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I. LINEAR-COMBINATION SCHEME FOR UNIVERSAL TWO-QUBIT UNITARY OPERATION

A. Probabilistic circuit for linear-combination of quantum gates

Here we present more details of the circuit shown in Fig. 1(B) in the main text that is the design to implement
the general linear combination of quantum gates probabilistically. It stands for general dimensionality spaces. ULC

in the circuit is a unitary operation defined as

ULC =


α0 α1 · · · αn−1
u2,1 u2,2 · · · u2,n−1

...
...

. . .
...

un−1,1 un−1,2 · · · un−1,n−1

 , (S1)

whose first row decides the linear coefficients αi. The circuit evolves as below:

k︷ ︸︸ ︷
|00 · · · 0〉 |ϕ〉 (S2)

→ 1

2k/2

 k︷ ︸︸ ︷
|00 · · · 0〉 |ϕ〉+

k︷ ︸︸ ︷
|00 · · · 1〉 |ϕ〉+ · · ·+

k︷ ︸︸ ︷
|11 · · · 1〉 |ϕ〉

 (S3)

→ 1

2k/2

 k︷ ︸︸ ︷
|00 · · · 0〉V0 |ϕ〉+

k︷ ︸︸ ︷
|00 · · · 1〉V1 |ϕ〉+ · · ·+

k︷ ︸︸ ︷
|11 · · · 1〉Vn−1 |ϕ〉

 (S4)

→ 1

2k/2


α0

k︷ ︸︸ ︷
|00 · · · 0〉+u2,1

k︷ ︸︸ ︷
|00 · · · 1〉+ · · ·+ un−1,1

k︷ ︸︸ ︷
|11 · · · 1〉

V0 |ϕ〉 (S5)

+

α1

k︷ ︸︸ ︷
|00 · · · 0〉+u2,2

k︷ ︸︸ ︷
|00 · · · 1〉+ · · ·+ un−1,2

k︷ ︸︸ ︷
|11 · · · 1〉

V1 |ϕ〉 (S6)

· · · (S7)

+

αn−1 k︷ ︸︸ ︷
|00 · · · 0〉+u2,n−1

k︷ ︸︸ ︷
|00 · · · 1〉+ · · ·+ un−1,n−1

k︷ ︸︸ ︷
|11 · · · 1〉

Vn−1 |ϕ〉

 (S8)

(S9)
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→ 1

2k/2

 k︷ ︸︸ ︷
|00 · · · 0〉

(
n−1∑
i=0

αiVi

)
|ϕ〉+

k︷ ︸︸ ︷
|00 · · · 1〉

(
n−1∑
i=0

u2,iVi

)
|ϕ〉+ · · ·+

k︷ ︸︸ ︷
|11 · · · 1〉

(
n−1∑
i=0

un−1,iVi

)
|ϕ〉

 (S10)

When all auxiliary qubits were measured to be “0” in the computational basis, the linear-combination operation∑n−1
i=0 αiVi would be implemented. The success probability is 1/k, where k = 2n.

B. Linear-combination decomposition of SU(4)

By using the Cartan’s KAK decomposition1, an arbitrary two-qubit unitary operation U ∈ SU(4) can be decomposed
as:

U = (P1 ⊗ P2)UD(Q1 ⊗Q2), (S11)

where P1, P2, Q1 and Q2 are single-qubit gates, and UD represents the gate below:

UD = exp(−i(k1σ1 ⊗ σ1 + k2σ2 ⊗ σ2 + k3σ3 ⊗ σ3)). (S12)

Here ki (i = 1, 2, 3) are real numbers, and σi are Pauli matrices σx, σy and σz. A step-by-step procedure of applying
Cartan’s KAK decomposition onto SU(4) can be found in ref 2.

Considering the fact that

exp(iAx) = cos(x)I + i sin(x)A (S13)

for an arbitrary real number x and a matrix A satisfying A2 = I (ref. 3), UD can be reformed as:

UD = (cos(k1)I ⊗ I − i sin(k1)σx ⊗ σx) · (cos(k2)I ⊗ I − i sin(k2)σy ⊗ σy) · (cos(k3)I ⊗ I − i sin(k3)σz ⊗ σz) (S14)

We also have the results that

σxσy = −σyσx = iσz, (S15)

σyσz = −σzσy = iσx, (S16)

σzσx = −σxσz = iσy. (S17)

From Equations (S11), (S14) and (S15)-(S17), we can rewrite U into a linear-combination form:

U = α0A0 ⊗B0 + α1A1 ⊗B1 + α2A2 ⊗B2 + α3A3 ⊗B3 (S18)

where α0, α1, α2 and α3 are four complex coefficients obtained from ki:

α0 = (cos(k1) cos(k2) cos(k3)− i sin(k1) sin(k2) sin(k3)),

α1 = (cos(k1) sin(k2) sin(k3)− i sin(k1) cos(k2) cos(k3)),

α2 = (sin(k1) cos(k2) sin(k3)− i cos(k1) sin(k2) cos(k3)),

α3 = (sin(k1) sin(k2) cos(k3)− i cos(k1) cos(k2) sin(k3)), (S19)

and they satisfy
∑3
i=0 |αi|2 = 1. It is easy to verify that Ai, Bi (i = 0, · · · , 3) are single-qubit operations as below:

A0 = P1IQ1, B0 = P2IQ2,

A1 = P1σxQ1, B1 = P2σxQ2,

A2 = P1σyQ1, B2 = P2σyQ2,

A3 = P1σzQ1, B3 = P2σzQ2. (S20)

It is an interesting open question that whether the procedure shown above can be directly applied to higher
dimensionality spaces to obtain their corresponding linear-combination expressions.
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C. Deterministic linear-combination circuit for universal two-qubit unitary gates

The proposed circuit shown in Fig. 1(C) in the main text can implement the linear combination of four tensor prod-
ucts of two single-qubit gates, i.e., the universal two-qubit unitary gate according to Equation (S18) deterministically.
Here we show how it works in details. Suppose the four linear coefficients are α0, α1, α2 and α3, the required ULC in
the circuit is given by:

ULC =

α0 α1 α2 α3

α1 α0 −α3 −α2

α2 −α3 α0 −α1

α3 −α2 −α1 α0

 (S21)

We first show that such a unitary ULC always exists for an arbitrary U ∈ SU(4).

