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Abstract

An acyclic k-colouring of a graph G is a proper k-colouring of G with no bichromatic
cycles. In 1979, Borodin proved that planar graphs are acyclically 5-colourable, an analog
of the Four Colour Theorem. Kawarabayashi and Mohar proved in 2010 that “locally”
planar graphs are acyclically 7-colourable, an analog of Thomassen’s result that “locally”
planar graphs are 5-colourable. We say that a graph G is critical for (acyclic) k-colouring if
G is not (acyclically) k-colourable, but all proper subgraphs of G are. In 1997, Thomassen
proved that for every k ≥ 5 and every surface S, there are only finitely many graphs that
embed in S that are critical for k-colouring. Here we prove the analogous result that for
all k ≥ 12 and each surface S, there are finitely many graphs embeddable on S that are
critical for acyclic k-colouring. This result implies that there exists a linear time algorithm
that, given a surface S and k ≥ 12, decides whether a graph embedded in S is acyclically
k-colourable.
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Chapter 1

Introduction

A proper colouring φ of a graph G is a map φ : V (G)→ Z such that for all e = uv ∈ E(G),
we have that φ(u) 6= φ(v). In this thesis, all colourings are proper. We say a colouring is
acyclic if there are no bichromatic cycles in the colouring. If a graph G has a k-colouring,
then we say G is k-colourable. Similarly, if a graph G has an acyclic k-colouring, then we say
G is acyclically k-colourable. The chromatic number of a graph G, denoted χ(G), is equal
to the least integer k such that G is k-colourable. Similarly, the acyclic chromatic number
of a graph G, denoted χa(G), is equal to the least integer k such that G is acyclically
k-colourable.

Acyclic colouring was introduced by Grünbaum [11] in 1973 when he proved that planar
graphs are acyclically 9-colourable and conjectured that planar graphs are acyclically 5-
colourable. This conjecture was proved in 1979 by Borodin [6] as follows.

Theorem 1.0.1 (Borodin [6]). Every planar graph is acyclically 5-colourable.

Grünbaum also showed in [11] that five colours are necessary to acyclically colour a
planar graph. Hence, the constant in Theorem 1.0.1 is best possible. Notice that Theorem
1.0.1 could be considered an acyclic analog of the Four Colour Theorem. This answers the
question of how many colours are sufficient to acyclically colour a planar graph; however,
it would be interesting to know how many colours are sufficient to acyclically colour graphs
that embed in other surfaces.

A surface is a connected, compact, 2-dimentional manifold without boundary. By the
classification theorem of surfaces, every surface S is obtained from the sphere by adding
a handles and b crosscaps. The Euler genus of S is defined as 2a + b. For colouring, we
have Heawood’s well-known theorem from 1890, which says that a graph embedded in a
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surface S with Euler genus g > 0 can be coloured with at most b(7+
√

24g + 1)/2c colours.
In 1996, Alon, Mohar, and Sanders [3] proved that a graph embedded in a surface S with
Euler genus g can be acyclically coloured with at most 100g4/7 + 10000 colours. Notice
that this result could be considered an acyclic analog of Heawood’s theorem.

Since the problem of determining the maximum chromatic and maximum acyclic chro-
matic numbers of graphs embedded in a given surface has been solved by Heawood and
Alon, Mohar, and Sanders, we look to a more modern approach to colouring graphs on
surfaces, initiated by Thomassen in the 1990’s.

Thomassen’s work in the 1990’s included the concept of “locally” planar graphs. We
will say a graph G embedded in a surface S is ρ-locally-planar if every non-contractible
cycle has length at least ρ. In 1993, Thomassen proved that there exists ρ for each surface
S such that every ρ-locally-planar graph G embedded in S is 5-colourable [17]. An analog
of this theorem for acyclic colouring was proven in 2010 by Kawarabyashi and Mohar [12],
as follows.

Theorem 1.0.2 (Kawarabyashi and Mohar, [12]). There exists ρ for each surface S such
that every ρ-locally-planar graph G embedded in S is acyclically 7-colourable.

Thomassen’s program from the 1990’s also included “critical” graphs, although this
concept, in the context of colouring, dates back to the 1950’s. We say a graph G is critical
for (acyclic) k-colouring if G is not (acyclically) k-colourable, but all proper subgraphs of G
are. In 1953, Dirac proved that for every k ≥ 7 and every surface S there are only finitely
many graphs that are critical for k-colouring that embed in S [8]. This was improved to
k ≥ 6 by Gallai in 1963 [10] and improved again in 1997 by Thomassen to k ≥ 5 [18], as
follows.

Theorem 1.0.3 (Thomassen, [18]). For every k ≥ 5 and every surface S there are only
finitely many graphs that are critical for k-colouring that embed in S.

This result actually implies Thomassen’s theorem from 1993 that there exists ρ for each
surface S such that every ρ-locally-planar graph G embedded in S is 5-colourable. Another
consequence of Theorem 1.0.3 is that for every surface S and every k ≥ 5 there exists a
linear time algorithm that decides whether a graph embedded in S is k-colourable.

Now, we are interested to know if there is an acyclic analog of Theorem 1.0.3, for
any value of k. It is not clear why an equivalent result is possible since vertices of small
degree are not as useful when acyclic colouring as they are when colouring. For example,
graphs which are critical for k-colouring do not contain vertices with degree less than k.
Unfortunately, this is not true for graphs which are critical for acyclic k-colouring. To see
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this, consider Kn, the complete graph on n vertices, with one edge subdivided once. Call
this graph G and let v be the vertex of degree 2 on the subdivided edge and let u and
w be the neighbours of v. The only way to colour G − v with n − 1 colours is to give u
and w the same colour and give all other vertices pairwise distinct colours. Now, we try
to colour v in order to get an acyclic (n − 1)-colouring of G; however, every colour for v
results in a colouring of G with a bichromatic cycle. Since every proper subgraph of G is
(n− 1)-colourable, we have that G is critical for acyclic (n− 1)-colouring.

Despite this challenge, we prove an acyclic analog of Theorem 1.0.3 in this thesis, as
follows.

Theorem 1.0.4. For every k ≥ 12 and every surface S there are only finitely many graphs
that are critical for acyclic k-colouring that embed in S.

This theorem implies that there exists ρ for each surface S such that every ρ-locally-
planar graph G embedded in S is acyclically 12-colourable, a version of Theorem 1.0.2.
Theorem 1.0.4 also implies that there exists a linear time algorithm that, given a surface
S and k ≥ 12, decides whether a graph embedded in S is acyclically k-colourable.

In Chapter 2, we start by reviewing the history of acyclic colouring and colouring
graphs on surfaces. This is followed by an explanation of how we reduce Theorem 1.0.4 to
a problem about planar graphs. Finally, we give an outline for the remainder of the thesis.
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Chapter 2

Background

2.1 History

The last 150 years has seen many results on colouring graphs on surfaces and, more recently,
on acyclic colouring. In this section, we present a brief history of colouring graphs on
surfaces and of acyclic colouring.

2.1.1 Colouring on Surfaces History

The topic of colouring graphs on surfaces arose in 1852 with Francis Guthrie’s conjecture
that all planar graphs are 4-colourable. The Four Colour Conjecture was left open for over
100 years, until it became known as the Four Colour Theorem in 1977 when Appel and
Haken offered a proof [4, 5]. Notice that since there exist planar graphs which are not
3-colourable, we have that the Four Colour Theorem is tight.

During the time when the Four Colour Conjecture was still open, some other results
about colouring graphs on surfaces surfaced, including the well-known theorem from Hea-
wood in 1890 which says that a graph embedded in a surface S with Euler genus g > 0
can be coloured with at most b(7 +

√
24g + 1)/2c colours. In 1968, Ringel and Youngs [16]

proved that this bound is tight for every surface except the Klein bottle.

As mentioned in the Introduction, the problem of determining the maximum chromatic
numbers of graphs embedded in a given surface has been solved, so at this point we turn
to Thomassen’s approach to colouring graphs on surfaces from the 1990’s. Thomassen’s
program included “locally” planar graphs and “critical” graphs. Recall that a graph G
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embedded in a surface S is ρ-locally-planar if every non-contractible cycle has length at
least ρ. Thomassen proved in 1993 that there exists ρ for each surface S such that every
ρ-locally-planar graph G embedded in S is 5-colourable [17].

Interestingly, Thomassen’s following result about critical graphs from 1997 implies the
above locally planar result. Recall that a graph G is critical for k-colouring if G is not
k-colourable, but all proper subgraphs of G are. In 1997, Thomassen [18] proved that for
every surface S there are only finitely many graphs that are critical for 5-colouring that
embed in S. This result improves upon the theorems of Dirac [8] and Gallai [10].

2.1.2 Acyclic History

In 1973, Grünbaum [11] proved that every planar graph is acyclically 9-colourable. He also
gave an example of a planar graph that can not be acyclically coloured with four colours.
This motivated his conjecture that every planar graph is acyclically 5-colourable. In 1974,
Mitchem [14] improved Grünbaum’s result by proving that every planar graph is acyclically
8-colourable. This was improved again in 1976 by Kostochka [13] who showed that every
planar graph is acyclically 6-colourable. Independently, in 1977, Albertson and Berman
[1] proved that every planar graph is acyclically 7-colourable. Grünbaum’s conjecture was
finally proved in 1979 when Borodin [6] showed that every planar graph is acyclically
5-colourable.

Acyclically colouring planar graphs is still a topic of study; more recent results focus
on planar graphs without cycles of certain lengths. However, there has also been progress
regarding acyclically colouring graphs in general. Let ∆(G) denote the maximum degree
of the graph G and let χa(G) denote the acyclic chromatic number of G. For d ∈ N, let
χa(d) = max{χa(G) : ∆(G) = d}. In 1991, Alon, McDiarmid, and Reed [2] proved the
following:

Theorem 2.1.1 (Alon, McDiarmid, and Reed; [2]). χa(d) = O(d4/3).

They also proved that there exist graphs such that χa(d) = Ω(d4/3/(log d)1/3); hence,
Theorem 2.1.1 is tight up to a factor of (log d)1/3.

In terms of acyclically colouring graph on surfaces, we have a result of Alon, Mohar,
and Sanders [3] from 1996, as mentioned in the Introduction. They proved that a graph
embedded in a surface S with Euler genus g can be acyclically coloured with at most
100g4/7 + 10000 colours. Recall that this result can be seen as an acyclic analog to Hea-
wood’s theorem. Alon, Mohar, and Sanders also showed that for g > 0 there exist graphs
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that embed in a surface with Euler genus g whose acyclic chromatic number is at least
Ω(g4/7/(log g)1/7). Thus, their bound is tight up to a factor of (log g)1/7.

Several years later, acyclic colouring joined the modern approach to colouring on sur-
faces with a result about locally planar graphs. Kawarabayashi and Mohar [12] proved
in 2010 that there exists ρ for each surface S such that every ρ-locally-planar graph G
embedded in S is acyclically 7-colourable. This result can be seen as an acyclic analog to
Thomassen’s 1993 result about locally planar graphs.

2.2 Hyperbolic Theory

This section will give a brief introduction to the hyperbolic theory developed by Postle and
Thomas [15], and will explain how their results will be applied in this thesis. We refer the
reader to [15] for all formal definitions and theorems.

We say a family F of graphs is hyperbolic if there exists a constant c > 0 such that if
G ∈ F is a graph embedded in a surface Σ, then for every closed curve γ : S1 → Σ that
bounds an open disk ∆ and intersects G only in vertices, then the number of vertices of G in
∆ is at most c(|{x ∈ S1 : γ(x) ∈ V (G)}| − 1). This definition has a natural strengthening,
as follows. We say a family F of graphs is strongly hyperbolic if F is hyperbolic and
there exists c′ > 0 such that if G ∈ F is a graph embedded in a surface Σ, then for
every two closed curves γ1, γ2 : S1 → Σ that bound an open annulus ∆ and intersect G
only in vertices, then the number of vertices of G in ∆ is at most c(|{x ∈ S1 : γ1(x) ∈
V (G) or γ2(x) ∈ V (G)}| − 1).

In [15], Postle and Thomas prove a more general version of the following theorem.

Theorem 2.2.1 (Postle and Thomas, [15]). For every strongly hyperbolic family F of
embedded graphs that is closed under curve cutting there exists a constant β > 0 such that
every graph G ∈ F embedded in a surface of Euler genus g has at most βg vertices.

Let F be the family of graphs which are critical for acyclic k-colouring, where k ≥ 12.
The goal of this thesis is to prove that |{G ∈ F : G embeds in S}| is bounded above for
each surface S. However, if we instead prove that F is strongly hyperbolic, then it follows
from Theorem 2.2.1 that |{G ∈ F : G embeds in S}| is bounded above for each surface S.
Thus, we focus the remainder of this thesis to proving that F is strongly hyperbolic.

In order to prove that F is strongly hyperbolic, we first prove that F is hyperbolic.
This is done by bounding the number of vertices in a plane graph G with outer cycle C
with respect to the number of vertices in C, where G is a subgraph of a graph G′ ∈ F .
The Main Theorem 5.3.5 of this thesis aims to establish this bound.
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2.3 Thesis Outline

The remainder of this thesis is organized as follows. The goal of Chapter 3 is to define
the key concept which will allow us to properly discuss the idea of extending an acyclic
colouring. In Section 3.1, we start by formalizing some basic definitions regarding colouring
and acyclic colouring, and present some graph notation which will be used throughout the
thesis. Section 3.2 defines a “mosaic”, which is the key concept that will allow us to
explain how acyclic colourings can be extended. Section 3.3 rounds out the chapter with
a collection of “mosaic” properties which will be used throughout later chapters.

Chapter 4 focuses on a set of extension lemmas, which will give insight into the structure
of graphs which are critical for acyclic colouring. Some preliminary definitions are given in
Section 4.1, followed by the Extension Lemma 4.2.1 in Section 4.2. Section 4.3 is dedicated
to proving the “Fourth Generation” Lemma 4.3.12.

In Chapter 5 we establish a variety of preliminary lemmas and then prove the main
result of this thesis. Section 5.1 contains the proofs of the Key Lemma 5.1.2, which uses
results from Section 3.3, and the General Structure Lemma 5.1.4, which follows almost
immediately from the Extension Lemma 4.2.1. In Section 5.2, we confirm several bounds
which are used in the proof of the Main Theorem 5.3.5, which is given in Section 5.3.

The goal of Chapter 6 is to show how the Main Theorem 5.3.5 implies that the family
of graphs which are critical for acyclic k-colouring, where k ≥ 12, is strongly hyperbolic.
Section 6.1 aims to prove that this family is hyperbolic, while Section 6.2 shows how the
hyperbolic results extend to strongly hyperbolic.
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Chapter 3

Mosaics

We begin this chapter with a section containing several basic definitions. This is followed
by a section which will define the concept of a “mosaic”. Finally, the last section in this
chapter contains some basic properties about mosaics.

In this thesis, a graph G is an ordered pair (V,E) where V is a set of vertices and E is
a set of 2-element subsets of V called edges. We write V (G) for V and E(G) for E. Also
note that in this thesis, we will always use k to denote a natural number. Furthermore,
we always use the colours [k] when k-colouring a graph, which isn’t always standard, but
it will simplify later definitions.

3.1 Initial Definitions

A colouring of a graph G is an assignment of labels to the vertices of G such that two
adjacent vertices do not receive the same label. A k-colouring of a graph G is a colouring
that uses labels from [k]. In this thesis, we will often want to refer to subgraphs of a graph
G which contain only vertices of a certain colour under some colouring of G. Specifically,
we care about subgraphs made up of vertices in two fixed colour classes.

Definition 3.1.1. Let G be a graph with a k-colouring φ. For each i 6= j ∈ [k], we
denote the graph induced on the vertices that receive colour i or j in φ by Gij(φ). That
is, Gij(φ) = G[φ−1(i) ∪ φ−1(j)].

Definition 3.1.2. Let G be a graph with a subgraph H. We say a colouring φH of H
extends to a colouring φG of G if φH(v) = φG(v) for all v ∈ V (H).
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Definition 3.1.3. Let G be a graph with a subgraph H. Let φ be a k-colouring of G. We
say that φ′ is the restriction of φ to H if φ′ is the k-colouring of H where φ′(v) = φ(v) for
all v ∈ V (H). Let φ|H denote the restriction of φ to H.

Recall that a colouring is considered acyclic if it contains no bichromatic cycles, or
equivalently the following definition.

Definition 3.1.4. An acyclic k-colouring of a graph G is a k-colouring φ where Gij(φ) is
acyclic, for all colours i 6= j ∈ [k].

The following two definitions give a formal definition of the neighbourhood and second
neighbourhood of a vertex.

Definition 3.1.5. Let G be a graph with u, v ∈ V (G). The distance between u and v,
denoted distG(u, v), is the length of a shortest path between u and v in G. If the graph is
clear, we drop the subscript and write dist(u, v).

Definition 3.1.6. Let G be a graph with v ∈ V (G). The neighbourhood of v in G, denoted
NG(v), is the set {u ∈ V (G) : dist(u, v) = 1}. The second neighbourhood of v in G, denoted
N2
G(v), is the set {u ∈ V (G) : dist(u, v) = 2}. Note that if the graph is clear from context,

we drop the subscript and write N(v) or N2(v).

We also define the neighbourhood of a set of vertices.

