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Abstract

An acyclic k-colouring of a graph G is a proper k-colouring of G with no bichromatic
cycles. In 1979, Borodin proved that planar graphs are acyclically 5-colourable, an analog
of the Four Colour Theorem. Kawarabayashi and Mohar proved in 2010 that “locally”
planar graphs are acyclically 7-colourable, an analog of Thomassen’s result that “locally”
planar graphs are 5-colourable. We say that a graph G is critical for (acyclic) k-colouring if
G is not (acyclically) k-colourable, but all proper subgraphs of G are. In 1997, Thomassen
proved that for every k > 5 and every surface S, there are only finitely many graphs that
embed in S that are critical for k-colouring. Here we prove the analogous result that for
all £ > 12 and each surface S, there are finitely many graphs embeddable on S that are
critical for acyclic k-colouring. This result implies that there exists a linear time algorithm
that, given a surface S and k > 12, decides whether a graph embedded in S is acyclically
k-colourable.

il



Acknowledgements

First, I would like to thank my supervisor, Luke Postle, for his support and guidance.
I would also like to thank him for suggesting the topic of this thesis and for the many
opportunities I have had over the last two years because of him.

I would like to thank my readers, Jim Geelen and Peter Nelson, for taking the time to
read my thesis.

Additionally, I would like to thank Gary MacGillivray for originally encouraging me to
pursue research and for the undergraduate opportunities that gave me the confidence to
continue in graduate school.

I would also like to express my gratitude to the Department of Combinatorics and
Optimization, the University of Waterloo, the Ontario Ministry of Advanced Education
and Skills Development, and the Natural Sciences and Engineering Research Council of
Canada.

Finally, I would like to thank my friends and family for their constant support and
encouragement. I would specifically like to thank Jesse for everything he does for me and
for us. I would not have been able to finish this thesis without him.

v



Table of Contents

List of Figures
1 Introduction

2 Background

2.1 History . . . . . . o
2.1.1 Colouring on Surfaces History . . . . . . .. ... ... ... ....
2.1.2 Acyclic History . . . . . . . .. ...

2.2 Hyperbolic Theory . . . . . . . . . ... ...

2.3 Thesis Outline . . . . . . . . ...

3 Mosaics

3.1 Initial Definitions . . . . . . . . . ..
3.2 Mosaic Motivation and Definitions . . . . . . . . . . . .. ... ... ..
3.3 Mosaic Properties . . . . . . . ..

4 Canvases

4.1 Canvas Motivation and Definitions . . . . . . . . . . . . .. .. ... ...
4.2 Extension Lemmas . . . . . . . ..
4.3 Generation Lemmas . . . . . . . . .

vii

SN = NS, B G NN

Qo



5 Critical Canvases
5.1 General Structure . . . .
5.2 Calculations . . . . . ..

5.3 Proving the Main Result

6 Extending the Main Result
6.1 Hyperbolic. . ... ...
6.2 Strongly Hyperbolic. . .

References

vi

49
49
52
25

62
62
65

74



List of Figures

4.1
4.2
4.3
4.4
4.5
4.6

A possible configuration of the vertices of interest in Claim 4.3.19. . . . . . 31

A possible configuration of the vertices of interest in Claims 4.3.20 and 4.3.21. 32

A possible configuration of the vertices of interest in Claim 4.3.22. . . . . . 35
A possible configuration of the vertices of interest in Claim 4.3.25. . . . . . 37
A possible configuration of the vertices of interest in Claim 4.3.28. . . . . . 40
A possible configuration of the vertices of interest in Claim 4.3.31. . . . . . 43

vil



Chapter 1

Introduction

A proper colouring ¢ of a graph G is amap ¢ : V(G) — Z such that for all e = uv € E(G),
we have that ¢(u) # ¢(v). In this thesis, all colourings are proper. We say a colouring is
acyclic if there are no bichromatic cycles in the colouring. If a graph G has a k-colouring,
then we say G is k-colourable. Similarly, if a graph G has an acyclic k-colouring, then we say
G is acyclically k-colourable. The chromatic number of a graph G, denoted x(G), is equal
to the least integer k such that G is k-colourable. Similarly, the acyclic chromatic number
of a graph G, denoted x,(G), is equal to the least integer k such that G is acyclically
k-colourable.

Acyclic colouring was introduced by Griinbaum [11] in 1973 when he proved that planar
graphs are acyclically 9-colourable and conjectured that planar graphs are acyclically 5-
colourable. This conjecture was proved in 1979 by Borodin [(] as follows.

Theorem 1.0.1 (Borodin [0]). Every planar graph is acyclically 5-colourable.

Griinbaum also showed in [11] that five colours are necessary to acyclically colour a
planar graph. Hence, the constant in Theorem 1.0.1 is best possible. Notice that Theorem
1.0.1 could be considered an acyclic analog of the Four Colour Theorem. This answers the
question of how many colours are sufficient to acyclically colour a planar graph; however,
it would be interesting to know how many colours are sufficient to acyclically colour graphs
that embed in other surfaces.

A surface is a connected, compact, 2-dimentional manifold without boundary. By the
classification theorem of surfaces, every surface S is obtained from the sphere by adding
a handles and b crosscaps. The Fuler genus of S is defined as 2a + b. For colouring, we
have Heawood’s well-known theorem from 1890, which says that a graph embedded in a
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surface S with Euler genus g > 0 can be coloured with at most [ (74 +/24g + 1)/2] colours.
In 1996, Alon, Mohar, and Sanders [3] proved that a graph embedded in a surface S with
Euler genus ¢ can be acyclically coloured with at most 100g*7 4+ 10000 colours. Notice
that this result could be considered an acyclic analog of Heawood’s theorem.

Since the problem of determining the maximum chromatic and maximum acyclic chro-
matic numbers of graphs embedded in a given surface has been solved by Heawood and
Alon, Mohar, and Sanders, we look to a more modern approach to colouring graphs on
surfaces, initiated by Thomassen in the 1990’s.

Thomassen’s work in the 1990’s included the concept of “locally” planar graphs. We
will say a graph G embedded in a surface S is p-locally-planar if every non-contractible
cycle has length at least p. In 1993, Thomassen proved that there exists p for each surface
S such that every p-locally-planar graph G embedded in S is 5-colourable [17]. An analog
of this theorem for acyclic colouring was proven in 2010 by Kawarabyashi and Mohar [12],
as follows.

Theorem 1.0.2 (Kawarabyashi and Mohar, [12]). There exists p for each surface S such
that every p-locally-planar graph G embedded in S is acyclically 7-colourable.

Thomassen’s program from the 1990’s also included “critical” graphs, although this
concept, in the context of colouring, dates back to the 1950’s. We say a graph G is critical
for (acyclic) k-colouring if G is not (acyclically) k-colourable, but all proper subgraphs of G
are. In 1953, Dirac proved that for every k > 7 and every surface S there are only finitely
many graphs that are critical for k-colouring that embed in S [8]. This was improved to
k > 6 by Gallai in 1963 [10] and improved again in 1997 by Thomassen to k > 5 [18], as
follows.

Theorem 1.0.3 (Thomassen, [18]). For every k > 5 and every surface S there are only
finitely many graphs that are critical for k-colouring that embed in S.

This result actually implies Thomassen’s theorem from 1993 that there exists p for each
surface S such that every p-locally-planar graph G embedded in S is 5-colourable. Another
consequence of Theorem 1.0.3 is that for every surface S and every k& > 5 there exists a
linear time algorithm that decides whether a graph embedded in S is k-colourable.

Now, we are interested to know if there is an acyclic analog of Theorem 1.0.3, for
any value of k. It is not clear why an equivalent result is possible since vertices of small
degree are not as useful when acyclic colouring as they are when colouring. For example,
graphs which are critical for k-colouring do not contain vertices with degree less than k.
Unfortunately, this is not true for graphs which are critical for acyclic k-colouring. To see
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this, consider K,, the complete graph on n vertices, with one edge subdivided once. Call
this graph G and let v be the vertex of degree 2 on the subdivided edge and let v and
w be the neighbours of v. The only way to colour G — v with n — 1 colours is to give u
and w the same colour and give all other vertices pairwise distinct colours. Now, we try
to colour v in order to get an acyclic (n — 1)-colouring of G; however, every colour for v
results in a colouring of G with a bichromatic cycle. Since every proper subgraph of G is
(n — 1)-colourable, we have that G is critical for acyclic (n — 1)-colouring.

Despite this challenge, we prove an acyclic analog of Theorem 1.0.3 in this thesis, as
follows.

Theorem 1.0.4. For every k > 12 and every surface S there are only finitely many graphs
that are critical for acyclic k-colouring that embed in S.

This theorem implies that there exists p for each surface S such that every p-locally-
planar graph G embedded in S is acyclically 12-colourable, a version of Theorem 1.0.2.
Theorem 1.0.4 also implies that there exists a linear time algorithm that, given a surface
S and k > 12, decides whether a graph embedded in S is acyclically k-colourable.

In Chapter 2, we start by reviewing the history of acyclic colouring and colouring
graphs on surfaces. This is followed by an explanation of how we reduce Theorem 1.0.4 to
a problem about planar graphs. Finally, we give an outline for the remainder of the thesis.



Chapter 2

Background

2.1 History

The last 150 years has seen many results on colouring graphs on surfaces and, more recently,
on acyclic colouring. In this section, we present a brief history of colouring graphs on
surfaces and of acyclic colouring.

2.1.1 Colouring on Surfaces History

The topic of colouring graphs on surfaces arose in 1852 with Francis Guthrie’s conjecture
that all planar graphs are 4-colourable. The Four Colour Conjecture was left open for over
100 years, until it became known as the Four Colour Theorem in 1977 when Appel and
Haken offered a proof [1, 5]. Notice that since there exist planar graphs which are not
3-colourable, we have that the Four Colour Theorem is tight.

During the time when the Four Colour Conjecture was still open, some other results
about colouring graphs on surfaces surfaced, including the well-known theorem from Hea-
wood in 1890 which says that a graph embedded in a surface S with Euler genus g > 0
can be coloured with at most | (7++/24g + 1)/2] colours. In 1968, Ringel and Youngs [10]
proved that this bound is tight for every surface except the Klein bottle.

As mentioned in the Introduction, the problem of determining the maximum chromatic
numbers of graphs embedded in a given surface has been solved, so at this point we turn
to Thomassen’s approach to colouring graphs on surfaces from the 1990’s. Thomassen’s
program included “locally” planar graphs and “critical” graphs. Recall that a graph G



embedded in a surface S is p-locally-planar if every non-contractible cycle has length at
least p. Thomassen proved in 1993 that there exists p for each surface S such that every
p-locally-planar graph G embedded in S is 5-colourable [17].

Interestingly, Thomassen’s following result about critical graphs from 1997 implies the
above locally planar result. Recall that a graph G is critical for k-colouring if G is not
k-colourable, but all proper subgraphs of G' are. In 1997, Thomassen [1&] proved that for
every surface S there are only finitely many graphs that are critical for 5-colouring that
embed in S. This result improves upon the theorems of Dirac [3] and Gallai [10].

2.1.2 Acyclic History

In 1973, Griinbaum [11] proved that every planar graph is acyclically 9-colourable. He also
gave an example of a planar graph that can not be acyclically coloured with four colours.
This motivated his conjecture that every planar graph is acyclically 5-colourable. In 1974,
Mitchem [11] improved Griilnbaum’s result by proving that every planar graph is acyclically
8-colourable. This was improved again in 1976 by Kostochka [13] who showed that every
planar graph is acyclically 6-colourable. Independently, in 1977, Albertson and Berman
[1] proved that every planar graph is acyclically 7-colourable. Griinbaum’s conjecture was
finally proved in 1979 when Borodin [6] showed that every planar graph is acyclically
5-colourable.

Acyclically colouring planar graphs is still a topic of study; more recent results focus
on planar graphs without cycles of certain lengths. However, there has also been progress
regarding acyclically colouring graphs in general. Let A(G) denote the maximum degree
of the graph G and let x,(G) denote the acyclic chromatic number of G. For d € N, let
Xa(d) = max{x.(G) : A(G) = d}. In 1991, Alon, McDiarmid, and Reed [2] proved the
following:

Theorem 2.1.1 (Alon, McDiarmid, and Reed; [2]). xa(d) = O(d*/?).

They also proved that there exist graphs such that x,(d) = Q(d*/3/(log d)'/?); hence,
Theorem 2.1.1 is tight up to a factor of (log d)'/3.

In terms of acyclically colouring graph on surfaces, we have a result of Alon, Mohar,
and Sanders [3] from 1996, as mentioned in the Introduction. They proved that a graph
embedded in a surface S with Euler genus ¢ can be acyclically coloured with at most
100¢g*7 4 10000 colours. Recall that this result can be seen as an acyclic analog to Hea-
wood’s theorem. Alon, Mohar, and Sanders also showed that for g > 0 there exist graphs



that embed in a surface with Euler genus g whose acyclic chromatic number is at least
Q(g*" /(log g)*/7). Thus, their bound is tight up to a factor of (log g)*/".

Several years later, acyclic colouring joined the modern approach to colouring on sur-
faces with a result about locally planar graphs. Kawarabayashi and Mohar [12] proved
in 2010 that there exists p for each surface S such that every p-locally-planar graph G
embedded in S is acyclically 7-colourable. This result can be seen as an acyclic analog to
Thomassen’s 1993 result about locally planar graphs.

2.2 Hyperbolic Theory

This section will give a brief introduction to the hyperbolic theory developed by Postle and
Thomas [15], and will explain how their results will be applied in this thesis. We refer the
reader to [15] for all formal definitions and theorems.

We say a family F of graphs is hyperbolic if there exists a constant ¢ > 0 such that if
G € F is a graph embedded in a surface 3, then for every closed curve v : S' — ¥ that
bounds an open disk A and intersects G only in vertices, then the number of vertices of GG in
A is at most ¢(|[{z € S' : v(x) € V(G)}| — 1). This definition has a natural strengthening,
as follows. We say a family F of graphs is strongly hyperbolic if F is hyperbolic and
there exists ¢ > 0 such that if G € F is a graph embedded in a surface X, then for
every two closed curves 71,7, : S! — ¥ that bound an open annulus A and intersect G
only in vertices, then the number of vertices of G in A is at most ¢(|{z € S' : 71(z) €
V(G) or a(x) € V(G)} = 1).

In [15], Postle and Thomas prove a more general version of the following theorem.

Theorem 2.2.1 (Postle and Thomas, [15]). For every strongly hyperbolic family F of
embedded graphs that is closed under curve cutting there exists a constant 3 > 0 such that
every graph G € F embedded in a surface of Fuler genus g has at most Sg vertices.

Let F be the family of graphs which are critical for acyclic k-colouring, where k > 12.
The goal of this thesis is to prove that [{G € F : G embeds in S}| is bounded above for
each surface S. However, if we instead prove that F is strongly hyperbolic, then it follows
from Theorem 2.2.1 that |{G € F : G embeds in S}| is bounded above for each surface S.
Thus, we focus the remainder of this thesis to proving that F is strongly hyperbolic.

In order to prove that F is strongly hyperbolic, we first prove that F is hyperbolic.
This is done by bounding the number of vertices in a plane graph G with outer cycle C'
with respect to the number of vertices in C, where G is a subgraph of a graph G’ € F.
The Main Theorem 5.3.5 of this thesis aims to establish this bound.



2.3 Thesis Outline

The remainder of this thesis is organized as follows. The goal of Chapter 3 is to define
the key concept which will allow us to properly discuss the idea of extending an acyclic
colouring. In Section 3.1, we start by formalizing some basic definitions regarding colouring
and acyclic colouring, and present some graph notation which will be used throughout the
thesis. Section 3.2 defines a “mosaic”, which is the key concept that will allow us to
explain how acyclic colourings can be extended. Section 3.3 rounds out the chapter with
a collection of “mosaic” properties which will be used throughout later chapters.

Chapter 4 focuses on a set of extension lemmas, which will give insight into the structure
of graphs which are critical for acyclic colouring. Some preliminary definitions are given in
Section 4.1, followed by the Extension Lemma 4.2.1 in Section 4.2. Section 4.3 is dedicated
to proving the “Fourth Generation” Lemma 4.3.12.

In Chapter 5 we establish a variety of preliminary lemmas and then prove the main
result of this thesis. Section 5.1 contains the proofs of the Key Lemma 5.1.2, which uses
results from Section 3.3, and the General Structure Lemma 5.1.4, which follows almost
immediately from the Extension Lemma 4.2.1. In Section 5.2, we confirm several bounds
which are used in the proof of the Main Theorem 5.3.5, which is given in Section 5.3.

The goal of Chapter 6 is to show how the Main Theorem 5.3.5 implies that the family
of graphs which are critical for acyclic k-colouring, where k > 12, is strongly hyperbolic.
Section 6.1 aims to prove that this family is hyperbolic, while Section 6.2 shows how the
hyperbolic results extend to strongly hyperbolic.



Chapter 3

Mosaics

We begin this chapter with a section containing several basic definitions. This is followed
by a section which will define the concept of a “mosaic”. Finally, the last section in this
chapter contains some basic properties about mosaics.

In this thesis, a graph G is an ordered pair (V, E) where V' is a set of vertices and E is
a set of 2-element subsets of V' called edges. We write V(G) for V and E(G) for E. Also
note that in this thesis, we will always use k to denote a natural number. Furthermore,
we always use the colours [k] when k-colouring a graph, which isn’t always standard, but
it will simplify later definitions.

3.1 Initial Definitions

A colouring of a graph G is an assignment of labels to the vertices of G such that two
adjacent vertices do not receive the same label. A k-colouring of a graph G is a colouring
that uses labels from [k]. In this thesis, we will often want to refer to subgraphs of a graph
G which contain only vertices of a certain colour under some colouring of GG. Specifically,
we care about subgraphs made up of vertices in two fixed colour classes.

Definition 3.1.1. Let G be a graph with a k-colouring ¢. For each i # j € [k], we
denote the graph induced on the vertices that receive colour ¢ or j in ¢ by G;;(¢). That

is, Gij(¢) = G[p~' (i) U o1 (j)].

Definition 3.1.2. Let G be a graph with a subgraph H. We say a colouring ¢y of H
extends to a colouring ¢g of G if ¢y (v) = ¢ (v) for all v € V(H).



Definition 3.1.3. Let G be a graph with a subgraph H. Let ¢ be a k-colouring of G. We
say that ¢’ is the restriction of ¢ to H if ¢’ is the k-colouring of H where ¢'(v) = ¢(v) for
all v € V(H). Let ¢ denote the restriction of ¢ to H.

Recall that a colouring is considered acyclic if it contains no bichromatic cycles, or
equivalently the following definition.

Definition 3.1.4. An acyclic k-colouring of a graph G is a k-colouring ¢ where G;;(¢) is
acyclic, for all colours i # j € [k].

The following two definitions give a formal definition of the neighbourhood and second
neighbourhood of a vertex.

Definition 3.1.5. Let G be a graph with u,v € V(G). The distance between u and v,
denoted distg(u, v), is the length of a shortest path between u and v in G. If the graph is
clear, we drop the subscript and write dist(u, v).

Definition 3.1.6. Let G be a graph with v € V(G). The neighbourhood of v in G, denoted
Ng(v), is the set {u € V(G) : dist(u,v) = 1}. The second neighbourhood of v in G, denoted
NZ(v), is the set {u € V(G) : dist(u,v) = 2}. Note that if the graph is clear from context,
we drop the subscript and write N(v) or N?(v).

We also define the neighbourhood of a set of vertices.

Definition 3.1.7. Let G be a graph with X C V(G). The neighbourhood of X in G,
denoted Ng(X), is the set {u: u € N(v) where v € X} \ X.

The following definitions formally describe some relavent graph operations.

Definition 3.1.8. Let G be a graph with subgraphs A and B. The graph AU B has vertex
set V(A)UV(B) and edge set F(A)U E(B). The graph AN B has vertex set V(A)NV(B)
and edge set E(A) N E(B).

Definition 3.1.9. Let G be a graph with a subgraph A. The graph G induced on A,
denoted G[A], has vertex set V(A) and edge set {e = wv : u,v € V(A)}. Note that
GIV(A)] = G[A].

Definition 3.1.10. Let G be a graph with a subgraph A. The graph G\ A has vertex set
V(G) \ V(A) and edge set E(G[V(G) \ V(A)]). Note that G\ V(A) = G\ A.



Although this thesis does not address the acyclic list colouring version of our acyclic
colouring problem, we do use list colouring in the proof of the Extension Lemma 4.2.1.
Thus, we define list colouring as follows.

Definition 3.1.11. Let G be a graph. A list-assignment L is a collection of lists (L(v) C
Z* : v € V(G)) where L(v) is non-empty for each v € V(G). The list-assignment L is
a k-list-assignment if |L(v)| > k for all v € V(G). An L-colouring is a colouring ¢ of
G such that ¢(v) € L(v) for all v € V(G). We say G is k-list-colourable if, for every

k-list-assignment L of GG, G has an L-colouring.

Definition 3.1.12. Let G be a graph. An acyclic L-colouring of GG is an acyclic colouring
¢ such that ¢(v) € L(v) for all v € V(G). We say G is acyclic k-list-colourable if, for every
k-list-assignment L of GG, G has an acyclic L-colouring.

3.2 Mosaic Motivation and Definitions

In this section, we define the concept of a “mosaic” and describe how mosaics are used to
extend acyclic colourings.

We begin with the following definition, which will be used in the definition of a mosaic.

Definition 3.2.1. Let G be a graph and let P, P’ be partitions of V(G). We say that P
is a refinement of P’ if, for each pair u,v € V(G) that are in the same part of P, we have
that u, v are in the same part of P’. Let H be a subgraph of G and let Py be a partition
of V(H). We say that Py is a refinement of P if, for each pair u,v € V(H) that are in
the same part of Py, we have that u, v are in the same part of P.

Observe that if P is a refinement of P’, which in turn is a refinement of P”, then P is
a refinement of P”. That is, refinements are transitive.

Let us now define mosaic, as follows.

Definition 3.2.2. A k-mosaic M of a graph G is an ordered pair (¢,{P;; : i # j € [k]})
where ¢ is an acyclic k-colouring of G and each P;; is a partition of V(G;;(¢(M)) such
that the partition whose parts are the connected components of G;;(¢) is a refinement of
P;;. That is, if u,v € V(G) are in a path in G;;(¢), then u and v are in the same part of
P,‘j. We write gb(M) or ¢M for QZS and P,J(M) for P,J

Let F be the family of graphs which are critical for acyclic k-colouring, where k£ > 12.
Recall that in order to prove the main result, we want to bound the number of vertices in a
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plane graph G with outer cycle C' with respect to the number of vertices in C', where G is
a subgraph of a graph G’ € F. In the colouring version of this problem, we can determine
if a colouring ¢ of G'\ (G'\ C) extends to G’ by determining if the colouring ¢\ extends to
G'. Unfortunately, this reduction does not work for acyclic colouring: We may extend ¢
to an acyclic colouring ¢ of G, but the colouring ¢g U ¢ of G’ is not necessarily acyclic.
This motivates the definition of a mosaic, which is composed of an acyclic colouring and
a collection of partitions. The partitions can be used to keep track of paths in G7;(¢) for
each i # j € [k].

Now that we have the concept of a mosaic formalized, we aim to define precisely what
the extension of a mosaic is. This is done using multigraphs, which are defined as follows.

Definition 3.2.3. A multigraph H is an ordered pair (V, E') where V' is a non-empty set
of vertices and E is a multiset of 2-element subsets of V' called edges. Two or more edges
that have the same endpoints are called parallel edges. If e = uwv € E where u = v,
then e is called a loop. The underlying graph of a multigraph H is the graph G for which
V(G) =V (H) and uv € E(G) if u and v are joined by at least one edge in H.

Note that a multigraph that does not have parallel edges or loops is a graph.

Definition 3.2.4. A cycle in a multigraph H is a loop or a closed walk viejvqes ... v,€,v1
where n > 2, the vertices vy, ..., v, are pairwise distinct, the edges ey, ..., e, are pairwise
distinct, and, for all ¢ € [n], the ends of e; are v; and Vit1(mod n)- Note that if n = 2 then
the cycle is a pair of parallel edges.

Definition 3.2.5. A multigraph is acyclic if it contains no cycles.

Note that an acyclic multigraph does not contain loops or parallel edges; thus, acyclic
multigraphs are graphs.