Proof. An arbitrary U ∈ SU(4) can be decomposed into the form

U =

3∑
i=0

αi (P1σiQ1)⊗ (P2σiQ2) = (P1 ⊗ P2)

(
3∑
i=0

αiσi ⊗ σi

)
(Q1 ⊗Q2) (S22)

(see Section I.A). U being unitary implies that its non-local part: UD =
∑3
i=0 αiσi ⊗ σi is unitary, i.e., UDUD

† = I⊗I.
On the other hand,

UU† = (α0I ⊗ I + α1σx ⊗ σx + α2σy ⊗ σy + α3σz ⊗ σz)
(
α0
†I ⊗ I + α1

†σx ⊗ σx + α2
†σy ⊗ σy + α3

†σz ⊗ σz
)

(S23)

=
(
|α0|2 + |α1|2 + |α2|2 + |α3|2

)
I ⊗ I +

(
α0α1

† + α0
†α1 − α2α3

† − α2
†α3

)
σx ⊗ σx

+
(
α0α2

† + α0
†α2 − α1α3

† − α1
†α3

)
σy ⊗ σy +

(
α0α3

† + α0
†α3 − α1α2

† − α1
†α2

)
σz ⊗ σz (S24)

This gives that

|α0|2 + |α1|2 + |α2|2 + |α3|2 = 1 (S25)

α0α1
† + α0

†α1 − α2α3
† − α2

†α3 = 0 (S26)

α0α2
† + α0

†α2 − α1α3
† − α1

†α3 = 0 (S27)

α0α3
† + α0

†α3 − α1α2
† − α1

†α2 = 0 (S28)

which implies that the operation ULC as defined in Equation (S21) is unitary.

The circuit evolves as below (ignore P1, P2, Q1 and Q2 first), where |ϕ12〉 is an arbitrary two-qubit state.

|00〉 |ϕ12〉 (S29)

→1

2
(|00〉+ |01〉+ |10〉+ |11〉) |ϕ12〉 (S30)

→1

2
(|00〉 I ⊗ I |ϕ12〉+ |01〉σx ⊗ σx |ϕ12〉+ |10〉σy ⊗ σy |ϕ12〉+ |11〉σz ⊗ σz |ϕ12〉) (S31)

→1

2
[(α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉) I ⊗ I |ϕ12〉+ (α1 |00〉+ α0 |01〉 − α3 |10〉 − α2 |11〉)σx ⊗ σx |ϕ12〉

+ (α2 |00〉 − α3 |01〉+ α0 |10〉 − α1 |11〉)σy ⊗ σy |ϕ12〉+ (α3 |00〉 − α2 |01〉 − α1 |10〉+ α0 |11〉)σz ⊗ σz |ϕ12〉]
(S32)

=
1

2
[|00〉 (α0II + α1σxσx + α2σyσy + α3σzσz) |ϕ12〉+ |01〉 (α1II + α0σxσx − α3σyσy − α2σzσz) |ϕ12〉+

|10〉 (α2II − α3σxσx + α0σyσy − α1σzσz) |ϕ12〉+ |11〉 (α3II − α2σxσx − α1σyσy + α0σzσz) |ϕ12〉] (S33)

Next, according to the measurement results (in the computational basis) of the two control qubits, different Pauli
gates are applied to the two target qubits:

I ⊗ I (α0II + α1σxσx + α2σyσy + α3σzσz)→ α0II + α1σxσx + α2σyσy + α3σzσz (S34)

(σx ⊗ σx) (α1II + α0σxσx − α3σyσy − α2σzσz)→ α0II + α1σxσx + α2σyσy + α3σzσz (S35)

(σy ⊗ σy) (α2II − α3σxσx + α0σyσy − α1σzσz)→ α0II + α1σxσx + α2σyσy + α3σzσz (S36)

(σz ⊗ σz) (α3II − α2σxσx − α1σyσy + α0σzσz)→ α0II + α1σxσx + α2σyσy + α3σzσz (S37)
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Therefore, the linear-combination operation α0II + α1σxσx + α2σyσy + α3σzσz can be implemented deterministi-

cally. Together with P1, P2, Q1 and Q2, the linear-combination operation U =
∑3
i=0 αi (P1σiQ1)⊗ (P2σiQ2) can be

implemented deterministically.
The two control qubits can be replaced by a single ququart and then ULC can be implemented as a single-ququart

operation. It is also worth-noting that there is no limits to the size of each linear term in principle and thus a
deterministic linear-combination of four larger gates can be implemented similarly.

II. OPTICAL LINEAR-COMBINATION IMPLEMENTATION FOR UNIVERSAL TWO-QUBIT
UNITARY GATES

A. Further discussion of optical linear-combination scheme

There are different degrees of freedom can be used to encode high-dimensional information in a single photon,
such as polarization, time-bin and orbital angular momentum. On our silicon photonic chip, only spatial degree of
freedom of photons is used, which can be easily to expand to high dimensions4 and thus is particularly suitable for
the Hilbert space extension used in the linear-combination scheme. It would be an interesting open question whether
other degrees of freedom of a single photon could be combined with the spatial mode freedom on silicon photonic
device to explore more computation capability.

The optical linear-combination scheme is more resource-efficient than other existing optical schemes for imple-
menting universal two-qubit unitaries. We compare it with two main schemes for universal linear optical quantum
computing: the KLM scheme and MBQC scheme. In standard quantum circuit model, the universal two-qubit quan-
tum circuit requires at least three CNOT and eight single-qubit gates5, as shown in Fig. S1(A). In linear optical
systems, a CNOT or other equivalent two-qubit-entangling logic gates6 can only be implemented probabilistically, if
requiring no optical nonlinearity7. KLM scheme implements a CNOT gate probabilistically on coincidence detection
of ancillary photons at two single photon detectors, and the success probability is 1/167. There are also some other
protocols proposed for implementing CNOT gate with no optical nonlinearity, such as the protocols proposed by
T. B. Pittman et al.8 and by Hofmann & Takeuchi9 and by T. C. Ralph et al.10. Pittman’s protocol utilizes four
photons and implements a CNOT with the success probability of 1/4. Ralph’s and Hofmann & Takeuchi’s protocol
implements a CNOT by using only two photons with the success probability of 1/9. However, post-selection of the
coincidence events was required, and thus it cannot be used for implementing cascaded CNOT gates. Therefore, the
most resource-efficient way for implementing a quantum circuit shown in Fig. S1(A) is to use two Pittman CNOT
gates and one post-selected CNOT gate, which requires 6 photons totally and has the overall success probability of
1/144.

