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Abstract 

The random-effects model, applied in most meta-analyses nowadays, typically assumes 

normality of the distribution of the effect parameters. The purpose of this study was to 

examine the performance of various random-effects methods (standard method, 

Hartung´s method, profile likelihood method and bootstrapping) for computing an 

average effect size estimate and a confidence interval (CI) around it, when the normality 

assumption is not met. For comparison purposes, we also included the fixed-effect 

model. We manipulated a wide range of conditions, including conditions with some 

degree of departure from the normality assumption, using Monte Carlo simulation. In 

order to simulate realistic scenarios, we chose the manipulated conditions from a 

systematic review of meta-analyses on the effectiveness of psychological treatments. 

We compared the performance of the different methods in terms of bias and mean 

squared error of the average effect estimators, empirical coverage probability and width 

of the CIs, and variability of the standard errors. Our results suggest that random-effects 

methods are largely robust to departures from normality, with Hartung’s profile 

likelihood methods yielding the best performance under suboptimal conditions. 
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1. Introduction 

Meta-analysis is a form of systematic review that allows the integration of the 

results of a set of primary studies on a given topic by applying statistical methods. 

When the dependent variable is continuous and the aim of the meta-analysis is to 

compare the performance between two groups (e.g., interventions) across studies, 

standardized mean differences are the effect size indices most commonly used1,2. This 

paper focuses on various methods for computing an estimate of the average 

standardized mean difference together with its confidence interval (CI) when some 

assumptions of the underlying statistical model are not met. 

Two general statistical models are available for meta-analysis, namely fixed-

effect and random-effects models. Model choice is crucial as it determines the statistical 

procedures used to estimate the mean effect and its CI as well as the generalizability of 

the meta-analysis results1,3,4.  

            The fixed-effect model assumes that all studies included in the meta-analysis 

share a common effect parameter such that the only source of variability is sampling 

error in the selection of participants5. This assumption might apply if all included 

studies were similarly designed and conducted and used highly similar samples. In 

contrast, the random-effects model assumes that each study estimates a different effect 

parameter. Therefore, the estimation of the overall effect in a random-effects model is 

affected by sampling error both in the random selection of participants for each study 

and in the selection of studies6.  

   In this paper, we focused on the performance of the random-effects model, 

which allows for a broader generalization of results and conclusions and is currently 

assumed in most meta-analyses3,6.  
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The Random-Effects Model 

             Let k denote the number of studies included in a meta-analysis and i̂  indicate 

the effect size estimate from the ith study. The underlying statistical model can be 

written as follows 

,ˆ
iii e+=                  (1) 

where i  is the effect parameter for the ith study, and ie  is the sampling error of i̂ . 

Usually, ie  is assumed to be normally distributed, i.e., ie ~ N(0, 2

i ), with 2

i  as the 

within-study variance for the ith study.  

              The random-effects model assumes that the effect parameters i  are randomly 

selected from a population of parameters. Thus, i  can be defined as follows 

i =   + i ,                                      (2) 

where  is a parameter representing the overall mean of the effect parameters, and i  

denotes the difference between the effect parameter of the ith study i  and the overall 

mean . It is assumed that i  ~ N(0, 2 ), with 2  as the between-studies variance. 

Therefore, combining Equations (1) and (2) enables us to formulate the random-effects 

model as follows 

i̂ =  + ei + i ,                                    (3) 

where i  and ie  are assumed independent and, as a result, the effect size estimates i̂  

are assumed to be normally distributed with mean  and variance 2

i + 2 , i.e., i̂ ~ 

N(, 
2

i + 2 ). 6,7 

 Although the normality of the distribution of effect parameters is a common 

assumption in the random-effects model, it might not be realistic or even approximate in 

a wide range of applied situations including meta-analyses including a small number of 
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studies7,8,9,10,11,12,13. Departures from normality might affect the estimation of key model 

parameters such as  and 2 . This scenario has important practical implications 

because a substantial proportion of the meta-analyses conducted over the last two 

decades assumed a random-effects model to analyze databases with small-to-moderate 

numbers of studies. Therefore, assessing the consequences of a violation of the 

normality assumption constitutes a relevant question in meta-analysi.  

        To the best of our knowledge, the works of Kontopantelis and Reeves11,12 are the 

only simulation studies that compared the performance of several statistical methods for 

random-effects meta-analysis under non-normal scenarios. Eight statistical methods 

were examined, and a wide range of scenarios was considered. In particular, 

Kontopantelis and Reeves manipulated the distribution of the effect parameters (normal, 

skew-normal, and “extremely” non-normal), the number of studies in the meta-analysis 

and the heterogeneity. Most methods were found to be highly robust against violations 

of the assumption of normality. These previous studies focused on the field of 

epidemiology, and the set of simulated scenarios and outcome measures and the effect 

size index (odds ratios) were selected accordingly, following the results of a survey of 

meta-analyses published in the medical field14. 

Furthermore, Kontopantelis and Reeves11,12 generated the individual effect 

estimates using the method for log-odds ratios developed by Brockwell and Gordon8. 

This approach has two major limitations: it is not realistic because it does not start from 

2x2 tables15, and it is also not appropriate for other effect metrics. 

In the current study, we aimed to assess the consequences of violating the 

normality assumption in random-effects meta-analyses conducted in the psychological 

field, and particularly in meta-analyses on the effectiveness of psychological treatments 

for various psychological or psychiatric disorders.  
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In summary, the purpose of our study was to compare the performance of 

various random-effects meta-analysis methods for the computation of an average effect 

size and its CI when the normality assumption is not met. For this purpose, a wide range 

of scenarios was considered, including conditions with some degree of departure from 

normality. A Monte Carlo simulation was conducted using the standardized mean 

differences as the effect size index. To avoid the problems in the Kontopantelis and 

Reeves11,12 studies, the standardized mean differences were individually generated in 

our simulations by assuming a non-central t-distribution16. Although our study focused 

on the random-effects model, the fixed-effect model was also included for comparison 

purposes. 

In the following section, we outline the statistical methods considered in this 

study and describe the residual heterogeneity variance estimators. A simulation study 

comparing the performance of the methods is detailed. Finally, a description of the 

results is presented, and considerations arising from the results are discussed.  

