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Within a global physical theory, a notion of locality
allows us to find and justify information-processing
primitives, like non-signalling between distant agents.
Here, we propose exploring the opposite direction: to
take agents as the basic building blocks through which
we test a physical theory, and recover operational
notions of locality from signalling conditions. First,
we introduce an operational model for the effective
state spaces of individual agents, as well as the range
of their actions. We then formulate natural secrecy
conditions between agents and identify the aspects
of locality relevant for signalling. We discuss the
possibility of taking commutation of transformations
as a primitive of physical theories, as well as
applications to quantum theory and generalized
probability frameworks. This ‘it from bit’ approach
establishes an operational connection between local
actions and local observations, and gives a global
interpretation to concepts like discarding a subsystem
or composing local functions.

This article is part of a discussion meeting issue
‘Foundations of quantum mechanics and their impact
on contemporary society’.

1. Introduction
In modelling local agents acting within a global theory,
the intuitive assumption is that both their actions and
their knowledge are restricted to a bounded region. The
canonical example is a scientist who has full control of
her laboratory and can perform local tomography. In
reality though, the breadth of knowledge and the range
of action of agents may be decoupled. For example,
prisoners can acquire global knowledge by reading the
news, but their actions are limited to small subsystems.

2018 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. There and back again: physical locality and signalling. On the left, the spatial location of several agents (dark dots)
and their range of communication (overlapping circles) are depicted; on the right, the corresponding signalling graph. (a) In
physical theories, the notion of a space–timebackgroundwhere agents are positioned, togetherwith principles about the range
of signalling (e.g. the finite speed of light), allows us to derive information-processing concepts like non-signalling agents. (b)
Reverse direction: starting from the notion of agents that may or may not be able to communicate and minimal assumptions
on the nature and range of signalling, it may be possible to deduce both the space–time structure of the theory and the
position of agents in it, to a good approximation. We can take inspiration from a simple example in the field of localization
in wireless sensor networks (for a review, see, for example, [4]). Forest fire prevention mechanisms can be implemented by
dropping a large number of smoke-detecting sensors from a plane over the forest. The sensors (our agents) are equipped with
short-range communication systems, and land at random positions. One then collects the data of which sensors can signal to
each other. From the signalling graph, it is possible to reconstruct the relative positions of the sensors on the ground to high
accuracy—that way, when the smoke alarm goes off in a sensor, the fire-response team can quickly locate it. (Online version
in colour.)

Conversely, someone locked in a control room may only have local knowledge of the shapes
of different buttons, but pressing one may have global consequences. The observation that the
knowledge and action do not always go hand in hand implies that in order to model agents we
have to specify both (§2). This naturally leads us to search for minimal operational constraints
needed to ensure that agents are truly local.

Here, we motivate a notion of secrecy between agents, which captures whether actions
performed by an agent (like writing a message, choosing a bit or preparing a quantum
state) can be perceived by another (§3); traditional notions of non-signalling correspond to
an extended secrecy between space-like separated regions (§5). This work brings together and
clarifies concepts of locality used in quantum theory, generalized probabilistic theories and field
theories. It highlights that the state space and transformations of a theory are but a subjective
choice of representation of the underlying physical theory from a viewpoint that is convenient
to a given agent, as argued by Spekkens [1]. Here, we tentatively suggest commutation of
transformations as a primitive of physical theories. In particular, we show how to derive local
agents (and effective descriptions of local subsystems) from commutation relations on global
transformations (§4).

This work draws from our ‘resource theories of knowledge’ [2], and has natural applications
in multi-player settings, such as cryptographic scenarios, games or resource theories. There is yet
a more exciting possible application: to recover the space–time structure of a physical theory from
the primitive notion of test agents, in the spirit of Hardy’s operational general relativity [3] and of
the task of localization in wireless sensor networks [4]. The idea is to send out agents (or probes) to
unknown positions, see if they can communicate with each other, and use the signalling graph to
define distances between agents, reconstruct their relative positions and infer properties of space–
time (figure 1). For this, we must first find appropriate, theory-independent notions of agents and
signalling.
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2. Modelling agents
We start with a top-down approach, where we first describe a global theory (as seen by a global
agent), and then model restricted agents acting within that theory.

(a) Global theory
From the point of view of a given global agent, a global theory may be represented via a state
space Ω and a set of transformations T that are available to the agent [5–8]. We can think of the
state space as the ‘language’ chosen by this global observer to describe nature. For example, Ω

could be the set of coordinates and momenta of all celestial bodies; in quantum theory, it could
be the set of valid density matrices over a global Hilbert space. It need not be a static picture: in
astronomy, an alternative state space Ω ′ could be the set of possible trajectories of celestial bodies,
and in quantum theory it could include all global Hamiltonians that determine the free evolution
of density matrices. Three observations are pertinent at this point: firstly, Ω is not the ultimate
description of reality, just a convenient representation from the point of view of a global agent;
secondly, different pictures, like Ω and Ω ′, may be related and mapped to one another [1,2]; and
thirdly, Ω need not have any special structure a priori besides being a set—indeed, the approach
laid out here will allow us to find an operational subsystem structure in the set of states.

The transformations in T represent all actions that the theory allows the global agent to
implement. We can think of them as the ways in which the agent may test a theory, by applying
actions that change state parameters. For example, an explicit theory of a quantum universe may
allow only for unitary operations, while a more generous theory could equip the agent with
implicit large ancillas, and allow her to implement general quantum channels, state preparations
and even tomography. Again the two views can be related: the latter is an effective theory derived
from the unitary quantum theory, by internalizing part of the global space as belonging to
the agent and her instruments, and not to the object of study (the rest of the universe) [2]. In
the context of field theories, this is discussed as emerging agency [3]. In a superdeterministic
theory, there is only one possible course of evolution for the universe, and T consists only of
functions that apply it (for example, T ∼= {e−iHt}t where the global agent is given some choice
of time). Formally, T is a monoid of functions f : Ω → Ω : it contains the identity transformation
and is closed under concatenation (an associative binary operation), such that performing two
actions subsequently, f ◦ g, is still an allowed operation. We discuss the monoidal assumption
and possible relaxations in §5.

(b) Local agents
Local agents are characterized by limited knowledge: their inability to distinguish global states
that appear identical in their eyes. We can formalize this by building equivalence classes of states
that are indistinguishable from the perspective of an agent. For example, in quantum theory,
we could have an agent Bob who only has access to a Hilbert space HB; two global states are
indistinguishable (or equivalent) from Bob’s perspective if they have the same marginal in HB.
This defines an equivalence relation σ ∼B ρ : TrB̄σ = TrB̄ρ, where TrB̄ denotes a partial trace over
all systems except B. The corresponding equivalence classes are

[ρ]B := {σ ∈ Ω : TrB̄σ = ρB}.

Taking the quotient over, this equivalence relation gives us a new space state Ω/∼B, which is
in one-to-one correspondence with the set of all reduced density matrices in HB. This is Bob’s
effective state space, sufficient to encode all the information that he can observe about any global
state (figure 2). In this case, the map from the global to the local spaces (the canonical map) is given
by the partial trace

hB : Ω → Ω/∼B,
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Figure 2. Building an agent’s effective state space. The different states of a global spaceΩ are shown to an agent, who finds
equivalence classes of (subjectively) indistinguishable states. Their effective state space is then thequotient space. (a) Theglobal
state spaceΩ consists of three bits, in the eight possible states depicted. An agent Alice can only see the first bit, therefore
she cannot distinguish the states in each vertical box (her equivalence classes [000]A and [100]A). Her effective state space
ΩA = Ω/ ∼A has only two states, which can be relabelled as 0A and 1A for convenience. Another agent Bob identifies the
equivalent classes [000]B and [010]B, which leads us to conclude that he can only see the second bit. Note that, for example, if
Alice were able to apply transformations that only change the first bit, she could not signal to Bob (because he could not detect
the change). (b) Here,Ω is the space of colours, which were shown to a partly colourblind agent Marco. Marco identified the
colours that he could not distinguish, which allowed us to build his reduced state space of coloursΩM.