MBQC scheme differs from standard quantum circuit model11–15, which implements quantum computation by
performing a sequence of single-qubit measurements onto the prepared cluster state. MBQC is less demanding of
resources than the standard circuit model16. However, MBQC requires at least a 6-photon cluster state (Fig. S1(B)) to
implement the computation equivalent to the universal two-qubit circuit shown in Fig. S1(A). It needs more photons
to create such a state, and has low success probability as 1/128, where we assume the required cluster state is created
via Type-I fusion16 with success probability of 1/2 each.

𝑢1

𝑣1

𝑢2

𝑣2

𝑢3

𝑣3

𝑢4

𝑣4

U

(A) (B)

FIG. S1: (A) Quantum circuit for universal two-qubit quantum operation U ∈ SU(4), requiring three consecutive CNOT gates
and eight single-qubit gates ui and vi (i = 1, · · · , 4)5. (B) A six-photon cluster state required for implementing QIP that
utilizes at least three two-qubit entangling operations in MBQC scheme.

B. Advanced photonic linear-combination circuit design for higher success probability

Our current chip implements a two-qubit unitary operation with success probability of 1/64. It can be further
improved to 1/4, if we (i) can separate signal and idler photons with certainty; (ii) use an advanced circuit design as
shown in Fig. S2. The new circuit design will utilize the unused optical ports (in our current chip), and the circuit
succeeds when the coincidence detections happen between the ports 1 and 2 or 1′ and 2′ or 1′′ and 2′′ or 1′′′ and 2′′′.
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FIG. S2: Schematic of an advanced circuit design for implementing SU(4). The entangled ququarts creation part and tomog-
raphy measurement part are omitted. Assume photon in top path represents the basis state |0〉 and the bottom represents
|1〉, P1 and P2 convert the single-qubit state |0〉 into two arbitrary single-qubit states |ϕ1〉 and |ϕ2〉 respectively. A0 - A3, B0

- B3 are single-qubit operations. The linear-combination operation succeeds when the coincidence events detected where two
photons exit at ports 1, 2 (or 1′, 2′; 1′′, 2′′; 1′′′, 2′′′) respectively.

III. LINEAR-COMBINATION SCHEME FOR LARGE-SCALE QUANTUM COMPUTATION

The linear-combination scheme introduces a promising implementation of large-scale quantum information process-
ing applications, though in the implemented form it does not target the ultimate universal quantum computer due to
the fact that it would achieve exponentially small success probability for a universal quantum computer. Neverthe-
less it can implement families of large-scale quantum information processing applications with considerable success
probability. Here we show how to generalise the linear-combination scheme for large-scale quantum computation and
illustrate an example of a 4-qubit version of the linear-combination scheme.

One way for scaling up the linear-combination scheme is to enlarge the size of the individual linear-combination
terms. Such an approach could be fruitful with advances in photon production technology. However, considering that
we are currently seeking an optical scheme with limited photon sources, a better choice would be to exploit the high-
dimensional degrees of freedom of a single photon to encode qudits, for which a 15-dimensional qudit encoded in the
spatial modes of a single photon has been demonstrated4. On the silicon quantum photonic platform, spatial modes are
ideal for encoding high-dimension qudit state. These high-dimension qudit states can be generated, manipulated and
measured through a Reck-scheme universal linear optic implementation17,18. With these enlarged linear-combination
terms, we are able to realise larger quantum computation applications even though the single photons are quite
limited. For example, a two-term linear combination 1√

2
(I4 ⊗ I4 + Z4 ⊗ Z4), with I4 being a 4-dimensional identity

gate and Z4 = Z ⊗ Z where Z is pauli-Z gate, can equivalently implement a four-qubit operation which filters out
the states in all 16 computational basis states that have an odd number of qubits being in |1〉. On the other hand,
we can also increase the number of the linear terms to increase the computation capability of a linear-combination
implementation, though it has only limited utility since it meanwhile decreases the success probability in a reciprocal
relationship with the number of terms.

Families of unitary operations can be decomposed into a small number of linear-combination terms, for example,
an arbitrary controlled-unitary gate CU can be expressed as a linear combination of two terms:

CU = 1√
2

(
1 0
0 i

)
⊗ I−iU√

2
+ 1√

2

(
1 0
0 −i

)
⊗ I+iU√

2
,

where U is the target operation and arbitrary-sized and U can be implemented by a Reck-scheme universal linear
interaction. Another specific example is the four-qubit gate C3Z which introduces a sign flip if and only if all four
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qubits are in the computational basis state |1〉. Its gate matrix is shown as below:

C3Z =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


C3Z gate can be decomposed into a six-term linear combination of SU(4)⊗SU(4) operations: C3Z =

∑5
i=0 αiAi ⊗Bi,

where αi, Ai and Bi are listed in Table I. Such a six-term linear combination can be implemented by using a
two-photon six-dimensional entanglement that can be created via the same way used here in building the universal
2-qubit photonic quantum processor. In Fig. S3 we present a specific optical implementation scheme for realising
such six-term linear combination where the creation of two-photon six-dimensional entanglement has been omitted.
As shown in the theoretical diagram, a 4-dimensional Reck-scheme universal linear optics implementation is used as
the basic unit to prepare single-ququart states and perform single-ququart operations and also perform single-ququart
measurements. It uses only 154 phase shifters theoretically to implement C3Z gate using such linear-combination
scheme —10 phase shifters for two-photon six-dimensional entanglement generation and 144 phase shifters for 12
SU(4) operation realisations. A family of four-qubit quantum circuits can be constructed using the C3Z gate, including
the four-qubit Tofolli gate19. They all can be decomposed into a six-term linear combination and can be implemented
using the proposed optical scheme shown in Fig. S3, with theoretical success probability as high as 1/6.

