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Abstract 

 

To guide management of patients with acute spinal cord injuries, we developed intraspinal 

pressure monitoring from the injury site. Here, we examine the complex fluctuations in the 

intraspinal pressure signal using network theory. We analyzed 7,097 hours of intraspinal 

pressure data from 58 patients with severe cord injuries. Intraspinal pressure signals were 

split into hourly windows. Each window was mapped into a visibility graph as follows: 

Vertical bars were drawn at 0.1 Hz representing signal amplitudes. Each bar produced a node, 

thus totalling 360 nodes per graph. Two nodes were linked with an edge if the straight line 

through the nodes did not intersect a bar. We computed several topological metrics for each 

graph including diameter, modularity, eccentricity and small-worldness. Patients were 

followed up for 20 months on average. Our data show that the topological structure of 

intraspinal pressure visibility graphs is highly sensitive to pathological events at the injury 

site including cord compression (high intraspinal pressure), ischemia (low spinal cord 

perfusion pressure) and deranged autoregulation (high spinal pressure reactivity index). 

These pathological changes correlate with long graph diameter, high modularity, high 

eccentricity and reduced small-worldness. In a multivariate logistic regression model, age, 

neurological status on admission and average node eccentricity were independent predictors 

of neurological improvement. We conclude that analysis of intraspinal pressure fluctuations 

after spinal cord injury as graphs, rather than time series, captures clinically important 

information. Our novel technique may be applied to other signals recorded from injured CNS 

e.g intracranial pressure, tissue metabolite and oxygen levels.  

 

Manuscript keywords: Intensive Care Unit, Intraspinal pressure, Monitoring, Network 

theory, Spinal cord injury  



	 	

Introduction 

 

Traumatic spinal cord injury (TSCI) is a devastating condition with generally poor outlook 1, 

2. Most patients are young males with complete injuries who remain paralyzed without 

control of bladder, bowel or sexual function. There is no treatment proven to improve 

outcome after acute, severe TSCI 3 and, consequently, current medical and surgical 

management practices are variable 4. Following the primary injury, further cord damage may 

occur e.g. from ongoing cord compression, low blood pressure 5, peripheral infections 6 and 

fever 7.  

To prevent such secondary cord damage, we introduced monitoring from the injury 

site in patients in the intensive care unit (ICU) 1, 8, 9. We monitor intraspinal pressure (ISP), 

spinal cord perfusion pressure (SCPP) and the vascular pressure reactivity (sPRx), which is 

used to compute the optimum SCPP 10. These monitoring techniques are safe 11 and are 

analogous to monitoring intracranial pressure (ICP) and cerebral perfusion pressure (CPP) 

after traumatic brain injury (TBI). Several lines of evidence suggest that ISP and SCPP are 

clinically important physiological parameters: first, higher SCPP correlates with better injury 

site metabolism (higher glucose, lower lactate-to-pyruvate ratio, lower glutamate, lower 

glycerol) determined by microdialysis 12. Second, intervention to increase SCPP in TSCI 

patients improves neurological status in some patients 1. Third, lower mean ISP and higher 

mean SCPP correlate with improved long-term neurological outcome 13. Fourth, intervening 

to increase SCPP increases the amplitude of motor evoked responses monitored from below 

the injury site in some patients 1. 

The ISP signal (and its brain equivalent, the ICP) is a complex time series; therefore, 

conventional analysis e.g. computing mean ISP amplitude, loses biologically important 

information hidden within the various complex patterns of signal fluctuations. To access such 



	 	

hidden information, we analyzed the ISP signals from a different perspective. We first map 

each hourly ISP time series into a visibility graph 14. We then determine the topological 

structure of these graphs using analytical tools developed in complex network theory e.g. 

diameter, modularity, eccentricity and small-worldness 15. Our data show that the topological 

characteristics of ISP graphs are highly sensitive to adverse events at the injury site such as 

cord compression (increased ISP), hypoperfusion (reduced SCPP) and impaired vascular 

pressure reactivity (increased sPRx). Remarkably, these topological metrics correlate with 

neurological outcome. 

 

Materials and Methods 

 

Approvals. Patients were part of the Injured Spinal Cord Pressure Evaluation (ISCoPE) 

study (https://clinicaltrials.gov, NCT02721615). Approvals were obtained from the St 

George’s, University of London Joint Research Office and the National Research Ethics 

Service London–St Giles Committee. Informed consent was obtained from all participants 

included in the study. 

 

Patient recruitment. All patients were treated at the Department of Neurosurgery and the 

Neuro-ICU at St. George’s Hospital in London. ISCoPE inclusion criteria are: 1. Severe 

TSCI defined as American spinal injuries association Impairment Scale (AIS) grades A–C; 2. 