ρ �→ [ρ]B ∼= TrB̄ρ = ρB.

More generally, we can always build the effective state space of an agent in this way, even if
we do not know anything about the structure of the global space (for instance whether it can
be split into a convenient tensor form HA ⊗ HB). The construction of an agent’s effective state
space ΩB := Ω/∼B is in the spirit of the Leibniz principle of identity of indiscernibles [9]. Yet, this
operational procedure emphasizes that both discernibility and identity are subjective concepts
(figure 2). Limitations on Bob’s perspective may have nothing to do with spatial locality. Bob
might only have access to crude measurement instruments unable to distinguish microscopic
details of states, or he may not be able to distinguish a global phase or gauge [3]. In generalized
probability frameworks, Bob’s perspective can correspond to a grouping of individual global
outcomes into events (appendix E). In algebraic quantum field theory, these equivalence classes
could emerge from algebras of local observables (e.g. [10] for a review).

The other ingredient needed to define an agent, as we saw in the Introduction, is a description
of the actions available to him. As his actions may have a global impact, a minimal approach
is to take them to be a submonoid TB ⊆ T of the globally allowed transformations. We discuss
relaxations of this definition in §5. Generalizations of this approach can be found in [2]. There, we
also study explicit ways to move between global and local views (technically, related by Galois
insertions), effective theories and other properties of local agents.

Definition 2.1 (Global theory and restricted agents). A global theory of agents is defined by a
pair (Ω , T ), where Ω (the state space) is a set and T is a monoid of transformations f : Ω → Ω , with
the concatenation operation ◦.

A restricted agent B acting within the theory is defined by a pair (∼B, TB), where ∼B is an
equivalence relation in Ω and TB is a submonoid of T called the set of local operations of the agent.
The quotient space ΩB := Ω/ ∼B is called the effective space of agent B. The reduction to the effective
space is given by the canonical map

hB: Ω → ΩB,

ρ �→ [ρ]B.
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Having defined the effective state space of a restricted agent, we can also see how such an
agent perceives the outcome of her local actions. Namely, the effect of an action fB ∈ TB applied to
a global state ρ is seen by agent B as [fB(ρ)]B. This has been explored in more detail in [2], and is
not used in this work. In short, such an agent could then define a local theory of accessible states
and actions, (ΩB, T̃B), where the transformations T̃B act on the reduced state space ΩB as

f̃ B: ΩB → ΩB,

[ρ]B �→ f̃ B([ρ]B) :=
⋃

ω∈[ρ]B

[ fB(ω)]B.

We can always further coarse-grain the effective state space of a given agent B in order to
obtain a more restricted agent C. For example, in renormalization group flow, lowering the
cut-off corresponds to coarse-graining over more and more observables [11,12]. The following
proposition formalizes this idea [2, prop. III.5]. All proofs can be found in appendix A.

Proposition 2.2 (Nested agents). Let (Ω , T ) be a global theory, and B, C two restricted agents. Then
the following are equivalent:

(i) C has more restricted knowledge than B, that is, [ρ]B ⊆ [ρ]C, ∀ ρ ∈ Ω ,
(ii) there exists an equivalence relation ∼B→C in B’s effective state space ΩB such that ΩC ∼=

ΩB/ ∼B→C.

3. Secrecy between agents

(a) Secrecy
Having defined agents, we may study conditions for secrecy and non-signalling between them.
Consider a set-up of two agents Alice and Bob, represented by A = (∼A, TA) and B = (∼B, TB).
Imagine that Alice wants to keep her actions (like writing a message or preparing a state)
secret from Bob. This is achieved if Bob cannot tell whether she applied them, even after
post-processing.1

Definition 3.1 (Secrecy). We say that an agent A has access to secret operations T S
A ⊆ TA towards

another agent B if
fB ◦ gA(ρ) ∼B fB(ρ)

for all ρ ∈ Ω , gA ∈ T S
A , fB ∈ TB. If all actions in TA are secret towards B and those in TB are secret

towards A, we say that the two agents are mutually secret.

We may ask if this definition is robust enough, that is, whether further pre- or post-processing
by Alice and Bob could destroy the secrecy of a choice of action gA ∈ T S

A . The next proposition
shows that no matter how many ‘secret’ transformations in T S

A Alice implements, or how Bob
acts in between to try and recover information, he will not detect any of the effects of Alice’s
actions. In addition, it is easy to see that pre-processing with a global function (such as distributing
entanglement between the two parties) cannot lift secrecy, as definition 3.1 requires it to hold for
all initial states.

Proposition 3.2 (Robustness of secrecy). If A has secret operations T S
A with respect to B (according

to definition 3.1), then pre- and post-processing cannot lift the secrecy, that is,

f N
B ◦ gN

A ◦ · · · ◦ f 2
B ◦ g2

A ◦ f 1
B ◦ g1

A ◦ f (ρ)

∼B f N
B ◦ · · · ◦ f 2

B ◦ f 1
B ◦ f (ρ),

for all states ρ ∈ Ω , secret operations {gi
A}i ⊆ T S

A and {f i
B}i ⊆ TB, and global operations f ∈ T and N ∈ N.

1Bob’s effective space may include his local processing (states that I can distinguish after applying all my accessible
operations) or not (states that I distinguish immediately, before further processing). For the sake of generality, we leave the
freedom in this decision up to the agent, and account for post-processing in the definition of secrecy.
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(b) Extended secrecy
We may also ask whether Alice’s actions stay secret to Bob in the presence of an additional global
transformation f ∈ T . Transformations, such as a subsystem swap or a communication channel,
may break secrecy; others, like the use of a Popescu–Rohrlich box, do not.2 For this situation, we
define an extended notion of secrecy in the spirit of definition 3.1, which reduces to definition 3.1
in the case f = id. Here, Bob may try to post-process information before and after the global
transformation.

Definition 3.3 (Extended secrecy). Let A be an agent with access to secret operations towards
an agent B, T S

A ⊆ TA . We say that T S
A is in addition secret (towards B) in the presence of a global

transformation f ∈ T if
fB ◦ f ◦ f ′

B ◦ gA(ρ) ∼B fB ◦ f ◦ f ′
B(ρ),

for all ρ ∈ Ω , gA ∈ T S
A , fB, f ′

B ∈ TB. We say that the agents are mutually secret in the presence of f if all
actions in TA are secret towards B in the presence of f and vice versa.

We can now show that, analogously to proposition A.2, further pre- and post-processing by
Alice and Bob cannot lift the secrecy.

Proposition 3.4 (Robustness of extended secrecy). If an agent A only uses secret operations gA ∈
T S

A with respect to agent B in the presence of f ∈ T , then further pre- and post-processing cannot lift the
secrecy, that is, (

©N
i=1 f i

B ◦ gi
A

)
◦ f ◦

(
©N

i=1 f ′i
B ◦ g′i

A

)
◦ g(ρ)

∼B

(
©N

i=1 f i
B

)
◦ f ◦

(
©N

i=1 f ′i
B

)
◦ g(ρ)

for all states ρ ∈ Ω , local operations {gi
A}i ⊆ TA and {f i

B}i ⊆ TB, and global operations g ∈ T and N ∈ N.

In particular, for the case in which Bob only implements post-processing at the very end,
proposition 3.4 implies that T S

A forms a monoid.

Corollary 3.5 (Secret monoid). The set T S
A of secret operations in the presence of a global function

f ∈ T forms a monoid, i.e. id ∈ T S
A and

fA, gA ∈ T S
A �⇒ fA ◦ gA ∈ T S

A .

Naturally, if we further restrict the actions and knowledge of one of the agents (as in
proposition 2.2), secrecy is maintained.

Corollary 3.6 (Restricted agents and secrecy). Let A, B and C be three agents, such that C is more
restricted than B, that is, TC ⊆ TB and [ρ]B ⊆ [ρ]C, for all ρ ∈ Ω .