Definition 3.1.7. Let G be a graph with X ⊆ V (G). The neighbourhood of X in G,
denoted NG(X), is the set {u : u ∈ N(v) where v ∈ X} \X.

The following definitions formally describe some relavent graph operations.

Definition 3.1.8. Let G be a graph with subgraphs A and B. The graph A∪B has vertex
set V (A)∪V (B) and edge set E(A)∪E(B). The graph A∩B has vertex set V (A)∩V (B)
and edge set E(A) ∩ E(B).

Definition 3.1.9. Let G be a graph with a subgraph A. The graph G induced on A,
denoted G[A], has vertex set V (A) and edge set {e = uv : u, v ∈ V (A)}. Note that
G[V (A)] = G[A].

Definition 3.1.10. Let G be a graph with a subgraph A. The graph G \A has vertex set
V (G) \ V (A) and edge set E(G[V (G) \ V (A)]). Note that G \ V (A) = G \ A.
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Although this thesis does not address the acyclic list colouring version of our acyclic
colouring problem, we do use list colouring in the proof of the Extension Lemma 4.2.1.
Thus, we define list colouring as follows.

Definition 3.1.11. Let G be a graph. A list-assignment L is a collection of lists (L(v) ⊆
Z+ : v ∈ V (G)) where L(v) is non-empty for each v ∈ V (G). The list-assignment L is
a k-list-assignment if |L(v)| ≥ k for all v ∈ V (G). An L-colouring is a colouring φ of
G such that φ(v) ∈ L(v) for all v ∈ V (G). We say G is k-list-colourable if, for every
k-list-assignment L of G, G has an L-colouring.

Definition 3.1.12. Let G be a graph. An acyclic L-colouring of G is an acyclic colouring
φ such that φ(v) ∈ L(v) for all v ∈ V (G). We say G is acyclic k-list-colourable if, for every
k-list-assignment L of G, G has an acyclic L-colouring.

3.2 Mosaic Motivation and Definitions

In this section, we define the concept of a “mosaic” and describe how mosaics are used to
extend acyclic colourings.

We begin with the following definition, which will be used in the definition of a mosaic.

Definition 3.2.1. Let G be a graph and let P ,P ′ be partitions of V (G). We say that P
is a refinement of P ′ if, for each pair u, v ∈ V (G) that are in the same part of P , we have
that u, v are in the same part of P ′. Let H be a subgraph of G and let PH be a partition
of V (H). We say that PH is a refinement of P if, for each pair u, v ∈ V (H) that are in
the same part of PH , we have that u, v are in the same part of P .

Observe that if P is a refinement of P ′, which in turn is a refinement of P ′′, then P is
a refinement of P ′′. That is, refinements are transitive.

Let us now define mosaic, as follows.

Definition 3.2.2. A k-mosaic M of a graph G is an ordered pair (φ, {Pij : i 6= j ∈ [k]})
where φ is an acyclic k-colouring of G and each Pij is a partition of V (Gij(φ(M)) such
that the partition whose parts are the connected components of Gij(φ) is a refinement of
Pij. That is, if u, v ∈ V (G) are in a path in Gij(φ), then u and v are in the same part of
Pij. We write φ(M) or φM for φ and Pij(M) for Pij.

Let F be the family of graphs which are critical for acyclic k-colouring, where k ≥ 12.
Recall that in order to prove the main result, we want to bound the number of vertices in a
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plane graph G with outer cycle C with respect to the number of vertices in C, where G is
a subgraph of a graph G′ ∈ F . In the colouring version of this problem, we can determine
if a colouring φ of G′ \ (G\C) extends to G′ by determining if the colouring φ|C extends to
G. Unfortunately, this reduction does not work for acyclic colouring: We may extend φ|C
to an acyclic colouring φG of G, but the colouring φG ∪ φ of G′ is not necessarily acyclic.
This motivates the definition of a mosaic, which is composed of an acyclic colouring and
a collection of partitions. The partitions can be used to keep track of paths in G′ij(φ) for
each i 6= j ∈ [k].

Now that we have the concept of a mosaic formalized, we aim to define precisely what
the extension of a mosaic is. This is done using multigraphs, which are defined as follows.

Definition 3.2.3. A multigraph H is an ordered pair (V,E) where V is a non-empty set
of vertices and E is a multiset of 2-element subsets of V called edges. Two or more edges
that have the same endpoints are called parallel edges. If e = uv ∈ E where u = v,
then e is called a loop. The underlying graph of a multigraph H is the graph G for which
V (G) = V (H) and uv ∈ E(G) if u and v are joined by at least one edge in H.

Note that a multigraph that does not have parallel edges or loops is a graph.

Definition 3.2.4. A cycle in a multigraph H is a loop or a closed walk v1e1v2e2 . . . vnenv1
where n ≥ 2, the vertices v1, . . . , vn are pairwise distinct, the edges e1, . . . , en are pairwise
distinct, and, for all i ∈ [n], the ends of ei are vi and vi+1(mod n). Note that if n = 2 then
the cycle is a pair of parallel edges.

Definition 3.2.5. A multigraph is acyclic if it contains no cycles.

Note that an acyclic multigraph does not contain loops or parallel edges; thus, acyclic
multigraphs are graphs.

The following two definitions define the multigraph which will be used in the definitions
of mosaic extension.

Definition 3.2.6. Let G be a graph and let u, v ∈ V (G). If u and v are identified to
a vertex w, then the resulting graph has vertex set {w} ∪ V (G) \ {u, v} and edge set
{e = wx : yx ∈ E(G) where y ∈ {u, v}} ∪ (E(G) \ {e = yx : y ∈ {u, v}}).

Definition 3.2.7. Let G be a graph with a k-colouring φ and let H be a subgraph of
G with a k-mosaic MH . Let i 6= j ∈ [k]. Let the (i, j)-fusion of MH in φ, denoted

G̃ij(φ,MH), be the multigraph obtained from Gij(φ) by deleting the edges in E(H) and,

for each part R ∈ Pij(MH), identifying the vertices of R to a vertex R̃. Let P̃ij(MH) denote
the independent set that results from identifying the parts of Pij(MH).
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There is a natural mapping from vertices and edges in G to vertices and edges in
G̃ij(φ,MH). Each v ∈ V (G) is mapped to a vertex ṽ ∈ V (G̃ij(φ,MH)). If ṽ = R̃ ∈
P̃ij(MH), then v ∈ R ∈ Pij(MH). If ṽ /∈ P̃ij(MH), then we sometimes refer to ṽ as v

for convenience. Each e ∈ E(G) \ E(H) is mapped to an edge ẽ ∈ E(G̃ij(φ,MH)). We
sometimes refer to ẽ as e for convenience.

Notice that G̃ij(φ,MH) is a multigraph since we do not remove multiple edges or loops.
Now, we are prepared to define the extension of a mosaic.

Definition 3.2.8. Let G be a graph with a subgraph H. A k-mosaic MH of H extends to
a k-colouring φ of G if all of the following hold:

1. φ|H = φ(MH), and

2. G̃ij(φ,MH) is acyclic, for all i 6= j ∈ [k].

Definition 3.2.9. Let G be a graph with a subgraph H. A k-mosaic MH of H extends to
a k-mosaic MG of G if all of the following hold:

1. φ(MG)|H = φ(MH),

2. Pij(MH) is a refinement of Pij(MG), for all i 6= j ∈ [k], and

3. G̃ij(φ(MG),MH) is acyclic, for all i 6= j ∈ [k].

3.3 Mosaic Properties

In this section, we establish some properties of mosaics which will be used throughout the
remainder of the thesis. First, we establish that mosaic extension is transitive.

Proposition 3.3.1. Let M , M ′, and M ′′ be k-mosaics of H, H ′, and H ′′, respectively,
where H ⊆ H ′ ⊆ H ′′. If M ′′ is an extension of M ′ and M ′ is an extension of M , then M ′′

is an extension of M .

Proof. To prove that M ′′ is an extension of M we prove, by Definition 3.2.9, that all of the
following hold:

1. φ(M ′′)|H = φ(M),
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2. for all i 6= j ∈ [k], Pij(M) is a refinement of Pij(M ′′), and

3. for all i 6= j ∈ [k], H̃ ′′ij(φ(M ′′),M) is acyclic.

By Definition 3.2.9, φ(M ′′)|H′ = φ(M ′) and φ(M ′)|H = φ(M). Therefore, φ(M ′′)|H =
φ(M) and we have that (1) holds. Since Pij(M) is a refinement of Pij(M ′), which itself is a
refinement of Pij(M ′′), it follows that Pij(M) is a refinement of Pij(M ′′) for all i 6= j ∈ [k].
Thus, we have that (2) holds.

It remains to prove that (3) holds. Suppose not; that is, suppose H̃ ′′ij(φ(M ′′),M)

is not acyclic for some i 6= j ∈ [k]. Let C be a cycle in H̃ ′′ij(φ(M ′′),M). Notice that

H̃ ′ij(φ(M ′),M) is a subgraph of H̃ ′′ij(φ(M ′′),M). Since H̃ ′ij(φ(M ′),M) is acyclic, there

exists at least one edge e = wz ∈ E(C) such that e is in H̃ ′′ij(φ(M ′′),M), but not in

H̃ ′ij(φ(M ′),M). Let C ′ be the subgraph of H̃ ′′ij(φ(M ′′),M ′) that results from identifying

the components of C ∩ H̃ ′ij(φ(M ′),M). Each component of C ∩ H̃ ′ij(φ(M ′),M) is incident

with at least two edges whose images are in H̃ ′′ij(φ(M ′′),M ′). Hence, each vertex R̃ ∈
P̃ij(M ′) has degree at least 2 in H̃ ′′ij(φ(M ′′),M ′). Let v be a vertex in H̃ ′′ij(φ(M ′′),M ′) \
P̃ij(M ′). Since v has degree at least 2 in H̃ ′′ij(φ(M ′′),M) and the images of all edges

incident with v in H̃ ′′ij(φ(M ′′),M) are in H̃ ′′ij(φ(M ′′),M ′), it follows that v has degree at

least 2 in H̃ ′′ij(φ(M ′′),M ′). Thus, we have that all vertices in C ′ have degree at least 2.

Hence, it follows that C ′ contains a cycle. Since C ′ is a subgraph of H̃ ′′ij(φ(M ′′),M ′), we

have that H̃ ′′ij(φ(M ′′),M ′) is not acyclic, which implies that M ′ does not extend to M ′′,
a contradiction.

Now conditions (1), (2), and (3) hold; thus, by Definition 3.2.9, it follows that M
extends to M ′′.

Proposition 3.3.2. Let G be a graph with a subgraph H. If a k-colouring φ of G is an
extension of a k-mosaic MH of H, then φ is acyclic.

Proof. Suppose, towards a contradiction, that φ is not an acyclic k-colouring of G. Thus,
there exists a cycle C in Gij(φ). If E(C) ⊆ E(G) \E(H), then C is a cycle in G̃ij(φ,MH);
hence, by Definition 3.2.8(2), we have that MH does not extend to φ, which is a contra-
diction. If E(C) ⊆ E(H), then C is a cycle in Hij(φ(MH)); hence, we have that φ(MH) is
not acyclic, which is a contradiction. Therefore, there exist edges e, f ∈ E(C) such that
e ∈ E(G) \ E(H) and f ∈ E(H).

Let C ′ be the subgraph of G̃ij(φ,MH) that results from identifying the components of
C ∩ H. Each component of C ∩ H is incident with at least two edges in Gij(φ) \ E(H);
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thus, each R̃ ∈ P̃ij(MH) is incident with at least two edges in G̃ij(φ,MH). Each vertex in
C ∩ (G \H) is incident with at least two edges in Gij(φ) \ E(H) and the images of these

edges are in G̃ij(φ,MH); thus, each ṽ ∈ V (G̃ij(φ,MH)) \ P̃ij(MH) has degree at least two.
Hence, all vertices in C ′ have degree at least two and it follows that C ′ contains a cycle.
Since C ′ is a subgraph of G̃ij(φ,MH), we have that G̃ij(φ,MH) is not acyclic. Thus, by
Definition 3.2.8, it follows that MH does not extend to φ, which is a contradiction.

Definition 3.3.3. If G is a graph and φ is an acyclic k-colouring of G, then the k-mosaic
M induced by φ is the mosaic where φ(M) = φ and Pij(M) is the partition of V (Gij(φ))
whose parts are the components of Gij(φ), for each i 6= j ∈ [k]. Let Mosaic[φ] denote the
mosaic induced by the colouring φ.

Proposition 3.3.4. Let G be a graph. If M is a k-mosaic of G, then Mosaic[φ(M)]
extends to M .

Proof. Let M ′ = Mosaic[φ(M)]. Since φ(M) = φ(M ′), we have that φ(M)|G = φ(M ′). By
Definition 3.2.2, it follows that Pij(M ′) is a refinement of Pij(M) for all i 6= j ∈ [k]. Since

both M and M ′ are mosaics of G, we have that G̃ij(φ(M),M ′) is an independent set; thus

G̃ij(φ(M),M ′) is acyclic. Therefore, by Definition 3.2.9(1), (2), and (3), it follows that M ′

extends to M .

Definition 3.3.5. Let G be a graph and let M and M ′ be two k-mosaics of G such that
φ(M) = φ(M ′). The smallest common coarsening of Pij(M) and Pij(M ′) is the collection
{Pij : i 6= j ∈ [k]} such that for all i 6= j ∈ [k]: |Pij| is maximum; and for all u, v that are
in the same part of Pij(M) or Pij(M ′), we have that u, v are in the same part of Pij. That
is, Pij(M) is a refinement of Pij and Pij(M ′) is a refinement of Pij, for all i 6= j ∈ [k].

Definition 3.3.6. Let G be a graph with a subgraph H. Let M be a k-mosaic of H that
extends to a k-colouring φ of G. We say the k-mosaic M ′ of G is the induced extension
of M via φ if φ(M ′) = φ and Pij(M ′) is the smallest common coarsening of Pij(M) and
Pij(Mosaic[φ]), for all i 6= j ∈ [k]. Let Mosaic[φ,M ] denote the induced extension of M
via φ.

Proposition 3.3.7. Let G be a graph with a subgraph H. If a k-mosaic M of H extends
to a k-colouring φ of G, then M extends to Mosaic[φ,M ].

Proof. Let M ′ = Mosaic[φ,M ]. Since M extends to φ, it follows that φ(M ′)|H = φ|H =
φ(M). By Definition 3.3.6, we have that Pij(M) is a refinement of Pij(M ′), for all i 6= j ∈
[k]. Since M extends to φ, we have that G̃ij(φ,M) is acyclic, for all i 6= j ∈ [k]; hence,

it follows that G̃ij(φ(M ′),M) is acyclic, for all i 6= j ∈ [k]. Thus, by Definition 3.2.9, we
have that M extends to M ′.
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Proposition 3.3.8. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
Mosaic[φ,M ] exists for some k-colouring φ of G, then M extends to a k-mosaic of G.

Proof. By Definition 3.3.6, φ is an extension of M . By Proposition 3.3.7, it follows that M
extends to Mosaic[φ,M ]. Since Mosaic[φ,M ] is a k-mosaic of G, it follows that M extends
to a k-mosaic G.

Proposition 3.3.9. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
M extends to a k-mosaic MG of G, then there exists a k-colouring φ of G such that M
extends to φ.

Proof. Since M extends to MG, we have that φ(MG)|H = φ(M) and G̃ij(φ(MG),M) is
acyclic for all i 6= j ∈ [k]. Thus, by Definition 3.2.8, it follows thatM extends to φ(MG).

Let G be a graph with a subgraph H. We say that a k-mosaic M of H extends to G if
M extends to a k-colouring or a k-mosaic of G.

Corollary 3.3.10. Let G be a graph with a subgraph H. Let M be a k-mosaic of H. If
M extends to G, then Mosaic[φ,M ] exists for some acyclic k-colouring φ of G.

Proof. The result follows from Proposition 3.3.7.

Proposition 3.3.11. Let G be a graph with a k-mosaic MG. Let G′ be a subgraph of
G and let H be a subgraph of G′ with a k-mosaic MH . If MH extends to MG, then
Mosaic[φ(MG)|G′ ,MH ] extends to MG.

Proof. Suppose not. Let M = Mosaic[φ(MG)|G′ ,MH ]. M is a k-mosaic of G′ whose acyclic
k-colouring is defined to be φ(MG)|G′ . Since every component of G′ij(φ(M)) is contained
in a component of Gij(φ(MG)), we have that Pij(M) is a refinement of Pij(MG). Thus,
Definition 3.2.9(1) and (2) hold for M extending to MG. Since MG is not an extension of

M , it now follows by Definition 3.2.9(3) that there exists a cycle C in G̃ij(φ(MG),M), for
some i 6= j ∈ [k].

Let {R̃1, . . . , R̃p} be the set of vertices of P̃ij(M) that are in V (C). Note that p ≥ 1

since φ(MG) is acyclic. Since P̃ij(M) is an independent set, R̃q is incident with two edges

ẽq, f̃q whose preimages eq, fq are in E(G) \ E(G′), for each q ∈ {1, . . . , p}. Thus, for each
q ∈ {1, . . . , p}, we have that eq is incident with some vertex xq ∈ V (G′) and fq is incident
with some vertex yq ∈ V (G′) such that xq, yq are in the same part Rq ∈ Pij(M). Let x̃q, ỹq
be the images of xq and yq in G̃′ij(φ(M),MH) for each q ∈ {1, . . . , p}.
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Claim 3.3.12. There exists an x̃q, ỹq-path Pq in G̃′ij(φ(M),MH), for each q ∈ {1, . . . , p}.