TABLE I: Linear-combination decomposition result of the C3Z gate.

Linear-combination coefficient αi Ai Bi

0.5 A0 =


1 0 0 0
0 1 0 0
0 0 i 0
0 0 0 i

 B0 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


0.5 A1 =


1 0 0 0
0 1 0 0
0 0 −i 0
0 0 0 −i

 B1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


− i

2
√
2

A2 =


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −1

 B2 = 1√
2


1− i 0 0 0
0 1− i 0 0
0 0 1− i 0
0 0 0 1 + i


− i

2
√
2

A3 =


1 0 0 0
0 −i 0 0
0 0 i 0
0 0 0 1

 B3 = 1√
2


1 + i 0 0 0
0 1 + i 0 0
0 0 1 + i 0
0 0 0 1− i


i

2
√
2

A4 =


1 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 1

 B4 = 1√
2


1− i 0 0 0
0 1− i 0 0
0 0 1− i 0
0 0 0 1 + i


i

2
√
2

A5 =


1 0 0 0
0 −i 0 0
0 0 −i 0
0 0 0 −1

 B5 = 1√
2


1 + i 0 0 0
0 1 + i 0 0
0 0 1 + i 0
0 0 0 1− i


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FIG. S3: A schematic diagram of implementing a 4-qubit gate using the linear-combination approach, with the reconfigurable
bipartite six-dimension-entanglement generation part omitted. Here |ΨE〉 represents a bipartite six-dimensional entangled state∑5

t=0 αt |st〉 ⊗ |it〉, where |st〉 and |it〉 represent spatial modes of signal and idler photons. PSU(4), QSU(4), Ai, Bi and T1, T2

are four-dimensional Reck-scheme circuits that can implement universal four-dimensional universal linear optical operations.
PSU(4), QSU(4) are used to prepare arbitrary separable two-ququart states. T1, T2 are used to perform arbitrary ququart
tomography measurement. Ai, Bi, together with the state |ΨE〉 and post-selection, are used to implement a 4-qubit operation
U in the form of

∑5
i=0 αiAi ⊗Bi.

IV. DETAILS OF DEVICE AND EXPERIMENTAL SETUP

A. Device

Our silicon chip was fabricated using a 248 nm lithography at the IME foundry. The starting substrate is silicon-
on-insulator (SOI) substrate with 2 µm buried oxide (BOX) and 220 nm top crystalline Si on BOX. The 500-nm-wide
silicon waveguides were patterned in the 220-nm top layer of silicon. Resistive heaters working as thermo-optic phase
shifters, 180 µm long and 2.5 µm wide, are then patterned on a 120 nm TiN metal layer on top of the waveguide
layer. The effective footprint of the device is approximately 7.1× 1.9 mm2.

The propagation loss for channel waveguide is 3 dB/cm in our device. The multi-mode interferometers (MMI) in
the device has around 0.3 dB insertion loss. The thermo-optic phase shifters have ignorable loss compared to the
MMIs. The electric power required for 2π phase shift for one individual thermo-optic phase shifter is around 57 mW.
All the thermo-optic phase shifters each have about 800 Ω resistance and the applied current for 2π phase shift is less
than 10 mA.

B. Setup

The schematic diagram of the whole setup was shown in Fig. 1(D) in the main text. Bright light with the wavelength
of 1550.8 nm is collected from a tunable laser (Yenista Optics Tunics-T100S-HP) and further amplified using an EDFA
(Pritel), up to 300 mW. The amplified spontaneous emission (ASE) noise is suppressed using a DWDM module filter
(Opneti). The bright light is then injected into the silicon chip via a 48-channel V-Groove fiber array (OZ-optics)
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with 127 µm spacing and 10-degree angle polished from top to bottom. An in-line polarization controller (FiberPro)
is used to ensure that TE-polarized light is launched into the chip through TE grating couplers fabricated on the chip.

At the end of the optical output of the chip, two off-chip DWDM module filters, having a 200 GHz channel
space and 1 nm 0.5 dB bandwidth, are used to separate the signal and idler photons. We chose the channels that
are equally 4-channels away from the channel used for the pump light for selecting the signal and idler photons
respectively: λp − λs = λi − λp = 6.6 nm. We only picked up the signal photons (λs = 1544.2 nm) through one
DWDM filter (DWDM1) and the idler photons (λi = 1557.4 nm) through the other (DWDM2), realizing the post-
selected measurements. Note that we can also pick up the idler photons from (DWDM1) and the signal photons
from (DWDM2) to realize post-selection, which can in theory double the coincidence counts but require two extra
single-photon detectors.

For the signal photon channel and the idler photon channel, the insertion losses over full passband are 1.89 dB
and 2.88 dB respectively. Both of the DWDM filters have ≥ 45 dB isolation over full passband for non-adjacent
channels. Together with the on-chip pump filters, the pump injected to the chip are effectively isolated from the
photon detections. The coupling loss of our device (including both input and output) is 13 dB, which is estimated
by injecting pump light through V-Groove fiber array to a long straight waveguide surrounding our device on the
silicon chip. Chip expansion happens when the phase shifters are heated up, and thus introduces instability of optical
coupling. To overcome this issue, we used a Peltier cell controlled by a proportional integrative derivative (PID)
controller to keep the device temperature constant actively.

The photons are detected by two fiber-coupled superconducting nanowire single-photon detectors (SNSPDs)
mounted in a closed cycle refrigerator. Two in-line polarization controllers are used to optimize the polarizations
of photons before going into SNSPDs, which maximizes the detection efficiency up to 50%. Two-photon coincidences
are recorded by using a time-interval-analyzer (PicoHarp 300) in a 450 ps integration window, which was chosen ac-
cording to the jitter-time of SNSPDs. During the experiments, the dark count for single photon detection is 800-1500
per second, but is quite trivial for the two-photon coincidence events. Upon using 300 mW pump power, we obtain
around 100 coincidence counts per second during the experiments.