If TB was secret towards A (in the presence of f ∈ T ), the same is true of TC. If TA was secret towards B
(in the presence of f ), it is still secret towards C (idem).

4. Commuting agents
Now, we explore how secrecy is affected when the actions of two agents A and B commute. This
is particularly relevant in the context of the non-signalling principle, because actions at space-like
separation naturally commute.

Definition 4.1 (Commuting agents). We say that two agents A and B commute if

fB ◦ gA(ρ) = gA ◦ fB(ρ),

for all ρ ∈ Ω , gA ∈ TA, fB ∈ TB.

2In generalized probability theories, PR boxes can be seen as transformations that take classical inputs and return outputs
(appendix E).
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For example, in field theory commutativity holds for measurements or field interactions at
space-like separation, and this is in general how causality is recovered there [13].3 Motivated by
this, we here take the commutation of actions in space-like separated regions as a fundamental
building block in deriving agents that are secret relative to each other. Note that, in particular,
finding commuting sets of transformations in T is something that can be done prior to definitions
of local agents; this is shown explicitly in [2].4 Commutation is also an operational property
of the theory: for example, commutation is independent of the choice of reference frames in
relativity and quantum field theory [13,14]. If two agents commute, secrecy follows from simpler
conditions.

Proposition 4.2 (Secrecy for commuting agents). If A and B commute, then if there exists a subset
of actions T S

A ⊆ TA such that ∀ρ ∈ Ω , gA ∈ T S
A , fB ∈ TB,

fB ◦ f ◦ gA(ρ) ∼B fB ◦ f (ρ),

then T S
A is secret towards B in the presence of f . In particular, gA(ρ) ∼B ρ for all gA ∈ TA, ρ ∈ Ω implies

secrecy of A towards B.

(a) Secrecy from commutation
Starting only from commutation relations on the global transformations, we can construct
descriptions of local agents that have secret actions with respect to each other. More specifically,
given any two commuting submonoids TA, TB ⊆ T , we can construct equivalence relations ∼A, ∼B

so that two agents Alice (∼A, TA) and Bob (∼B, TB) have secret actions with respect to each other.
The first step is to start with transformations TA (‘Alice’s transformations’), and look for the

most generous effective state space Ω
�A

that is insensitive to transformations in TA. This will model
the perspective of an agent, Bob, who cannot detect Alice’s actions.5

Definition 4.3 (Perspective insensitive to transformations). Let TA ⊆ T be a submonoid of
transformations. First, we define a binary relation ∼′

�A
in Ω called convergence through TA as

ρ ∼′
�A

σ ⇐⇒ ∃ fA, gA ∈ TA s.t. fA(ρ) = gA(σ ).

We take the transitive closure ∼
�A

of ∼′
�A

to define the perspective insensitive to transformations TA,

ρ ∼
�A

σ ⇐⇒ ∃ n ∈ N, {τi}n
i=1 ⊆ Ω :

ρ ∼′
�A

τ1 ∼′
�A

τ2 ∼′
�A

· · · ∼′
�A

τn ∼′
�A

σ .

The above construction gives us minimal restrictions for independent agents. The following
theorem is adapted from [2].

Theorem 4.4 (Deriving secret agents). Commuting submonoids TA, TB ⊆ T give rise to descriptions
of mutually secret agents

A = (∼
�B

, TA) and B = (∼
�A

, TB).

Indeed, all agents whose actions commute with TA and for whom transformations in TA are
secret must be described by a coarse-graining of ∼

�A
(figure 3). This and related minor results

can be found in appendix D. In appendix F, we generalize theorem 4.4 to extended secrecy in
the presence of global functions. There, we also extend the construction of the effective spaces
of two agents to the case where the two monoids of transformations do not commute: without
commutation, this construction is not as simple.

3The simplest illustration of this is the commutation of the Klein–Gordon field operators φ(x) and φ(y) at space-like separated
x and y, [φ(x), φ(y)] = 0. Such a commutation condition is also referred to in field theory as the locality postulate [14].
4Commutation relations result in a nice algebraic structure—a lattice—in the space of transformations [2]. This is also the case
for the von Neumann bicommutant in operator algebras [15].
5Essentially, this perspective identifies sets of global states that Alice can locally make ‘converge’ to the same state.
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Figure 3. Three-bit example. Consider again the theory described by the state spaceΩ of three bits, and all transformations
on those bits. (a) All operationsTC that change the third bit (of which id and NOTC are labelled). (b) Equivalence classes [x]�C builtaccording to definition 4.3. These correspond to the view of an agentwho can only distinguish the first two bits. The equivalence
relation∼

�C
, which coarse-grains over the functions applied to the third bit, gives us the largest effective state space relative to

which functions in T are secret. (c) More coarse-grained equivalence classes [x]A (vertical, yellow) and [x]B (horizontal, blue),
corresponding to an agent A who can only distinguish the first bit and an agent B who only sees the second bit, respectively.
Operations inTC are still secret relative to these two agents. In addition, operations on the first bit are secret towards B and vice
versa. These smaller effective state spaces correspond to equivalence relations on the effective state spaceΩ

�C
(as in the nested

agents of proposition 2.2). The two-bit spaceΩ
�C
is a common state space ofA and B, including states that could be distinguished

if the two agents could work together, with [x]
�C
= [x]A ∩ [x]B. (Online version in colour.)

(b) Perceived commutation from secrecy
We can now ask if the actions TA, TB ⊆ T of two mutually secret agents must always commute.
The answer is no, not at a global level: unbeknown to the two agents, their actions could affect
other degrees of freedom of the global theory. This can become relevant when the actions of two
agents affect a common environment that is not directly accessible to them but could be recovered
by a third party.

For example, consider again the state space of three bits, where Alice can only see the first bit
and Bob the second. Now imagine that Alice has access to all the transformations that change
the first bit and, as a side effect, reset the third bit to 0, while Bob has access to all the actions
that act on the second bit and, as a side effect, flip the third bit. From a global viewpoint, their
actions do not commute. However, for someone who only had access to the combined knowledge
of Alice and Bob (the first two bits), their actions would appear to commute. For such an agent,
only local time ordering of Alice and Bob’s actions matters, as the two processes fA ◦ fB and fB ◦
fA are indistinguishable. This is yet another example of how subsystems and local descriptions
represent simplified pictures of the global theory, reducing the degrees of freedom of the theory
to an operational minimum for a given agent, who in this case would not need to model global
time ordering.

5. Applications
In the previous sections, we have shown how to derive a notion of locality within a global
theory starting from a primitive notion of individual agents, and their observed secrecy and
commutation relations.

The operational approach laid out here has the advantage of carrying very few assumptions
about the underlying physical theory. For example, it goes to a higher level of abstraction than
generalized probability theories by not taking for granted that all agents express their knowledge
in terms of reliable (classical) statistics about the outcomes of measurements.

Our notion of effective state spaces captures the concept of beables of a theory: aspects (or
classes) of states that can in fact be physically observed and distinguished [3,16]. Our approach
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highlights that beables are observer-dependent: for example, what appears to be a gauge may
turn out to be only a local gauge [3], and the same applies to ‘global’ phases of quantum states
or yet-to-be-discovered microscopic details of some structure. We can never rule out the existence
of a more refined underlying theory, but with effective state spaces we can tailor the descriptions
used in a theory to the level of detail needed for a particular application. This goes in the direction
of the work of Colbeck & Renner [17], who showed that quantum theory is complete for the task
of guessing measurement outcomes, and further refinements would be irrelevant.

As presented here, our framework simplifies the modelling of agents for the pedagogical
purpose of highlighting the advantages of this general direction. In appendix C, we show how
one could relax some of our assumptions to model agents that are limited in time or who can only
approximately distinguish states. In the following, we discuss further applications and relation to
other work.