The following two definitions define the multigraph which will be used in the definitions
of mosaic extension.

Definition 3.2.6. Let G be a graph and let u,v € V(G). If u and v are identified to
a vertex w, then the resulting graph has vertex set {w} U V(G) \ {u,v} and edge set
{e =wzx : yx € E(G) where y € {u,v}} U (E(G) \{e=yx:y € {u,v}}).

Definition 3.2.7. Let GG be a graph with a k-colouring ¢ and let H be a subgraph of
G with a k-mosaic My. Let i # j € [k]. Let the (¢,j)-fusion of My in ¢, denoted
éij(qﬁ, Mp), be the multigraph obtained from G;;(¢) by deleting the edges in E(H) and,
for each part R € P;;(My), identifying the vertices of R to a vertex R. Let 752](MH) denote
the independent set that results from identifying the parts of P;;(Mpy).
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__ There is a natural mapping from vertices and edges in G _to vertices and edges in
Gij(¢, My). Each v € V(G) is mapped to a vertex v € V(G,i(p, My)). If v = R €
Pij(My), then v € R € Pij(My). If v ¢ P;j(Mpy), then we sometimes refer to v as v

for convenience. Each e € E(G) \ E(H) is mapped to an edge € € E(G;;(¢, My)). We
sometimes refer to € as e for convenience.

Notice that éij(¢, Mp) is a multigraph since we do not remove multiple edges or loops.
Now, we are prepared to define the extension of a mosaic.

Definition 3.2.8. Let G be a graph with a subgraph H. A k-mosaic My of H extends to
a k-colouring ¢ of G if all of the following hold:

L. ¢|H = ¢(MH)7 and
2. Gij(¢, My) is acyclic, for all i # j € [k].

Definition 3.2.9. Let G be a graph with a subgraph H. A k-mosaic My of H extends to
a k-mosaic Mg of G if all of the following hold:

L. ¢(Me) g = ¢(Mn),
2. P;j(Mp) is a refinement of P;;(M¢), for all i # j € [k], and

3. Gij(6(Mg), My) is acyclic, for all i # j € [k].

3.3 Mosaic Properties

In this section, we establish some properties of mosaics which will be used throughout the
remainder of the thesis. First, we establish that mosaic extension is transitive.

Proposition 3.3.1. Let M, M', and M" be k-mosaics of H, H', and H", respectively,
where H C H' C H". If M" is an extension of M’ and M’ is an extension of M, then M"
is an extension of M.

Proof. To prove that M" is an extension of M we prove, by Definition 3.2.9, that all of the
following hold:

L ¢(M") 1z = ¢(M),
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2. for all i # j € [k], Pi;(M) is a refinement of P;;(M"), and

3. for all i # j € [K], ﬁ/ij(qS(M”),M) is acyclic.

By Definition 3.2.9, ¢(M")gr = ¢(M’') and ¢(M')|z = ¢(M). Therefore, p(M") |z =
¢(M) and we have that (1) holds. Since P;;(M) is a refinement of P;; (M), which itself is a
refinement of P,;(M"), it follows that P;;(M) is a refinement of P;;(M") for all i # j € [k].
Thus, we have that (2) holds.

It remains to prove that (3) holds. Suppose not; that is, suppose Ii[v”ij(<b(M”),M)
is not acyclic for some i # j € [k]. Let C be a cycle in If-lv”,;j(<b(M”),M). Notice that
fl’ij(gzﬁ(M’), M) is a subgraph of I}v”ij(¢(M”),M). Since f—f’ij(gzﬁ(M’), M) is acyclic, there
exists at least one edge e = wz € E(C) such that e is in ]?7’1-]-(¢(M”),M), but not in
rl’ij(gzﬁ(M’), M). Let C' be the subgraph of ]f:lv”ij(¢(M”), M) that results from identifying
the components of C'N Fij(¢(M’), M). Each component of C’ﬂ]?ij(gb(M’), M) is incident
with at least two edges whose images are in ff’ij(gzﬁ(M”),M’). Hence, each vertex R €
7§ij(M’) has degree at least 2 in ff’ij(qﬁ(M”)i/[’). Let v be a vertex in ﬁ’ij(gzﬁ(M”), M)\
Pi;(M'). Since v has degree at least 2 in H”;;(¢(M"), M) and the images of all edges
incident with v in ﬁ’ij(qS(M”), M) are in ﬁ’ij(gzﬁ(M”), M), it follows that v has degree at
least 2 in ﬁ’ij(qS(M”), M"). Thus, we have that all vertices in C” have degree at least 2.
Hence, it follows that C’ contains a cycle. Since C” is a subgraph of ﬁ’ij(qb(M”), M"), we

have that ﬁ’ij(gb(M”), M) is not acyclic, which implies that M’ does not extend to M”,
a contradiction.

Now conditions (1), (2), and (3) hold; thus, by Definition 3.2.9, it follows that M
extends to M". O

Proposition 3.3.2. Let G be a graph with a subgraph H. If a k-colouring ¢ of G is an
extension of a k-mosaic My of H, then ¢ is acyclic.

Proof. Suppose, towards a contradiction, that ¢ is not an acyclic k-colouring of G. Thus,
there exists a cycle C' in G;;(¢). If E(C) C E(G) \ E(H), then C'is a cycle in G;;(¢, My );
hence, by Definition 3.2.8(2), we have that My does not extend to ¢, which is a contra-
diction. If E(C) C E(H), then C is a cycle in H;;(¢(Mp)); hence, we have that ¢(Mpy) is
not acyclic, which is a contradiction. Therefore, there exist edges e, f € E(C) such that
ec E(G)\ E(H) and f € E(H).

Let C’ be the subgraph of éij(qzﬁ, Myp) that results from identifying the components of
C' N H. Each component of C'N H is incident with at least two edges in G;;(¢) \ E(H);
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thus, each R € ﬁ”(MH) is incident with at least two edges in éij(qzﬁ, Mp). Each vertex in
CN(G\ H) is incident with at least two edges in G;;(¢) \ E(H) and the images of these
edges are in Gy;(¢, My ); thus, each o € V(Gi;(¢, My)) \ Pi;(Mpy) has degree at least two.
Hence, all vertices in C” have degree at least two and it follows that C” contains a cycle.
Since C' is a subgraph of G;;(¢, My), we have that G;;(¢, My) is not acyclic. Thus, by
Definition 3.2.8, it follows that My does not extend to ¢, which is a contradiction. O

Definition 3.3.3. If GG is a graph and ¢ is an acyclic k-colouring of (G, then the k-mosaic
M induced by ¢ is the mosaic where ¢(M) = ¢ and P;;(M) is the partition of V(G;;(¢))
whose parts are the components of G;;(¢), for each i # j € [k]. Let Mosaic|¢] denote the
mosaic induced by the colouring ¢.

Proposition 3.3.4. Let G be a graph. If M is a k-mosaic of G, then Mosaic[p(M)]
extends to M.

Proof. Let M' = Mosaic[¢(M)]. Since (M) = ¢p(M’), we have that (M) = ¢(M'). By
Definition 3.2.2, it follows that P;;(M’) is a refinement of P;;(M) for all ¢ # j € [k]|. Since
both M and M’ are mosaics of G, we have that éij(gzﬁ(M ), M") is an independent set; thus
G (¢(M), M) is acyclic. Therefore, by Definition 3.2.9(1), (2), and (3), it follows that M’
extends to M. ]

Definition 3.3.5. Let G be a graph and let M and M’ be two k-mosaics of G such that
d(M) = ¢(M’). The smallest common coarsening of P;;(M) and P;;(M’) is the collection
{Pij :i # j € [k]} such that for all i # j € [k]: |P;;| is maximum; and for all u,v that are
in the same part of P;;(M) or P;;(M’), we have that u, v are in the same part of P;;. That
is, P;;j(M) is a refinement of P;; and P;;(M’) is a refinement of P;;, for all i # j € [k].

Definition 3.3.6. Let G be a graph with a subgraph H. Let M be a k-mosaic of H that
extends to a k-colouring ¢ of G. We say the k-mosaic M’ of G is the induced extension
of M via ¢ if ¢(M') = ¢ and P;;(M’) is the smallest common coarsening of P;;(M) and
P.;(Mosaic[¢]), for all 7 # j € [k]. Let Mosaic[¢, M| denote the induced extension of M
via ¢.

Proposition 3.3.7. Let G be a graph with a subgraph H. If a k-mosaic M of H extends
to a k-colouring ¢ of G, then M extends to Mosaic|p, M].

Proof. Let M’ = Mosaic[¢, M]. Since M extends to ¢, it follows that ¢(M') |y = ¢ =
¢(M). By Definition 3.3.6, we have that P;;(M) is a refinement of P;;(M"), for all i # j €
[k]. Since M extends to ¢, we have that éij(qb, M) is acyclic, for all i # j € [k]; hence,
it follows that éij(gzﬁ(M/), M) is acyclic, for all i # j € [k]. Thus, by Definition 3.2.9, we
have that M extends to M’. O
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Proposition 3.3.8. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
Mosaic|p, M| ezists for some k-colouring ¢ of G, then M extends to a k-mosaic of G.

Proof. By Definition 3.3.6, ¢ is an extension of M. By Proposition 3.3.7, it follows that M
extends to Mosaic|[¢, M]. Since Mosaic[¢, M] is a k-mosaic of G, it follows that M extends
to a k-mosaic G. O]

Proposition 3.3.9. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
M extends to a k-mosaic Mg of G, then there exists a k-colouring ¢ of G such that M
extends to ¢.

Proof. Since M extends to Mg, we have that ¢(Mg)jyx = ¢(M) and G (6(Mg), M) is
acyclic for all i # j € [k]. Thus, by Definition 3.2.8 it follows that M extends to ¢(Mg). O

Let GG be a graph with a subgraph H. We say that a k-mosaic M of H extends to G if
M extends to a k-colouring or a k-mosaic of G.

Corollary 3.3.10. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
M extends to G, then Mosaiclp, M ] exists for some acyclic k-colouring ¢ of G.

Proof. The result follows from Proposition 3.3.7. m

Proposition 3.3.11. Let G be a graph with a k-mosaic Mqg. Let G' be a subgraph of
G and let H be a subgraph of G' with a k-mosaic My. If My extends to Mg, then
Mosaic[p(Mg)|ar, M| extends to Me.

Proof. Suppose not. Let M = Mosaic[¢p(Ma)|cr, Mu]. M is a k-mosaic of G’ whose acyclic
k-colouring is defined to be ¢(Mg)|cr. Since every component of G7;(¢(M)) is contained
in a component of G;;(¢(M¢)), we have that P;;(M) is a refinement of P;;(M). Thus,
Definition 3.2.9(1) and (2) hold for M extending to M. Since M is not an extension of
M, it now follows by Definition 3.2.9(3) that there exists a cycle C' in C:’ij((b(M(;), M), for
some i # j € [k].

Let {Ry,...,R,} be the set of vertices of Py;(M) that are in V(C). Note that p > 1
since ¢(Mg) is acyclic. Since 75”(M ) is an independent set, }N%q is incident with two edges
€qs f; whose preimages e, f, are in E(G) \ E(G’), for each ¢ € {1,...,p}. Thus, for each

q € {1,...,p}, we have that e, is incident with some vertex z, € V(G’) and f, is incident
with some vertex y, € V(G’) such that z,,y, are in the same part R, € P;;(M). Let Z,, 79,

be the images of x, and y, in G’;;(¢(M), My) for each g € {1,...,p}.
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Claim 3.3.12. There exists an 2, y,-path P, in @7U(¢(M), Mpy), for each q € {1,...,p}.

Proof. Suppose not. Thus, it follows that @ij(qﬁ(M ), M) is not connected. If two vertices
u,v are in the same component of @ijw(M ), M), then it follows that u, v are in the same
part of P;;(M). Suppose the vertices of two components X and Y are in the same part R of
PU(M> Let RX =RN V(X> and Ry =RN V(Y) Let 'P,;j = (,PZJ(M) \ {R}) U {Rx, Ry}
If w,v are in the same part of P;;(Mpy), then u,v are identified to the same vertex in
/C;;’W(gb(M),MH), thus, u,v are in the same part of P;;. If u,v are in the same part of
Pij(Mosaic[¢(M)]), then there is a u,v-path in G7;(¢(M)); hence, there is a u,v-path in
/é/’”(gb(M ), Mp), which implies that u,v are in the same part in P;;. Therefore, since
|Pij| > |Pi;j(M)], it follows that P;;(M) is not the smallest common coarsening of P;;(Mp)
and P;;(Mosaic[¢(M)]), which is a contradiction. O

Since bv’ij(gb(M), Mpy) is a subgraph of éij(gb(MG), Mpy), it follows that P, is a path
in G (¢(Mg), My), for each ¢ € {1,...,p}. Thus, G[(V(C) \ V(P;(M))) U V(P) U
-+ UV(F,)] is a subgraph of éij(gb(Mg), Mpy) where each vertex has degree at least 2.
Hence, this subgraph contains a cycle, which implies that éij(gb(MG), My) is not acyclic,
a contradiction. ]

Proposition 3.3.13. Let G be a graph with a subgraph H. If an acyclic k-colouring ¢ of
H extends to an acyclic k-colouring ¢ of G, then Mosaic|¢| extends to Mosaic[¢/].

Proof. Let M = Mosaic|¢| and M’ = Mosaic|[¢'] and suppose, towards a contradiction, that
M does not extend to M’. Since ¢ extends to ¢, it follows that ¢(M')x = "H =¢=o(M).
Since H is a subgraph of G, it follows that H;;(¢) is a subgraph of G;;(¢’), for all ¢ # j € [k].
Thus, if two vertices u,v € V(H) are in the same component of H;;(¢), then u and v are
in the same component of G;;(¢’). Hence, we have that P;;(M) is a refinement of P;;(M").
Thus, Definition 3.2.9(1) and (2) hold for M extending to M.

Since M does not extend to M’, it now follows by Definition 3.2.9(3) that there exists
a cycle C in CNJij(ng(M’), M) for some i # j € [k]. Let {Ry,... ,Ep} be the set of vertices
of ﬁJ(M ) that are in V(C'). Since 75U(M ) is an independent set, R, is incident with
two edges 'evq,f; € V(C) such that their preimages ey, f, are in E(G) \ E(H), for each
g€ {1,...,p}. Thus, for each ¢ € {1,...,p}, we have that e, is incident with some vertex
z, € V(H) and f, is incident with some vertex y, € V(H) such that z,, y, are in the same
part R, € P;;(M). Since M is the mosaic induced by ¢, it follows that there exists an
Tq,Yg-path P, in H;;(¢(M)), for each ¢ € {1,...,p}.
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Since H;j(¢(M)) is a subgraph of G;;(¢(M’)), it follows that P, is a path in G;;(¢(M”)),
foreach g € {1,....p}. Let C'"=CN(G\ H) +e1Pif1 +---+e,P,f,. Since vertices that
are in the same component of G;;(¢(M")) are in the same part of P;;(M’) and the parts of
Pi;(M') are disjoint, it follows that two distinct paths in {F, : ¢ € {1,...,p}} are disjoint.
Thus, we have that C” is a cycle in G;;(¢(M’)). Since G;;(¢(M’)) is not acyclic, it follows
that ¢(M’) = ¢ is not an acyclic k-colouring, a contradiction. ]

Definition 3.3.14. Let G be a graph with a k-mosaic M and let H be a subgraph of
G. We say a k-mosaic M’ is the restriction of M to H if ¢(M') = ¢(M)y and, for all

Proposition 3.3.15. Let G be a graph with a k-mosaic M. Let G' be a subgraph of G with
a k-mosaic M' such that M' extends to M. If H is a subgraph of G, then the restriction
of M to HNG' extends to the restriction of M to H.

Proof. Let Mj; be the restriction of M’ to H N G’ and let My be the restriction of M to
H. Notice that ¢(Mp) = ¢(M')(rney and ¢(My) = ¢(M)|4.

Suppose M does not extend to Mpy. Since M’ extends to M, it follows that ¢(M)|qr =
gb(M/); thus, we have that ¢(MH)|G’ = (¢(M)|H)|G’ = ¢(M)|(G’OH) = (¢(M)|G/)|(HQG/) =
A(M')|(ancry = ¢(My;). Hence, Definition 3.2.9(1) holds for Mj; extending to My.

Since M’ extends to M, it follows that P;;(M’) is a refinement of P;;(M). By Definition
3.3.14, we have that P;;(M}) = {PNV(HNG') : P € P;j(M")} and P;;(My) = {PNV(H) :
P e Pj;(M)}. Thus, P;;j(My) is a refinement of P;;(Mp ). Hence, Definition 3.2.9(2) holds
for M}, extending to My.

Since M}, does not extend to My, it now follows by Definition 3.2.9(3) that there exists
a cycle C' in Hyj(¢(My), M};) for some i # j € [k]. Let {Ry,..., Ry} be the set of vertices
of 75”(M}{) that are in V(C). Notice that V(C)\{Ry, ..., }sz} is a subset of V(G)\ V(G").

By definition of P;;(M};), it follows that R, is a subsiet of some part R, of Py (M'),
for all ¢ € {1,...,p}. Hence, if a vertex v is adjacent to R, in H;;(¢(My), My;) for some
g €A{1,...,p}, then v is adjacent to éfl in éij(gb(M),M’). Thus, (V(C)\ {él, . ,]?Zp}) U

{R'1,..., R} induces a cycle in éij(gzﬁ(M),M’). Hence, éij(gb(M),M’) is not acyclic.
Thus, M’ does not extend to M, a contradiction. O

Proposition 3.3.16. Let G be a graph with subgraphs A and B such that G = AU B. Let
My be a k-mosaic of A and let M anp be the restriction of Ma to AN B. If Manp extends
to B, then M4 extends to G.
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Proof. Since Manp extends to B, it follows from Proposition 3.3.9 that there exists an
acyclic k-colouring ¢ of B such that Mqp extends to ¢p. By Definition 3.2.8(1), we have
that (¢B)|anB) = ¢(Manp). By Definition 3.3.14, we have that ¢(Manp) = ¢(Ma)janp)-
Hence, (¢)|anp) = ¢(Ma)|anp). Therefore, ¢(M4) U ¢p is a well-defined k-colouring of

G. Let ¢ = (b(MA) U ¢p.
Claim 3.3.17. M, extends to ¢.

Proof. Suppose, towards a contradiction, that M, does not extend to ¢. Since ¢4 =
¢(My), it follows that Definition 3.2.8(1) holds for M4 extending to ¢. Since M4 does not
extend to ¢, it follows by Definition 3.2.8(2) that éij(¢, My) contains a cycle C' for some
i # j € [k]. Since ¢p is acyclic, it follows that C' contains at least one vertex Re ﬁU(M 4)-

Let {Ry,..., Ep} be the set of vertices of 75W(MA) that are in V' (C'). Since P;;(Mang) =
{PNV(ANB): P € Py(Ma)}, it follows that some part R, of Py;(Manp) is a subset of R,
for all ¢ € {1,...,p}. Notice that R . R’ are vertices in Bw(qﬁB, M anp). Additionally,
notice that V(C)NV(G\ A) is a subset of V( Z](gbg, Mang)).

Let e be an edge in Gij(gb, My). By definition, the preimage of e is in E(B). Thus,
both endpoints of e are in V(B). Hence, it follows that e is an edge in BU(QSB,MAQB)
Thus, we have that (V(C)\{Ry,... p}) U{R|,...,R .} induces a cycle in Bw(gbB, Mang).

Since Eij(qu, Manp) is not acychc, it follows from Definition 3.2.8(2) that M4np does not
extend to ¢p, which is a contradiction. O]

Since M4 extends to ¢ by Claim 3.3.17, it follows that My, extends to G. O]
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Chapter 4

Canvases

In this chapter, we prove a collection of extension lemmas. These lemmas will be used in
Chapter 5 to better understand the structure of graphs which are critical for acyclic k-
colouring. Speficially, we aim to identify the structure of plane subgraphs of graphs which
are critical for acyclic k-colouring. Therefore, the extension lemmas in this chapter deal
with plane graphs.

4.1 Canvas Motivation and Definitions

In this short section, we establish a few definitions which will be used in the extension
lemmas of this chapter.

Definition 4.1.1. Let G be a plane graph with a cycle C. The interior of C, denoted
int(C'), is the set of vertices contained in the interior of the disk bounded by C. Let
G(C) = G[C U int(C)].

Since most results in this chapter and in Chapter 5 deal with a graph GG and a connected
subgraph H, we find it convenient to define the pair of a graph and a subgraph, as follows.

Definition 4.1.2. A canvas I' = (G, H) is a plane graph G and a connected subgraph H
of G.

The following structure definitions are needed for the extension lemmas.
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Definition 4.1.3. A bichord of a canvas I' = (G, C), where C' is the outer cycle of G, is a
path P = wvw where v € V(G) \ V(C) and u # w € V(C) such that distc(u, w) > 2. We
say P is a dividing bichord if disto(u, w) > 3.

Definition 4.1.4. A bipod of a canvas I' = (G, C), where C' is the outer cycle of G, is a
vertex v € V(G) \ V(C) such that v is in at least one bichord.

Definition 4.1.5. Let I' = (G, C) be a canvas where C' is the outer cycle of G and let
v € V(G)\ V(C). Recall No(v) = N(v) N V(C) and let Na(v) = {u € V(C) : u €

N(N(v)\ Nc¢(v))}. Let feet(v) = No(v) U NE(v). We refer to the vertices in feet(v) as the
feet of v.

Definition 4.1.6. An r-double-pod of a canvas I' = (G, C), where C' is the outer cycle of
G, is a vertex v € V(G) \ V(C) where [feet(v)| = r.

Definition 4.1.7. Let v be an r-double-pod of a canvas I' = (G, C) where C'is the outer
cycle of G. Since feet(v) = Ne(v) U N2(v), there exists, for each u € feet(v), a (v, u)-path
P, of the form vu or vwu where w € N(v) \ N¢(v), in G. Fix such a path P, for each
u € feet(v) and let legs(v) = {P, : u € feet(v)}. Notice that |legs(v)| = r.

4.2 Extension Lemmas

In this section, we prove the Extension Lemma 4.2.1 and deduce two corollaries from it.

Lemma 4.2.1 (Extension Lemma). Given a canvas I' = (G,C), where C is the outer
cycle of G, and a k-mosaic M of C, we have that M extends to G unless there exists at
least one of the following:

(i) a chord uv of C, or
(i) a bichord wvw of T' where ¢p(u) = dpr(w), or

(#i) an r-double-pod v of I' where |{¢n(u) : u € feet(v)}| > k — 6.
Proof. Suppose, towards a contradiction, that there does not exist:

(i) a chord wv of C, or

(ii) a bichord uvw of I where ¢pr(u) = ¢pr(w), or
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(iii) an r-double-pod v of T" where [{¢pr(u) : u € feet(v)}| > k — 6,

and M does not extend to G. Let L be a k-list-assignment of GG such that, for each vertex
ve V(G\V(C), L(v) = [k]\{om(u) : u € feet(v)}.

Since (iii) does not exist, it follows that |L(v)| > k — [{om(u) : u € feet(v)}| >
k— (k—7) =7, and we have that there exists an acyclic L-colouring ¢’ of V/(G)\V(C) by
[7]. Since the two k-colourings ¢’ and ¢(M) are disjoint, it follows that ¢’ U ¢(M) defines
a k-colouring of G. Let ¢ = ¢’ U ¢(M).

Claim 4.2.2. The colouring ¢" is an acyclic k-colouring of G.

Proof. Suppose, towards a contradiction, that ¢” is not acyclic. That is, there exists a
cycle C' in G;;(¢") for some i # j € [k]. Since ¢’ and ¢(M) are both acyclic, we have that
C" contains both a vertex in C' and a vertex in V(G)\V(C). Thus, there exists an edge
e =uv € E(C") where v € V(G)\V(C) and u € V(C). Let w # u be the vertex such that
wv € E(C"). Notice that ¢p(u) = ¢”(w). This implies that u is not adjacent to w. If
w € V(C), then wvw is a bichord of I where ¢p(u) = ¢ (w), which is a contradiction.
Thus, w ¢ V(C'). Therefore, by the definition of L, we have that ¢y (u) ¢ L(w) and thus,
¢ (w) # ¢p(u). Since ¢ (w) = ¢"(w) = ¢"(u) = ¢ar(u), we have a contradiction. O

Let {P;; : i # j € [k]} be a collection of partitions of V(G) such that each P;; is the
smallest common coarsening of P;;(M) and P;;(Mosaic[¢"]).

