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We describe and experimentally explore a nonlinear stiffness model of the trapping

of a solid particle in a single-axis acoustic levitator. In contrast to the commonly

employed linear stiffness assumption, our nonlinear model accurately predicts the

response of the system. Our nonlinear model approximates the acoustic field in the

vicinity of the trap as a one-dimensional sinusoid and solves the resulting dynam-

ics using numerical continuation. In particular, we predict a softening of stiffness

with amplitude as well as period-doubling bifurcations, even for small excitation am-

plitudes of ≈ 2% of the wavelength. These nonlinear dynamic features are observed

experimentally in a single-axis levitator operating at 40 kHz and trapping millimetre-

scale expanded polystyrene spheres. Excellent agreement between the observed and

predicted behaviour is obtained suggesting that this relatively simple model captures

the relevant physical phenomena. This new model enables the dynamic instabili-

ties of trapped particles to be accurately predicted thereby benefiting contactless

transportation and manipulation applications.

a)Electronic mail: t.fushimi@bristol.ac.uk
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Acoustic radiation forces are hydrodynamic forces exerted through the interaction of the

acoustic field with the particles contained in it1–5. Devices which can levitate or manipu-

late objects using acoustic radiation forces are typically referred to as acoustic levitators.

Acoustic levitators can be categorized into four main classes6: single-axis standing wave,

multi-axis, near-field and single-beam. The single-axis standing wave levitator is a classical

method for contactlessly holding samples, it is commonly realized by a Langevin horn and

another opposed horn or reflector7 as shown in FIG. 1 (a). Recently, it has been shown

that an array of transducers can also create pseudo-one-dimensional standing waves with

the added advantage of controlling the position of the nodes along the propagation axis8,9,

as illustrated in FIG. 1 (b). However, in all these cases, a pseudo-one-dimensional standing

wave is generated and the particles are trapped at the nodes with sinusoidal restoring forces

as shown in FIG. 1 (c).

Acoustic levitators have a broad range of applications in non-contact transportation and

as a processing method for pharmaceutical, biological or chemical applications10–15. The

behaviour of the levitated objects has been of interest in all classes of acoustic levitator16–18.

The chaotic shape dynamics of bubbles and droplets inside acoustic levitators are well

documented19,20 and the translational oscillation of these deformable samples has been stud-

ied in the past, often with damping forces neglected21–23. Perez et al.24 devised an experi-

mental approach to determine the dynamics of solid particles in a standing wave levitator

and demonstrated the fit of quadratic damping terms in a dynamic model. Jia et al. analyzed

the dynamic response of micro-particles in liquids to show the effects of acoustic streaming

and hydrodynamic forces on particles25 and Andrade et al.26 pointed out that the particle

may exhibit nonlinear behaviours similar to a Duffing oscillator. However, the dynamics

of solid particles suspended inside a standing wave levitator in mid-air have not yet been

fully explored, the majority of recent research employs linear stiffness models24,27–30 which

are applicable only in the case that the movement of the suspended particle is small6. The

lack of understanding of the translational dynamics of the levitated samples hinders the

development of future applications with acoustic levitators where the small displacement

assumption is no longer valid. This prevents accurate prediction of the particle dynamics.

Here, we present a nonlinear dynamic model for the restoring forces inside a single-axis

acoustic levitator. The model accurately predicts various nonlinear dynamic phenomena

such as amplitude-dependence, multiple solutions, and period-doubling bifurcations. These

2



responses were then observed experimentally, and found to be in excellent agreement with

our predictions whereas previous linear stiffness models by definition, fail to predict these

phenomena.

The experiment discussed here consists of a solid sphere suspended against gravity at

the central node of a multi-transducer standing wave acoustic levitator operating at 40 kHz,

as shown in FIG. 2 (see supplementary material for further details on the pressure field

calculation). This device is an instance of the general class of single axis standing wave

levitator depicted in FIG. 1 (b). The acoustic radiation force was numerically approximated

using the Gor’kov potential assuming that the particle (EPS, ρp = 34.0 kg m−3) is small

(radius, r = 0.71 ± 0.03 mm) in comparison to the wavelength5,31 (λ = 8.6 mm). The

particle used in the experiment was visually inspected for deformations, the roundness of

the particle was measured as 0.938 (see supplementary material).