(a) Non-signalling
One natural application of our extended notion of secrecy is the traditional non-signalling
condition. To see this, imagine that the two agents are cooperating, so that Alice is trying to
communicate information to Bob by means of some action gA ∈ TA on her side. Bob can now either
directly apply post-processing fB ∈ TB, or he can wait for some time to pass, as represented by a
function ut ∈ T that implements global time evolution over time t. If Alice and Bob are mutually
secret in the presence of ut, for all t ≤ T, we conclude that they cannot signal to each other in this
time window.

In appendix E, we show explicitly how our notion of extended secrecy implies traditional
non-signalling in the framework of generalized probabilistic theories [18,19] for the case of two
parties performing binary measurements (two inputs, two outputs on each side), where the state
space consists of probability distributions over outcomes of possible measurements on physical
systems. The generalization to finitely many inputs and outputs is straight forward.

(b) Reconstructing space–time
Building on the example above, if two agents cannot signal in the presence of ut for t ≤ T and in
addition can signal in the presence of ut for t > T, this can be used to define a distance between
the two agents, via d ∝ T. The proportionality constant can be interpreted as the speed of signal
propagation, for example the speed of light.

The challenge to obtaining a meaningful distance is two-fold: firstly, choosing a ‘natural’ family
of transformations {ut}t to represent time evolutions, and secondly, choosing a family of agents
that do not conflate different types of coarse-grainings. For example, locality and macroscopicity
each give rise to a natural notion of distance, relating to the space between agents and to precision
of observation, respectively; the latter could be used to quantify chaos given a family of time
evolutions.

More generally, we can try to use signalling between agents to infer properties of space–time of
a given theory, as illustrated in figure 1. Some steps in this direction have been given, for example,
in [3,20,21]. This would be of particular interest in the context of field theories [10,22,23]. We
leave the generalization of the operational approach depicted in figure 1 to reconstruct position
as future work.

(c) Relation to modular approaches
Our global approach complements modular, bottom-up constructions [24], like process theories
based on symmetric monoidal categories [5–8,25]. For the purpose of comparison with our work,
modular theories can be understood as theories of individual systems (or ‘objects’) and local
actions (processes) on those systems, which allow for parallel and sequential composition of
processes on different systems. Typically, they assume the following. (1) Processes with matching
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Figure 4. Process theories. Processes theories are modular, bottom-up constructions that can be faithfully represented by
diagrams [5–8,25]. Lines represent systems (or ‘objects’) and boxes processes on systems: wires fed in from below a box can
be understood as inputs to the process, while wires coming out of the top represent the outputs of the process. Diagrams can
be composed due to the strong subsystem structure imposed on process theories, where actions are not seen as affecting the
global space but explicitly associated with local systems. (a) Processes can be composed in sequence when their output and
input systems match. (b) Processes can be composed in parallel on combined systems. (c) Discarding a subsystem (e.g. taking
the partial trace) is indicated by three horizontal lines; in our approach this corresponds to coarse-graining over the relevant
degrees of freedom (that is, going to a smaller effective space). Other conditions can be imposed: e.g. in [7], causal loops are
forbidden, and outputs are always connected to inputs. (Online version in colour.)

output and input systems can be composed sequentially. That is, a process f : A → A′ can be
composed with a process g : A′ → A′′, to form a new process g ◦ f : A → A′′ satisfying

g ◦ f (A) = g( f (A))

(figure 4a). (2) Any two systems A and B can be combined in parallel to form a composite system
denoted by A ⊗ B. (3) Any two processes f : A → A′ and g : B → B′ can be composed to yield a
process f ⊗ g : A ⊗ B → A′ ⊗ B′ satisfying

( f ⊗ g)(A ⊗ B) = f (A) ⊗ g(B)

(figure 4b). This last assumption implies that processes act locally without disturbing other
systems, and that actions on independent systems always commute. This allows us to represent
process theories in terms of diagrams that can be easily composed (figure 4).

Our approach is more general in that we do not assume the strong subsystem structure
imposed by conditions (2) and (3). As such, our work strengthens Coecke et al.’s [7] argument
that non-signalling can be derived from a simpler condition (appendix B). In general, our top-
down view can be taken as a precursor and sanity check for process theories. In complex global
theories, a strong subsystem structure may not be clear-cut from the start. The cautious researcher
can first use our approach to test different reduced descriptions for independence conditions. If
she succeeds in finding independent effective spaces—which is not always possible—she may
then frame them as subsystems and attempt a modular construction.

At a conceptual level, our approach gives a global interpretation to aspects of process theories
that are more epistemic than physical. For example, if we think of subsystems as building blocks
of a global space, it appears natural to see ‘discarding a subsystem’ as a physical action, like
throwing away a piece of Lego (figure 4c). However, if we start from the global space and see
subsystems as arbitrary restricted descriptions, then ‘discarding a subsystem’ corresponds to a
coarse-graining over the relevant degrees of freedom (for example, going from ΩAB to an effective
space ΩA), a change of perspective rather than a physical transformation.

(d) Relation to causal structures
Our notion of secrecy between agents is analogous to causal independence between events in graphs
used to study causality in physics. Causal structures [1,26–30] try to capture the causal relations
between events within a larger context (figure 5). Both causality (as expressed by Reichenbach’s
principle) and secrecy are guiding principles of a certain way of representing a theory (causal
structures and restricted agents, respectively) that help us understand a complex situation—they
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Figure 5. Causal structures. (a) In classical causal models, nodes are associated with random variables corresponding to
events, while arrows carry causal influence, as specified by conditional probability distributions like PYZ|X . These models and
distributions may be extended if one later learns of additional causes, like λZ . (b) A model for quantum causal structures
proposed in [31], where each node is associated with the intervention of an agent in a local space. A node i is represented by
input and output Hilbert spaces,Hi andH∗

i , and by a quantum instrumentMi that links the two and corresponds to the agent’s
intervention (for example,Mi could be a local measurement followed by a local preparation depending on the outcome).
Causal influence is explicitly carried by quantum maps like EBC|A, which acts like a channel from A to BC. (Online version in
colour.)

are not necessarily fundamental features of the laws of Nature. How useful the representation is
depends both on the guiding principle and on the choice of variables of interest (like events or
agents).

Let us illustrate this. In classical causal graphs, events are represented by random variables,
in principle subject to intervention (figure 5a). As we move from purely classical scenarios to
more physical situations, like those involving quantum measurements, the formalism of causal
structures is evolving to focus on agents and on explicit physical transformation as carriers
of causal influence, similarly to our approach. For example, in the quantum causal structures
of [31], events can correspond to quantum systems where agents can act locally (figure 5b).
Generally speaking, ‘events’ embody a particular coarse-graining of a global picture into variables
or subsystems of interest. As such, a single causal graph cannot reveal all the features of a complex
theory—a different decomposition may explore new causal relations.6 The choice of relevant
nodes can be guided by operationalism: (i) we start by picking ‘variables’ that we care about (like
the outcomes of an experiment, or a subsystem corresponding to the perspective and range of
intervention of an agent); (ii) we then use Reichenbach’s principle and independence conditions
to complete the causal graph, by identifying further nodes and constraining the channels between
them.7 This procedure is similar in spirit to how in the present work we could start with the
description of a few agents and use secrecy and commutation constraints to identify other
subspaces and transformations of interest, or build a notion of locality. How successful we are in
this endeavour depends largely on the (subjective) starting point—a poor initial choice of events
or agents could make it impossible to find a meaningful causal graph or independent agents.