 

Methods for Estimation of an Overall Effect Size 

Fixed-Effects Model  

        The uniformly minimum variance unbiased estimator (UMVU) of the mean effect 

size under a fixed-effect model is given by the expression16 




=

i

FE

i

i

i

FE

i

FE

UMVU
w

w 



ˆ

ˆ ,                                                                                                      (4)                                                                                                       

with  

FE

iw  = 1/ 2

i ,                                                                                                                 (5) 
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and 2

i  as the within-study variance of i̂ . Since the 2

i  are unknown, FE

iw are usually 

replaced by FE

iŵ  based on the estimated within-study variances , as follows 

FE

iŵ  = 1/ 2ˆ
i .                                                                                                                   (6) 

Thus, in practice, the overall effect size is estimated by the following  

 

ˆˆ

ˆ
ˆ

FE

i i

i
FE FE

i

i

w

w



 =



.                                                                                                              (7)                                                                                            

The sampling variance of FE̂  is usually estimated as shown 


=

i

FE

i

FE
w

V
ˆ

1ˆ .                                                                                                                (8) 

 Additionally, a 100(1- )% CI for ˆ
FE   can be calculated as follows 

FEFE Vz ˆˆ
2/1 − ,                                                                                            (9)  

where  2/1 −z  is the 100(1- 2/ ) percentile of the standard normal distribution. 

Random-Effects Model 

           In a random-effects model, the uniformly minimum variance unbiased estimator 

of  is given by the following17,18 




=

i

RE

i

i

i

RE

i

RE

UMVU
w

w 



ˆ

ˆ ,                                                                                                     (10) 

with 
RE

iw  as the optimal weights, defined as ( )221 += i

RE

iw . The variance for 
RE

UMVU̂  

is given by the formula =
i

RE

iUMVU wV 1 .  

 However, 
2

i  and 2 are unknown in practice, and hence they must be estimated 

from the studies. The overall mean  can be estimated using the following equation 
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


=

i

RE

i

i

i

RE

i

RE
ŵ

ˆŵ

ˆ





   

where  

)ˆˆ(1ˆ 22  += i

RE

iw ,                                                                                                     (12) 

where 2ˆ
i is the estimated within-study variance of i̂ , and 2̂  is an estimate of the 

between-studies variance. Several estimators of the between-studies variance are 

described in a further section.  

 In the current study we compare four alternative random-effects methods to 

construct a CI around the mean effect size estimate: the standard method, Hartung’s 

method, the profile likelihood (PL) method, and the bootstrapping method. 

 Standard method. The method most frequently used to obtain a CI around the 

mean effect size estimate RE̂  in a random-effects meta-analysis, assumes a normal  

sampling distribution for RE̂ .I Its sampling variance is usually estimated by the 

following 


=

i

RE

i

RE
w

V
ˆ

1ˆ .                                                                                                              (13) 

Therefore, a 100(1- )% CI around RE̂  can be computed as shown 

RERE Vz ˆˆ
2/1  −

.                                                                                                          (14) 

 Hartung´s method. Although the standard method is the usual procedure for 

calculating a CI around the mean effect size, this method assumes a normal distribution 

and does not consider the uncertainty derived from the estimation process of the 

variance parameters. As a consequence, the CI based on the z-distribution has been 

shown to yield confidence intervals that are too narrow, resulting in empirical coverage 

below the nominal level in some scenarios, especially as the between-studies variance 

  (11) , 
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increases and the number of studies decreases8. To solve this limitation, Hartung19 

proposed assumption of a t distribution instead of the standard normal distribution and 

use of an improved variance estimator20,21. A 100(1- )% CI for this method is supplied 

by the expression 

HAkRE Vt ˆˆ
2/1;1  −− ,                                                                                                    (15) 

where 2/1;1 −−kt  is the 100(1- 2/ ) percentile of the t distribution with k – 1 degrees of 

freedom, RE̂  is computed by Equation 11, and HAV̂  is an estimate of the sampling 

variance of RE̂  with a weighted extension of the usual formula given by 

( )





−

−

=

i

RE

i

REi

i

RE

i

HA
ŵ)k(

ˆˆŵ

V̂
1

2



.                                                                              (16) 

 Compared with the standard random-effects method, Hartung’s method has been 

found to yield wider CIs with better coverage probabilities, especially under suboptimal 

scenarios17,22, including scenarios with violation of the normality assumption12.   

 Profile likelihood (PL) method. The profile likelihood (PL) is an iterative and 

computationally intensive method that can be used to obtain a likelihood-based CI 

around an overall estimate obtained with the random-effects model, considering the fact 

that  and 2 must be estimated simultaneously10. The PL method provides two 

alternatives to calculate a CI around RE̂ , namely the first-order likelihood method and 

the higher-order Skovgaard´s method. In a simulation study, Guolo23 showed that the 

Skovgaard’s method produces far more accurate results than the first-order method, 

especially with small sample sizes. The R code for this method is provided in 

Supplementary file 1.  

 It is expected that likelihood approaches might improve the performance of 

standard random-effects methods under non-normal scenarios10,23,24. Although standard 
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methods unrealistically assume that the between-studies variance is known, the 

likelihood approach allows derivation of the likelihood-based confidence intervals for 

the between-studies variance and for the overall effect. The iterative and joint 

estimation of both parameters considers the fact that the other parameters are also 

unknown and must be estimated.  

 Bootstrapping. Bootstrapping methods are increasingly applied in the meta-

analytic arena if the assumptions of the random-effects model are not met. These 

methods are free from theoretical distribution assumptions and therefore are expected to 

be more robust to violations of the normality assumption than standard meta-analytic 

techniques25,26. In particular, a bootstrapping approach consists of generating a 

distribution of mean effect size estimates by resampling a large number of samples, e.g., 

1,000 samples27,28,29. Thus, a 95% CI is given by the 2.5th and 97.5th percentiles of the 

distribution of mean effect estimates. We examined two methods for the interval 

estimation of the mean effect size: the percentile method and the bias-corrected and 

accelerated (BCa) method. The percentile method yields confidence limits that are 

directly extracted from the percentiles of the distribution. However, the BCa method is 

preferred in practice because it adjusts for both bias and skewness in the bootstrap 

distribution27. See Supplementary file 1 for additional computational details.  

 

Heterogeneity Variance Estimators 

 An estimate of τ2 is required to obtain the mean effect size estimate and its CI 

under a random-effects model, at least for the standard and Hartung’s approaches. 