Claim 4.2.3. The partition whose parts are the connected components of Gi;(¢") is a
refinement of P;j, for each i # j € [k].

Proof. For each i # j € [k], the partition P;;(Mosaic[¢”]) is exactly the partition whose
parts are the connected components of G;;(¢”), by Definition 3.3.3. By Definition 3.3.5,
each P;;(Mosaic[¢”]) is a refinement of P;;. O

By Claims 4.2.2 and 4.2.3, it follows that ¢” and {P;; : i # j € [k]} define a k-mosaic
of G. Let M’ denote this k-mosaic.

Since p(M') = ¢" = ¢(M)U¢', it follows that ¢(M'),c = ¢(M); thus, Definition 3.2.9(1)
holds for M extending to M’. Since P;;j(M’) = P;; is the smallest common coarsening of

P;;(M) and P;;j(Mosaic[¢”]), it follows from Definition 3.3.5 that P;;(M) is a refinement
of P;;(M'), for all i # j € [k]. Hence, Definition 3.2.9(2) holds for M extending to M’.

Since M does not extend to G, it follows that M does not extend to M’ and, thus, by
Definition 3.2.9(3), we have that G;;(¢(M'), M) contains a cycle C” for some i # j € [k].
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Since 75”(M ) is an independent set, there exists at least one path P that is a subgraph of
¢’ with end points Ry, R € ﬁz](M) where E(P) C E(G)\ E(C) and V(P)\ {Ry, R.} C
V(G)\ V(C). Note that Ry, Ry are not necessarily distinct. If P is a single edge e, then e
is an edge not in C' that is incident with two vertices of C'; that is, e is a chord of C'. Since
C' has no chords by (i), it follows that P has length at least 2.

If P has length exactly 2, then P = RjvR, for some v € V(G) \ V(C). Thus, v is
adjacent (in G) to x,y € V(C). Since G is simple, x # y; hence, xvy is a bichord of T
where ¢ () = dar(y), contradicting (ii). Therefore, P has length at least 3.

Let P = élvlvg .. .’Ugég. Since v, is adjacent to ]SLl in P, it follows that v, is adjacent
(in G) to some vertex z € V(C') where z is in the part Ry € P;;(M). Since C' is a subgraph
of éij(qb(]\/[’), M) and dister(x, v2) = 2, we have that ¢y (2) = ¢ (v2). However, since vy
is in the second neighbourhood of z, it follows by the definition of L that ¢n(z) ¢ L(vg).
Thus, we have that ¢yp(2) = dar(x) # ¢'(v2) = dpr(v2), which is a contradiction. O

Corollary 4.2.4. If G is a plane graph with outer cycle C where C' is a triangle and
k > 10, then every k-mosaic of C' extends to G.

Proof. Let I' = (G,C) be a canvas. Notice that C' is the outer cycle of G. Let M be a
k-mosaic of C' and suppose, towards a contradiction, that M does not extend to G. By
Lemma 4.2.1, there exists at least one of the following:

(i) a chord uv of C, or
(ii) a bichord uvw of I where ¢pr(u) = ¢pr(w), or

(iii) a r-double-pod v of I where [{¢n(u) : u € feet(v)}| > k — 6.

Since C'is a triangle, it follows that C' does not have a chord and, thus, (i) does not exist.
Furthermore, since C' is a triangle, we have that the three vertices of C' have pairwise
distinct colours in ¢(M). Therefore, every bichord wvw of I' has ¢p(u) # ¢pr(w) and,
hence, (7i) does not exist. Since k > 10, we have that k — 6 > 4 > |V(C)| = 3; thus, C
does not have a (k — 6)-double-pod and, hence, (iii) does not exist. Therefore, (i), (i7),
and (7i7) do not exist, which is a contradiction. O

Corollary 4.2.5. Let G be a plane graph with outer 4-cycle C', where C has no chords,
and let k > 11. If M is a k-mosaic of C' and there does not exist v € int(C') such that v is
adjacent to u,w € V(C) where ¢pr(u) = ¢pr(w), then M extends to G.
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Proof. Let I' = (G, C) be a canvas. Notice that C' is the outer cycle of G. Let M be a
k-mosaic of C' and suppose that there does not exist v € int(C') such that v is adjacent to
u,w € V(C) where ¢p(u) = ¢p(w). Suppose, towards a contradiction, that M does not
extend to G. By Lemma 4.2.1, there exists at least one of the following:

(i) a chord wv of C, or
(ii) a bichord uvw of T' where ¢y (u) = ¢pr(w), or

(iii) a r-double-pod v of T where |{¢y(u) : u € feet(v)}| > k — 6.

Since we are given that C' has no chords, it follows that (i) does not exist. Furthermore,
since there does not exist v € int(C) such that v is adjacent to w,w € V(C) where
oy (u) = op(w), we have that every bichord uvw of T' has ¢y (u) # ¢p(w); hence, (i)
does not exist. Since k > 11, we have that k —6 > 5 > |V(C)| = 4; thus, C does not have
a (k — 6)-double-pod and, hence, (iii) does not exist. Therefore, (7), (i7), and (¢ii) do not
exist, which is a contradiction. O

4.3 Generation Lemmas

In this section, we prove the “Fourth Generation” Lemma 4.3.12, which is used to prove
the Main Theorem 5.3.5. However, the proof of the “Fourth Generation” Lemma first
requires a few additional results and definitions.

Lemma 4.3.1 (Unique Bichord Lemma). Let I' = (G, C) be a canvas where C' is the outer
cycle of G and |V(C)| > 7. Let v be a bipod of T'. If v is not in a dividing bichord, then it
s in a unique bichord.

Proof. Suppose not. Let C' = wvgv1...v,_1 where t > 7. Let xvy be a bichord of T’
containing v. Since zvy is not a dividing bichord, it follows that disto(z,y) = 2. Without
loss of generality, let © = vy and y = wv,. Since v is in at least 2 bichords, it has at
least one more neighbour in C, call it z, where v and z are in a bichord of I". (Note
that z is necessarily distinct from z and y.) If distc(x,2) > 3, then zvz is a dividing
bichord. Similarly, if diste(y, 2) > 3, then yvz is a dividing bichord. Thus, diste(z,2) < 2
and distc(y,z) < 2. Hence, we have that z € {v_o,v, 1,v1,v3,04}. Since t > 7, it
follows that diste(vi—2,y) > 3 and diste(vi—1,y) > 3. Similarly, since ¢ > 7, we have that
diste(x,v3) > 3 and diste(z,v4) > 3. Hence, z = v1. Since diste(z,y) = 1, it follows by
the definition of a bichord that zvy is not a bichord. Similarly, since distc(x,2) = 1, we
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have that zvz is not a bichord. Thus, it follows that v has another neighbour in C', call
it w. (Note that w is necessarily distinct from z, y, and z.) If dist¢(z, w) > 3, then zvw
is a dividing bichord. Similarly, if disto(y, w) > 3, then yvw is a dividing bichord. Thus,
diste(z,w) < 2 and disto(y,w) < 2. Hence, we have that w € {v;_o,v4_1,v3,04}. As
determined earlier, we have that distc(vi—2,y), distc(vi—1,y), diste(z, v3), diste(z, v4) > 3.
Thus, it follows that zvw or yvw is a dividing bichord, which is a contradiction. O]

Definition 4.3.2. Let B(I") denote the set of bipods of the canvas I' = (G, C'), where C'
is the outer cycle of GG, that are in a unique, non-dividing bichord.

Lemma 4.3.3. Let ' = (G, C) be a canvas where C' is the outer cycle of G and |V (C)| > 5
Let B C B(I') and let E¢ denote the set of chords of C'. The graph G|V (C)UB]\ (F (G[B])
E¢) has ezxactly one interior face of degree at least 5.

Proof. Suppose not. Let I' = (G,C) with B C B(I') be a counterexample with |V (G)|
minimized and, subject to that, | B| minimized. Let G' = G[V(C) U B| \ (E(G[B]) U E¢).
If |B| =0, then G' = G[V(C)] \ Ec = C. Thus, there is only one interior face and it has
degree equal to |V (C)| > 5, a contradiction. Hence, we may assume that |B| > 0.

Let |B| = k and let uwvw be a bichord of T" such that v € B. Since v € B, we have that
diste(u, w) = 2. Let 2 € V(C) such that ux,zw € E(C). Notice that G’ — v has exactly
one face of degree at least 5 by minimality.

First suppose degq:(v) = 3. Since v € B(I'), it follows that v is adjacent to z. Hence,
v is incident with three faces, two of which are triangles that are incident with the outer
face. Let I be the face incident with v that is also incident with v and w and let Cr be
the cycle that bounds F'. The graph G’ —v contains the cycle (Cr \ v) Uuzw which bounds
a face I of G’ —v. Notice that degg/—,(F') = dege (F). If deger—(F') > 5, then F” is
the only face of G’ — v with degree at least 5; thus, F' is the only face of G’ with degree
at least 5. If dege/—(F”) < 5, then dege(F') < 5. Let F™* be the only face of G' — v with
degree at least 5. Since all faces of G’ are faces in G — v, except those incident with v, it
follows that ™ is the only face in G’ with degree at least 5.

Now suppose that degg(v) = 2. Hence, the bichord uvw is incident with two interior
faces of G’, call them F; and Fy. Let C; be the cycle that bounds F; for each i € {1,2}.
Let C" = C; UCy \ v and let F’ be the face bounded by C’ in G’ — v. Notice that
dege_,(F') = dege (F1) + dege (Fy) — 4. Without loss of generality, say F) is in the
interior of the cycle C* = uvwzu. If dege/(Fy) > 5, then there exists a path from u to w
in the interior of C* with length at least 3. Therefore, there is at least one face F* # F}
in the interior of C* with degree at least 5. Since degg/—,(F’') > 5, it follows that G' — v
has at least two faces of degree at least 5, which is a contradiction. Thus, we have that
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dege/ (F1) = 4. If dege/ (F2) = 4, then deggr—,(F') = 4. Let F* be the only face of G' — v
with degree at least 5. Since all faces of G’ are faces in G’ — v, except those incident with
v, it follows that F™ is the only face in G’ with degree at least 5. Now consider the case
where deger (Fy) > 5. In this case, degg—,(F’) > 5. Thus, F” is the only face of degree at
least 5 in G’ — v. Hence, it follows that F; is the only face of degree at least 5 in G'.

Therefore, G’ has exactly one face of degree at least 5, which is a contradiction. m

Definition 4.3.4. Let I' = (G,C) be a canvas where C is the outer cycle of G and
|[V(C)| > 5. Let B C B(I') and let Ex be the set of chords of C. By Lemma 4.3.3, there
exists a unique interior face F' with degree at least 5 of G[V(C) U B] \ (E(G|[B]) U E¢).
Let C” be the cycle that bounds F. Let G’ = G(C") and let I" = (G', C"). We say that I”
is the relazation of I' with respect to B, denoted R(I', B).

We may think of a canvas and its relaxation as being different generations. If I' is a
canvas and IV = R(I", B(I")), we may think of I' as being the generation below I'.

Definition 4.3.5. Let I' = (G,C) be a canvas where C' is the outer cycle of G. If
u,w € V(C) and diste(u,w) = 2 and |X| = |[{v € B(') : {u,w} C N(v) NV (C)}| > 1,
then we say X is the bundle on u,w. If | X| < 3, then we say X is a thin bundle. If | X| > 3,
then we say X is a thick bundle.

Proposition 4.3.6. Let I' = (G,C) be a canvas where C is the outer cycle of G and let
¢ be an acyclic k-colouring of G. If B is a bundle on u,w € V(C) and ¢(u) = ¢(w), then
(b(bl) 7é ¢<bg) fOT’ all b1 7é b2 € B.

Proof. Suppose, towards a contradiction, that ¢(b;) = ¢(b2) for some by # by € B. Notice
that ubywbyu is a cycle in G;;(¢). Thus, we have that ¢ is not an acyclic colouring, which
is a contradiction. O

Proposition 4.3.7. Let I' = (G,C) be a canvas where C is the outer cycle of G and
V() =n >5. Let B C B(I') and let I" = (G',C") = R(I',B). Let V(C) =
{ug, w1, ..., up_1}. Foreachi € {0,1,...,n—1}, either u; € V(C") and there is no bundle
on u;_1,uiy1, or u; & V(C') and there exists a unique vertezx in the bundle on w;_1,u;1q

that is in V(C').

Proof. Suppose not. Let H = G[V(C)U B|\ (E(G[B]) U E¢). If B = (), then v € V(C")
for all v € V(C) and there are no bundles in G.

Let By € B(I') such that I = (G',C") = R(T', By) is a counterexample with |Bj|
minimized. Since I is a counterexample, we have, for some i € {0,1,...,n — 1}, that

25



either u; € V(C') and there is a bundle on w; 1, u;41, or u; ¢ V(C") and there is not a
unique vertex in the bundle on w;_1,u;41 that is in V(C").

Suppose, towards a contradiction, that u; € V' (C") and there is a bundle B; on w; 1, u;11.
Thus, we have that bu; u;u; 110 is a 4-cycle for each b € B;. Hence, it follows that wu; is
incident with the outer face and inner faces of degree at most 4 in H. Since C’ bounds a
face of H with degree at least 5, we have that u; ¢ V(C”), a contradiction.

Now, it follows that u; ¢ V(C’) and there is not a unique vertex in the bundle on
wi—1, w1 that is in V(C"). If there is no bundle on u;_1,u;y1, then u; € V(C"), which
is a contradiction. Thus, we have that there is a bundle B; on w; 1,u;11. Let b € B;.
Let I = (G”,C") = R(', B\ {b}). By minimality, we have that u; € V(C"”) and there
is no bundle on u; 1, u;41, or u; € V(C") and there is a unique vertex in the bundle on
w1, u;y1 that is in V(C"). If u; € V(C") and there is no bundle on w; 1, u;;1, then b is
the only bipod in B;. Thus, b is incident with the face of degree at least 5 in H. Hence,
b € V(C"), which is a contradiction. Now suppose u; ¢ V(C”) and there is a unique vertex
in the bundle on u;_1,u;41 that is in V(C”). If b ¢ V(C"), then C" = C” and it follows
that there is a unique vertex in the bundle on w; 1, u;4; that is in V(C”), a contradiction.
Thus, b € V(C"). Suppose V/ € B; is in V(C") as well. Without loss of generality, b is
in the interior of the cycle C; = bu;_qu;u;41b’. Thus, it follows that V(C") is in G(C;).
Since each vertex in B; is adjacent to u;_; and wu;1, it follows that the faces in H that are
interior to C; have degree at most 4. Since, C’ bounds a face of degree at least 5, we have
a contradiction. O

Proposition 4.3.8. Let I' = (G,C) be a canvas where C' is the outer cycle of G and
V()| =5. If IV = (G',C") = R(I', B) where B C B(T"), then each vertex in V(C") is
either a bipod in B(T') or a vertez in V(C) and |V(C")| = |V(C)|.

Proof. Since €' is a cycle in G[V(C) U B], it follows that V(C") C V(C) U B. Since
V(C)N B = (), we have that each vertex in V(C") is either in B C B(T') or in V(C). Now
it follows from Proposition 4.3.7 that |V (C")| = |V (C)]. O

Proposition 4.3.9. Let I' = (G,C) be a canvas where C' is the outer cycle of G and
V() =n>5. Lt " = (G',C") = R(I', B(I")). Let V(C) = {ug,u1,...,u,—1} and
V(C") = {ug, ul, ..., ul_1} such that u is in the bundle on w;—1,u;41 or is equal to u; for
alli € {0,1,...,n—1}. Ifu; € B(I'), then u} is adjacent to w;_; = u,—y and uj,; = uji.
Equivalently, if v; € B(I'), then wj_,,uj,, ¢ B(T).

Proof. By the definition of the cycle C’, we have that u; is adjacent to w;_, and u;, ;. Since
u; € B(I'), it follows that w;_juju; , is a bichord of I'. Thus, we have that w]_,,ul,, €

26



V(C). By Proposition 4.3.8, it follows that w;_q,u;+1 ¢ B(I'). Hence, by the definition of
V(C"), we have that u;_; = u;—; and u, ;| = Ujt1. O

Proposition 4.3.10. Let I' = (G,C) be a canvas where C' is the outer cycle of G and
V(C) =n>5. Let I" = (G',C") = R(I', B(I")). Let V(C) = {up,us,...,u,—1} and
V(C") = {uf, v, ... ul,_ 1} such that v} is in the bundle on w;_1,u;11 or is equal to u; for
alli €{0,1,...,n—1}. If u, € B(I), then u, # u;.

Proof. Suppose not. If u} = w;, then u, € V(C). Thus, by Proposition 4.3.8, it follows
that v} ¢ B(I'"), a contradiction. O

Definition 4.3.11. Let I' = (G, C) be a canvas with a bichord uvw and let ¢ be a colouring
of C. We say uvw is monochromatic in ¢ if ¢(u) = ¢(w).

Lemma 4.3.12 (“Fourth Generation” Lemma). Let 'y = (Gg, Cy) be a canvas where Cj
is the outer cycle of Gy and |V (Co)| > 5. Let I'; = (G;,C;) = R(L';—1, B(T'i—1)) for each
i€ {1,2,3}. If all of the following hold for all i € {0,1,2,3}:

(i) C; has no chords,
(ii) every bipod v of T'; is such that v € B(I';),

(iii) T'; has no 6-double-pod,

and a k-mosaic M of Cy extends to Go[V (Cy) U B(I'y) U B(I'y) U B(I'2)], then M extends
to Go.

Proof. Suppose not. Let H = Go[V (Cy) U B(I'y) U B(I';) U B(I'y)] and Hy = Go[V (Cp) U
B(Ty) U B(I'y)] and Hy = Go[V(Cy) U B(T'y)].

Claim 4.3.13. I'y,I'1, ', I's are pairwise not equal.

Proof. Since M is a k-mosaic of Cy that extends to H, it follows that M also extends to
a k-mosaic M; of H; and a k-mosaic My of Hy and a k-mosaic M3 of H. Notice that M,
M,, and M3 do not extend to Gy by Proposition 3.3.1. Let M/ be the restriction of M; to
C; for each i € {1,2,3}. By the converse of Proposition 3.3.16, since M; does not extend
to Gy, it follows that M does not extend to G, for each i € {1,2,3}. Since (i)-(iii) do
not hold for i € {1,2,3} by assumption, it follows by the Extension Lemma 4.2.1 that, for
each i € {1,2,3}, I'; has at least one bichord uvw that is monochromatic in ¢(M;) where
v € B(I';). Thus, we have that I'g,I';, 'y, '3 are pairwise not equal. ]
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Let M be the set of k-mosaics of Cj that extend to H, but not to GGy. Since M is a
k-mosaic of Cy that extends to H, but not to Gy, it follows that M € M; thus, we have
that M is non-empty. Let ¢ be a k-colouring of H such that M, extends to ¢, for some
My € M, and the number of bichords of I's that are monochromatic in ¢ is minimum.

Let C() = Up,0Up,1 - - - UO,n—1 and let Cz = Ui 0Us1 - - - Ujin—1 such that Uy, j is in the bundle
on U;—1,j—1, Ui—1,j41 Or U5 = Ui—1 5, for each i € {1, 2, 3} and j c {O, 1, Lo, — ]_}1

Since (i)-(iii) do not hold for ¢ = 3 by assumption, it follows by the Extension Lemma
4.2.1 that I'; has at least one bichord uvw that is monochromatic in ¢ where v € B(I'3).
Since v € B(I'3), we have that at least one of u,w is in B(I'y). Without loss of generality,
say u € B(I'). Notice that w € V(Cy) U B(I'y) U B(I';) U B(I'y). Let u = us, for some
z € {0,...,n— 1}. Without loss of generality, say w = u3 2. Since v € B(I'y), it follows
that u,w ¢ B(I'3). Since us, € B(I's), we have that us, is in the bundle on ug ;—1, U2 441.
Additionally, since usz, € B(I'y), we have that us, # u;, for all ¢ € {0, 1,2} by Proposition
4.3.10. Notice that w = u3 442 is not necessarily distinct from wg 542, U1 542, and ug zyo.

Let B;; denote the set of vertices in the bundle on w;_;;j_; and u;_; 41, for each
i€ {1,2,3} and j € {0,1,...,n — 1}. If there is no such bundle, then we let B;; = 0.
Notice that if Uy, j 7& Ui—1,5, then Uy 5 € Bz’,j~

Claim 4.3.14. Let p € {1,2,3} and ¢ € {0,1,...,n—1}. Let ¢y, ¢co,...,c5 € [k]. Ifu,

q
B(Ty-1) and ¢(up—1,4-1) # ¢(up—14+1), then there exists ¢ € [k] \ ({P(upqg—2), P(tpg12)}
{c1,¢a,...,c5}) such that there exists a k-colouring ¢’ of H,, where ¢'(u,,) = ¢ and ¢'(v)

o(v) for all v € V(Hp) \ upyq, that is an extension of My.

I Cm

Proof. Notice that, since u,, € B(I',_1), it follows that u, , € V(C,). In H,, the vertex u,,
has degree 2 or 3. If degy, (up,q) = 3, then u, 4 is adjacent to u,_; 4 or a vertex b € B, 4. Let
v =bif u,, is adjacent to b € B, 4, and let v = u,_; , otherwise. Notice that v is adjacent
t0 Up—1,4-1 and u,_; 441, hence, we have that ¢(v) # P(up—1.4-1), P(Up—1,4+1). Since k > 12,
it follows that there exists ¢ € [k] \ ({&d(upg—2)s P(Up—14-1); V), A(upg), P(Up-14+1),
A(upgi2)} U{cr,co,...,¢c5}). Let ¢ be a k-colouring of H, such that ¢'(u,,) = ¢ and
¢’ (v) = ¢(v) for all v € V(H)) \ up,. Let H' denote H,,.

Suppose, towards a contradiction, that My does not extend to ¢'. Since u,, ¢ V(Cp), it
follows that qﬁf = d|c, = ¢(Mp). Hence, Definition 3.2.8(1) holds for M, extending to ¢'.

Since M, does not extend to ¢, it follows by Definition 3.2.8(2) that }v[/ij(gb’ , My) contains
a cycle C for some i # j € [k]. Since My extends to ¢, it follows that C'is not a cycle in
Z](¢ My); thus, we have that u,, € V(C). Let wy, wy be the neighbours of u,, in C. For

Indices are taken modulo n here and in the remainder of the proof of Lemma 4.3.12.
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each ¢t € {1,2}, wy is either in {u,_1,4-1,up_1,441,v} or is equal to R where at least one of
Up—1,g-1, Up—1,4+1,V 1S In R € Py;(Mp). Since ¢'(upq) # ¢'(up-14-1), ¢ (Up-1,4+1), ¢'(v) and
¢ (up—1,4-1), &' (Up—1,4+1), ¢'(v) are pairwise not equal, it follows that at most one of wy, wo
is in H';;(¢', My), which is a contradiction. O

Claim 4.3.15. ¢<U2@_1) = ¢(U2’z+1>.

Proof. Suppose, towards a contradiction, that ¢(us,—1) # ¢(ugyt1). Thus, by Claim
4.3.14, there exists ¢ € [k] \ {¢(u3—2), d(us4+2)} such that there exists a k-colouring ¢ of
H, where ¢'(us,) = c and ¢'(v) = ¢(v) for all v € V(H) \ u3,, that is an extension of M.
If pqr is a bichord of I's where ¢ € B(I's) and p = u3,, then r € {us,—2,u3,12}. Hence, if
a bichord is monochromatic in ¢’, then it is monochromatic in ¢. Since v is in a bichord
of I's that is monochromatic in ¢, but is not monochromatic in ¢', it follows that ¢’ has
fewer monochromatic bichords of I'; than ¢, which contradicts the minimality of ¢. O

Claim 4.3.16. Letp € {1,2,3} andq € {0,1,...,n—1}. Let |B,,| > 2 andy,z € B,,. If
A(Up—1,4-1) = O(Up—1,411), then My extends to the k-colouring ¢’ of H,, where ¢'(y) = ¢(z),
¢'(2) = ¢(y), and ¢'(v) = ¢(v) for all v € V(Hp) \{y, 2}

Proof. Let H' denote H,. If two vertices in B, ,U{u,_1,} have the same colour in ¢, then
those two vertices are in a bichromatic 4-cycle with u,_1 41 and u,_; 441, contradicting
the assumption that ¢ is acyclic. Thus, since ¢(up—14-1) = ¢(Up-1,4+1), we have that all
vertices in B, U {u,_1,} have pairwise distinct colours in ¢. Additionally, all vertices in
B, U{up_1,4} have pairwise distinct colours in ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since y, z ¢ V(Cy), it
follows that gbico = ¢|c, = ¢(Mp). Hence, Definition 3.2.8(1) holds for M, extending to ¢'.