Even with a clever choice of initial variables, it could be that the guiding principle is
not powerful enough to provide meaningful representations for all physical situations. This

6Furthermore, we can never know if we only have access to an effective state space to start with, and there is a deeper theory
that changes all the causal relations, for example by providing new common causes.
7For example, in studying the process of coherent copy α|0〉A + β|1〉A → α|0〉B|0〉C + β|1〉B|1〉C in [31], we start with three
nodes of interest (systems A, B and C), which are forced by Reichenbach’s principle to complete the graph with a fourth node.
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is likely to be the case in both approaches, which are still rooted in classical intuitions—
resulting in concepts like agents, Reichenbach’s principle and time order. In trying to explain
a physical scenario in terms of these classical notions, we risk running into paradoxes such as the
inconsistencies between quantum agents in [32]. It remains to explore whether both our approach
and causal models can handle this kind of physical challenge, and whether extensions to cover
them would still be intuitive enough to help us make sense of the world.
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Appendix A. Proofs
Proposition A.1 (Nested agents). Let (Ω , T ) be a global theory, and B, C two restricted agents. Then

the following are equivalent:

(i) C has more restricted knowledge than B, that is [ρ]B ⊆ [ρ]C, ∀ ρ ∈ Ω ,
(ii) There exists an equivalence relation ∼B→C in B’s effective state space ΩB such that ΩC ∼=

ΩB/ ∼B→C.

Proof. For each direction:

1 → 2. We build the equivalence relation in ΩB as

[ρ]B ∼B→C [σ ]B ⇐⇒ [ρ′]C = [σ ′]C,

∀ ρ′ ∈ [ρ]B, σ ′ ∈ [σ ]B.

As [ρ]B ⊆ [ρ]C for all ρ ∈ Ω , ∼B→C is a well-defined equivalence relation, and the reduced
space ΩB/ ∼B→C is in one-to-one correspondence with the space of the equivalence
classes [ρ]C.

2 → 1. By assumption, the reduction hC is isomorphic to hB→C ◦ hB. Therefore, [ρ]C ∼= [[ρ]B]B→C

and [ρ]B ⊆ [ρ]C.

�

Proposition A.2 (Robustness of secrecy). If A has secret operations T S
A with respect to B (according

to definition 3.1), then pre- and post-processing cannot lift the secrecy, that is

f N
B ◦ gN

A ◦ · · · ◦ f 2
B ◦ g2

A ◦ f 1
B ◦ g1

A ◦ f (ρ)

∼B f N
B ◦ · · · ◦ f 2

B ◦ f 1
B ◦ f (ρ),

for all states ρ ∈ Ω , secret operations {gi
A}i ⊆ T S

A and {f i
B}i ⊆ TB, global operations f ∈ T and N ∈ N.
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Proof. We apply the secrecy condition (definition 3.1) multiple times. Define ρ(j) := (©j
i=1f i

B ◦
gi

A) ◦ f (ρ). Starting from the left-hand side, we have(
©N

i=1f i
B ◦ gi

A

)
◦ f (ρ) = f N

B ◦ gN
A (ρ(N−1))

∼B f N
B (ρ(N−1))

= f N
B ◦ f N−1

B ◦ gN−1
A (ρ(N−2))

∼B f N
B ◦ f N−1

B (ρ(N−3))

...

∼B f N
B ◦ · · · ◦ f 1

B ◦ f (ρ).

�

Proposition A.3 (Robustness of extended secrecy). If an agent A only uses secret operations gA ∈
T S

A with respect to the agent B in the presence of f ∈ T , then further pre- and post-processing cannot lift
the secrecy, that is (

©N
i=1 f i

B ◦ gi
A

)
◦ f ◦

(
©N

i=1 f ′i
B ◦ g′i

A

)
◦ g(ρ)

∼B

(
©N

i=1 f i
B

)
◦ f ◦

(
©N

i=1 f ′i
B

)
◦ g(ρ),

for all states ρ ∈ Ω , local operations {gi
A}i ⊆ TA and {f i

B}i ⊆ TB, global operations g ∈ T and N ∈ N.

Proof. The proof is analogous to the proof of proposition A.2 and uses definition 3.3; we also
define

ρ̃ := f ◦
(
©N

i=1 f ′i
B ◦ g′i

A

)
◦ g(ρ)

and
ρ(j) :=

(
©j

i=1 f ′i
B ◦ g′i

A

)
◦ g(ρ).

Then (
©N

i=1 f i
B ◦ gi

A

)
◦ f ◦

(
©N

i=1 f ′i
B ◦ g′i

A

)
◦ g(ρ)

∼B f N
B ◦ · · · ◦ f 1

B (ρ̃) [secrecy]

∼B f N
B ◦ · · · ◦ f 1

B ◦ f ◦ f ′N
B (ρ(N−1)) [Def. 3.3]

...

∼B f N
B ◦ · · · ◦ f 1

B ◦ f ◦ f ′N
B ◦ · · · ◦ f ′1

B ◦ g(ρ).

�

Corollary A.4 (Restricted agents and secrecy). Let A, B and C be three agents, such that C is more
restricted than B, that is TC ⊆ TB and [ρ]B ⊆ [ρ]C, for all ρ ∈ Ω .

If TB was secret towards A (in the presence of f ∈ T ), the same is true of TC. If TA was secret towards B
(in the presence of f ), it is still secret towards C (idem).

Proof. As TC ⊆ TB, it is secret towards A. This also restricts the post-processing that C can do,
and since ρ ∼B σ �⇒ ρ ∼C σ , we have that TA is secret towards C. �

Proposition A.5 (Secrecy for commuting agents). If A and B commute, then if there exists a subset
of actions T S

A ⊆ TA such that, ∀ρ ∈ Ω , gA ∈ T S
A , fB ∈ TB,

fB ◦ f ◦ gA(ρ) ∼B fB ◦ f (ρ),

then T S
A is secret towards B in the presence of f . In particular, gA(ρ) ∼B ρ for all gA ∈ TA, ρ ∈ Ω implies

secrecy of A towards B.
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Figure 6. Terminality and non-signalling in process theories [7]. (a) Terminality: discarding a systemA after applying a function
fA is the same as discarding the system directly. (b) Non-signalling: in this set-up, a global preparation process f⊥ distributes
two systems to Alice and Bob, who perform local operations fA and fB, respectively, on these systems and additional inputs A
and B. Given terminality, if system A is discarded after this, no information about the original input on A can travel to system B.
This holds even in the presence of an effect f� acting on joint outputs of fA and fB. (Online version in colour.)

Proof. To show the second part of the proposition, secrecy of TA towards B, we have

fB ◦ gA(ρ) = gA ◦ fB(ρ)︸ ︷︷ ︸
=:ρ ′∈Ω

[commutativity of gA, fB]

∼B fB(ρ), [assumption: gA(ρ′) ∼B ρ′]

for all ρ ∈ Ω , gA ∈ TA, fB ∈ TB.
To show secrecy in the presence of f , we use

fB ◦ f ◦ f ′
B ◦ gA(ρ) = fB ◦ f ◦ gA ◦ f ′

B(ρ)︸ ︷︷ ︸
=:ρ ′∈ Ω

[commutativity of gA, f ′
B]

∼B fB ◦ f ◦ f ′
B(ρ), [assumption: fB ◦ f ◦ gA(ρ′) ∼B fB ◦ f (ρ′)]

for all ρ ∈ Ω , gA ∈ TA, fB, f ′
B ∈ TB. �

Lemma A.6. The perspective ∼
�A

induced by a submonoid TA ⊆ T is an equivalence relation in Ω .

Proof. By construction ∼
�A

is transitive, reflexive and symmetric. �

Theorem A.7 (Deriving secret agents). Commuting submonoids TA, TB ⊆ T give rise to descriptions
of mutually secret agents

A = (∼
�B

, TA) and B = (∼
�A

, TB).