Several methods have been proposed to estimate the between-studies variance τ2 in 

random-effects meta-analysis17,18,30. In this section, we present formulas for the three 

estimators considered in this study. 
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 DerSimonian and Laird (DL) Estimator. The most commonly used estimator 

was proposed by DerSimonian and Laird31 and is derived from the moments method 

and computed with the following expression  

c

kQ
DL

)1(
τ̂2 −−

= ,                                                                                                     (17)
 

where  

( ) −=
i

FEi

FE

iwQ
2

ˆˆˆ ,                                                                                             (18) 

with FE̂  and FE

iŵ  defined in Equations 7 and 6, respectively, and c given by the 

following 




 −=

i

FE

i

i

FE

i

i

FE

i
w

w

wc
ˆ

)ˆ(

ˆ

2

.                                                                                               (19)

  

When Q < (k – 1), 2ˆ
DL is usually set to zero. When the estimated weights FE

iŵ are used 

instead of the optimal values, the Q statistic no longer follows the chi-squared 

distribution usually assumed and this may negatively affect the performance of  the 2ˆ
DL  

estimator32,33.  

Restricted Maximum Likelihood (REML) Estimator. Another alternative for 

estimating the between-studies variance component is based on restricted maximum 

likelihood estimation. The REML estimator is obtained iteratively from the 

following17,18  

 

( ) ( )

( ) 


+





 −−

=

i

RE

i

i

RE

i

i

iREi

RE

i

REML
ww

w

ˆ

1

ˆ

ˆˆˆˆ

ˆ
2

2
22

2



 ,                                                            (20) 
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with RE̂  and 
RE

iŵ  defined in Equations 11 and 12, respectively, and 2̂  initially 

estimated with any of the non-iterative estimators of the heterogeneity variance.  

When 2ˆ
REML < 0, it is truncated to zero.  

 Empirical Bayes (EB) Estimator. The final estimator of τ2 that we include is the 

EB method, which is also an iterative method obtained by replacing ( )2
ˆ RE

iw  with RE

iŵ in 

Equation 20 for 2ˆ
REML 34,35. The EB estimator is obtained as shown 

( )




+





 −−

=

i

RE

i

i

RE

i

i

iREi

RE

i

EB
ww

w

ˆ

1

ˆ

ˆˆˆˆ

ˆ

2
2

2



 .                                                                    (21) 

Again, negative values of 2ˆ
EB  are truncated to zero. The EB estimator is equivalent to 

the Paule-Mandel estimator30,36.   

 

2. Method of the Simulation Study 

 In the previous section, we presented two methods for estimating the mean effect 

size,  (i.e., fixed-effect model and standard random-effects model), six methods for 

computing the CI around an estimate of  (i.e., fixed-effect model, standard random-

effects model, Hartung´s method, profile likelihood method with higher-order 

Skovgaard´s approach, and bootstrapping with the BCa and percentile methods), and 

three estimators of τ2 (i.e., the DL, REML, and EB estimators) in the context of random-

effects meta-analysis. We compared the performance of combinations of these methods 

using Monte Carlo simulation. However, not all of the methods were combined with 

each other; in particular, we only combined the profile likelihood method with REML 

estimation and the bootstrapping method with the DL estimator, whereas the standard 

and Hartung’s methods were combined with the three τ2 estimators, and no τ2 estimators 
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were needed for the fixed-effect model. This approach yielded four methods used to 

estimate the mean effect size and 10 ways to calculate a CI around that estimate.   

          The simulation was programmed in R using the metafor37, metaLik38, and boot39 

packages. Supplementary file 1 contains the full R code of our simulation study. The 

standardized mean difference was used as the effect size measure. We simulated designs 

comparing two groups (experimental and control) with respect to a continuous 

dependent variable, which is a scenario often found in psychology. Both populations 

were assumed to be normally distributed with common variance [N(µE, σ2), N(µC, σ2)]. 

For each study, the population standardized mean difference   was defined as follows16  



−
= CE .                                                                                                         (22)  

            In a random effects model, a distribution of effect parameters i is assumed, with 

a specific mean , heterogeneity variance 2, and shape (details on how the 

distributions shapes were defined are supplied below). To simulate a meta-analysis, k 

effect parameters i were randomly selected from the distribution of effect parameters, 

and an individual parameter i was used in each study.  

          The effect parameter for the ith study i was estimated using the nearly unbiased 

estimator proposed by Hedges and Olkin16  

 

gmc )(ˆ = ,                                                                                                         (23) 

 

 

where g is a positively biased estimator computed from the following   

 

S

yy
g CE −

= ,                                                                                                     (24)            
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and c(m) is a correction factor for small sample sizes, given by the following 

 ,                                                                                                                                                (25)                   

where m =  2−+ CE nn , nE and nC are the experimental and control group sizes, 

respectively.  

In Equation 24, 
Ey  and 

Cy  are the sample means of the experimental and 

control groups, respectively, and S is a pooled standard deviation computed as shown  

 
2

)1()1( 22

−+

−+−
=

CE

CCEE

nn

SnSn
S ,                                                                        (26)   

where 2

ES  and 2

CS  are the unbiased variances of the experimental and control groups, 

respectively.  

Equation 23 applies to each study such that i̂  is an estimate of the effect 

parameter i . The estimates of the sampling variance of ̂ in each study were obtained 

by the following 

( )CECE

CE

nnnn

nn

+
+

+
=

2

ˆ
ˆ

2
2
ˆ





.                                                                                       (27)   

Hedges and Olkin16 (p. 79) showed that gnnnn CECE )/( + follows a noncentral 

t distribution with noncentrality parameter )/( CECE nnnn +  and 2−+ CE nn  degrees 

of freedom. The i̂ value for the ith study was simulated from ,// mXZ where Z is a 

random normal variable with distribution N( , 1/nE + 1/nC), and X is a random chi-

square variable with m = 2−+ CE nn  degrees of freedom.  
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When calculating FE̂  (Equation 7) and RE̂  (Equation 11), a potential source of 

bias is the correlation between the standardized mean difference (Equation 23) and its 

sampling variance (Equation 27), particularly with small sample sizes.                         