Age 18–70 years; 3. Timing between TSCI and surgery ≤72 hours. Exclusion criteria are: 1. 

Unable to consent; 2. Major co-morbidities; 3 Penetrating TSCI. This is a consecutive series 

of ISCoPE patients from 2010–2017. 

 



	 	

Insertion of intraspinal pressure probe. After bony realignment and posterior fixation, the 

ISP probe (Codman Microsensor Transducer®, Depuy Synthes, Leeds, UK) was placed 

intraoperatively under the dura on the spinal cord surface at the site of maximal cord swelling 

as determined from the MRI. The probe monitors pressure, which is generated by the swollen 

injured cord compressed against the dura. These ISP recordings differ from corresponding 

values obtained from proximal or distal cord or extradurally. Details are given elsewhere 1, 8, 

11-13, 16, 17. 

 

Intraspinal pressure, spinal cord perfusion pressure. The ISP probe was connected to a 

Codman ICP box linked via a ML221 amplifier to a PowerLab running LabChart v.7.3.5 (AD 

Instruments, Oxford, UK). Arterial blood pressure was recorded from a radial artery catheter 

kept at heart level and connected to a Philips Intellivue MX800 bedside monitoring system 

(Philips, Guildford, UK) in turn connected to the PowerLab system. ISP and arterial blood 

pressure signals were sampled at 1 kHz for up to 7 days. LabChart was used to analyse the 

signals and compute SCPP as mean arterial pressure (MAP) minus ISP. Spinal pressure 

reactivity index (sPRx) was computed as the running correlation coefficient over 5 minutes 

between MAP and ISP. Details are given elsewhere 1, 8, 11-13, 16, 17. 

 

Patient assessments. Neurological examinations to record the AIS grade were done by 

neurosurgical research fellows who are experienced neurosurgical residents trained according 

to the International Standards for Neurological Classification of Spinal Cord Injury. Patients 

were examined on admission, prior to discharge to the spinal rehabilitation centre and during 

outpatient appointments. A CT and MRI of the whole spine were done on admission, another 

CT within 48 hours of surgery, another MRI within two weeks of surgery and another MRI at 

6 – 12 months after surgery. 



	 	

 

Converting intraspinal pressure signals into graphs. The ISP time series was re-sampled 

at 0.1 Hz and split into non-overlapping hourly windows. The natural visibility algorithm 

proposed by Lacasa et al. 14 was programed into MATLAB (https://uk.mathworks.com) and 

applied to each hourly ISP signal to identify nodes and links and obtain the adjacency matrix, 

which shows if points (nodes) are visualized by other nodes. The algorithm maps each 0.1 Hz 

ISP value onto a node, which is connected to any node that has a visibility link. For details 

see Supplement. 

 

Graph metrics. We characterized the following topological metrics for each graph: Graph 

diameter is the shortest path between the two most distant nodes 15. Graph modularity 

measures how a graph is structured and identifies communities/clusters 18. Graph eccentricity 

captures how important nodes are in a graph 15. We computed average E. Clustering 

coefficient indicates the extent to which neighbors of a node are neighbors of each other. 

Average path length shows, on average, the number of steps it takes to get from one node to 

another. Small-worldness is quantified by the coefficient σ. If σ > 1, then the graph is small-

world, i.e. it is characterized by high clustering coefficient and short average path length 19. 

Each measure gives a single value per hourly ISP graph that can be plotted against 

corresponding hourly ISP, SCPP and sPRx values. For details see Supplement. 

 

Graph visualization. The adjacency matrix was analyzed using the Girvan-Newman 

algorithm 18 to detect embedded groups/clusters of nodes within the graph. To display the 

graphs, node data (node ID, degrees) and edge data (source nodes, target nodes, weights) 

were imported into GEPHI (v.0.9.2, https://gephi.org) within the MATLAB environment. 

The FORCEATLAS2 layout algorithm within GEPHI was used to disperse groups of nodes 



	 	

and give space around larger nodes. We checked “prevent overlap” and set “scaling” to 50 in 

the parameter settings. The function was kept running until the network was mostly 

stabilized. Nodes and edges were then coloured to display clusters, centrality and quality 

features of the graph. 

 

Simulated signals. We investigated the effect of different types of signal fluctuations on 

graph topology, by considering the effect of the following modifications on a sinusoidal 

signal: no modification, narrow trough, narrow peak, transiently elevated baseline, wide 

peak, and wide peak with smaller peaks on top. We chose these modifications based on our 

observations of many ISP signals, aiming to model clinically important events: For example, 

in our earlier work we showed that a regular ISP signal has low complexity and is 

pathological 20. High ISP, as occurs after a severe TSCI, often has transient troughs. A 

normal ISP signal, as occurs with less severe TSCI, has transient narrow peaks and its 

baseline fluctuates due to respiration and autoregulatory response to changes in MAP. After a 

severe TSCI, there are often prolonged elevations in ISP. 

