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Abstract

Foreign function interfaces (FFIs) are commonly used as a way to mix programming
languages. In such systems, a program written in a host language calls functions written
in a guest language from within the same program. Perhaps the most popular language to
interface with is C, due in no small part to its performance (often gained through unsafe
operations), and programmers often write performance-critical code in C and call it from
other languages. But while C is a very performant language, it is far from being memory-
safe, and one might expect C to introduce unsoundness into host language systems.

This host/guest language relationship echoes that of typed and untyped code in gradual
type systems. In such systems, untyped values flowing into typed code must be cast at the
boundary between typed and untyped code, and this introduces the possibility for runtime
type errors in otherwise statically guaranteed code. Similarly, when a host language calls a
function written in a guest language, this introduces any unsoundness in the guest language
to the host language, and new errors become possible at runtime. And when an FFI is
being used to call C functions, anything is possible.

In this thesis, we explore the effects of C on languages using a C FFI. To demonstrate,
we give a formalization of Poseidon Lua, an environment wherein Typed Lua code may call
C functions, cast C values, and allocate C data. To showcase the interaction between Lua
and C, we choose to formalize a core calculus for Lua, and do not model C per se; instead,
we reason about C as if C calls were a black-box, remaining general with respect to C’s
semantics, while carefully quantifying the effects that C can have on Lua by leveraging
the concept of blame from gradual typing. We present a nondeterministic operational
semantics for Poseidon Lua, and use blame to assure that C is always at fault for runtime
errors in Lua.
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Chapter 1

Introduction

Foreign function interfaces (FFIs) allow programs written in one language to call functions
from another language within the same program. FFIs are used frequently, with appli-
cations ranging from database queries to programs relying on other, faster languages to
efficiently execute performance-critical sections of the program. In particular, using FFIs
to call C functions is quite common: Dynamic languages such as Python [24] and Perl [21]
offer an easy-to-use C FFI, as do scientific computing languages and environments such as
Matlab [18] and Julia [11]. Many of these languages are relatively memory-safe, restricting
programmers from possibly dangerous direct manipulation of memory addresses, which is
decidedly not the case with C. In these systems, C FFIs introduce some unsoundness, and
might cause code in the host language (i.e. the calling language) to crash in unexpected
ways. Programs calling foreign functions might expect to lose some formal guarantees, and
this is often the case, but this loss is typically offset by a significant performance gain.

Although far predating it, this style of mixing languages shares many similarities with
gradual and optional typing. When the scope of programs written in dynamic languages
increases, so too does the burden on the programmer to ensure that their code is man-
ageable and maintainable. Without type annotations and the resulting compile-time error
checking, these projects quickly become unwieldy, and an increasingly common practice
is to gradually add type annotations to dynamic code, taking small steps towards fully
statically-typed code. Optional and gradual typing differ in their take on runtime sound-
ness: In optionally-typed languages, only fully-typed code is guaranteed sound, and no
typechecks are performed in the presence of the dynamic type, whereas gradual type sys-
tems ensure runtime soundness in the typed component by inserting type checks at the
boundary between typed and untyped code. Naturally, these checks slow down execution
of the program, but they allow us to make some statement of runtime type soundness.
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From this perspective, untyped code can be seen as introducing runtime type errors
into otherwise sound fully statically typed code, thereby at best weakening guarantees
about well-typed code sections. This is not dissimilar to FFIs, as calling code written
in a less strict guest language introduces new ways in which host language programs can
fail, incidentally weakening any guarantees about the host language. Formal analyses of
gradually typed languages employ the notion of blame, which is a way to track dynamic
type errors and concretize their otherwise nebulous origin [29]. At a high level, untyped
values crossing into typed code are tagged with blame, and in the event that they are
involved in a runtime type violation, the source of the type error can be traced back to
untyped code.

To the best of our knowledge, the parallel between FFIs and gradual typing remains
unexploited. The guest/host language relationship in FFIs is akin to the untyped/typed
language relationship in gradual typing: Just as untyped code introduces runtime type
errors in typed code, guest language calls introduce “guest language errors” into the host
language. To get a handle on the effect of the dynamic any type, gradual typing uses
blame to isolate the source of type violations, and we aim to use the concept of blame to
formally reason about the effects of C foreign functions in the host language.

In this thesis, we present a formalization of Poseidon Lua, a language runtime and
accompanying formalization of Typed Lua [17] interoperating with C. In this language,
Typed Lua plays the part of the host language, and may call C functions (identifying it
as the guest language) and directly reference C data. We formalize Poseidon Lua by de-
veloping a small calculus for Lua and extending it with types and C functionality such as
function calls, downcasts, and data read and write. To draw attention to the interoperation
of C and Lua, we chose a core calculus for Lua, based on Featherweight Lua (FWLua) [12],
and do not model C’s semantics per se: We do not model the specifics of the inner work-
ings of C calls, which allows any semantics for C to be “plugged in”, and instead focus
on quantifying the worst-case effect that C can have on the Lua runtime environment,
accomplished with a nondeterministic semantics for C which accounts for any choice of
C semantics. Using techniques from the analysis of gradual typing, we prove the likes of
conditional type soundness, C fault isolation, and we show that we can without a doubt
blame C for runtime failures that occur in Lua.

The primary contributions of this work are:

• a formalization of Poseidon Lua, an efficient implementation of Lua interoperating
with C;

• several proofs about Poseidon Lua, including a proof of conditional type soundness,
C fault isolation, as well a proof that C is always to blame for runtime faults;
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• more generally, we present a nondeterministic formal semantics (of which our seman-
tics for Poseidon Lua is an example) which is more broadly applicable;

• a treatment of FFIs with techniques adapted from gradual typing, showing how to
generalize the notion of blame to other systems.
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Chapter 2

Background and Motivation

In this thesis, we tackle FFIs with formal techniques used in reasoning about gradual
typing. In this chapter, we discuss important background information necessary to the
understanding of our system. We start by delving into language mixing.

2.1 Foreign Function Interfaces

FFIs are prevalent in modern programming, and they date back to Common Lisp [13],
which first introduced the concept of calling functions written in another language. Many
dynamic languages, such as Python [24] and Perl [21], have easy-to-use C FFIs, allowing
programmers to quickly and easily call functions written in C, a language made famous
by its speed (and infamous for its frequently undefined behavior). In fact, C FFIs are
very common in systems where performance is critical: Scientific computing environments,
such as Matlab [18] and Julia [11], carry out intensive numeric computations and sim-
ulations, and often programmers turn to C to speed up the running time of their often
computationally intensive programs.

The semantics of FFIs and language composition are not unknown to the research
community. Early work by M. Abadi and coauthors [1] explores dynamic typing in a
statically typed language, a mixing of two very different language paradigms. Other work
by K. Gray [7] tackles the problem of multi-language object extension, and presents a
sound calculus modeling the language interoperability and the semantics of objects written
in one language being extended in another. More recently, some work by M. Grimmer and
coauthors [8] has delved into the design of a virtual machine to facilitate multi-language
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development, noting that different programming languages are well-suited for different
tasks and so being able to use them interchangeably within the same program would be
optimal depending on the tasks required.

These forays into the semantics of language mixing are fine-grained in their treatment
of the technicalities of the composition; for example, J. Matthews and R. B. Findler [19]’s
boundaries explicitly regulate value conversions. We are more interested in a higher-level
view of the language composition, emphasizing the effect that C activity can have on a
host language with more guarantees. To avoid being bogged down in a full formalization
of C, our aim is to present a more general formal semantics in which any semantics for C
can be chosen.

Multi-language environments, such as TruffleVM [8], are often implemented on virtual
machines, which we discuss next.

2.2 Virtual Machines

One way to allow languages to interact is through a multi-language virtual machine (VM).
VMs centralize many of the fundamental design decisions of programming languages, pro-
viding virtual environments in which programs can run. There are many examples of
modern languages which run on VMs. Java is the primary example, as the portability of
the JVM (Java VM) is what makes this language so easy to run on almost any platform.
There are in principle no incompatibilities between programs written on different under-
lying hardware, as they all run on the JVM; any low-level differences are handled by the
JVM itself.

Besides being able to run on multiple platforms, VMs can offer a portable target ar-
chitecture for languages. For example, Java programs compile into Java bytecode which
is run by the JVM, but other languages may also be compiled to Java bytecode. If an-
other language were to compile into bytecode, then interoperation between that language
and Java would be greatly simplified, since both languages are equivalent at the bytecode
level. In general, when multiple languages are implemented on top of the same VM, calls
between these languages are facilitated by a common underlying architecture. In this vein,
TruffleVM achieves easy language composition by compiling higher-level languages (such
as JavaScript, Ruby, and C) down to its underlying architecture, and guarantees efficient
interoperation through its own efficient mechanisms to share data between languages.

This approach creates semantic mismatch, however. If the VM is high-level enough to
easily target languages like Java, then it is awkwardly low-level to target languages like
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Lua, and far too high-level to easily target languages like C. Interaction between C code
compiled by a standard C compiler and dynamic-language code run by a standard VM
can’t be addressed without substantial modification to C. Indeed, this problem arises even
in the absence of VMs per se, as many C++ libraries provide C interfaces for C-only FFIs.

Since Poseidon Lua generalizes to any implementation of C, it does not demand such
a common underlying layer. However, it could be argued that C is that layer, as most
languages, including Lua, are implemented in C or C++.

2.3 Lua, Featherweight Lua, and Typed Lua

Lua is a lightweight imperative scripting language with lexical scoping and first class func-
tions. Lua is extensible, and offers many metaprogramming mechanisms to facilitate adap-
tation of the language. Its main data structure is an associative array known as the table,
which can stand in for most common data structures, such as arrays, records, and objects,
and the functionality of tables can be further augmented through metamethods, which are
essentially hooks for the Lua compiler. Lua is used in many applications, ranging from
embedded code in automobiles to scripts in “AAA” game titles [15].

Idiomatic Lua programs are slightly difficult to quantify due to how easy the language
is to extend, and Lua programmers often augment the functionality of their tables through
the metaprogramming mechanisms of metatables and metamethods. As we will see in later
examples, classic object-oriented programming patterns, such as methods and constructors,
can be easily encoded in Lua with these mechanisms.

To gain a deeper understanding of Lua programs, a semantics was developed by M.
Soldevila and coauthors [26], mechanized in PLT Redex [5] using reduction semantics with
evaluation contexts. Another semantics, not unlike Featherweight Java [10] and Lamb-
daJS [9], proposes a core calculus for Lua. Called Featherweight Lua (FWLua) [12], this
semantics focuses on formalizing what authors deem to be the essential features of Lua:
first-class functions, tables, and metatables. Remaining Lua features, including expression
sequencing and control structures, are shown to reduce into FWLua through an extensive
desugaring process. The FWLua specification [12] also provides a reference interpreter
written in Haskell.

To capture Lua idioms, authors of this core calculus focused on the essential building-
blocks of Lua table functionality, rawset and rawget, and, together with other basic
semantics constructs like functions and binary operations, propose functions which mimic
the semantics of full-fledged Lua. For example, to capture Lua’s scoping rules, FWLua
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reserve certain tables to be so-called “scope tables”: for example, the local table is always
accessible, and changes whenever a new scope is entered while keeping a reference to its
outer scope in its outer member. This way, variable access (say, of x) is desugared into
a function which first searches through local, and if x is not present in local, then it
searches recursively through local. outer, and so on until x is located, producing nil if
x is not found. This proved challenging to reason about, so we chose to promote variables
to first-class language members.

Lua is a dynamic language, and as is often the case with these languages (see Type-
Script [20] and Typed Racket [28]), there have been a few attempts at adding some form
of type information. One such example with Lua specifically is Tidal Lock [14], a static
analyzer relying on simple type annotations. Another is Typed Lua, an optional type
system for Lua [17].

Lua is an extensible language, and is in some sense driven by best practice. In their
design of Typed Lua, authors performed an automated analysis of existing Lua programs
to obtain a clear picture of how programmers use the language. The authors paid close
attention to idiomatic Lua code, and ensured that their design aligned with conventional
language use. Typed Lua is optionally typed, which means that the types have no effect on
performance since all type information is removed when code is compiled. Authors of Typed
Lua accounted for a large subset of Lua, but omitted a few parts, namely polymorphic
functions and table types, and certain uses of the setmetatable function.

Poseidon Lua can be essentially described as Typed Lua interoperating with C, and we
will discuss this further near the end of this chapter, and we will describe its type system
in detail later in Chapter 4. For now, to get a better handle on these languages, we will
show several code snippets from all three, starting with tables.

The following illustrates table construction in Lua:

local t = {}

t.x -- nil , uninitialized table members are nil

t.x = 42 -- t.x is now 42

t[0] = "hello" -- tables may be indexed like arrays

t["hi"] = 3.14 -- equivalent to t.hi

In Lua, tables can be accessed in a variety of ways, and have syntax which specifically
supports different access styles, be it array-style or record-style.
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Tables are incrementally constructed, and can be extended at any time. In FWLua,
the above directly translates to:

rawset(_local , "t", {})

rawget(rawget(_local , "t"), "x")

rawset(rawget(_local , "t"), "x", 42)

rawset(rawget(_local , "t"), 0, "hello")

rawset(rawget(_local , "t"), "hi", "hello")

As you can see, the rawset and rawget functions are used to write and read from a
table, respectively. As we mentioned earlier, FWLua desugars variables into special table
members: The table local deals with local variables, and the table ENV deals with global
variables. Note again that our adaptation of FWLua allows for variables.

FWLua additionally desugars statement sequencing into function application ([23], pp.
119-120). The statement e1; e2 desugars into (λx.e2)e1 where x is not a free variable of
e2. That said, for simplicity’s sake, we will write FWLua in sequence. Note that our
formalization of Poseidon Lua includes sequencing, which greatly simplified one of our
proofs.

Typed Lua disallows most incremental construction of tables, as it is more strict and
requires that table member names be explicitly declared. The syntax for table construction
follows:

local p : {string: number , string: number} = {x = 3, y = 4}

p.x -- 3

p.z = 5 -- runtime error

Here, it is no longer possible to incrementally construct a table, and full initialization of
tables is required. One may also declare interfaces in this language, which are just names
for a structural type. Consider:

local interface Point

x : number

y : number

end

...

p : Point = {x = 3. y = 4}

Typically, gradual and optional type systems that are developed based on an existing
dynamic language are required to easily (i.e., with minimal annotations) type code id-
iomatic to the language. In Lua, incremental table construction is very typical, so Typed
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Lua allows this in a limited manner. Keeping in mind the Point interface from above,
consider:

local q = {}

q.x = 3

q.y = 4

local p : Point = q

Typed Lua has some type inference, and here the type of q at the assignment site can
be inferred to be {string: number, string: number}, which matches the type of the
Point interface. We do not model this inference or these casts, as we feel that they are
more of a convenience than a necessity, since one could just construct a table as-is without
this incremental construction.

Another important facet of any language is functions. The following illustrates syntax
for declaring a function in Lua:

function addTwo(a, b)

return a+b

end

In Lua, functions are first-class values, and you can store functions as table members.
As such, we can define a similar function in this alternate syntax:

local subTwo = function (a, b)

return a - b

end

local calc = {}

calc.sub = subTwo

The function definition enables the call subTwo(4, 2). Additionally, we stored the
function as a table member in the table calc, so it may be called with calc.sub(2, 1).

Functions in FWLua are always restricted to accept a single argument, and multi-
argument functions achieved through currying of single-argument functions. To illustrate,
consider the function subTwo, formulated in FWLua below.

rawset(_local , "subTwo",

function a return

function b return

a - b

end

end)
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Note that for simplicity, we write function a return e end to mean λa.e (all func-
tions return a value in FWLua). To call subTwo, one would write:

(rawget(_local , "subTwo")(5))(3)

Above, the expression rawget(_local, "subTwo")(5) return a function which takes
1 argument (in fact, the function produced is exactly function b return 5 - b end), so
we apply it to 3 in order to perform the inner computation. This is a standard technique,
and you can write a similar expression in Lua (and indeed in any language with first-class
functions):

function subTwo (a)

subFromA = function (b) return a - b end

return subFromA

end

subTwo (5)(3)

Again, here the expression subTwo(5) returns a single-argument function, and we apply
that function to 3 to obtain the desired result.

As for Typed Lua, typing functions is unsurprising. Consider below the addTwo function
from earlier, written in Typed Lua:

function addTwo(a : number , b : number) : number

return a + b

end

Things get a little more complicated with the composition of single argument functions,
but it is nonetheless possible to type them. Consider the Typed Lua version of subTwo:

function subTwo (a : number) : number -> number

subFromA = function (b : number) : number

return a - b

end

return subFromA

end

Here, it is clear that subTwo( ) produces a function, and must be applied to another
argument to fully evaluate.

A big part of Lua’s flexibility is derived from its metatables and metamethods. A
metatable is a table which is gained through the setmetatable function: it contains
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metamethods (such as add and eq) which overload the appropriate operators to instead
call the metamethod code. These constructs allow programmers to add functionality to
tables and customize their behaviour, and is markedly similar to operator overloading in
other languages. To illustrate, consider the following:

Point = {} -- initialize Point prototype

Point.mt = {} -- set metatable for Point

function Point.new(x, y) -- contructor for a Point

local p = {}

setmetatable(p, Point.mt) -- give p Point 's metatable

p.x = x

p.y = y

return p

end

Now, when we create Points using the Point.new constructor, we will receive a new
table with x and y fields with Point.mt as a metatable. We can populate the metatable
as follows:

function Point.add(p1 , p2)

local p = Point.new(p1.x + p2.x , p1.y + p2.y)

return p

end

Point.mt.__add = Point.add

Point.add takes two points and adds them together element-wise. When we set
Point.mt’s add member to Point.add, we are stating that when adding two Points,
instead of using the arithmetic add operator, we should call Point.add. In other words,
we set the add metamethod on Point.mt to be Point.add. Now, we can write:

local p1 = Point.new(1, 2)

local p2 = Point.new(3, 4)

local p3 = p1 + p2

p3 -- p3.x is 4, p3.y is 6

Tables with Point.mt as a metatable have the addition operator overloaded for them,
and now addition over these tables will look for x and y members to add together. The
same can be done with all arithmetic and relational operators in Lua.