To identify a range of realistic scenarios in this field, the manipulated conditions 

in the current study were set according to the results of a systematic review of 50 meta-

analyses on the efficacy of psychological interventions using three types of standardized 

mean differences (post-test standardized mean difference, standardized mean change, 

and standardized mean change difference) as effect size indices40. For the number of 

studies k, four values were considered, i.e., 10, 20, 40, and 60, corresponding to a small 

to large number of studies for the meta-analysis. The overall mean of the distribution of 

effect parameters  was set to 0, 0.2, 0.5, and 0.8, which reflect conditions of no effect 

and effects of low, medium, and large magnitude, respectively. Furthermore, a wide 

range of values for the population between-studies variance 2 was considered, namely, 

0, 0.03, 0.06, 0.11, 0.18, and 0.39. The simulated conditions for k, , and 2 were 

within the range of values found in the systematic review of 50 meta-analyses 

previously mentioned40.  

The shape of the distribution of the effect parameters i was manipulated 

through six combinations of the skewness and kurtosis values. First, a normal scenario 

(i.e., zero skewness and kurtosis) was set. Second, five non-normal conditions were 

considered based on the results from a previous systematic review40. In that review, the 

skewness distribution of the 50 meta-analyses presented a median value of 0.52, with 

25th and 75th percentiles of 0.18 and 1.1 and minimum and maximum values of -2 and 

3.67, respectively. Although the small number of studies in many of those meta-

analyses did not allow accurate estimation of the population skewness and kurtosis, 

some of the values we found suggest challenging scenarios for random effects meta-
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analyses assuming normality. Based on these results, a wide range of skewness values 

of -2, -1, 0, 1, and 2 were selected to simulate the effect parameter distribution. The 

nonlinear relationship exhibited by the 50 pairs of skewness and kurtosis values found 

in the systematic review was used to predict the kurtosis values. Figure 1 presents the 

scatter plot relating the skewness and kurtosis values of the 50 meta-analyses. A 

nonlinear predictive model was fit to this dataset, leading to the predictive equation:  

Kurtosis = -0.581 + 0.023*Skewness + 1.069*Skewness2, and the resulting five non-

normal combinations between skewness and kurtosis values were (-2, 3.65), (-1, 0.47), 

(0, -0.58), (1, 0.51), and (2, 3.74). Figure 2 presents histograms of the effect parameter 

distributions for the six simulated combinations of skewness and kurtosis. 

Supplementary file 2 presents five examples of real meta-analyses selected from the 

previous study40 with similar skewness and kurtosis values as each of the five non-

normal scenarios defined in our simulation study. Supplementary file 3 presents the 

individual standardized mean differences and sampling variances of each of the five real 

meta-analyses.  

 

INSERT FIGURES 1 AND 2 

 

We applied Fleishman’s algorithm41 to generate distributions of effect 

parameters with a given mean (), variance (2), skewness, and kurtosis. In particular, 

Fleishman’s power transformation X = a + bZ + cZ2 + dZ3 applied on a standard normal 

distribution Z ~ N(0,1), allows generation of a non-normal random variable X with mean 

0, variance 1, skewness γ1, and kurtosis γ2. For a specific combination of γ1 and γ2 

values, the equations used to find the a, b, c, and d constants were calculated by solving 

the equation system presented in Fleishman41 (p. 522-526). Table 1 presents the values 
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of a, b, c, and d for the six combinations of γ1 and γ2 values in the simulated 

distributions of the effect parameters. The linear transformation Y = m + nX was 

subsequently applied to generate distributions with the manipulated values of the mean 

of the effect parameters (  = 0, 0.2, 0.5, and 0.8) and the population between-studies 

variance ( 2 = 0, 0.03, 0.06, 0.11, 0.18, and 0.39), where =m  and 2=n . 

Fleishman´s algorithm does not yield an exact solution under extreme conditions 

of skewness and kurtosis41 (p. 526). Consequently, under the two most extreme 

conditions in Table 1, i.e., γ1 = -2, γ2 = 3.65 and γ1 = 2, γ2 = 3.74, the constants a, b, c, 

and d yielded  values deviating from the expected values, namely, -1.67 and 1.70, 

respectively. Nonetheless, the resulting simulated distributions strongly departed from 

normality, as intended in our simulation study. 

 

INSERT TABLE 1 

           

The average total sample sizes of the individual studies N  were 20, 30, 50, and 

100. The primary studies were simulated within a two-group design with nE = nC. The 

distribution of the individual sample sizes was based on the systematic review reported 

in a previous study40 in which the sample size distributions of the 50 meta-analyses 

exhibited a clear positive skewness with average skewness = +1.423. To emulate such 

distribution, a chi-square distribution with 4 degrees of freedom was used to simulate 

the sample sizes (as the expected skewness for the distribution is 414.18 =df , 

similar to that obtained empirically). Additionally, values of 16, 26, 46, and 96 were 

added to achieve the desired average values.       
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When 2 = 0, the number of conditions was 64 [4 (k values) x 4 ( values) x 

4( N values)]. For the other values of 2 , the number of conditions was 1,920 [4 (k) x 4 

() x 4 ( N ) x 6 (shape of the distribution of i values) x 5 ( 2 values)]. The total 

number of conditions was 1,984, and for each one, 10,000 meta-analyses were 

generated. Thus, 19,840,000 meta-analyses were simulated. Furthermore, 1,000 samples 

per iteration were used in the bootstrapping method.  

Several criteria were considered. First, the bias of each of the four methods to 

estimate the mean effect size was assessed as the difference between the mean of the 

10,000 empirical values for each method and condition and the parametric mean effect 

size for that scenario . Second, the accuracy in the estimates produced by these four 

methods was assessed by calculating the mean squared error with respect to the true 

value  across the 10,000 replications of one single condition. Third, the confidence 

interval width of the 10 methods used to calculate the CI was estimated by averaging 

the confidence interval widths across 10,000 replications for each condition. Fourth, the 

empirical coverage probability for the 95% nominal confidence level of each method 

was calculated as the percentage of CIs that included the true mean effect size  using 

the 10,000 replications for each condition. Finally, we examined the variability in the 

estimation of the standard errors in the standard random-effects, Hartung’s, 

bootstrapping, and fixed-effect methods. This effort was accomplished using the 

following formula 

 

                                                                                          (28) 
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with SD( ̂ ) as the standard deviation of the mean effect estimates obtained in 10,000 

replications of a given condition and Md(SE ( ̂ )) representing the median of the 

estimated standard errors for the mean effect estimates through the 10,000 replications 

of the same condition. The reason for using the median instead of the mean was to avoid 

the potential influence of extreme values. Negative values for Equation 28 indicate 

underestimation of the standard errors.  