V. CHARACTERIZATION OF THE DEVICE

A. Electrical characteristics of the phase shifters

Characterization is critical for integrated quantum photonic devices. In our device, the main task is to calibrate
the electric power-optics responses of the phase shifters, i.e., find the corresponding phase of a phase shifter for each
applied voltage or current. All the thermal-optic phase shifters are controlled by 62-channel current output equipment
(UEI AO current boards), which allows to set the required current to each channel via serial communication from a
classical computer.

We first measured the resistance value of each phase shifter by scanning its I-V curve. The I-V curve of an example
phase shifter is shown in Fig. S4, showing perfect linearity. The obtained I-V curve can be simply fitted into a linear

Current (mA)

V
o

lt
ag

e 
(V

)

FIG. S4: The measured I-V curve of an example thermal-optic phase shifter. The horizontal axis represents the current applied
to the phase shifter and the vertical axis represents the measured voltage.

equation as

V = R · I + δV (S38)
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where R represents the resistance value of the phase shifter and δV represents the offset of the voltage of the current
output boards with 0 mA current setting. The fitted resistances of all the phase shifters in our device are around 800
Ω, except that the four phase shifters used in the pump filters have resistance values of around 580 Ω.

Thermal-optic phase shifter has a linear phase-(electrical)power relationship and further a nonlinear phase-current
relationship, considering the fact that elect-power of a phase shifter is given by

P = I2R. (S39)

Therefore, the phase-current relationship of a phase shifter can be obtained as

θ(I) = φ1I
2 + φ0 (S40)

where I is the current applied to the phase shifter and θ(I) is the resulting phase shift. φ1 and φ0 are real numbers
associated with the response of a particular phase shifter.

All the 62 thermal-optic phase shifters are divided into two kinds: independent phase shifters and cascaded phase
shifters. Here we say an independent phase shifter is the one occupying a MZI whose input and output can be directly
accessed by external laser and optical power-meter. For the independent phase shifter, we assume the associated
MMIs have good splitting ratio close to 50:50. In fact, we measured that such an independent MZI in our device can
achieve an extinction ratio up to 30 dB20.

B. Calibrating independent phase shifters

An example independent phase shifter is shown in Fig. S5(A), where we can directly inject bright light (1550 nm,
20 mW) into one input port (for example, In1) of the MZI and measure the intensity at one output port (Out1) as
a function of the current applied to the heater. The applied current increases linearly from 0 mA to 9 mA with the
step size of 0.05 mA. The obtained classical interference fringe of one example independent phase shifter is shown in
Fig. S5(B).

Using nonlinear fitting approach (such as Mathematica built-in function: NonlinearModelFit), we were able to
fit the experimental data with Equation (S40), obtaining that φ1 = 0.1123 and φ0 = 0.3814. In our device, the
phase shifters used in the four filters, in setting the laser intensities between four SFWM sources and in the stage
of performing measurement are independent phase shifters that can be calibrated directly. The phase shifters in
setting phases between four SFWM sources and in the stage of realizing linear-combination can also be calibrated
as the independent phase shifter once the cascaded phase shifters in the stages of preparing single-qubit states and
implementing operations were calibrated, which we will discuss in the following section.

BS1 BS2
In1 Out1

Out2In2
θ1

(A)

(B)

FIG. S5: (A) Schematic diagram of an independent phase shifter occupying in an MZI. (B) The current optical-intensity fringe
curve of an example independent phase shifter. The black points represent the experimental data and the blue curve is obtained
through the fitting function, showing a good fitness.
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C. Calibrating cascaded phase shifters

The cascaded phase shifters illustrated in Fig. S6 the five phase shifters located in an array—used in the stages of
preparing single-qubit state and implementing gates, as shown in the Fig. 1(D) in the main text. Here we present
a schematic diagram of such cascaded phase shifters in Fig. S6. There are eight cascaded phase shifter arrays in our
device. These phase shifters cannot be simply calibrated like the independent ones, since we can only access the input
and output ports of the whole array.

In1

In2

Out1

Out2
θ1 θ2 θ3 θ4 θ5 

FIG. S6: Schematic of five cascaded phase shifters in an array.

To calibrate these phase shifters, we scanned a 5-dimensional (5D) fringe for each array and performed multiple
parameters fitting. In the 5D scan, we scan same current range for each of the five phase shifters and record the
experimentally obtained output power for every current configuration. This 5D scan fitting approach works well for
our device, but it may be challenging for a larger number of cascaded phase shifters since it requires exponentially-
increasing amount of data.

Specifically, we injected the classical light into one input port (In1) and measured the output intensity at one output
port (Out1). For a current configuration of the five phase shifters {I1, I2, I3, I4, I5}, we measured the corresponding
output intensity. A least-square minimization algorithm was used to fit the measured optical intensities and theoretical
values, and thus the fitted parameters associated with the responses of the phase shifters can be estimated. The
theoretical transfer matrix of the cascaded phase shifters is given by

UArray[η0, η1, η2, η3, η4, η5, θ1, θ2, θ3, θ4, θ5]

= BS[η5]PS[θ5]BS[η4]PS[θ4]BS[η3]PS[θ3]BS[η2]PS[θ2]BS[η1]PS[θ1]BS[η0] (S41)

where BS and PS define the transfer matrices of MMI beam-splitter and phase shifter as follows:

BS[η] :=

( √
η i

√
1− η

i
√

1− η √
η

)
, (S42)

PS[θ] :=

(
1 0
0 eiθ

)
. (S43)

Note that here η represents the splitting ratio of each MMI, which is close to 50:50 and independent of applied current.
θi represents the phase setting of the corresponding phase shifter, which is given by

θi = φi(I
2
i Ri) + δθi (S44)

where Ii is the current applied to the heater i with resistance value Ri, and δθi is the phase offset when zero-current
applied.

The objective function of minimization is thus obtained as

Min

(∑
m

(
Om −A · |〈0|UArray[η0, η1, η2, η3, η4, η5, θ1, θ2, θ3, θ4, θ5] |0〉|2

)2)
(S45)

where Om is normalized experimentally obtained optical intensity and θi is replaced by using Equation (S44). The
minimization process can be implemented using the Mathematica built-in function “FindMinimun” with proper initial
guess. After the fitting process, we obtain the fitted results for the parameters η0, η1, η2, η3, η4, η5, φ1, δθ1 φ2, δθ2 φ3,
δθ3 φ4, δθ4 φ5, δθ5. These 16 parameters are able to describe the behaviors of the response of the calibrated cascaded
phase shifter array for each current configuration, making each phase shifter in the array fully reconfigurable.