 

Statistics. Data are shown as mean +/- standard error. We computed Pearson correlation 

coefficients. Data are shown as mean +/- standard error (sem). Statistical significance was 

taken at P < 0.05. Logistic regression analysis was done using XLStat Biomed v.2018.1 using 

the logit model. For multivariate logistic regression, we chose the best model with minimum 

of 1 and maximum of 8 variables to maximize the likelihood ratio. 

 

Results 

 



	 	

Patient details. During the study period, 61 consecutive patients met the inclusion/exclusion 

criteria and were asked to enter the study: 59 patients accepted and 2 patients refused. We 

thus recruited 59 TSCI patients. In one patient, the ISP probe became dislodged and, 

therefore, data from 58 patients are analyzed. Patients were generally young (81.0 % less that 

60 years old) and mostly male (79.3 %). Most patients (69.0 %) had complete TSCI (i.e. AIS 

grade A) on admission. About half of them had cervical injuries (51.7 %) and half (48.3 %) 

thoracic/lumbar injuries. All patients underwent posterior surgical approaches, but 14.2 % 

also had anterior surgery. On average, ISP monitoring continued for 5 – 6 days after surgery 

in ICU. Mean follow-up was 20 months in patients who improved AIS grade(s) and those 

who did not. Patient details are summarized in Table 1.  

 

Complications. In this patient cohort, we recorded the following complications, likely 

related to ISP monitoring: pseudomeningocele (15/58, 25.9 %), CSF leak (8/58, 13.8 %), 

meningitis (0/58, 0.0 %), wound infection (0/58, 0.0 %), probe-associated hematoma or cord 

damage (0/58, 0.0 %) and worse AIS grade (0/58, 0.0 %). Pseudomeningocele was detected 

on the first postoperative MRI done at 1 – 2 weeks after surgery and resolved on MRI done at 

6 – 12 months. CSF leak through probe skin exit sites or through the wound during 

monitoring stopped by placing extra skin sutures. There was no need to re-operate on any 

patient as a result of ISP monitoring. 

 

Visibility graphs. Fig. 1A shows examples of ISP and MAP signals obtained from the injury 

site of a patient. The signals were imported into ICM+ to compute SCPP and sPRx (Fig. 1B). 

ISP data were transformed into visibility graphs as summarized in Fig. 1C. ISP time series 

were first divided into non-overlapping hourly windows. For each window, vertical bars were 

drawn at regular intervals representing ISP amplitude such that each bar corresponds to a 



	 	

node in the graph. Two nodes were linked with an edge if the straight line linking the nodes 

did not intersect a bar. The adjacency matrix Aij was then constructed with entries ‘1’ if two 

nodes are linked or ‘0’ if unlinked. Though we computed many topological metrics of ISP 

graphs, here we focus on D, Q, E and s. 

 

Graph diameter. Diameter is the geodesic path between the two nodes that are furthest 

apart. Figs. 2A-B show examples of two hourly ISP signals and their respective graphs, one 

with long and one with short diameter. We found strong positive correlation between ISP and 

graph diameter as well as between sPRx and graph diameter, but strong negative correlation 

between SCPP and graph diameter (Fig. 2C). Thus, cord compression, ischemia and loss of 

autoregulation are associated with increased graph diameter. Fig. 2D shows the effect of 

various ISP fluctuations on graph diameter. A sinusoidal signal has long diameter. 

Introducing a narrow trough only slightly shortens the diameter, but a narrow peak or 

transiently elevated baseline greatly reduces the diameter by providing bridging nodes. A 

wide peak with or without smaller peaks on top has little influence on the diameter. Thus, 

irregular signals with transient peaks or transient baseline elevations have short diameter, 

whereas regular signals or signals with prolonged elevations have longer diameter. 

 

Graph modularity. The nodes within a graph may form cliques, such that nodes within a 

clique are strongly linked, but cliques only weakly link with each other. Modularity measures 

how well cliques link between them and is high if the cliques poorly inter-link. Figs. 3A-B 

show examples of two ISP hourly signals and their respective graphs, one with high and one 

with low modularity. There was strong positive correlation between ISP and graph 

modularity, strong negative correlation between SCPP and graph modularity, but no 

correlation between sPRx and graph modularity (Fig. 4C). These data suggest that cord 



	 	

compression and ischemia, but not loss of autoregulation, are associated with increased graph 

Q. Fig. 3D uses model signals to explain how different signal fluctuations influence 

modularity. A sinusoidal signal with or without a narrow trough or peak, with or without flat 

baseline has zero modularity. A tall, wide peak increases modularity by splitting the graph 

into two poorly inter-linked modules. Peaks on top of the wide peak slightly increase the 

number of links between the modules thus slightly reducing modularity.  