 

 

3. Results  

For brevity, we include only the results for = 0.5 and N = 30 as the patterns were 

similar for the remaining levels of both factors. Additionally, we discuss only the results 

for 2 = 0.39 since the differences in the performance of the methods were more 

pronounced for that value, although the trends observed in scenarios with lower 

between-studies variation were analogous. The full set of results can be found in 

Supplementary file 4.  

This section is divided into five subsections corresponding to the comparative 

criteria: the bias and mean squared error of the average effect estimators, the empirical 

coverage probability and width of the CIs, and the variability of the estimated standard 

errors.  

Bias of the average effect estimators 

 Figure 3 shows the bias of the standard method with the DerSimonian and Laird 

(DL), restricted maximum likelihood (REML), and empirical Bayes (EB) estimators of 

τ2 and the fixed-effect method (FE) as a function of the number of studies k and the 

shape of the distribution of i .  
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 All methods showed a small negative bias across all simulated scenarios for the 

shape of the distribution of effect parameters, regardless of the number of studies. The 

FE yielded the most negatively biased estimates across all conditions because this 

model assumes a null between-studies variance (τ2 = 0). 

 Under normal scenarios (skewness = 0 and kurtosis = 0), the biases of DL, 

REML and EB were quite similar across conditions with the same number of studies. 

These methods produced the most negatively biased values with k = 20. For skewness = 

0 and kurtosis = -.58, the performance of the four methods was quite similar to the 

normal condition. When the shape of the distribution of effect parameters was 

manipulated with skewness = -2 and kurtosis = 3.65, the mean effects calculated under a 

RE model with the DL, REML and EB methods were practically unbiased. Similar 

results were found with skewness = -1 and kurtosis = .47, although under this condition 

the four methods were more negatively biased. Under conditions with skewness = 1 and 

kurtosis = .51 and with skewness = 2 and kurtosis = 3.74, the differences in bias among 

the DL, REML and EB methods were practically negligible, with values of bias close to 

-.025 for all conditions of k. The FE model yielded more negatively biased estimates 

than the random-effects methods.  

 

INSERT FIGURE 3 

Mean Squared Error of the average effect estimators 

 Figure 4 shows a comparison of the mean squared error (MSE) of the standard 

random-effects methods. As expected, an increase in the number of studies led to a 

decrease in the MSE values of the four estimators of , regardless of the shape of the 

distribution of effect parameters. In addition, the results across different conditions of 

skewness and kurtosis and number of studies were generally similar across all four 
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methods, without notable differences in their performance. The FE method showed 

slightly lower MSE values than the methods based on the RE model with a small 

number of studies (k = 10), and the RE methods had higher MSE values for skewness = 

0 and kurtosis = -0.58 than in the normal conditions. 

 

INSERT FIGURE 4 

Coverage Probability of the CIs 

Figure 5 shows the empirical coverage probability of the six CIs compared. The 

standard and Hartung’s methods were not influenced by the applied heterogeneity 

estimator (DL, REML, or EB). Therefore, only results for the REML estimator are 

presented. Furthermore, the empirical coverages yielded by the fixed-effect method 

were far below the nominal level and outside of the range considered in Figure 5. The 

full set of results is presented in Supplementary file 4.   

              Most CIs calculated with the SM, HM, BOOT_P, BOOT_Bca, and PL methods 

offered better coverage as the number of studies increased, and this improvement was 

especially evident as k increased from 10 to 20. Under normality, some differences in 

coverage probabilities were found among the CIs obtained by SM, HM, BOOT_P, 

BOOT_Bca, and PL methods for small numbers of studies (k = 10 and 20), with the HM 

and PL methods showing the best coverage. For k = 10 and k = 20, the HM method 

exhibited observed probabilities of .956 and .945, respectively, and the PL method 

obtained values of .944 and .943. The same trend was found when the effect parameters 

were non-normally distributed.   

              The worst coverage values were found for skewness = 1 and kurtosis = 0.51 

and for skewness = 2 and kurtosis = 3.74. Under these two conditions, the CIs obtained 
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by all methods generally showed empirical coverage probabilities slightly below the 

nominal confidence level, even for a large number of studies.  

 

INSERT FIGURE 5 

Width of the CIs 

Figure 6 shows the width of the five 95% CIs for the compared . For the 

standard and Hartung’s random-effects methods, only the results for the REML 

estimator are presented (see Supplementary file 4 for the full set of results). 

Comparisons of the CI widths are only meaningful between methods with similar 

coverage probabilities. 

The interval width of the five CI procedures uniformly decreased as the number 

of studies increased. For k = 10 and 20, the CIs obtained with the HM (especially) and 

PL methods were wider than those yielded by the other methods. Although this pattern 

was consistent across all scenarios, the CIs were narrower in conditions with some 

degree of departure from normality. This was probably due to a coverage slightly below 

nominal under non-normal scenarios. For instance, with k = 10 and under the normal 

scenario, the CI widths for HM and PL were 1.004 and .992 with empirical coverage 

probabilities of .956 and .944, respectively. Conversely, under the highly non-normal 

scenario with skewness = -2 and kurtosis = 3.65, the CI widths for HM and PL were 

.9456 and .9306 with empirical coverage probabilities .948 and .941. The FE method 

consistently yielded the narrowest CIs at the expense of exhibiting empirical coverages 

well below nominal.  

 

INSERT FIGURE 6 
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Variability of the Standard Errors 

Figure 7 shows the variability (in %) of the standard error estimates produced 

using the REML estimator (see Supplementary file 4 for the full set of results). On 

average, all methods yielded standard error estimates smaller than the standard 

deviation of the distribution of overall effect estimates empirically constructed through 

10,000 replications in a given condition (see Equation 28). The SM, HM, and BOOT 

methods exhibited standard error estimates very close to the standard deviation of the 

effect size distribution in all manipulated conditions. In particular, for k  ≥ 20 the 

percentage underestimation was lower than five percent, with the exception of the 

condition with skewness = 1 and kurtosis = 0.51. In general, the good performance of 

the standard error estimates of these methods improved with larger number of studies 

regardless of shape of the distribution of i , with the exception of conditions with 

skewness = 1 and kurtosis = 0.51 and skewness = 2 and kurtosis = 3.74, where a slight 

increase of the percentage underestimation was observed for k = 60. 