Proof. We must show that
fB ◦ gA(ρ) ∼

�A
fB(ρ),

for all ρ ∈ Ω , gA ∈ TA and fB ∈ TB. By proposition ??, we only need to show gA(ρ) ∼
�A

ρ, for all
ρ ∈ Ω , gA ∈ TA. This holds since id ∈ TA (as TA is a monoid), and so gA(ρ) ∼

�A
id(ρ). We proceed

analogously to find the effective state space of A. �

Appendix B. Relation to terminality
In [7], Coecke argues that a process theory [8,25] is non-signalling if it satisfies a simpler condition
dubbed terminality. Terminality states that local processes on a system right before ‘discarding’ it
cannot have any observable effect (figure 6a). Discarding subsystems is a concept that corresponds
to tracing out or coarse-graining over local information. For example, in quantum theory, it is
implemented by the partial trace: terminality is naturally satisfied for completely positive trace-
preserving operations on the discarded systems, but does not hold for non-deterministic effects
such as projections onto particular outcomes of measurements [7].
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In our language, the condition of terminality corresponds to the independence condition
fA(ρ) ∼B ρ, where fA are local functions on a system A and ∼B corresponds to the local picture
of other systems B outside A. Recall that the assumptions behind process theories like [7] impose
some structure on transformations and agents, in particular, commutation between agents’ local
actions. As we saw in proposition 4.2, this independence condition together with commutation
already implies secrecy.

It remains to see if our secrecy condition is equivalent to the non-signalling of [7], depicted
in figure 6b. This non-signalling corresponds roughly to secrecy under pre- and post-processing,
as implemented by an initial state preparation f⊥ and a deterministic effect f�. In our picture,
robustness of secrecy under pre- and post-processing is ensured by proposition A.2. In this case,
pre-processing with a function f⊥ can be included without loss of generality in the initial state.
On the other hand, post-processing with f� is eliminated by the choice of local perspective ∼B.

Hence, the result of [7] that terminality implies non-signalling follows from our
propositions A.2 and A.5 together. Our premise that actions by different local agents commute
is weaker than the assumptions employed by Coecke et al. [7]. In conclusion, our approach
strengthens the argument in [7] for the significance of a condition like terminality. At the same
time, we take a more general approach to subsystems than the bottom-up model of process
theories in [7], thus highlighting the role of commutation in the context of defining local agents
and non-signalling.

Appendix C. Relaxing some assumptions
Let us now give some guidelines on how to relax two of the assumptions of our framework, in
order to cover more realistic representations of agents.

(a) Approximate distinguishability
Often agents may not have clear-cut distinguishability criteria. For example, an agent may
categorize light frequencies into basic colours such as green and blue—there may be some
frequencies that the agent could file as both green and blue. In the language of PBR [33], the
reduced states ‘blue’ and ‘green’ would be epistemic and not ontic (with respect to the underlying
state space of frequencies Ω). Agents could also have a notion of approximate distinguishability,
for example, of the sort ‘I can distinguish these two states with probability 1 − p.’

We propose a simple approach to address these cases. (i) Build a generous effective state space
ΩB by assigning different reduced states to every two states in Ω that can be distinguished
in principle by the agent. (ii) Build an approximation structures in the effective state space [2].
An approximation structure comprehends all neighbourhoods {Bε(ρ)}ρ∈ΩB,ε∈E parametrized by
whatever measure E is operational for the agent. For example, one valid approximation structure
for quantum states corresponds to the ε-balls induced by the trace distance; another could be just
the cover {blue, green, . . . } of the possible colours assigned to each frequency. (iii) Build notions of
approximate secrecy, where we can demand, for example

hB ◦ fB ◦ gA(ρ) ∈ Bε(hB ◦ fB(ρ)),

for all ρ ∈ Ω , gA ∈ TA, fB ∈ TB, instead of the stricter condition of secrecy, where we demand
that the two final states are completely indistinguishable from B’s perspective. The properties
of approximate secrecy are inherited from the approximation structure.

(b) Time-limited agents
In this work, we model local actions as monoids TA and TB. When applying secrecy to find non-
signalling conditions between time-limited agents, the monoidal structure of actions is only a
convenient approximation, which allows us to concatenate post-processing actions indefinitely.
The intuition behind this approximation is that Alice and Bob’s actions can be implemented
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essentially instantaneously, compared to the relevant time scales. One example would be
the action of choosing a bit as an input to a measurement, by pressing a button in Alice’s
laboratory (see appendix E). With this interpretation, TA and TB can consistently be modelled
as monoids, because it is assumed that the concatenation of two instantaneous actions can again
be implemented instantaneously. In this model, time evolution is explicitly modelled by global
functions ut ∈ T ; this could include the actual effect of pressing the button.

When functions in TA and TB on Alice’s and Bob’s sides take some finite time t > 0 to
implement, we may instead of full monoidal structure only have fA ◦ gA ∈ T if the functions fA and
gA together take less than a given time T to implement. In this case, the notion of secrecy or non-
signalling and our results that relate to it can still be recovered for functions and concatenations
of functions that do not exceed this time-frame T.

Appendix D. Commuting agents: additional results
In the main text, we have noted that the perspective ∼

�A
induced by transformations TA

is minimal: any agent (∼B, TB) whose actions TB commute with TA and towards whom
transformations in TA are secret must, in fact, be described by a coarse-graining of ∼

�A
.

Proposition D.8 (Induced perspective is minimal). Let B = (∼B, TB) be an agent towards whom
TA is secret, and such that TA and TB commute. Then

[ρ]B ⊇ [ρ]
�A

, ∀ ρ ∈ Ω ,

with ∼
�A

the equivalence relation induced by TA. This implies that there exists an equivalence relation
∼

�A→B in the effective state space Ω/ ∼
�A

such that

ΩB ∼= (Ω/ ∼
�A

)/ ∼
�A→B .

Proof. As TA is secret towards B,
ρ ∼B gA(ρ)

and so, due to transitivity of ∼B, also

∃fA, gA ∈ TA s.t. fA(ρ) = gA(σ ) �⇒ ρ ∼B σ .

Again due to transitivity it directly follows that

ρ ∼
�A

σ �⇒ ρ ∼B σ

and so
[ρ]B ⊇ [ρ]

�A
,

for all ρ ∈ Ω . We may thus employ proposition A.2. �

Corollary D.9. Let TA, TB ⊆ T be monoids such that TA ⊆ TB. Then the induced equivalence relations
∼

�A
and ∼

�B
satisfy

[ρ]
�B

⊇ [ρ]
�A

, ∀ ρ ∈ Ω .

This again implies that there exists an equivalence relation ∼
�A→�B

in the effective state space Ω/ ∼
�A

such
that

Ω/ ∼
�B

∼= (Ω/ ∼
�A

)/ ∼
�A→�B

.

Proof. This follows from the fact that TA is secret towards ∼
�B

, together with proposition D.8.
The second statement follows again from proposition A.2. �

Finally, the following proposition shows that equivalence classes [ρ]
�A

are preserved by
commuting transformations TB, providing an operational interpretation to the perspective of
agents (∼

�A
, TB): namely, states that are indistinguishable from Bob’s point of view remain

indistinguishable after he applies functions fB ∈ TB,

ω ∼
�A

ρ �⇒ fB(ω) ∼
�A

fB(ρ).
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Proposition D.10 (Induced perspective is operational). Let TA, TB ⊆ T be commuting
transformations. Then the perspective ∼

�A
induced by TA satisfies

ω ∼
�A

ρ �⇒ fB(ω) ∼
�A

fB(ρ),

for any fB ∈ TB and ω, ρ ∈ Ω .

Proof. From the definition of ∼
�A

it follows that

ω ∼
�A

ρ �⇒ ∃n ∈ N, {τi}1≤i≤n with τi ∈ Ω :

ρ ∼′
�A

τ1 ∼′
�A

τ2 ∼′
�A

· · · ∼
�A

τn ∼′
�A

σ

with

ν ∼′
�A

ω ⇐⇒ ∃fA, gA ∈ TA s.t. fA(ν) = gA(ω)

for all ν, ω ∈ Ω . But then, because TA and TB commute, for all of ω, τ1, . . . , τn, ρ it holds that

ν ∼′
�A

ω ⇐⇒ ∃fA, gA ∈ TA s.t. fA(ν) = gA(ω)

�⇒ ∃fA, gA ∈ TA s.t. fB ◦ fA(ν) = fB ◦ gA(ω)

⇐⇒ ∃ fA, gA ∈ TA s.t. fA ◦ fB(ν) = gA ◦ fB(ω)

�⇒ fB(ν) ∼′
�A

fB(ω)

for all fB ∈ TB. From the definition of ∼
�A

as the transitive closure of ∼′
�A

, it then also follows that

ω ∼
�A

ρ �⇒ fB(ω) ∼
�A

fB(ρ).