The restoring force in the vicinity of the equilibrium point for the central node in the

acoustic levitator is approximated as a sinusoidal force function, assuming that acoustic

radiation force only varies with the vertical displacement (z):

Frad = α sin (β(z − zp)) (1)

where α = −3.06 × 10−6 N, β = 1315 m−1 are the constants, obtained from a fit to the

simulated pressure field (pressure amplitude ≈ 800 Pa at 5 V) in the vicinity of the central

node (see supplementary material). z is the particle position measured from an arbitrary

origin on the z-axis, zp is the input perturbation. The input perturbation represents an

FIG. 1. Two types of single-axis standing wave levitators. (a) A Langevin transducer assembly

with an opposed reflector, or another transducer. (b) Two transducer arrays with phase delays

or geometry designed to focus the acoustic waves at the center. (c) Resultant central pseudo-one-

dimensional sinusoidal acoustic radiation force from both of the acoustic levitators.
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FIG. 2. Schematic of the experimental setup. On the left, there is a light with a diffuser for

illumination. In the center, the multi-element standing wave levitator traps a particle in the

center, it also changes the phase-delays to move the central trap in the z direction. The numerically

calculated pressure amplitude field (see supplementary material) is shown overlaid. On the right,

a high-speed camera captures the particle motion.

excitation either by a mechanical vibration, e.g. from a shaker, or by changing the acoustic

pressure field to move the nodal position. In the experiment, the latter method was used

and the acoustic pressure field was varied by changing the focal point of the phased-array,

thus moving the nodal positions of the standing wave. For a small value of zp, equation (1)

is analogous to a base-excited pendulum32–35 and the input perturbation can be considered

as a parametric excitation (see supplementary material). In comparison, the commonly

employed linear model of this system is identified by finding the linear stiffness (KL) around

the equilibrium point, which can be calculated by differentiating Frad over z which gives6:

Frad,L = −KL(z − zp) (2)

where KL = 0.0397 Nm−1.

The dynamics of the system can be explored by approaches such as the random excitation,

sine-sweep, or a stepped sine-sweep36. Here, a stepped-sine method was used and by varying

the focal point with a sinusoidal function (zp = zo + Ain sin(2πΩt)) at a constant frequency

(Ω), z-axis offset (z0) and amplitude (Ain). The coefficients given in equation (1) hold

true with minimum R2=0.998 for the range of z − zp shown in this paper. The damping

force was calculated as37,38: Fdrag = −1
2
Cd

π
4
(2r)2ρa |ż| ż, where the damping coefficient is

Cd = 24

Re

√
1 + 3

16
Re, and where Re = (2r|ż| ρa)/µ is the Reynolds number. This is applicable

for Re ≤ 100 and assumes that history forces and added mass are negligible in air.
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FIG. 3. Predicted and experimental response of a particle trapped in a standing wave levitator. (a)

Comparison of the nonlinear stiffness model, experimental results and equivalent linear stiffness

model with Ain = 0.15 mm. (b) Predicted response from the nonlinear model when excited at

different amplitudes.

Balancing the inertial and force components gives:

mz̈ = (Frad + Fgrav) + Fdrag (3)

where Fgrav = −mg is the gravitational force and Frad is given by equation (1). For a

linear stiffness model, the forces inside the bracket are replaced by equation (2). Equation

(3) was solved using the numerical continuation software Continuation Core and Toolboxes

(COCO)39 in MATLAB, to predict the dynamic response for both linear and nonlinear stiff-

ness models. Numerical continuation is widely employed in the field of nonlinear dynamics40

and it can be used to compute periodic solutions, determine their stability and identify

bifurcations39. These solutions may be considered accurate to within the tolerances of the

numerical solver. One drawback in the use of numerical tools, in comparison to analyti-

cal approaches, is that they reveal less about the nature and root cause of the dynamic

behaviour. However, such a study is beyond the scope of the current work.