Since My does not extend to ¢/, it follows by Definition 3.2.8(2) that }v[’ij(gb’ , My) contains
a cycle C for some ¢ # j € [k]. Since M, extends to ¢, it follows that C' is not a cycle in
ﬁ’ij(gb, My); thus, we have that at least one of y, z is in V(C'). Without loss of generality,
suppose y € V(C). If z € V(C), then ¢'(2), ¢ (y) € {i,7}; thus, we have that ¢(z), p(y) €
{i,7}, which implies that C' is a cycle in f[’ij(@ M), a contradiction. Hence, it follows
that z ¢ V(C). Let P = C —y and let wy, wy be the neighbours of y in C'. Notice that P is
a path in /P}:’ij(gb, My). Also, notice that N(y) NV (H') C {up—1.4-1, Up-1.4+1, Up—1,4} U Bpg-
Since ¢'(y) & {¢'(2), &' (Up-1,4-1); &' (Up-1,4+1), &' (Up-1,0) }U{ (D) : b € By 4} and all colours
in {¢'(2), ¢ (up—1,4-1), ¢ (Up—1,4+1), ' (up_14)} U {¢'(b) : b € B,,} are distinct except for
¢ (up-14-1) = ¢'(Up—1,4+1), it follows that w, 1,1 = wy or up_1,1 € Wy = R, where
Ry € Pij(My), and up_1441 = Wa OF Up_1411 € Wy = EZ where Ry € P;;(My). Since
¢ (y) € {i,j}, we have that ¢(z) € {i,7}; hence, z € H';;(¢, Mp). Since z is adjacent
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to up—14-1 and uy_q 441, it follows that P + wyzw; is a cycle in ff’ij(gb, M), which is a
contradiction. ]

Claim 4.3.17. The bundle Bs, is a thin bundle.

Proof. Suppose, towards a contradiction, that Bs , is a thick bundle. Let Bs , = {b1,bo, ...,
be} where by = ug,. Since Bs, is thick, it follows that ¢ > 3. Since ¢(ug,—1) = P(ug11)
by Claim 4.3.15, we have that ¢(b;) # ¢(b;) for all ¢ # j € [(].

Since ¢ > 3, there exists ¢ € {d(b1),..., (b))} \ {p(usr—2), d(usL42)}. Let y €
{2,...,¢} be such that ¢(b,) = c¢. By Claim 4.3.16, we have that there exists a k-colouring
¢’ of H where ¢'(b,) = ¢(us,) and ¢'(us ) = ¢(b,) and ¢'(v) = ¢(v) for all v € H\{us,, b, }
such that M, extends to ¢'. If pgr is a bichord of I'y where ¢ € B(I'3) and p = us,, then
r € {ug 2, us .42} Hence, if a bichord is monochromatic in ¢', then it is monochromatic
in ¢. Since v is in a bichord of I'; that is monochromatic in ¢, but is not monochromatic
in ¢, it follows that ¢’ has fewer monochromatic bichords of I's than ¢, which contradicts
the minimality of ¢. O

Claim 4.3.18. If w € B(I'y), then ¢p(ugpi1) = ¢(u2r43) and Bs 4o is a thin bundle.

Proof. First we prove that ¢(us,41) = ¢(u2443). Suppose, towards a contradiction, that
d(u22-1) # ¢(ug441). Thus, by Claim 4.3.14, there exists ¢ € [k] \ {p(usz—2), ¢(ussi2)}
such that M, extends to a k-colouring ¢’ of H, where ¢'(us,) = ¢ and ¢'(v) = ¢(v)
for all v € V(H) \ us,. If pgr is a bichord of I's where ¢ € B(I'3) and p = ug,, then
r € {u3z—2, U3 4+2}. Hence, if a bichord is monochromatic in ¢, then it is monochromatic
in ¢. Since v is in a bichord of I'; that is monochromatic in ¢, but is not monochromatic
in ¢/, it follows that ¢’ has fewer monochromatic bichords of I's than ¢, which contradicts
the minimality of ¢.

Now we prove that Bs ..o is a thin bundle. Suppose, towards a contradiction, that
Bs .42 is a thick bundle. Let Bz o = {b1,ba,...,bs} where by = ug,42. Since Bj .o is
thick, it follows that ¢ > 3. Since ¢(ugz+1) = ¢(u2.+3) from above, we have that ¢(b;) #
¢(b;) for all i # j € [¢]. Since ¢ > 3, there exists ¢ € {p(b1), ..., P(be) }\{P(usz), P(uszt4)}-
Let y € {2,...,¢} be such that ¢(b,) = c¢. By Claim 4.3.16, we have that there exists a
k-colouring ¢’ of H where ¢'(b,) = ¢(us12) and ¢'(us z42) = ¢(b,) and ¢'(v) = ¢(v) for all
v € H\ {usgzi0,b,} such that M, extends to ¢'. If pgr is a bichord of I'; where ¢ € B(I's)
and p = ug 42, then r € {us,, uz.1a}. Hence, if a bichord is monochromatic in ¢, then
it is monochromatic in ¢. Since v is in a bichord of I'; that is monochromatic in ¢, but is
not monochromatic in ¢', it follows that ¢’ has fewer monochromatic bichords of I's than
¢, which contradicts the minimality of ¢. O
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Figure 4.1: A possible configuration of the vertices of interest in Claim 4.3.19.

Claim 4.3.19. U2, 241 ¢ B(Fl)

Proof. Suppose, towards a contradiction that us .41 € B(I'1). Note that Figure 4.1 shows
an approximate configuration of the vertices of interest here. Since us ,1; is adjacent to w,
it follows that w € B(I'y) UB(I'g) UV (Cy). If w € B(T'y), then it follows from Claim 4.3.18
that ¢(us 1) = @(u2+3) and Bs .o is a thin bundle. Notice that if w € B(Ty) UV (Cy),
then there is no bundle on ug ;11 and ug ;3.

Let @ = {¢(2) : 2 € Ny(ugy) U Np(ugt1)}. Notice that Ny (ug,) € {uge—1, U2 z41,
U1} U Bs,. By planarity, we have that |Ng(us,) N (B3, U{u1.})| < 1. Notice that
Npg(ugz+1) C {ura, w1 z42, U041} U B3y U Bsgyo U Ba i By planarity, we have that
|INg (u2241) N (B2g+1 U{ugzi1})| < 1. Since Bs, is a thin bundle and Bs .9 is a thin
bundle, if it exists, we have that |Bs, U Bs,4o| < 4. Since ¢(u) = ¢(w), it follows that
D] <8.

Since k > 12, we have that there exists ¢ € [k] \ ®. Let ¢’ be a k-colouring of H such
that ¢/(u) = c and ¢'(v) = ¢(v) for all v € V(H) \ {u}.

Suppose, towards a contradiction, that My does not extend to ¢'. Since u ¢ V(Cy), it
follows that ¢{, = ¢jc, = ¢(Mp). Hence, Definition 3.2.8(1) holds for My extending to ¢'.

Since My does not extend to ¢/, it follows by Definition 3.2.8(2) that f]ij(¢’, M) contains
a cycle C for some ¢ # j € [k]. Since My extends to ¢, it follows that C' is not a cycle in
H;;(¢, Mp); thus, we have that u € V/(C).

Notice that the cycle C' in [A{Qj(ﬁ, M) is equivalent to a subgraph C” in H;;(¢") where
(" is a cycle or a collection of paths with endpoints in V(Cj). Let P be the component
of C" in H;;(¢') that contains u. Recall that Ny (us,) C {usz—1,U2441, U1} U B3 . By
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planarity, we have that | Ny (us ) N (Bse U{ui.})| < 1. Since us, ¢ V(Cy), it follows that
two vertices in N (u3,) are the neighbours of us, in P.

Note that each vertex in Bs, U {u;,} is adjacent to ug,—1 and us 1. Hence, ¢'(u') #
¢ (ugz—1), @' (ug i) for all w' € Bs , U{uy,}. Since ¢'(u) # ¢'(u'), ¢’ (ugp—1), @' (ug,441) for
all v’ € By, U{uy,}, it follows that us 1 and ug .11 are the neighbours of u in P. Since
ugz1+1 ¢ V(Cp), we have that two neighbours of us ;41 are in P.

Recall that Ng(u2z41) C {U1z, U242, Uogt1} U B3z U Bs o U By gy and say z #
Use € Npg(uaz41) is a neighbour of us .41 in P. Since ¢'(2) = ¢(z) ¢ , it follows that
¢'(2) # ¢'(u). Thus, we have that P is not in H;;(¢'), which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢' of H where ¢'(u) # ¢'(u3,—2),
¢ (us z12) and ¢'(v) = ¢(v) for all v € B(I'y) \ {u} such that M, extends to ¢'. If pgr
is a bichord of I'; where ¢ € B(I'3) and p = us,, then r € {us,_2,u3,42}. Hence, if a
bichord is monochromatic in ¢’, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢’, it follows that ¢’ has fewer
monochromatic bichords of I'y than ¢, which contradicts the minimality of ¢. O]

Since us, € B(I'y) and ug 11 ¢ B(I'1), it follows that us,—; € B(I';). Also, note that
U2 z41 € B(Fo) U V(Oo)

Figure 4.2: A possible configuration of the vertices of interest in Claims 4.3.20 and 4.3.21.

Claim 4.3.20. The bundle Bs ,_o 1s a thick bundle.

Proof. Suppose, towards a contradiction, that Bz, » is a thin bundle or Bs, o = 0.
Note that Figure 4.2 shows an approximate configuration of the vertices of interest here.
Let @ = {¢(2) : 2 € Ny(ugy) U Ng(ug,—1)}. Notice that Ny (us,) € {ugz—1, U241,
U1,} U Bs,. By planarity, we have that |Ng(us,) N (B3, U {ui,})| < 1. Also, notice
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that Ng(usz—1) € {12, U1 42, U0 g1} U B3, UBs,_9UBs, 1. By planarity, we have that
|Ng(u2,2-1) N (B2g—1 U{ugz—1})| < 1. Since Bs, is a thin bundle and Bs,_5 is a thin
bundle, if it exists, we have that |B;, U Bs,_o| < 4. Thus, it follows that |®| < 9.

Since k > 12, we have that there exists ¢ € [k] \ ®. Let ¢’ be a k-colouring of H such
that ¢'(u) = c and ¢'(v) = ¢(v) for all v € V/(H) \ {u}.

Suppose, towards a contradiction, that My does not extend to ¢'. Since u ¢ V(Cy), it
follows that ¢{ = ¢jc, = »(My). Hence, Definition 3.2.8(1) holds for M, extending to ¢'.

Since My does not extend to ¢, it follows by Definition 3.2.8(2) that ﬁij(gzﬁ’, M) contains
a cycle C for some ¢ # j € [k]. Since My extends to ¢, it follows that C' is not a cycle in
H;;(¢, My); thus, we have that u € V(C).

Notice that the cycle C' in f[ij(qﬁ’, My) is equivalent to a subgraph C” in H;;(¢') where
(" is a cycle or a collection of paths with endpoints in V(Cj). Let P be the component
of C" in H;;(¢') that contains u. Recall that Ny(us,) C {usz—1, U241, U1z} U B3 . By
planarity, we have that [Ny (us )N (Bs,U{u1,})| < 1. Since ug, ¢ V(Cy), it follows that
two vertices in Ny (us,) are the neighbours of us, in P.

Note that each vertex in Bs, U {u;,} is adjacent to ug,—1 and us 1. Hence, ¢'(u') #
¢ (ugp—1), ¢ (ugpq1) for all w' € Bs, U{uy,}. Since ¢'(u) # ¢'(u'), &' (ugp—1), @' (ug,z41) for
all W' € By, U{uy,}, it follows that us,_; and us .11 are the neighbours of u in P. Since
ugz—1 ¢ V(Cp), we have that two neighbours of us,_; are in P.

Recall that Npy(ug,—1) € {14, U152, Upz—1} U Bsy U B3 ,_9 U By, 1 and say z #
Usy € Ng(ua,—1) is a neighbour of us,—1 in P. Since ¢'(2) = ¢(z) € D, it follows that
¢'(2) # ¢'(u). Thus, we have that P is not in H;;(¢'), which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3.—2),
¢ (u3z4+2) and ¢'(v) = ¢(v) for all v € B(I'y) \ {u} such that My extends to ¢'. If pgr
is a bichord of I's where ¢ € B(I'3) and p = us,, then r € {us,_2,u3,42}. Hence, if a
bichord is monochromatic in ¢’, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢/, it follows that ¢’ has fewer
monochromatic bichords of I's than ¢, which contradicts the minimality of ¢. O]

Claim 4.3.21. ¢(u2,x—1) = ¢(U27x_3).
Proof. Suppose, towards a contradiction, that ¢(ug,—1) # ¢(u2.—3). Note that Figure
4.2 shows an approximate configuration of the vertices of interest here. Let ® = {¢(z) :

z € NH(U&J;) U NHz(u27x_1)}. Notice that NH(US,:L*) Q {U27$_1,U2,$+17 ul,x} U Bgﬂ;. By
planarity, we have that [Ny (us,) N (Bs, U {ui,})| < 1. Also, notice that Ng,(ug,—1) C
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{12, U122, U02-1}UBa 1. By planarity, we have that | Np (uaz—1)N(B2z1U{tuoz—1})] <
1. Thus, it follows that |®| < 6.

Since k > 12, we have that there exists ¢ € [k] \ ®. Let ¢’ be a k-colouring of H such
that ¢/(u) = c and ¢'(v) = ¢(v) for all v € V(H) \ {u}.

Suppose, towards a contradiction, that My does not extend to ¢'. Since u ¢ V(Cy), it
follows that ¢{, = ¢jc, = ¢(Mp). Hence, Definition 3.2.8(1) holds for My extending to ¢'.

Since My does not extend to ¢/, it follows by Definition 3.2.8(2) that f]ij(¢’, M) contains
a cycle C for some ¢ # j € [k]. Since My extends to ¢, it follows that C' is not a cycle in
H;;(¢, Mp); thus, we have that u € V/(C).

Notice that the cycle C' in ﬁij(qﬁ’, M) is equivalent to a subgraph C” in H;;(¢") where
(" is a cycle or a collection of paths with endpoints in V(Cj). Let P be the component
of C" in H;;(¢') that contains u. Recall that Ny(us,) C {usz—1,U2441, U1} U B3 . By
planarity, we have that |Ng(us ) N (Bs. U{ui.})| < 1. Since us, ¢ V(Cy), it follows that
two vertices in Ny (us,) are the neighbours of us, in P.

Note that each vertex in Bs, U {u;,} is adjacent to ug,—1 and us,41. Hence, ¢'(u') #
¢ (ugp—1), ¢ (ugpq1) for all w' € Bs , U{uy,}. Since ¢'(u) # ¢'(v'), ¢’ (ugp—1), ¢’ (ug,441) for
all v’ € By, U{uy,}, it follows that us 1 and ug .11 are the neighbours of u in P. Since
Uy .1 ¢ V(Co), we have that at least two neighbours of us .1 are in P.

Recall that Ng(ugz—1) C {t1 2, U1 z—2, Uoz—1}UB3UB3 4, oUDBs 1 and say z # us , €
Ny (ug,4-1) is aneighbour of ug ,—y in P. Thus, ¢/'(z) = ¢'(u). If 2 € Ny, (ugy—1)UBs ., then
¢'(2) = ¢(z) € @, and it follows that ¢'(z) # ¢'(u), a contradiction. Hence, we have that
z € By, 9. Since By, o NV(Cy) = 0, it follows that at least two of ug 3, U2 -1, U1 22
are in P. For each b € Bj,_o U {u1,_2}, since b is adjacent to ug,—3 and us,_1, and
¢(b) = ¢'(b) and ¢(ug,—3) = ¢'(u2,—3) and G(uz 1) = ¢ (u2,-1), we have that ¢'(b) #
¢ (ugp—3), @' (ugp—1) and ¢ (ugu—3) # @' (ug.—1). Hence, we have that P is not in H;;(¢),
which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3,—2),
¢ (u3z12) and ¢'(v) = ¢(v) for all v € B(I'g) \ {u} such that M, extends to ¢'. If pgr
is a bichord of I's where ¢ € B(I'3) and p = us,, then r € {us,_2,u3,12}. Hence, if a
bichord is monochromatic in ¢, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢’, it follows that ¢’ has fewer
monochromatic bichords of I's than ¢, which contradicts the minimality of ¢. O]

Claim 4.3.22. The bundle By ,_; 1s a thin bundle.

34



Figure 4.3: A possible configuration of the vertices of interest in Claim 4.3.22.

Proof. Suppose, towards a contradiction, that By, is a thick bundle. Note that Figure
4.3 shows an approximate configuration of the vertices of interest here. We will con-
struct a new k-colouring ¢’ of H. If ¢(uy,-2) = ¢(u1.), then, since |By,—1| > 3, it
follows that there exists y € Bs,_; such that ¢(y) # ¢(ugs—3), ¢(uget1). In this case,
let ¢'(y) = P(ugr—1) and ¢ (ugp—1) = O(y). If ¢(usp—2) # P(ur,), then let ¢1,co,c5 €
K\ {@(u1,0-2), d(u12), B(w02—1), P(U2,0-3), P(U2,241), B(us2—2)} such that ¢y, ¢y, c3 are pair-
wise distinct. Note that ¢, co, c3 exist since k& > 12 > 9. Let ¢'(uz,-1) = ¢1 and for each
b€ Byy1\{uz.-1},let ¢'(b) € {c1, 2, c3} such that adjacent vertices have distinct colours.

Notice that, for each b € Bs ,_o, we have that Ny (b) C Bs ;o U{u24—1,U2 43, U1 42}
Also, note that ¢(ug,—3) # ¢'(uz.—1). Let cq,c5,c6 € [k] \ {d(u22-3), &' (u2.2-1), P(u12-2),
¢(us.—4)} such that ¢y, c5, ¢ are distinct. Note that ¢4, ¢5, ¢ exist since k > 12 > 7. Let
@' (u3p—2) = cq4 and, for each b € By ;o\ {ug .2}, let ¢/(b) € {c4, 5,6} such that adjacent
vertices have distinct colours.

Similarly, for each b € Bs,, we have that Ny (b) C Bs, U {u2 441, Uz4—1,U14}. Also,
note that ¢(usei1) # ¢'(uze—1). Let ¢,¢ € [K] \ {¢' (v20-1), (U2041), P(Ur2), P(w), ca}
such that ¢, ¢ are distinct. Note that ¢, ¢ exist since k > 12 > 7. Let ¢'(u) = ¢, and if
there exists v’ # u € Bs,, then let ¢'(u') = /. Let ¢'(v) = ¢(v) for all v in H that have
not yet been assigned a colour under ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since v ¢ V(Cy) for
all v where ¢/(v) # ¢(v), it follows that ¢ = ¢c, = ¢(Mo). Hence, Definition 3.2.8(1)
holds for M, extending to ¢’. Since M does not extend to M’, it follows by Definition
3.2.8(2) that H;;(¢', My) contains a cycle C' for some i # j € [k]. Since M; extends to ¢,
it follows that C' is not a cycle in ffijw, My); thus, we have that C' contains at least one
of the following:
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(i) a vertex in B,
(ii) a vertex in Bj .o,

(ili) a vertex in By 1.

Notice that the cycle C' in ﬁij(qﬁ’ , My) is equivalent to a subgraph C’ in H;;(¢’) where
(" is a cycle or a collection of paths with endpoints in V(Cp). Let v € V(C') such that
v € B3, UBy, 1UDBs, 5 and let P be the component of C" in H;;(¢') that contains v.
Note that v ¢ V(Cy).

Subclaim 4.3.23. The vertex v is not in Bs .

Proof. Suppose, towards a contradiction, that v € B;,. Notice that Ny (Bs,) C {u2441,
Ugz—1, U1z }. Since By, NV(Cy) = 0, it follows that at least two of ug 1, U2 441, U1, are
in P. Since u;, is adjacent to ug,+1 and ¢(uy,) = ¢ (u1,) and ¢(ug 1) = ¢ (u2241),
we have that ¢'(u1,) # ¢'(ug41). By the construction of ¢, we have that ¢'(ug,—1) #
¢ (u12), ¢ (uger1). It also follows from the construction of ¢’ that ¢'(b) ¢ {¢'(u2.—1),
d(u2,241), ¢(ur )} for all b € B;,. Hence, we have that ¢'(v), ¢'(u22-1), ¢ (u2.241), ¢ (u1,2)
are pairwise distinct. Thus, it follows that P is not in H;;(¢'), which is a contradiction. [

Subclaim 4.3.24. The vertez v is not in Bs,_o.

Proof. Suppose, towards a contradiction, that v € Bj,_o. Notice that Ny (Bs,—2) C
{ug,p—1, Uz z—3, U1 4—2}. Since Bs, o NV (Cy) = 0, it follows that at least two of ug s,
Ug g1, Ut z—2 are in P. Since uy,_o is adjacent to us,—3 and ¢(uy4_—2) = ¢'(u1,—2) and
d(uz2—3) = ¢ (ugy—3), we have that ¢'(uy4—2) # ¢'(u2,—3). By the construction of ¢/,
we have that ¢'(ugz—1) # ¢'(u14-2), ¢ (u2.—3). It also follows from the construction of
¢ that ¢'(b) ¢ {P(uaz—3), ¢ (ugs—1),Pp(u1,—2)} for all b € By, _». Hence, we have that
&' (v), ¢ (ugp—3), ¢ (ugp—1), ¢ (u1.—2) are pairwise distinct. Thus, it follows that P is not
in H;;(¢'), which is a contradiction. O

By Subclaims 4.3.23 and 4.3.24, it follows that v ¢ V(C) for all v' € B; ,UBj ,_»; thus,
we have that v € B2,:p—1' Notice that NH<B2,$—1) - {U17$_2,U17I,U071_1} U Bg’z U Bg}x_g.
Since vertices of C' are not in B3, U Bs .9 and By, 1 NV (Cy) = 0, it follows that at least
two of Uy y—9, U1 4, Ugz—1 aTE In P.

Since ug,—1 is adjacent to uy ;o and uy 4, and G(ugu—1) = ¢'(uoz—1) and P(uy 4—2) =
@' (u1,2—2) and ¢(uy5) = ¢'(u1,), we have that ¢'(ugz—1) # ¢ (U12—2), ' (U12). If @' (U1 e—2)
# (b/(ul,x)? then (b/(b) € {61762703}; thus? (z)/(b) % ¢/(u0,z—1)7¢,(ul,x—2)a ¢/(u1,z> for all b €
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By ,—1. Hence, we have that ¢'(v), ¢'(uos-1), ¢'(u12-2), ¢'(u1,) are pairwise distinct.
Thus, it follows that P is not in H,;(¢’), which is a contradiction. Therefore, we have that
¢/(u1,172) = ¢,<u1,x) and, thus, ¢(u1,x72) - ¢(u1,x)'

Thus, the colours of the vertices in By, U {ug,—1} in ¢ are pairwise distinct and
not equal to ¢(uy,—2) or ¢(uy,) and the colours of the vertices in By, 1 U {ug,—1} in
¢’ are pairwise distinct and not equal to ¢'(uy o) or ¢'(u;,). Hence, it follows that P
contains uy 42, %1, and at most one vertex in By, ;. Thus, we have that u; 9, u;, are
the neighbours of v in P. Since uy,—1 € B(I'y), it follows that at most one of uy ,_o, u1 4
is in V(Cy). Hence, we have that u; ,_ovu; , is a subpath of C' in ﬁij(¢’,M0). Let P’
be the other (u;,_2,u1,)-path in C' and notice that b ¢ V(P') forall b e By, UBs, o
by Subclaims 4.3.23 and 4.3.24. By the construction of ¢', we have that there exists a
vertex b € By, such that ¢'(v) = ¢(b). Thus, it follows that P’ +uy ,_2bu; , is a cycle in
]ivlij(qzﬁ, My). Thus, we have that My does not extend to ¢, which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢' of H where ¢'(u) # ¢'(u3,—2),
¢ (us3p12) and @' (us—2) # ¢ (usz—a), ¢ (us,) and ¢'(v) = ¢(v) for all v € V(Cs) \
{u,u3 o} such that M, extends to ¢'. If pgr is a bichord of I's where ¢ € B(I'3) and
P = U3, then 7 € {ug 42, us42}. Similarly, if pgr is a bichord of I'; where ¢ € B(I's) and
P = U342, then 7 € {us,_4,us3,}. Hence, if a bichord is monochromatic in ¢', then it is
monochromatic in ¢. Since v is in a bichord of I'3 that is monochromatic in ¢, but is not
monochromatic in ¢, it follows that ¢’ has fewer monochromatic bichords of I'; than ¢,
which contradicts the minimality of ¢. O

: 0x+1=2 x+1
Figure 4.4: A possible configuration of the vertices of interest in Claim 4.3.25.
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Proof. Suppose, towards a contradiction, that u;, € B(I'y). Note that Figure 4.4 shows
an approximate configuration of the vertices of interest here. Since u;, is adjacent to
Ug 11 and, by Claim 4.3.19, ug,+1 ¢ B(I'y), it follows that us,+1 € V(Cp). That is,
U z41 = Upzt1. Thus, there is no bundle on u; , and u ,42, and we have that By 1 = 0.
We will construct a new k-colouring ¢’ of H.