�

Appendix E. Application to generalized probability theories
Generalized probability theories (GPTs [18,19,34–36]) are a framework to infer as much as
possible about a physical system without making assumptions about its inner workings (like
the assumption that states can be represented as vectors in a Hilbert space). Instead, it is
assumed that agents can implement and label a number of physical procedures, like preparations,
transformations and, crucially, measurements. Note that the agents need not know the actual
physical state prepared; in order to label a procedure, they only need to be confident that they
can repeat it. Indeed, the basic assumption behind GPT frameworks is that agents can extract
significant measurement statistics (for example, by repeating a procedure many times). Hence,
GPTs model outputs of measurements as random variables, and agents’ knowledge of procedures
as probability distributions.

The usual approach to build GPTs is bottom-up, starting with local procedures that can be
composed to reach a global theory. Here, we are interested in the opposite direction: given a
global GPT, can we find meaningful notions of local variables? Firstly, we need to model global
and local knowledge.

(a) Basic formalism
While we are inspired by known GPT models [18,19,34–36], we take a slightly different and
simplified approach here. The idea is that agents only have direct access to classical random
variables (like input settings and outputs of a physical measurement). As they correspond to
accessible information, we denote probability distributions over these random variables by states.

Transformations f are naturally modelled by conditional probability distributions Pf
Z|X that take
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input to output states, such that f (PX) = P′
Z, with

P′
Z(Z) =

∑
x∈X

Pf
Z | X(z|x) PX(x).

For example, suppose that we want to model an experiment where an agent performs a quantum
measurement by pressing two buttons: button X prepares a quantum state ρx and button Y
measures it according to the POVM {Ey

z}z with possible outcomes {z}z∈Z. The distributions PXY

over inputs and P′
Z over outputs correspond to accessible ‘states.’ We model the transformation

as a conditional distribution Pf
Z|XY with Pf

Z|XY(z|x, y) = Tr(Ey
z ρx). The final distribution P′

Z of
outcomes given an input distribution PXY is therefore

P′
Z(z) =

∑
x∈X

∑
y∈Y

Pf
Z | XY(z|x, y) PXY(x, y)

=
∑
x∈X

∑
y∈Y

Tr(Ey
z ρx) PXY(x, y).

Note that it is the conditional distribution that encodes the ‘physical’ information about a
particular setting (like the quantum state and POVM), which may be inaccessible to the agents.

To compare with the models of [18,19], our transformations are analogous to their states.
However, in our agent-driven approach, we restrict the set of allowed measurements to those
accessible to a particular agent in the resource theory—in this case, they can thus be seen as a
subset of the fiducial measurements that define a state in [18,19].

In our model, global states correspond to distributions over a global random variable X.
Restricted agents are those unable to distinguish some of the outcomes of the global variable.
We can model this via arbitrary groupings of outcomes x ∈ X into equivalence classes, i.e. events
{Bb}b. The reduction function hB to the effective state space of an agent B simply sums over all
the probabilities of the individual outcomes x ∈ Bb in each event Bb and returns the probability
associated with the event,

PB = hB(PX), with PB(b) =
∑
x∈Bb

PX(x).

(b) Secrecy and non-signalling
Consider now two agents A and B whose actions commute. To guarantee secrecy of A towards
B, we only need to satisfy the independence condition gA(PX) ∼B PX (for all global PX and all
gA ∈ TA, see proposition 4.2). In our language, this condition reads∑

y∈Bb

∑
x∈X

PgA
Y | X(y | x) PX(x) =

∑
x∈Bb

PX(x), ∀b.

For simplicity, we took Y and X to be identical random variables that represent the global state
before and after the transformation, and hB is a particular coarse-graining of outcomes into events.
The condition then states that hB is insensitive to the transformation (conditional probability
distribution) PgA

Y | X from inputs x ∈ X to outcomes y ∈ Y.
If A and B commute and are mutually secret, we can ask if an additional global transformation

f ∈ T allows for signalling between them (definition 3.3). Our condition for extended secrecy in
the presence of f , fB ◦ f ◦ gA(PX) ∼B fB ◦ f (PX), for all global PX, fB ∈ TB and gA ∈ TA, becomes∑

v∈Bb

∑
x,y,z

PfB
V | Z(v | z) Pf

Z|Y(z | y) PgA
Y | X(y | x) PX(x)

=
∑
v∈Bb

∑
x,z

PfB
V|Z(v|z) Pf

Z|X(z|x) PX(x), ∀ b. (E 1)

Non-signalling functions are then those that do not let information encoded in PA
Y | X propagate to

Bob’s perspective ∼B, that is, such that TA is secret with respect to (∼B, TB) in the presence of f .
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fgA fB

PAB PX¢Y¢ PY¢PXY

=

PA¢B¢

f fB

PAB P¢X¢Y¢ P¢Y¢P¢XY

Figure 7. Extended secrecy in GPTs. Consider two agents Alice and Bob and a two-bit random variable AB (the four possible
outcomes are represented by vertical lines). Our global state space consists of distributions over two bits (whose names we
change after each step to make a proof more readable). Let the reduction to the state space of Bob be a coarse-graining over
the first bit, PY (y)= PXY (0, y) + PXY (1, y), as shown on top. Secrecy in the presence of a function f (equation (E 1)) corresponds
to PY ′ = P′Y ′ in the diagram. This is satisfied, for example, if f represents the use of a PR-box, while gA and fB correspond to
choices of inputs and post-processing: Bob cannot guess Alice’s choice of input after the use of a PR-box. This is equivalent to
the traditional notion of non-signalling [17] applied to the PR-box. (Online version in colour.)

Here, again for simplicity X, Y, Z, V were chosen as identical random variables, and Pf
Z|X = Pf

Z | Y
both represent the conditional probability distribution corresponding to f . For a simple example
in a two-bit space (figure 7).

We can compare our definition of secrecy in the presence of f to traditional notions of non-
signalling. Consider again the simple case of a two-bit input and output space of figure 7. The
definition of non-signalling found, for example, in [17] reads PY|AB = PY|B, or

∑
x=0,1

PXY|AB(xy|a = 0, b) =
∑

x=0,1

PXY|AB(xy|a = 1, b), ∀ b, y ∈ {0, 1}. (E 2)

This condition formalizes the idea that Bob cannot learn anything about Alice’s input a by looking
solely at his output y and input b. In our framework, Alice’s choice of input is encoded in a local
transformation gA ∈ TA (for example, g0

A could correspond to pressing a button to choose input
0 and g1

A to choose 1), and therefore ‘Bob’s ignorance about Alice’s input’ translates to ‘Bob’s
ignorance about Alice’s action gA.’

In the following, we establish a direct equivalence between these two notions of non-signalling
in this simple case; we expect this equivalence to hold in more general settings. Let us first
flesh out the assumptions behind the equivalence. A gentle warning: we have labelled all the
intermediate bits differently ‘to avoid confusion’ (figure 7). As we assume a priori that Alice and
Bob have mutual secrecy (without f ), we take that gA only acts locally on Alice’s bit,

PgA
A′B′ | AB(a′, b′ | a, b) = PgA

A′ | A(a′ | a) δ(b′, b),

so that

gA(QAB(a, b)) =
∑
a,b

PgA
A′|A(a′ | a) δ(b′, b) QAB(a, b) =

∑
a

PgA
A′ | A(a′ | a) QAB(a, b).