Two more useful metamethods are index and newindex. If a table’s metatable
has an index metamethod, accessing nonexistent members in the table will redirect
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to index. Similarly, if a metatable has an newindex metamethod, assignments to
uninitialized fields will redirect to newindex. This is useful for inheritance, but also for
prototyping. Consider:

Racer = {}

Racer.DefaultInfo = {startKm = 0, curKm = 0, endKm = 42}

Racer.mt = {}

function Racer.new ()

local r = {}

setmetatable(r, Racer.mt)

return r

end

The above defines a prototype for someone running a marathon. We can populate the
Racer.mt metatable with an index member, which will redirect accesses to uninitialized
table members:

Racer.mt.__index = function (racer , key)

return Racer.DefaultInfo[key]

end

Now, it is clear that we don’t set any of the Racer’s fields in the constructor. So, if we
try to access one of those fields, we will get:

local r = Racer.new ()

r.startKm -- produces 0

r.endKm -- produces 42

When Lua discovers that r has no member startKm, it will look at r’s metatable to see
if it has an index member. If it does, it will call it with two arguments: the table being
accessed (r) and the member that “missed” (startKm). We may also define a newindex

metamethod, which works similarly but for writing to nonexistent members.

In Lua, tables can also play the part of objects. That said, Lua doesn’t support objects
per se, and instead programmers need to extend tables and construct object functionality
with metatables and metamethods. Consider:

local iterator = {}

iterator.cur = 0
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iterator.inc =

function (iter)

iter.cur = iter.cur + 1

end

iterator.inc(iterator) -- cur is now 1

Here, we created an iterator-style object, with a cur field for the current index and
an inc method to increment that index. Unfortunately, the above example isn’t really
object-oriented in the traditional sense, when we might expect the inc method to be
able to somehow reference the calling iterator’s field (indeed, in object oriented languages
one would expect to write iterator.inc(), without passing the iterator itself). Lua’s
class functionality is reminiscent of object-orientation in prototype-based languages such
as JavaScript. Consider:

Iterator = {cur = 0} -- the Iterator "class"

function Iterator:new (t)

local iter = t or {}

setmetatable(iter , self)

self.__index = self

return iter

end

function Iterator:inc ()

self.cur = self.cur + 1

end

The constructor Iterator:new uses some Lua language features which are worth men-
tioning in detail. First, either an empty table is allocated and stored in local vari-
able iter, or the argument t is placed there if such a t was given. Then, we call
setmetatable(iter, self), which sets iter’s metatable to self, which we know to
be Iterator thanks to the colon in the function name. As before, this has the effect of
redirecting field accesses on fields which do not exist in iter to Iterator; this way, writing
iter.cur before it has been initialized will redirect the lookup to Iterator, which will
produce 0. In setting self’s (i.e. Iterator’s) index field to itself, we ensure that field
lookups do not go beyond Iterator. Once all that bookkeeping has been completed, iter
is returned as a fresh Iterator.

This is a typical setup for classes and object-orientation in Lua. The Iterator class is
effectively a prototype, and a call to Iterator:new() creates a new instance of the proto-
type. The colon in Iterator:new() is merely syntactic sugar for having a “self” argument,
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i.e. Iterator:new() is equivalent to Iterator.new(self). To create an Iterator, one
writes:

i = Iterator:new()

ii = Iterator:new()

i.cur -- 0

i.inc() -- increments i's cur field to 1

ii.cur -- still 0, as expected

Inheritance is also straightforward in Lua. Imagine that we wanted to define a Maxed-

Iterator, which gives a maximum to the iterator’s cur value. Consider:

MaxedIterator = Iterator:new()

This defines MaxedIterator as an instance of Iterator. To create one (with, say, a
max field), we can write:

miter = MaxedIterator:new({max = 4})

In passing a value for t, the Iterator constructor is now modifying a table with a max

field (instead of the default empty table). At this point, we can call the inc method in
miter:

miter:inc() -- increments miter.cur to 1

The MaxedIterator prototype does not have an inc method, but the metatable set in
the Iterator constructor ensures that when the method lookup fails, it is redirected to
Iterator, where it is found. Now, we can modify the functionality of inc to take the max

into account:

function MaxedIterator:inc()

if self.cur < self.max then

self.cur = self.cur + 1

end

end

Now, miter:inc() will not exceed the specified max. Under the hood, this func-
tion definition causes MaxedIterator to have an inc field, so when inc is called on a
MaxedIterator (say miter), the interpreter won’t find inc on miter, but will take ad-
vantage of miter’s metatable to look in MaxedIterator, finding the refined definition of
inc.
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We will again turn our attention to Typed Lua. Here, we will redefine our Iterator

example with types. The following code snippet shows an interface declaration in Typed
Lua.

interface Iterator

cur : number

const inc : () => ()

end

In Typed Lua, the => syntax is syntactic sugar for defining a function with a first
parameter named self with the type of the enclosing structure (here, Iterator). An
equivalent formulation of inc is const inc : (self : Interator) -> (). To construct
the inc method, we write:

const function Iterator:inc()

self.cur = self.cur + 1

end

The const annotation both here and in the Iterator interface state that the method
cannot be changed. Finally, the constructor for Iterator is not unusual, and Typed Lua’s
type inference takes care of determining the return type:

const function Iterator:new()

local iter = setmetatable ({}, {__index = self})

iter.cur = 0

return iter

end

The above code looks slightly different than the constructor code in plain Lua, but it
is equally valid (in that you could write either in both Typed Lua and Lua).

Typed Lua also supports inheritance, in a similar manner to Lua. Consider:

MaxedIterator = Iterator:new()

MaxedIterator.max = 0

const function MaxedIterator:new(max: value)

local miter = setmetatable(Iterator:new(),

{__index = self})

miter.max = tonumber(max)

return miter

end
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Unfortunately, the overridden constructor (here, MaxedIterator:new) must be a sub-
type of its supertype’s constructor, so the type of passed values must be very permissive.
In order to consolidate all of the types in constructors, Typed Lua treats setmetatable

with some care: In setmetatable(t1, t2), if the type T1 of t1 is a supertype of the type
Ti of t2’s index field, then it changes the type of t1 to Ti, which (in the above construc-
tor) has the effect of changing the type of miter to MaxedIterator, thereby allowing the
assignment to miter.max.

Note that Typed Lua does not have a polymorphic type system, so programmers must
explicitly call setmetatable in constructors—some existing Lua libraries do this, but
Typed Lua has not yet managed to hide these calls behind more pleasant abstractions.
Further, Typed Lua cannot type the use of metatables for operator overloading; for exam-
ple, if two Points p1 and p2 are added like p1 + p2, Typed Lua is incapable of typing the
result, and will not know that a Point should result from this operation.

One important thing to note here is that none of these fancy language features are im-
possible to replicate with other, simpler ones. In addition to colon in function declarations
being syntactic sugar, the index table member’s lookup redirection is nothing more than
a sequence of accesses:

local i = Iterator:new()

i.cur -- 0, since Iterator.cur = 0

getmetatable(i).cur -- also 0 as i's metatable is Iterator

In FWLua, provided that we store the metatable in a metatable field, one could write:

rawget(rawget(rawget(_local , "i"), _metatable), "cur")

Metatables merely provide information to the Lua compiler about to handle certain
operations when the first interpretation fails, and in fact in old versions of Lua metatables
were known as fallbacks. With proper awareness by a programmer, metatables become
more of a convenience than a necessity, and so are a form of syntactic sugar. While greatly
increasing the usability of the language, and sometimes easing language analysis, they are
in no way core to the language itself.

2.3.1 Peculiarities and Semantics

In developing our formal specification of Poseidon Lua, we base our formalization of Lua
on the minimal calculus of FWLua, which allows us to focus on the the C FFI without
getting bogged down in the semantic details of Lua. The semantics of FWLua is a big-step
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semantics, as opposed to a more traditional small-step semantics. In small-step semantics,
expressions take one small reduction step at a time, and in big-step semantics, an entire
expression (sub-expressions included) is reduced all in one big step.

The following illustrates the differences:

e1 ⇒ v1 e2 ⇒ v2
numeric(v1) numeric(v2) v = v1 + v2

e1 + e2 ⇒ v
(BS Add)

In this big-step rule, the expression e1 ⊕ e2 takes one big step to v, provided that both
e1 and e2 step to numbers. In small-step, we would write:

e1 → e′1
e1 + e2 → e′1 + e2

(SS Add 1)
value(v1) e2 → e′2
v1 + e2 → v1 + e′2

(SS Add 2)

numeric(v1) numeric(v2)
v3 = v1 + v2

v1 + v2 → v3
(SS Add Do)

Here, both sub-expressions step through to values before the expression steps as a
whole. Also, we can encode an evaluation order with small-step, as it’s clear here that e1
steps through to a value before e2.

Big-step semantics is convenient from a human point-of-view, as a reader can glean
most important information from the rule. The granular transitions of small-step seman-
tics are largely uninformative for most readers, as the details of the mechanisms of the
small reductions are not very interesting, and yet those details are absolutely crucial when
mechanizing a formal semantics for such a system. As such, FWLua’s big-step seman-
tics proved inadequate, as mechanization demands the utmost attention to detail, and we
developed a small-step semantics based on it.

FWLua also defines a number of constructs to achieve normal Lua behaviour. For
example, it desugars variables into table read and write to special “scope tables” (which
approximate scope at runtime), and defines functions for variable access and update, which
leverage the runtime table store. This is perfectly reasonable, but these constructs are
particularly complicated to reason about in mechanized proof assistants.

Following in the footsteps of gradual type systems, we set out to specify both a typed
and untyped language, and have the typed language “compile” into the untyped language
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through our typing judgment. It was important to us to have variables be fully-fledged
members of our typed language, and we faced a number of challenges when trying to
compile these variables into the untyped language (where they did not exist). For example,
a simple variable access in the typed language transformed into a complex set of functions
in the untyped language, relying on the presence of the aforementioned scope tables in the
runtime environment. This was immensely complicated, especially given that we aren’t
particularly interested in the untyped-typed language relationship, and want to focus on
interoperation with C. As such, we decided to promote variables to be first-class members
of the runtime language as well as the typed language, and did away with a large amount
of unnecessary complexity.

In summary, Poseidon Lua uses Typed Lua’s type system, with the addition of C
types through the Lua pointer type, discussed in more detail in Section 2.5. We will be
formalizing a modification of FWLua, extending it with Typed Lua’s type system, and
adding C calls, casts, data allocation, and C store read and write. Our intention is to
prove conditional type soundness of Poseidon Lua, as well as show that C code is always at
fault when runtime errors occur in otherwise sound Typed Lua. This shares some notable
similarities with results from gradual typing, which is discussed next.

2.4 Optional and Gradual Typing

The desire to transition from dynamic to static typing has led to the development of
optional and gradual typing, with which users can choose to add type annotations if,
when, and where they please. This means that the translation from untyped to typed code
becomes as simple as adding type annotations to untyped code, and removes any sources
of error due to low-level language incompatibilities [2]. It also means that partially typed
code can still run, which allows the code to be used during the entire translation process
(it is no longer “all-or-nothing” in terms of typing).

The distinction between optional and gradual typing lies in their runtime soundness
guarantees. In optional typing, fully typed sections of the code are typechecked at compile
time; but, if the dynamic type any is used, then no typechecks are performed. The result
is that the execution is as fast as the plain dynamic code, but there are no runtime type
guarantees. In contrast, gradual type systems ensure runtime soundness by inserting type
checks at the boundaries between typed and untyped code. This means that any type
errors not caused by the static compile-time type checking (i.e. type errors where there
were no type annotations) will be caught at runtime as ill-typed values enter the typed
sections of code. The downside of the soundness guarantee is that the added runtime
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checks add significant overhead to the program execution, resulting in a slowdown which
can be prohibitive [27].

A formal representation of the typing guarantees of gradual typing defines it as a fully
qualified typing paradigm. The gradual guarantee, formalized by J. Siek and coauthors [25],
lists a number of requirements for a gradual type system to satisfy. Essentially, this guar-
antee states that “changes to the annotations of a gradually typed program should not
change the static or dynamic behavior of the program”. In other words, a well-typed
program should evaluate to the same result independent of the number of (correct) type
annotations present in the program. This is fundamental to the idea of gradual typing:
the actual functionality of the program remains unchanged, with the only effects being on
the type checking, in the event of a program without any static or dynamic type errors.

Another crucial result in gradual typing is the statement that “well-typed programs
can’t be blamed” [29]. P. Wadler and R. B. Findler adapt the concept of blame for contracts
for higher-order functions [6]: A contract is merely a requirement that must be fulfilled, and
authors define a framework in which contract violations could be blamed on some code [6].
For example, a function fun might have a contract asserting that its argument is a string

with a particular length, say n, and returns a single-digit integer. If fun was called with a
string of length 6= n, then the caller would be blamed for incorrectly using fun, whereas
if fun was found not to produce a single-digit integer, it would itself be blamed for not
fulfilling its own contract.

In showing that well-typed programs can’t be blamed, P. Wadler and R. B. Findler
apply blame from contracts to the casts in gradual typing [29]. An important result from
their work is a simple proof that, if a gradually-typed program goes awry, then blame
always lies with the untyped code. This result allows us to make a meaningful statement
of soundness for gradual type systems, even in the presence of dynamic code.

Our ultimate goal is to apply the tools and techniques of the formal analysis of gradual
typing to FFIs. The gradual guarantee doesn’t quite apply to FFIs, since it deals with
removing annotations from annotated code (thus making it unannotated), and there is a
direct and easy transformation between these two languages, which is not the case for FFIs
(as there is no clear transformation between C and Typed Lua). C is a more expressive
language than Lua, and it is unclear how one would convert arbitrary C code into Lua
code.

We might not have an equivalent to the gradual guarantee, but we may certainly adapt
some concepts from gradual typing for our formal treatment. The concept of blame, for
instance, is particularly interesting to us. In the realm of gradual typing, we guarantee
that untyped code is always to blame for runtime type errors; while in the realm of FFIs,
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when a language with stronger guarantees calls function written in a less safe language,
we can argue that errors exclusive to the guest language can always be blamed on guest
language code. Specifically in Poseidon Lua, we show that C code is always to blame for
errors in well-typed Typed Lua, in an adaptation of the statement “well-typed programs
can’t be blamed”. This is taken up in Chapter 5.

2.5 Poseidon Lua

Poseidon Lua is implemented as a set of extensions to Lua 5.3.3 [15] and Typed Lua [17].
Lua is extended with:

• a dynamic type to hold an opaque, unmanaged (non-garbage-collected) pointer,

• intrinsics to read and write scalar values from offsets through such opaque pointers,
converting them to or from Lua scalar types in the process, and

• modifications to Lua’s existing FFI to call C functions using these opaque pointers
rather than its existing wrapped types.

These extensions are not intended to be used directly, and provide no correctness or safety
guarantees if used without types. Instead, Typed Lua is also extended, with syntax for
declaring C structs, and a type constructor ptr which declares a variable, parameter or
field as holding an unmanaged pointer of a given C type. Accesses to members of such a
value are compiled by Typed Lua into the added Lua intrinsics. The goal was not to allow
all C-like behavior in Lua, but to allow faster interoperability between unsafe C code and
safe Lua code, so many unsafe behaviors are not supported; for instance, arrays must be
explicitly declared as such and allocated to the correct size. Casting, null pointers and
deallocation are allowed, as eliding them would too severely limit the combined behavior.
Dereferencing a null pointer can be configured to throw a Lua exception—checking for
null before dereferencing—or to raise a traditional operating-system-level error such as a
segmentation fault. Dereferencing bad pointers with values other than null will also raise
a fault, but such bad accesses are always the fault of C code or an incorrect downcast or
deallocation. That is, in the absence of incorrect downcasts and deallocations, the Poseidon
Lua code itself accesses C data correctly; type safety errors can be blamed on C.

This implementation style allows Poseidon Lua to gain performance over standard
FFIs in two ways. First, standard FFIs only allow access to objects through wrapper
objects, which are objects allocated in the host language—in this case, Lua—which wrap
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the foreign language—in this case, C—objects and mimic a host-language interface. While
this technique is extremely flexible, it has a major downside: Each object accessed in C
requires an object to be allocated in Lua. Without extremely careful optimization, multiple
wrapper objects can be allocated for a single C object. Poseidon Lua avoids any wrapper
objects by holding C pointers directly.

This has the immediate consequence of needing to include at least some part of C’s
type system as a subset of Lua’s. Usually, FFIs don’t include guest language types, and
the wrappers manage the translation from guest language code (and thus from the guest
language’s type system into the host language’s). In fact, the inclusion of guest language
types in the host language’s type system goes hand-in-hand with the aforementioned op-
timization, and without it, Poseidon Lua’s performance gain would not be possible: By
directly holding C pointers, the system is faster and the type systems merge to some degree.

Second, by avoiding this allocation, Poseidon Lua’s garbage collector avoids tracing
these wrappers. In principle, this is also an advantage over plain Lua or Typed Lua, but
in practice, the first benefit is far more significant.