Let ® = {¢(Z) A NH2 (u27$_1)UNH(uLm)U{uQ’z_g, U3’$_2}}. Notice that NH2 (u271~_1> Q
{u1,2-2,u1 4, Up z—1 }UBs 1. By planarity, we have that | Ng, (u2 z—1)N(B2,z—1U{uoz-1})| <
1. Also, notice that Ngy(u;,) C {uwoz—1, %0z, U0 zot1}UB1yUBsy 1 U By 1. By planarity,
we have that | Ny (u1 )N (B1,U{uo.})| < 1. Since By, is a thin bundle and Bs ;41 = 0,
we have that |By,—1 U Ba 11| < 2. Thus, it follows that |®| < 10. Since k£ > 12, there
exists ¢ € [k] \ @. Let ¢'(ug.-1) = c.

Notice that, for each b € B3,w—27 we have that NH<b) - Bgﬁz_g U {UQ@_I, U2 3, ulvx_g}.
Since ¢(ug4—3) = ¢(ug,—1) by Claim 4.3.21, it follows that the colours of the vertices in
B39 U{u1 42} in ¢ are pairwise distinct. Also, note that ¢(ug,—3) # ¢'(uge—1). Let
c1,62,¢3 € [k] \ {P(u2,2-3), ¢ (u22-1), p(u14—2)} such that ¢; = P(usg,—2) and ¢, 2, c3 are
distinct. Note that ¢y, ¢, c5 exist since k > 12 > 6. For each b € B3 ,_o \ {us.—2}, let
@' (b) € {c1, 2, c3} such that adjacent vertices have distinct colours.

Similarly, for each b € Bs,, we have that Ny(b) C Bs, U {u2 41, U241, U1, }. Also,

note that ¢(u2,x+1) 7é ¢/(u2,$—1)' Let G, o € [k] \ {¢/(u2,m—1)>¢(u2,x+1)7¢(u1,x)a¢(w)acl}
such that ¢, are distinct. Note that ¢, ¢ exists since k > 12 > 7. Let ¢'(u) = ¢, and if
there exists u' # u € Bs,, then let ¢/(u') = ¢. Let ¢/(v) = ¢(v) for all v in H that have
not yet been assigned a colour under ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since v ¢ V(Cy) for
all v where ¢/(v) # ¢(v), it follows that ¢ = ¢c, = #(Mo). Hence, Definition 3.2.8(1)
holds for M, extending to ¢'. Since M, does not extend to ¢, it follows by Definition
3.2.8(2) that H,;(¢', My) contains a cycle C' for some ¢ # j € [k]. Since M, extends to ¢,

it follows that C' is not a cycle in H;;(¢, My); thus, we have that C' contains at least one
of the following:

(i) a vertex in B,
(i) a vertex in B3 ,—o \ {usz—2},

(iii) 1.

Notice that the cycle C' in f[ij(qﬁ’, M) is equivalent to a subgraph C’ in H;;(¢') where
C" is a cycle or a collection of paths with endpoints in V(Cp). Let v € V(C) such that
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v € By, U{ugz—1} U Bs .o and let P be the component of C" in H;;(¢') that contains v.
Note that v ¢ V(Cy).

Subclaim 4.3.26. The vertex v is not in Bs .

Proof. Suppose, towards a contradiction, that v € B;,. Notice that Ny (Bs.) C {u2441,
Ugz—1, Utz }. Since By, NV(Cy) = 0, it follows that at least two of ug 1, U2 441, U1, are
in P. Since u;, is adjacent to ug,+1 and ¢(uy,) = ¢ (u1,) and ¢(ug 1) = ¢ (u2441),
we have that ¢'(u1,) # ¢'(ug+1). By the construction of ¢, we have that ¢'(ug,—1) #
¢ (u12), @ (uger1). It also follows from the construction of ¢’ that ¢'(b) ¢ {¢'(u2.—1),
d(u2,241), ¢(ur )} for all b € B;,. Hence, we have that ¢'(v), ¢'(uz22-1), ¢ (u2.241), ¢ (U1,2)
are pairwise distinct. Thus, it follows that P is not in H;;(¢'), which is a contradiction. [

Subclaim 4.3.27. The vertez v is not in Bs,_o.

Proof. Suppose, towards a contradiction, that v € Bj,_». Notice that Ny (Bs,—2) C
{ugz—1, Ugz—3, U1 4—2}. Since By, o NV (Cy) = 0, it follows that at least two of ug .3,
Ug g1, Uy z—2 are in P. Since uy,_» is adjacent to us,—3 and ¢(uy4—2) = ¢'(u1,—2) and
d(uz2—3) = ¢ (ug4—3), we have that ¢'(uy,—2) # ¢'(u2,—3). By the construction of ¢/,
we have that ¢'(ugz—1) # ¢'(U14-2), ¢ (u2.—3). It also follows from the construction of
¢ that ¢'(b) ¢ {P(ugz—3), ¢ (ugs—1),P(u1,—2)} for all b € By, ». Hence, we have that
¢ (v), ¢ (ugp—3), ¢ (uge—1), ¢'(u1,4—2) are pairwise distinct. Thus, it follows that P is not
in H,;;(¢'), which is a contradiction. O

By Subclaims 4.3.26 and 4.3.27, it follows that v ¢ V(C) for all v' € B; U Bj ,_»; thus,
we have that v = U2 z—1- Notice that NH(BQ’LB_l) Q {Ul’m_g,ul,w,UO,x_l} U Bg7z U Bg}x_g.
Since vertices of C are not in B3, U Bs .2 and By, 1 NV (Cy) = 0, it follows that at least
two of uy y_2, U1 4, Ugz—1 are In P.

Since ug,—1 is adjacent to uy ;o and uy 4, and P(uge—1) = ¢'(upz—1) and P(uy 4—2) =
¢/(U1,%2) and ¢(U1x) = ¢/(U1,x), we have that (b/(uo,zfl) # ¢,<u1,x72)7 ¢/(U1,x)~ If ¢/(U1,zf2)
# ¢'(u1z), then ¢ (ugp—1), ¢ (Uoz—1), ¢ (U1 4—2), ¢'(u1 ) are distinct; hence, it follows that
P is not in H;;(¢’), which is a contradiction. Thus, ¢'(u1 4—2) = ¢'(u1,) and it follows that
Uy z—o and uy, are the neighbours of us, 1 in P. Since u;, ¢ V(Cy), we have that two
neighbours of u; , are in P.

Recall that Ng(u1 ) C {uoz—1, %0z Uozt1}UB1 2 UBg 1 UBs ;41 and say z # ug,—1 €
Npg(uy ) is a neighbour of uy ., in P. Since ¢/(z) = ¢(z) € ®, it follows that ¢'(z) # ¢'(v).
Thus, we have that P is not in H;;(¢'), which is a contradiction.
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Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3,—2),
¢ (us z12) and ¢'(v) = ¢(v) for all v € V(Cs) \ {u} such that M extends to ¢'. If pgr
is a bichord of I'; where ¢ € B(I'3) and p = us,, then r € {us,_2,u3,42}. Hence, if a
bichord is monochromatic in ¢’, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢’, it follows that ¢’ has fewer
monochromatic bichords of I'y than ¢, which contradicts the minimality of ¢. O]

Since ug 1 € B(I'1) and uy, ¢ B(I), it follows that u; .o € B(I'y). Also, note that
UL;E € V(Co)

Figure 4.5: A possible configuration of the vertices of interest in Claim 4.3.28.
Claim 4.3.28. |B27$_3| Z 9.

Proof. Suppose not. Note that Figure 4.5 shows an approximate configuration of the
vertices of interest here. Since uy ,—» € B(I'g) and uy o is adjacent to us .3, it follows that
U2 -3 € B(Fl) U V(Cg) ThllS7 either U2 z—3 € B(Fl) and |Bg}w_3| < 4 or U2 z—3 € V(Cg)

and By ,_3 = (). We will construct a new k-colouring ¢’ of H.

Let @ = {¢(2) : 2 € Npy(ugp—1) U (Ng(u1-2) \ {u22-1}) U {ug.—2}}. Notice that
Npy(u22-1) € {u12-2,U1 4, Uoz—1} U Bayq1. By planarity, we have that |Ng,(ug,—1) N
(Baz—1U{up—1})| < 1. Also, notice that Ny (u1 z—2) \ {taz-1} C {woz—3, uoz—1,U0z—2}U
Bia2UByy 3U(Bagz1 \ {u2z—1}). By planarity, we have that |Ng(u1,—2) N (Big2U
{upz—2})| < 1. Since By,_1 is a thin bundle and |By,_3] < 4, we have that [(By,—1 \
{ug,4-1}) U Bay—3| < 5. Thus, it follows that |®| < 11. Since k > 12, there exists
ce[k]\®. Let ¢'(ug,—1) = c.

Notice that, for each b € Bs ,_o, we have that Ny (b) C Bs ;o U{u24—1,U2 53, U1 4—2}-
Since ¢(u2,-3) = P(ug—1), it follows that the colours of the vertices in B ;o U {u1 -2}
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in ¢ are pairwise distinct. Also, note that ¢(us,—3) # ¢'(uge—1). Let c1,co,c3 € [K]\
{p(u2,4-3), ' (U22-1), p(u1,—2)} such that ¢; = ¢(us,—2) and ¢y, co, c3 are distinct. Note
that ¢y, ¢, c3 exist since k > 12 > 6. For each b € B; ;o \ {us,—2}, let ¢'(b) € {c1, o, 3}
such that adjacent vertices have distinct colours.

Similarly, for each b € Bs ., we have that Ny (b) C Bs , U{ug 4i1, U22—1, U1, }. Let & =
{¢ (ugz-1),c1,c2,c3 U{P(2) : 2 € Ny, (ugp—1) U{uzzy1,w}}. Recall that Ng,(ug.—1) C
{U,Lx_g, U1,z uO,a:—l} U BQ,x—l and |]\/vH2 ('U/Q’x_l) N <B2,x—1 U {UO,x—l})| S 1. ThUS, it follows
that |®'| < 9. Since k > 12, there exist ¢4, c5; € [k] \ &’ where ¢y, c5 are distinct. Let
¢'(u) = ¢4, and if there exists v’ # u € Bs,, then let ¢'(u') = ¢5. Let ¢'(v) = ¢(v) for all
v in H that have not yet been assigned a colour under ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since v ¢ V(Cy) for
all v where ¢'(v) # ¢(v), it follows that ¢|o = dc, = ¢(Mo). Hence, Definition 3.2.8(1)
hold for M, extending to ¢'. Since M, does not extend to ¢', it follows by Definition
3.2.8(2) that H,;(¢', M) contains a cycle C' for some ¢ # j € [k]. Since M, extends to ¢,
it follows that C' is not a cycle in ﬁij(qﬁ, My); thus, we have that C' contains at least one
of the following:

(i) a vertex in B,
(ii) a vertex in B3 ,_—o \ {uss—2},

(111) U z—1-

Notice that the cycle C' in f[ij(qb’ . My) is equivalent to a subgraph C’ in H;;(¢') where
(" is a cycle or a collection of paths with endpoints in V' (Cp). Let v € V(C') such that
v € By, U{ugy1} U Bs,_o and let P be the component of C" in H;;(¢') that contains v.
Note that v ¢ V(Cy).

Subclaim 4.3.29. The vertex v is not in Bs .

Proof. Suppose, towards a contradiction, that v € B;,. Notice that Ny (Bs,) C {ug 441,
U z—1, U1z }. Since By, NV(Cy) = 0, it follows that at least two of ug 1, U2 441, U1, are
in P. Since uy, is adjacent to ug 41, and ¢(uy ) = ¢’ (u1,) and G(ug 1) = ¢ (ug211), We
have that ¢ (u1 ,) # ¢'(ug441). By the construction of ¢/, we have that ¢/ (u2,—1) # ¢'(u1,)
and ¢'(v) ¢ {¢' (ugp—1), P(u2441), ¢(u1,)} for all v € B;,. Furthermore, we have that
¢ (u) # ¢'(v') if ' # u € Bs,. Thus, it follows that us,_1 and us .41 are the neighbours
of vin P and ¢'(ugy—1) = ¢'(u2241). Since ug,—y ¢ V(Cp), it follows that at least one
neighbour of uy,_1, other than v, is in P.
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Notice that NH(UQ,x—l) Q {ULx_Q, Uiz, U()w_l} U B27$_1 U Bgﬂx U Bgya;_g. Say z 7& S
Ny (ug,4-1) is a neighbour of us ;1 in P. Recall that ¢'(b) € {c1,¢2,c3} for all b € Bs,_»
and the colours of the vertices in B;, are pairwise distinct. Thus, we have that ¢/(z) €
@’ U {cq,c5} and it follows that ¢'(z) # ¢'(v). Thus, we have that P is not in H;;(¢’),
which is a contradiction. O]

Subclaim 4.3.30. The vertez v is not in Bs ,_o.

Proof. Suppose, towards a contradiction, that v € Bj,_». Notice that Ny (Bs,—2) C
{ug,p—1, Ugz—3, U1 4—2}. Since Bs, o NV (Cy) = 0, it follows that at least two of ug s,
Ugg—1, Ut z—2 are in P. Since uy,_» is adjacent to us,—3 and ¢(uy4—2) = ¢'(u1,—2) and
d(u22—3) = ¢ (ug4—3), we have that ¢'(uy,—2) # ¢'(u2,—3). By the construction of ¢/,
we have that ¢'(ugzp—1) # ¢'(u14-2), ¢ (u2.—3). It also follows from the construction of
¢ that ¢'(b) ¢ {P(uaz—3), ¢ (ugp—1),P(u1,—2)} for all b € By, _». Hence, we have that
&' (v), ¢ (ugp—3), ¢ (uge—1), ¢ (u1,—2) are pairwise distinct. Thus, it follows that P is not
in H;;(¢'), which is a contradiction. O

By Subclaims 4.3.29 and 4.3.30, it follows that v ¢ V(C) for all v' € B; ,UBj ,_o; thus,
we have that v = U2 zx—1- Notice that NH(BQ’;E_1> Q {Ul’x_Q,uLm,Uo,x_l} U B37l« U Bg}x_g.
Since vertices of C' are not in B3, U Bs .9 and By, 1 NV(Cy) = 0, it follows that at least
two of Uy y_9, U1 4, Ugz—1 aTC In P.

Since ug,—1 is adjacent to uy ;o and uy 4, and P(ugz—1) = ¢'(uoz—1) and P(uy 4—2) =
¢/(U1,172) and ¢(U1x) = ¢/(u1,az)a we have that ¢/(u0,zfl) # ¢,(U1,x72), ¢/(U1,;c)- If ¢/(U1@72)
# ¢'(u1z), then ¢ (ugp—1), ¢ (Uoz—1), ¢ (U1 4—2), ¢'(u1.) are distinct; hence, it follows that
P is not in H;;(¢'), which is a contradiction. Thus, ¢'(u1,—2) = ¢'(u1,) and it follows that
Uy z—o and uy, are the neighbours of uy,_1 in P. Since uy,_o ¢ V(Cp), we have that at
least one neighbour of u; ;_9, other than v, is in P.

Recall that NH<U1@_2) g {U07x_3,U07x_2,U07x_1} U Bl,x_g U B2,x—l U Bg7x_3 and say
2 # Ugz—1 € Np(uy,—2) is a neighbour of uy .o in P. Since ¢'(z) = ¢(z) € P, it follows
that ¢'(z) # ¢'(v). Thus, we have that P is not in H;;(¢’), which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3.—2),
¢ (u344+2) and ¢'(v) = ¢(v) for all v € V(C3) \ {u} such that My extends to ¢'. If pgr
is a bichord of I's where ¢ € B(I'3) and p = us,, then r € {us,_2,u3,42}. Hence, if a
bichord is monochromatic in ¢’, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢/, it follows that ¢’ has fewer
monochromatic bichords of I's than ¢, which contradicts the minimality of ¢. m
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Figure 4.6: A possible configuration of the vertices of interest in Claim 4.3.31.

Claim 4.3.31. ¢<U17$_4) = ¢(u1’$_2>.

Proof. Suppose not. Note that Figure 4.6 shows an approximate configuration of the
vertices of interest here. We will construct a new k-colouring ¢’ of H.

Let @ = {¢(2) : 2 € Np,(ugz—1) U Ny, (w1 2—2) U {ttg 441, U243, U3 22} }. Notice that
Np,(ugz—1) € {u12-2,U1 4, Uoz—1} U Bayq1. By planarity, we have that |Ng,(us.—1) N
(Bgﬂ;_l @) {UO,x—l})| S 1. AISO, notice that NH1 (ULJ}_Q) Q {Uoﬂx_g, Ug,x—1, U,O,x_Q} UBLx_Q.
By planarity, we have that |Ng(ujz—2) N (B1g—2 U {ugs—2})] < 1. Thus, it follows that
|®| < 9. Since k > 12, there exists ¢ € [k] \ ®. Let ¢'(uz.—1) = c.

Notice that, for each b € Bs .o, we have that Ny (b) C Bs ;o U{u2,—1,U2 43, U1 42}
Since ¢(uzz—3) = P(ug—1), it follows that the colours of the vertices in B o U {u1 -2}
in ¢ are pairwise distinct. Also, note that ¢(ug.—3) # ¢'(ug.—1). Let c1,c0,c5 € [k] \
{p(u2,4-3), ' (u25-1), p(u1,,—2)} such that ¢; = ¢(us,—2) and ¢y, co, c3 are distinct. Note
that ¢y, ¢o, c3 exist since k > 12 > 6. For each b € Bs ;o \ {us,—2}, let ¢'(b) € {c1, o, 3}
such that adjacent vertices have distinct colours.

Similarly, for each b € Bs,, we have that Ng(b) C Bs, U {2441, U24—1,U14}. Also,
note that ¢(uszr1) # ¢'(u2e—1). Let casc5 € [k] \ {d (uzp-1), d(u241), @(Ur2), p(w), 1}
such that ¢4, ¢5 are distinct. Note that ¢4, c5 exist since k > 12 > 7. Let ¢'(u) = ¢4, and if
there exists v’ # u € B, then let ¢'(u') = ¢5. Let ¢'(v) = ¢(v) for all v in H that have
not yet been assigned a colour under ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since v ¢ V(Cy) for
all v where ¢/(v) # ¢(v), it follows that ¢ = ¢c, = #(Mo). Hence, Definition 3.2.8(1)
holds for M, extending to ¢'. Since My does not extend to ¢, it follows by Definition
3.2.8(2) that H;;(¢', My) contains a cycle C for some i # j € [k]. Since Mj extends to ¢,
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it follows that C' is not a cycle in ﬁij(gb, My); thus, we have that C' contains at least one
of the following:

(i) a vertex in B,
(i) a vertex in B3 ,_—o \ {usz—2},

(111) U z—1-

Notice that the cycle C' in f[ij((b’ . My) is equivalent to a subgraph C’ in H;;(¢') where
(" is a cycle or a collection of paths with endpoints in V' (Cp). Let v € V(C') such that
v € By, U{ugy1} U Bs,_o and let P be the component of C" in H;;(¢') that contains v.
Note that v ¢ V(Cy).

Subclaim 4.3.32. The vertez v is not in Bs .

Proof. Suppose, towards a contradiction, that v € B;,. Notice that Ny (Bs,) C {u2411,
U z—1, U1z }. Since By, NV(Cy) = 0, it follows that at least two of ug 1, U2 441, U1, are
in P. Since uy, is adjacent to ug,+1 and ¢(uy,) = ¢ (u1,) and ¢(ugzi1) = @' (U2at1),
we have that ¢'(u1.) # ¢'(ugz+1). By the construction of ¢/, we have that ¢'(ug,—1) #
¢ (u14), ¢ (uger1). It also follows from the construction of ¢’ that ¢'(b) ¢ {¢'(u2.—1),
d(u2,241), ¢(u1 )} for all b € B; . Hence, we have that ¢'(v), ¢'(u2,-1), ¢’ (u2.241), ¢ (U1,2)
are pairwise distinct. Thus, it follows that P is not in H;;(¢'), which is a contradiction. [J

Subclaim 4.3.33. The vertez v is not in Bs ,_o.

Proof. Suppose, towards a contradiction, that v € Bj,_». Notice that Ny (Bs,—2) C
{ugz—1, Usz—3, U1z—2}. Since Bz, o NV (Cy) = 0, it follows that at least two of ug .3,
Ugz—1, Ul g—2 are in P. Since uy ,_o is adjacent to ug,—3 and @¢(ug o) = ¢ (u1,—2) and
d(u24—3) = ¢ (ug4—3), we have that ¢'(uy,—2) # ¢'(ug,—3). By the construction of ¢/,
we have that ¢'(ugz—1) # ¢'(u14-2), ¢ (u2.—3). It also follows from the construction of
¢’ that ¢'(b) ¢ {P(uaz—3), ¢ (ugp—1),P(u14—2)} for all b € By, _». Hence, we have that
&' (v), ¢ (ugp—3), ¢ (ugz—1), ¢ (u1,—2) are pairwise distinct. Thus, it follows that P is not
in H,;(¢'), which is a contradiction. O

By Subclaims 4.3.32 and 4.3.33, it follows that v ¢ V(C) for all v' € B; ,UBj ,_; thus,
we have that v = ug, 1. Notice that Ng(Bas—1) C {u12-2,U1 4, Upz—1} U Bs, U B 4 9.
Since vertices of C' are not in Bs, U Bs ;2 and By 1 NV (Cy) = 0, it follows that at least
two of Uy z—9, U1 4, Ugx—1 aTE In P.
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Since ug,—1 is adjacent to u ;o and uy ., and G(uge—1) = ¢'(woz—1) and P(uy 4—2) =
¢ (u1 5—2) and P(uy ) = @' (u1 ), we have that ¢'(ugz—1) # ¢ (u1,—2), &' (U15). If ¢ (U1 4—2)
# ¢'(u1z), then ¢ (ug 1), ¢ (Uoz—1), ¢ (U14—2), ¢'(u1,) are distinct; hence, it follows that
P is not in H;;(¢'), which is a contradiction. Thus, ¢'(u14—2) = ¢'(u1,) and it follows that
Uy z—o and uy, are the neighbours of us .1 in P. Since uy .o ¢ V(Cp), we have that at
least one neighbour of u; ;_9, other than v, is in P.

Recall that NH<U1@_2) Q {U07m_3,U0’z_2,U0’r_1} U Bl,m_g U Bg’m_l U Bg7x_3 and say
2 # Ugp—1 € Ny(uy,—2) is a neighbour of uy,_o in P. Since ¢'(uj —q) # ¢'(u1,—2), it
follows that z ¢ By ;3\ {u2,—3}. Thus, we have that ¢/'(z) = ¢(z) € ®. Since ¢/(z) € P, it
follows that ¢'(z) # ¢'(v). Thus, we have that P is not in H,;(¢"), which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3,—2),
¢ (us z12) and ¢'(v) = ¢(v) for all v € V(Cs) \ {u} such that M, extends to ¢'. If pgr
is a bichord of I'; where ¢ € B(I'3) and p = us,, then r € {us,—2,u3,42}. Hence, if a
bichord is monochromatic in ¢, then it is monochromatic in ¢. Since v is in a bichord of
I's that is monochromatic in ¢, but is not monochromatic in ¢’, it follows that ¢’ has fewer
monochromatic bichords of I's than ¢, which contradicts the minimality of ¢. O

Since uy ,—o € B(Iy), it follows that us ,_3 € B(I'1); thus, we have that us 4 € B(I'y)
Or Ug z—4 = Uy z—4. Note that Figure 4.6 shows an approximate configuration of the vertices
of interest here as well.