Similarly, Bob’s post-processing is encoded in fB ∈ TB which we also assume to be truly local,
that is

PfB
X′Y′ | XY(x′, y′ | x, y) = PfB

Y′ | Y(y′ | y) δ(x′, x).
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The final distribution PY′ for Bob becomes

PY′ (y′) = hB ◦ fB ◦ f ◦ gA(QAB(a, b))

=
∑

a
hB ◦ fB ◦ f (PgA

A′|A(a′|a) QAB(a, b))

=
∑

a

∑
a′,b

hB ◦ fB(Pf
XY|A′B′ (x, y|a′, b) PgA

A′|A(a′|a) QAB(a, b))

=
∑

a

∑
a′,b

∑
y

hB(PfB
Y′|Y(y′|y) Pf

XY|A′B′ (x, y|a′, b) PgA
A′|A(a′|a) QAB(a, b))

=
∑

a

∑
a′,b

∑
y

∑
x

PfB
Y′|Y(y′|y) Pf

XY|A′B′ (x, y|a′, b) PgA
A′|A(a′|a) QAB(a, b).

The condition for secrecy in the presence of f , equation (E 1), is then∑
a,a′,b,x,y

PfB
Y′|Y(y′|y) Pf

XY|A′B′ (x, y|a′, b) PgA
A′|A(a′|a) QAB(a, b)

=
∑

a,b,x,y

PfB
Y′|Y(y′|y) Pf

XY|AB(x, y|a, b) QAB(a, b),

∀ y′ ∈ {0, 1}, gA ∈ TA, fB ∈ TB, QAB ∈ Ω . (E 3)

Proposition E.11 (Equivalence to non-signalling in GPTs). In the setting of figure 7, ‘our’
condition of non-signalling, equation (E 3), is equivalent to the ‘traditional’ notion, equation (E 2).

Proof. In our language, the non-signalling condition of equation (E 2) reads

Pf
XY | A′B(xy | b, a′ = 0) = Pf

XY | A′B(xy | b, a′ = 1) =: Pf
XY | A′B(xy | b).

To show that equation (E 3) implies the above, we choose the particular local actions

P
g0

A
A′ | A = δ(a′, 0), P

g1
A

A′ | A = δ(a′, 1) and PfB
Y′ | Y(y′|y) = δ(y′, y).

There, g0
A corresponds to Alice’s choice of input 0, g1

A to her choice of 1, and fB to no
post-processing by Bob. These choices directly imply for all QAB,∑

x
Pf

XY | AB(xy | b, a = 0)QB(b) =
∑

x
Pf

XY | AB(xy | b, a = 1)QB(b)

and so traditional non-signalling follows. For the other direction, we have simply

PY′ (y′) =
∑

a,a′,b,x,y∈{0,1}
PfB

Y′ | Y(y′ | y) Pf
XY | A′B(xy|a′b) PgA

A′ | A(a′ | a) QAB(ab)

non-signalling (equation (E 2)) =
∑

a,b,x,y

PfB
Y′ | Y(y′ | y) Pf

XY|B(xy|b) [PA
A′ | A(0 | a) + PA

A′ | A(1 | a)]︸ ︷︷ ︸
=1

× QAB(a, b)

=
∑

a,b,x,y

PB
Y′ | Y(y′ | y) Pf

XY|AB(xy|b) QAB(a, b).

�

This shows that, for example, PR boxes satisfy our definition of non-signalling functions.
Examples for functions that are signalling are conditional probability distributions that swap the
states on the two systems, or bitwise addition of the inputs a and b on the two sides into the
outputs x and y.
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Appendix F. Deriving secrecy without commutation
In principle, the way we have constructed an induced perspective ∼

�A
from a monoid TA

can be extended to construct equivalence relations that yield secret agents (∼A, TA) and (∼B, TB)
in the presence of a global function f , and even in the case where functions TA and TB do
not commute. This is done in the following proposition, which, as is shown in the subsequent
corollary, reduces to the definition of induced perspectives ∼

�A
and ∼

�B
in the case f = id and

commuting TA, TB.

Proposition F.12 (Deriving secret agents). Let (Ω , T ) be a global theory, T S
A , TB ⊆ T be two monoids

of transformations, and let f ∈ T . Then the smallest equivalence class ∼B on Ω towards which T S
A is secret

in the presence of f ,

fB ◦ f ◦ f ′
B ◦ gA(V) ∼B fB ◦ f ◦ f ′

B(V),

for all V ∈ SΩ , gA ∈ T S
A , fB ∈ TB, is built as follows:

Define the relation ∼ on Ω as

ρ ∼ σ ⇐⇒ ∃fA, gA ∈ T S
A s.t. fA(ρ) = gA(σ ).

Then define another relation ∼′ as

ρ ∼′ σ ⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ ∼ σ or

∃ρ′, σ ′ ∈ Ω , fB ∈ TB s.t. ρ = fB(ρ′), σ = fB(σ ′), ρ′ ∼ σ ′ or

∃ρ′, σ ′ ∈ Ω , fB, f ′
B ∈ TB s.t. ρ = fB ◦ f ◦ f ′

B(ρ′),
σ = fB ◦ f ◦ f ′

B(σ ′), ρ′ ∼ σ ′.

Finally, the relation ∼B on Ω is the transitive closure of ∼′, namely through

ρ ∼B σ ⇐⇒ ∃n ∈ N, τ1, . . . , τn ∈ Ω s.t. ρ ∼′ τ1, τ1 ∼′ τ2, . . . , τn ∼′ σ .

Proof. Both the relation ∼ and ∼′ are by construction reflexive and symmetric. The relation ∼B

is then by construction also transitive, and thus constitutes an equivalence relation. The relation
∼B furthermore gives rise to the smallest perspective towards which TB is secret in the presence
of f : ω = gA(ρ) �⇒ ρ ∼B ω. By construction then also fB ◦ f ◦ f ′

B ◦ gA(ω) ∼B fB ◦ f ◦ f ′
B(ω) and fB ◦

gA(ω) ∼B fB(ω), for all ω ∈ Ω , fB, f ′
B ∈ TB, gA ∈ T S

A . �

Corollary F.13. In the case of commuting T S
A , TB ⊆ T , the equivalence relation ∼B constructed in

proposition F.12 that gives rise to secrecy in the presence of f simplifies accordingly and can be constructed
as follows.

Define the relation ∼ on Ω as

ρ ∼ σ ⇐⇒ ∃fA, gA ∈ T S
A s.t. fA(ρ) = gA(σ ).

Then define another relation ∼′ as

ρ ∼′ σ ⇐⇒
{

ρ ∼ σ or

∃ρ′, σ ′ ∈ Ω , fB ∈ TB s.t. ρ = fB ◦ f (ρ′), σ = fB ◦ f (σ ′), ρ′ ∼ σ ′.

Then, the relation ∼B on Ω is the transitive closure of ∼′, namely through

ρ ∼B σ ⇐⇒ ∃n ∈ N, τ1, . . . , τn ∈ Ω s.t. ρ ∼′ τ1, τ1 ∼′ τ2, . . . , τn ∼′ σ .

If in addition f = I, the relation ∼B simplifies to

ρ ∼B σ ⇐⇒ ∃n ∈ N, τ1, . . . , τn ∈ Ω s.t. ρ ∼ τ1, τ1 ∼ τ2, . . . , τn ∼ σ

with ∼ as above. This recovers the construction of induced perspectives ∼
�A

in definition 4.3.
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Proof. In the case when functions in T S
A and TB commute, we can see that

ρ ∼ σ ⇐⇒ ∃ fA, gA ∈ T S
A s.t. fA(ρ) = gA(σ )

�⇒ ∃fA, gA ∈ T S
A s.t. fB ◦ fA(ρ) = fB ◦ gA(σ )

⇐⇒ ∃fA, gA ∈ T S
A s.t. fA ◦ fB(ρ) = gA ◦ fB(σ )

⇐⇒ fB(ρ) ∼ fB(σ ),

for all fB ∈ TB. This implies the respective simplifications of the relation ∼B, and recovers the
induced perspective ∼

�A
of T S

A in the case of f = id. �
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