In order to conduct an experimental verification of the proposed dynamic model, the

acoustic levitator was set up as shown in FIG. 2. The vertical dynamic manipulation of the
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focal point is transmitted from the computer to the acoustic levitator driver board at 700 Hz

via a UART serial communication line operating at 500 kbauds. The driver board is made

of an FPGA board (ALTERA CoreEp4CE6) which generates 60 independent square waves

with a phase resolution of φ = 2π
128

. These signals were amplified up to 17 V by individual

MOSFET drivers (TC4427a) powered with an external DC supply (RS Pro IPS 303DD).

The amplified signals were fed into the levitator transducers (Murata MA40S4S). Despite

the square excitation signals the output waves were sinusoidal due to the narrowband nature

of the transducers41.

The experiment was conducted in a chamber (width = 4.3 m, height = 2.4 m, length =

2.4 m) on a passive vibration isolation table (Thorlabs PFH90150-8) to minimize external

air and vibration disturbances. Furthermore, the temperature, barometric pressure, and

humidity were recorded at the beginning of each experiment and the numerical model was

calibrated accordingly to accommodate the changes. At 21.3◦C, the values of air density (ρa),

viscosity (µ) and speed of sound (c0) were 1.19 kg m−3, 1.82×10−5 kg (m s)−1, and 344 m s−1,

respectively. The movement of the particle was captured by a high speed camera (Photoron

FASTCAM SA-Z Type 2100K-M-32GB) and the silhouette of the levitated particle was

recorded at a sampling frequency of 1001 Hz. The camera was calibrated using a CMM-

stylus (Renishaw A-5000-7806) to find the pixel-to-meter conversion (3.29× 10−5 m pix−1).

The high-speed camera data was processed by the MATLAB image analysis package to

determine the center of the levitated particle, and the oscillation amplitude was obtained

by taking the peak-to-peak difference of the low-pass filtered signal (fpass = 100 Hz and

fstop = 150 Hz).

The comparison of both numerical models (linear and nonlinear stiffness) and exper-

imental results for Ain = 0.15 mm are shown in FIG. 3 (a). The linear stiffness model

predicts a symmetrical response around the resonance with a peak response amplitude of

Aout = 2.58 mm. There are significant differences between this linear model and the ex-

perimental results even for a relatively small excitation amplitude of Ain = 0.15 mm (or

1.74%λ). This is also small in comparison to the width of the Gor’kov potential, which is

4.8 mm (Ain = 0.15 mm is 3.13% of the width of the local Gor’kov potential minima). On

the other hand, the nonlinear stiffness model predicts the response of the system with a sig-

nificantly greater accuracy of R2 = 0.998 between model and experiment. Despite the small

oscillation amplitude, the peak frequency predicted by the linear and nonlinear stiffness
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FIG. 4. Numerical model predicting period-doubling bifurcation. (a) The numerical model predicts

an unstable response from 82 to 86 Hz, the experimental results confirm the existence of this period-

doubling (PD) bifurcation. The PD branch is part of a stable region, and the dotted part continues

to an unstable PD branch. (b) Frequency domain response of the signal denoted A and B in (a)

from ‘Exp (Sweep Down)’. The dominant frequency at point B, where the period-doubling is

occurring, is half that of the excitation frequency, whereas point A oscillates at the excitation

frequency. (Multimedia View)

models differ by ≈ 18 Hz. Moreover, the nonlinear stiffness model predicts fold bifurcations

at the positions where stability changes, and experimental results in FIG. 3 (a) demonstrate

that multiple stable solutions exist for certain forcing frequencies - a feature that is not seen

in linear systems. Experimentally measuring the complete stable portion of the branch on

the downwards sweep (between 25 Hz and 34 Hz) is challenging, as the basin of attraction of

the stable response typically decreases as it approaches a fold bifurcation42. The red curve in

FIG. 3 (a) represents unstable solutions, which cannot be measured experimentally, without

employing a specific control strategy43.