Proof. Suppose not. Thus, it follows that G̃′ij(φ(M),MH) is not connected. If two vertices

u, v are in the same component of G̃′ij(φ(M),MH), then it follows that u, v are in the same
part of Pij(M). Suppose the vertices of two components X and Y are in the same part R of
Pij(M). Let RX = R∩V (X) and RY = R∩V (Y ). Let Pij = (Pij(M) \ {R})∪{RX , RY }.
If u, v are in the same part of Pij(MH), then u, v are identified to the same vertex in

G̃′ij(φ(M),MH); thus, u, v are in the same part of Pij. If u, v are in the same part of
Pij(Mosaic[φ(M)]), then there is a u, v-path in G′ij(φ(M)); hence, there is a u, v-path in

G̃′ij(φ(M),MH), which implies that u, v are in the same part in Pij. Therefore, since
|Pij| > |Pij(M)|, it follows that Pij(M) is not the smallest common coarsening of Pij(MH)
and Pij(Mosaic[φ(M)]), which is a contradiction.

Since G̃′ij(φ(M),MH) is a subgraph of G̃ij(φ(MG),MH), it follows that Pq is a path

in G̃ij(φ(MG),MH), for each q ∈ {1, . . . , p}. Thus, G[(V (C) \ V (P̃ij(M))) ∪ V (P1) ∪
· · · ∪ V (Pp)] is a subgraph of G̃ij(φ(MG),MH) where each vertex has degree at least 2.

Hence, this subgraph contains a cycle, which implies that G̃ij(φ(MG),MH) is not acyclic,
a contradiction.

Proposition 3.3.13. Let G be a graph with a subgraph H. If an acyclic k-colouring φ of
H extends to an acyclic k-colouring φ′ of G, then Mosaic[φ] extends to Mosaic[φ′].

Proof. Let M = Mosaic[φ] and M ′ = Mosaic[φ′] and suppose, towards a contradiction, that
M does not extend toM ′. Since φ extends to φ′, it follows that φ(M ′)|H = φ′|H = φ = φ(M).

Since H is a subgraph of G, it follows that Hij(φ) is a subgraph of Gij(φ
′), for all i 6= j ∈ [k].

Thus, if two vertices u, v ∈ V (H) are in the same component of Hij(φ), then u and v are
in the same component of Gij(φ

′). Hence, we have that Pij(M) is a refinement of Pij(M ′).
Thus, Definition 3.2.9(1) and (2) hold for M extending to M ′.

Since M does not extend to M ′, it now follows by Definition 3.2.9(3) that there exists

a cycle C in G̃ij(φ(M ′),M) for some i 6= j ∈ [k]. Let {R̃1, . . . , R̃p} be the set of vertices

of P̃ij(M) that are in V (C). Since P̃ij(M) is an independent set, R̃q is incident with

two edges ẽq, f̃q ∈ V (C) such that their preimages eq, fq are in E(G) \ E(H), for each
q ∈ {1, . . . , p}. Thus, for each q ∈ {1, . . . , p}, we have that eq is incident with some vertex
xq ∈ V (H) and fq is incident with some vertex yq ∈ V (H) such that xq, yq are in the same
part Rq ∈ Pij(M). Since M is the mosaic induced by φ, it follows that there exists an
xq, yq-path Pq in Hij(φ(M)), for each q ∈ {1, . . . , p}.
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Since Hij(φ(M)) is a subgraph of Gij(φ(M ′)), it follows that Pq is a path in Gij(φ(M ′)),
for each q ∈ {1, . . . , p}. Let C ′ = C ∩ (G \H) + e1P1f1 + · · ·+ epPpfp. Since vertices that
are in the same component of Gij(φ(M ′)) are in the same part of Pij(M ′) and the parts of
Pij(M ′) are disjoint, it follows that two distinct paths in {Pq : q ∈ {1, . . . , p}} are disjoint.
Thus, we have that C ′ is a cycle in Gij(φ(M ′)). Since Gij(φ(M ′)) is not acyclic, it follows
that φ(M ′) = φ′ is not an acyclic k-colouring, a contradiction.

Definition 3.3.14. Let G be a graph with a k-mosaic M and let H be a subgraph of
G. We say a k-mosaic M ′ is the restriction of M to H if φ(M ′) = φ(M)|H and, for all
i 6= j ∈ [k], Pij(M ′) = {P ∩ V (H) : P ∈ Pij(M)}.

Proposition 3.3.15. Let G be a graph with a k-mosaic M . Let G′ be a subgraph of G with
a k-mosaic M ′ such that M ′ extends to M . If H is a subgraph of G, then the restriction
of M ′ to H ∩G′ extends to the restriction of M to H.

Proof. Let M ′
H be the restriction of M ′ to H ∩ G′ and let MH be the restriction of M to

H. Notice that φ(M ′
H) = φ(M ′)|(H∩G′) and φ(MH) = φ(M)|H .

Suppose M ′
H does not extend to MH . Since M ′ extends to M , it follows that φ(M)|G′ =

φ(M ′); thus, we have that φ(MH)|G′ = (φ(M)|H)|G′ = φ(M)|(G′∩H) = (φ(M)|G′)|(H∩G′) =
φ(M ′)|(H∩G′) = φ(M ′

H). Hence, Definition 3.2.9(1) holds for M ′
H extending to MH .

Since M ′ extends to M , it follows that Pij(M ′) is a refinement of Pij(M). By Definition
3.3.14, we have that Pij(M ′

H) = {P∩V (H∩G′) : P ∈ Pij(M ′)} and Pij(MH) = {P∩V (H) :
P ∈ Pij(M)}. Thus, Pij(M ′

H) is a refinement of Pij(MH). Hence, Definition 3.2.9(2) holds
for M ′

H extending to MH .

Since M ′
H does not extend to MH , it now follows by Definition 3.2.9(3) that there exists

a cycle C in H̃ij(φ(MH),M ′
H) for some i 6= j ∈ [k]. Let {R̃1, . . . , R̃p} be the set of vertices

of P̃ij(M ′
H) that are in V (C). Notice that V (C)\{R̃1, . . . , R̃p} is a subset of V (G)\V (G′).

By definition of Pij(M ′
H), it follows that Rq is a subset of some part R′q of Pij(M ′),

for all q ∈ {1, . . . , p}. Hence, if a vertex v is adjacent to R̃q in H̃ij(φ(MH),M ′
H) for some

q ∈ {1, . . . , p}, then v is adjacent to R̃′q in G̃ij(φ(M),M ′). Thus, (V (C) \ {R̃1, . . . , R̃p}) ∪
{R̃′1, . . . , R̃′p} induces a cycle in G̃ij(φ(M),M ′). Hence, G̃ij(φ(M),M ′) is not acyclic.
Thus, M ′ does not extend to M , a contradiction.

Proposition 3.3.16. Let G be a graph with subgraphs A and B such that G = A∪B. Let
MA be a k-mosaic of A and let MA∩B be the restriction of MA to A∩B. If MA∩B extends
to B, then MA extends to G.
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Proof. Since MA∩B extends to B, it follows from Proposition 3.3.9 that there exists an
acyclic k-colouring φB of B such that MA∩B extends to φB. By Definition 3.2.8(1), we have
that (φB)|(A∩B) = φ(MA∩B). By Definition 3.3.14, we have that φ(MA∩B) = φ(MA)|(A∩B).
Hence, (φB)|(A∩B) = φ(MA)|(A∩B). Therefore, φ(MA) ∪ φB is a well-defined k-colouring of
G. Let φ = φ(MA) ∪ φB.

Claim 3.3.17. MA extends to φ.

Proof. Suppose, towards a contradiction, that MA does not extend to φ. Since φ|A =
φ(MA), it follows that Definition 3.2.8(1) holds for MA extending to φ. Since MA does not

extend to φ, it follows by Definition 3.2.8(2) that G̃ij(φ,MA) contains a cycle C for some

i 6= j ∈ [k]. Since φB is acyclic, it follows that C contains at least one vertex R̃ ∈ P̃ij(MA).

Let {R̃1, . . . , R̃p} be the set of vertices of P̃ij(MA) that are in V (C). Since Pij(MA∩B) =
{P ∩V (A∩B) : P ∈ Pij(MA)}, it follows that some part R′q of Pij(MA∩B) is a subset of Rq

for all q ∈ {1, . . . , p}. Notice that R̃′1, . . . , R̃
′
p are vertices in B̃ij(φB,MA∩B). Additionally,

notice that V (C) ∩ V (G \ A) is a subset of V (B̃ij(φB,MA∩B)).

Let e be an edge in G̃ij(φ,MA). By definition, the preimage of e is in E(B). Thus,

both endpoints of e are in V (B). Hence, it follows that e is an edge in B̃ij(φB,MA∩B).

Thus, we have that (V (C)\{R̃1, . . . , R̃p})∪{R̃′1, . . . , R̃′p} induces a cycle in B̃ij(φB,MA∩B).

Since B̃ij(φB,MA∩B) is not acyclic, it follows from Definition 3.2.8(2) that MA∩B does not
extend to φB, which is a contradiction.

Since MA extends to φ by Claim 3.3.17, it follows that MA extends to G.
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Chapter 4

Canvases

In this chapter, we prove a collection of extension lemmas. These lemmas will be used in
Chapter 5 to better understand the structure of graphs which are critical for acyclic k-
colouring. Speficially, we aim to identify the structure of plane subgraphs of graphs which
are critical for acyclic k-colouring. Therefore, the extension lemmas in this chapter deal
with plane graphs.

4.1 Canvas Motivation and Definitions

In this short section, we establish a few definitions which will be used in the extension
lemmas of this chapter.

Definition 4.1.1. Let G be a plane graph with a cycle C. The interior of C, denoted
int(C), is the set of vertices contained in the interior of the disk bounded by C. Let
G〈C〉 = G[C ∪ int(C)].

Since most results in this chapter and in Chapter 5 deal with a graph G and a connected
subgraph H, we find it convenient to define the pair of a graph and a subgraph, as follows.

Definition 4.1.2. A canvas Γ = (G,H) is a plane graph G and a connected subgraph H
of G.

The following structure definitions are needed for the extension lemmas.
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Definition 4.1.3. A bichord of a canvas Γ = (G,C), where C is the outer cycle of G, is a
path P = uvw where v ∈ V (G) \ V (C) and u 6= w ∈ V (C) such that distC(u,w) ≥ 2. We
say P is a dividing bichord if distC(u,w) ≥ 3.

Definition 4.1.4. A bipod of a canvas Γ = (G,C), where C is the outer cycle of G, is a
vertex v ∈ V (G) \ V (C) such that v is in at least one bichord.

Definition 4.1.5. Let Γ = (G,C) be a canvas where C is the outer cycle of G and let

v ∈ V (G) \ V (C). Recall NC(v) = N(v) ∩ V (C) and let Ñ2
C(v) = {u ∈ V (C) : u ∈

N(N(v) \NC(v))}. Let feet(v) = NC(v)∪ Ñ2
C(v). We refer to the vertices in feet(v) as the

feet of v.

Definition 4.1.6. An r-double-pod of a canvas Γ = (G,C), where C is the outer cycle of
G, is a vertex v ∈ V (G) \ V (C) where |feet(v)| = r.

Definition 4.1.7. Let v be an r-double-pod of a canvas Γ = (G,C) where C is the outer

cycle of G. Since feet(v) = NC(v) ∪ Ñ2
C(v), there exists, for each u ∈ feet(v), a (v, u)-path

Pu of the form vu or vwu where w ∈ N(v) \ NC(v), in G. Fix such a path Pu for each
u ∈ feet(v) and let legs(v) = {Pu : u ∈ feet(v)}. Notice that |legs(v)| = r.

4.2 Extension Lemmas

In this section, we prove the Extension Lemma 4.2.1 and deduce two corollaries from it.

Lemma 4.2.1 (Extension Lemma). Given a canvas Γ = (G,C), where C is the outer
cycle of G, and a k-mosaic M of C, we have that M extends to G unless there exists at
least one of the following:

(i) a chord uv of C, or

(ii) a bichord uvw of Γ where φM(u) = φM(w), or

(iii) an r-double-pod v of Γ where |{φM(u) : u ∈ feet(v)}| ≥ k − 6.

Proof. Suppose, towards a contradiction, that there does not exist:

(i) a chord uv of C, or

(ii) a bichord uvw of Γ where φM(u) = φM(w), or
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(iii) an r-double-pod v of Γ where |{φM(u) : u ∈ feet(v)}| ≥ k − 6,

and M does not extend to G. Let L be a k-list-assignment of G such that, for each vertex
v ∈ V (G)\V (C), L(v) = [k]\{φM(u) : u ∈ feet(v)}.

Since (iii) does not exist, it follows that |L(v)| ≥ k − |{φM(u) : u ∈ feet(v)}| ≥
k− (k− 7) = 7, and we have that there exists an acyclic L-colouring φ′ of V (G)\V (C) by
[7]. Since the two k-colourings φ′ and φ(M) are disjoint, it follows that φ′ ∪ φ(M) defines
a k-colouring of G. Let φ′′ = φ′ ∪ φ(M).

Claim 4.2.2. The colouring φ′′ is an acyclic k-colouring of G.

Proof. Suppose, towards a contradiction, that φ′′ is not acyclic. That is, there exists a
cycle C ′ in Gij(φ

′′) for some i 6= j ∈ [k]. Since φ′ and φ(M) are both acyclic, we have that
C ′ contains both a vertex in C and a vertex in V (G)\V (C). Thus, there exists an edge
e = uv ∈ E(C ′) where v ∈ V (G)\V (C) and u ∈ V (C). Let w 6= u be the vertex such that
wv ∈ E(C ′). Notice that φM(u) = φ′′(w). This implies that u is not adjacent to w. If
w ∈ V (C), then uvw is a bichord of Γ where φM(u) = φM(w), which is a contradiction.
Thus, w /∈ V (C). Therefore, by the definition of L, we have that φM(u) /∈ L(w) and thus,
φ′(w) 6= φM(u). Since φ′(w) = φ′′(w) = φ′′(u) = φM(u), we have a contradiction.

Let {Pij : i 6= j ∈ [k]} be a collection of partitions of V (G) such that each Pij is the
smallest common coarsening of Pij(M) and Pij(Mosaic[φ′′]).

Claim 4.2.3. The partition whose parts are the connected components of Gij(φ
′′) is a

refinement of Pij, for each i 6= j ∈ [k].

Proof. For each i 6= j ∈ [k], the partition Pij(Mosaic[φ′′]) is exactly the partition whose
parts are the connected components of Gij(φ

′′), by Definition 3.3.3. By Definition 3.3.5,
each Pij(Mosaic[φ′′]) is a refinement of Pij.

By Claims 4.2.2 and 4.2.3, it follows that φ′′ and {Pij : i 6= j ∈ [k]} define a k-mosaic
of G. Let M ′ denote this k-mosaic.

Since φ(M ′) = φ′′ = φ(M)∪φ′, it follows that φ(M ′)|C = φ(M); thus, Definition 3.2.9(1)
holds for M extending to M ′. Since Pij(M ′) = Pij is the smallest common coarsening of
Pij(M) and Pij(Mosaic[φ′′]), it follows from Definition 3.3.5 that Pij(M) is a refinement
of Pij(M ′), for all i 6= j ∈ [k]. Hence, Definition 3.2.9(2) holds for M extending to M ′.

Since M does not extend to G, it follows that M does not extend to M ′ and, thus, by
Definition 3.2.9(3), we have that G̃ij(φ(M ′),M) contains a cycle C ′ for some i 6= j ∈ [k].
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Since P̃ij(M) is an independent set, there exists at least one path P that is a subgraph of

C ′ with end points R̃1, R̃2 ∈ P̃ij(M) where E(P ) ⊆ E(G) \ E(C) and V (P ) \ {R̃1, R̃2} ⊆
V (G) \ V (C). Note that R̃1, R̃2 are not necessarily distinct. If P is a single edge e, then e
is an edge not in C that is incident with two vertices of C; that is, e is a chord of C. Since
C has no chords by (i), it follows that P has length at least 2.

If P has length exactly 2, then P = R̃1vR̃2 for some v ∈ V (G) \ V (C). Thus, v is
adjacent (in G) to x, y ∈ V (C). Since G is simple, x 6= y; hence, xvy is a bichord of Γ
where φM(x) = φM(y), contradicting (ii). Therefore, P has length at least 3.

Let P = R̃1v1v2 . . . v`R̃2. Since v1 is adjacent to R̃1 in P , it follows that v1 is adjacent
(in G) to some vertex x ∈ V (C) where x is in the part R1 ∈ Pij(M). Since C ′ is a subgraph

of G̃ij(φ(M ′),M) and distC′(x, v2) = 2, we have that φM ′(x) = φM ′(v2). However, since v2
is in the second neighbourhood of x, it follows by the definition of L that φM(x) /∈ L(v2).
Thus, we have that φM ′(x) = φM(x) 6= φ′(v2) = φM ′(v2), which is a contradiction.