We will now construct a new k-colouring ¢’ of H. Since ¢(uyz—4) = P(ug4-2), it
follows that the colours of the vertices in By ,_3U{ug 3} in ¢ are pairwise distinct. Since
| By .—3| > 5, we have that there exists y € Ba,_3 such that ¢(y) # é(ugz—1), ¢(u22-5),
P(uzz—1); P(uzz—2). Let ¢'(uz.-3) = ¢(y) and ¢'(y) = duzz-3)-

Notice that Ny (b) C Bsaz-a U {u2z—5,u2,—3,u1 .4} for all b € Bs, 4. Note that
¢/(U2,m—3) # ¢(U2,z—5). Let ¢i,c9,c3 € [k] \ {¢(U2,m—5)7 925(”1,33—4), ¢/(U2,z—3), ¢(u3,x—6)7
¢(us—2)} such that ¢, cq, c3 are pairwise distinct. Note that ¢;, ¢o, ¢3 exist since k > 12 >
8. Let ¢'(u3,—4) = ¢1 and, for each b € B3 ,_4 \ {us,—a}, let ¢'(b) € {c1, 2, c3} such that
adjacent vertices have distinct colours.

Also notice that, for each b € Bs,_5, we have that Ny (b) C Bs, o U {ug4—1, U24-3,
Uy g—2}. Since ¢(ug,—3) = ¢(uz,—1), it follows that the colours of the vertices in Bs,_o U
{u1 -2} in ¢ are pairwise distinct. Note that ¢'(us,—3) # d(u2.—1). Let cs,c5,¢c6 € [K] \
{¢/(U2’x_3), ¢(U2’z_1>, ¢(U17$_2>} such that Cy = ¢<U3,x_2) and C4,Cs,Cg are distinct. Note
that ¢y, c5, ¢ exist since k > 12 > 6. For each b € B; ;o \ {us.—2}, let ¢/(b) € {c4, c5,¢6}
such that adjacent vertices have distinct colours.

Similarly, for each b € Bj,, we have that Ny(b) C B3, U {ug i1, Usp—1, U1} Let
Q' = {cy,c5, 06} U{P(2) : 2 € N, (u2,5-1) U {ugz—1, U441, w}}. Recall that Ny, (ug,—1) C
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{ul,x—Qa UL,z uO,ac—l} U B?,x—l and |]\/qu2 (u2,x—1) N <B27I_1 U {uo,x—l}>| S 1. Thus, it follows
that |®'| < 9. Since k > 12, there exist ¢7,cs € [k] \ &’ where ¢7,cs are distinct. Let
¢'(u) = ¢7, and if there exists u' # u € Bs,, then let ¢'(v') = cs. Let ¢'(v) = ¢(v) for all
v in H that have not yet been assigned a colour under ¢'.

Suppose, towards a contradiction, that My does not extend to ¢'. Since v ¢ V(Cy) for
all v where ¢/(v) # ¢(v), it follows that ¢ = ¢jc, = #(Mo). Hence, Definition 3.2.8(1)
holds for M, extending to ¢'. Since M, does not extend to ¢, it follows by Definition
3.2.8(2) that H,;(¢', M) contains a cycle C' for some ¢ # j € [k]. Since M, extends to ¢,
it follows that C' is not a cycle in f-v]ij(gb, My); thus, we have that C' contains at least one
of the following:

(i) a vertex in B,

)
(i) a vertex in B, o\ {uss—2},
(ili) a vertex in Bs, 4,

)

(iv) a vertex in By, 3.

Notice that the cycle C' in ﬁij(qﬁ’ , Mp) is equivalent to a subgraph C’ in H;;(¢’') where
C" is a cycle or a collection of paths with endpoints in V(Cj). Let v € V(C) such that
v € B3 ,UB3,_9UB3 ,_4UDB3 ;5 and let P be the component of C’ in H;;(¢’) that contains
v. Note that v ¢ V(Cy).

Subclaim 4.3.34. The vertex v is not in Bs .

Proof. Suppose, towards a contradiction, that v € B;,. Notice that Ny (Bs.) C {u2411,
U2 z—1, U1z }. Since Bz, NV(Cy) = 0, it follows that at least two of ug 1, U 411, U1, are
in P. Since u;, is adjacent to us .41 and ug, 1, and ¢(ur,) = ¢'(u1,) and G(ug41) =
@' (uzp11) and ¢(ugz—1) = ¢ (u25-1), we have that ¢'(u1z) # ¢ (u2241), ¢ (U2.-1). By the
construction of ¢, we have that ¢'(v) ¢ {¢'(u22-1), P(u2441), G(ur.)} for all v € Bs,.
Furthermore, we have that ¢'(u) # ¢'(u') if v’ # u € Bs,. Thus, it follows that uy 1 and
Ug 11 are the neighbours of v in P and ¢'(ug,;—1) = ¢'(uget1). Since ug 1 ¢ V(Cp), it
follows that at least one neighbour of us ,_1, other than v, is in P.

Notice that Ngy(ugyz—1) C {u1 42, U142, Uoz—1} U Bayz1 UBs, UBs, . Say z # v €
Np(ug.—1) is a neighbour of us ;1 in P. Recall that ¢'(b) € {c4,c5,¢6} for all b € Bs o
and the colours of the vertices in Bj, are pairwise distinct. Thus, we have that ¢/(z) €
@' U {cr,cs} and it follows that ¢'(z) # ¢'(v). Thus, we have that P is not in H;;(¢'),
which is a contradiction. O
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Subclaim 4.3.35. The vertez v is not in Bs,_o.

Proof. Suppose, towards a contradiction, that v € Bj,_o. Notice that Ny (Bs,—2) C
{ugz—1, Uaz—3, U1 z—2}. Since Bz, o NV (Cy) = 0, it follows that at least two of ug 3,
Ug g1, U z—2 are in P. Since uy, o is adjacent to us,—1 and ¢(uy ,—2) = ¢'(us.—2) and
d(uz-1) = ¢ (ugz—1), we have that ¢'(uy1,-2) # ¢'(ug,—1). By the construction of ¢/,
we have that ¢'(ugy—3) # ¢'(u14-2), ¢ (u2.-1). It also follows from the construction of
¢’ that ¢'(b) ¢ {¢'(u2s—3), P(ugs—1),P(u14—2)} for all b € By, _». Hence, we have that
&' (v), ¢ (ugp—3), ¢ (ugp—1), ¢ (u1,—2) are pairwise distinct. Thus, it follows that P is not
in H,;(¢'), which is a contradiction. O

Subclaim 4.3.36. The vertez v is not in Bs ;4.

Proof. Suppose, towards a contradiction, that v € Bj,_4. Notice that Ny (Bs,—4) C
{ug,p—3, Uz z—5, U1 4—a}. Since Bs, 4 NV (Cy) = 0, it follows that at least two of ug s,
U g3, U z—q are in P. Since uy,_4 is adjacent to us,—5 and ¢(ug4—4) = ¢'(u1,—4) and
d(uzz—5) = ¢ (ugz—5), we have that ¢'(u1,-4) # ¢'(u2,—5). By the construction of ¢/,
we have that ¢'(ugz—3) # ¢'(u14-4), ¢ (u2.—5). It also follows from the construction of
¢ that ¢'(b) ¢ {¢'(u2s—3), P(ugs—5), P(u1,—4)} for all b € By, 4. Hence, we have that
&' (v), ¢ (u2,2—3), ¢ (U22-5), ¢ (u1,—4) are pairwise distinct. Thus, it follows that P is not
in H;;(¢'), which is a contradiction. O

By Subclaims 4.3.34, 4.3.35, and 4.3.36, it follows that v" ¢ V(C) for all v € Bs, U
Bs .9 U Bs,_4; thus, we have that v € By, 3. Notice that Ny (Baz—3) C {t14-4, U1 42,
Up -3} UB3,_2UDBs ;4. Since vertices of C' are not in B ;,_oUBs ,_4 and By, 3NV (Cy) =
0, it follows that at least two of uy z—4, U1 z—2, Ug 43 are in P.

Since ug4—3 is adjacent to uy 44 and ug y—9, and P(ugz—3) = @' (up4—3) and G(uy ,—4) =
¢/(u1,x74) and ¢(U1,%2) = ¢,(U1,m72), we have that ¢,<U0,x73) # ¢/(U1,x74), ¢’(U1,172)- Since
d(uy z—a) = G(u12—2) by Claim 4.3.31, we have that ¢'(u1,—4) = (U1 2-4) = (U1 2—2) =
¢ (u1 z—2). Thus, it follows that the colours of the vertices in By ,—3 U {ug.—3} in ¢ are
pairwise distinct and not equal to ¢(uy ,—4) or ¢(us o). Additionally, we have that the
colours of the vertices in By, 3 U {ug,—3} in ¢’ are pairwise distinct and not equal to
¢ (U1 4—4) or ¢'(us,—2). Hence, it follows that P contains wuy ,_4,u; .2 and at most one
vertex in Bs,_3. Thus, we have that uy ;_4,u; , 2 are the neighbours of v in P. Since
U g2 ¢ V(Cy), it follows that uy ;40U ;o is a subpath of C' in ffij(qb’, My). Let P’ be
the other (uj 44, u1,—2)-path in C' and notice that b ¢ P forallb € Bs, oUBs,_4 by
Subclaims 4.3.35 and 4.3.36. By the construction of ¢’, we have that there exists a vertex
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b € By,_3 such that ¢'(v) = ¢(b). Thus, it follows that P’ + ﬂ17$_4f5ﬂ17x_2 is a cycle in
H;;(¢, My). Thus, we have that M, does not extend to ¢, which is a contradiction.

Therefore, it follows that there exists a k-colouring ¢’ of H where ¢'(u) # ¢'(u3.—2),
¢’ (uzet2) and ¢'(uzz-a) # ¢'(uzz—6), ¢'(Uz2—2) and ¢'(v) = ¢(v) for all v € V/(C3) \ {u}
such that M, extends to ¢'. If pgr is a bichord of I'y where ¢ € B(I's) and p = us,, then
r € {ug 2, Us 440 }. Similarly, if pgr is a bichord of I's where ¢ € B(I's) and p = us ,—4, then
r € {ug ¢, us—2}. Hence, if a bichord is monochromatic in ¢', then it is monochromatic
in ¢. Since v is in a bichord of I'; that is monochromatic in ¢, but is not monochromatic
in ¢, it follows that ¢’ has fewer monochromatic bichords of I's than ¢, which contradicts
the minimality of ¢. O
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Chapter 5

Critical Canvases

In this chapter, we prove the Main Theorem 5.3.5. In order to do that, we first determine
some structure in graphs which are critical for acyclic k-colouring. This is followed by a
collection of calculations which will also be used to prove the main result.

5.1 General Structure

In this section, we prove the Key Lemma 5.1.2 and the General Structure Lemma 5.1.4.

Definition 5.1.1. Let GG be a graph with a proper subgraph H. The graph G is H -critical
for acyclic k-colouring if, for all proper subgraphs G’ of G that contain H, there exists a
k-mosaic of H which extends to G’, but not to G.

Lemma 5.1.2 (Key Lemma). Let G be a graph with a subgraph H where G is H -critical for
acyclic k-colouring. If G = AUB where H C A and B # AN B, then B is (AN B)-critical

for acyclic k-colouring.

Proof. Suppose not. Thus, there exists a proper subgraph S of B where AN B is a subgraph
of S such that every k-mosaic of ANB that extends to S, also extends to B. Let T'= SUA.

Since G is H-critical for acyclic k-colouring, there exists a k-mosaic My of H which
extends to a k-mosaic My of T', but not to G. Let M, = Mosaic[¢(Mr)4, M| and let
M 4np be the restriction of M4 to AN B. Let Mg be the restriction of Mr to B. Since T’
has a k-mosaic M7 and A is a subgraph of T" and H is a subgraph of A with a k-mosaic
My where My extends to My, we have that T, A, and H satisfy the conditions of G, G,
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and H in Proposition 3.3.11. Thus, by Proposition 3.3.11, it follows that M, extends to
Mrp. Since A is a subgraph of T and the k-mosaic M4 of A extends to the k-mosaic My
of T and B is a subgraph of T, we have that T', A, and B satisfy the conditions of G, G,
and H in Proposition 3.3.15. Hence, by Proposition 3.3.15, it follows that M np extends
to Ms. Thus, since every k-mosaic of AN B that extends to .S also extends to B, we have
that Ms~p extends to B.

Since M anp extends to B, we have that G, A, and B satisfy the conditions of G, A,
and B in Proposition 3.3.16. Thus, by Proposition 3.3.16, it follows that M, extends to
G. Now, since M4 extends to G and My extends to M4, we have by Proposition 3.3.1
that My extends to GG, which is a contradiction. O

Definition 5.1.3. We say a canvas I' = (G, H) is k-critical if G is H-critical for acyclic
k-colouring.

Lemma 5.1.4 (General Structure Lemma). If a canvas I' = (G, C) where C' is the outer
cycle of G is k-critical for k > 12, then there exists at least one of the following:

(i) a chord of C, or
(ii) a bichord of T', or
(#i) a 6-double-pod of T'.

Proof. Since G is C-critical for acyclic k-colouring, there exists a k-mosaic M of C that
does not extend to G. By the Extension Lemma 4.2.1, there exists either (a) a chord uv
of C, (b) a bichord uvw of I' where ¢p(u) = ¢ppr(w), or (¢) an r-double-pod v of I' where
H{om(u) : u € feet(v)}| > k — 6. In the case of (a), it follows that G contains a chord of
C; thus, (i) holds. In the case of (b), it follows that I" contains a bichord; thus, (ii) holds.
In the case of (¢), it follows that I" contains an r-double-pod where r > k — 6 and, since
k > 12, we have that I' contains a 6-double-pod; thus, (%:) holds. O

Theorem 5.1.5. If £ > 10 is an integer, then there does not exist a plane graph G with
outer triangle C such that G is C-critical for acyclic k-colouring.

Proof. Suppose, towards a contradiction, that there exists a plane graph G with outer
cycle C, where C'is a triangle, and G is C-critical for acyclic k-colouring for some k > 10.
Since G is C-critical for acyclic k-colouring, G # C'. Hence, for every proper subgraph
H of G where C C H, there exists a k-mosaic of C' which extends to H, but not to G.
Therefore, there exists a k-mosaic M of C which does not extend to G, contradicting
Corollary 4.2.4. O
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Theorem 5.1.6. Let I' = (G,C) be a canvas where C' is the outer cycle of G and C' is
a 4-cycle. Let k > 11. If T is k-critical, then |V(G) \ V(C)| < k — 2 and all vertices in
V(G)\ V(C) are bipods of T.

Proof. Suppose not. Let M be a k-mosaic of C' that does not extend to G. Let C' =
uyugusuguy. If C has a chord, say ujus, then G({ujugusui) = ujusuzu; and G(ujuquzuy) =
uyuguguy by Theorem 5.1.5, and we have that |V(G) \ V(C)| = 0, a contradiction. Thus,
we may assume that C' has no chords.

By Corollary 4.2.5, there exists a vertex v € int(C') such that v is adjacent to u,w €
V(C) where ¢pr(u) = ¢ar(w). Since ¢p(M) is proper and acyclic, there is at most one pair
of vertices of C' that have the same colour in ¢(M). Without loss of generality, say that
Oar(ur) = dar(us) = k. Thus, there exists a vertex in V(G) \ V(C') that is adjacent to u,
and uz. Let A be the (non-empty) set of vertices in V(G) \ V(C) that are adjacent to u,
and us.

Claim 5.1.7. The size of A is at most k — 2.

Proof. Suppose not. Let v € A. Since G is C-critical for acyclic k-colouring, there exists a
k-mosaic M¢ of C' which extends to a k-mosaic M’ of G—uv, but not to GG. Notice that there
are at least k vertices adjacent to u; and uz in G —v: the k — 2 vertices of A, and the other
vertices ug, uy of C. Let A" = (A\{v}) U {us,us}. Recall that ¢ps(uq) = ¢pr(us) = k; thus,
Oar(u1) = opr(us) = k. For all vertices a € A, we have that ¢pp(a) # ¢ (uy); hence,
the colours of the vertices of A" in ¢(M’) are in [k — 1]. By the Pigeonhole Principle, there
exist vertices x,y € A’ such that ¢ (z) = o (y). Now uizugyu, is a cycle in Gy;(p(M’)),
a contradiction. O

By Theorem 5.1.5, the interiors of all triangles in G are empty. That is, for every
triangle T'in G, G(T) = T. Therefore, if G is a triangulation, then V' (C') U A are the only
vertices of G and we have |V (G)\V(C)| < k—2. Thus, we may assume that there exists a
4-cycle C" = uyrusyu; where z,y € A such that int(C”) is non-empty and int(C") N A = ().
If C’ has a chord, then it is a triangulation and therefore the interior of C’ is empty; hence,
C' has no chords.

Notice that G = (G\int(C"))UG(C’)) and C' C G\int(C"). Furthermore, (G\int(C")) N
G(C"y = C". Thus, by Lemma 5.1.2, G(C") is C'-critical for acyclic k-colouring. Let M
be a k-mosaic of G\ int(C”) that does not extend to G and let M’ be the restriction of
M to C’. Note that uj,us € V(C"), and ¢pr(u1) = op(ur) = k = op(us) = dar(ug).
Furthermore, since ¢(M) is proper and acyclic, the only pair of vertices of C’ that have
the same colour in ¢(M) (and thus in ¢(M")) is (uy,us). By Corollary 4.2.5, there exists
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a vertex v € int(C") that is adjacent to u; and us. By the definition of A, we have that
v € A; thus, {v} C int(C") N A, which implies that int(C") N A # 0, a contradiction. [

5.2 Calculations

In this section, we establish some bounds which will be used in the proof of the Main
Theorem 5.3.5.

Lemma 5.2.1. Let ' = (G, C) be a canvas where C' is the outer cycle of G and |V (C)| > 5
and G contains a chord uwv of C'. Let Cy and Cy be the cycles that bound the two inner
faces of C +wv. Let G; = G(C;) for each i € {1,2}. Let k > 1 and let z = 36k. If all of
the following hold for each i € {1,2}:

(1) if V(Ci)| = 3, then [V(Gi) \ V(Ci)| = 0;
(i1) if [V (Cy)| =4, then |V (G;) \ V(Cy)| < k;
(iii) if |V (Cy)| > 5, then |V (G;) \ V(Ci)| < |V(Cy)| — i for some 5 —ez >~ > 4.8 +¢€z;

then e|V(G)\ V(C)| < |V(C)| — v — ey for some 5 — ez > v > 4.8 + €z, where y = 12k.

Proof. 1f both Cy and Cy are 3- or 4-cycles, then |V(C')| < 6 and we have that

elV(G)\V(C)| = e(|[V(G1) \ V(C1)| + [V(G2) \ V(Co)])
< 2¢k.

Since z —y > 2k, we have that 2¢k < ez —ey. Since 5 —ez > =, it follows that ez < 5—1.
Thus,

eVG\V(O) <5 -7 —ey
< V(O) =~ —ey,

for some 5 — ez > v > 4.8 + £z, as desired.

If one of C4, (5 is a 3- or 4-cycle, say C, and the other, say C5, has length at least 5,
then

eV(G)\V(C) = e(V(G) \ V()| + [V(G2) \ V()
< ek + [V(Ca)| — 2.
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Since |V(C)|+|V(Cq)| = |V(C)|+2 and |V (C1)| > 3, it follows that [V (Cy)| < |[V(C)|—1.
Since z — y > k, we have that ek < ez — ey. Thus,

eV(G\V(O) <ez—ey+ |[V(O)] =1 =

Since b — ez > 4.8 4+ ez, it follows that 0.2 > 2ez. Thus, we have that 0.1 > ez. Since
0.1 — 1 <0, it follows that £[V(G) \ V(C)| < |V(C)| — 72 — ey. Thus, we have that
elV(G)\V(C)| < |V(C)| —~ — ey, for some 5 — ez > v > 4.8 + €z, as desired.

Otherwise, if [V (CY)[, |V (Cy)| > 5, then

elV(G)\V(CO)| = e(lV(G1) \ V(C1)| + [V(G2) \ V(C2)|)
< V(C)+[V(C)| =711 — 2
= V(O +2—=m —.

Since 2 — 93 <2 — (4.8 4 ez) < —ey, we find that £|V(G) \ V(C)| < |[V(C)| — v — ey, for
some b — ez > v > 4.8 4+ £z, as desired. O

Lemma 5.2.2. Let I' = (G, C) be a canvas where C' is the outer cycle of G and |V (C)| > 5
and I" contains a dividing bichord uvvw. Let Cy and Cy be the cycles that bound the two inner
faces of C +wvw. Let G; = G(C;) for each i € {1,2}. Let k > 1 and let z = 36k. If, for
each i € {1,2}, we have that |V (G)\V(C;)| < |V(C;)|—~i for someb—ez > ~; > 4.8+¢z,
then e|lV(G)\ V(C)| < |V(C)| =~ — ey for some b —ez > v > 4.8 + €z, where y = 12k.

Proof. Since |V (G;) \ V(C;)| < |[V(C;)| — ~ for some 5 — ez > 7; > 4.8 + ez, for each
i € {1,2}, it follows that:

e[VIG)\V(O) =e([V(G1) \ V(C1)| + [V(G2) \ V(Ca)[ + 1)
< V(@) +V(C)| = =2 +e
=V(O)|+4—mn—r+e

Since 73 > 4.8 — ez and ¢ < ez < 0.1, we have that ¢|V(G) \ V(C)| < [V(C)|+4 —4.8 —
ez — 72 + 0.1. Since 4.1 — 4.8 < 0, it follows that ¢|V(G) \ V(C)| < |V(C)| — ey — 2.
Thus, we have that ¢|V(G) \ V(C)| < |[V(C)| — v — ey, for some 5 —ez > v > 4.8+ ¢z, as
desired. ]

Lemma 5.2.3. Let I = (G, C) be a canvas where C' is the outer cycle of G and |V (C)| > 5
and I' contains a 6-double-pod v such that G has no chords of C and I" has no dividing
bichords. Let C,Cs, ..., Cg be the cycles that bound the siz inner faces of C' Ulegs(v). Let
G; = G(C;) for each i € {1,2,...,6}. Let k > 1 and let z = 36k. If all of the following
hold for each i € {1,2,...,6}:
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(i) if [V(Cy)| = 3, then [V(G;) \ V(Ci)| = 0;
(i) if |V(Cy)| = 4, then |V (G;) \ V(Cy)| < k;
(iii) if |V (Cy)| > 5, then |V (G;) \ V(Ci)| < |V(Cy)| — i for some 5 —ez >~ > 4.8 +¢€z;
then e|V(G) \ V(C)| < |V(C)| — v — ey for some 5 — ez > v > 4.8 + €z, where y = 36k.
Proof. First note that, since I' has a 6-double-pod, we have that [V (C)| > 6. If C; is a 3-
or 4-cycle for all ¢ € {1,2,...,6}, then for some 5 —ez > v > 4.8 4 ez:
6
EV(G\ V()] <) (IV(G)\V(Cy)|) + Te
i=1
< 6ek + Te.

Since 2z —y = 36k > 6k + 7, it follows that 6ek 4+ 7e < 2ez — ey. Since b — ez > v, we
have that ez < 5 — ~. Thus,

eV(G)\V(O)| £5—v+ez—ey.
Since |V(C)| > 6, we have that |V(C)| —1 > 5. Recall that ez < 0.1. Thus,

elV(G)\ V(O)] (C)—1—=~7+01-¢y

<V
< |V(O)] =7 —ey,

as desired.
Now suppose at least one of (1, ..., Cg has at least 5 vertices. Let ¢ denote the number
of C',...,Cg that are 3- or 4-cycles. Since not all of (', ..., Cy are 3- or 4-cycles, we have

that 6 — ¢ > 1. Without loss of generality, suppose |V (C;)| > 5 for i € {1,...,6 —t}.
Claim 5.2.4. S0 X(|V(C))| — 4) < |V(C)| —t.