 

Graph eccentricity. To find eccentricity, we compute the geodesic path between node i and 

each other node and choose the longest of these paths. Thus, if the eccentricity of a node is 

high, then at least one other node lies far from it. Low eccentricity means that all other nodes 

are near. Averaging the eccentricity values of all the nodes yields the average eccentricity of 

the graph. Figs. 4A-B show examples of two ISP hourly signals and their respective graphs, 

one with high and one with low average eccentricity. We found strong positive correlation 

between ISP and average eccentricity as well as between sPRx and average eccentricity, but 

strong negative correlation between SCPP and average node eccentricity (Fig. 2C). These 

data suggest that cord compression, ischemia and loss of autoregulation are associated with 

increased graph average node eccentricity. Fig. 4D shows how fluctuation patterns in the ISP 

signal influence the eccentricity. A sinusoidal signal has generally high eccentricities. A 

narrow trough only slightly reduces average eccentricity, but a narrow peak or transiently 

elevated baseline greatly reduces average node eccentricity by providing bridging nodes. A 

wide peak increases average eccentricity, but smaller peaks on top of the wide peak only 

modestly influence eccentricity. Thus, signals with transient peaks or transient baseline 

elevations have low eccentricities, but regular signals or prolonged elevations increase 

eccentricity. 

  



	 	

Graph small-worldness. A small-world graph is characterized by high clustering coefficient 

and short average path length. This means that most nodes are not directly linked, but any 

nodes directly linked to a node are likely to be linked to each other. Also, most nodes can be 

reached from any other node by a small number steps. Because small-world graphs have 

special properties and are ubiquitous in nature 19, we investigated whether the ISP signals 

produce small-world graphs. Figs. 5A-B show examples of two ISP hourly signals and their 

respective graphs, one with high and one with low s. We found strong negative correlation 

between ISP and s as well as between sPRx and s, but strong positive correlation between 

SCPP and s (Fig. 5C). These data suggest that cord compression, ischemia and loss of 

autoregulation are associated with reduced s of ISP graphs. Fig. 5D shows how fluctuation 

patterns in the ISP signal may influence the ratio of clustering coefficient to average path 

length, a measure of small-worldness. A sinusoidal signal has low s. A narrow trough only 

slightly increases clustering coefficient and reduces average path length thus slightly 

increasing s. A narrow peak or transiently elevated baseline slightly increase clustering 

coefficient, but greatly reduce average path length thus greatly increasing s. A wide peak 

reduces clustering coefficient and increases average path length thus reducing s. Small peaks 

on top of a wide peak do not affect clustering coefficient and slightly reduce average path 

length thus only modestly influencing s. Overall, signals with transient peaks or transient 

baseline elevations have high s, but regular signals or signals with prolonged elevations have 

low s. 

 

Patient outcome. At follow-up, 65.5 % (38/58) patients did not improve, 17.2 % (10/58) 

improved by one AIS grade, 15.5 % (9/58) by two or more grades and 1.8 % (1/58) were lost 

to follow-up. Fig. 6 shows that shorter graph diameter, smaller average node eccentricity, 

lower modularity and higher s correlate with AIS grade improvement. In univariate analysis, 



	 	

the following variables significantly correlated with AIS grade improvement: Higher AIS 

grade on admission, younger patient age, lower ISP (average of entire signal), higher SCPP 

(average of entire signal), shorter graph diameter, lower modularity, lower average node 

eccentricity, higher s. For each patient, we averaged graph diameter, modularity and mean 

node eccentricity over all ISP graphs. In multivariate analysis, AIS grade on admission, 

SCPP and graph average node eccentricity remained independent prognostic factors. The 

odds ratios indicate the following: A patient with one higher AIS grade on admission than 

another, has 4.2´ better chance of AIS grade conversion at follow-up. For every 1 mmHg 

increase in average SCPP, there is 10 % higher chance of AIS grade conversion at follow-up. 

For every 1 unit increase average node eccentricity, there is 90 % lower chance of AIS grade 

conversion at follow-up. The results of univariate and multivariate logistic regression 

analysis are summarized in Table 2. The corresponding Receiver Operated Characteristic 

(ROC) curve for the multivariate model had Area Under Curve (AUC) value of 0.845, 

indicating a good classifier. A Leave-One-Out cross validation (LOO-CV) yielded a 

classification accuracy of 73.65 %. Details are in the Supplement.  