D. Calibrating on-chip filters

In our device, the on-chip filters are used to remove the redundant pump light out from the photon sources.The
on-chip pump filter is implemented by using an imbalanced MZI, as shown in Fig S7.
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FIG. S7: Schematic of the on-chip pump filter. On the actual silicon chip, the arm where the phase shifter locates is 54 µm
longer than the other arm of MZI.

With a proper current applied, the imbalanced MZI has different transmission responses for different wavelengths of
light, as shown in Fig. S8. It shows that the pump filter has very low transmission rate for the light with wavelength
around 1550.8 nm but high transmission rate for the light with wavelengths around 1544.2 nm and 1557.4 nm—which
corresponds to the signal and idler photons respectively. The extinction ratio of the pump filter is up to ∼ 28 dB,
which filters the pump light after the photon sources quite effectively. In the experiments, we used a laser pump of
up to 300 mW (24.77 dBm) for each SFWM photon source. After the on-chip pump filter, there is ∼ 0.475 mW
(-3.223 dBm) pump light passing through the functional area of the device (states and operations configuration and
measurement, marked 2 to 5 in Figure 1 D of the main text). This is a very small intensity of pump which only
generates trivial SFWM effect during the waveguides in the functional area, adding negligible counts to the signal
that are suppressed through our measurement of the coincidence counts between signal and idler photons generated
from the same source—the signal photon and the idler photon of the same pair pass through the top half and bottom
half of the device separately. But the photon pairs generated from remnant of the pump will always pass through the
same half of the device, top or bottom, which is impossible to cause a coincidence count in our detection setup.

(A) (B)

(C) (D)

FIG. S8: Transmission responses of the four on-chip pump filters with wavelengths. The pump light is injected into the top
input port and is measured at the top output port. The red, green and black stars in figures mark the signal, idler and pump
wavelengths respectively.
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VI. FURTHER DETAILS OF EXPERIMENTAL QUANTUM PROCESSING RESULTS

A. Implementing two-qubit quantum logic gates

Here we first present details for implementing some specific quantum gates: CNOT, CZ, CH, SWAP, iSWAP and√
SWAP. The linear-combination decompositions of CNOT, CZ and CH are listed as follows:

CNOT =
1√
2

(
1 0
0 i

)
⊗ 1√

2

(
1 −i
−i 1

)
+

1√
2

(
1 0
0 −i

)
⊗ 1√

2

(
1 i
i 1

)
(S46)

CZ =
1√
2

(
1 0
0 i

)
⊗ 1− i√

2

(
1 0
0 i

)
+

1√
2

(
1 0
0 −i

)
⊗ 1 + i√

2

(
1 0
0 −i

)
(S47)

CH =
1√
2

(
1 0
0 i

)
⊗ 1√

2

(√
2− i −i
−i

√
2 + i

)
+

1√
2

(
1 0
0 −i

)
⊗ 1√

2

(√
2 + i i

i
√

2− i

)
(S48)

To implement these gates in our device, we first configured the device to to create the following maximally path-
entangled state:

1√
2
|1〉a |1〉e +

1√
2
|1〉b |1〉f , (S49)

and then programmed the local single-qubit operations on path a, b, e and f , following Equations (S46), (S47) and
(S48). The initial input states for computation can be arbitrarily configured through the state preparation stages
(including the first two phase shifters in each cascaded phase shifter array). The obtained process fidelities for these
three gates are 98.85±0.06%, 96.90±0.17% and 97.57±0.07% respectively.

It is the first time for implementing SWAP, iSWAP and
√

SWAP gates in integrated photonics chips. In standard
quantum circuit model, a SWAP gate is implemented by a sequence of three CNOT gates where the middle one
reverses the control and target qubits. An iSWAP gate can be implemented by a unitary gate (I ⊗ I − iσz ⊗ σz)
followed by a SWAP gate.

√
SWAP gate performs half-way of SWAP, which allows for universal quantum computation

together with single-qubit gates. The corresponding transfer matrices of these three gates are as follows.

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , iSWAP =

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

 ,
√

SWAP =


1 0 0 0
0 1+i

2
1−i
2 0

0 1−i
2

1+i
2 0

0 0 0 1

 (S50)

The linear-combining decompositions of the three gates are

SWAP =
1

2
(I ⊗ I + σx ⊗ σx + σy ⊗ σy + σz ⊗ σz) (S51)

iSWAP =
1

2
(I ⊗ I + iσx ⊗ σx + iσy ⊗ σy + σz ⊗ σz) (S52)

√
SWAP = (0.75 + 0.25i)I ⊗ I + (0.25− 0.25i)σx ⊗ σx + (0.25− 0.25i)σy ⊗ σy + (0.25− 0.25i)σz ⊗ σz (S53)

all of which are simple linear-combinations of tensor products of Pauli gates and identity gates.
For implementing SWAP and iSWAP, balanced pumps were split between the four photon sources with zero relative

phase (SWAP) or π/2 relative phase (iSWAP), creating the following maximally path-entangled states:

SWAP :
1

2
|1〉a |1〉e +

1

2
|1〉b |1〉f +

1

2
|1〉c |1〉g +

1

2
|1〉d |1〉h (S54)

iSWAP :
1

2
|1〉a |1〉e +

i

2
|1〉b |1〉f +

i

2
|1〉c |1〉g +

1

2
|1〉d |1〉h (S55)

For implementing
√

SWAP, the path-entangled state will be required as

(0.75 + 0.25i) |1〉a |1〉e + (0.25− 0.25i) |1〉b |1〉f + (0.25− 0.25i) |1〉c |1〉g + (0.25− 0.25i) |1〉d |1〉h (S56)
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and thus requires unbalanced pumps split between the four photon sources. The obtained process fidelities of SWAP,
iSWAP and

√
SWAP are 95.33±0.24%, 94.45±0.27%, 92.41±0.33% respectively. The reconstructed process matrices

of these implemented gates are shown in Fig. S9.
For showcasing performance of the chip, we also implemented many other two-qubit quantum logic gates. These

gates include four different kinds of gates, which are in the forms of A1 ⊗ B1, Controlled-U , αA1 ⊗ A2 + βB1 ⊗ B2

and αA1 ⊗ A2 + βB1 ⊗ B2 + γC1 ⊗ C2 + δD1 ⊗ D2 respectively. Here A1 (A2), B1 (B2), C1 (C2), D1 (D2), U , α,
β, γ and δ are randomly chosen for each instance of the tested gates. These gates utilize a quarter, a half or full
capability of the chip, demonstrating the full performance of the chip in various cases. Together with the specific
gates mentioned above, we implemented 98 two-qubit quantum logic gates, performed quantum process tomography
and reconstructed the corresponding process matrices for each instance, achieving the process fidelity of 93.15±4.53%
in average. During the experiments, the typical integration time for each count of process tomography is 10 seconds,
and the total cost time for performing full quantum process tomography for one tested gate is more than 100 minutes.