The implementation’s performance was tested on a small selection of benchmarks
(binary-trees, n-body, spectral-norm and fannkuch-redux) chosen because they access data
in structures; that is, they’re not purely numerical benchmarks and have structures al-
located at runtime. In each benchmark, the core data types were adapted to C types,
and the code was adapted to use either Lua’s existing FFI to access those data types or
Poseidon Lua. That is, no actual C code was added, so our comparison is Lua against
Lua, but C data types were added. The performance difference of Poseidon Lua compared
to plain Lua with no C interfacing at all was not statistically significant, as Lua’s existing
optimizations for accessing its own data types had largely the same performance benefits
as using direct memory access, and the benchmarks were likely not long enough to see a
significant benefit from reduced tracing. On the other hand, Poseidon Lua had an average
speedup of 7.8× over Lua’s FFI, by avoiding needless run-time allocation.

This thesis focuses on the design and soundness guarantees of the programming lan-
guage. The formal guarantees do not depend on this particular implementation, which
will be presented separately. Were Poseidon Lua adapted to compile to Lua’s existing FFI
instead of its own intrinsics, the behavior and correctness would be identical, albeit slower.
Although we focus our formal semantics on Lua, we believe that the concepts generalize
to foreign function interfaces in many other programming languages.
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Chapter 3

Nondeterminism and C at a Glance

In this thesis, we aim to demonstrate that the tools and techniques used to reason about
gradual typing can be applied to reasoning about FFIs. While we will present the formal
semantics for Poseidon Lua, our results hold for any choice of language combination. In
fact, in the spirit of being general, we do not model C’s semantics. While possible, we
feel that a full model of C would detract from our purpose, as the semantics would be
enormously complicated. Instead, we will account for all possible semantics for C, which
leads us to a nondeterministic semantics, discussed further in Section 3.1. We focus less on
the mechanics of each language, and more on qualifying the effect that the guest language
has on the system. This effect is not intrinsic to the choice of languages, but rather to the
safety differential between them.

The nondeterministic semantics that we are left with may be a byproduct of our model-
ing (or lack thereof) of C, but we believe that it is itself interesting. For our purposes, the
interaction of C and Lua is interesting, and not either language independent of the other; if
a full model of C was important for a particular formal spec, one could plug in their choice
of C semantics in for our black box version and have a more precise picture of its execution.
That said, whatever one chooses as a C semantics will simply represent choosing one of the
infinite semantics encompassed by our nondeterministic model. In carefully accounting for
all semantics, one can reason simultaneously about all such semantics, provided that the
level of abstraction is satisfactory.

Another advantage of nondeterminism is that it allows one to be implementation-
agnostic: Many languages have defined operational semantics which describe some manner
of execution, but at the end of the day it’s the implementation that actually drives the
program. For example, CompCert [3] is a formal description of the semantics of C as
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realized by its compiler, and one should not expect all of CompCert’s assertions to hold for
C programs compiled with a different compiler. In short, when the effect of an execution
is the subject of interest, rather than the execution itself, a nondeterministic semantics
such as the one presented in this thesis allows one to reason independently of language
implementations.

In order to showcase blame and nondeterminism as tools for analyzing FFIs, formalizing
Poseidon Lua is a good choice for a few reasons. First, calling C functions from other code
(including Lua) occurs frequently, and so having C as a guest language is realistic. Second,
Typed Lua is a far safer language than C, which throws the unsafe behaviour of C into
the spotlight: In Typed Lua (and indeed Lua), very few runtime errors are possible, in
stark contrast to C. Finally, C can be a pretty destructive language, which requires us to
account for a wide variety of behaviour. Poseidon Lua also has a number of interesting
properties besides making C calls, as it allows explicit downcasting of pointers as well as
allocation of C data.

C’s direct memory manipulation and lack of memory management have given it a
reputation for being both lightning fast and notoriously unsafe—for example, C pointer
arithmetic is unsafe, and one way that C can gain performance over other languages. Its
power and speed lead many programmers to write performance-critical code in C, and find
ways to incorporate C into their other environments. As one would expect, calling a C
function from any other language invites C’s undefined behavior into the environment, and
certainly has ramifications on any existing guarantees. This is not dissimilar to gradually
typed languages, where any-typed values flowing into typed code reintroduce the possibility
of runtime type errors. We wish to work with and adapt the notion of blame to FFIs, and
make a similar statement to that in [29], showing that C is always to blame for runtime
failures, no matter where they occur.

In gradual type systems, blame is introduced at cast sites, and carried with the untyped
value as it moves through statically-typed code. In a sense, the act of accepting an untyped
value into typed code introduces the possibility of runtime type errors, a fact mirrored in
systems using a C FFI, where all bets are off as soon as a C function is called. If we could
assign blame at these call sites and propagate it appropriately, we would be able to track
their effects and trace any issues that arise because of them back to the offending call.

To illustrate, consider a C function call: Without knowledge of the function’s code,
we cannot guarantee that the function will even succeed, let alone consider what value
is returned or its influence on the heap. And even if the function succeeds, we should
be skeptical of any future references to memory that C might have had access to, as it’s
possible that the call freed or corrupted all memory. With a full model of C, we could get
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a handle on this behaviour, but fully modelling C is both challenging (see CompCert [3])
and distracting from our purpose to focus on its effects. Without such a model, we are left
with a nondeterministic semantics, which we discuss in more detail next.

3.1 Nondeterminism

Our choice not to model C’s semantics is a double-edged sword: On the one hand, our
formalism and statements are more general, but on the other hand we can’t say exactly
what a C function actually does, and have no choice but to account for all possibilities. This
amounts to a nondeterministic semantics; performing a C call steps nondeterministically
to every state that the C call could have produced, including every possible change to the
heap and, of course, failure. It is possible for a C function to never return; if this is the
case, then we have nothing to say about Lua anymore, since no Lua code will be executing.

While we have said that we account for all possible executions of C, our model does
make some assumptions. For one, we assume that C does not touch Lua’s memory, and
that its effects are contained to an explicitly defined “C store”. This mirrors reality in
most other FFIs, where guest code and data is not aware of host code and data. We also
make a simplifying assumption that all allocation and access is by word, which reduces
the complexity of C data accesses without loss of generality. We require that C doesn’t
write or mutate Lua code, otherwise we would have to scrutinize existing expressions that
have yet to be reduced and would be unable to prove anything. We additionally make no
mention of the stack pointer, which would needlessly complicate function calls and returns
for no real benefit. Further, C functions cannot call Lua functions in our formalization, so
as to package all of C’s effects into one black box; this is possible through callbacks, but
would again be too complex for far too little gain. Finally, we disregard threads, which
avoids needing to reason about the effects of concurrency on top of the effect of C, a layer
of complexity which is outside of the scope of this project.

Ultimately, we wish to encompass both C function executions which altogether fail
and crash the entire program, for instance by dereferencing a null pointer, as well as
executions which succeed. To represent this in our formalization, calling a C function steps
nondeterministically to either failure (representing an execution of C that crashed) or to
some value (representing a successful call). That said, C can do a lot more damage than
just dereferencing an invalid pointer: With irresponsible address arithmetic, it’s possible
that a C function can tamper with some amount of memory that it shares with the host
program, thereby introducing an insidious source of uncertainty into later superficially safe
memory accesses. To account for this in our formalization, we make C function calls tag
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the entirety of shared memory with blame, indicating that a value held at an address may
have been altered by the call. This shared memory is known as the C store (also known as
σC), which is a list of C values, C types, and optional blame information. Though unusual,
the storage of a type at a particular location in σC is used to signify what type that
the location is intended to have; this is important for downcasting, which we will explore
later. Locations in σC are address-flavoured, and our semantics perform some amount of
“pointer arithmetic” under the hood, which will also be discussed later. Note that the
blame tagging and tracking described herein would never be done at runtime, as the cost
would be enormous.

The presence of blame at a location complicates the next access to that location, and
the idea is to capture that accessing that location should be nondeterministic. To represent
that an address is essentially a wildcard after a C call, C store reading and writing exhibits
nondeterministic behaviour if the location is tagged with blame. As with C calls, accessing
blamed locations in the C store steps nondeterministically, though there aren’t quite as
many states to quantify. First, the access might fail (for example, we may be dereferencing
a null pointer), and so failure is one option. Next, an access may succeed, and if it does, we
are guaranteed that subsequent accesses will also succeed (of course, until the next C call):
All of Lua’s effects are accounted for in its semantics, and C activities which might affect
the location will tag it with blame. To model this so-called reclamation of determinism,
we “erase” blame from C store locations which are successfully accessed, thereby causing
them to behave deterministically from then on, until they are newly tagged with blame.
Of course, this hinges on our assumption of no multi-threading.

To illustrate, consider the following code snippet:

void something(Point p) {...}

...

p : Point = calloc Point

something(p) -- a C function call

print(p.x)

Without semantics for the something function, we enter a state of nondeterminism.
The call to something can either fail and crash our entire program, or it can succeed and
return, whereby we can only assume that the entire C store is tainted with blame from the
call. Then, when accessing p.x, we are faced with two possibilities. First, the access may
succeed, thus erasing blame on that heap location; the value has been observed, and so
we are sure of its behavior from then on. Alternatively, the access may fail for whatever
reason, at which point program execution terminates.

Now, imagine that we had something of a “micro-semantics” for C, in which we allowed
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simple memory-management operations. In this situation, we would be able to model the
execution of something. Imagine that something was defined as:

void something(Point p) {

free(p);

}

In this case, the execution of the previous code snippet would fail with a segmentation
fault when attempting to access p.x. Another possible definition of something might look
like:

void something(Point p) {

p.x = 2;

}

In this case, the code snippet would execute without issue. The crucial point to note,
here, is that our choice of nondeterministic semantics accounts for both of these possibil-
ities. The situation where p is freed corresponds to the C call working, and the access
failing, while the situation where p is properly updated corresponds to both the C call and
the access succeeding.

In choosing to leave C as a black box, we have no choice but to account for all possible
semantics for the inner workings of C (within our assumptions). A direct consequence of
this is that our proofs are more general than equivalents in a system with a full-fledged C
semantics, and our results would not be much stronger by fully realizing C. Blame gives
us all we could possibly want from C, as it allows us to quantify the effects of the language
without being caught up in the minutia of its execution.

Our system is nondeterministic by design, and many operational semantics, at least
those which do not model concurrency, rely at least in part on some form of determinism,
but make no attempt to prove that their system is in fact deterministic. As we will see in
the next chapter, it’s enough to have two reduction rules with premises which can possibly
match for a semantics to be nondeterministic. In these situations, proofs of type soundness
and other results are in some sense “weakened”, since it’s possible that one of the reduction
rules has a more easily satisfied condition and thus may always be selected over the more
restrictive rule.

Besides C calls, Poseidon Lua allows programmers to explicitly downcast C values,
which we discuss next.
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3.1.1 Downcasts

In C, the following is valid, though it is undefined behaviour:

char *q_ptr , q;

q = 'q';
q_ptr = &q;

printf("%d that's no q...\n", *(int *) q_ptr);

For those unfamiliar with C, this print statement displays garbage. Basically, space
for a character pointer p_ptr and a character q is reserved. Then, we write the character
'q' into q, and make q_ptr point to the address of q. Then, in the print statement, we
dereference q_ptr as an integer pointer, thereby indicating that we intend to read the bits
q_ptr refers to as an integer. This type checks in C: As long as you’re not dereferencing
protected or freed memory, you can interpret the bits as you please with casts such as the
above. A type in C merely indicates to the compiler how the bits at the memory location
should be treated, and generally speaking there are no type guarantees beyond that “the
value will have that type”. The above is undefined behaviour in C, and this for good
reason.

Unlike other language compositions, Poseidon Lua allows for direct referencing of C data
through the Lua pointer, and additionally allows for the downcasting of C values. Thus, our
formalization must support this downcasting, but this is another source of nondeterminism,
since all bets are off as to what the value contained at the memory location actually is
following a cast. To achieve this, the C store in our formal specification also contains type
information for each of its locations. With this information, the semantics of a cast are
rather straightforward: Simply change the type in the store (indicating what type the value
is intended to have), and tag the location with blame.

As before, the immediately succeeding access to the blamed location is nondeterministic.
If a subsequent access of a cast value succeeds, the newly observed value is stored at that
location and the blame is erased.

3.1.2 Allocating C Data

The following code snippet may crash in C, depending on the memory model:

int ** p;

p = (int **) calloc(1, sizeof(int *));

printf("%d\n", **p);
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Here, a pointer-to-a-pointer p is allocated, with a default value of 0. In the print
statement, the initial dereference of p yields a pointer to an int, and unfortunately the
allocation cannot guarantee that *p points to an int. In fact, the default value for *p (as
determined by calloc) is the address 0, an address which causes a segmentation fault once
dereferenced.

In Poseidon Lua, all C values are behind a Lua pointer, so the use of the pointer-to-a-
pointer **p isn’t all that unrealistic an analogy. calloc initializes allocated memory with
default values. For integers or other numeric types, this is perfectly reasonable and well-
defined. However, when allocating pointers, we tread in dangerous waters: The allocated
location is initialized with 0, and dereferencing that location will immediately trigger a
segmentation fault.

Consider instead the following:

int ** p;

int * a_ptr;

int a;

p = (int **) calloc(1, sizeof(int *));

a = 5;

a_ptr = & a;

p = & a_ptr;

printf("%d\n", **p);

Here, we assign a known valid value to the allocated location, causing the dereference
in the print statement to succeed. In allocating an int, saving a reference to it in a_ptr,
and saving a reference to that reference in p, we fully initialize the double pointer. This
way, we are sure of the contents of each of p, *p, and **p, and shouldn’t run into any
errors (indeed, the code snippet executes and prints 5).

Poseidon Lua allows the allocation of C values, and allocating pointers must be yet
another source of nondeterminism. In the language, every C value is wrapped in a Lua
pointer, so a statement allocating a C value is really allocataing a pointer to a C value.
Since C pointers (in addition to Lua pointers) are allowed, we must pay close attention to
the allocation of C pointers, since such an allocation describes a situation much like the
above snippet.

In summary, we have outlined how we plan to quantify C’s behaviour while maintaining
a minimal model of its semantics. As we mentioned, we will be dealing with a nondeter-
ministic semantics, where direct C calls, casts, and deallocations introduce the possibility
for immediate or future runtime failure. The formal specification of our system will be
fully revealed in the next chapter.
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Chapter 4

Formalizing Poseidon

In this thesis, we are exploring the theoretical aspects of language mixing with techniques
borrowed from the formal treatment of gradual typing, and this chapter will detail our
formal specification. Due in part to its semantic unwieldiness, and to our desire to stay
as general as possible, we chose not to model C beyond the effect that it has on the host
language, Typed Lua. This gives us a nondeterministic semantics, which we found to be
atypical (except for models of concurrent systems) in our survey of the literature, and
interesting from the perspective of formal reasoning.

Essentially, we are providing the formal specification for a system with black-box func-
tion calls with potentially far reaching effects. Further, Poseidon Lua also allows program-
mers to downcast pointers, allocate C data, and seamlessly integrate C and Lua values.
To capture all of this, our formalism carries blame at runtime, stores type information
alongside values in the C store, and expressions nondeterministically reduce in the face
of blame. In this chapter, we will show how these features translate into a full formal
semantics of Poseidon Lua, highlighting interesting and unusual aspects and justifying our
choices.

4.1 Overview

At the very highest level, we are formalizing a system wherein Lua code can interface with
C in the following manner: allocating C data, reading from and writing to some shared
memory with C, downcasting C values, and calling C functions. We will need to formalize
our host language, Typed Lua, and also the ways in which it interacts with C.
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Our formalization of Lua is based on FWLua [12], and we adapted their big-step se-
mantics to a more standard small-step equivalent. In order to mechanize our formalization,
some simplifying additions were required, namely the promotion of variables from syntactic
sugar to full-fledged language members. FWLua syntax for table construction is incremen-
tal, starting with an empty table and adding desired fields. Unfortunately, this approach
is not viable when dealing with typed tables; for example, initializing a table with a classic
Point type to the empty table should not type, since the empty table is not a subtype
of a table with any members. To address this, we also include table literals, allowing
programmers to properly initialize non-empty tables.

Poseidon Lua requires that FFI calls be made only from well-typed code, and so we
adapted the type system of Typed Lua [17], with some modifications made possible by
our simplified semantics for Lua. One such omission is their so-called second-class types,
which do not correspond to actual Lua values. For instance, our function type is greatly
simplified by our restriction that functions always consume and produce a single value.

An additional property of our formalization is that we make a distinction between a
typed and untyped language: The typed language is the language that is written by the
user, and the untyped language is the language that actually reduces at runtime. This is
in line with some gradually and optionally typed languages; for example, in TypeScript,
programmers write annotated TypeScript code which is compiled into JavaScript which is
then run.

Instead of keeping C and Lua values separate, Poseidon Lua allows for both to exist
in Lua code and interact seamlessly. This necessitates the inclusion of C types into the
type system, which is accomplished through a “Lua pointer” type (which always points to
a C value). For the purpose of our formalization, the C type system is quite small, limited
to integer, pointer, function, and structure types; we feel that this minimal type system
allows us to describe all of the strange behavior one would expect from C.