 

Discussion 

 

We showed that ISP signals can be converted into graphs using the visibility algorithm. The 

graphs can then be analyzed using the powerful tools of complex network theory to quantify 

their topological structures including size, presence of clusters, connections between clusters, 

accessibility of nodes from other nodes, APL, and small-world properties. Our key finding is 

that these graphs inherit in their topologies fundamental information from the original ISP 

time series. The topological structures of ISP graphs are, therefore, highly sensitive to the 

pathological changes that occur at the injury site e.g. cord compression (high ISP), ischemia 



	 	

(low SCPP) and impaired autoregulation (high sPRx). The visibility algorithm thus allows the 

complex dynamics of the ISP signal to be analyzed from a novel angle. 

 What are the advantages of analyzing ISP as graphs instead of time series? Time 

series are used to compare amplitudes (e.g. mean, trend, variability) that have clinical 

meaning 1. For example, higher mean ISP means more severe cord compression. If ISP is 

decreasing, then cord compression is improving. High ISP variability may indicate 

mechanical spinal instability causing fluctuating cord compression. Time series are also used 

to identify correlations with biological meaning e.g. higher ISP correlates with worse 

neurological outcome 13, when ISP increases then sPRx increases (impaired autoregulation) 1, 

8 and tissue lactate to pyruvate ratio also increases (increased tissue ischemia) 12. Unlike time 

series, ISP graph topology is not affected by ISP amplitude 14; a sinusoidal signal produces 

identical visibility graphs regardless of whether it fluctuates between +5 and +10 or between 

+30 and +35. Graph topology is, however, sensitive to patterns of fluctuations that may have 

little effect on amplitude; a narrow peak or transient rise in ISP baseline provides bridging 

nodes that reduce graph D and average E and increase s. In contrast, a periodic signal has 

long graph D, high E and low s. Q increases with wide peaks in the signal, but, compared 

with a sinusoidal signal, baseline signal fluctuations do not reduce Q. Such fluctuation 

patterns may have biological meaning. For example, a normal ISP or ICP signal has 

irregularities e.g. narrow peaks (straining, coughing) and a fluctuating baseline (from 

respiration or autoregulatory response to fluctuations in MAP) 1, 8, which may reduce D, E 

and increase s. With increased cord compression, ISP exhibits large, wide peaks that may 

increase D, E and Q as well as reducing s. Loss of autoregulation would increase D and E as 

well as reducing s without much effect on Q. Thus, the various graph metrics used here 

likely capture clinically important information that is difficult to appreciate from the original 

ISP signal. This may explain why these graph metrics correlate with patient outcome. The 



	 	

multivariate logistic regression model, based on AIS grade on admission, SCPP and graph 

average node eccentricity has good predictive value evident by the high AUC value of the 

ROC curve and the high classification accuracy of LOO-CV. The prognostic power of the 

graph metrics requires additional validation in future studies using different sets of TSCI 

patients. 

 Unlike ISP monitoring for TSCI, ICP monitoring for severe TBI has been the 

standard of care in developed countries for many years 21, 22. The early management of 

patients with TBI is focused on limiting secondary injury by reducing ICP below 25 mmHg 

and increasing CPP above 60 mmHg. Our group has developed analogous techniques for 

monitoring ISP and SCPP in patients with TSCI 1, 8, 11. Recently, the value of ICP monitoring 

in TBI has been questioned because of absence of Class I evidence that ICP-directed 

management improves outcome 23. Large observational studies 24, 25 and sophisticated 

analysis of ICP signals 26 indicate that ICP-directed treatments have the potential to improve 

outcome, provided that patient care is targeted to individualized optimal CPP values that vary 

widely between patients. The ISP monitoring field has a lot to learn from the pitfalls of ICP 

monitoring e.g. by avoiding universal treatment thresholds and individualizing management 

instead 10. ISP monitoring is invasive, but the complications are not serious and include CSF 

leak through the probe skin exit site, pseudomeningocele and probe dislodgement 11. To date, 

we have used AIS grade conversion as the only outcome measure; in future studies, other 

outcome measures should also be used to make the findings more robust. In TBI patients, 

some neuro-ICUs monitor tissue oxygen and metabolism in addition to ICP and CPP 27, 28. 

This is also possible in TSCI patients by using microdialysis to monitor injury site 

metabolism 12, 16. Though monitoring many physiological and biochemical parameters from 

the injury site makes sense, the clinical value of multi-modality monitoring has been 

challenged, because of the lack of clinically relevant analysis techniques. Visualizing data as 



	 	

networks, as described here, might make clinically relevant changes in the monitored 

parameters easier to appreciate.  

 Transformation of time series into graphs has only become possible recently 14. There 

have been several attempts to apply this technique in medicine e.g. predict the onset of 

ventricular fibrillation by ECG 29, diagnose Alzheimer’s disease 30 or analyze seizure patterns 

by EEG 31, and outside medicine e.g. predict the magnitude of growth of stock prices using 

price time series 32 or predict tourist demand for holiday resorts 33. These techniques could 

also be applied to ICP signals after TBI and other signals recorded from injured brain or 

spinal cord e.g. tissue oxygen or metabolite levels monitored by microdialysis. A sliding one-

hour window updated every minute could be used to provide real-time information in ICU on 

ISP graph topology. 