One straightforward factor that limits the experimental fidelities is the device fabrication, particularly the precision
of MMIs. The imperfection of MMI can reduce the extinction ratio of a MZI whose typical value was obtained to
be around 30 dB on our device. It can be overcome by using a MZI as a variable MMI—we had achieved up to 60
dB extinction ratio of a MZI with such “variable MMIs” on a device with same fabrication process20. Another main
factor affecting the experimental fidelity is the precision of control of the phase shifters from two specific aspects:
the calibration of and the thermal crosstalk between phase shifters. A 5-dimensional fringe and 16-parameter fitting
approach was used to calibrate the arrays of five cascaded phase shifters. Accuracy of such calibration is limited
by the amount of data where we used only 105 points (10 points for each phase shifter) and more points require
significantly increasing experimental time. And thus limited amount of data cannot make the calibration of the
cascaded phase shifters sufficiently accurate. When the device is working, there would be thermal crosstalk between
neighbour phase shifters and introduces inaccuracies to the target phase of each heating phase shifters, which also
reduces the fidelities of experimental data obtained on our device. Other factors like the stability of the classical pump
and the polarization maintenance between the chip and superconducting single-photon detectors could also affect the
experimental fidelities.

B. Quantum process tomography

Quantum process tomography (QPT) is a well-known approach for experimentally characterizing a quantum op-
eration, which is a complex and resource-intensive procedure providing a complete characterization of the imple-
mented gates in our chip. To perform QPT for each implemented two-qubit gate, we configured 16 separable,

linearly independent states {ρ(in)i } = {|ψi〉 〈ψi|} as the inputs of the implemented gate, where |ψi〉 = |ν1〉 ⊗ |ν2〉 and
{|ν1〉 , |ν2〉} = {|0〉 , |1〉 , |+〉 = 1√

2
(|0〉+ |1〉), |+i〉 = 1√

2
(|0〉+ i |1〉)}. For each input, we measured the output state in

a set of 16 basis projections

{ |00〉 〈00| , |01〉 〈01| , |0,+〉 〈0,+| , |0,+i〉 〈0,+i| ,
|10〉 〈10| , |11〉 〈11| , |1,+〉 〈1,+| , |1,+i〉 〈1,+i| ,
|+, 0〉 〈+, 0| , |+, 1〉 〈+, 1| , |+,+〉 〈+,+| , |+,+i〉 〈+,+i| ,
|+i, 0〉 〈+i, 0| , |+i, 1〉 〈+i, 1| , |+i,+〉 〈+i,+| , |+i,+i〉 〈+i,+i|}, (S57)

and the density matrix of the output state can be experimentally reconstructed via quantum state tomography. On
the other hand, the output state can be theoretically obtained as below:

ρ
(out)
i =

∑d2−1
m,n=0 χmnÂmρ

(in)
i Â†n (S58)

where Âm are the Kraus operators and χ is the corresponding process matrix of the implemented gate. The process
matrix χ was reconstructed by using the maximum likelihood techniques, which completely describes the implemented
gate. For each implemented gate, QPT requires 256 (=16× 16) coincidence measurements in total.

The process fidelity was calculated as FP = Tr(χidealχexp), where χideal and χexp represent the theoretically ideal
and experimentally reconstructed process matrices respectively. The error-bars of process fidelities were estimated by
a Monte-Carlo approach assuming Poissonian photon statistics.
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(A)
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FIG. S9: Experimentally reconstructed process matrices (solid colour) of implemented example quantum logic gates, with
theoretical prediction represented by overlaid empty frames. (A, B) The real and imaginary parts of the process matrix of
CNOT. (C, D) The real and imaginary parts of the process matrix of CZ. (E, F) The real and imaginary parts of the process
matrix of CH. (G, H) The real and imaginary parts of the process matrix of SWAP. (I, J) The real and imaginary parts of the

process matrix of iSWAP. (K, L) The real and imaginary parts of the process matrix of
√

SWAP.
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C. Demonstrating QAOA

Here we present more details of applying QAOA for the three example CSPs shown in the main text. The objective
function of CSP1 is

C(z) = 1
2 + 1

2z1z2. (S59)

According to QAOA process, the two operators with angles γ and δ are obtained as below:

e−iγC = e−iγ[
1
2+

1
2Z1Z2] = e−iγ

1
2 e−iγZ1Z2 (S60)

e−iβB = e−iβ(X1+X2) (S61)

where X and Z represent Pauli operators σx and σz respectively. The |γ, β〉CSP1
state is obtained as

|γ, β〉CSP1
= e−iβBe−iγCH ⊗H |00〉

= e−iγ
1
2 e−iβX1e−iβX2e−iγ

1
2Z1Z2H ⊗H |00〉 . (S62)

It is easy to verify that for CSP1 two strings of z: {1, 1} and {−1,−1} can satisfy the only constraint and make
C(z) = 1.

The objective function of CSP2 is

C(z) =
(
1
2 + 1

2z1
)

+
(
1
2 + 1

2z2
)

+
(
1
2 + 1

2z1z2
)

(S63)

and similarly the |γ, β〉CSP2
state is obtained as

|γ, β〉CSP2
= e−iβBe−iγCH ⊗H |00〉

= e−iγ
3
2 e−iβX1e−iβX2e−iγ

1
2 (Z1+Z2+Z1Z2)H ⊗H |00〉 . (S64)

For the strings z = {1, 1}, {1,−1}, {−1, 1}, {−1,−1}, the values of C are 3, 1, 1, -1 respectively. Therefore, the string
z = {1, 1} is the target string, and as we showed in the main text, the p = 1 QAOA outputs {z1, z2} = {1, 1} with
highest probability.