To drive this memory functionality in our semantics, we need to carry a number of
stores at runtime. On the Lua side, we have a variable store which maps variables to
values, and variable declarations and reassignments may modify the store’s contents. We
also have a table store to store Lua table structures, and this store is indexed by a register,
which is nothing more than a label into the table store. In Lua, tables may themselves
be indexed by most primitive types, but for simplicity we only allow string indexing of
tables. Keeping the variable and table stores separate allows us to achieve table aliasing;
for example, in setting a variable x to be some table, the variable store at index x will
contain a register pointing to the table, and that register can be copied to other variables,
whereby they will all refer to the same underlying table.
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As for the C store, our set of allowed C operations requires us to add a bit more
machinery to it to meet our needs. Namely, downcasting necessitates that we store the
expected type of a C value in the C store, so that casting a location can have a meaningful
semantics. Further, we need to be able to tag C values with blame to indicate when
nondeterminism is necessary. Taken together, we land on a C store which is a list of (C
value, C type, optional blame) triples. Locations in the C store are address-flavored by
design: C structs are not first-class inhabitants of the store, instead their members are
laid out contiguously, and field access is achieved by computing the offset for the specified
member.

As is standard, typing locations in Lua and C stores requires store typings to describe
them, which are part of the typing context. To type expressions, we will define a typing
judgment, which we sometimes refer to as the type transformation on account of its role
in transforming the typed language into the untyped runtime language. The type trans-
formation makes use of a typing context made up of store typings, describing the types
at every location in each of the runtime stores, and a typing environment, describing the
type of each defined variable.

For the remainder of this chapter, we will discuss the component parts of our formal-
ization in more detail. We begin our in-depth discussion of Poseidon Lua with our type
system.

4.2 Types

Our type system mostly matches that described in Typed Lua [17], with a few notable
alterations. For instance, our function type only has a single argument type; this, of
course, is not the case in Lua, but we curry multivariate functions to repeated application
of single variable functions, by which a single argument function type suffices. We discuss
this in more detail in the following section. In fleshing out this type system for our core
calculus, we found no need for Typed Lua’s type variables, recursive types, or projection
types. Further, to simplify reasoning about Lua, we only allow string indexing in tables.
Our types are given below.
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T ::= nil nil type
| value top type
| ref T reference type
| T1 ∪ T2 union type
| L literal type
| B base type
| T1 →L T2 function type
| {f1, ..., fn} table type
| ptrL TC C type

TC ::= int C integer type
| T 1

C →C T
2
C C function type

| ptrC TC C pointer type
| {s1 : T 1

C , ..., sn : T n
C} C struct type

f ::= s : T fields
| const s : T const fields

L ::= < booleans > literals
| < numbers >
| < strings >

B ::= boolean base types
| number
| string

Type ordering is as follows. value is a supertype of all types. nil is the type of Lua’s
nil value, and is a subtype of all base types. Union types are supertypes of their members.
Literal types are subtypes of their corresponding base types. As usual, function types are
contravariant in their argument types, and covariant in their return types. Regarding
tables, their types have width subtyping: A table type T is a supertype of a table type
T ′ which has at least all of the fields of T . In other words, adding extra fields preserves
the subtyping relationship. Finally, table types have depth subtyping only on const fields:
If a table type T has a const field x with type Tx, and a table type T ′ is identical to T
except that field x has type T ′x, where T ′x <: Tx, then T ′ <: T . In other words, const field
types may be specialized while preserving the subtyping relationship.

Poseidon Lua allows Lua to interface with C through expressions with the “Lua pointer”
type ptrL TC ; Lua is only ever dealing with pointers to C values, and not C values them-
selves, and the only access to C values is through this pointer. C’s type system is conse-
quently entirely self contained, and is a strict subset of Lua’s. In some sense, C is “plugged”
in to Lua through the ptrL TC type.

Even though we don’t model C, we still include parameter and return types for C
functions to ensure that they are called with correctly-typed arguments (indeed, FFIs
typically export function types as part of their API). We also distinguish between Lua and
C pointers to allow for pointers to exist in C’s type system (without needing to resort to the
Lua pointer construct). The C struct type is also as expected, though in our formalization
we restrict structs to only having non-struct members (pointers to structs are fine), as a
struct with struct members can be easily rewritten to use a single struct.
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4.3 Language

For the purpose of our formalization, we present a core calculus akin to FWLua. In this
section, we will discuss the language of expressions, both typed and untyped, before moving
on to the typing judgement and reduction relation.

The language of untyped expressions E, also known as the languge of runtime expres-
sions, is the language that will actually reduce at runtime, and the language of typed
expressions TE is the language that programmers will interface with and program in, with
a few minor caveats. Certain expressions, such as location update, are not directly written
by the programmer (indeed, you cannot directly reference memory in Lua). To address
this, we additionally make the distinction between a user language and an intermediate
language, since being able to type all possible runtime expressions is crucial for any type
soundness result. The user language is all of the typed language except location update,
Lua dereference, and Lua location.

We will consider typed expressions and their untyped counterparts in tandem, present-
ing both together and explaining the unusual expressions. We start with values.

v ::= nilL nil value
| r register
| c constant
| locn Lua store location
| ptrL nTC C store pointer
| ...

vC ::= ptrC n C store pointer
| n C number literal

These values are the same in the typed and untyped languages. On the Lua side, we
have the following values: nilL is Lua’s nil value, r is a register (i.e. location) in the Lua
table store, c is a constant (either numbers, strings, or booleans), locn is a location in the
variable store, and Lua pointer ptrL nTC . We included Lua store locations to allow for
variable mutation: The variables are essentially stored in the variable store, and updated
or retrieved as required. Tables exist in a separate store, the table store, and registers refer
to these locations. For example, if we wanted a variable x to refer to a table, x’s location
in the variable store would hold a register identifying the location of the table in the table
store. Functions are also values, and we discuss them in more detail shortly.

The Lua pointer expression ptrL n TC is essentially a pointer into the C store, pointing
to location n, and expecting it to have type TC . While C values only exist in Lua through
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this expression, they do inhabit the C store and must be coerced to Lua (or vice versa,
depending on the circumstance). They are the C integer (just a number, nothing special)
and C pointer ptrC nTC expressions. The C pointer expression is notably similar to Lua’s,
but they differ in that they have different types (in truth, the C pointer cannot even be
written in the language, but the flavour of both expressions is similar).

We also formalize binary operations, though there is little interesting to see. For the
sake of completion, we give it below:

te ::= te1 op te2 binary operation
| ...

e ::= e1 op e2 binary operation
| ...

In te1 op te2, the first and second expressions will need to have the correct types for
the specified operator. This is echoed in the runtime language, where both expressions in
e1 op e2, once reduced to a value, need to have the correct type for the operator.

The allowed binary operators are:

op ::= +,−, ∗, / arithmetic
| ≤, <,≥, > order
| ∧,∨ boolean
| .. concatenation
| == equality

Next, we consider function expressions, which are also values in Poseidon Lua. In the
typed language, C and Lua functions are separate expressions, but calling functions is done
through one common expression.

vt ::= λx : T.te Lua function
| cfun TC n C function
| ...

v | λx.e Lua function
| cfunn C function
| ...

Note that functions are values in Lua (and indeed in Poseidon Lua). Here, we have
λx : T.te describing a Lua function abstraction, and cfun TC n describes a C function. In
the C function expression, TC is the function type TArg →C TReturn. The type information
is required by the type transformation to type these functions, as we cannot leverage the
function body (as is the case with traditional functions). Untyped language equivalents
are straightforward, with the removal of the now unnecessary type information.

Next, we turn our attention to variables. The location value locn describes how variable
locations can be referred to, but in truth it arises as an intermediate expression when
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variables are substituted with their locations, a by-product of program execution. Consider
the following expressions:

te ::= letx : T := te1 in te2
| x := te
| locn := te
| deref te
| ...

e ::= letx := e1 in e2 let binding
| x := e variable update
| locn := e location update
| deref e Lua dereference
| ...

Variables are declared and initialized using the let binding expression, which has a fairly
self-explanatory type annotation in the typed language. Once fully evaluated, e1 will be
stored in the variable store and its location will be substituted in for x in e2, with suitable
dereferences inserted automatically. Variable mutation is also allowed, and the update
expressions allow for this: Variable update is the expression in the typed language which
is written by the programmers, and substitution transforms it into the location update
expression (if a variable appears in left-hand position). When in right-hand position,
substitution transforms variables into dereference expressions, which simply access the
specified location and return the contents of the variable store.

Unlike FWLua, we allow table literals in our calculus. Consider:

te ::= {s1 = v1, ..., sn = vn} table
| ...

e ::= {s1 = v1, ..., sn = vn} table
| ...

The expression {s1 = v1, ..., sn = vn} provides a list of name, value pairs. The idea here
is that a table will be allocated, and the vi will be written to the si members in the table
store, and the expression will step to a register pointing to the newly constructed table.
This register can then be saved into a variable, for example in a let binding.

We will digress for a moment to justify the promotion of table literals to first-class
members of our calculus. A known issue with formalizations is the so-called “constructor
problem”, or “initialization problem”: Essentially, records and objects of some type T
must be constructed from something, and it’s difficult for that something to have type
T . We could initialize the record or object to be empty, but the empty type is surely
not a subtype of T , and if we instead write a whole table of type T , then we can no
longer represent recursive data structures without reassignment. Specifically regarding
core calculi, many usually (and indeed in FWLua) disallow record construction, instead
opting for empty record allocation followed by field initialization, which does not work in
a typed language.

To illustrate, consider this small example where we initialize a table (with non-empty
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type) to the empty table, which shows us how initialization to an empty table is a sure
source of type violations:

let p : {x: num , y: num} := {} in

p.x := 42

p.y := 10

The issue with this code snippet is that the empty table {} is not a subtype of {x:
num, y: num}; in fact, width subtyping tells us that the empty table type is a supertype
of all table types. To deal with this, we chose to allow table literals in the language. With
that, programmers may write:

let p : {x: num , y: num} := {x=0, y=0} in

p.x := 42

p.y := 10

Our system checks to see if the table literal expression (here, {x=0, y=0}) has each of
the appropriate assignments.

With that out of the way, table read and write are treated next. The untyped language
for these operations is a little unique, and is essentially the same language that Lua uses
to interface with tables.

te ::= te1.te2 dot access
| te1.te2 := te3 dot update
| ...

e ::= rawget e1 e2 table select
| rawset e1 e2 e3 table update
| ...

In the typed language, programmers write the expected te1.te2 := te3 and te1.te2 ex-
pressions for table member write and read. When te1 is a Lua table (i.e. a register), the
type transformation will generate a rawget or rawset expression. In both of these, e1 is
the table being written to/read from, e2 is the index in that table, and in rawset, e3 is
the value being written.

The dot access and dot update typed expressions may also transform into C equivalents
of rawget and rawset, called cget and cset. Consider:

e ::= cget e n TC C store access
| cset e1 n e2 TC C store update
| ...

These expressions are intentionally analogous to rawget and rawset. In cget e n TC ,
e is a pointer into the C store, n is the offset of the access, and TC is the type that the
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cget is expecting to read. Similarly in cset e1 n e2 TC , e1 is a pointer into the C store, n is
an offset, e2 is the value to write, and TC is the type that the cset is expecting the store
to contain at the referenced pointer (recall that we store type information in the C store).

Another instance of the type transformation differentiating between C and Lua is with
function applications. Consider:

te ::= te1(te2) function call
| ...

e ::= e1(e2) Lua function appl.
| ccall e1 e2 TC C function call
| ...

In the typed language, programmers may write a function application as te1(te2) as
is standard. The type transformation can, depending on the type of te1, transform the
application into either a Lua function application, or a C call. The Lua e1(e2) expression
is straightforward, so let us focus on the C call: In ccall e1 e2 TC , e1 is the C function
being called, e2 is the argument to that function, and TC is the function’s type. The type
is necessary since C calls exhibit nondeterministic behaviour, and we can leverage TC to
reason about the value that is returned from the function.

Poseidon Lua allows C allocation and downcasting. Consider:

te ::= callocTC n C allocation
| ccast te TC n C downcast
| ...

e ::= calloc TC n C allocation
| ccast e TC n C downcast
| ...

As one might expect, calloc TC n allocates something of type TC , and n is the identifier
(blame) uniquely associated with the allocation, which allows a trace-back if a runtime error
occurs. ccast te TC n downcasts the pointer te to type TC , and again n is a unique blame
identifier associated with the cast.

In a departure from FWLua, we allow explicit expression sequencing in our calculus.
Consider:

te ::= te1; te2 sequence
| ...

e ::= e1; e2 sequence
| ...

This expression was particularly useful in one of our proofs, where we needed to con-
struct an expression to clear blame from the C store, and we highlight this point in Chap-
ter 5. While not strictly necessary, we felt that including expression sequences in our
calculus was not overly complicated while making it more expressive.
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Finally, it’s worthwhile to quickly discuss the error expression. Consider:

e ::= err β bi error
| ...

This expression has two pieces of information: β can be viewed as the temporal blame,
and corresponds to a particular cast, call, or allocation, and bi is spatial blame, correspond-
ing to a particular function handle, cast expression, or C allocation expression. Together,
they indicate both which C activity in the history of said activities caused the error (β),
as well as which C function, cast, or allocation handle was a part of that call (bi).

Now that we have established the language of our system, we will delve into our main
relations: the type transformation and reduction relations.

4.4 Typing and Reduction Relations

Making a distinction between typed and untyped language is not an uncommon practice,
and in such systems the typing judgement is often modified to connect the two languages
together. We define a type transformation relation, a modification of the standard typ-
ing judgment relation, which transforms a typed expression into an untyped expression.
Consider:

Γ, K ` te : T  e (4.1)

Roughly speaking, the type transformation takes a typed expression te and “compiles”
it into an untyped expression e, assigning to it type T in the context of Γ and K. Here, Γ
is the typing environment, which assigns types to variables, and K is the typing context,
containing information about the various store typings. Our runtime environment contains
three stores: a table store for Lua tables, a C store for C values (as discussed in Section
4.1), and a variable store for variables. K can thus be broken up into three store typings:
ΣT describing the table store, ΣC for the C store, and ΣV for the variable store.

The full relation will be given in Section 4.5.

The reduction relation on untyped expressions, describing the actual execution of pro-
grams, is given as:

e / σT / σC / σV / β → e′ / σ′T / σ
′
C / σ

′
V / β

′ (4.2)

Here, e and e′ are expressions in the untyped language, σT and σ′T are table stores,
σC and σ′C are C stores, σV and σ′V are variable stores, and finally β and β′ are integers
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representing blame information. At a high level, the table store σT is a list of Lua tables,
the variable store σV is a list of values, and finally the C store σC is a list of C value, C type
pairs which may be tagged with blame. Further, a C store may itself be tagged with blame,
which we sometimes refer to as global blame. As we mentioned, the unusual inclusion of type
information in the runtime C store is required to properly model C downcast semantics.
The reduction relation will be fully given and discussed in Section 4.6.

To simplify notation, we sometimes write the reduction relation as:

e /S → e′ /S ′ (4.3)

We refer to S and S ′ above as the runtime environment. It will be necessary to differ-
entiate between C stores based on whether or not they contain blame; for this purpose, we
say that a C store is blame-free if the store as a whole is not globally blamed, and none of
the elements of the store are tagged with blame. To simplify discussion of environments
with or without blame, we say that a runtime environment is blame-free if its C store is
blame-free.

Before diving into the type transformation, it’s worth discussing some of the mecha-
nisms that will come up in our discussion. When a variable is declared in a let binding or
bound in a function abstraction, we reserve some space for it in the variable store σV and
substitute that location in throughout the relevant scope. We achieve automatic derefer-
encing by substituting a dereference operation in where appropriate, and allow for updates
by substituting the location when the variable is in left-hand position. This approach is
fairly standard for representing mutable variables.

We make use of a few auxiliary functions in our semantic rules.

• goodLayout (n, TC ,ΣC) checks to see if location n in the C store typing ΣC represents
type TC . If TC is a primitive type or a pointer type, this succeeds if ΣC(n) = TC .
Recall that structs are not first-class C store members, and are laid out contiguously
in the store: If TC is a struct type (for example, {s1 : T 1

C , ..., sn : T n
C}), then each of

the fields must be present in ΣC with the correct type, i.e. for all fields si we must
have ΣC(n+ i) = T i

C .

• update (σ, l, v) is used in reduction rules, and updates store σ at location l with value
v.

• layoutTypeWithBlame (TC , β) is used in the reduction of allocation of C values. It
lays out type TC and places blame β on pointer members (as per our discussion of
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unsafe pointer allocation in Chapter 3). If TC is a primitive or pointer type, then we
simply produce a triplet containing a default value (this is 0 for pointers), the type
TC , and blame if TC is a pointer type, and if TC is a struct, we layout each of its
members in a similar fashion.

• makeValueOfType (TC) creates a value of type TC , and this is used in situations where
we want to say that we get some value, and know nothing about it. This amounts
to a statement such as: “there exists a value v of type TC”.

• offsetForType (s, TC) computes the offset of member s in structure type TC . Our
formalization of the C store does not allow structs to exist in the store per se, and
they are instead laid out according to their type, and this function relates their type
(TC) to their layout in the store.

• blameCStore (σC , β) tags every (as of yet untagged) C store σC location with blame
β uniquely associated with an FFI call. Untagged locations gain blame, which allows
subsequent failing accesses to report which FFI call is suspect. We only tag untagged
locations to deal with multiple C calls which may have tampered with some memory,
and this will be further elaborated later.

• coerceToLua (vC) is a function which takes a C value vC and coerces it to a Lua value.
If vC is a C integer, then it is coerced to a Lua constant with the same numeric value.
If vC is a C pointer ptrC n TC , then it is coerced into a Lua pointer ptrLua n TC (to
the same location). Otherwise, the coercion fails. This function is used in cgets to
coerce the C value from the C store to Lua to allow the reduction to go through.