The nonlinear stiffness model exhibits amplitude-dependent behavior. The responses for

excitation amplitudes Ain = 0.10, 0.15, and 0.20 mm were solved and are shown in FIG. 3 (b).

Since the resonance frequency decreases with amplitude, the system is considered to be a
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‘softening’ system44. The response becomes more symmetrical and approaches the linear

stiffness model as the excitation amplitude decreases. This is caused by the reduction in the

response amplitude of particle oscillation, which begins to meet the condition for a linear

assumption. The linear stiffness model contains nonlinear damping terms, due to the drag

forces, and therefore also exhibits amplitude dependence; however, the resonant frequency is

independent of the excitation amplitude and hence still exhibits a characteristic symmetrical

frequency response.

For large excitation amplitudes, a period-doubling (PD) bifurcation occurs near an ex-

citation frequency of 80 Hz. For example, when the excitation amplitude is increased to

Ain = 0.35 mm, an unstable region emerges between 82 and 86 Hz as shown in FIG. 4 (a);

note that this bifurcation may also be observable at lower excitation amplitudes. A period-

doubling bifurcation marks the point at which the response of the system switches to a new

behaviour with a period that is twice that of the original response45. In the case of the

response shown in FIG. 4 (a) this leads to a loss of stability of the single-period solutions

(represented by the red line), and an emergence of a new set of double-period solutions

(purple line). The above experimental procedure was repeated for the same particle with

an excitation amplitude of Ain = 0.35 mm. The response amplitude increases significantly

from 77 Hz to 90 Hz, with Aout = 1.49 mm. Although the experimentally obtained results

are offset from the predicted period-doubling branch by ≈ 4 Hz, they show the same qual-

itative behaviour, verifying the existence of the PD bifurcation and resulting behaviour.

An example of the frequency-dependence of the oscillatory response of the particle is avail-

able in the supplementary material. The frequency domain response of the signal for the

points denoted A and B from ‘Exp (Sweep Down)’ on FIG. 4 (a) were measured and are

shown in FIG. 4 (b) (Multimedia View). As the result of the period-doubling behavior, the

dominant response frequency is at half of the excitation frequency, confirming the occur-

rence of a period-doubling bifurcation. Furthermore, as seen in FIG. 4 (a), period-doubling

bifurcations may also occur at lower excitation frequencies, for example, period-doubling

bifurcations occur at 37 Hz in FIG. 4 (a) and around 31 Hz for Ain = 0.20 mm in FIG. 3 (b).

Due to the high amplitude of the response, the experimental confirmation of the low fre-

quency period-doubling bifurcation has not yet been achieved. However, this indicates that

more complex dynamics are possible and further investigation of the nonlinear dynamics of

acoustic levitators is needed.
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In conclusion, we experimentally validated a single degree-of-freedom nonlinear model

of a solid particle trapped inside a mid-air single-axis levitator. We predicted and verified

the occurrence of nonlinear softening behaviour, as well as period-doubling bifurcations.

These behaviours were only predicted by the nonlinear stiffness model, highlighting the

importance of the nonlinear model. Period doubling bifurcation is often the beginning of

chaotic behaviour in many dynamic systems, and further studies may reveal this dynamic

complexity in single-axis levitators. Nonlinear responses are caused by the characteristic

sinusoidal restoring force, which is a common feature in acoustic levitators available in the

literature. This new model enables the dynamic instabilities of trapped particles to be

accurately predicted thereby benefiting contactless transportation and manipulation appli-

cations.

See supplementary material for the details on the array layout, the method for calculat-

ing the pressure field and acoustic radiation force, proof of similarity with a base-excited

pendulum, particle properties and the approximation of a linear stiffness. A video of the

particle at a period-doubling bifurcation is also available.
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