We showed that ISP graphs have small-word properties. There are many examples of 

small-world networks in nature including chemical reaction networks, healthy neuronal 

connections, social networks and networks of world airports 34. Small-worldness confers 

advantages to networks such as robustness to external insults, scale invariance as well as 

efficient storage, transmission and retrieval of information. Our data indicate that the small-

worldness metric s decreases with increasing cord compression, decreasing cord perfusion 

and more deranged cord autoregulation. Thus, as the secondary insults become more severe, 

ISP graphs become more disorganised with longer average path length and smaller clustering 

coefficient. These topological changes in the ISP graphs likely arise from disorganization in 

the various processes that give rise to the ISP signal e.g. cardiac and respiratory pulsations, 

intraspinal compliance, spinal cord blood flow, oxygenation and metabolism. Therefore, 

s provides information about the state of the injury site from a novel perspective. 

 Since the original paper reporting the natural visibility algorithm, several variations 

have been published. Directed graphs could be used to incorporate temporal information in 



	 	

the network e.g. if node i corresponds to a future time than node j, and are visible to each 

other, then there is connection from i®j but not i¬j 35. There is also a technique to map 

multivariate time series into multiplex graphs 36 that may enable analysis of multi-modality 

monitoring data from the injury site e.g. ISP, tissue oxygen and microdialysis. Such studies 

are beyond the scope of this paper. Our study has provided proof of principle that this novel 

research avenue is interesting to pursue when analysing and interpreting complex signals 

from injured brain or spinal cord. 
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Figure Legends 

 

Fig. 1. Patient monitoring and visibility graph construction. A. Examples of arterial blood 

pressure (ABP) and intraspinal pressure (ISP) signals. B. ABP and ISP signal data imported 

in ICM+ to compute other signals e.g. sPRx. C. Stages in constructing a visibility graph (top 

to bottom): The ISP signal is marked at regular intervals (a – g). Visibility lines (red) are 

drawn to link nodes in the graph. Finally, the adjacency matrix is constructed with entries ‘1’ 

if two nodes are connected and ‘0’ if not. 

 

Fig. 2. Graph diameter. Diameter is the shortest path between the two most distant nodes. 

A. Representative hourly ISP signals from two patients. B. Graphs corresponding to the ISP 

signals in A. with diameters 6 (green) and 14 (red).  C. Plots of ISP, SCPP and sPRx versus 

graph diameter for all hours in the 58 patients with best-fit trend lines R = 0.87, P < 0.05 

(ISP); R = -0.96, P < 0.0005 (SCPP); R = 0.97, P < 0.0005 (sPRx). Mean +/- standard error. 

D. Schematic showing effects of various signal fluctuations on graph diameter. a) Sinusoidal, 

b) Narrow trough, c) Narrow peak, d) Transient baseline increase, e) Large wide peak, f) 

Peaks on large wide peak. 

 

Fig. 3. Graph modularity. Modularity measures how a graph is structured and identifies 

communities/clusters. A. Representative hourly ISP signals from two patients. B. Graphs 

corresponding to the ISP signals in A. Graph 1, 5 clusters; Graph 2, 10 clusters. Clusters are 

assigned different colors. C. Plots of ISP, SCPP and sPRx versus graph modularity for all 

hours in the 58 patients with best-fit trend lines R = 0.90, P < 0.01 (ISP); R = -0.95, P < 0.005 

(SCPP); R = 0.00, not significant (sPRx). Mean +/- standard error. D. Schematic showing 

effects of various signal fluctuations on graph modularity. a) Sinusoidal, b) Narrow trough, c) 



Narrow peak, d) Transient baseline increase, e) Large wide peak, f) Peaks on large wide 

peak. Two node clusters colored (white, black). 

 

Fig. 4. Graph eccentricity. Eccentricity measures how important nodes are in a graph. A. 

Representative hourly ISP signals from two patients. B. Graphs corresponding to the ISP 

signals in A with nodes colored according to eccentricity. Eccentricity color scale. C. Plots of 

ISP, SCPP and sPRx versus graph mean node eccentricity for all hours in the 58 patients with 

best-fit trend lines R = 0.87, P < 0.05 (ISP); R = -0.96, P < 0.0005 (SCPP); R = 0.98, P < 

0.0005 (sPRx). Mean +/- standard error. D. Schematic showing effects of various signal 

fluctuations on eccentricity centrality. a) Sinusoidal, b) Narrow trough, c) Narrow peak, d) 

Transient baseline increase, e) Large wide peak, f) Peaks on large wide peak. Eccentricity 

color scale. 