The HM method systematically showed the best performance of the standard 

error estimates in contrast to the BOOT method, which exhibited poor performance 

(excluding the FE method, not shown in Figure 7). This same trend was found across all 

conditions of skewness and kurtosis regardless of the number of studies. On average, 

the percentage departures of the standard errors for SM, HM, and BOOT were -3.52%, -

1.89%, and -5.16%, respectively. These differences were larger for small k values. For 

instance, for k = 10, the percentage departures of the standard errors of SM, HM, and 

BOOT with the conditions of skewness and kurtosis were -5.90%, -4.79%, and -

10.18%, respectively.  

 

INSERT FIGURE 7 
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4. Discussion 

In this study, we examined the performance of various methods for random-

effects meta-analysis in terms of bias and mean squared error of the average effect size 

estimates, empirical coverage and width of confidence intervals around the average 

effect size, and variability of the standard error estimates, when the normality 

assumption is not met. We simulated a wide range of scenarios considered to be 

common in clinical psychology research, using the standardized mean difference as the 

effect size measure.   

Random-effects model typically assume normality of the effect parameter 

distribution, and several authors have raised concerns related to the potential impact of 

non-normality on the performance of meta-analysis techniques7,8,9,11,12,21,42. We carried 

out an empirical comparison of several meta-analysis methods using Monte Carlo 

simulation, and our results suggest that most estimates were not substantially affected 

by the underlying distribution of effect parameters, even under severe departures from 

normality. A slightly negative bias of the mean effect size estimates was found across 

all conditions, even in normal scenarios. This finding has also been reported in previous 

studies using standardized mean differences (cf., e.g., Hedges & Olkin16, Chapter 6, 

Table 7, p. 125; and Marín-Martínez & Sánchez-Meca43, Figure 1, p. 68), and it is due 

to a negative relationship between the d estimates and their weights both for both FE 

and RE models (Equations 6 and 12, respectively). Such a negative relationship is 

induced by the inclusion of the effect size estimate, ̂ , in the calculation of the 

individual sampling variances in Equation 27. As a consequence, the larger the effect 

size estimate, the lower the weight. An unexpected result was that under normality, the 

negative bias was slightly larger than for conditions with negatively skewed 



 

 

25 

distributions (skewness = -2 and kurtosis = 3.55, and skewness = -1 and kurtosis = 

0.47). For RE methods, the negative bias found in conditions with positive skewness 

was similar to that observed in normal scenarios. Thus, violation of the normality 

assumption does not appear to be critical in the estimation of an overall effect in 

random-effects meta-analysis.  

Our findings are largely in agreement with those reported by Kontopantelis and 

Reeves11,12 in the epidemiological field. The conditions manipulated in our study were 

related to the psychological field, where it is more common to find meta-analyses with a 

large number of studies and standardized mean differences are often used. We also 

manipulated the average total sample size of the individual studies and the overall mean 

of the distribution of effect parameters. Furthermore, we considered several 

heterogeneity variance estimators and examined the bootstrapping method. A limitation 

of Kontopantelis and Reeves11,12 was that they used an inappropriate method to generate 

the individual log odd-ratios, which cannot be applied to other effect metrics. 

As expected, the fixed-effect method – which assumes no between-studies 

variability – provided a poor performance in the estimation of an average effect size in 

scenarios where  > 0.  For random-effects methods, results were found to be 

unaffected by the heterogeneity estimator used.  

Several authors have criticized the standard random-effects method for not 

considering the uncertainty due to the variance estimation process, which increases the 

risk of false positive results44. Our results showed that Hartung’s method outperformed 

the standard method, with better coverage of the nominal confidence level. This was 

also reported in previous simulation studies restricted to normal scenarios17,22,36. 

Compared to Hartung’s method, the profile likelihood method produced slightly 
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narrower CIs. Both methods yielded coverage probabilities close to the nominal 

confidence level, with slightly lower values for the profile likelihood method.   

The final method that we examined was bootstrapping. Despite its theoretical 

advantage under non-normal scenarios, this method did not perform better than the 

standard, Hartung’s or profile likelihood methods across the set of manipulated 

conditions and the comparative criteria considered in our study. This method requires 

substantially more computational resources, and our empirical results (based on the DL 

estimator) do not encourage its use in this context.  

Out of the factors manipulated in this simulation, our results suggest that the 

number of studies exerts an important influence on the performance of the methods 

compared. With a small number of studies (less than 20), the performance of the 

methods was poorer and more notable differences were observed among them compared 

to a moderate to large number of studies. Similar results were observed in previous 

studies that simulated normal scenarios45,46. Many meta-analyses in clinical psychology 

include fewer than 20 studies, and the situation is even more extreme in other health 

sciences47. Moreover, our results suggest that large between-studies heterogeneity led to 

less accurate results and more pronounced differences among methods.  

In conclusion, the results of our simulation study suggest that the most 

commonly used meta-analytic techniques are largely robust to violations of the 

normality assumption of the effect parameter distribution. All random-effects methods 

examined, including bootstrapping, yielded similar results under optimal conditions 

(e.g., moderate to large number of studies, small between-studies heterogeneity). 

However, we recommend use of the Hartung’s method and profile likelihood method to 

construct a CI for the average effect due to their suitability in a wide range of scenarios 

and their computational simplicity. Nevertheless, the results of our study pertain to the 



 

 

27 

standardized mean difference and are limited to the manipulated conditions, such that 

future studies are warranted to improve the generalizability of these findings, extend the 

manipulated conditions and consider other effect size indices. Finally, our conclusions 

apply not only to the estimation of an overall effect size together with its confidence 

interval under random-effects models, but also to the analysis of the influence of 

moderator variables under mixed-effects models. Indeed, when the influence of a 

categorical moderator variable on the effect sizes is investigated, the average effect 

sizes and CIs for each subgroup are calculated. Thus, our recommendation of using 

Hartung’s or profile likelihood methods for that purpose can also be extended to the 

estimation of the mean effect parameter of each category of the moderator.  



 

 

28 

References 

 

1. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-

analysis. Chichester: Wiley; 2009. doi:10.1002/ 9780470743386. 

2. Cooper H, Hedges LV, Valentine JC. The Handbook of Research Synthesis and 

Meta-analysis. 2nd ed. New York: Russell Sage Foundation; 2009.  

3. Hedges LV, Vevea JL. Fixed- and random-effects models in meta-analysis. Psychol 

Methods. 1998; 3: 486–504. doi:10.1037/1082- 989X.3.4.486.  