• coerceToC (vLua) is similar to the coerceToLua function, though it coerces Lua values
to C instead. If vLua is a numeric constant, the function produces a C integer with
the same numeric value, and if vLua is a Lua pointer ptrLua n TC , an equivalent C
pointer ptrC n TC is produced. This function is used in csets to coerce the Lua
value to C before putting it in the C store.

• buildTable (TL) is a simple function which takes a table literal TL and converts it into
a format that the table store can handle.

Now that we have a big picture of our formalization, we will present our type transfor-
mation and reduction rules.
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4.5 Type Transformation

Recall that the type transformation relates typed expressions to runtime expressions. In
this section, we will discuss a number of interesting typing rules, paying particular attention
to those pertaining to C. Note that we do not discuss every rule, and the full set of rules
is available in Appendix A.

As we mentioned in Section 4.1, we promoted table literals to first-class language mem-
bers. The rule for table allocation follows:

∀ i, fi = si : Ti ∨ fi = const si : Ti ∀ i, Γ, K ` tvi : Ti  vi

Γ, K ` {s1 = tv1, ..., sn = tvn} : {f1, ..., fn} {s1 = v1, ..., sn = vn}
(TT Table)

Rule TT Table declares a table of type {f1, ..., fn} with field values {tv1, ..., tvn}
(which is compiled into {v1, ..., vn} in the untyped language). For the mechanization, a
slightly modified syntax was required, using the classic nil and cons list constructors, and
we will discuss this further in Chapter 5.

Of course, we can store these tables in variables, and the type transformation rule for
variable allocation is given next. Consider:

Γ, K ` te1 : T  e1
Γ + {x 7→ T}, K ` te2 : T ′  e2

Γ, K ` letx : T := te1 in te2 : T ′  letx := e1 in e2
(TT Let)

The typing rule for traditional let bindings is standard, requiring that te1 type to T ,
ensuring that we are indeed assigning to x something of the specified type. The type of
the binding is the type of te2 in an extended environment, where x has type T .

The variables x in the let bindings above are typed according to the following:

x ∈ Γ

Γ, K ` x : Γ(x) x
(TT Var)

This rule is unsurprising, wherein we simply find x in the typing environment Γ and
produce the type stored there.
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Having seen how to type variable and table allocation, let us consider the typing of C
allocation.

validType(TC) n fresh

Γ, K ` calloc TC n : ptrL TC  calloc TC n
(TT CAlloc)

In Poseidon Lua, programmers can allocate Lua pointers to C data types (here, TC),
provided that the type is valid for allocation. For this to be the case, TC must either be
a primitive type, pointer type, or structure (itself made up of valid types). This prevents
programmers from making nonsensical statements, such as allocating C functions. Similar
to C calls, C allocation may be a source of blame if a pointer type is being allocated, so
we include a unique blame identifier n to identify it if necessary.

Through our substitution relation, allocated variables are automatically dereferenced
where appropriate, and variable locations only exist explicitly on the right-hand side of
assignment expressions, which we will go over shortly. First, we will see how to type
locations into the table and C stores through the register and Lua pointer expressions.

n < length(ΣT )

Γ, (ΣT ,ΣC ,ΣV ) ` reg n : ΣT (n) reg n
(TT Reg)

We only type valid registers, and in our formalization a valid register is one which
points to a location in the table store (i.e. the location is smaller than the length of the
store). reg n types according to the type stored in the table store typing at location n.
Typing a Lua pointer to C is more involved. Consider:

n < length(ΣC)
goodLayout(n, T,ΣC)

Γ, (ΣT ,ΣC ,ΣV ) ` ptrnTC : ptrL TC  ptrnTC
(TT C Ptr)

C values are always behind a Lua pointer in Poseidon Lua, and so from Lua’s point
of view all C values have some ptrL type. In the expression ptrnTC , n is the location
referenced in the C store typing ΣC (and, by extension, the C store σC), and TC specifies the
type that the location is intended to have. The type information is required since structures
do not directly inhabit the C store, and so accessing a structure would be impossible with
a simpler rule (akin to TT Reg), since ΣC(n) will never have a struct type. With this
type information, we check to see if location n does in fact correspond to TC using the
goodLayout auxiliary function, and only allow the pointer to type if it does.
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Different operations are required to access the data contained at these locations. Reg-
ister access is done entirely through dot access (rule TT Dot Access), discussed shortly.
Variable access is done through a dereference expression, shown below.

Γ, K ` te : ref T  e

Γ, K ` deref te : T  deref e
(TT Var Deref)

In our system, recall that variable declaration triggers a substitution of a newly al-
located location into the expression in which the variable is bound. This substitution
determines whether or not to dereference the location, based on whether or not it’s in
right-hand position. Programmers will never write this dereference operation, but it is
nonetheless required for our proofs (it is not part of the user language, but rather the
intermediate language).

Programmers must explicitly dereference Lua pointers, and this requires a bit more
machinery. Consider:

Γ, K ` te : ptrL TC  e
validForCDeref (TC) TL = coerceCType(TC)

Γ, K ` derefC te : TL  cget e 0 TC
(TT Var C Deref)

Here, beyond ensuring that te is in fact a Lua pointer, we need to ensure that it is a
pointer to a type that we can dereference. The C store is made up entirely of primitives
and pointers, so we disallow dereferencing of things of other type (for example, we cannot
dereference a C function pointer). Because our type transformation deals with Lua types
only, we need to coerce TC into a Lua type to type this expression: Indeed, at runtime the
dereference will coerce the value it obtains from the C store, and the coercion at this level
allows such an expression to type.

Poseidon Lua allows variable mutation, and the following rules show how we type that
behaviour:

x ∈ Γ
Γ, K ` te : Γ(x) e

Γ, K ` x := te : T  x := e
(TT Var Assign)

In this rule, we are typing the actual variable assignment. As usual, the variable x must
be in the typing environment Γ, and the expression being assigned (here, te) must have
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the correct type Γ(x) for the assignment. At runtime, each of these should be translated
into location updates, which are shown next.

Γ, (ΣT ,ΣC ,ΣV ) ` te : ΣV (n) e

Γ, (ΣT ,ΣC ,ΣV ) ` locn := te : T  locn := e
(TT Loc Update)

When a variable appears in left-hand position, the substitution relation will substitute
it with its location, thereby transforming the variable assignment into a location update.
Similar to TT Var Assign, te must be of the correct type (here, ΣV (n)) in order for the
update to type, and of course n must be in ΣV .

Now, we will consider both Lua and C function declarations. As we alluded to in earlier
chapters, we deal only with single-variable functions. On the Lua side, multi-variable
functions are be curried into chained single-variable function calls (see Section 2.3). On
the C side, one could pass a pointer to a structure containing all of the desired function
arguments. We first consider Lua function declarations:

Γ + {x 7→ T}, K ` te : T ′  e

Γ, K ` λx : T.te : (T →L T
′) λx.e

(TT Function)

The Lua function has a standard typing rule, in line with usual variable binding. The
function λx : T.te types according to its body te in the context Γ extended with binding
x 7→ T .

C functions type as follows:

fresh n

Γ, K ` cfun (ct1 →C ct2) n : (ct1 →C ct2) cfunn
(TT C Function)

Here, note that the C function expression contains the type of the function, and the
function trivially types. Type information is necessary because we don’t model C’s se-
mantics: In TT Function, the return type could be determined thanks to the function
body, and we have no such body to rely on here. In some sense, this is in line with what
one would expect when dealing with FFIs, since part of their API is the full type of the
exported functions.

Since C calls are sources of blame, we include n as an identifier uniquely associated
with the function handle, taken as “user input” insofar as it is able to be generated at
compile-time. In the event of a failure, we can determine which call (and, thus, which
function handle) is to blame.
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Now, we delve into function application.

Γ, K ` te1 : (T →L T
′) e1

Γ, K ` te2 : T  e2

Γ, K ` te1(te2) : T ′  e1(e2)
(TT Lua Fun Appl)

In rule TT Lua Fun Appl, we have what is essentially a standard typing judgment
for functions. The application of a function te1 with type T →L T

′ to an argument of type
T yields something of type T ′. Thankfully, we can type C calls in a similar way:

Γ, K ` te1 : (T →C T
′) e1

Γ, K ` te2 : T  e2

Γ, K ` te1(te2) : T ′  ccall e1 e2 T
′ (TT C Fun Appl)

In rule TT C Fun Appl, we proceed in a similar fashion as in TT Lua Fun Appl,
where we type the function application according to its return type. Note the T ′ in the
compiled (on the right of the  ) C call: As we mentioned in Section 4.3, the untyped call
requires the return type for reduction to be possible, and we will discuss this in more detail
in the next section.

Note that both function application rules have the same typed expression (te1(te2)),
but compile into different untyped expressions. Depending on the type of te1, the trans-
formation generates either an Lua function application e1(e2) or an FFI call ccall e1 e2 T

′.
This way, programmers in the typed language do not need to call C and Lua functions in
different ways, and can use the same syntax in the typed language.

Similar differentiation occurs with dot accesses and updates:

Γ, K ` te1 : T1  e1 tableType (T1)
Γ, K ` te2 : s e2 s ∈ T1

Γ, K ` te1.te2 : T1(s) rawget e1 e2
(TT Dot Access)

Here, if te1 types to T1, T1 is a table type, and te2 types to a string literal s which is a
field name in T1, then the table member access types. The table access transforms into a
rawget in the untyped language. Next, C:

Γ, K ` te1 : ptrL T1  e1 structType(T1)
Γ, K ` te2 : s e2 s ∈ T1
n = offsetForType (s, T1)

Γ, K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT C Dot Access)
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Here, if te1 types to ptrL T1, T1 is a struct type, and te2 types to a string literal s
which is a field name in struct T1, then the C struct member access types. Note that te1
must be a Lua pointer to a C struct, as C structs themselves are not allowed in Poseidon
Lua unless they are behind a Lua pointer. Also, the resulting cget is given the offset of
field s in T1 (determined with the offsetForType auxiliary function), since the C store lays
out struct members linearly in an array form.

As with functions, the types allow for generation of either a C cget or a Lua rawget
when appropriate. Similar logic applies to member update:

Γ, K ` te1 : T1  e1 tableType (T1)
Γ, K ` te2 : s e2 s ∈ T1

Γ, K ` te3 : T1(s) e3

Γ, K ` te1.te2 := te3 : value rawset e1 e2 e3
(TT Dot Update)

Here, if te1 typed to T1, T1 is a table type, te2 types to a string literal s which is a field
name in T1, and te3 types to the type of field s in T1, then the table member update may
type. The table update transforms to a rawset in the untyped language.

Γ, K ` te1 : ptrL T1  e1 structType (T1)
Γ, K ` te2 : s e2 Γ, K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)

Γ, K ` te1.te2 := te3 : value cset e1 n e2 T1(s)
(TT C Dot Update)

As before, if te1 is a Lua pointer to a C struct type T1, and te2 is a string s which
is a member of that struct, and additionally te3 is appropriately typed, we can type the
C struct update. We again emit an offset (in place of te2), which the cset will use when
writing to the C store.

Next, as we mentioned previously, Poseidon Lua allows C values to be downcast. The
typing rule for said downcasts follows.

Γ, K ` te : ptrL T
′
C  e fresh n

Γ, K ` ccast te TC n : TC  ccast e TC n
(TT C Cast)

Here, we notice that casting must be done through the Lua pointer, and so long as TC
is a C type we allow the cast to go through. There is no mention of TC and T ′C being
compatible types, as C freely allows casting of pointers, and the cast merely changes the
way that the bits referred to by the pointer are read.
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Finally, to simplify all of the rules in the face of subtyping, we include a standard
subsumption rule.

Γ, K ` te : T  e
T <: T ′

Γ, K ` te : T ′  e
(TT Subsumption)

Subsumption allows us to seamlessly integrate subtype relationships into typing rules.

In this section, we have outlined the type transformation for our formal specification,
which roughly corresponds to more classical typing judgments. This relation dictates the
relationship between the typed and untyped language, describing in which circumstances
typed expressions could “type” and transform into equivalents in the untyped language.
However, we have yet to see how the language actually runs, and we address this in the
next section.

4.6 Reduction Relation

In this section, we will present the reduction relation, describing the reduction of runtime
expressions and the execution of programs. Though the Lua language specification doesn’t
specify an evaluation order for expressions, we mirrored [26] in their choice of a left-to-right
evaluation order, justified by both the standard Lua compiler [16] and LuaJIT [22], as well
as Poseidon Lua itself.

For the purpose of presentation, we divide the reduction relation into two parts: the
Lua reductions are presented first, before diving into the C reductions.

We start in the same order as we viewed the type transformation, with table literals.

n = length (σT ) tn = buildTable({s1 = v1, ..., sn = vn})
{s1 = v1, ..., sn = vn} / σT / σC / σV / β → (reg n) / σT + tn / σC / σV / β

(R Table)

This is the reduction for table construction. The table literal {s1 = v1, ..., sn = vn} is a
list of string, value pairs which are the initial members of a table. The buildTable auxiliary
function merely transforms the table literal into a format that σT can handle. We place
the newly created table into the table store, and reduce to the register pointing to that
location in the variable store. This register could then be saved into a variable, perhaps
through a let binding, which is considered next.
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value (e1) l = length(σV )

letx := e1 in e2 / σT / σC / σV / β → [x← l] e2 / σT / σC / σV + e1 / β
(R Let)

Above, letx := e1 in e2 is stating that x should be equal to e1 in e2, in that we should
substitute e2 in for x in e1. The reduction rule R Let reserves space in σV for x and
substitutes that location in for it in e2, which will be automatically dereferenced to e1
where appropriate. Lua function application is similar:

value (e2) l = length(σV )

(λx.e)(e2) / σT / σC / σV / β → [x← l] e / σT / σC / σV + e2 / β
(R Fun App)

Here, the idea is to replace x with e2 in e. Again, space is reserved in σV for x, and
the location is substituted in for it in the function body, and substitution takes care of
dereferencing.

The semantics of said dereferencing is standard:

σV (l) = v value(v)

deref (loc l) / σT / σC / σV / β → v / σT / σC / σV / β
(R Loc Deref)

Variables in right-hand position, after space has been reserved in σV , are automatically
converted to dereferences. To reduce these dereferences, we locate the value referred to in
σV and produce it. Of course, v must be a value, but this should always be true according
to our other reduction rules which detail how we store things in σV .

Next, we show variable mutation. Recall that in the typed language, we had typed
expressions for both variable assignment and location update: x := e and loc l := e, re-
spectively. In the untyped language, valid (re)assignments will always be location updates,
as any previously defined variable appearing on the left-hand side of a reassignment will
have been substituted with a location. That said, consider the following reduction rule:

value (e) σ′V = update (σV , l, e)

loc l := e / σT / σC / σV / β → e / σT / σC / σ
′
V / β

(R Loc Update)

Here, we update location l in the variable store σV with the specified value.

We will now consider rules for interacting with tables. As in FWLua, we desugar all
table operations to rawgets and rawsets, which are the underlying Lua mechanisms which
drive table functionality.
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σT (n) = T T (s) = v

rawget (reg n) s / σT / σC / σV / β → v / σT / σC / σV / β
(R Rawget)

rawgets access members in tables contained in the table store σT . The expression
rawget (reg n) s looks for a table at location n in σT , and looks in that table for member
s, producing the value found there. Thanks to the type transformation, this lookup will
always work, since the typing judgment rejects invalid accesses.

Next, we survey table member updates.

value (e3) σT (n) = T s ∈ T
T ′ = update (T, s, e3) σ′T = update (σT , n, T

′)

rawset (reg n) s e3 / σT / σC / σV / β → reg n / σ′T / σC / σV / β
(R Rawset)

rawsets update table members. In the expression rawset (reg n) s e3, we find the table
at location n in σT , and replace the contents of member s with the value e3.

Having seen the reductions which describe the behaviour of Lua, we will turn our
attention to those that describe both C’s behaviour and its interaction with Lua.

4.7 Adding C

The starring feature of our formalization is the C FFI. Recall that we chose not to model
C’s semantics, which allows us to keep our proof more general, and focus on the effects of
C rather than the minutia of its execution. Indeed, a direct consequence of this is that we
need to account for all possible semantics of C, and are thus faced with nondeterminism.

In this section, we will describe the reduction rules associated with C, starting with
allocation of C things. For illustrative purposes, consider the following code snippet:

cstruct IntNode {

int data

IntNode * nextNode

}

a : IntNode = calloc IntNode

Here, we have an IntNode C structure containing an integer member data and a pointer
nextNode to another IntNode. C allocation reserves space in the C store σC and initializes

49



it with default values based on the types being allocated (in this case, the types of the
struct members).

Now, accessing a’s data member is fine—the integer is reliably initialized to 0. How-
ever, attempting to dereference the nextNode member might cause some trouble (in fact,
dereferencing newly allocated pointers in C is undefined behaviour), since the default value
(typically 0, as is the case in our system) might not actually refer to a location which con-
tains an IntNode, at least not until it is properly initialized.

To fully capture this behaviour, consider the following reduction rule for C allocation:

n = length (σC)
σ′C = σC + layoutTypeWithBlame (TC , (β, n))

callocTC n / σT / σC / σV / β → ptrnTC / σT / σ
′
C / σV / β + 1

(R CAlloc)

The callocTC n expression allocates enough memory in σC to accommodate a value of
type ct. The function layoutTypeWithBlame determines the C store configuration necessary
for the value. If TC either is or contains a C pointer type, then we tag that location with
blame, to indicate to our system that its behaviour is undefined until it is successfully
observed. Here, the blame information is β, an integer which is carried around in the
runtime environment and incremented every time C causes blame, and n, the unique
identifier for this calloc expression. Following allocation, a C pointer with the location of
the beginning of the newly allocated memory is produced.