The objective function of CSP3 is

C(z) =
(
1
2 + 1

2z1
)

+
(
1
2 + 1

2z2
)

+
(
1
2 −

1
2z1z2

)
(S65)

and the |γ, β〉CSP3
state is obtained as

|γ, β〉CSP3
= e−iβBe−iγCH ⊗H |00〉

= e−iγ
3
2 e−iβX1e−iβX2e−iγ

1
2 (Z1+Z2−Z1Z2)H ⊗H |00〉 . (S66)

For the strings z = {1, 1}, {1,−1}, {−1, 1}, {−1,−1}, the values of C are 1, 1, 1, -3 respectively. Therefore, there are
three strings all can maximize the object function C of CSP3. With proper γ and β, the p = 1 QAOA outputs the
measurement result as {z1, z2} = {1, 1}, {1,−1}, {−1, 1} with approximate probability of 1/3 each.

Quantum circuits that implement QAOA for the three example CSPs (Fig. 3(A) in the main text) use only one
two-qubit entangling gate, and thus they can be implemented using half capability of our chip. The typical integration
time for a single measurement of |γ, β〉 with each pair of {γ, β} is 15 seconds in our experiment, and the total cost
time of experimentally obtaining 〈γ, β|C|γ, β〉 for all 600 pairs of |γ, β〉 is more than 10 hours.

D. Simulating Szegedy quantum walk

The periodicity of SQW can be theoretically analyzed by using spectral decomposition of the single-step evolution
operator Usz. Usz can be decomposed into the following form:

Usz =

N2∑
i=1

λi |i〉 〈i| , (S67)
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where λi and |i〉 are eigenvalues and corresponding eigenvectors. A general initial state |ψ〉 for SQW is given by

|ψ〉 =

N2∑
i=1

αi |i〉 , (S68)

where αi satisfy that
∑N2

i=1 |αi|2 = 1. The evolution state of a single step of SQW is obtained as

Usz |ψ〉 =

N2∑
i=1

λiαi |i〉 , (S69)

and the evolution state of SQW of t steps is determined by

(Usz)
t |ψ〉 =

N2∑
i=1

λtiαi |i〉 . (S70)

Given that Usz is unitary, for all eigenvalues λi of Usz, |λi| = 1. An eigenvalue is said to be a root of unity if there
exists a natural number n such that λn = 1, where n is the period. The single-step evolution operator Usz is periodic
if and only if all its corresponding eigenvalues are roots of unity with a common period. If Usz is periodic, its period
is given by the lowest common multiple of the periods of its eigenvalues. Using this analysis it was found that SQWs
on the given two-node complete graph are periodic for the cases α = β = 1

4 , 1
2 , 3

4 and 1 with periods of 6, 4, 6 and 2

steps respectively. Moreover, SQWs are periodic for the cases α+ β = 1 and α+ β = 1
2 with periods of 4 and 6 steps

respectively.
In our experiments, we implemented SQWs for various cases of weights α and β with three different initial states:

|0〉 |0〉, 1√
2
|0〉 (|0〉 + |1〉) and 1√

2
|0〉 (|0〉 + i |1〉). For each case, we realized the first 200 steps of SQW and measured

the probability of the walker being at node 1 at each step. We calculated the average fidelities of the obtained
probability distributions, as listed in Table. II. It is worth noting that SQWs on the example two-node graph do
not have perfect periodicity for general symmetric weights, however, the obtained probability distributions may show
quasi periodic behaviors for some specific cases. As shown in Figure. S10, SQWs for the cases α = β = 0.43, 0.45, 0.47
show quasi-periodicities. This could be useful for designing SQW-based quantum algorithms.

TABLE II: Experimental results of SQWs on the example two-node graphs.

{α, β} Initial state Step number Average fidelity
{0.1, 0.9} |0〉 |0〉 200 98.35±0.15%

1√
2
|0〉 (|0〉+ |1〉) 200 99.38±0.03%

1√
2
|0〉 (|0〉+ i |1〉) 200 99.13±0.04%

{0.3, 0.7} |0〉 |0〉 200 97.99±0.10%
1√
2
|0〉 (|0〉+ |1〉) 200 99.31±0.04%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.71±0.05%

{0.25, 0.25} |0〉 |0〉 200 98.46±0.04%
1√
2
|0〉 (|0〉+ |1〉) 200 99.28±0.02%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.71±0.05%

{0.5, 0.5} |0〉 |0〉 200 98.48±0.04%
1√
2
|0〉 (|0〉+ |1〉) 200 99.02±0.11%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.81±0.03%

{0.43, 0.43} |0〉 |0〉 200 98.02±0.04%
1√
2
|0〉 (|0〉+ |1〉) 200 99.23±0.02%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.88±0.03%

{0.45, 0.45} |0〉 |0〉 200 97.86±0.04%
1√
2
|0〉 (|0〉+ |1〉) 200 99.12±0.04%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.75±0.03%

{0.47, 0.47} |0〉 |0〉 200 98.11±0.04%
1√
2
|0〉 (|0〉+ |1〉) 200 99.30±0.02%

1√
2
|0〉 (|0〉+ i |1〉) 200 98.84±0.03%
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(A)

(B)

(C)

FIG. S10: Experimental obtained probability distributions of SQWs with the theoretical distribution overlaid. (A) Probability
distribution (of the walker being at node 1) of the first 100 steps of SQW on the example two-node graph with α = β = 0.43
and an initial state of |00〉. (B) Probability distribution (of the walker being at node 1) of the first 100 steps of SQW on the
example two-node graph with α = β = 0.45 and an initial state of |00〉. (C) Probability distribution (of the walker being at
node 1) of the first 100 steps of SQW on the example two-node graph with α = β = 0.47 and an initial state of |00〉. The s.d.
of each individual probability is calculated by propagating error assuming Poissonian statistics.
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