Proof. For each i € {1,...,6 — t}, we have that C; has at most 4 edges that are not
in B(C). Thus, it follows that S0 L(|V(Ci)| — 4) < S0V E(C;) N E(C)|. Notice that
|E(C;))NE(C)] > 1forallie{6—t,...,6}. Since E(Cy)NE(C),...,E(Cs) N E(C) are
pairwise disjoint, it follows that S0_! |E(C;) N E(C)| < |E(C)| —t = |V(C)| —t. Thus, we
have that 30" 1(|V(C;)| — 4) < [V(C)| —t, as desired. O
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Thus,

elV(G)\V(0)| < aZ<|v<Gi) \V(C))]) + Te

<5Z|V )| — ) +tek + Te
6—t
<Z\v | = () +tek + e
=1
6—t
<Zyv ) = 4) +4(6 — 1) = > (v) + tek + 7e.
=1

By Claim 5.2.4, we have that S 0 (|V/(Cy)| — 4) < |V(C)| —t. Since z = 36k, it follows
that tk + 7 < z. Thus,
6t

EVG\V(O) S V(O)| —t+24—4t =Y (y;) +e2

SIV(O)|—m+24—5t—Y () +ez

=2

Since v; > 4.8 + ez for all i € {1,...,6}, it follows that S0 2(y;) > (5 — t)(4.8 + £2) =
24 — 4.8t + bez — tez. Thus,

elV(G)\V(CO)| <|V(C)| —y1 +24 — 5t — (24 — 4.8t + bez — tez) + ez
< |V(C)| —m —ez— 0.2t — 3ez + tez.

Recall that £z < 0.1. Hence, we have that 0.2t > tez, which implies that —0.2t 4tz < 0.
Since —3ez < 0 and z = y, it follows that

eV(@\V(O) < V(C) =m —ey.
Hence, we have that €|V (G)\V(C)| < |V(C)| —v — ey, for some 5 —ez > v > 4.8+¢z,
as desired. ]

5.3 Proving the Main Result

In this section, we prove the Main Theorem 5.3.5.
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Definition 5.3.1. Let I' = (G, C) be a canvas with a bichord uvw where v € B(I'). We
say u and w are the parents of v.

Definition 5.3.2. Let 'y = (Go, Cy) be a canvas where Cj is the outer cycle of Gy and
|V(Co)| Z 5. Let FZ = (GZ,C;) = R(Fi_l,B(Fi_l)) for each i € {1,2,3} Let X Q V(CZ)
for some i € {0,1,2,3}. We say that A; is the set of ancestors of X if Ag = X and
A;=A; 1 U{a:ais aparent of ' where o’ € A;_;} for all j € {1,...,i}.

Proposition 5.3.3. Let I'y = (G, Cy) be a canvas where Cy is the outer cycle of Gy and
[V(Co)| = 5. Let T'; = (G;,C;) = R(Iy_1, B(T';_1)) for each i € {1,2,3}. Let X C V(C})
for some i € {0,1,2,3} and let A; be the ancestors of X. It follows that |A;| < |X|(1 +
2)(i + 1)/2.

Proof. If i = 0, then Ay = X and we have that |Ay| = |X]| = |X[(0+ 2)(0 + 1)/2, as
desired. If i = 1, then at most all of the vertices in X are in B(I'g) and their parents are
distinet; thus, |4 < 3|X| = |X|(1 +2)(1 + 1)/2, as desired. Suppose i € {2,3}. Let
v € A; and suppose v has two parents u,w in A; where each of u,w have two parents in
A;. Since wvw is not a dividing bichord, it follows that dist(u,w) = 2; thus, u and w have
a parent in common. Hence, we have that v and w have at most three parents x,y, z.
If z,y, z all have parents in A;, then without loss of generality, x and y have a parent in
common, and y and z have a parent in common. Thus, we have that x,y, 2 have at most
four parents. Hence, if i = 2, then |Ay| < 6|X| = |X|(2+2)(2+1)/2, as desired. If i = 3,
then |A3| < 10|X| = |X|(3+2)(3 + 1)/2, as desired. O

Proposition 5.3.4. Let k > 12 and let I" = (G, C) be a canvas where C'is the outer cycle
of G such that G is C'-critical for acyclic k-colouring. The maximum size of a bundle B

onu,we V(C)isk—1.

Proof. Since B is a bundle on u,w, it follows that distc(u,w) = 2. Let x be the vertex
that is adjacent to both u and w in C. Let v € B such that all vertices in B\ {v} are in
the interior of the cycle C" = vuzwv. Let G’ = G(C"). Since G = (G \ int(C")) U G" and
C" C (G\int(C")) and G" # (G \int(C")) NG, it follows by the Key Lemma 5.1.2 that G’ is
('-critical for acyclic k-colouring. By Theorem 5.1.6, we have that |V (G")\V(C")| < k—2.
Since V(G')\ V(C") = B\ {v}, it follows that |B| < k — 1. O

Theorem 5.3.5 (Main Theorem). For each k > 12, there exists ¢ = (k) > 0 such that
if a canvas I' = (G, C') where C is the outer cycle of the plane graph G is k-critical and
[V(C)| = 5, then e|lV(G) \ V(C)| < |V(C)| =~ for some b —ez > v > 4.8 + £z where
z = 36k.
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Proof. Suppose not. Let I'g = (Gg, Cy) where Cj is the outer cycle of Gy be a counterex-
ample with |V (Go)| + |E(Go)| minimized. Thus, we have that Gy is Cy-critical for acyclic
k-colouring and |V (Cy)| > 5. Let I'; = (G, C;) = R(I';—1, B(I';—1)) for each i € {1,2,3}.

Claim 5.3.6. G; does not contain a chord of C;, for each i € {0,1,2,3}.

Proof. Suppose, towards a contradiction, that G; does contain a chord of C;. Let u and
v be the endpoints of the chord. Let A; be the set of ancestors of {u,v}. By Proposition
5.3.3, it follows that |A;] < |X|( + 2)(i + 1)/2 < 2(20)/2 = 20 and |A; \ V(Cy)| <
IX[((i—1)+2)((i —1)+1)/2 <2(12)/2 = 12.

Let I'y = (G, Cp) = To. For each j = 1,...,4, let I'; = (G}, C}) = R(T'_,
B=B(I_)nA.

Let C;1 and Cj 5 be the cycles that bound the two inner faces of C] + uv. Let G, ; =
G(C; ;) for each j € {1,2}. Since G} = (G} \ int(C;;)) UG, ; and C! C (G \ int(C; ;)) and
Gi; # (G)\int(C; ;) NG, 4, it follows by the Key Lemma 5.1.2 that G} ; is C; j-critical for
acyclic k-colouring, for each j € {1, 2}.

For each j € {1,2}, if C;; is a 3-cycle, then by Theorem 5.1.5 we have that |V (G, ;) \
V(C;;)| = 0. If C;; is a 4-cycle, then by Theorem 5.1.6 we have that [V (G, ;)\ V(C; ;)| <
k. Otherwise |V(C;;)| > 5, and since I'y is a minimum counterexample we have that
E|V(Gi7j) \ V(C,7J)| < |V(CZ7])| — Yij» for some 5 — ez > Yi,j > 4.8 +¢z.

Thus, by Lemma 5.2.1, it follows that |V (G})\ V(C})| < |V(C!)| —~; — ey for some 5 —
ez > ; > 4.8+ €z, where y = 12k. By Proposition 4.3.8, we have that |V (C)| = |V(Cy)|.
Notice that each vertex a € A, is either in V' (Cy) or in B(T';) for some j € {0, ...,i}. Thus,
it follows that a is in a bundle B, for all a € A;\V(Cy). By Proposition 5.3.4, we have that
|Bo| < k—1foralla € A;. Let B=J,c4,(Ba). That is, B is the union of the ancestors in
A;\V(Cy) and their bundles. Thus, we have that |B| < |A;\V(Cy)|(k—1) < 12(k—1). Let
y' = 12(k—1). By the construction of I}, we have that (V(Go)\V(Cp))\ (V(G,)\V(C))) =
B. Thus, it follows that |V (Go) \ V(Co)|— |V(G)\V(C?)| < y'. Notice that ¢y < y; hence,
we have that iy —y < 0. Therefore,

B) where

elV(Go) \ V(Co)l < e[V(G) \ V(C)| + ey
< V(C)I =i —ey+ey
< V(G| =i +ely —y)
< [V(Co)| = -
Thus, we have that €|V (Go) \ V(Co)| < |V(Ch)| — v for some 5 — ez > v > 4.8+ £z, which
contradicts the assumption that I'y is a counterexample. O
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Claim 5.3.7. T'; does not contain a dividing bichord, for each i € {0,1,2,3}.

Proof. Suppose, towards a contradiction, that I'; does contain a dividing bichord, uvw. Let
A; be the set of ancestors of {u,w}. By Proposition 5.3.3, it follows that |A;] < |X|(i +
2)(i+1)/2 <2(20)/2 =20 and |A;\V(Co)| < |X[((1—=1)+2)((i—1)+1)/2 < 2(12)/2 = 12.

Let Iy = (G, Cp) = [o. For each j = 1,...,4, let I} = (G}, C}) = R(I",_;, B) where
B = B(I',_;)N A,

Let C;1 and C;5 be the cycles that bound the two inner faces of C! + wvw. Let
G, = Gi(C; ;) for each j € {1,2}. Since G}, = (G} \int(C; ;))UG; ; and C! C (G} \int(C; ;))
and G;; # (G \int(C; ;)) NG, 5, it follows by the Key Lemma 5.1.2 that G, ; is C; j-critical
for acyclic k-colouring, for each j € {1,2}.

Since wvw is a dividing bichord, it follows that distey (u,w) > 3; thus, we have that
[V(Ciq)l,[V(Cs2)] > 5. Hence, since I'y is a minimum counterexample, we have that
elV(Gi;)) \V(Ci;)| <|V(Cij)| — i, for some 5 —ez >, > 4.8 4 ¢z.

Thus, by Lemma 5.2.2, it follows that |V (G) \ V(C!)| < |V(C!)| —~; — ey for some 5 —
ez > ; > 4.8+ ez, where y = 12k. By Proposition 4.3.8, we have that |V (C!)| = |V (Cy)|.
Notice that each vertex a € A, is either in V' (Cy) or in B(T';) for some j € {0,...,i}. Thus,
it follows that a is in a bundle B, for all a € A;\V(Cy). By Proposition 5.3.4, we have that
|Bo| < k—1foralla € A;. Let B =, (Ba). That is, B is the union of the ancestors in
A;\V(Cp) and their bundles. Thus, we have that |B| < |A;\V(Cy)|(k—1) < 12(k—1). Let
y' = 12(k—1). By the construction of I}, we have that (V(Go)\V(Cp))\ (V(G,)\V(C))) =
B. Thus, it follows that |V (Go) \ V(Co)| — |V (GE) \V(C})| < y'. Notice that v < y; hence,
we have that iy —y < 0. Therefore,

e[V (Go) \ V(Co)| < e[V(G)\V(C))| + ey
< |V(CHl =i —ey + ey
<|V(Co)l =i +e(y' —v)
< [V(Co)| — .

Thus, we have that €|V (Go) \ V(Co)| < |V(Co)| — v for some 5 — ez > v > 4.8+ £z, which
contradicts the assumption that I'y is a counterexample. ]

Claim 5.3.8. T'; does not contain a 6-double-pod, for each i € {0,1,2,3}.

Proof. Suppose, towards a contradiction, that I'; does contain a 6-double-pod, v. Let
A; be the set of ancestors of {u : u € feet(v)}. By Proposition 5.3.3, it follows that

58



|A;| < |X|(i42)(i+1)/2 < 6(20)/2 = 60 and |A;\V (Co)| < |X|((i—1)+2)((i—1)+1)/2 <
6(12)/2 = 36.

Let Ty = (Gp, Cp) = To. For each j =1,...,4, let I'; = (G, C}) = R(I')_,, B) where
B=B(_)n A,

Let Ci1,Cia,...,Cig be the cycles that bound the six inner faces of C U legs(v). Let
G,; = GI(C;;) for each j € {1,2,...,6}. Since G; = (G} \ int(C;;)) UG, ; and C! C
(GI\ int(C;5)) and G, ; # (G} \ int(C;;)) N G, 4, it follows by the Key Lemma 5.1.2 that
G, ; is C; j-critical for acyclic k-colouring, for each j € {1,2,...,6}.

For each j € {1,2,...,6}, if C;; is a 3-cycle, then by Theorem 5.1.5 we have that
\V(G;;) \ V(C;,;)| = 0. If C;; is a 4-cycle, then by Theorem 5.1.6 we have that |V (G ;) \
V(C;;)| < k. Otherwise |V(C; ;)| > 5, and since I'y is a minimum counterexample we have
that 6|V(Gi,j) \ V(CZJ>| S |V(Cm)| — Yij» for some 5 — ez Z Yij Z 4.8 +¢z.

Thus, by Lemma 5.2.3, it follows that ¢|V(G}) \ V(C})| < |V(C!)| — i — ey for some
b—ez>r; > 4.8+ ¢z, where y = 36k + 36. By Proposition 4.3.8, we have that |V (C})| =
[V (Cy)|.- Notice that each vertex a € A; is either in V(Cp) or in B(I';) for some j €
{0,...,4}. Thus, it follows that a is in a bundle B,, for all a € A;\ V(Cy). By Proposition
5.3.4, we have that |B,| < k —1 for all @ € A;. Let B = (J,c,,(Ba). That is, B is
the union of the ancestors in A; \ V(Cj) and their bundles. Thus, we have that |B| <
A\ V(Co)|(k—1) <36(k—1). Let y' = 36(k—1). By the construction of I';, we have that
(V(Go) \ V(Co)) \ (V(G)) \ V(C1)) = B. Thus, it follows that [V/(Go) \ V(Co)l — [V(G}) \
V(C!)| < 4. Notice that ¢ < y; hence, we have that ¢y —y < 0. Therefore,

elV(Go) \ V(Co)| < e[V(G)\V(C)| + ey
< V(G| =i —ey+ey
< |V(Co)l =i +e(y —y)
< [V(Co)| — i-
Thus, we have that |V (Go) \ V(Cy)| < |V(Cy)| — v for some 5 — ez > v > 4.8+ £z, which
contradicts the assumption that I'y is a counterexample. O]

Claim 5.3.9. T'; does not contain a non-unique, non-dividing bichord, for eachi € {0, 1,2, 3}.

Proof. Suppose not. That is, there exists i € {0,1,2,3} such that I'; contains a non-
dividing bichord uvw where v ¢ B(I';). Since uvw is not a dividing bichord of I';, we have
that diste, (v, w) = 2. Since v ¢ B(I';), there exists at least one other neighbour of v in C;.
By the Unique Bichord Lemma 4.3.1, it follows that |V (C;)| < 6. Since |V (C;)| = [V (Cy)|,
we have that [V (C;)| > 5.
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Let uy,us, ..., us be the neighbours of v in C;. Notice 3 <t < 6. If |V(C;)| = 6 and
t = 6, then uy,...,u; are precisely the vertices of C;; hence, it follows that wvu, is a
dividing bichord, which is a contradiction. Thus, it follows that ¢ < 5.

Let A; be the set of ancestors of {uy,...,u;}. By Proposition 5.3.3, it follows that
|A;] < |X|(i4+2)(i+1)/2 < 5(20)/2 =50 and |A;\V(Co)| < |X|(G—1)+2)((1—1)+1)/2 <
5(12)/2 = 30.

Let I'y = (G, C) = To. For each j = 1,...,4, let I'; = (G}, C}) = R(T_,
B=B(I'_,)N A,

Let C;a,...,Cit be the cycles that bound the t inner faces of C} 4+ vuy + -+ + vuy.
Let G;; = Gi(C;;) for each j € {1,...,t}. Since G} = (G} \ int(C;;)) U G;; and C] C
(Gi\ int(C; ;) and G, ; # (G; \ int(C; ;) N G, 4, it follows by the Key Lemma 5.1.2 that
G, j is C; j-critical for acyclic k-colouring, for each j € {1,...,t}.

Since v is not in a dividing bichord, it follows that 3 < |V(C;41)l,...,|V(Ciy)| < 4.
Thus, for some 5 —ez > v > 4.8 + ez:

B) where

t
eV(G)\V(C)| <> (IV(Gip) \V(Cij)l) + ¢
j=1
<tek +¢
<ez—e¢y
<b—7v—¢y
< V(C)I =7 — ey,

where y = 30k.

By Proposition 4.3.8, we have that |V (C])| = |V(Cy)|. Notice that each vertex a € A;
is either in V(Cy) or in B(I';) for some j € {0, ...,i}. Thus, it follows that a is in a bundle
B,, for all a € A; \ V(Cy). By Proposition 5.3.4, we have that |B,| < k — 1 for all a € A;.
Let B = Uuea,(Ba). That is, B is the union of the ancestors in A; \ V(Cp) and their
bundles. Thus, we have that |B| < |A; \ V(Cy)|(k —1) < 30(k —1). Let v/ = 30(k — 1).
By the construction of I"}, we have that (V(Go) \ V(Co)) \ (V(G) \ V(C!)) = B. Thus, it
follows that |V (Go) \ V(Co)| — |V(GE) \ V(C?)| < ¢'. Notice that ' < y; hence, we have
that ' — y < 0. Therefore,

elV(Go) \ V(Co)| < elV(G)\ V(C))| + ey
S IWV(C)| =~ —ey+ey
< V(Co)| =i +e(y' — )
< V(Co)| — -

60



Thus, we have that €|V (Go) \ V(Co)| < |V(Co)| — v for some 5 — ez > v > 4.8+ £z, which
contradicts the assumption that I'y is a counterexample. ]

By Claims 5.3.7 and 5.3.9, it follows that, for all i € {0,1, 2,3}, if I'; contains a bichord
uvw, then v € B(T;). For all i € {0,1,2,3}, we have that C; has no chords by Claim 5.3.6
and I'; has no 6-double-pods by Claim 5.3.8.

Claim 5.3.10. I'y does not contain a bichord.

Proof. Let M be a k-mosaic of Cj that extends to Go[V (Cy) U B(I'g) U B(I';) U B(I'9)].
Thus, by Lemma 4.3.12, we have that M extends to Gq. Since Gy is Cy-critical for acyclic
k-colouring, it follows that Gy = Go[V(Co) U B(I'y) U B(I'y) U B(I'g)]. Hence, we have
that [V (Go)| = |V(Co)| + |B(To)| + |B(I'1)| + |B(T'2)| < (3k 4+ 1)|V(Cp)|. Thus, it follows
that [V (Go) \ V(Co)| < 3k|V(Cy)|. Let 5 —ez > ~v > 4.8 4+ €z. Since z > 15k, we have
that 5 — 15ke > ~; thus, it follows that ¢ < i — 13z- Note that since 7 < 1, it follows

15k °

1 v : 1 v 7 :
that o — 5 > 0. Since € < 35 — 1aps We have that 3ke <1 — 2. Also, note that since

[V (Cy)| > 5, we have that —@ < —1. Thus,

elV(Go) \ V(Co)| < 3ke|V(Co)|

V(C
< (e - A
< |[V(Co)| =,
which contradicts the assumption that I'y is a counterexample. O

By Claims 5.3.6, 5.3.10, and 5.3.8, we have that Gy does not contain a chord of Cy and
'y does not contain a bichord or a 6-double-pod. Thus, by the converse of the General
Structure Lemma 5.1.4, it follows that 'y is not k-critical, which is a contradiction. O
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Chapter 6

Extending the Main Result

In this chapter we show that the Main Theorem 5.3.5 implies that the family of graphs
which are critical for acyclic k-colouring, where k& > 12, is hyperbolic and strongly hyper-
bolic.

6.1 Hyperbolic

In this section, we prove that the family of graphs which are critical for acyclic k-colouring,
where k£ > 12, is hyperbolic.

Theorem 6.1.1. For each k > 12, there exists ¢ > 1 such that if G is plane and S is a
non-empty independent set of G whose vertices are incident with the outer face of G and

G is S-critical for acyclic k-colouring, then |V (G)| < c(|V(S)] —1).

Proof. Suppose not. Let I'g = (Gp, So) be a counterexample where |E(Gy)| + |V (Gy)| is
minimized.

Claim 6.1.2. Sy does not contain a cut vertex.

Proof. Suppose, towards a contradiction, that v € V(Sy) is a cut vertex. Let H; and Ho
be the two components of Gy — v and let G; = Go[V (H;) U {v}], for each i € {1,2}. Let
S; = SoNV(G;), for each i € {1,2}. For each i € {1,2}, it follows from the Key Lemma
5.1.2 that G is S;-critical for acyclic k-colouring.

Since 'y is a minimal counterexample, it follows that |V (G;)| < ¢(|V(S;)| — 1) for all
i € {1,2}. Thus, we have that |V (G1)| + [V (G2)| < c(|V(S1)] + [V (52)] — 2). Notice that
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V(G| + |V(G2)| = [V(Go)| + 1 and |[V(S1)| + [V (S2)] = [V (So)| + 1. Now, it follows
that |V(Go)| +1 < ¢(|V(Sp)| — 1). Thus, we have that |V (Go)| < ¢(|V(So)| — 1), which

contradicts the minimality of T'. O]
Let vg,...,v,_1 be the cyclic order of the vertices of Sy around the outer face of Gj.
By Claim 6.1.2, we have that each vertex of Sy appears once in vg, ..., v, 1.

For each i € {0,...,n — 1}, add vertices u;, w; and the path v;u;w;vi;; to Go.! Embed
these paths in the outer face of Gy and let G’ denote the resulting graph. Let Cj be the
union of these paths; that is, let Cy = U;:Ol (viu;w;v;11). Notice that Cy is the outer cycle of
G and |V (Cy)| = 3|V (So)|. Let X = {u;,w; :i € {0,...,n—1}}. Notice that G'\ X = G.

Claim 6.1.3. G’ is Cy-critical for acyclic k-colouring.

Proof. Suppose not. Thus, there exists a proper subgraph H of G', where H D Cj, such
that every k-mosaic of Cy that extends to H, also extends to G’. Since G is Sy-critical for
acyclic k-colouring and H O Cy O Sy, we have that there exists a k-mosaic Mg of Sy that
extends to H \ X, but not Gy. Let ¢ be a k-colouring of Cy where ¢(v) = ¢pq(v) for all
v € V(Sy) and ¢(u;) # o(w;) € [k] \ {o(vs), d(vip1)} for all i € {0,...,n —1}.

Subclaim 6.1.4. Mg extends to ¢.

Proof. Suppose not. Notice that ¢, = ¢(Mg); thus, Definition 3.2.8(1) holds for Mg
extending to ¢. Since Mg does not extend to ¢, it follows from Definition 3.2.8(2) that
8‘7”-(¢, Myg) contains a cycle C” for some i # j € [k]. Since Sy is an independent set in
G', it follows that C” contains at least one vertex in X. Without loss of generality, say

U € V(C,)

Notice that the cycle C” in aij(qb, Ms) is equivalent to a subgraph C” in G;(¢) where
C" is a cycle or a collection of paths with endpoints in V(Sp). Let P be the component
of C" in Gj;(¢) that contains u;. Notice that Ng/(u1) = {vi,w:}; thus it follows that
vy, w; are the neighbours of w; in P. Notice, by the construction of ¢, we have that
¢(v1), d(ur), p(w:) are pairwise distinct. Thus, it follows that P is not in G7;(¢), which is
a contradiction. O

Let M¢c = Mosaic[¢, Mg]. Note that M¢ exists by Proposition 3.3.7.
Subclaim 6.1.5. My is the restriction of Mc to Sy.

INote that here and in the remainder of this proof, indices are taken mod n.
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Proof. Let u # v € V(S)). Since Mg extends to M, we have that P;;(Mg) is a refinement
of P;j(Mc) for all i # j € [k]. Thus, for all i # j € [k], if u,v are in the same part of
P,;j(Msg), then u,v are in the same part of P;;(Mc). Notice that there is no (u,v)-path
in (Cp)ij(¢). Since, for all ¢ # j € [k], we have that P;;(Mc) is the smallest common
coarsening of P;;(Mg) and P;;j(Mosaic[¢]), it follows that if u,v are not in the same part
of P;;(Ms), then u,v are not in the same part of P;;(Mc). Thus, we have that P;;(Mg) =
{PNV(Sy) : P e Pij(Mc)}, for all i # j € [k]. Now, since ¢(Mg) = ¢(Mc);s,, it follows
that Mg is the restriction of Mg to .Sp. O

Subclaim 6.1.6. Mo extends to H.

