extra parallelism assists.

These cubic elements have 64 nodes, resulting in a 32 kB
stride between adjacent elements in the fastest data layout (‘an-
gle/element/group’); note that this is also the capacity of the
L1 data cache on these processors. As such the performance
of the ‘angle/group/element’ scheme still attains reasonable
performance for cubic elements on all threads, unlike for
linear elements where the stride between adjacent elements is
equivalent in size to a cache line resulting in poor performance.

3) Summary: Two factors in the parallel scheme were
required for good performance on high numbers of cores.
Firstly, sufficient parallelism was required. This was attained
by parallelising across both the independent elements con-
tained within each bucket in the sweep schedule and the energy
groups. This ensures that enough parallel work exists when the
number of independent elements is small. Secondly, ensuring
a large gap in memory between adjacent elements. This was
achieved by organising the data arrays so that the extents were
such that energy groups had a faster moving stride than the
element indexing. It is hoped that this along with the additional
problem dimensions of the element nodes somewhat mitigate
the expected effects of unstructured access to the mesh data.

Threading over angles within the octant is one parallel
scheme which is not displayed in these figures. Due to the
scalar flux reduction over this dimension the update of the
scalar flux array must be made atomically by each thread.
Both OpenMP atomic and critical regions were tested,
although neither allowed for thread scaling. Indeed, the run-
time was increasing with the thread count.

B. Matrix solve

Once the local matrix has been assembled and the right hand
side constructed using source data and upwind neighbouring
element data, the linear system must be solved. UnSNAP of-
fers both a hand-written direct Gaussian elimination solver and
the ability to utilise a LAPACK dgesv routine. Appropriate
vectorisation of the Gaussian elimination was ensured by using
OpenMP simd constructs.

The following problem size was run using flat MPI (one
rank per physical core) on a single dual-socket node:
• 32 x 32 x 32 elements
• 10 angles per octant with isotropic scattering
• 16 energy groups, with Source and Material ‘Option 1’
• Mesh twisting of up to 0.001 radians
• 5 inners and 1 outer, to force an identical iteration count
The time spent in the assemble/solve routine is shown

in Table II. It is clear that higher order methods are more
expensive in terms of runtime than lower order methods: they
simply require more work. For each element order however,
there are clear differences between the Gaussian elimination
implementation and MKL’s dgesv. For orders up to three
where the matrix size is 64 × 64, MKL does not provide
a performance advantage with the handwritten solve provid-
ing 1.2X–2.0X better performance. For larger matrices MKL
shows an improvement of 1.7X over the handwritten solve
for the 125× 125 matrix. The fourth order matrix is 125 KB
in size, which is much larger than the 32 KB L1 data cache
on the Skylake architecture, but should remain resident in the
L2 cache. Additionally, the storage space for the matrix is
reused for each matrix construction (as we have run the code
flat MPI) wherefore the reuse of this array is high and so is
unlikely to be evicted from cache. However, as it is larger than
L1 cache the solution of the matrix is likely to be improved
by the cache-blocking optimisations typically found in linear
algebra libraries to improve the performance.

The matrix sizes would generally be classed as ‘small’,
at least in comparison to the large dense matrices typically
solved with LAPACK routines. Many applications perform
linear algebra on small dense matrices as in this applica-
tion. Small matrix libraries exist which allow computation
on individual small matrices, however they only provide at
most Level 3 BLAS functionality and so it is not possible to
use them directly without re-implementing the linear solve
routine. Solution of a linear system is typically performed
using LU factorisation and uses the BLAS routines internally.
The PLASMA library implementation of LAPACK routines
is also focused on node-level parallelism of the solve itself
and so is not applicable where the code is run in a flat
MPI style or when threads are programmed in other problem
dimensions to take advantage of algorithmic concurrency in
the problem dimensions [15]. Similarly, batched routines are
provided which can operate on multiple matrices in parallel.
For our purposes, the linear systems are constructed and solved
on-the-fly and so it is not possible to apply this batched library
option. Additionally, these experiments were performed under