 

Fig. 5. Graph small-worldness. In small-world graphs, most nodes are not directly linked, 

but any nodes directly linked to a node are likely to be linked to each other. Small-world 

graphs have coefficient σ > 1. A. Representative hourly ISP signals from two patients. B. 

Graphs corresponding to the ISP signals in A showing node hubs, i.e. node radius 

proportional to node degree. C. Plots of ISP, SCPP and sPRx versus graph small worldness 

for all hours in the 58 patients with best-fit trend lines R = -0.83, P < 0.05 (ISP); R = 0.97, P 

< 0.0005 (SCPP); R = -0.98, P < 0.0005 (sPRx). Mean +/- standard error. D. Schematic 

showing effects of various signal fluctuations on small-worldness (cluster coefficient CC, 

average path length APL, CC/APL). a) Sinusoidal (CC = 0.70, APL = 4.73, CC/APL = 0.15), 

b) Narrow trough (CC = 0.76, APL = 4.09, CC/APL = 0.18), c) Narrow peak (CC = 0.73, 

APL = 3.36, CC/APL = 0.22), d) Transient baseline increase (CC = 0.73, APL = 3.36, 



CC/APL = 0.22), e) Large wide peak (CC = 0.61, APL = 5.09, CC/APL = 0.12), f) Peaks on 

large wide peak (CC = 0.70, APL = 4.09, CC/APL = 0.17). 

 

Fig. 6. Neurological outcome. For each patient, we computed average diameter, modularity, 

mean node eccentricity and small-worldness of all the graphs in the monitoring period. Bar 

graphs showing A. Average patient graph diameter, B. Average patient mean node 

eccentricity, C. Average patient modularity, and D. Average patient small-worldness versus 

AIS grade change, i.e. AIS grade at follow-up minus AIS grade at presentation. Mean +/- 

standard error for 57 patients (one of the 58 patients was lost to follow-up). 

 















Tables 1. Patient demographics. 

CHARACTERISTIC NUMBER 

Number of patients 59 

Age (mean +/- sem) 41.4 +/- 2.0 

Sex (Male : female) 46 : 12 

Level of injury (Ce : Th : Lu) 30 : 25 : 3 

Surgery (posterior : anterior+posterior) 50 : 8 

Admission AIS (A : B : C) 40 : 8 : 10  

Follow-up AIS (A : B : C : D : E) 32 : 6 : 7 : 11 :1 

Hours of monitoring (mean +/- sem) 131.4 +/- 4.8 

Months of follow-up (mean +/- sem) 18.0 +/- 2.1 

AIS, American spinal injuries association Impairment Scale; Ce, cervical;  
sem, standard error of the mean; Lu, lumbar; Th, thoracic 
 



Table 2. Results of univariate and multivariate logistic regression analysis. Binary outcome 

was no AIS grade increase (0) versus at least 1 AIS grade increase (1). 

VARIABLE UNIVARIATE MULTIVARIATE 

 OR P-VALUE OR P-VALUE 

Admission AIS grade 4.2 <0.001 4.2 <0.05 

Patient age (years) 0.9 <0.005  NS 

SCPP (mmHg) 1.1 <0.05 1.1 <0.05 

ISP (mmHg) 0.9 <0.05  NS 

Graph diameter 0.1 <0.005  NS 

Graph modularity 0.0 <0.05  NS 

Graph eccentricity 0.1 <0.005 0.1 <0.05 

Graph small-worldness 14.4 <0.005  NS 

AIS, American spinal injuries association Impairment Scale; ISP, intraspinal pressire; NS, not significant; 
SCPP, spinal cord perfusion pressure 



SUPPLEMENT 

METHODS 

Converting intraspinal pressure signals into graphs. Let x(ti), i = 1, 2, 3 … be an hourly 

ISP time series window of 360 points (nodes). Nodes i and j ‘see’ each other, thus becoming 

linked nodes, if all time-series data (tk, x(tk)) between i and j (i.e. ti < tk < tj) meet the 

requirement: 

x(tk) < x(ti) + [x(tj) – x(ti)][(tk – ti)/(tj – ti)]  (Equation 1) 

This means that nodes i and j can be connected by a straight line such that all nodes between 

them k where ti < tk < tj, lie below this line. Graphs created using the natural visibility 

algorithm are described by the adjacency matrix A. Aij = 1 or 0 depending on whether nodes i 

and j are linked or unlinked. These graphs are undirected, i.e. Aij = Aji.  