Corollary 4.2.4. If G is a plane graph with outer cycle C where C is a triangle and
k ≥ 10, then every k-mosaic of C extends to G.

Proof. Let Γ = (G,C) be a canvas. Notice that C is the outer cycle of G. Let M be a
k-mosaic of C and suppose, towards a contradiction, that M does not extend to G. By
Lemma 4.2.1, there exists at least one of the following:

(i) a chord uv of C, or

(ii) a bichord uvw of Γ where φM(u) = φM(w), or

(iii) a r-double-pod v of Γ where |{φM(u) : u ∈ feet(v)}| ≥ k − 6.

Since C is a triangle, it follows that C does not have a chord and, thus, (i) does not exist.
Furthermore, since C is a triangle, we have that the three vertices of C have pairwise
distinct colours in φ(M). Therefore, every bichord uvw of Γ has φM(u) 6= φM(w) and,
hence, (ii) does not exist. Since k ≥ 10, we have that k − 6 ≥ 4 > |V (C)| = 3; thus, C
does not have a (k − 6)-double-pod and, hence, (iii) does not exist. Therefore, (i), (ii),
and (iii) do not exist, which is a contradiction.

Corollary 4.2.5. Let G be a plane graph with outer 4-cycle C, where C has no chords,
and let k ≥ 11. If M is a k-mosaic of C and there does not exist v ∈ int(C) such that v is
adjacent to u,w ∈ V (C) where φM(u) = φM(w), then M extends to G.
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Proof. Let Γ = (G,C) be a canvas. Notice that C is the outer cycle of G. Let M be a
k-mosaic of C and suppose that there does not exist v ∈ int(C) such that v is adjacent to
u,w ∈ V (C) where φM(u) = φM(w). Suppose, towards a contradiction, that M does not
extend to G. By Lemma 4.2.1, there exists at least one of the following:

(i) a chord uv of C, or

(ii) a bichord uvw of Γ where φM(u) = φM(w), or

(iii) a r-double-pod v of Γ where |{φM(u) : u ∈ feet(v)}| ≥ k − 6.

Since we are given that C has no chords, it follows that (i) does not exist. Furthermore,
since there does not exist v ∈ int(C) such that v is adjacent to u,w ∈ V (C) where
φM(u) = φM(w), we have that every bichord uvw of Γ has φM(u) 6= φM(w); hence, (ii)
does not exist. Since k ≥ 11, we have that k − 6 ≥ 5 > |V (C)| = 4; thus, C does not have
a (k − 6)-double-pod and, hence, (iii) does not exist. Therefore, (i), (ii), and (iii) do not
exist, which is a contradiction.

4.3 Generation Lemmas

In this section, we prove the “Fourth Generation” Lemma 4.3.12, which is used to prove
the Main Theorem 5.3.5. However, the proof of the “Fourth Generation” Lemma first
requires a few additional results and definitions.

Lemma 4.3.1 (Unique Bichord Lemma). Let Γ = (G,C) be a canvas where C is the outer
cycle of G and |V (C)| ≥ 7. Let v be a bipod of Γ. If v is not in a dividing bichord, then it
is in a unique bichord.

Proof. Suppose not. Let C = v0v1 . . . vt−1 where t ≥ 7. Let xvy be a bichord of Γ
containing v. Since xvy is not a dividing bichord, it follows that distC(x, y) = 2. Without
loss of generality, let x = v0 and y = v2. Since v is in at least 2 bichords, it has at
least one more neighbour in C, call it z, where v and z are in a bichord of Γ. (Note
that z is necessarily distinct from x and y.) If distC(x, z) ≥ 3, then xvz is a dividing
bichord. Similarly, if distC(y, z) ≥ 3, then yvz is a dividing bichord. Thus, distC(x, z) ≤ 2
and distC(y, z) ≤ 2. Hence, we have that z ∈ {vt−2, vt−1, v1, v3, v4}. Since t ≥ 7, it
follows that distC(vt−2, y) ≥ 3 and distC(vt−1, y) ≥ 3. Similarly, since t ≥ 7, we have that
distC(x, v3) ≥ 3 and distC(x, v4) ≥ 3. Hence, z = v1. Since distC(z, y) = 1, it follows by
the definition of a bichord that zvy is not a bichord. Similarly, since distC(x, z) = 1, we
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have that xvz is not a bichord. Thus, it follows that v has another neighbour in C, call
it w. (Note that w is necessarily distinct from x, y, and z.) If distC(x,w) ≥ 3, then xvw
is a dividing bichord. Similarly, if distC(y, w) ≥ 3, then yvw is a dividing bichord. Thus,
distC(x,w) ≤ 2 and distC(y, w) ≤ 2. Hence, we have that w ∈ {vt−2, vt−1, v3, v4}. As
determined earlier, we have that distC(vt−2, y), distC(vt−1, y), distC(x, v3), distC(x, v4) ≥ 3.
Thus, it follows that xvw or yvw is a dividing bichord, which is a contradiction.

Definition 4.3.2. Let B(Γ) denote the set of bipods of the canvas Γ = (G,C), where C
is the outer cycle of G, that are in a unique, non-dividing bichord.

Lemma 4.3.3. Let Γ = (G,C) be a canvas where C is the outer cycle of G and |V (C)| ≥ 5.
Let B ⊆ B(Γ) and let EC denote the set of chords of C. The graph G[V (C)∪B]\(E(G[B])∪
EC) has exactly one interior face of degree at least 5.

Proof. Suppose not. Let Γ = (G,C) with B ⊆ B(Γ) be a counterexample with |V (G)|
minimized and, subject to that, |B| minimized. Let G′ = G[V (C) ∪B] \ (E(G[B]) ∪ EC).
If |B| = 0, then G′ = G[V (C)] \ EC = C. Thus, there is only one interior face and it has
degree equal to |V (C)| ≥ 5, a contradiction. Hence, we may assume that |B| > 0.

Let |B| = k and let uvw be a bichord of Γ such that v ∈ B. Since v ∈ B, we have that
distC(u,w) = 2. Let x ∈ V (C) such that ux, xw ∈ E(C). Notice that G′ − v has exactly
one face of degree at least 5 by minimality.

First suppose degG′(v) = 3. Since v ∈ B(Γ), it follows that v is adjacent to x. Hence,
v is incident with three faces, two of which are triangles that are incident with the outer
face. Let F be the face incident with v that is also incident with u and w and let CF be
the cycle that bounds F . The graph G′−v contains the cycle (CF \v)∪uxw which bounds
a face F ′ of G′ − v. Notice that degG′−v(F

′) = degG′(F ). If degG′−v(F
′) ≥ 5, then F ′ is

the only face of G′ − v with degree at least 5; thus, F is the only face of G′ with degree
at least 5. If degG′−v(F

′) < 5, then degG′(F ) < 5. Let F ∗ be the only face of G′ − v with
degree at least 5. Since all faces of G′ are faces in G′ − v, except those incident with v, it
follows that F ∗ is the only face in G′ with degree at least 5.

Now suppose that degG′(v) = 2. Hence, the bichord uvw is incident with two interior
faces of G′, call them F1 and F2. Let Ci be the cycle that bounds Fi for each i ∈ {1, 2}.
Let C ′ = C1 ∪ C2 \ v and let F ′ be the face bounded by C ′ in G′ − v. Notice that
degG′−v(F

′) = degG′(F1) + degG′(F2) − 4. Without loss of generality, say F1 is in the
interior of the cycle C∗ = uvwxu. If degG′(F1) ≥ 5, then there exists a path from u to w
in the interior of C∗ with length at least 3. Therefore, there is at least one face F ∗ 6= F1

in the interior of C∗ with degree at least 5. Since degG′−v(F
′) ≥ 5, it follows that G′ − v

has at least two faces of degree at least 5, which is a contradiction. Thus, we have that
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degG′(F1) = 4. If degG′(F2) = 4, then degG′−v(F
′) = 4. Let F ∗ be the only face of G′ − v

with degree at least 5. Since all faces of G′ are faces in G′ − v, except those incident with
v, it follows that F ∗ is the only face in G′ with degree at least 5. Now consider the case
where degG′(F2) ≥ 5. In this case, degG′−v(F

′) ≥ 5. Thus, F ′ is the only face of degree at
least 5 in G′ − v. Hence, it follows that F2 is the only face of degree at least 5 in G′.

Therefore, G′ has exactly one face of degree at least 5, which is a contradiction.

Definition 4.3.4. Let Γ = (G,C) be a canvas where C is the outer cycle of G and
|V (C)| ≥ 5. Let B ⊆ B(Γ) and let EC be the set of chords of C. By Lemma 4.3.3, there
exists a unique interior face F with degree at least 5 of G[V (C) ∪ B] \ (E(G[B]) ∪ EC).
Let C ′ be the cycle that bounds F . Let G′ = G〈C ′〉 and let Γ′ = (G′, C ′). We say that Γ′

is the relaxation of Γ with respect to B, denoted R(Γ, B).

We may think of a canvas and its relaxation as being different generations. If Γ is a
canvas and Γ′ = R(Γ, B(Γ)), we may think of Γ′ as being the generation below Γ.

Definition 4.3.5. Let Γ = (G,C) be a canvas where C is the outer cycle of G. If
u,w ∈ V (C) and distC(u,w) = 2 and |X| = |{v ∈ B(Γ) : {u,w} ⊆ N(v) ∩ V (C)}| ≥ 1,
then we say X is the bundle on u,w. If |X| < 3, then we say X is a thin bundle. If |X| ≥ 3,
then we say X is a thick bundle.

Proposition 4.3.6. Let Γ = (G,C) be a canvas where C is the outer cycle of G and let
φ be an acyclic k-colouring of G. If B is a bundle on u,w ∈ V (C) and φ(u) = φ(w), then
φ(b1) 6= φ(b2) for all b1 6= b2 ∈ B.

Proof. Suppose, towards a contradiction, that φ(b1) = φ(b2) for some b1 6= b2 ∈ B. Notice
that ub1wb2u is a cycle in Gij(φ). Thus, we have that φ is not an acyclic colouring, which
is a contradiction.

Proposition 4.3.7. Let Γ = (G,C) be a canvas where C is the outer cycle of G and
|V (C)| = n ≥ 5. Let B ⊆ B(Γ) and let Γ′ = (G′, C ′) = R(Γ, B). Let V (C) =
{u0, u1, . . . , un−1}. For each i ∈ {0, 1, . . . , n− 1}, either ui ∈ V (C ′) and there is no bundle
on ui−1, ui+1, or ui /∈ V (C ′) and there exists a unique vertex in the bundle on ui−1, ui+1

that is in V (C ′).

Proof. Suppose not. Let H = G[V (C) ∪ B] \ (E(G[B]) ∪ EC). If B = ∅, then v ∈ V (C ′)
for all v ∈ V (C) and there are no bundles in G′.

Let B0 ⊆ B(Γ) such that Γ′ = (G′, C ′) = R(Γ, B0) is a counterexample with |B0|
minimized. Since Γ′ is a counterexample, we have, for some i ∈ {0, 1, . . . , n − 1}, that
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either ui ∈ V (C ′) and there is a bundle on ui−1, ui+1, or ui /∈ V (C ′) and there is not a
unique vertex in the bundle on ui−1, ui+1 that is in V (C ′).

Suppose, towards a contradiction, that ui ∈ V (C ′) and there is a bundle Bi on ui−1, ui+1.
Thus, we have that bui−1uiui+1b is a 4-cycle for each b ∈ Bi. Hence, it follows that ui is
incident with the outer face and inner faces of degree at most 4 in H. Since C ′ bounds a
face of H with degree at least 5, we have that ui /∈ V (C ′), a contradiction.

Now, it follows that ui /∈ V (C ′) and there is not a unique vertex in the bundle on
ui−1, ui+1 that is in V (C ′). If there is no bundle on ui−1, ui+1, then ui ∈ V (C ′), which
is a contradiction. Thus, we have that there is a bundle Bi on ui−1, ui+1. Let b ∈ Bi.
Let Γ′′ = (G′′, C ′′) = R(Γ, B \ {b}). By minimality, we have that ui ∈ V (C ′′) and there
is no bundle on ui−1, ui+1, or ui /∈ V (C ′′) and there is a unique vertex in the bundle on
ui−1, ui+1 that is in V (C ′′). If ui ∈ V (C ′′) and there is no bundle on ui−1, ui+1, then b is
the only bipod in Bi. Thus, b is incident with the face of degree at least 5 in H. Hence,
b ∈ V (C ′), which is a contradiction. Now suppose ui /∈ V (C ′′) and there is a unique vertex
in the bundle on ui−1, ui+1 that is in V (C ′′). If b /∈ V (C ′), then C ′ = C ′′ and it follows
that there is a unique vertex in the bundle on ui−1, ui+1 that is in V (C ′), a contradiction.
Thus, b ∈ V (C ′). Suppose b′ ∈ Bi is in V (C ′) as well. Without loss of generality, b is
in the interior of the cycle Ci = b′ui−1uiui+1b

′. Thus, it follows that V (C ′) is in G〈Ci〉.
Since each vertex in Bi is adjacent to ui−1 and ui+1, it follows that the faces in H that are
interior to Ci have degree at most 4. Since, C ′ bounds a face of degree at least 5, we have
a contradiction.

Proposition 4.3.8. Let Γ = (G,C) be a canvas where C is the outer cycle of G and
|V (C)| ≥ 5. If Γ′ = (G′, C ′) = R(Γ, B) where B ⊆ B(Γ), then each vertex in V (C ′) is
either a bipod in B(Γ) or a vertex in V (C) and |V (C ′)| = |V (C)|.

Proof. Since C ′ is a cycle in G[V (C) ∪ B], it follows that V (C ′) ⊆ V (C) ∪ B. Since
V (C) ∩B = ∅, we have that each vertex in V (C ′) is either in B ⊆ B(Γ) or in V (C). Now
it follows from Proposition 4.3.7 that |V (C ′)| = |V (C)|.

Proposition 4.3.9. Let Γ = (G,C) be a canvas where C is the outer cycle of G and
|V (C)| = n ≥ 5. Let Γ′ = (G′, C ′) = R(Γ, B(Γ)). Let V (C) = {u0, u1, . . . , un−1} and
V (C ′) = {u′0, u′1, . . . , u′n−1} such that u′i is in the bundle on ui−1, ui+1 or is equal to ui for
all i ∈ {0, 1, . . . , n− 1}. If u′i ∈ B(Γ), then u′i is adjacent to u′i−1 = ui−1 and u′i+1 = ui+1.
Equivalently, if u′i ∈ B(Γ), then u′i−1, u

′
i+1 /∈ B(Γ).

Proof. By the definition of the cycle C ′, we have that u′i is adjacent to u′i−1 and u′i+1. Since
u′i ∈ B(Γ), it follows that u′i−1u

′
iu
′
i+1 is a bichord of Γ. Thus, we have that u′i−1, u

′
i+1 ∈
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V (C). By Proposition 4.3.8, it follows that ui−1, ui+1 /∈ B(Γ). Hence, by the definition of
V (C ′), we have that u′i−1 = ui−1 and u′i+1 = ui+1.

Proposition 4.3.10. Let Γ = (G,C) be a canvas where C is the outer cycle of G and
|V (C)| = n ≥ 5. Let Γ′ = (G′, C ′) = R(Γ, B(Γ)). Let V (C) = {u0, u1, . . . , un−1} and
V (C ′) = {u′0, u′1, . . . , u′n−1} such that u′i is in the bundle on ui−1, ui+1 or is equal to ui for
all i ∈ {0, 1, . . . , n− 1}. If u′i ∈ B(Γ), then u′i 6= ui.

Proof. Suppose not. If u′i = ui, then u′i ∈ V (C). Thus, by Proposition 4.3.8, it follows
that u′i /∈ B(Γ), a contradiction.

Definition 4.3.11. Let Γ = (G,C) be a canvas with a bichord uvw and let φ be a colouring
of C. We say uvw is monochromatic in φ if φ(u) = φ(w).

Lemma 4.3.12 (“Fourth Generation” Lemma). Let Γ0 = (G0, C0) be a canvas where C0

is the outer cycle of G0 and |V (C0)| ≥ 5. Let Γi = (Gi, Ci) = R(Γi−1, B(Γi−1)) for each
i ∈ {1, 2, 3}. If all of the following hold for all i ∈ {0, 1, 2, 3}:

(i) Ci has no chords,

(ii) every bipod v of Γi is such that v ∈ B(Γi),

(iii) Γi has no 6-double-pod,

and a k-mosaic M of C0 extends to G0[V (C0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2)], then M extends
to G0.

Proof. Suppose not. Let H = G0[V (C0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2)] and H2 = G0[V (C0) ∪
B(Γ0) ∪B(Γ1)] and H1 = G0[V (C0) ∪B(Γ0)].

Claim 4.3.13. Γ0,Γ1,Γ2,Γ3 are pairwise not equal.