4. Sánchez-Meca J, López-López JA, López-Pina, JA. Some recommended statistical 

analytic practices when reliability generalization (RG) studies are conducted. Br 

J Math  Stat Psychol. 2013; 66: 402-425. doi: 10.3102/1076998612466142.  

5. Konstantopoulos S, Hedges LV. Analyzing effect sizes: fixed-effects models. In: 

Cooper H, Hedges LV, Valentine JC, eds. The Handbook of Research Synthesis 

and Meta-analysis. 2nd ed. New York: Russell Sage Foundation; 2009: 279-293.  

6. Raudenbush SW. Analyzing effect sizes: Random‐effects models. In: Cooper H, 

Hedges LV, Valentine JC, eds. The Handbook of Research Synthesis and 

Meta‐analysis. 2nd ed. New York: Russell Sage Foundation; 2009: 295‐315. 

7. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-

effect and random-effects models for meta-analysis. Res Synth Methods. 2010; 

1: 97–111. doi: 10.1002/jrsm.12 

8. Brockwell SE, Gordon IR. A comparison of statistical methods for meta-analysis. 

Stat Med. 2001; 20: 825-840. doi: 10.1002/sim.650. 

9. Brockwell SE, Gordon IR. A simple method for inference on an overall effect in 

meta-analysis. Stat Med. 2007; 26: 4531-4543. doi: 10.1002/sim.2883. 

http://dx.doi.org/10.1002/jrsm.12


 

 

29 

10. Hardy RJ, Thompson SG. 1996. A likelihood approach to meta-analysis with 

random effects. Stat Med. 1996; 15: 619-629. doi: 10.1002/(SICI)1097-

0258(19960330)15:6<619::AID-SIM188>3.0.CO;2-A.  

11. Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis 

when true study effects are non-normally distributed: A comparison between 

DerSimonian–Laird and restricted maximum likelihood. Stat Methods Med Res. 

2012; 21: 657-659. doi: 10.1177/0962280211413451.  

12. Kontopantelis E, Reeves D. Performance of statistical methods for meta-analysis 

when true study effects are non-normally distributed: A simulation study. Stat 

Methods Med Res. 2012; 21: 409–426. doi: 10.1177/0962280210392008. 

13. Schmidt FL, Oh IS, Hayes TL. Fixed- versus random-effects models in meta-

analysis: Model properties and an empirical comparison of differences in results. 

Br J Math  Stat Psychol. 2009; 62: 97-128. doi: 10.1348/000711007X255327.  

14. Engels EA, Schmid CH, Terrin N, Olkin I, Lau J. Heterogeneity and statistical 

significance in meta-analysis: an empirical study of 125 meta-analyses. Stat 

Med. 2000; 19: 1707-1728. doi: 10.1002/1097 

0258(20000715)19:13<1707::AID-SIM491>3.0.CO;2-P. 

15. Hoaglin DC. We know less than we should about methods of meta-analysis. Res 

Synth Methods. 2015; 6: 287-289. doi: 10.1002/jrsm.1146 

16. Hedges LV, Olkin I. Statistical Methods for Meta‐analysis. Orlando, FL: Academic 

Press; 1985. 

17. Sánchez-Meca J, Marín-Martínez F. Confidence intervals for the overall effect size 

in random-effects meta-analysis. Psychol Methods. 2008; 13: 31-48. 

doi:10.1037/1082-989X.13.1.31.  



 

 

30 

18. Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the 

random-effects model. J Educ Behav Stat. 2005; 30: 261–293. 

doi:10.3102/10769986030003261. 

19. Hartung J. An alternative method for meta-analysis. Biom. J. 1999; 41: 901-916. 

doi:10.1002/(SICI)1521-4036(199912)41:8<901::AID-BIMJ901>3.0.CO;2-W.  

20. Hartung J, Knapp G. On tests of the overall treatment effect in the meta-analysis 

with normally distributed responses. Stat Med. 2001; 20: 1771-1782. doi: 

10.1002/sim.791.  

21. Sidik K, Jonkman JN. A simple confidence interval for meta-analysis. Stat Med. 

2002; 21: 3153-3159. doi: 10.1002/sim.1549.  

22. IntHout J, Ioannidis JPA, Borm GF. The Hartung-Knapp-Sidik-Jonkman method for 

random effects meta-analysis is straightforward and considerably outperforms 

the standard DerSimonian-Laird method. BMC Med Res Methodol. 2014; 14: 25. 

doi: 10.1186/1471-2288-14-25 

23. Guolo A. Higher-order likelihood inference in meta-analysis and meta-

regression. Stat Med. 2012; 31: 313-327. doi: 10.1002/sim.4451. 

24. Henmi M, Copas JB. Confidence intervals for random effects meta-analysis and 

robustness to publication bias. Stat Med. 2010; 29: 2969-2983. doi: 

10.1002/sim.4029.  

25. Adams DC, Gurevitch J, Rosenberg, MS. Resampling tests for meta-analysis of 

ecological data. Ecology. 1995; 78: 1277–1283. doi: 10.2307/2265879. 

26. van den Noortgate W, Onghena P. Parametric and nonparametric bootstrap methods 

for meta-analysis. Behav Res Meth. 2005; 37: 11–22. doi: 10.3758/BF03206394.  

27. Efron B. Better bootstrap confidence intervals. J Am Stat Assoc. 1987;  82: 171-200.  

https://dx.doi.org/10.1002/sim.1549


 

 

31 

28. Efron B, Hastie T. Computer Age Statistical Inference.  New York: Cambridge 

University Press; 2016. 

29. Efron B. Bootstrap methods: another look at the jackknife. Annals of Statistics. 

1979; 7: 1-26. doi:10.1214/aos/1176344552 

30. Veroniki AA, Jackson D, Viechtbauer W, et al. Methods to estimate the between-

study variance and its uncertainty in meta-analysis. Res Synth Methods. 2016;  7: 

55–79. doi: 10.1002/jrsm.1164 

31. DerSimonian R, Laird N. Meta-analysis of clinical trials. Clin Contr Trials. 1986; 7: 

177–188. doi:10.1016/0197- 2456(86)90046-2. 

32. Hoaglin DC. Misunderstandings about Q and ‘Cochran's Q test' in meta-analysis. 

Stat Med. 2016; 35: 485-495. doi: 10.1002/sim.6632. 