Proof. By Subclaim 6.1.5, we have that Mg is the restriction of Mg to Sy. Notice that
G' =CoU(H\X)and Con(H\ X) = Sp. Since Mg extends to H \ X, it now follows
from Proposition 3.3.16 that My extends to H. O]

Subclaim 6.1.7. M- does not extend to G'.

Proof. Suppose, towards a contradiction, that M¢c extends to a k-mosaic M of G'. By
Subclaim 6.1.5, we have that Mg is the restriction of Mo to Sy. Notice that Gy and Cy
are subgraphs of G’ and Go N Cy = Sy. Thus, we have that Mg is the restriction of Mg to
GoNCy. Let M’ be the restriction of M to Gy. Now, by Proposition 3.3.15, it follows that
Mg extends to M’'. Thus, we have that Mg extends to G, which is a contradiction. O

By Subclaims 6.1.6 and 6.1.7, we have that the k-mosaic Mq of Cy extends to H, but
not to G’, which is a contradiction. O

Notice that |V(G)\V(Cy)| = |[V(Go)|—|V (Sp)]|. Since |V (Co)| = 3|V (So)|, if |V (Cp)| <
5, then we have that |V(Cj)| = 3. Thus, by Theorem 5.1.5, it follows that G’ is not
Cy-critical for acyclic k-colouring, which contradicts Claim 6.1.3. Thus, it follows that
[V(Co)| = 5.

Since |V (Cy)| > 5, we have by Theorem 5.3.5 that |V (G’) \ V(Cy)| < [V (Cy)| — ~ for
some b—ez > 7y > 4.84¢cz where z = 36k. Since |V (Cy)| = 3|V (So)| and |V (G")\V(Cy)| =
[V (Go)| — |V (So)], it follows that e(|V(Go)| — [V (So)|) < 3|V (So)| — . Thus, we have
that |V(Go)| < (34 ¢)|V(Sy)|/e — v/e. Since v > 4.8 and ¢ < 0.1, it follows that
[V(Go)| < 2=(]V(So)|—1). Let ¢ > 2= and now it follows that Ty is not a counterexample,
which is a contradiction. [

Proposition 6.1.8. A graph G is critical for acyclic k-colouring if and only if G is ()-
critical for acyclic k-colouring.
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Proof. If GG is critical for acyclic k-colouring, then there exists an acyclic k-colouring of
every proper subgraph H of GG, but there does not exist an acyclic k-colouring of GG. Thus,
it follows that the mosaic of () extends to a k-colouring of H for every proper subgraph H
of G, but the mosaic of () does not extend to a k-colouring of G. Thus, it follows that G
is ()-critical for acyclic k-colouring.

If G is (-critical for acyclic k-colouring, then for each proper subgraph H of G there
exists a k-mosaic of () that extends to H, but not to G. Since there is only one mosaic of
(), we have that there exists an acyclic k-colouring of H for all proper subgraphs H of G,
but there does not exist an acyclic k-colouring of GG. Thus, it follows that G is critical for
acyclic k-colouring. O

Theorem 6.1.9. The family F of graphs which are critical for acyclic k-colouring, where
k > 12, s hyperbolic.

Proof. Let k > 12 and let G be a graph that is critical for acyclic k-colouring, where GG
is embedded on a surface ¥ with Euler genus g. Let v : S! — ¥ be a closed curve that
bounds an open disk A and intersects G only in vertices. We may assume that A includes
at least one vertex of (¢; otherwise there is nothing to show. Let S be the set of vertices
of G intersected by . Let X be the set of vertices drawn in A (not including S). Let
B=G[SUX]and let A= G\ X. Notice that G = AUBand ) C Aand B# ANB=8S.
By Proposition 6.1.8, it follows that G is ()-critical for acyclic k-colouring. Thus, by the
Key Lemma 5.1.2, it follows that B is S-critical for acyclic k-colouring. Hence, by Theorem
6.1.1, we have that |V(B)| < ¢(]V(5)| —1) for some ¢ > 1 depending on k. Thus, it follows
that F is hyperbolic. O]

6.2 Strongly Hyperbolic

In this section, we show that the family of graphs which are critical for acyclic k-colouring,
where k£ > 12, is strongly hyperbolic. In order to do this, we need to redefine a few
definitions for plane graphs bounded by two cycles, rather than one. We also need two
cycle versions of several lemmas and theorems from Chapters 4 and 5.

Definition 6.2.1. Let GG be a plane graph with two cycles, C' and C’, where without loss
of generality, V(C) C int(C"). The interior of C' U C’, denoted int(C' U C"), is the set of
vertices contained in the interior of the annulus bounded by C' U C’. Let G(C U (') =
GlCuC'u int(CuC)).
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Definition 6.2.2. A bichord of a canvas I' = (G, CUC"), where C' and C” are the two cycles
that bound G, is a path P = uwvw where v € V(G) \ V(CUC’) and u # w € V(C U (")
such that disteyer(u,w) > 2. We say P is a dividing bichord if distouer (u, w) > 3 or
disteyer (v, w) = 2 and, without loss of generality, C” is drawn in the face of degree 4
induced by C'U P.

Definition 6.2.3. A bipod of a canvas I' = (G, CUC"), where C' and C” are the two cycles
that bound G, is a vertex v € V(G) \ V(C U ") such that v is in at least one bichord.

Definition 6.2.4. Let I' = (G, H) be a canvas and let v € V/(G) \ V(H). Recall Ny(v) =
N(v) N V(H) and let Ni(v) = {u € V(H) : w € N(N(v) \ Ng(v))}. Let feet(v) =
Ny (v) U NZ(v). We refer to the vertices in feet(v) as the feet of v.

Definition 6.2.5. An r-double-pod of a canvas I' = (G, H) is a vertex v € V(G) \ V(H)
where |feet(v)| = r.

Definition 6.2.6. Let v be an r-double-pod of a canvas I' = (G, H). Since feet(v) =
Ny (v) U N%(v), there exists, for each u € feet(v), a (v,u)-path P, of the form vu or
vwu where w € N(v) \ Ng(v), in G. Fix such a path P, for each u € feet(v) and let
legs(v) = {P, : u € feet(v)}. Notice that |legs(v)| = 7.

Lemma 6.2.7 (Two Cycle Extension Lemma). Let I' = (G,C U C") be a canvas where C
and C' are the cycles that bound G. Given a k-mosaic M of C, we have that M extends
to G unless there exists at least one of the following:

(i) a chord of C'UC", or
(ii) a bichord uvw of I' where ¢pr(u) = dpr(w), or
(7ii) an r-double-pod v of T where |{dn(u) : u € feet(v)}| > k — 6.

The proof of the Two Cycle Extension Lemma follows almost identically to the proof
of the Extension Lemma 4.2.1.

Corollary 6.2.8. IfI' = (G,CUC") is a canvas where C and C" are the cycles that bound
G, and |V(C)],|V(C")] = 3, and dist(C,C") > 4, we have that every k-mosaic M of C
extends to G.

Corollary 6.2.9. Let I' = (G,C U ") be a canvas where C' and C' are the cycles that
bound G, |[V(C)| = 4, |V(C")| = 3, and dist(C,C") > 4. Given a k-mosaic M of C, we
have that M extends to G, unless there ezists a bichord vvw of I' where ¢pr(u) = dar(w)

and u,w € V(C).
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Corollary 6.2.10. Let I' = (G,C U ') be a canvas where C and C' are the cycles that
bound G, |V(C)| = 4, |V(C")| = 4, and dist(C,C") > 4. Given a k-mosaic M of C, we
have that M extends to G, unless there ezists a bichord vvw of I' where ¢pr(u) = ¢dpr(w)
and either u,w € V(C) or u,w € V(C").

Lemma 6.2.11 (Two Cycle Unique Bichord Lemma). Let I' = (G,C' U (") be a canvas,
where C' and C" are the two cycles that bound G and |V (C)|, |V (C")| > 7. Let v be a bipod
of I'. If v is not in a dividing bichord, then it is in a unique bichord.

Notice that if v is not in a dividing bichord of a canvas I' = (G, C' U ("), where C' and
C" are the two cycles that bound G, then either Noyer(v) C V(C) or Neoyer(v) € V(C).
Thus, we have that Lemma 6.2.11 follows from Lemma 4.3.1.

Definition 6.2.12. Let B(I") denote the set of bipods of the canvas I' = (G, CUC"), where
C and C’ are the two cycles that bound G, that are in a unique, non-dividing bichord.

Lemma 6.2.13. Let ' = (G,CUC") be a canvas, where C' and C" are the two cycles that
bound G, and |V (C)| > 4, |V(C")| = 5. Without loss of generality, say V(C) C int(C").
Let B C B(I") and let E¢ denote the set of chords of C'UC’. The graph G[V(C' UC") U
B]\ (E(G[B]) U E¢) has exactly one interior face bounded by two cycles Cy and Cy where
[V(CyuCy)| > 9.

The proof of Lemma 6.2.13 uses Lemma 4.3.3 twice.

Definition 6.2.14. Let I' = (G,C U ') be a canvas where G is bounded by the cycles C
and C’, and |V(C)| > 4, |V(C")| > 5. Without loss of generality, let V' (C) C int(C"). Let
B C B(I') and let E¢ denote the set of chords of C' U(C’. By Lemma 6.2.13, there exists a
unique interior face of G[V(C' U C") U B] \ (E(G[B]) U E¢) bounded by two cycles Cy, Cy
where |V(Cy UCy)| > 9. Let G' = G(Cy; U Cy) and let IV = (G, Cy U Cy). We say that I
is the relazation of I' with respect to B, denoted R(I', B).

Just as in Chapter 4, we may think of a canvas and its relaxation as being different
generations. If I' is a canvas and IV = R(I', B(I')), we may think of I" as being the
generation below I'. The remaining definitions and propositions that lead up to the “Fourth
Generation” Lemma 4.3.12 have natural two cycle versions.

Lemma 6.2.15 (Two Cycle “Fourth Generation” Lemma). Let T'g = (Go, Co U CY) be a
canvas, where Cy and C{ are the cycles that bound Gy, and |V (Co)| > 4, |V(C])| > 5, and
dist(Co, C}) > 10. Let T'; = (G;,C; UCY) = R(T;_1, B(T';_1)) for each i € {1,2,3}. If all of
the following hold for alli € {0,1,2,3}:
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(i) C; UC! has no chords,
(i1) every bipod v of T'; is such that v € B(T;),
(#i) T'; has no 6-double-pod,
and a k-mosaic M of Cy U C extends to Go[V(Co U C) U B(T'y) U B(I'y) U B(T'9)], then
M extends to Gy.
The proof of Lemma 6.2.15 follows almost identically to the proof of Lemma 4.3.12.

Lemma 6.2.16 (Two Cycle General Structure Lemma). If a canvas I' = (G,C U ("),
where C and C' are the cycles that bound G, is k-critical for k > 12, then there ezists at
least one of the following:

(i) a chord of CUC", or
(ii) a bichord of ', or
(11i) a 6-double-pod of T'.
Notice that the Two Cycle General Structure Lemma 6.2.16 follows from the Two

Cycle Extension Lemma 6.2.7, just as the General Structure Lemma 5.1.4 follows from the
Extension Lemma 4.2.1.

Theorem 6.2.17. If k > 12, then there does not exist a canvas I' = (G,C' U C") where C
and C" are the cycles that bound G, |V (C)|, |V (C")| = 3, and dist(C,C") > 4 such that T’

1s k-critical.

The proof of Theorem 6.2.17 follows from Corollary 6.2.8, just as Theorem 5.1.5 follows
from Corollary 4.2.4.

Theorem 6.2.18. Let I' = (G,C U ") be a canvas, where C' and C' are the cycles that
bound G, |V(C)| =4 and |V (C")| <4, and dist(C,C") > 4. If T is k-critical where k > 12,
then |[V(G)\ V(CUC")| <2k —4 and each vertex in V(G) \ V(C UC") is a bipod v of T
where N(v) C V(C) or N(v) CV(C").

The proof of Theorem 6.2.18 is similar to the proof of Theorem 5.1.6 and uses Corollaries
6.2.9 and 6.2.10.
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Theorem 6.2.19. Let I' = (G,C U ") be a canvas, where C' and C" are the cycles that
bound G, and |V (C)|,|V(C")| < 4. IfT is k-critical where k > 12, then |V (G)\V (CUC")| <
[V(CUC)| +8+3c— for some 5 —ez > > 4.8 4 ez where z = 36k.

The proof of Theorem 6.2.19 uses a claim, similar to Claim 6.2.21 below, and Theorems
6.2.18 and 6.2.17.

Theorem 6.2.20. For each k > 12, there exists ¢ = (k) > 0 such that if a canvas
I'=(G,CyUCy) where Cy and Cy are the cycles that bound G and G is (Cy U Cy)-critical
for acyclic k-colouring and |V (Cy)| > 5, then €|V (G)\ V(C1UCy)| < |[V(Cy)|+ |[V(Cy)| +
20 4+ 9¢ — v for some 5 — ez > v > 4.8 + €z where z = 36k.

Proof Sketch. Suppose not. Let I'g = (G, Co U C}), where Gy is bounded by the cycles Cy
and C{, be a counterexample with |V (Gy)|+ |E(Go)| minimized. Thus, we have that G| is
(Co U Cf)-critical for acyclic k-colouring and at least one of |V (Cy)|, |V (C{)] is at least 5.

Claim 6.2.21. dist(Cy, C}) > 10.

Proof Sketch. Suppose, towards a contradiction, that dist(Cp, Cj) < 10. Let P = vy, vs,
..., Uy, be a path from Cy to C{ such that |V (P)| =n < 11. Since Gy is plane and P is a
(Co, Cf)-path, there are two (local) well-defined sides of P. Let Ej (Fr) denote the set of
edges incident with P on the left (right).

Let G{, be the graph obtained from G by making a copy of P, called P’, and making
the edges of Eg incident with P’ instead of P. Let P’ = v, v5, ..., v/, where v is the copy
of v, for each x € [n]. Notice that Gf, has an outer cycle, call it C.

Since Gy is (Cy U C)-critical for acyclic k-colouring, it follows that every proper sub-
graph H of Gy where (Cy U C))) C H, there exists a k-mosaic of (Cy U C) that extends
to H, but not to G. Notice that every subgraph H' of Gf corresponds to a subgraph H
of Gy (by identifying P and P’). For each subgraph H' of G{, where C' C H’'  let H be
the corresponding subgraph of G. Let M be the k-mosaic of (Cy U C}) that extends to a
k-colouring ¢y of H, but not to Gj.

Now we define a k-colouring ¢ of C. Let ¢(u) = ¢p(u) for all u € V(Co U Cf). Let
d(vy) = o (vy) and ¢(v)) = ¢u(v,) for all x € [n]. Let {P;; : i # j € [k]} be a collection
of partitions of V(G{) where each P;; is the smallest common coarsening of P;;(M) and
P;;(Mosaic[¢]) such that v,,v) are in the same part of P;; for all z € [n]. Let M be the
k-mosaic of C' defined by ¢ and {P;; : i # j € [k]}.

Subclaim 6.2.22. M- extends to H'.
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Subclaim 6.2.23. M does not extend to Gy,.

By Subclaims 6.2.22 and 6.2.23, it follows that for all proper subgraphs H' of G}, where
C C H', we can find a k-mosaic of C' which extends to H’, but not to G{. Thus, it follows
that Gy, is C-critical for acyclic k-colouring.

By Theorem 5.3.5, it follows that |V (Gj) \ V(C)| < |[V(C)| —~ for some 5 —ez > v >
4.8+¢z where z = 36k. Since |V (C)| = [V (Co)|+|V (Cy)|+20 and |V (Gg)| = |V (Go)|+11,
we have that

S(V(Go)l + 11— [V(Co U Gf)| = 20) < |V(Co U Ch)| +20 — .
Thus, it follows that
elV(Go) \ V(Co U Cy)| < [V(CoU Cy)| + 20 + 92 — .
Hence, we have that I'y is not a counterexample, which is a contradiction. O
Let I'; = (G, C;UCY) = R(I';—1, B(I';—1)) for each i € {1,2,3}. Since dist(Cy, C}) > 10,

it follows that dist(C;, C!) > 10 — 2i for each i € {1, 2, 3}.
Thus, we have that all of the following hold for all i € {1, 2, 3}:

e If G; contains a chord wv of C; U CY, then u,v € V(C;) or u,v € V(CY).
e If I'; contains a bichord uvw, then u,w € V(C;) or u,w € V(CY).

e If I'; contains a 6-double-pod v, then u € V(C;) for all u € feet(v) or u € V(CI) for
all u € feet(v).

Claim 6.2.24. G; does not contain a chord of C; U C!, for each i € {0,1,2,3}.

Proof Sketch. Suppose not. Without loss of generality, say G; contains a chord uv of C;.
Let A; be the set of ancestors of {u, v}. By Proposition 5.3.3, it follows that |A;| < |X|(i+
2)(i+1)/2 < 2(20)/2 = 20 and [A;\V(Co)| < | X|((—1)+2)((i—1)+1)/2 < 2(12)/2 = 12.

Let I'y = (G, Cy U CE) = Iy where Cj = Cy and C3 = C}. For each j = 1,...,1, let
I, = (G%,C} UC?) = R(I",_,, B) where B = B(I';_;) N A;. Without loss of generality, say
C} is the outer cycle of GI.

Let C;; and Cj2 be the cycles that bound the two inner faces of C! +uv. Let Gi; =
Gi{C; ;) for each j € {1,2}. Notice that either G;; or G, contains C?. Without loss of
generality, say C? is a cycle in G ».
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Since G} = (G} \ int(C;1)) U G;1 and (Cf U CE) C (G) \ int(Cy1)) and Gi1 # (G \
int(C;1)) N Gy, it follows by the Key Lemma 5.1.2 that G;; is C;;-critical for acyclic
k-colouring. Since G} = (G} \ int(Ci2 U C?)) UG, and (C} U C?) C (G, \ int(C;2 U C?))
and G, # (G} \ int(Cio U C?)) N G, it follows by the Key Lemma 5.1.2 that G, is
(Ci o U C?)-critical for acyclic k-colouring.

If C;; is a 3-cycle, then by Theorem 5.1.5 we have that |V(G,1) \ V(Ci1)| = 0. If
Ciq is a 4-cycle, then by Theorem 5.1.6 we have that [V (G;1) \ V(C;i1)| < k. Otherwise
[V (C;1)| > 5, and by Theorem 5.3.5 we have that |V (G;1) \ V(Ci1)| < |V(Ciq)| — v, for
some b —ez >y >4.8+¢€z.

If [V(C?)],|V(C;2)| < 4, then it follows from Theorem 6.2.19 that |V(G;2) \ V(C;2 U
CH| < |V(C;2UC?)| + 8 + 3¢ — v for some 5 — ez > v > 4.8 + e2. Otherwise, if one of
[V(Ci2)], |[V(C?)| is at least 5, then since I'g is a minimum counterexample, we have that
elV(Gi2) \V(Ci2UC?)| < |V(Ci2)|+|V(C?)|+20+ 9 — v for some 5 —ez > v > 4.8+ ¢z.

The rest of the proof follows similarly to the proof of Claim 5.3.6 and uses calculations
similar to those found in the proof of Lemma 5.2.1. In the end, we find that |V (Gy) \
V(Co U | < [V(Co)| + |V(CY)| + 20 + 9 — ~ for some 5 — ez > v > 4.8 + £z, which
contradicts the assumption that I'y is a counterexample. O

Claim 6.2.25. I'; does not contain a dividing bichord, for each i € {0,1,2,3}.
Claim 6.2.26. I'; does not contain a 6-double-pod, for each i € {0,1,2,3}.

Claim 6.2.27. I'; does not contain a non-unique, non-dividing bichord, for each i1 €
{0,1,2,3}.

The proofs of Claims 6.2.25, 6.2.26, and 6.2.27 follow similarly to the proof of Claim
6.2.24. In each proof, we start by supposing the claim is not true. Next, we define the
correct relaxation I'; of I'y. After that, I'; is divided into smaller k-critical canvases using
the bichord or double-pod that it is assumed to have. All of these canvases have one outer
cycle, except for one, in which the graph is bounded by two cycles. This is why the addition
of 20 + 9¢ does not compound in each calculation. The remainder of the proofs, including
the calculations, follow similarly to the proofs of Claims 5.3.7, 5.3.8, 5.3.9 and Lemmas
5.2.2, 5.2.3.

By Claims 6.2.25 and 6.2.27, it follows that, for all « € {0,1,2,3}, if I'; contains a
bichord uvw, then v € B(I';). For all i € {0,1,2,3}, we have that C; U C! has no chords
by Claim 6.2.24 and I'; has no 6-double-pods by Claim 6.2.26.

Claim 6.2.28. I'y does not contain a bichord.
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Proof Sketch. Let M be a k-mosaic of Cy U C{ that extends to Go[V(Cy U C}) U B(T'y) U
B(I'y) U B(I'y)]. Thus, by Lemma 6.2.15, we have that M extends to Gy. Since Gy is
(Cp U Cf)-critical for acyclic k-colouring, it follows that Gy = Go[V (Co U Cf) U B(I'y) U
B(I'1)UB(I'y)]. Hence we have that |V (Gy)| = |V (CoUC))|+|B(Lo)|+|B(Iy)|+|B(Iy)| <
3k + 1)|V(Cy U CF)|. Thus, it follows that |V (Go) \ V(Co U CH)| < 3k|V(Cy U CY)|. Let
5—¢ez >y > 4.8+ ¢cz. Since z > 15k, we have that 5 — 15ke > ~; thus, it follows that

e < 3ik—15lk Note that since £ < 1, it follows that ?%k_l%k > (. Since e < 3ik—15ik, we have

that 3ke <1 — . Also, note that since |V (Co U Cj)| > 5, we have that —M < -1
Thus,
elV(Go) \ V(Co UCyp)| < 3ke|V(CyU Cy)|
< wiou eyl - MG
< [V(Co L Co)l =,
which contradicts the assumption that I'y is a counterexample. O]

By Claims 6.2.24, 6.2.28, and 6.2.26, we have that Gy does not contain a chord of
Co U Cj and T'y does not contain a bichord or a 6-double-pod. Thus, by the converse of
the Two Cycle General Structure Lemma 6.2.16, it follows that 'y is not k-critical, which
is a contradiction. O

Theorem 6.2.29. For each k > 12, there exists ¢ > 1 such that if G is plane and S is a
non-empty independent set of G whose vertices are incident with at most two faces of G

and G is S-critical for acyclic k-colouring, then |V(G)| < c¢(|V(S)| —1).

The proof of Theorem 6.2.29 follows similarly to the proof of Theorem 6.1.1, but relies
on Theorem 6.2.20 instead of Theorem 5.3.5. Additionally, in the proof of Theorem 6.2.29,
we add vertices to create two cycles that bound the graph, rather than just one.

Theorem 6.2.30. The family F of graphs which are critical for acyclic k-colouring, where
k > 12, s strongly hyperbolic.

The proof of Theorem 6.2.30 follows similarly to the proof of Theorem 6.1.9, but relies

on Theorem 6.2.29 instead of Theorem 6.1.1.

Let us recall that we set out to prove Theorem 1.0.4, which says that, for each k£ > 12
and each surface S, there are finitely many graphs that are critical for acyclic k-colouring
that embed in S.
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Proof of Theorem 1.0.4. This follows from Theorem 6.2.30 and Theorem 2.2.1, which is
Theorem 1.3 in [15]. O

Theorem 6.2.31. For each k > 12 and each surface S, there exists a linear time algorithm
that decides whether a graph embedded in S is acyclically k-colourable.

Proof. Given k > 12 and a surface S, we have by Theorem 1.0.4 that there are finitely
many graphs that embed in S which are critical for acyclic k-colouring. Let L be a list of
these graphs and notice that L can be generated in constant time since k£ and S are fixed.
By a result from Eppstein [9], we know that subgraph testing can be done in linear time
for graphs that embed in a fixed surface. Therefore, there exists an algorithm which checks
if a graph G embedded in S contains a graph in L as a subgraph in linear time. If the
algorithm finds that G does not contain a graph in L as a subgraph, then G is acyclically
k-colourable. O
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