Proof. Since M is a k-mosaic of C0 that extends to H, it follows that M also extends to
a k-mosaic M1 of H1 and a k-mosaic M2 of H2 and a k-mosaic M3 of H. Notice that M1,
M2, and M3 do not extend to G0 by Proposition 3.3.1. Let M ′

i be the restriction of Mi to
Ci for each i ∈ {1, 2, 3}. By the converse of Proposition 3.3.16, since Mi does not extend
to G0, it follows that M ′

i does not extend to Gi, for each i ∈ {1, 2, 3}. Since (i)-(iii) do
not hold for i ∈ {1, 2, 3} by assumption, it follows by the Extension Lemma 4.2.1 that, for
each i ∈ {1, 2, 3}, Γi has at least one bichord uvw that is monochromatic in φ(M ′

i) where
v ∈ B(Γi). Thus, we have that Γ0,Γ1,Γ2,Γ3 are pairwise not equal.
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Let M be the set of k-mosaics of C0 that extend to H, but not to G0. Since M is a
k-mosaic of C0 that extends to H, but not to G0, it follows that M ∈ M; thus, we have
that M is non-empty. Let φ be a k-colouring of H such that M0 extends to φ, for some
M0 ∈M, and the number of bichords of Γ3 that are monochromatic in φ is minimum.

Let C0 = u0,0u0,1 . . . u0,n−1 and let Ci = ui,0ui,1 . . . ui,n−1 such that ui,j is in the bundle
on ui−1,j−1, ui−1,j+1 or ui,j = ui−1,j, for each i ∈ {1, 2, 3} and j ∈ {0, 1, . . . , n− 1}.1

Since (i)-(iii) do not hold for i = 3 by assumption, it follows by the Extension Lemma
4.2.1 that Γ3 has at least one bichord uvw that is monochromatic in φ where v ∈ B(Γ3).
Since v ∈ B(Γ3), we have that at least one of u,w is in B(Γ2). Without loss of generality,
say u ∈ B(Γ2). Notice that w ∈ V (C0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2). Let u = u3,x for some
x ∈ {0, . . . , n− 1}. Without loss of generality, say w = u3,x+2. Since v ∈ B(Γ3), it follows
that u,w /∈ B(Γ3). Since u3,x ∈ B(Γ2), we have that u3,x is in the bundle on u2,x−1, u2,x+1.
Additionally, since u3,x ∈ B(Γ2), we have that u3,x 6= ui,x for all i ∈ {0, 1, 2} by Proposition
4.3.10. Notice that w = u3,x+2 is not necessarily distinct from u0,x+2, u1,x+2, and u2,x+2.

Let Bi,j denote the set of vertices in the bundle on ui−1,j−1 and ui−1,j+1, for each
i ∈ {1, 2, 3} and j ∈ {0, 1, . . . , n − 1}. If there is no such bundle, then we let Bi,j = ∅.
Notice that if ui,j 6= ui−1,j, then ui,j ∈ Bi,j.

Claim 4.3.14. Let p ∈ {1, 2, 3} and q ∈ {0, 1, . . . , n− 1}. Let c1, c2, . . . , c5 ∈ [k]. If up,q ∈
B(Γp−1) and φ(up−1,q−1) 6= φ(up−1,q+1), then there exists c ∈ [k] \ ({φ(up,q−2), φ(up,q+2)} ∪
{c1, c2, . . . , c5}) such that there exists a k-colouring φ′ of Hp, where φ′(up,q) = c and φ′(v) =
φ(v) for all v ∈ V (Hp) \ up,q, that is an extension of M0.

Proof. Notice that, since up,q ∈ B(Γp−1), it follows that up,q ∈ V (Cp). In Hp, the vertex up,q
has degree 2 or 3. If degHp(up,q) = 3, then up,q is adjacent to up−1,q or a vertex b ∈ Bp,q. Let
v = b if up,q is adjacent to b ∈ Bp,q, and let v = up−1,q otherwise. Notice that v is adjacent
to up−1,q−1 and up−1,q+1, hence, we have that φ(v) 6= φ(up−1,q−1), φ(up−1,q+1). Since k ≥ 12,
it follows that there exists c ∈ [k] \ ({φ(up,q−2), φ(up−1,q−1), φ(v), φ(up,q), φ(up−1,q+1),
φ(up,q+2)} ∪ {c1, c2, . . . , c5}). Let φ′ be a k-colouring of Hp such that φ′(up,q) = c and
φ′(v) = φ(v) for all v ∈ V (Hp) \ up,q. Let H ′ denote Hp.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since up,q /∈ V (C0), it
follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1) holds for M0 extending to φ′.

Since M0 does not extend to φ′, it follows by Definition 3.2.8(2) that H̃ ′ij(φ
′,M0) contains

a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ, it follows that C is not a cycle in

H̃ ′ij(φ,M0); thus, we have that up,q ∈ V (C). Let w1, w2 be the neighbours of up,q in C. For

1Indices are taken modulo n here and in the remainder of the proof of Lemma 4.3.12.
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each t ∈ {1, 2}, wt is either in {up−1,q−1, up−1,q+1, v} or is equal to R̃ where at least one of
up−1,q−1, up−1,q+1, v is in R ∈ Pij(M0). Since φ′(up,q) 6= φ′(up−1,q−1), φ

′(up−1,q+1), φ
′(v) and

φ′(up−1,q−1), φ
′(up−1,q+1), φ

′(v) are pairwise not equal, it follows that at most one of w1, w2

is in H̃ ′ij(φ
′,M0), which is a contradiction.

Claim 4.3.15. φ(u2,x−1) = φ(u2,x+1).

Proof. Suppose, towards a contradiction, that φ(u2,x−1) 6= φ(u2,x+1). Thus, by Claim
4.3.14, there exists c ∈ [k] \ {φ(u3,x−2), φ(u3,x+2)} such that there exists a k-colouring φ′ of
H, where φ′(u3,x) = c and φ′(v) = φ(v) for all v ∈ V (H) \ u3,x, that is an extension of M0.
If pqr is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if
a bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord
of Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has
fewer monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Claim 4.3.16. Let p ∈ {1, 2, 3} and q ∈ {0, 1, . . . , n−1}. Let |Bp,q| ≥ 2 and y, z ∈ Bp,q. If
φ(up−1,q−1) = φ(up−1,q+1), then M0 extends to the k-colouring φ′ of Hp, where φ′(y) = φ(z),
φ′(z) = φ(y), and φ′(v) = φ(v) for all v ∈ V (Hp) \ {y, z}.

Proof. Let H ′ denote Hp. If two vertices in Bp,q ∪{up−1,q} have the same colour in φ, then
those two vertices are in a bichromatic 4-cycle with up−1,q−1 and up−1,q+1, contradicting
the assumption that φ is acyclic. Thus, since φ(up−1,q−1) = φ(up−1,q+1), we have that all
vertices in Bp,q ∪ {up−1,q} have pairwise distinct colours in φ. Additionally, all vertices in
Bp,q ∪ {up−1,q} have pairwise distinct colours in φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since y, z /∈ V (C0), it
follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1) holds for M0 extending to φ′.

Since M0 does not extend to φ′, it follows by Definition 3.2.8(2) that H̃ ′ij(φ
′,M0) contains

a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ, it follows that C is not a cycle in

H̃ ′ij(φ,M0); thus, we have that at least one of y, z is in V (C). Without loss of generality,
suppose y ∈ V (C). If z ∈ V (C), then φ′(z), φ′(y) ∈ {i, j}; thus, we have that φ(z), φ(y) ∈
{i, j}, which implies that C is a cycle in H̃ ′ij(φ,M0), a contradiction. Hence, it follows
that z /∈ V (C). Let P = C−y and let w1, w2 be the neighbours of y in C. Notice that P is

a path in H̃ ′ij(φ,M0). Also, notice that N(y) ∩ V (H ′) ⊆ {up−1,q−1, up−1,q+1, up−1,q} ∪Bp,q.
Since φ′(y) /∈ {φ′(z), φ′(up−1,q−1), φ

′(up−1,q+1), φ
′(up−1,q)}∪{φ′(b) : b ∈ Bp,q} and all colours

in {φ′(z), φ′(up−1,q−1), φ
′(up−1,q+1), φ

′(up−1,q)} ∪ {φ′(b) : b ∈ Bp,q} are distinct except for

φ′(up−1,q−1) = φ′(up−1,q+1), it follows that up−1,q−1 = w1 or up−1,q−1 ∈ w1 = R̃1 where

R1 ∈ Pij(M0), and up−1,q+1 = w2 or up−1,q+1 ∈ w2 = R̃2 where R2 ∈ Pij(M0). Since

φ′(y) ∈ {i, j}, we have that φ(z) ∈ {i, j}; hence, z ∈ H̃ ′ij(φ,M0). Since z is adjacent
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to up−1,q−1 and up−1,q+1, it follows that P + w1zw2 is a cycle in H̃ ′ij(φ,M0), which is a
contradiction.

Claim 4.3.17. The bundle B3,x is a thin bundle.

Proof. Suppose, towards a contradiction, that B3,x is a thick bundle. Let B3,x = {b1, b2, . . . ,
b`} where b1 = u3,x. Since B3,x is thick, it follows that ` ≥ 3. Since φ(u2,x−1) = φ(u2,x+1)
by Claim 4.3.15, we have that φ(bi) 6= φ(bj) for all i 6= j ∈ [`].

Since ` ≥ 3, there exists c ∈ {φ(b1), . . . , φ(b`)} \ {φ(u3,x−2), φ(u3,x+2)}. Let y ∈
{2, . . . , `} be such that φ(by) = c. By Claim 4.3.16, we have that there exists a k-colouring
φ′ of H where φ′(by) = φ(u3,x) and φ′(u3,x) = φ(by) and φ′(v) = φ(v) for all v ∈ H\{u3,x, by}
such that M0 extends to φ′. If pqr is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then
r ∈ {u3,x−2, u3,x+2}. Hence, if a bichord is monochromatic in φ′, then it is monochromatic
in φ. Since v is in a bichord of Γ3 that is monochromatic in φ, but is not monochromatic
in φ′, it follows that φ′ has fewer monochromatic bichords of Γ3 than φ, which contradicts
the minimality of φ.

Claim 4.3.18. If w ∈ B(Γ2), then φ(u2,x+1) = φ(u2,x+3) and B3,x+2 is a thin bundle.

Proof. First we prove that φ(u2,x+1) = φ(u2,x+3). Suppose, towards a contradiction, that
φ(u2,x−1) 6= φ(u2,x+1). Thus, by Claim 4.3.14, there exists c ∈ [k] \ {φ(u3,x−2), φ(u3,x+2)}
such that M0 extends to a k-colouring φ′ of H, where φ′(u3,x) = c and φ′(v) = φ(v)
for all v ∈ V (H) \ u3,x. If pqr is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then
r ∈ {u3,x−2, u3,x+2}. Hence, if a bichord is monochromatic in φ′, then it is monochromatic
in φ. Since v is in a bichord of Γ3 that is monochromatic in φ, but is not monochromatic
in φ′, it follows that φ′ has fewer monochromatic bichords of Γ3 than φ, which contradicts
the minimality of φ.

Now we prove that B3,x+2 is a thin bundle. Suppose, towards a contradiction, that
B3,x+2 is a thick bundle. Let B3,x+2 = {b1, b2, . . . , b`} where b1 = u3,x+2. Since B3,x+2 is
thick, it follows that ` ≥ 3. Since φ(u2,x+1) = φ(u2,x+3) from above, we have that φ(bi) 6=
φ(bj) for all i 6= j ∈ [`]. Since ` ≥ 3, there exists c ∈ {φ(b1), . . . , φ(b`)}\{φ(u3,x), φ(u3,x+4)}.
Let y ∈ {2, . . . , `} be such that φ(by) = c. By Claim 4.3.16, we have that there exists a
k-colouring φ′ of H where φ′(by) = φ(u3,x+2) and φ′(u3,x+2) = φ(by) and φ′(v) = φ(v) for all
v ∈ H \ {u3,x+2, by} such that M0 extends to φ′. If pqr is a bichord of Γ3 where q ∈ B(Γ3)
and p = u3,x+2, then r ∈ {u3,x, u3,x+4}. Hence, if a bichord is monochromatic in φ′, then
it is monochromatic in φ. Since v is in a bichord of Γ3 that is monochromatic in φ, but is
not monochromatic in φ′, it follows that φ′ has fewer monochromatic bichords of Γ3 than
φ, which contradicts the minimality of φ.
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Figure 4.1: A possible configuration of the vertices of interest in Claim 4.3.19.

Claim 4.3.19. u2,x+1 /∈ B(Γ1).

Proof. Suppose, towards a contradiction that u2,x+1 ∈ B(Γ1). Note that Figure 4.1 shows
an approximate configuration of the vertices of interest here. Since u2,x+1 is adjacent to w,
it follows that w ∈ B(Γ2)∪B(Γ0)∪V (C0). If w ∈ B(Γ2), then it follows from Claim 4.3.18
that φ(u2,x+1) = φ(u2,x+3) and B3,x+2 is a thin bundle. Notice that if w ∈ B(Γ0) ∪ V (C0),
then there is no bundle on u2,x+1 and u2,x+3.

Let Φ = {φ(z) : z ∈ NH(u3,x) ∪ NH(u2,x+1)}. Notice that NH(u3,x) ⊆ {u2,x−1, u2,x+1,
u1,x} ∪ B3,x. By planarity, we have that |NH(u3,x) ∩ (B3,x ∪ {u1,x})| ≤ 1. Notice that
NH(u2,x+1) ⊆ {u1,x, u1,x+2, u0,x+1} ∪ B3,x ∪ B3,x+2 ∪ B2,x+1. By planarity, we have that
|NH(u2,x+1) ∩ (B2,x+1 ∪ {u0,x+1})| ≤ 1. Since B3,x is a thin bundle and B3,x+2 is a thin
bundle, if it exists, we have that |B3,x ∪ B3,x+2| ≤ 4. Since φ(u) = φ(w), it follows that
|Φ| ≤ 8.

Since k ≥ 12, we have that there exists c ∈ [k] \ Φ. Let φ′ be a k-colouring of H such
that φ′(u) = c and φ′(v) = φ(v) for all v ∈ V (H) \ {u}.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since u /∈ V (C0), it
follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1) holds for M0 extending to φ′.

Since M0 does not extend to φ′, it follows by Definition 3.2.8(2) that H̃ij(φ
′,M0) contains

a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ, it follows that C is not a cycle in

H̃ij(φ,M0); thus, we have that u ∈ V (C).

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let P be the component
of C ′ in Hij(φ

′) that contains u. Recall that NH(u3,x) ⊆ {u2,x−1, u2,x+1, u1,x} ∪ B3,x. By
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planarity, we have that |NH(u3,x)∩ (B3,x ∪{u1,x})| ≤ 1. Since u3,x /∈ V (C0), it follows that
two vertices in NH(u3,x) are the neighbours of u3,x in P .

Note that each vertex in B3,x ∪ {u1,x} is adjacent to u2,x−1 and u2,x+1. Hence, φ′(u′) 6=
φ′(u2,x−1), φ

′(u2,x+1) for all u′ ∈ B3,x ∪ {u1,x}. Since φ′(u) 6= φ′(u′), φ′(u2,x−1), φ
′(u2,x+1) for

all u′ ∈ B3,x ∪ {u1,x}, it follows that u2,x−1 and u2,x+1 are the neighbours of u in P . Since
u2,x+1 /∈ V (C0), we have that two neighbours of u2,x+1 are in P .

Recall that NH(u2,x+1) ⊆ {u1,x, u1,x+2, u0,x+1} ∪ B3,x ∪ B3,x+2 ∪ B2,x+1 and say z 6=
u3,x ∈ NH(u2,x+1) is a neighbour of u2,x+1 in P . Since φ′(z) = φ(z) /∈ Φ, it follows that
φ′(z) 6= φ′(u). Thus, we have that P is not in Hij(φ

′), which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ B(Γ2) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Since u3,x ∈ B(Γ2) and u2,x+1 /∈ B(Γ1), it follows that u2,x−1 ∈ B(Γ1). Also, note that
u2,x+1 ∈ B(Γ0) ∪ V (C0).

Figure 4.2: A possible configuration of the vertices of interest in Claims 4.3.20 and 4.3.21.

Claim 4.3.20. The bundle B3,x−2 is a thick bundle.

Proof. Suppose, towards a contradiction, that B3,x−2 is a thin bundle or B3,x−2 = ∅.
Note that Figure 4.2 shows an approximate configuration of the vertices of interest here.
Let Φ = {φ(z) : z ∈ NH(u3,x) ∪ NH(u2,x−1)}. Notice that NH(u3,x) ⊆ {u2,x−1, u2,x+1,
u1,x} ∪ B3,x. By planarity, we have that |NH(u3,x) ∩ (B3,x ∪ {u1,x})| ≤ 1. Also, notice
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that NH(u2,x−1) ⊆ {u1,x, u1,x−2, u0,x−1}∪B3,x ∪B3,x−2 ∪B2,x−1. By planarity, we have that
|NH(u2,x−1) ∩ (B2,x−1 ∪ {u0,x−1})| ≤ 1. Since B3,x is a thin bundle and B3,x−2 is a thin
bundle, if it exists, we have that |B3,x ∪B3,x−2| ≤ 4. Thus, it follows that |Φ| ≤ 9.

Since k ≥ 12, we have that there exists c ∈ [k] \ Φ. Let φ′ be a k-colouring of H such
that φ′(u) = c and φ′(v) = φ(v) for all v ∈ V (H) \ {u}.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since u /∈ V (C0), it
follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1) holds for M0 extending to φ′.

Since M0 does not extend to φ′, it follows by Definition 3.2.8(2) that H̃ij(φ
′,M0) contains

a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ, it follows that C is not a cycle in

H̃ij(φ,M0); thus, we have that u ∈ V (C).