33. Kulinskaya E, Dollinger MB, Bjørkestøl K (2011). Testing for homogeneity in 

metaanalysis I. The one-parameter case: Standardized mean difference. 

Biometrics, 67: 203-212. doi: 10.1111/j.1541-0420.2010.01442.x 

34. Berkey CS, Hoaglin DC, Mosteller F, Colditz GA. A random-effects regression 

model for meta-analysis. Stat Med. 1995; 14: 395–411. 

doi:10.1002/sim.4780140406. 

35. Morris CN. Parametric empirical Bayes inference: Theory and applications. J Am 

Stat Assoc. 1983; 78: 47–55. doi:10.1080/01621459.1983.10477920. 

36. Viechtbauer W, López-López JA, Sánchez-Meca J, Marín-Martínez F. A 

comparison of procedures to test for moderators in mixed-effects meta-

regression models. Psychol Methods. 2015; 20: 360-374. doi: 

10.1037/met0000023 

37. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat 

Softw. 2010; 36: 1–48. 



 

 

32 

38. Guolo A, Varin C. The R package metaLik for likelihood inference in meta-

analysis. J Stat Softw. 2012; 50: 1-14. 

39. Canty A, Ripley BD. boot: Bootstrap R (S-PLUS) Functions, URL 2012. 

http://CRAN.R-project.org/package=boot, R package version 1.3- 7. 

40. Rubio-Aparicio M, Marín-Martínez F, Sánchez-Meca J, López-López JA. A 

methodological review of meta-analyses about the effectiveness of clinical 

psychology treatments. Behav Res Meth. 2017. https://doi.org/10.3758/s13428-

017-0973-8 

41. Fleishman AI. A method for simulating non-normal distributions. Psychometrika. 

1978; 43: 521-532. doi:10.1007/BF02293811. 

42. Sidik K, Jonkman JN. A comparison of heterogeneity variance estimators in 

combining results of studies. Stat Med. 2007; 26: 1964-1981. 

doi:10.1002/sim.2688.  

43. Marín-Martínez F, Sánchez-Meca J. Weighting by inverse variance or by sample 

size in random-effects meta-analysis. Educ Psychol Meas. 2010; 70, 56-73. doi: 

10.1177/0013164409344534 

44. Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken 

and interpreted? Stat Med. 2002; 21: 1559–1573. doi:10.1002/sim.1187.  

45. López-López JA, Marín-Martínez F, Sánchez-Meca J, van den Noortgate W,  

Viechtbauer W. Estimation of the predictive power of the model in mixed-

effects meta-regression: A simulation study. Br J Math  Stat Psychol. 2014; 67: 

30-48. doi: 10.1111/bmsp.12002. 

46. Rubio-Aparicio M, Sánchez-Meca J, López-López JA, Marín-Martínez F, Botella J. 

Analysis of categorical moderators in mixed-effects meta-analysis: 



 

 

33 

Consequences of using pooled vs. separate estimates of the residual between-

studies variances. Br J Math  Stat Psychol. 2017. doi: 10.1111/bmsp.12092 

47. Davey J, Turner RM, Clarke MJ, Higgins JPT.. Characteristics of meta-analyses and 

their component studies in the Cochrane Database of Systematic Reviews: a 

cross-sectional, descriptive analysis. BMC Med Res Methodol. 2011; 11: 160. 

doi: 10.1186/1471-2288-11-160. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

34 

Table 1. Values of the a, b, c, d constants in Fleishman’s algorithm for the six 

combinations of skewness and kurtosis. 

 

Skewness (γ1) Kurtosis (γ2) a b c d 

0 0 0 1 0 0 

-2 3.65 0.349 0.862 -0.349 -0.018 

-1 0.47 0.267 1.124 -0.267 -0.071 

0 -0.58 0 1.093 0 -0.032 

1 0.51 -0.256 1.112 0.256 -0.064 

2 3.74 -0.360 0.862 0.360 -0.021 
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Figure 1. Scatter plot of the skewness and kurtosis values found in a systematic review 

of 50 meta-analyses of on efficacy of psychological interventions40.   

 

 

 

 

Figure 2. Simulated scenarios for the shape of the distribution of effect parameters, 

assuming = 0 and 2 =1.  
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Figure 3. Bias of the four methods to estimate . ○  DL = standard method with                     

DerSimonian and Laird estimator of 2 ;  Δ  REML = standard method with restricted 

maximum likelihood estimator of 2 ; +  EB = standard method with empirical Bayes 

estimator of 2 ; ×  FE = fixed-effect model. These results are for: 2 = 0.39, = 0.5, 

and N = 30. The average standard error of the simulations was 0.0035 
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Figure 4. Mean Squared Error (MSE) of the four methods to estimate . ○  DL = 

standard method with DerSimonian and Laird estimator of 2 ; Δ  REML = standard 

method with restricted maximum likelihood estimator of 2 ; +  EB = standard method 

with empirical Bayes estimator of 2 ; ×  FE = fixed-effect model. These results are for: 



 

 

38 

2 = 0.39, = 0.5, and N = 30. The average standard error of the simulations was 

0.0022 
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Figure 5. Empirical coverage probability for the five confidence interval (CI) methods.  

○  SM = standard method; Δ  HM =  Hartung’s method; ×  BOOT_P = bootstrapping 

with the percentile method; ◊  BOOT_Bca = bootstrapping with the BCa method; □  

PL= profile likelihood method. The CI methods used REML estimate of 2 . These 

results are for: 2 = 0.39, = 0.5, and N = 30. The average standard error of the 

simulations was 0.0031 
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Figure 6. Width of the 95% CI for   of the five confidence interval (CI) methods.         

○  SM = standard method; Δ  HM =  Hartung’s method; ×  BOOT_P = bootstrapping 

with the percentile method; ◊  BOOT_Bca = bootstrapping with the BCa method;  □  
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PL= profile likelihood method. The CI methods used REML estimate of 2 . These 

results are for: 2 = 0.39, = 0.5, and N = 30. The average standard error of the 

simulations was 0.0062 
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Figure 7. Variability of the Standard Error of the three methods. ○  SM = standard 

method;  Δ  HM =  Hartung’s method; ×  BOOT = bootstrapping. These results are for: 

2 = 0.39, = 0.5, and N = 30. The average standard error of the simulations was 

0.0009% 
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