Only the allocation of pointer types are “dangerous”, as only pointers introduce unde-
fined behavior (and therefore blame) into the system. For instance, we could safely allocate
structs with (non-pointer) struct members.

In the spirit of discussing blame, we now turn our attention to FFI function calls,
which are perhaps the most obvious source of blame in our system. We have no concept of
what exactly occurs in the call, only of what can occur, and must account for all possible
scenarios. Consider the following example:

p1 : Point = calloc Point

p2 : Point = cFuncCopyPoint(p1) // C function call

Say we have access to a C function, called cFuncCopyPoint, which takes and returns
a Point. Now, say we allocate a Point, store it in p1, and call cFuncCopyPoint with it.
Without a model of the body of the function, we can’t be sure of what the function has
done. The API for the function (here, its type) indicates that if execution of the function
is successful, it should return something of type Point.
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To capture all of this behaviour, we make use of two auxiliary functions: makeValue-
OfType and blameCStore. In the event that a function successfully executes, producing a
value of its intended type, makeValueOfType allows us to say that the resulting value is
some value of the intended type. Of course, the function might fail, perhaps via segmenta-
tion fault in the C code, but whether or not the function successfully executes, we capture
the possibility of it tampering with σC by tagging the entire C store with blame through
the blameCStore function.

Consider the following two reduction rules for function execution.

value (e2)
v = makeValueOfType (ct2) σ′C = blameCStore (σC , (β, n))

ccall (cfun (ct1 →C ct2) n) e2 ct2 / σT / σC / σV / β → v / σT / σ
′
C / σV / β + 1

(R CCall Worked)

Here, ccall (cfun (ct1 →C ct2) n) e2 ct2 calls a C function cfun (ct1 →C ct2) n
with argument e2 and is expecting to receive something of type ct2. In this case, the call
succeeds, and makeValueOfType (ct2) gives us v, something of type ct2. Of course, since
it’s possible that the call tampered with the C store, we tag it all with blame (β, n): β
corresponds to the βth C activity which caused blame, and n roughly corresponds to the
line of code of the call. Now, C function calls can also fail:

value (e2) σ′C = blameCStore (σC , (β, n))

ccall (cfun (ct1 →C ct2) n) e2 ct / σT / σC / σV / β → err β n / σT / σ
′
C / σV / β + 1

(R CCall Failed)

To capture that these are both possible outcomes, we ensure that the premises of both
rules are simultaneously satisfied: When all of R CCall Worked’s preconditions are
met, so are R CCall Failed’s and vice-versa. blameCStore accounts for any memory
twiddling that the function might have done, tagging untagged locations with blame. The
importance of leaving existing blame untouched is best understood with the following ex-
ample, where more than one C call occurs between accesses to the same location. Consider:

p : Point = calloc Point

someCCall(p)

someOtherCCall(p)

print(p.x)

Here, if p.x fails, we know that the memory location p refers to was mucked with,
but we can’t say for sure if someCCall or someOtherCCall is to blame. The failure will
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report someCCall, since it’s the earliest FFI call which might have freed p; this indicates
to the programmer that they should check someCCall as well as any subsequent C calls
for possible errors. Now, consider:

p : Point = calloc Point

someCCall(p)

print(p.x) -- works

someOtherCCall(p)

print(p.x) -- fails

Here, the first access of p succeeds, erasing the blame from p in the C store. Then, the
next access of p fails, whereby we blame someOtherCCall. This idea of isolating guilty
calls will come up in Chapter 5, in our statement of Fault Isolation.

Another possible source of blame is downcasting C values, which reduces as follows:

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T

′
C , (β, b)))

ccast (ptrnTC) T ′C b / σT / σC / σV / β → ptrnT ′C / σT / σ
′
C / σV / β + 1

(R CCast)

Downcasting of C values is allowed in Poseidon Lua. In C, casting a memory location
to a certain type (say, T ′C) simply allows those bits to be read as a value of type T ′C . We
achieve similar semantics with the inclusion of blame: When attempting to read location
n in σC after it was cast, the presence of blame indicates that v may not be of type T ′C . To
keep our system as general as possible, we don’t attempt to model the cast per se, and the
read will instead replace v with a new value of type T ′C (or fail). This is discussed next.

Until now, we focused on the introduction of blame and fairly direct sources of nonde-
terminism, and we will now turn our attention to blame’s effect on the semantics of our
system, as well as how it can be removed from the runtime environment. As an example,
recall our semantics for C allocation: When we allocate some C pointer type, we must
tag the location with blame, as we have no guarantee that the allocated pointer points
to something of the correct type. Now, imagine that we take such an freshly allocated
pointer, and replace it with a known pointer of the correct type (perhaps as part of an
assignment operation). From then on we can be sure of the behavior of that location, as
it has been observed to be correct (in the sense that our correct assignment succeeded).
Such an operation can be said to erase the blame at that location; in our formalization,
blame represents uncertainty about a C value, and once we become certain of it we can
safely remove the blame.
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In more formal terms, the presence of blame at a location in σC indicates that accessing
that location yields nondeterministic results. To capture this, as before we ensure that ac-
cess to a blamed location can reduce to more than one expression under the same premises.
Recall that elements in σC are of the form (v, TC , β?), where v is a C value, TC is its type,
and β? is optional blame information (β can either be ∅, representing no blame, or some
id).

Consider the following semantics for accessing σC :

σC(n+ o) = (v, TC , ∅) vout = coerceToLua(v)

cget (ptrnT ′C) o TC / σT / σC / σV / β → vout / σT / σC / σV / β
(R CGet No Blame)

Here, the expression cget (ptrnT ′C) o TC accesses σC at location n with offset o, and is
expecting something of type TC . In reduction R CGet No Blame, there is no blame at
location n+ o in σC , and so the store access cannot fail. The access steps to vout, which is
the Lua equivalent of the C value contained in σC . Now, consider a situation where there
is blame:

σC(n+ o) = (v, T ′C , (b, l)) v′ = makeValueOfType (TC)
v′out = coerceToLua(v′) σ′C = update (σC , n+ o, (v′, TC , ∅))
cget (ptrnT ′′C) o TC / σT / σC / σV / β → v′out / σT / σC / σV / β

(R CGet Blame Works)

Here, we access σC at location n with offset o, and are expecting something of type
TC as before. However, there is blame at σC(n + o), and so both success and failure are
possible. In this reduction rule, we deal with successful access to blamed locations. In
this case, successful access erases the blame and a value of the appropriate type (thanks
to the makeValueOfType auxiliary function) is returned after being coerced to Lua. The
C store is updated with the new value, the expected type of the cget, and with no blame,
and from this moment on, usage of this location is deterministic; the value was observed
to be something of type TC , though not necessarily the value that was there before. The
following reduction rule deals with failing access:

σC(n+ o) = (v, TC , (b, l))

cget (ptrnT ′C) o TC / σT / σC / σV / β → err b l / σT / σC / σV / β
(R CGet Blame Fails)

Here, the access fails, reporting the blame information (the ID b of the suspect C
activity and the line of code l).
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Note the presence of a type, TC , in the cget expression. A condition of reading (and
writing) from σC is that the type specified for the read must match the type held in σC .
This allows us to enforce the correct use of downcast locations, as the cast changes the
type in σC , and future reads (and writes) must specify the new type.

Similar to cget, cset has nondeterministic semantics in the face of blame. First, con-
sider the case where no blame is present:

σC(n+ o) = (v, T ′C , ∅) value (e2)
vput = coerceToC(e2) σ′C = update (σC , n+ o, (vput, TC , ∅))
cset (ptrnT ′′C) o e2 TC / σT / σC / σV / β → e2/ σT / σ

′
C / σV / β

(R CSet No Blame)

In the expression cset (ptrnT ′′C) o e2 TC , we write e2 to location n with offset o in σC ,
and we expect the location to have type TC . Note that we must first coerce e2 to a C value
vput to store it in σC . As before, there is no blame at location n+ o in σC , and so the store
update cannot fail. The rule for csets on blamed locations is given below:

σC(n+ o) = (v, T ′C , (b, l)) value (e2)
vput = coerceToC(e2) σ′C = update (σC , n+ o, (vput, TC , ∅))
cset (ptrnT ′′C) o e2 TC / σT / σC / σV / β → e2/ σT / σ

′
C / σV / β

(R CSet Blame Works)

Here, again, we coerce e2 to a C value vput to location n with offset o in σC , and we
expect the location to have type TC . However, σC(n + o) is blamed, and so we are in a
nondeterministic state. In rule R CSet Blame Works, the access succeeds: We update
σC(n + o) with the new value vput, the type T that we were expecting, and erase the
blame. Note that no call to makeValueOfType is required, as we are sure of the value we
are writing. Of course, failure is always an option:

σC(n+ o) = (v, T ′C , (b, l))

cset (ptrnT ′′C) o e2 TC / σT / σC / σV / β → err b l / σT / σC / σV / β
(R CSet Blame Fails)

Here, the write fails, and reports the blame information stored at σC(n+ o).

In this section and the last, we presented the formal semantics for Poseidon Lua. We
discussed the type transformation, which related typed expressions to runtime expressions,
drawing the correspondence between written and executed Poseidon Lua, and the reduction
relation, which defined the semantics of “running” programs in Poseidon Lua. Next, we
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detail the properties of our system, such as type soundness, and dig into some other
interesting results.
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Chapter 5

Formal Properties

When making statements and proving results in a nondeterministic context, one needs to be
careful that their assertions are meaningful. For example, in the statement of preservation,
typically one considers all possible expression reductions, and the typing judgment restricts
the reductions to those which are sensible. However, when certain expressions can fail in
well-typed circumstances, preservation falls apart.

In this chapter, we explore the effects of nondeterminism on our language, and show
type soundness (via proofs of preservation and progress), conditional on the absence of
blame from the runtime environment. If there is blame in the environment, we are in a
state of nondeterminism, and we can show that in such an environment, there exists a path
to a blame-free environment, where we reclaim both determinism and type soundness; this
result is aptly named reclamation. Taken together, this signifies that Poseidon Lua is sound
and deterministic until a C call, allocation, or downcast occurs: These unsafe activities
introduce blame, which can be erased thanks to reclamation. Finally, from a more practical
standpoint, we show fault isolation, which states that in the event of a runtime failure, a
new program can be generated which can isolate the unsafe reduction which caused the
failure.

We take this opportunity to stress that we do not present full proofs in this chapter,
and instead present only the most salient details. To be assured that our proofs are
indeed correct, we have mechanized the entire formal specification and semantics in Coq,
a dependently-typed programming language and proof assistant that sees a lot of use in
the programming languages community for work of this sort. For the interested reader,
our machine-checked proof is available as extra material, and this chapter will focus on
a high-level overview of our proofs with some small supporting examples. We start by
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considering the type soundness of Poseidon Lua.

5.1 Type Soundness

Preservation and progress are the two ingredients of type soundness, and these statements
need to be carefully worded to be meaningful in the face of nondeterminism.

The classic [23] statements of preservation and progress are:

• Preservation: if a well-typed term (i.e. a term obtained through the typing judgment)
steps, then it steps to a term which is also well-typed.

• Progress: well-typed terms are either values, or they step.

In most well-constructed semantics, these statements make sense, and together they
make up type soundness. That said, when dealing with a nondeterministic semantics,
however well-constructed, we are required to reword the statements of preservation and
progress: For example, in our nondeterministic semantics, a well-typed C Call expression
can step to the error state and to some value that it produced as part of successful execution.
This weakens progress for C Calls, as a well-typed C Call can always trivially step to error,
and also complicates preservation, as the error expression is not well-typed in our system.

The crucial observation to make is that, while runtime expressions can nondetermin-
istically step to error, they may only do so in the presence of blame in the C store. As
such, we restrict our statements to only apply to blameless C stores. This isn’t to suggest
that we can say nothing about Poseidon Lua when blame is present, and in Section 5.2 we
explore how Poseidon Lua behaves in this setting.

We will first turn our attention to the statement of preservation.

5.1.1 Preservation

Generally speaking, preservation states that the validity of a typing judgment is preserved
throughout program execution, and that the type of an expression can only get more
precise as it steps. As we mentioned, we needed to carefully word this statement for it to
be meaningful when well-typed expressions can step nondeterministically to the error state,
and we achieve this by requiring that no blame be present in the runtime environment.
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Theorem 5.1.1 (Preservation) If typed expression te has type T and type compiles to
expression e in environment Γ and typing context K, written as Γ, K ` te : T  e, and e in
runtime context S reduces to e′ in runtime context S ′, written as e / S → e′ / S ′, and both
S and S ′ are blame-free, then there exists K ′, te′, and T ′ such that Γ, K ′ ` te′ : T ′  e′,
where T ′ <: T and K ′ extends K.

Essentially, Theorem 5.1.1 is stating that if an expression types and steps, then the
expression resulting from the step also types, but only in the absence of blame. Restricting
the runtime environment to be blame-free makes the system deterministic, and prevents
reduction to the C error expression (where we would lose Preservation). This is not unlike
the classical statement of preservation [23], with the caveat that no blame is present.

Note that we also assert that the resulting typing context K ′ (which types e′) must
extend the original typing context K. Since certain expressions, such as let bindings and
function applications, can change the runtime environment by extending runtime stores,
we must allow the typing context to be able to evolve and change to describe the new
runtime environment.

In Coq, the statement of the theorem is:

1 Theorem preservation :

2 forall e s p H e' s' p' H' IL IL' K te t,

3 [],, K |- te : t ~~> e ->

4 all_stores_well_typed K s p H [] ->

5 e / s / (p, None) / H / IL ==>

6 e' / s' / (p', None) / H' / IL' ->

7 blame_free (p, None) ->

8 blame_free (p', None) ->

9 exists te' t' K',
10 extends_all K' K /\

11 [],, K' |- te' : t' ~~> e' /\

12 all_stores_well_typed K' s' p' H' [] /\

13 t' <: t.

The above is roughly equivalent to the high-level statement of preservation in Theo-
rem 5.1.1. Mechanically, we showed preservation via induction on the type transformation
at line 3, and carefully worked through each of the subcases. In the Coq statement, s

is the table store, p is the C store, H is the variable store, and IL is the runtime blame
information, and together these make up the runtime environment. Notice the placement
of the C store in the reduction at lines 5 and 6; the None in (p, None) and (p’, None)
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represents the optional global blame information on the C store—here it is None since the
environment should be blame-free. We also see the assertions at lines 7 and 8 that the C
stores p and p’ are blame-free, and so we are guaranteed that no blame is present in the
proof. Notable also is the statement that all stores be well typed at line 4: This relates the
typing context K with the runtime environment, and assures that we have type information
for all variables, pointers, and tables in the initial runtime environment, and we discuss
this in more detail shortly.

Proving preservation required a number of supporting lemmas. First, to show anything
relating to locations in stores, we need a statement that the runtime environment be well-
typed with respect to the typing context; in the Coq code, this is line 4. Each of the
variable, C, and table stores requires a slightly different statement.

The variable store is well-typed under two conditions. First, its length must match
that of its store typing. Second, and most importantly, an expression at some location l
in the variable store must type to a subtype of ΣV (l). The first point allows us to transfer
information about the length of the store from the type transformation to the reduction
relation, and the second point allows us to type variable access. The Coq statement of this
is:

1 Definition var_store_well_typed

2 (vST: store_ty) (vst: var_store) (Gamma: typing_env)

3 (tST: store_ty) (cST: c_store_ty) :=

4 List.length vST = List.length vst /\

5 forall l,

6 l < List.length vst ->

7 exists T t te ,

8 Gamma ,, store_typings tST cST vST |- te : T ~~>

9 (var_store_lookup l vst) /\

10 Some t = (store_Tlookup l vST) /\

11 T <: t.

Here, line 4 corresponds to the lengths of the store and its typing matching, and lined
7 through 11 deal with typing the contents of the store.

Similarly, the table store must have the same length as its store typing, and each table
element must type. In other words, let T be a table in σT , with type TT in ΣT , in typing
environment Γ with typing context K (itself having table store typing ΣT ): For each field
s of T , there must exist a typed expression te such that Γ, K ` te : T  T (s), where
T <: TT (s). As before, this allows us to type table access, and relate the runtime table
representation to information in the type transformation.
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The C store is markedly different. Since C values are not part of our language, interfac-
ing with C must be done through the Lua pointer expression, and getting things from the
C store is not quite as simple as, say, getting things from the variable store: In a variable
store σV , Lua expressions are stored, so a statement such as deref (loc l), S → σV (l), S
makes sense since σV (l) is an expression, unlike σC(l). Consequently, accessing things in
the C store requires that they be coerced before being passed to Lua, and so it isn’t fair
to say that the inhabitants of the C store type; instead, we require that elements of the C
store, once coerced to Lua equivalents, type. This is in line with all rules for accessing the
C store, as we are either writing a coerced Lua value into the store, or producing a coerced
C value as part of a read operation. In Coq, this translates to:

1 Definition c_store_well_typed

2 (cST: c_store_ty) (cst: c_store) (Gamma: typing_env)

3 (tST: store_ty) (vST: store_ty) :=

4 List.length cST = List.length cst /\

5 forall l,

6 l < List.length cst ->

7 exists te c_exp aBI ct K,

8 Some (actualStuff c_exp ct aBI) = c_store_lookup l cst /\

9 Gamma ,, K |- te : (type_of_coercion ct) ~~>

10 (e_value (coerce_to_Lua c_exp )) /\

11 Some ct = (store_Tlookup_c l cST) /\

12 K = store_typings tST cST vST.

Here, we see that C store elements are packaged up as actualStuff triplets, in line
with what we described earlier. Also, line 12 is merely a presentational detail (otherwise we
would have no hope of fitting the typing judgment on two lines!). We additionally see that
the types in the C store and the C store typing (here, both are ct) must match, and this
is to relate type information from typing context to the runtime environment. One might
wonder how C casting is done: If the store typing must match the store, type-for-type, and
preservation requires that the new typing context extend the previous, then how could we
type downcasts which change the type in a way that is not an extension of the previous
context? The answer to this lies in our use of blame on downcast locations, and indeed the
runtime environment resulting from a downcast is not blame-free, a condition of our proof,
and after all blame has been erased, we will be able to construct a new typing context.