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let P be the component
of C ′ in Hij(φ

′) that contains u. Recall that NH(u3,x) ⊆ {u2,x−1, u2,x+1, u1,x} ∪ B3,x. By
planarity, we have that |NH(u3,x)∩ (B3,x ∪{u1,x})| ≤ 1. Since u3,x /∈ V (C0), it follows that
two vertices in NH(u3,x) are the neighbours of u3,x in P .

Note that each vertex in B3,x ∪ {u1,x} is adjacent to u2,x−1 and u2,x+1. Hence, φ′(u′) 6=
φ′(u2,x−1), φ

′(u2,x+1) for all u′ ∈ B3,x ∪ {u1,x}. Since φ′(u) 6= φ′(u′), φ′(u2,x−1), φ
′(u2,x+1) for

all u′ ∈ B3,x ∪ {u1,x}, it follows that u2,x−1 and u2,x+1 are the neighbours of u in P . Since
u2,x−1 /∈ V (C0), we have that two neighbours of u2,x−1 are in P .

Recall that NH(u2,x−1) ⊆ {u1,x, u1,x−2, u0,x−1} ∪ B3,x ∪ B3,x−2 ∪ B2,x−1 and say z 6=
u3,x ∈ NH(u2,x−1) is a neighbour of u2,x−1 in P . Since φ′(z) = φ(z) ∈ Φ, it follows that
φ′(z) 6= φ′(u). Thus, we have that P is not in Hij(φ

′), which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ B(Γ2) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Claim 4.3.21. φ(u2,x−1) = φ(u2,x−3).

Proof. Suppose, towards a contradiction, that φ(u2,x−1) 6= φ(u2,x−3). Note that Figure
4.2 shows an approximate configuration of the vertices of interest here. Let Φ = {φ(z) :
z ∈ NH(u3,x) ∪ NH2(u2,x−1)}. Notice that NH(u3,x) ⊆ {u2,x−1, u2,x+1, u1,x} ∪ B3,x. By
planarity, we have that |NH(u3,x) ∩ (B3,x ∪ {u1,x})| ≤ 1. Also, notice that NH2(u2,x−1) ⊆
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{u1,x, u1,x−2, u0,x−1}∪B2,x−1. By planarity, we have that |NH(u2,x−1)∩(B2,x−1∪{u0,x−1})| ≤
1. Thus, it follows that |Φ| ≤ 6.

Since k ≥ 12, we have that there exists c ∈ [k] \ Φ. Let φ′ be a k-colouring of H such
that φ′(u) = c and φ′(v) = φ(v) for all v ∈ V (H) \ {u}.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since u /∈ V (C0), it
follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1) holds for M0 extending to φ′.

Since M0 does not extend to φ′, it follows by Definition 3.2.8(2) that H̃ij(φ
′,M0) contains

a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ, it follows that C is not a cycle in

H̃ij(φ,M0); thus, we have that u ∈ V (C).

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let P be the component
of C ′ in Hij(φ

′) that contains u. Recall that NH(u3,x) ⊆ {u2,x−1, u2,x+1, u1,x} ∪ B3,x. By
planarity, we have that |NH(u3,x)∩ (B3,x ∪{u1,x})| ≤ 1. Since u3,x /∈ V (C0), it follows that
two vertices in NH(u3,x) are the neighbours of u3,x in P .

Note that each vertex in B3,x ∪ {u1,x} is adjacent to u2,x−1 and u2,x+1. Hence, φ′(u′) 6=
φ′(u2,x−1), φ

′(u2,x+1) for all u′ ∈ B3,x ∪ {u1,x}. Since φ′(u) 6= φ′(u′), φ′(u2,x−1), φ
′(u2,x+1) for

all u′ ∈ B3,x ∪ {u1,x}, it follows that u2,x−1 and u2,x+1 are the neighbours of u in P . Since
u2,x−1 /∈ V (C0), we have that at least two neighbours of u2,x−1 are in P .

Recall that NH(u2,x−1) ⊆ {u1,x, u1,x−2, u0,x−1}∪B3,x∪B3,x−2∪B2,x−1 and say z 6= u3,x ∈
NH(u2,x−1) is a neighbour of u2,x−1 in P . Thus, φ′(z) = φ′(u). If z ∈ NH2(u2,x−1)∪B3,x, then
φ′(z) = φ(z) ∈ Φ, and it follows that φ′(z) 6= φ′(u), a contradiction. Hence, we have that
z ∈ B3,x−2. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3, u2,x−1, u1,x−2
are in P . For each b ∈ B3,x−2 ∪ {u1,x−2}, since b is adjacent to u2,x−3 and u2,x−1, and
φ(b) = φ′(b) and φ(u2,x−3) = φ′(u2,x−3) and φ(u2,x−1) = φ′(u2,x−1), we have that φ′(b) 6=
φ′(u2,x−3), φ

′(u2,x−1) and φ′(u2,x−3) 6= φ′(u2,x−1). Hence, we have that P is not in Hij(φ
′),

which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ B(Γ2) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Claim 4.3.22. The bundle B2,x−1 is a thin bundle.
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Figure 4.3: A possible configuration of the vertices of interest in Claim 4.3.22.

Proof. Suppose, towards a contradiction, that B2,x−1 is a thick bundle. Note that Figure
4.3 shows an approximate configuration of the vertices of interest here. We will con-
struct a new k-colouring φ′ of H. If φ(u1,x−2) = φ(u1,x), then, since |B2,x−1| ≥ 3, it
follows that there exists y ∈ B2,x−1 such that φ(y) 6= φ(u2,x−3), φ(u2,x+1). In this case,
let φ′(y) = φ(u2,x−1) and φ′(u2,x−1) = φ(y). If φ(u1,x−2) 6= φ(u1,x), then let c1, c2, c3 ∈
[k]\{φ(u1,x−2), φ(u1,x), φ(u0,x−1), φ(u2,x−3), φ(u2,x+1), φ(u3,x−2)} such that c1, c2, c3 are pair-
wise distinct. Note that c1, c2, c3 exist since k ≥ 12 ≥ 9. Let φ′(u2,x−1) = c1 and for each
b ∈ B2,x−1\{u2,x−1}, let φ′(b) ∈ {c1, c2, c3} such that adjacent vertices have distinct colours.

Notice that, for each b ∈ B3,x−2, we have that NH(b) ⊆ B3,x−2 ∪ {u2,x−1, u2,x−3, u1,x−2}.
Also, note that φ(u2,x−3) 6= φ′(u2,x−1). Let c4, c5, c6 ∈ [k] \ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2),
φ(u3,x−4)} such that c4, c5, c6 are distinct. Note that c4, c5, c6 exist since k ≥ 12 ≥ 7. Let
φ′(u3,x−2) = c4 and, for each b ∈ B3,x−2 \{u3,x−2}, let φ′(b) ∈ {c4, c5, c6} such that adjacent
vertices have distinct colours.

Similarly, for each b ∈ B3,x, we have that NH(b) ⊆ B3,x ∪ {u2,x+1, u2,x−1, u1,x}. Also,
note that φ(u2,x+1) 6= φ′(u2,x−1). Let c, c′ ∈ [k] \ {φ′(u2,x−1), φ(u2,x+1), φ(u1,x), φ(w), c4}
such that c, c′ are distinct. Note that c, c′ exist since k ≥ 12 ≥ 7. Let φ′(u) = c, and if
there exists u′ 6= u ∈ B3,x, then let φ′(u′) = c′. Let φ′(v) = φ(v) for all v in H that have
not yet been assigned a colour under φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since v /∈ V (C0) for
all v where φ′(v) 6= φ(v), it follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1)
holds for M0 extending to φ′. Since M0 does not extend to M ′, it follows by Definition
3.2.8(2) that H̃ij(φ

′,M0) contains a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ,

it follows that C is not a cycle in H̃ij(φ,M0); thus, we have that C contains at least one
of the following:
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(i) a vertex in B3,x,

(ii) a vertex in B3,x−2,

(iii) a vertex in B2,x−1.

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let v ∈ V (C) such that
v ∈ B3,x ∪ B2,x−1 ∪ B3,x−2 and let P be the component of C ′ in Hij(φ

′) that contains v.
Note that v /∈ V (C0).

Subclaim 4.3.23. The vertex v is not in B3,x.

Proof. Suppose, towards a contradiction, that v ∈ B3,x. Notice that NH(B3,x) ⊆ {u2,x+1,
u2,x−1, u1,x}. Since B3,x ∩ V (C0) = ∅, it follows that at least two of u2,x−1, u2,x+1, u1,x are
in P . Since u1,x is adjacent to u2,x+1 and φ(u1,x) = φ′(u1,x) and φ(u2,x+1) = φ′(u2,x+1),
we have that φ′(u1,x) 6= φ′(u2,x+1). By the construction of φ′, we have that φ′(u2,x−1) 6=
φ′(u1,x), φ

′(u2,x+1). It also follows from the construction of φ′ that φ′(b) /∈ {φ′(u2,x−1),
φ(u2,x+1), φ(u1,x)} for all b ∈ B3,x. Hence, we have that φ′(v), φ′(u2,x−1), φ

′(u2,x+1), φ
′(u1,x)

are pairwise distinct. Thus, it follows that P is not in Hij(φ
′), which is a contradiction.

Subclaim 4.3.24. The vertex v is not in B3,x−2.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−2. Notice that NH(B3,x−2) ⊆
{u2,x−1, u2,x−3, u1,x−2}. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3,
u2,x−1, u1,x−2 are in P . Since u1,x−2 is adjacent to u2,x−3 and φ(u1,x−2) = φ′(u1,x−2) and
φ(u2,x−3) = φ′(u2,x−3), we have that φ′(u1,x−2) 6= φ′(u2,x−3). By the construction of φ′,
we have that φ′(u2,x−1) 6= φ′(u1,x−2), φ

′(u2,x−3). It also follows from the construction of
φ′ that φ′(b) /∈ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} for all b ∈ B3,x−2. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−1), φ
′(u1,x−2) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

By Subclaims 4.3.23 and 4.3.24, it follows that v′ /∈ V (C) for all v′ ∈ B3,x∪B3,x−2; thus,
we have that v ∈ B2,x−1. Notice that NH(B2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B3,x ∪ B3,x−2.
Since vertices of C are not in B3,x ∪B3,x−2 and B2,x−1 ∩ V (C0) = ∅, it follows that at least
two of u1,x−2, u1,x, u0,x−1 are in P .

Since u0,x−1 is adjacent to u1,x−2 and u1,x, and φ(u0,x−1) = φ′(u0,x−1) and φ(u1,x−2) =
φ′(u1,x−2) and φ(u1,x) = φ′(u1,x), we have that φ′(u0,x−1) 6= φ′(u1,x−2), φ

′(u1,x). If φ′(u1,x−2)
6= φ′(u1,x), then φ′(b) ∈ {c1, c2, c3}; thus, φ′(b) 6= φ′(u0,x−1), φ

′(u1,x−2), φ
′(u1,x) for all b ∈

36



B2,x−1. Hence, we have that φ′(v), φ′(u0,x−1), φ
′(u1,x−2), φ

′(u1,x) are pairwise distinct.
Thus, it follows that P is not in Hij(φ

′), which is a contradiction. Therefore, we have that
φ′(u1,x−2) = φ′(u1,x) and, thus, φ(u1,x−2) = φ(u1,x).

Thus, the colours of the vertices in B2,x−1 ∪ {u0,x−1} in φ are pairwise distinct and
not equal to φ(u1,x−2) or φ(u1,x) and the colours of the vertices in B2,x−1 ∪ {u0,x−1} in
φ′ are pairwise distinct and not equal to φ′(u1,x−2) or φ′(u1,x). Hence, it follows that P
contains u1,x−2, u1,x and at most one vertex in B2,x−1. Thus, we have that u1,x−2, u1,x are
the neighbours of v in P . Since u2,x−1 ∈ B(Γ1), it follows that at most one of u1,x−2, u1,x
is in V (C0). Hence, we have that ũ1,x−2ṽũ1,x is a subpath of C in H̃ij(φ

′,M0). Let P ′

be the other (u1,x−2, u1,x)-path in C and notice that b̃ /∈ V (P ′) for all b ∈ B3,x ∪ B3,x−2
by Subclaims 4.3.23 and 4.3.24. By the construction of φ′, we have that there exists a
vertex b ∈ B2,x−1 such that φ′(v) = φ(b). Thus, it follows that P ′+ ũ1,x−2b̃ũ1,x is a cycle in

H̃ij(φ,M0). Thus, we have that M0 does not extend to φ, which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(u3,x−2) 6= φ′(u3,x−4), φ

′(u3,x) and φ′(v) = φ(v) for all v ∈ V (C3) \
{u, u3,x−2} such that M0 extends to φ′. If pqr is a bichord of Γ3 where q ∈ B(Γ3) and
p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Similarly, if pqr is a bichord of Γ3 where q ∈ B(Γ3) and
p = u3,x−2, then r ∈ {u3,x−4, u3,x}. Hence, if a bichord is monochromatic in φ′, then it is
monochromatic in φ. Since v is in a bichord of Γ3 that is monochromatic in φ, but is not
monochromatic in φ′, it follows that φ′ has fewer monochromatic bichords of Γ3 than φ,
which contradicts the minimality of φ.

Figure 4.4: A possible configuration of the vertices of interest in Claim 4.3.25.

Claim 4.3.25. u1,x /∈ B(Γ0).
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Proof. Suppose, towards a contradiction, that u1,x ∈ B(Γ0). Note that Figure 4.4 shows
an approximate configuration of the vertices of interest here. Since u1,x is adjacent to
u2,x+1 and, by Claim 4.3.19, u2,x+1 /∈ B(Γ1), it follows that u2,x+1 ∈ V (C0). That is,
u2,x+1 = u0,x+1. Thus, there is no bundle on u1,x and u1,x+2, and we have that B2,x+1 = ∅.
We will construct a new k-colouring φ′ of H.

Let Φ = {φ(z) : z ∈ NH2(u2,x−1)∪NH(u1,x)∪{u2,x−3, u3,x−2}}. Notice thatNH2(u2,x−1) ⊆
{u1,x−2, u1,x, u0,x−1}∪B2,x−1. By planarity, we have that |NH2(u2,x−1)∩(B2,x−1∪{u0,x−1})| ≤
1. Also, notice that NH(u1,x) ⊆ {u0,x−1, u0,x, u0,x+1} ∪B1,x ∪B2,x−1 ∪B2,x+1. By planarity,
we have that |NH(u1,x)∩ (B1,x∪{u0,x})| ≤ 1. Since B2,x−1 is a thin bundle and B2,x+1 = ∅,
we have that |B2,x−1 ∪ B2,x+1| ≤ 2. Thus, it follows that |Φ| ≤ 10. Since k ≥ 12, there
exists c ∈ [k] \ Φ. Let φ′(u2,x−1) = c.

Notice that, for each b ∈ B3,x−2, we have that NH(b) ⊆ B3,x−2 ∪ {u2,x−1, u2,x−3, u1,x−2}.
Since φ(u2,x−3) = φ(u2,x−1) by Claim 4.3.21, it follows that the colours of the vertices in
B3,x−2 ∪ {u1,x−2} in φ are pairwise distinct. Also, note that φ(u2,x−3) 6= φ′(u2,x−1). Let
c1, c2, c3 ∈ [k] \ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} such that c1 = φ(u3,x−2) and c1, c2, c3 are
distinct. Note that c1, c2, c3 exist since k ≥ 12 ≥ 6. For each b ∈ B3,x−2 \ {u3,x−2}, let
φ′(b) ∈ {c1, c2, c3} such that adjacent vertices have distinct colours.

Similarly, for each b ∈ B3,x, we have that NH(b) ⊆ B3,x ∪ {u2,x+1, u2,x−1, u1,x}. Also,
note that φ(u2,x+1) 6= φ′(u2,x−1). Let c, c′ ∈ [k] \ {φ′(u2,x−1), φ(u2,x+1), φ(u1,x), φ(w), c1}
such that c, c′ are distinct. Note that c, c′ exists since k ≥ 12 ≥ 7. Let φ′(u) = c, and if
there exists u′ 6= u ∈ B3,x, then let φ′(u′) = c′. Let φ′(v) = φ(v) for all v in H that have
not yet been assigned a colour under φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since v /∈ V (C0) for
all v where φ′(v) 6= φ(v), it follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1)
holds for M0 extending to φ′. Since M0 does not extend to φ′, it follows by Definition
3.2.8(2) that H̃ij(φ

′,M0) contains a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ,

it follows that C is not a cycle in H̃ij(φ,M0); thus, we have that C contains at least one
of the following:

(i) a vertex in B3,x,

(ii) a vertex in B3,x−2 \ {u3,x−2},

(iii) u2,x−1.

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let v ∈ V (C) such that
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v ∈ B3,x ∪ {u2,x−1} ∪ B3,x−2 and let P be the component of C ′ in Hij(φ
′) that contains v.

Note that v /∈ V (C0).

Subclaim 4.3.26. The vertex v is not in B3,x.