 

Graph metrics. 

a) Graph diameter (D). The shortest (also called geodesic) path between the two most 

distant nodes 15: 

D = max (dij)      (Equation 2) 

where dij is the geodesic distance between nodes i and j. D is the linear size of the graph. 

b) Graph modularity (Q). Q measures how a graph is structured and identifies 

communities/clusters 18. Q is an indicator of graph division – the higher the Q, the 

stronger the division. Nodes that are grouped together have similar properties and graphs 

with high Q have dense node links within modules. For n nodes, m links and two clusters 

let si = 1 if the node i is in cluster 1 and si = -1 if in cluster 2. Q is the fraction of links in 

group 1 or 2 minus the expected number of links in groups 1 and 2 of a random graph 

with the same node degree distribution: 

Q = 1/(4m) ∑{Aij – [(kikj)/2m]}(sisj + 1)   (Equation 3) 



where ∑ is the sum over all node pairs, Aij is the number of links between nodes i and j, 

kikj/2m is the expected number of links between nodes i and j (if links were drawn 

randomly) and ki, kj are the degrees of nodes. 

c) Graph eccentricity (E). E is a centrality measure that captures how important nodes are 

in a graph 15. The E of a node I, E(i), is the geodesic distance, dij, to its most distant 

node. A node is more eccentric if it is further away from its most distant node. 

  E(i) = max (dij).                                   (Equation 4) 

where j is any node. We calculated the average E of all nodes.  

d) Small-worldness. We first define the average clustering coefficient (CC) of a graph. The 

CC of node i, ci, is a number between 0 and 1 that quantifies node link density as:  

     ci = 2ei / [ki(ki-1)]                                    (Equation 5) 

where ki is the number of nodes linked to i (i.e. its neighbors) and ei is the number of 

linked pairs between all neighbors of i. CC is the average ci for all nodes: 

    CC = (1/n) ∑ci      (Equation 6)      

CC indicates the extent to which neighbors of a node are neighbors of each other. To 

compute the average path length (APL) we determine the geodesic distances between 

each pair of nodes, add them up, then divide by the total number of pairs. APL shows, on 

average, the number of steps it takes to get from one node to another: 

APL = 1/[n(n-1)] ∑dij      (Equation 7) 

where dij is the geodesic distance between nodes i and j. A small-world network, as 

defined by Watts and Strogatz, is characterized by high CC and short APL 19. Small-

worldness is quantified by the coefficient σ, which is calculated by comparing the CC 

and APL of a graph to an equivalent random graph with same average degree. 

σ = (CC/CCrandom)/(APL/APLrandom)    (Equation 8) 

If σ > 1, then the graph is small-world.  



MULTIVARIATE LOGISTIC REGRESSION ANALYSIS OF AIS 

GRADE CONVERSION FOR 57 PATIENTS 

 

We used the following settings in the XLSTAT dialogue box: 

Model: Logit 

Response type: Binary	(1	AIS	improvement,	0	AIS	no	improvement) 

Confidence interval (%): 95 

Model selection: Best model / Likelihood ratio 

Min variables: 1 / Max variables: 8 

Stop conditions: Iterations = 100 / Convergence = 1E-06 

Maximization of the likelihood function using the Newton-Raphson algorithm 

 

The multivariate model parameters were (highlighted): 

Source Value St. error Pr > Chi² OR OR LB (95%) OR UB (95%) 

Intercept 11.2 88.4 0.90    

AIS original	(A) 1.4 0.5 0.01 4.2 1.5 11.9 

Age 0.0 0.0     

Modularity 0.0 0.0     

Diameter 0.0 0.0     

Average of node 

Eccentricity	(E) -2.6 1.2 0.03 0.1 0.0 0.7 

Network small worldness 0.0 0.0     

Average of SCPP	(SCPP) 0.1 0.0 0.04 1.1 1.0 1.1 

Average of ISP 0.0 0.0     

 

Equation	of	model:	Pred(At	least	1	AIS	increase)	=	1	/	(1	+	exp(-(11.235+1.432*A-2.583*E+0.052*SCPP)))  

 



 

ROC curve of the multivariate model of 57 SCI patients. Sensitivity (True Positive Rate = 
True Positive /(True Positive + False Negative). Specificity (True Negative Rate = True 
Negative /(True Negative + False Positive the area under the curve. Area Under Curve 
(AUC) quantifies the ability of the model to discriminate between AIS grade improvement (1) 
and no improvement (0). In a perfect model, AUC = 1. In a random model, AUC = 0.5. In 
general, AUC between 0.7 and 0.9 indicates a good model and AUC > 0.9 an excellent 
model.  
 

 

 

Classification accuracy assessed by Leave One Out cross validation (LOO-CV).  

from	\	to	 0	 1	 Total	 %	correct	

0	 27	 5	 32	 84.38%	

1	 10	 15	 25	 60.00%	

Total	 37	 20	 57	 73.68%	

AIS grade increase = 1, No AIS grade change = 0 



	 	

 