With the notion of a well-typed runtime environment, we also need to show that both
allocation and update preserve the well-typedness of our system. To show this, we need
to prove that reductions which extend and modify a well-typed runtime environment do
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so in a sensible way. First, consider allocations. Say we have a store σi with store typing
Σi, and we are allocating something in σi at runtime, extending it somehow to obtain σ′i.
To preserve the well-typedness of our system, we must provide a new store typing Σ′i for
which σ′i is well-typed, and we can construct this Σ′i by extending Σi with the appropriate
types. Next, consider updates. Say we have a store σi with store typing Σi, and we are
updating some location l in σi with a new value, obtaining a new store σ′i. Again, we must
provide a new store typing Σ′i for which σ′i is well-typed, and we can construct Σ′i from Σi

by updating the type information at l.

The lemma to prove this looks like:

1 Lemma var_assign_pres_store_typing :

2 forall cST tST vST Gamma H T t te l e,

3 l < List.length H ->

4 var_store_well_typed vST H Gamma tST cST ->

5 Gamma ,, store_typings tST cST vST |- te : T ~~> e ->

6 Some t = (store_Tlookup l vST) ->

7 T <: t ->

8 var_store_well_typed vST (var_store_update l H e)

9 Gamma tST cST.

10 Proof.

11 ...

12 Qed.

The above is stating that if a location is valid, and the variable store was already
well-typed, and the new thing we are writing to location l types to a subtype of vST(l),
then the resulting store is also well-typed. The proof is relatively straightforward, and
can be divided into two parts: First, we show that the updated location l is well-typed
w.r.t. vST(l), which can be shown with lines 5 through 7, and then we show that all other
locations are well-typed, which is true by line 4 (all non-updated locations were well-typed
before, and nothing about them has changed).

Modifying the C store follows the same principles: Here, we update some location l in
σC with some Lua value has been coerced to a C value. Recall that the C store is well
typed only if each of its values, once coerced back to Lua, type. Showing that this remains
true when updating is straightforward: Say we are updating some location l in σC with a
C value vC which was coerced from a Lua value vLua. In order to have this Lua value at
all, it needed to pass the typing judgement, and that is exactly all the evidence we need
to show that the C store is still well-typed (of course, as long as vLua’s type is a subtype
of ΣC(l)). Similar logic applies to extending the C store with new allocations.
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We also have a few reduction rules which deal directly with substitution, and recall
that in our system we substitute a location in for a variable, automatically dereferencing
the location unless it appears on the left-hand side of a variable assignment expression.
These are easiest to deal with with a proof that substitution preserves typing, stating that
substitution does not break the typing judgment, and that we can “hoist” substitutions
into the typing environment. Roughly speaking, if l refers to something of type Tl, then
this looks like:

Γ, K ` ([x← l] te) : T  ([x← l] e) ≈ Γ + {x 7→ TL}, K ` te : T  e

On the left, we have the type transformation on expressions with substitution, and that
is basically equivalent to typing the expressions, sans substitution, in an extended context.
One major advantage of “substitution preserves typing” is that we don’t need to deal with
variables, since they can all be safely substituted: Every binding in Γ is equivalent to a
substitution, and this allows us to take Γ to be empty in our proofs.

In C, structs are stored contiguously in memory, with the first member at offset 0 from
the struct’s location, and other members at appropriate offsets according to the size of
the data of previous members. Poseidon Lua has structs, and we formalize them with a C
flavour, in that struct members are laid out in the C store as they are in C, though each
member has unit size (as such, the second field of a struct will always be at offset 1). These
structures are behind a Lua pointer, and in order for such a pointer to type we require
that it refer to a location in σC which is correctly laid out w.r.t. the type of the struct
(recall the goodLayout auxiliary function). Practically, updating locations in σC occurs as
part of a cset on some pointer, typically a structure pointer, and so we need to ensure
that the update preserves the “good layout” of the that pointer. This particular result
required some surprising machinery, since we needed to relate the goodLayout auxiliary
function (which deals with types and offsets) to the cset expression (itself dealing with
pointers and offsets), paying close attention to ensuring that the offsets from cset and
those obtained from the type were compatible. By comparison, dealing with tables and
table types was simplified by the field name common to both the type and the table, and
we had a direct correspondence between a table’s value and type at field s.

To concretize this high-level description, we will walk through an interesting case of
preservation: the case for a cset on a struct member when there is no blame in the C
store. Recall the typing and reduction rules for cset:

σC(n+ o) = (v, TC , ∅) vout = coerceToLua(v)

cget (ptrnT ′C) o TC / σT / σC / σV / β → vout / σT / σC / σV / β
(R CGet No Blame)
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Γ, K ` te1 : ptrL T1  e1 structType (T1)
Γ, K ` te2 : s e2 Γ, K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)

Γ, K ` te1.te2 := te3 : value cset e1 n e2 T1(s)
(TT C Dot Update)

Say we have te1.te2 := te3 which type compiles to cset (ptrL l TStruct) n ev TC , wherein
we wish to write ev to location l in the C store. To get through this case of preservation,
we need to show 4 things:

1. The resulting typing context K ′ extends the previous typing context K;

2. Whatever this expression steps to types in typing context K ′ to some type T ′;

3. T ′ is a subtype of T ;

4. The resulting runtime environment is well typed w.r.t. the resulting typing context.

We tackle these one at a time. First, we know that K and K ′ can only possibly differ
in their C store typings ΣC and Σ′C respectively. A C store extends another if it is at least
the same length and assigns the same types to each common location, and it is easy to see
that this still holds, as ΣC must be equal to Σ′C , since the only way a cset at location l can
type in a context with C store typing ΣC is if it is writing something of type ΣC(l). In Coq,
this amounted to relating the type of the struct member to the type at the appropriate
offset in the runtime C store.

As for point 2, we know from the well-typedness of the stores that each store location
can type. We also know that since cset (ptrL l TStruct) n ev TC types, then necessarily
the sub-expression ptrL l TStruct also types by the inductive hypothesis. This pointer can
only type of ΣC(l) has a good layout w.r.t. type TStruct (recall the goodLayout auxiliary
function), which tells us that any member of TStruct is present with the correct type at its
offset in ΣC , and that all valid offsets are in the bounds of the C store typing. In addition,
the type transformation gives us that n is the offset for whatever member te2 referred to.
Taken together, we can establish a clear correspondence between the member being written
to and the runtime memory location being written to: Location l + n corresponds to a
location in the C store, and the C store being well-typed tells us that whatever is present
at σC(l + n) types, whereby point 2 is proved.

Point 3 is trivial, as value is a supertype of all types.
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Point 4 is more interesting. We need to show that K (which is the same as K ′, as per
point 1) is well-typed with respect to the newly updated runtime environment. Trivially,
as the Lua stores are unchanged, they are still well-typed, and we need only show that
that the C store is well-typed w.r.t. its typing context. Essentially, we only need to show
that everything in the new C store σ′C types, and for all locations other than l + n this is
trivially true (since they were well-typed, and were not changed by the reduction). That
said, it is easy to see how σ′C(l+n) contains something which can type, since we just wrote
such a thing into that location (recall that we wrote ev to this location, and it types as
per the inductive hypothesis). This requires that coercion be bijective and thus invertible,
since we converted Lua to C in order to write, and must convert C to Lua to type, but this
is true for all types which are valid struct members (i.e. primitives and C pointer types).

Broadly speaking, many difficulties arose out of our alternate representations at type
time and runtime. For example, our definition of the C store was a source of many
headaches: Not only does it not contain expressions which can step, requiring contents
to be coerced before reasoning about them, it also does not contain struct literals, instead
laying them out sequentially. This required a lot of nontrivial “hand-shaking” between
struct types, C store layout, and offsets.

That said, we now turn our attention to progress.

5.1.2 Progress

At its core, progress asserts that expressions which type are either values (and thus ter-
minal), or “make progress” in that typable non-value expressions reduce. Progress is not
weakened at the same level as preservation when dealing with nondeterminism, but there
are a few pitfalls that one must avoid, discussed shortly. First, the statement:

Theorem 5.1.2 (Progress) If Γ, K ` te : T  e, then either e is a value, or there exists
S and S ′, both blame-free, as well as e′ such that e / S → e′ / S ′.

Here, we argue that if an expression types, then we can assure that it is either a value,
or it steps. Though not strictly necessary, the absence of blame offers some symmetry with
preservation. Had we included the possibility of having blame in the runtime environment,
many aspects of progress would be made trivial; for example, access into the C store in the
presence of blame could automatically step to error, which is not a particularly interesting
transition from the perspective of type safely. The same mechanisms relating C types to

64



the C store that were used in proving preservation were required to prove progress, as well,
and a similar induction on the type transformation was performed.

In Coq, our statement of progress is:

1 Theorem progress : forall tST cST vST te T e s p H L,

2 [],, (store_typings tST cST vST) |- te : T ~~> e ->

3 all_stores_well_typed (store_typings tST cST vST) s p H [] ->

4 blame_free (p, None) ->

5 value e \/

6 exists e' s' p' mb H' L',
7 blame_free (p', mb) ->

8 e / s / (p, None) / H / L ==> e' / s' / (p', mb) / H' / L'.

This captures the statement of Theorem 5.1.2, though like preservation we require
that the initial environment be well-typed w.r.t. the typing context. We don’t model an
explicit error state (besides C errors, but those only arise when blame is involved, and
we are concerned with blame-free environments), so the only danger is that a non-value
expression can get stuck and be unable to reduce, which is precluded with a proof of
progress.

The proof of preservation essentially required that the reduction relation and type
transformation together provide enough information to type the resulting expression. In
contrast, proving progress simply requires that the typing judgment give enough informa-
tion to allow the expression to step, and it proved to be more straightforward to make the
jump from type to runtime information than from runtime to type information.

To illustrate, we will walk through a small example involving Lua table access. Recall
the typing rule for dot access on tables:

Γ, K ` te1 : T1  e1 tableType (T1)
Γ, K ` te2 : s e2 s ∈ T1

Γ, K ` te1.te2 : T1(s) rawget e1 e2
(TT Dot Access)

We wish to show that this, along with the runtime environment being well-typed, are
enough to allow rawget e1 e2 to step. If either e1 or e2 step, then rawget e1 e2 trivially
steps. If not, the typing judgment requires that they look like rawget (reg r) str, where
reg r is a register and str is a string, as e1 must have a table type (and registers are the
only values which have such a type), and e2 must have a string literal type, and so when
e2 is a value it must be a string.
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Since register r types by the inductive hypothesis, we have:

r < length(ΣT )

Γ, (ΣT ,ΣC ,ΣV ) ` reg r : ΣT (r) reg r
(TT Reg)

Given the above, we know that reg r refers to a location which is known to be well-
typed, and so we can take advantage of the well-typed assertion at line 3 of the progress
statement. The well-typedness of the table store assures us that if a member s is present
in a table store member T at location l, then the table at location l in the runtime table
store also has a member s. To reduce the rawget, we need:

σT (r) = T T (str) = v

rawget (reg r) str / σT / σC / σV / β → v / σT / σC / σV / β
(R Rawget)

We know that σT (r) = T is true, thanks to the well-typedness of the environment, and
T (str) = v is true by the well-typedness of tables in the table store, since we have all the
necessary type information for member str thanks to the typing judgment.

The effect of blame on our proofs is most apparent in preservation. Since we induct
on the type transformation and are dealing with all possible reductions for an expression,
if blame is allowed in the runtime environment we are faced with the possibility of an
expression stepping nondeterministically to a C error. This is inadmissible from the point
of view of type safety, and we had no choice but to include a blame-free clause. Note that
one may still use C, so long as one does not either make an FFI call, cast a C value, or
allocate a C pointer (Lua pointers to C values are fine).

In the next section, we explore the extent to which we can reason about our system
when blame is present, and argue that our blame information is useful.

5.2 Blame

Recall that, in our system, blame is administered by expressions which can tamper with
the C store: When these expressions reduce, the C store (or a relevant part) is blamed with
a pair of unique identifiers, one for the line of code which caused the blame, and another
isolating the blaming call, cast, or allocation in a “history” of all such operations. Later
in execution, if the error state is reached, we produce the relevant blame information: If a
C call triggered the failure, we blame that call, otherwise some sort of C store access trig-
gered the fault, and we produce the blame information contained at the accessed location.
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Reflecting on our system, one quickly realizes that the only reductions which cause blame
involve C, be it a C function call, C pointer allocation, or C downcast. Given that, we see
that C is always at fault for runtime failure:

Theorem 5.2.1 (Always Blame C) If the error expression err β bid is reached, there
exists some C expression which is to blame.

Essentially, the βth such C expression (at line of code cid) caused the error, either by
directly failing as a C call or by blaming some location in the C store. The presence of
blame is required for runtime errors to occur, and C is the only source of blame, and so
Lua cannot be blamed for these errors.

In our version of type soundness, we required that the runtime environment be blame-
free. This assured that our semantics behaved deterministically, and disallowed reduction
to the error expression. One might argue that we are essentially proving that “Poseidon
Lua without C is type sound”, but that is not exactly true. As was mentioned previously,
programmers are still free to allocate, access, and write C data, and it’s C calls, casts, and
pointer allocation which introduce the possibility of arbitrary program termination.

In fact, we can go beyond type soundness, and all is not (totally) lost in the presence of
blame. Each reduction which can nondeterministically fail can also succeed, and in failing
or succeeding the program is essentially following one of two possible execution paths. Of
course, there might be more than two execution paths (for instance, if we have several
reductions with nondeterministic behaviour), but as we saw in Chapter 3, each of these
paths represents a possible semantics for the program, and ultimately one will be selected
at runtime.

To get a handle on this, let us consider a small example program:

local p : calloc int -- allocate a C integer

cCall(p)

print(*p)

print(*p)

Here, we allocate a C integer, store it in p, and make a C call. Say that the C call
succeeds, and tags the C store with blame (namely, p is tagged with blame from the call).
Now, say the dereference in the first print succeeds: In our formalization, this corresponds
to a cget on a blamed location succeeding. At this point, is there any doubt about the
next dereference in the following print call? The first successful cget erased the blame,
so p should behave deterministically from this point on.

67



This brings us to an interesting observation: In the presence of blame, it is possible to
reclaim determinism through a sequence of reductions which erase blame from the C store.
This is known as reclamation.

Theorem 5.2.2 (Reclamation) If there is blame in a runtime environment S, then there
exists e, e′, and S ′ such that e / S →∗ e′ / S ′ and S ′ is blame-free.

This result relies on the fact that certain reductions erase blame from the C store, as
they discover that, for instance, a location in the C store is well-behaved. If enough of
these reductions occur, then all blame will be erased from the C store. Roughly speaking,
this amounts to a proof that there exists a path from an environment with blame to an en-
vironment without blame, which corresponds to a program where the undefined behaviour
of C did not cause anything to crash. Once we are blame-free, we regain type safety until
another unsafe operation occurs.

Mechanically speaking, proving Theorem 5.2.2 is straightforward given the following
two results:

Lemma 5.2.3 (Blame Erasure) Say we have a C store σC in runtime environment S
with blame at location l. There exists e, e′, and σ′C in runtime environment S ′ such that
e /S → e′ /S ′, where σ′C(l) is blame-free and ∀ n 6= l, σC(n) = σ′C(n).

With blame erasure, we show that there is always a reduction which can erase the blame
at a particular location in σC . This can be either a cset, updating the blamed location, or
a cget, reading from the store and observing the value contained within, and we proved
this using cgets. This easily leads us to a small corollary, stating that the amount of blame
in a C store can always decrease:

Corollary 5.2.3.1 (Blame Reduction) If there is blame in a runtime environment S,
then there exists e, e′, and S ′ such that e /S → e′ /S ′, where S ′ has strictly less blame
than S.

It is easy to see how one can have blame reduction given blame erasure, as one simply
has to pick a blamed location in σC and apply blame erasure to it. We are sure that such
a location exists, as there is blame in the runtime environment. To prove reclamation, we
can repeatedly apply blame reduction to a C store σC which isn’t blame-free to reduce the
amount of blame in it, until no blame is present. Since the C store is finite, and we can
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reduce the amount of blame monotonically, we are sure that there will eventually no longer
be any blame in the environment.

In Coq, these proofs were surprisingly involved, as a number of small results were re-
quired in order to be able to deal with the blame which was now present in the environment;
Most of our other results about C stores were specific to C stores which were blame-free,
since this was a condition for type soundness. The mechanized statement of reclamation
follows.

1 Theorem reclamation: forall p s H IL ,

2 ~ blame_free (p, None) ->

3 c_store_pair_well_formed (p, None) ->

4 exists e e' s' p' H' IL ',
5 e / s / (p, None) / H / IL ==>* e' / s' / p' / H' / IL' /\

6 blame_free p'.