Proof. Suppose, towards a contradiction, that v ∈ B3,x. Notice that NH(B3,x) ⊆ {u2,x+1,
u2,x−1, u1,x}. Since B3,x ∩ V (C0) = ∅, it follows that at least two of u2,x−1, u2,x+1, u1,x are
in P . Since u1,x is adjacent to u2,x+1 and φ(u1,x) = φ′(u1,x) and φ(u2,x+1) = φ′(u2,x+1),
we have that φ′(u1,x) 6= φ′(u2,x+1). By the construction of φ′, we have that φ′(u2,x−1) 6=
φ′(u1,x), φ

′(u2,x+1). It also follows from the construction of φ′ that φ′(b) /∈ {φ′(u2,x−1),
φ(u2,x+1), φ(u1,x)} for all b ∈ B3,x. Hence, we have that φ′(v), φ′(u2,x−1), φ

′(u2,x+1), φ
′(u1,x)

are pairwise distinct. Thus, it follows that P is not in Hij(φ
′), which is a contradiction.

Subclaim 4.3.27. The vertex v is not in B3,x−2.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−2. Notice that NH(B3,x−2) ⊆
{u2,x−1, u2,x−3, u1,x−2}. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3,
u2,x−1, u1,x−2 are in P . Since u1,x−2 is adjacent to u2,x−3 and φ(u1,x−2) = φ′(u1,x−2) and
φ(u2,x−3) = φ′(u2,x−3), we have that φ′(u1,x−2) 6= φ′(u2,x−3). By the construction of φ′,
we have that φ′(u2,x−1) 6= φ′(u1,x−2), φ

′(u2,x−3). It also follows from the construction of
φ′ that φ′(b) /∈ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} for all b ∈ B3,x−2. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−1), φ
′(u1,x−2) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

By Subclaims 4.3.26 and 4.3.27, it follows that v′ /∈ V (C) for all v′ ∈ B3,x∪B3,x−2; thus,
we have that v = u2,x−1. Notice that NH(B2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B3,x ∪ B3,x−2.
Since vertices of C are not in B3,x ∪B3,x−2 and B2,x−1 ∩ V (C0) = ∅, it follows that at least
two of u1,x−2, u1,x, u0,x−1 are in P .

Since u0,x−1 is adjacent to u1,x−2 and u1,x, and φ(u0,x−1) = φ′(u0,x−1) and φ(u1,x−2) =
φ′(u1,x−2) and φ(u1,x) = φ′(u1,x), we have that φ′(u0,x−1) 6= φ′(u1,x−2), φ

′(u1,x). If φ′(u1,x−2)
6= φ′(u1,x), then φ′(u2,x−1), φ

′(u0,x−1), φ
′(u1,x−2), φ

′(u1,x) are distinct; hence, it follows that
P is not in Hij(φ

′), which is a contradiction. Thus, φ′(u1,x−2) = φ′(u1,x) and it follows that
u1,x−2 and u1,x are the neighbours of u2,x−1 in P . Since u1,x /∈ V (C0), we have that two
neighbours of u1,x are in P .

Recall that NH(u1,x) ⊆ {u0,x−1, u0,x, u0,x+1}∪B1,x∪B2,x−1∪B2,x+1 and say z 6= u2,x−1 ∈
NH(u1,x) is a neighbour of u1,x in P . Since φ′(z) = φ(z) ∈ Φ, it follows that φ′(z) 6= φ′(v).
Thus, we have that P is not in Hij(φ

′), which is a contradiction.
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Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ V (C3) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Since u2,x−1 ∈ B(Γ1) and u1,x /∈ B(Γ0), it follows that u1,x−2 ∈ B(Γ0). Also, note that
u1,x ∈ V (C0).

Figure 4.5: A possible configuration of the vertices of interest in Claim 4.3.28.

Claim 4.3.28. |B2,x−3| ≥ 5.

Proof. Suppose not. Note that Figure 4.5 shows an approximate configuration of the
vertices of interest here. Since u1,x−2 ∈ B(Γ0) and u1,x−2 is adjacent to u2,x−3, it follows that
u2,x−3 ∈ B(Γ1) ∪ V (C0). Thus, either u2,x−3 ∈ B(Γ1) and |B2,x−3| ≤ 4 or u2,x−3 ∈ V (C0)
and B2,x−3 = ∅. We will construct a new k-colouring φ′ of H.

Let Φ = {φ(z) : z ∈ NH2(u2,x−1) ∪ (NH(u1,x−2) \ {u2,x−1}) ∪ {u3,x−2}}. Notice that
NH2(u2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B2,x−1. By planarity, we have that |NH2(u2,x−1) ∩
(B2,x−1 ∪{u0,x−1})| ≤ 1. Also, notice that NH(u1,x−2) \ {u2,x−1} ⊆ {u0,x−3, u0,x−1, u0,x−2}∪
B1,x−2 ∪ B2,x−3 ∪ (B2,x−1 \ {u2,x−1}). By planarity, we have that |NH(u1,x−2) ∩ (B1,x−2 ∪
{u0,x−2})| ≤ 1. Since B2,x−1 is a thin bundle and |B2,x−3| ≤ 4, we have that |(B2,x−1 \
{u2,x−1}) ∪ B2,x−3| ≤ 5. Thus, it follows that |Φ| ≤ 11. Since k ≥ 12, there exists
c ∈ [k] \ Φ. Let φ′(u2,x−1) = c.

Notice that, for each b ∈ B3,x−2, we have that NH(b) ⊆ B3,x−2 ∪ {u2,x−1, u2,x−3, u1,x−2}.
Since φ(u2,x−3) = φ(u2,x−1), it follows that the colours of the vertices in B3,x−2 ∪ {u1,x−2}
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in φ are pairwise distinct. Also, note that φ(u2,x−3) 6= φ′(u2,x−1). Let c1, c2, c3 ∈ [k] \
{φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} such that c1 = φ(u3,x−2) and c1, c2, c3 are distinct. Note
that c1, c2, c3 exist since k ≥ 12 ≥ 6. For each b ∈ B3,x−2 \ {u3,x−2}, let φ′(b) ∈ {c1, c2, c3}
such that adjacent vertices have distinct colours.

Similarly, for each b ∈ B3,x, we have that NH(b) ⊆ B3,x∪{u2,x+1, u2,x−1, u1,x}. Let Φ′ =
{φ′(u2,x−1), c1, c2, c3} ∪ {φ(z) : z ∈ NH2(u2,x−1) ∪ {u2,x+1, w}}. Recall that NH2(u2,x−1) ⊆
{u1,x−2, u1,x, u0,x−1} ∪ B2,x−1 and |NH2(u2,x−1) ∩ (B2,x−1 ∪ {u0,x−1})| ≤ 1. Thus, it follows
that |Φ′| ≤ 9. Since k ≥ 12, there exist c4, c5 ∈ [k] \ Φ′ where c4, c5 are distinct. Let
φ′(u) = c4, and if there exists u′ 6= u ∈ B3,x, then let φ′(u′) = c5. Let φ′(v) = φ(v) for all
v in H that have not yet been assigned a colour under φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since v /∈ V (C0) for
all v where φ′(v) 6= φ(v), it follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1)
hold for M0 extending to φ′. Since M0 does not extend to φ′, it follows by Definition
3.2.8(2) that H̃ij(φ

′,M0) contains a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ,

it follows that C is not a cycle in H̃ij(φ,M0); thus, we have that C contains at least one
of the following:

(i) a vertex in B3,x,

(ii) a vertex in B3,x−2 \ {u3,x−2},

(iii) u2,x−1.

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let v ∈ V (C) such that
v ∈ B3,x ∪ {u2,x−1} ∪ B3,x−2 and let P be the component of C ′ in Hij(φ

′) that contains v.
Note that v /∈ V (C0).

Subclaim 4.3.29. The vertex v is not in B3,x.

Proof. Suppose, towards a contradiction, that v ∈ B3,x. Notice that NH(B3,x) ⊆ {u2,x+1,
u2,x−1, u1,x}. Since B3,x ∩ V (C0) = ∅, it follows that at least two of u2,x−1, u2,x+1, u1,x are
in P . Since u1,x is adjacent to u2,x+1, and φ(u1,x) = φ′(u1,x) and φ(u2,x+1) = φ′(u2,x+1), we
have that φ′(u1,x) 6= φ′(u2,x+1). By the construction of φ′, we have that φ′(u2,x−1) 6= φ′(u1,x)
and φ′(v) /∈ {φ′(u2,x−1), φ(u2,x+1), φ(u1,x)} for all v ∈ B3,x. Furthermore, we have that
φ′(u) 6= φ′(u′) if u′ 6= u ∈ B3,x. Thus, it follows that u2,x−1 and u2,x+1 are the neighbours
of v in P and φ′(u2,x−1) = φ′(u2,x+1). Since u2,x−1 /∈ V (C0), it follows that at least one
neighbour of u2,x−1, other than v, is in P .
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Notice that NH(u2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B2,x−1 ∪ B3,x ∪ B3,x−2. Say z 6= v ∈
NH(u2,x−1) is a neighbour of u2,x−1 in P . Recall that φ′(b) ∈ {c1, c2, c3} for all b ∈ B3,x−2
and the colours of the vertices in B3,x are pairwise distinct. Thus, we have that φ′(z) ∈
Φ′ ∪ {c4, c5} and it follows that φ′(z) 6= φ′(v). Thus, we have that P is not in Hij(φ

′),
which is a contradiction.

Subclaim 4.3.30. The vertex v is not in B3,x−2.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−2. Notice that NH(B3,x−2) ⊆
{u2,x−1, u2,x−3, u1,x−2}. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3,
u2,x−1, u1,x−2 are in P . Since u1,x−2 is adjacent to u2,x−3 and φ(u1,x−2) = φ′(u1,x−2) and
φ(u2,x−3) = φ′(u2,x−3), we have that φ′(u1,x−2) 6= φ′(u2,x−3). By the construction of φ′,
we have that φ′(u2,x−1) 6= φ′(u1,x−2), φ

′(u2,x−3). It also follows from the construction of
φ′ that φ′(b) /∈ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} for all b ∈ B3,x−2. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−1), φ
′(u1,x−2) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

By Subclaims 4.3.29 and 4.3.30, it follows that v′ /∈ V (C) for all v′ ∈ B3,x∪B3,x−2; thus,
we have that v = u2,x−1. Notice that NH(B2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B3,x ∪ B3,x−2.
Since vertices of C are not in B3,x ∪B3,x−2 and B2,x−1 ∩ V (C0) = ∅, it follows that at least
two of u1,x−2, u1,x, u0,x−1 are in P .

Since u0,x−1 is adjacent to u1,x−2 and u1,x, and φ(u0,x−1) = φ′(u0,x−1) and φ(u1,x−2) =
φ′(u1,x−2) and φ(u1,x) = φ′(u1,x), we have that φ′(u0,x−1) 6= φ′(u1,x−2), φ

′(u1,x). If φ′(u1,x−2)
6= φ′(u1,x), then φ′(u2,x−1), φ

′(u0,x−1), φ
′(u1,x−2), φ

′(u1,x) are distinct; hence, it follows that
P is not in Hij(φ

′), which is a contradiction. Thus, φ′(u1,x−2) = φ′(u1,x) and it follows that
u1,x−2 and u1,x are the neighbours of u2,x−1 in P . Since u1,x−2 /∈ V (C0), we have that at
least one neighbour of u1,x−2, other than v, is in P .

Recall that NH(u1,x−2) ⊆ {u0,x−3, u0,x−2, u0,x−1} ∪ B1,x−2 ∪ B2,x−1 ∪ B2,x−3 and say
z 6= u2,x−1 ∈ NH(u1,x−2) is a neighbour of u1,x−2 in P . Since φ′(z) = φ(z) ∈ Φ, it follows
that φ′(z) 6= φ′(v). Thus, we have that P is not in Hij(φ

′), which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ V (C3) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.
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Figure 4.6: A possible configuration of the vertices of interest in Claim 4.3.31.

Claim 4.3.31. φ(u1,x−4) = φ(u1,x−2).

Proof. Suppose not. Note that Figure 4.6 shows an approximate configuration of the
vertices of interest here. We will construct a new k-colouring φ′ of H.

Let Φ = {φ(z) : z ∈ NH2(u2,x−1) ∪ NH1(u1,x−2) ∪ {u2,x+1, u2,x−3, u3,x−2}}. Notice that
NH2(u2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B2,x−1. By planarity, we have that |NH2(u2,x−1) ∩
(B2,x−1 ∪ {u0,x−1})| ≤ 1. Also, notice that NH1(u1,x−2) ⊆ {u0,x−3, u0,x−1, u0,x−2} ∪B1,x−2.
By planarity, we have that |NH(u1,x−2) ∩ (B1,x−2 ∪ {u0,x−2})| ≤ 1. Thus, it follows that
|Φ| ≤ 9. Since k ≥ 12, there exists c ∈ [k] \ Φ. Let φ′(u2,x−1) = c.

Notice that, for each b ∈ B3,x−2, we have that NH(b) ⊆ B3,x−2 ∪ {u2,x−1, u2,x−3, u1,x−2}.
Since φ(u2,x−3) = φ(u2,x−1), it follows that the colours of the vertices in B3,x−2 ∪ {u1,x−2}
in φ are pairwise distinct. Also, note that φ(u2,x−3) 6= φ′(u2,x−1). Let c1, c2, c3 ∈ [k] \
{φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} such that c1 = φ(u3,x−2) and c1, c2, c3 are distinct. Note
that c1, c2, c3 exist since k ≥ 12 ≥ 6. For each b ∈ B3,x−2 \ {u3,x−2}, let φ′(b) ∈ {c1, c2, c3}
such that adjacent vertices have distinct colours.

Similarly, for each b ∈ B3,x, we have that NH(b) ⊆ B3,x ∪ {u2,x+1, u2,x−1, u1,x}. Also,
note that φ(u2,x+1) 6= φ′(u2,x−1). Let c4, c5 ∈ [k] \ {φ′(u2,x−1), φ(u2,x+1), φ(u1,x), φ(w), c1}
such that c4, c5 are distinct. Note that c4, c5 exist since k ≥ 12 ≥ 7. Let φ′(u) = c4, and if
there exists u′ 6= u ∈ B3,x, then let φ′(u′) = c5. Let φ′(v) = φ(v) for all v in H that have
not yet been assigned a colour under φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since v /∈ V (C0) for
all v where φ′(v) 6= φ(v), it follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1)
holds for M0 extending to φ′. Since M0 does not extend to φ′, it follows by Definition
3.2.8(2) that H̃ij(φ

′,M0) contains a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ,
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it follows that C is not a cycle in H̃ij(φ,M0); thus, we have that C contains at least one
of the following:

(i) a vertex in B3,x,

(ii) a vertex in B3,x−2 \ {u3,x−2},

(iii) u2,x−1.

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let v ∈ V (C) such that
v ∈ B3,x ∪ {u2,x−1} ∪ B3,x−2 and let P be the component of C ′ in Hij(φ

′) that contains v.
Note that v /∈ V (C0).

Subclaim 4.3.32. The vertex v is not in B3,x.

Proof. Suppose, towards a contradiction, that v ∈ B3,x. Notice that NH(B3,x) ⊆ {u2,x+1,
u2,x−1, u1,x}. Since B3,x ∩ V (C0) = ∅, it follows that at least two of u2,x−1, u2,x+1, u1,x are
in P . Since u1,x is adjacent to u2,x+1 and φ(u1,x) = φ′(u1,x) and φ(u2,x+1) = φ′(u2,x+1),
we have that φ′(u1,x) 6= φ′(u2,x+1). By the construction of φ′, we have that φ′(u2,x−1) 6=
φ′(u1,x), φ

′(u2,x+1). It also follows from the construction of φ′ that φ′(b) /∈ {φ′(u2,x−1),
φ(u2,x+1), φ(u1,x)} for all b ∈ B3,x. Hence, we have that φ′(v), φ′(u2,x−1), φ

′(u2,x+1), φ
′(u1,x)

are pairwise distinct. Thus, it follows that P is not in Hij(φ
′), which is a contradiction.

Subclaim 4.3.33. The vertex v is not in B3,x−2.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−2. Notice that NH(B3,x−2) ⊆
{u2,x−1, u2,x−3, u1,x−2}. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3,
u2,x−1, u1,x−2 are in P . Since u1,x−2 is adjacent to u2,x−3 and φ(u1,x−2) = φ′(u1,x−2) and
φ(u2,x−3) = φ′(u2,x−3), we have that φ′(u1,x−2) 6= φ′(u2,x−3). By the construction of φ′,
we have that φ′(u2,x−1) 6= φ′(u1,x−2), φ

′(u2,x−3). It also follows from the construction of
φ′ that φ′(b) /∈ {φ(u2,x−3), φ

′(u2,x−1), φ(u1,x−2)} for all b ∈ B3,x−2. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−1), φ
′(u1,x−2) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

By Subclaims 4.3.32 and 4.3.33, it follows that v′ /∈ V (C) for all v′ ∈ B3,x∪B3,x−2; thus,
we have that v = u2,x−1. Notice that NH(B2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B3,x ∪ B3,x−2.
Since vertices of C are not in B3,x ∪B3,x−2 and B2,x−1 ∩ V (C0) = ∅, it follows that at least
two of u1,x−2, u1,x, u0,x−1 are in P .
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Since u0,x−1 is adjacent to u1,x−2 and u1,x, and φ(u0,x−1) = φ′(u0,x−1) and φ(u1,x−2) =
φ′(u1,x−2) and φ(u1,x) = φ′(u1,x), we have that φ′(u0,x−1) 6= φ′(u1,x−2), φ

′(u1,x). If φ′(u1,x−2)
6= φ′(u1,x), then φ′(u2,x−1), φ

′(u0,x−1), φ
′(u1,x−2), φ

′(u1,x) are distinct; hence, it follows that
P is not in Hij(φ

′), which is a contradiction. Thus, φ′(u1,x−2) = φ′(u1,x) and it follows that
u1,x−2 and u1,x are the neighbours of u2,x−1 in P . Since u1,x−2 /∈ V (C0), we have that at
least one neighbour of u1,x−2, other than v, is in P .