TABLE II: Assemble/solve time in seconds on Skylake pro-
cessors for different finite element orders

Order GE % in solve MKL % in solve

1 4.29 34% 8.12 55%
2 31.99 54% 64.92 70%
3 205.02 74% 254.20 73%
4 1426.98 87% 859.26 74%

a flat MPI regime, meaning that any batched routine would
simply process each matrix in turn, and so cannot provide an
advantage. We evaluated the parallel scheme in Section IV-A:
a batched routine could be used for the concurrent work under
the best parallel scheme there, however all the matrices would
need to be constructed in advance of the batched routine which
would result in not insignificant storage overheads.

1) Relative cost of the solve: It is important to also consider
the relative costs of the matrix solve routine compared to
the cost to assemble the linear system in the first place.
Constructing the matrix from the precomputed integrals of
basis function pairs requires reading these values from memory
and thus decreases the computational intensity as the FLOP
count is not similarly increased.

Timers were added to record the cost of the solve itself.
Adding the time recording increases the runtime due to the
overhead of repeatedly calling the timing routines for every
matrix solve. For linear finite elements, only 34% of the
runtime is attributed to the solution of the linear system,
indicating that it is the assembly itself which is the expensive
part. In contrast, at higher orders, over 70% of the runtime is in
the solution of the system. This balance is somewhat expected:
the assembly of the matrix requires O(N2) operations whereas
the linear system solution requires 0.67N3 operations for a
N × N matrix. For high finite elements orders therefore the
asymptotic behaviour of the solve will dominate the assembly.
However, for the commonly used low finite element orders it is
important not to consider the matrix solution as a dominating
performance cost where the assembly of the system itself is
critical to performance. The characterisation or modelling of
the performance limiting factors will differ depending on the
finite element order increasing the challenge in this space.

This therefore may lead to alternative optimisation ap-
proaches for low and high order elements. For low order
elements it may be attractive to pre-assemble (and invert) the
matrix as it is invariant across the outer and inner iteration
loops. This will clearly increase the memory footprint of the
application as a matrix must be stored for each angle-group-
element (for linear elements this is a factor of 8 times the
already large angular flux array). It is the subject of future
work to explore the total time to solution for pre-assembling
the matrices and simply reading them from memory to com-
pute the solve in comparison to the current implementation of
assembling them on the fly. However this optimisation may
be more limited in its effectiveness for higher orders.

V. CONCLUSION

The SNAP mini-app was extended to explore the per-
formance of solving the transport equation on unstruc-
tured meshes using the discontinuous Galerkin finite element
method. The unstructured meshes are formed by first con-
structing the original SNAP mesh and performing a twist.
The code, nicknamed UnSNAP, supports arbitrarily high or-
der elements for flexibility in understanding the performance
characteristics of this method based on element order.

A sweep schedule suitable for advanced architectures was
introduced. Unlike the current state-of-the-art, these schemes
focus on enabling on-node parallelism. To this end, different
concurrency schemes for following the schedule on each node
were investigated. This showed that lots of parallel work is
required to enable good performance and that the unstructured
access to mesh data can be mitigated by choosing appropriate
data layouts to increase the size of the contiguous data.

The finite element method requires an assembly and solution
of a small, dense linear system. The performance of the linear
solve using the Intel Math Kernel Library was compared
to a hand-written vectorised Gaussian Elimination routine.
For low order elements, the hand-written solve provided the
best performance although the majority of the runtime was
associated with the system assembly rather than the solution.
For high order elements, the solution of the system dominated
the performance and so for these larger matrices the Intel Math
Kernel Library offered performance improvements.

Solving the transport equation on unstructured meshes has
many challenges and so in future it is hoped that UnSNAP
can enable research into how the benefits of other advanced
architectures (such as GPUs) can be successfully leveraged.
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