Immediately, we see that the global blame accompanying the C store is None. This
is mostly a convenience, as it halved the number of cases we needed to consider, and it’s
straightforward to show that if global blame is present, there is a path which gets rid of it.
As per line 3, we also require that the C store p be well-formed, and this isn’t quite the
same “well-formedness” as in type soundness: Here, we wish to restrict the contents of the
C store to primitives and pointers so as to preclude the appearance of invalid data. This
clause renders it impossible for C functions to be in p, as C functions can only appear in C
calls and shouldn’t be stored. To show reclamation, we inducted on the amount n of blame
in p, which we know is nonzero thanks to the fact that p is not blame-free. The base case
where n = 0 is trivial, since n should be nonzero, and the recursive case is more interesting;
we have some amount n + 1 of blame in the C store, and the inductive hypothesis states
that any C store with n blame can be cleared of blame. Since there is blame in a C store,
then there must exist an index such that accessing it yields a blamed value:

1 Lemma not_blame_free_means_loc_with_blame : forall p,

2 ~ blame_free (p, None) ->

3 exists l v t bi,

4 Some (actualStuff v t (Some bi)) = c_store_lookup l p.

Using this, we can obtain a location which is blamed, and then apply blame erasure to
it. In Coq, blame erasure looks like:

1 Lemma blame_erasure : forall l s p H IL ,

2 blamed_loc l p ->

3 c_store_pair_well_formed (p, None) ->
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4 exists e e' s' p' H' IL ',
5 e / s / (p, None) / H / IL ==>

6 e' / s' / (p', None) / H' / IL' /\

7 exists v t,

8 p' = c_store_update l p (actualStuff v t None) /\

9 c_store_pair_well_formed (p', None).

Clearly, a combination of these last two lemmas reduces the amount of blame in the
C store by 1, say from n + 1 to n, and so we can use the inductive hypothesis. However,
things are not quite so simple: Both blame erasure and reclamation state that in a runtime
environment S with blame, there exist e, e′, and S ′ such that e,S → e′,S ′ (or e,S →∗ e′,S ′
for reclamation) where S ′ less blame (in blame erasure) and no blame (in reclamation).
To connect these two results, we see that once we apply blame erasure, say taking us from
e1,S, where S has n + 1 blamed locations, to e2,S ′, where S ′ has n blamed locations, we
can apply reclamation. Unfortunately, reclamation in environment S ′ merely states that
there are some e3, e4, and S ′′ such that e3,S ′ →∗ e4,S ′′, and we can see how reclamation
and blame erasure don’t quite transitively apply: blame erasure gives us e1,S → e2,S ′,
reclamation gives us e3,S ′ →∗ e4,S ′′, and e2 is not necessarily equal to e3.

That said, we are not restricted to starting with e1, and we need to show that, for
runtime environment S with n + 1 blamed locations, there exists x, x′, and SR such that
x,S ′ →∗ x′,SR where SR is blame-free. Here, we need not take x = e1 (in fact, doing
so would be erroneous!), so we must carefully construct an x which will allow us to take
advantage of our two earlier results. To do this, we needed one other small corollary:

Corollary 5.2.3.2 (Blame Erase to Value) If there is blame in a runtime environment
S, then there exists e, e′, and S ′ such that e /S → e′ /S ′, where S ′ has strictly less blame
than S and e′ is a value.

If we use this corollary instead of blame erasure, we have that the intermediate expres-
sion e2 in our chain of reductions e1,S → e2,S ′ and e3,S ′ →∗ e4,S ′′ from above is a value.
With that, we can construct a sequence of expressions to prove reclamation: If we take x
to be e1; e3, x

′ to be e4, and SR to be S ′′, we have the following sequence of reductions:

e1; e3,S → e2; e3,S ′ since e1,S → e2,S ′
e2; e3,S ′ → e3,S ′ since e2 is value
e3,S ′ →∗ e4,S ′′ by inductive hypothesis
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And in the above reduction sequence, S ′′ is blame-free, thereby completing our proof
of reclamation.

When discussing when to tag locations with blame, we stressed that only unblamed
location may gain blame, symbolizing that we couldn’t know for sure which unsafe oper-
ation might be the cause of an error, should it arise. As it happens, with a good choice
of operation, we can discern the true source of runtime errors. The next result addresses
this.

Theorem 5.2.4 (Fault Localization) If an expression e in runtime environment S re-
duces to the error expression with blame β, then either β identifies the most recent unsafe
C operation, or a new program can be generated which isolates the source of the error.

To show this, consider the following code snippets:

p = calloc Point

cCall1(p)

cCall2(p)

cCall3(p)

print(p.x)

p = calloc Point

cCall1(p)

print(p.x)

cCall2(p)

print(p.x)

cCall3(p)

print(p.x)

Assume the leftmost program fails at the access to p.x, blaming cCall1 and identifying
it as the start of our search; here, we cannot say for sure which of cCall1, cCall2, or
cCall3 mucked with p.x. However, we can generate a modified program which can isolate
the guilty C call. Consider the snippet on the right. If cCall1 was the culprit of the failure,
then the access immediately following it will fail. If not, and cCall2 was at fault, then
the access immediately after cCall2 will fail. If neither of these are true, then cCall3 is
at fault, causing the final access to p.x to fail. This amounts to Fault Localization: When
we are uncertain about which of a number of unsafe operations are at fault for a runtime
failure, we can generate a new program which isolates the guilty operation.

More formally, we can show fault localization with targeted applications of blame era-
sure. If an access to location n reduces to error with blame β, then there are two cases.
First, β might identify the last unsafe operation, in which case we are done. Otherwise,
it identifies an earlier operation; in this case, we can apply blame erasure right before the
last unsafe operation, and generate an access to n. If this access succeeds, then the unsafe
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operation following it must be the source of the error, as accessing n did not crash the
program before it occurred. If this access fails, we repeat the argument, starting at the
newly generated call, and work our way up to the operation identified by β.

In a rather extreme example, one could envision a scenario where a programmer accesses
all of the C store after each C call, to see which locations were corrupted by the call. While
unrealistic, this could be viewed as a way to debug these sorts of programs, as if we observe
the set of all locations which might have been tampered with by an unsafe C operation,
we can discover the effect that it had on the overall system.

To briefly summarize, our statements of preservation and progress together make up
type soundness for Poseidon Lua in the absence of blame, and reclamation asserts the
existence of a program execution which erases all blame from the runtime environment,
reclaiming determinism and type soundness. Essentially, we have determinism and type
soundness until a C call, allocation, or downcast occurs, as they introduce blame, but
we can erase this blame thanks to reclamation. In the event of a runtime failure, fault
localization assures us that we can generate a new program which can isolate the unsafe
reduction which caused the failure.
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Chapter 6

Conclusions and Future Work

In this thesis, we explored a new technique to reason about language composition, which
emphasizes the interoperation of the two languages, rather than the languages them-
selves. We drew a correspondence between gradual typing and foreign function interfaces,
specifically that the typed/untyped relationship shares some similarities with the host lan-
guage/guest language relationship when the guest language has fewer guarantees than the
host. While we gave a formal specification for Poseidon Lua, and proved results about it,
this is merely an example of how our technique works, and nothing specific to C or Typed
Lua were at play (other than the soundness disparity between both languages).

That said, C is a great candidate for analysis, since it is hugely expressive and has
interesting unsafe behaviour. In addition, C FFIs are among the most popular, with
several languages including Python, Julia, and Matlab having direct language support for
C FFIs. As we emphasized early in this thesis, C is a fast language, and often performance
critical code is written in C and called from another language; indeed, this is frequent in
scientific computation. We believe that blame is a useful technique to reason about such
C FFIs, as the unruly nature of C can be cleanly captured with blame, without needing
to resort to a very involved semantics for C.

In addition to blame, we showed how one can use a nondeterministic operational se-
mantics to obtain useful results. This was necessary given our decision not to model C,
but it is an interesting approach in and of itself, and there are other systems beyond C
which might benefit from nondeterminism: For example, JavaScript programs using the
jQuery framework cannot be sure of the data that jQuery retrieves, and could use non-
determinism to capture that. In fact, nondeterminism may be useful for reasoning about
situations where calls are being made to a library whose code is unavailable, as if you can
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quantify the possible behaviours of the function, nondeterminism could cleanly capture
those possibilities and open the door for some formal reasoning.

One might be hesitant to use such a nondeterministic semantics, as proof statements
need to be carefully constructed to ensure that they actually have meaning. For example,
in Chapter 5 we explored how we carefully constructed our statement of type soundness for
Poseidon Lua; while nondeterminism does weaken classical statements (such as preservation
and progress), that isn’t to say that we can’t make other interesting assertions. Indeed,
we showed that when our formal specification for Poseidon Lua is nondeterministic, there
exists a sequence of reductions which reclaims determinism and recovers type soundness.
This gives users an understanding of where their system stands with respect to soundness
when making FFI calls: Essentially, until they have observed all of the effects of a call,
they tread on uncertain ground.

In short, this thesis presented a formal specification of Poseidon Lua, a fast implemen-
tation of Typed Lua with a C FFI. The operational semantics are nondeterministic, which
proved to be immensely useful for proving things about it, and we believe that this flavour
of semantics is applicable well beyond this small example. Additionally, we applied tech-
niques from gradual typing, adapting in particular the notion of blame: Ultimately, blame
allowed us to quantify the effects of black-boxes in our system. In the world of gradual
typing, untyped values are something of a wildcard, and they introduce the possibility of
runtime type errors in statically typed code. And in the realm of FFIs, calls to functions
written in a relatively unsafe language introduce new ways in which the overall program
can fail. We exploited this correspondence, and showed conditional type soundness of Po-
seidon Lua and that C is always to blame for runtime errors in Typed Lua. Further, we
showed that if our formal semantics is in a state of nondeterminism, it is possible to recover
both determinism and type soundness.

We believe that nondeterministic operational semantics are a useful tool for formal
reasoning, beyond the scope of Poseidon Lua and perhaps even beyond reasoning about
FFIs. In any situation where something’s effects are important, more so than its operation,
nondeterminism allows one to reason at a higher-level without getting bogged down in the
minutia of its operation. Reasoning about concurrent systems is one such area, where we
might be able to make analogies between blaming calls to blaming threads. While one does
need to carefully craft proof statements and other definitions, the payoff is extraordinary:
After all, we were able to quantify the effects of C on another language without modeling
it.
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Appendix A

Grammars, Typing Rules, and
Reduction Rules

A.1 Typed Language

te ::= vt value
| {s1 = v1, ..., sn = vn} table
| letx : T := te1 in te2 let binding
| x := te variable update
| locn := te location update
| deref te Lua dereference
| te1 op te2 binary operation
| te1(te2) function call
| x variable
| te1.te2 dot access
| te1.te2 := te3 dot update
| cast te TC C downcast
| callocTC n C allocation
| derefC te C deref
| te1; te2 sequence

vt ::= nil nil value
| r register
| c constant
| locn Lua location
| λx : T.te Lua function
| cfun TC n C function
| ptrnTC C pointer

r ::= reg n table store loc

c ::= n number
| b boolean
| s string

op ::= +,−, ∗, / arithmetic
| ≤, <,≥, > order
| ∧,∨ boolean
| .. concatenation
| == equality
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A.2 Runtime/Untyped Language

e ::= v value
| {s1 = v1, ..., sn = vn} table
| rawget e1 e2 table select
| rawset e1 e2 e3 table update
| e1 op e2 binary operation
| e1(e2) Lua function appl.
| x variable
| x := e var. assignment
| locn := e location update
| deref e Lua dereference
| letx := e1 in e2 let binding
| cget e n TC C store access
| cset e1 n e2 TC C store update
| ccall e1 e2 TC C function call
| calloc TC n C allocation
| cast e TC C downcast
| e1; e2 sequence
| err β bi error expression

v ::= nilL nil value
| r register
| c constant
| locn Lua store loc.
| ptrL nTC C store pointer
| λx.e Lua function
| cfunn C function

vC ::= ptrC n C store pointer
| n C number literal

A.3 Type System

T ::= nil nil type
| value top type
| ref T reference type
| T1 ∪ T2 union type
| L literal type
| B base type
| T1 → T2 function type
| {f1, ..., fn} table type
| ptrL TC C type

TC ::= int C integer type
| T 1

C → T 2
C C function type

| ptrC TC C pointer type
| {s1 : T 1

C , ..., sn : T n
C} C struct type

f ::= s : T fields
| const s : T const fields

L ::= < booleans > literals
| < numbers >
| < strings >

B ::= boolean base types
| number
| string
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A.4 Extra Typing Rules

c constant

Γ, K ` c : c c
(TT Const)

Γ, K ` te1 : number e1
Γ, K ` te2 : number e2

op ∈ {+,−, ∗, /}
Γ, K ` te1 op te2 : number e1 op e2

(TT Binop Arith)

Γ, K ` te1 : number e1
Γ, K ` te2 : number e2

op ∈ {<,≤, >,≥}
Γ, K ` te1 op te2 : boolean e1 op e2

(TT Binop Order)

Γ, K ` te1 : boolean e1
Γ, K ` te2 : boolean e2

op ∈ {∧,∨}
Γ, K ` te1 op te2 : boolean e1 op e2

(TT Binop Bools)

Γ, K ` te1 : string e1
Γ, K ` te2 : T2  e2

T2 ∈ {string,number}
Γ, K ` te1 .. te2 : string e1 .. e2

(TT Binop String)

Γ, K ` te1 : T1  e1
Γ, K ` te2 : T2  e2

Γ, K ` te1 == te2 : boolean e1 == e2
(TT Binop Eq)

Γ, K ` te1 : T1  e1
Γ, K ` te2 : T2  e2

Γ, K ` te1; te2 : T2  e1; e2
(TT Sequence)

A.5 Extra Reduction Rules

e / σT / σC / σV / β → e′ / σ′T / σ
′
C / σ

′
V / β

′

x := e / σT / σC / σV / β → x := e′ / σ′T / σ
′
C / σ

′
V / β

′ (R Var Assign Step 1)
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e / σT / σC / σV / β → e′ / σ′T / σ
′
C / σ

′
V / β

′

loc l := e / σT / σC / σV / β → loc l := e′ / σ′T / σ
′
C / σ

′
V / β

′ (R Loc Update Step 1)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

letx := e1 in e2 / σT / σC / σV / β → letx := e′1 in e2 / σ
′
T / σ

′
C / σ

′
V / β

′ (R Let Step)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

rawget e1 e2 / σT / σC / σV / β → rawget e′1 e2 / σ
′
T / σ

′
C / σ

′
V / β

′ (R Rawget Step 1)

value (e1)
e2 / σT / σC / σV / β → e′2 / σ

′
T / σ

′
C / σ

′
V / β

′

rawget e1 e2 / σT / σC / σV / β → rawget e1 e
′
2 / σ

′
T / σ

′
C / σ

′
V / β

′ (R Rawget Step 2)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

rawset e1 e2 e3 / σT / σC / σV / β → rawset e′1 e2 e3 / σ
′
T / σ

′
C / σ

′
V / β

′

(R Rawset Step 1)

value (e1)
e2 / σT / σC / σV / β → e′2 / σ

′
T / σ

′
C / σ

′
V / β

′

rawset e1 e2 e3 / σT / σC / σV / β → rawset e1 e
′
2 e3 / σ

′
T / σ

′
C / σ

′
V / β

′

(R Rawset Step 2)

value (e1) value (e2)
e3 / σT / σC / σV / β → e′3 / σ

′
T / σ

′
C / σ

′
V / β

′

rawset e1 e2 e3 / σT / σC / σV / β → rawset e1 e2 e
′
3 / σ

′
T / σ

′
C / σ

′
V / β

′

(R Rawset Step 3)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

e1(e2) / σT / σC / σV / β → e′1(e2) / σ
′
T / σ

′
C / σ

′
V / β

′ (R Fun App Step 1)

value (e1)
e2 / σT / σC / σV / β → e′2 / σ

′
T / σ

′
C / σ

′
V / β

′

e1(e2) / σT / σC / σV / β → e1(e
′
2) / σ

′
T / σ

′
C / σ

′
V / β

′ (R Fun App Step 2)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

e1 op e2 / σT / σC / σV / β → e′1 op e2 / σ
′
T / σ

′
C / σ

′
V / β

′ (R Binop Step 1)
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value (e1)
e2 / σT / σC / σV / β → e′2 / σ

′
T / σ

′
C / σ

′
V / β

′

e1 op e2 / σT / σC / σV / β → e1 op e
′
2 / σ

′
T / σ

′
C / σ

′
V / β

′ (R Binop Step 2)

value (e1) value (e2)
validL (e1) validR (e2)

e1 op e2 / σT / σC / σV / β → evalOp (e1, e2, op) / σT / σC / σV / β
(R Binop)

e / σT / σC / σV / β → e′ / σ′T / σ
′
C / σ

′
V / β

′

cget e o T / σT / σC / σV / β → cget e′ o T / σ′T / σ
′
C / σ

′
V / β

′ (R Cget Step)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

cset e1 o e2 T / σT / σC / σV / β → cset e′1 o e2 T / σ
′
T / σ

′
C / σ

′
V / β

′ (R Cset Step 1)

value (e1)
e2 / σT / σC / σV / β → e′2 / σ

′
T / σ

′
C / σ

′
V / β

′

cset e1 o e2 T / σT / σC / σV / β → cset e1 o e
′
2 T / σ

′
T / σ

′
C / σ

′
V / β

′ (R Cset Step 2)

e1 / σT / σC / σV / β → e′1 / σ
′
T / σ

′
C / σ

′
V / β

′

e1; e2 / σT / σC / σV / β → e′1; e2 / σ
′
T / σ

′
C / σ

′
V / β

′ (R Seq Step 1)

value (e1)

e1; e2 / σT / σC / σV / β → e2 / σT / σC / σV / β
(R Seq Step Through)
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