Recall that NH(u1,x−2) ⊆ {u0,x−3, u0,x−2, u0,x−1} ∪ B1,x−2 ∪ B2,x−1 ∪ B2,x−3 and say
z 6= u2,x−1 ∈ NH(u1,x−2) is a neighbour of u1,x−2 in P . Since φ′(u1,x−4) 6= φ′(u1,x−2), it
follows that z /∈ B2,x−3 \{u2,x−3}. Thus, we have that φ′(z) = φ(z) ∈ Φ. Since φ′(z) ∈ Φ, it
follows that φ′(z) 6= φ′(v). Thus, we have that P is not in Hij(φ

′), which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(v) = φ(v) for all v ∈ V (C3) \ {u} such that M0 extends to φ′. If pqr
is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then r ∈ {u3,x−2, u3,x+2}. Hence, if a
bichord is monochromatic in φ′, then it is monochromatic in φ. Since v is in a bichord of
Γ3 that is monochromatic in φ, but is not monochromatic in φ′, it follows that φ′ has fewer
monochromatic bichords of Γ3 than φ, which contradicts the minimality of φ.

Since u1,x−2 ∈ B(Γ0), it follows that u2,x−3 ∈ B(Γ1); thus, we have that u3,x−4 ∈ B(Γ2)
or u3,x−4 = u1,x−4. Note that Figure 4.6 shows an approximate configuration of the vertices
of interest here as well.

We will now construct a new k-colouring φ′ of H. Since φ(u1,x−4) = φ(u1,x−2), it
follows that the colours of the vertices in B2,x−3∪{u0,x−3} in φ are pairwise distinct. Since
|B2,x−3| ≥ 5, we have that there exists y ∈ B2,x−3 such that φ(y) 6= φ(u2,x−1), φ(u2,x−5),
φ(u3,x−4), φ(u3,x−2). Let φ′(u2,x−3) = φ(y) and φ′(y) = φ(u2,x−3).

Notice that NH(b) ⊆ B3,x−4 ∪ {u2,x−5, u2,x−3, u1,x−4} for all b ∈ B3,x−4. Note that
φ′(u2,x−3) 6= φ(u2,x−5). Let c1, c2, c3 ∈ [k] \ {φ(u2,x−5), φ(u1,x−4), φ

′(u2,x−3), φ(u3,x−6),
φ(u3,x−2)} such that c1, c2, c3 are pairwise distinct. Note that c1, c2, c3 exist since k ≥ 12 ≥
8. Let φ′(u3,x−4) = c1 and, for each b ∈ B3,x−4 \ {u3,x−4}, let φ′(b) ∈ {c1, c2, c3} such that
adjacent vertices have distinct colours.

Also notice that, for each b ∈ B3,x−2, we have that NH(b) ⊆ B3,x−2 ∪ {u2,x−1, u2,x−3,
u1,x−2}. Since φ(u2,x−3) = φ(u2,x−1), it follows that the colours of the vertices in B3,x−2 ∪
{u1,x−2} in φ are pairwise distinct. Note that φ′(u2,x−3) 6= φ(u2,x−1). Let c4, c5, c6 ∈ [k] \
{φ′(u2,x−3), φ(u2,x−1), φ(u1,x−2)} such that c4 = φ(u3,x−2) and c4, c5, c6 are distinct. Note
that c4, c5, c6 exist since k ≥ 12 ≥ 6. For each b ∈ B3,x−2 \ {u3,x−2}, let φ′(b) ∈ {c4, c5, c6}
such that adjacent vertices have distinct colours.

Similarly, for each b ∈ B3,x, we have that NH(b) ⊆ B3,x ∪ {u2,x+1, u2,x−1, u1,x}. Let
Φ′ = {c4, c5, c6} ∪ {φ(z) : z ∈ NH2(u2,x−1) ∪ {u2,x−1, u2,x+1, w}}. Recall that NH2(u2,x−1) ⊆
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{u1,x−2, u1,x, u0,x−1} ∪ B2,x−1 and |NH2(u2,x−1) ∩ (B2,x−1 ∪ {u0,x−1})| ≤ 1. Thus, it follows
that |Φ′| ≤ 9. Since k ≥ 12, there exist c7, c8 ∈ [k] \ Φ′ where c7, c8 are distinct. Let
φ′(u) = c7, and if there exists u′ 6= u ∈ B3,x, then let φ′(u′) = c8. Let φ′(v) = φ(v) for all
v in H that have not yet been assigned a colour under φ′.

Suppose, towards a contradiction, that M0 does not extend to φ′. Since v /∈ V (C0) for
all v where φ′(v) 6= φ(v), it follows that φ′|C0

= φ|C0 = φ(M0). Hence, Definition 3.2.8(1)
holds for M0 extending to φ′. Since M0 does not extend to φ′, it follows by Definition
3.2.8(2) that H̃ij(φ

′,M0) contains a cycle C for some i 6= j ∈ [k]. Since M0 extends to φ,

it follows that C is not a cycle in H̃ij(φ,M0); thus, we have that C contains at least one
of the following:

(i) a vertex in B3,x,

(ii) a vertex in B3,x−2 \ {u3,x−2},

(iii) a vertex in B3,x−4,

(iv) a vertex in B2,x−3.

Notice that the cycle C in H̃ij(φ
′,M0) is equivalent to a subgraph C ′ in Hij(φ

′) where
C ′ is a cycle or a collection of paths with endpoints in V (C0). Let v ∈ V (C) such that
v ∈ B3,x∪B3,x−2∪B3,x−4∪B2,x−3 and let P be the component of C ′ in Hij(φ

′) that contains
v. Note that v /∈ V (C0).

Subclaim 4.3.34. The vertex v is not in B3,x.

Proof. Suppose, towards a contradiction, that v ∈ B3,x. Notice that NH(B3,x) ⊆ {u2,x+1,
u2,x−1, u1,x}. Since B3,x ∩ V (C0) = ∅, it follows that at least two of u2,x−1, u2,x+1, u1,x are
in P . Since u1,x is adjacent to u2,x+1 and u2,x−1, and φ(u1,x) = φ′(u1,x) and φ(u2,x+1) =
φ′(u2,x+1) and φ(u2,x−1) = φ′(u2,x−1), we have that φ′(u1,x) 6= φ′(u2,x+1), φ

′(u2,x−1). By the
construction of φ′, we have that φ′(v) /∈ {φ′(u2,x−1), φ(u2,x+1), φ(u1,x)} for all v ∈ B3,x.
Furthermore, we have that φ′(u) 6= φ′(u′) if u′ 6= u ∈ B3,x. Thus, it follows that u2,x−1 and
u2,x+1 are the neighbours of v in P and φ′(u2,x−1) = φ′(u2,x+1). Since u2,x−1 /∈ V (C0), it
follows that at least one neighbour of u2,x−1, other than v, is in P .

Notice that NH(u2,x−1) ⊆ {u1,x−2, u1,x, u0,x−1} ∪ B2,x−1 ∪ B3,x ∪ B3,x−2. Say z 6= v ∈
NH(u2,x−1) is a neighbour of u2,x−1 in P . Recall that φ′(b) ∈ {c4, c5, c6} for all b ∈ B3,x−2
and the colours of the vertices in B3,x are pairwise distinct. Thus, we have that φ′(z) ∈
Φ′ ∪ {c7, c8} and it follows that φ′(z) 6= φ′(v). Thus, we have that P is not in Hij(φ

′),
which is a contradiction.
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Subclaim 4.3.35. The vertex v is not in B3,x−2.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−2. Notice that NH(B3,x−2) ⊆
{u2,x−1, u2,x−3, u1,x−2}. Since B3,x−2 ∩ V (C0) = ∅, it follows that at least two of u2,x−3,
u2,x−1, u1,x−2 are in P . Since u1,x−2 is adjacent to u2,x−1 and φ(u1,x−2) = φ′(u1,x−2) and
φ(u2,x−1) = φ′(u2,x−1), we have that φ′(u1,x−2) 6= φ′(u2,x−1). By the construction of φ′,
we have that φ′(u2,x−3) 6= φ′(u1,x−2), φ

′(u2,x−1). It also follows from the construction of
φ′ that φ′(b) /∈ {φ′(u2,x−3), φ(u2,x−1), φ(u1,x−2)} for all b ∈ B3,x−2. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−1), φ
′(u1,x−2) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

Subclaim 4.3.36. The vertex v is not in B3,x−4.

Proof. Suppose, towards a contradiction, that v ∈ B3,x−4. Notice that NH(B3,x−4) ⊆
{u2,x−3, u2,x−5, u1,x−4}. Since B3,x−4 ∩ V (C0) = ∅, it follows that at least two of u2,x−5,
u2,x−3, u1,x−4 are in P . Since u1,x−4 is adjacent to u2,x−5 and φ(u1,x−4) = φ′(u1,x−4) and
φ(u2,x−5) = φ′(u2,x−5), we have that φ′(u1,x−4) 6= φ′(u2,x−5). By the construction of φ′,
we have that φ′(u2,x−3) 6= φ′(u1,x−4), φ

′(u2,x−5). It also follows from the construction of
φ′ that φ′(b) /∈ {φ′(u2,x−3), φ(u2,x−5), φ(u1,x−4)} for all b ∈ B3,x−4. Hence, we have that
φ′(v), φ′(u2,x−3), φ

′(u2,x−5), φ
′(u1,x−4) are pairwise distinct. Thus, it follows that P is not

in Hij(φ
′), which is a contradiction.

By Subclaims 4.3.34, 4.3.35, and 4.3.36, it follows that v′ /∈ V (C) for all v′ ∈ B3,x ∪
B3,x−2 ∪ B3,x−4; thus, we have that v ∈ B2,x−3. Notice that NH(B2,x−3) ⊆ {u1,x−4, u1,x−2,
u0,x−3} ∪B3,x−2∪B3,x−4. Since vertices of C are not in B3,x−2∪B3,x−4 and B2,x−3∩V (C0) =
∅, it follows that at least two of u1,x−4, u1,x−2, u0,x−3 are in P .

Since u0,x−3 is adjacent to u1,x−4 and u1,x−2, and φ(u0,x−3) = φ′(u0,x−3) and φ(u1,x−4) =
φ′(u1,x−4) and φ(u1,x−2) = φ′(u1,x−2), we have that φ′(u0,x−3) 6= φ′(u1,x−4), φ

′(u1,x−2). Since
φ(u1,x−4) = φ(u1,x−2) by Claim 4.3.31, we have that φ′(u1,x−4) = φ(u1,x−4) = φ(u1,x−2) =
φ′(u1,x−2). Thus, it follows that the colours of the vertices in B2,x−3 ∪ {u0,x−3} in φ are
pairwise distinct and not equal to φ(u1,x−4) or φ(u1,x−2). Additionally, we have that the
colours of the vertices in B2,x−3 ∪ {u0,x−3} in φ′ are pairwise distinct and not equal to
φ′(u1,x−4) or φ′(u1,x−2). Hence, it follows that P contains u1,x−4, u1,x−2 and at most one
vertex in B2,x−3. Thus, we have that u1,x−4, u1,x−2 are the neighbours of v in P . Since

u1,x−2 /∈ V (C0), it follows that ũ1,x−4ṽũ1,x−2 is a subpath of C in H̃ij(φ
′,M0). Let P ′ be

the other (u1,x−4, u1,x−2)-path in C and notice that b̃ /∈ P ′ for all b ∈ B3,x−2 ∪ B3,x−4 by
Subclaims 4.3.35 and 4.3.36. By the construction of φ′, we have that there exists a vertex
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b ∈ B2,x−3 such that φ′(v) = φ(b). Thus, it follows that P ′ + ũ1,x−4b̃ũ1,x−2 is a cycle in

H̃ij(φ,M0). Thus, we have that M0 does not extend to φ, which is a contradiction.

Therefore, it follows that there exists a k-colouring φ′ of H where φ′(u) 6= φ′(u3,x−2),
φ′(u3,x+2) and φ′(u3,x−4) 6= φ′(u3,x−6), φ

′(u3,x−2) and φ′(v) = φ(v) for all v ∈ V (C3) \ {u}
such that M0 extends to φ′. If pqr is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x, then
r ∈ {u3,x−2, u3,x+2}. Similarly, if pqr is a bichord of Γ3 where q ∈ B(Γ3) and p = u3,x−4, then
r ∈ {u3,x−6, u3,x−2}. Hence, if a bichord is monochromatic in φ′, then it is monochromatic
in φ. Since v is in a bichord of Γ3 that is monochromatic in φ, but is not monochromatic
in φ′, it follows that φ′ has fewer monochromatic bichords of Γ3 than φ, which contradicts
the minimality of φ.
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Chapter 5

Critical Canvases

In this chapter, we prove the Main Theorem 5.3.5. In order to do that, we first determine
some structure in graphs which are critical for acyclic k-colouring. This is followed by a
collection of calculations which will also be used to prove the main result.

5.1 General Structure

In this section, we prove the Key Lemma 5.1.2 and the General Structure Lemma 5.1.4.

Definition 5.1.1. Let G be a graph with a proper subgraph H. The graph G is H-critical
for acyclic k-colouring if, for all proper subgraphs G′ of G that contain H, there exists a
k-mosaic of H which extends to G′, but not to G.

Lemma 5.1.2 (Key Lemma). Let G be a graph with a subgraph H where G is H-critical for
acyclic k-colouring. If G = A∪B where H ⊆ A and B 6= A∩B, then B is (A∩B)-critical
for acyclic k-colouring.

Proof. Suppose not. Thus, there exists a proper subgraph S of B where A∩B is a subgraph
of S such that every k-mosaic of A∩B that extends to S, also extends to B. Let T = S∪A.

Since G is H-critical for acyclic k-colouring, there exists a k-mosaic MH of H which
extends to a k-mosaic MT of T , but not to G. Let MA = Mosaic[φ(MT )|A,MH ] and let
MA∩B be the restriction of MA to A ∩ B. Let MS be the restriction of MT to B. Since T
has a k-mosaic MT and A is a subgraph of T and H is a subgraph of A with a k-mosaic
MH where MH extends to MT , we have that T , A, and H satisfy the conditions of G, G′,
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and H in Proposition 3.3.11. Thus, by Proposition 3.3.11, it follows that MA extends to
MT . Since A is a subgraph of T and the k-mosaic MA of A extends to the k-mosaic MT

of T and B is a subgraph of T , we have that T , A, and B satisfy the conditions of G, G′,
and H in Proposition 3.3.15. Hence, by Proposition 3.3.15, it follows that MA∩B extends
to MS. Thus, since every k-mosaic of A∩B that extends to S also extends to B, we have
that MA∩B extends to B.

Since MA∩B extends to B, we have that G, A, and B satisfy the conditions of G, A,
and B in Proposition 3.3.16. Thus, by Proposition 3.3.16, it follows that MA extends to
G. Now, since MA extends to G and MH extends to MA, we have by Proposition 3.3.1
that MH extends to G, which is a contradiction.

Definition 5.1.3. We say a canvas Γ = (G,H) is k-critical if G is H-critical for acyclic
k-colouring.

Lemma 5.1.4 (General Structure Lemma). If a canvas Γ = (G,C) where C is the outer
cycle of G is k-critical for k ≥ 12, then there exists at least one of the following:

(i) a chord of C, or

(ii) a bichord of Γ, or

(iii) a 6-double-pod of Γ.

Proof. Since G is C-critical for acyclic k-colouring, there exists a k-mosaic M of C that
does not extend to G. By the Extension Lemma 4.2.1, there exists either (a) a chord uv
of C, (b) a bichord uvw of Γ where φM(u) = φM(w), or (c) an r-double-pod v of Γ where
|{φM(u) : u ∈ feet(v)}| ≥ k − 6. In the case of (a), it follows that G contains a chord of
C; thus, (i) holds. In the case of (b), it follows that Γ contains a bichord; thus, (ii) holds.
In the case of (c), it follows that Γ contains an r-double-pod where r ≥ k − 6 and, since
k ≥ 12, we have that Γ contains a 6-double-pod; thus, (iii) holds.

Theorem 5.1.5. If k ≥ 10 is an integer, then there does not exist a plane graph G with
outer triangle C such that G is C-critical for acyclic k-colouring.

Proof. Suppose, towards a contradiction, that there exists a plane graph G with outer
cycle C, where C is a triangle, and G is C-critical for acyclic k-colouring for some k ≥ 10.
Since G is C-critical for acyclic k-colouring, G 6= C. Hence, for every proper subgraph
H of G where C ⊆ H, there exists a k-mosaic of C which extends to H, but not to G.
Therefore, there exists a k-mosaic M of C which does not extend to G, contradicting
Corollary 4.2.4.
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Theorem 5.1.6. Let Γ = (G,C) be a canvas where C is the outer cycle of G and C is
a 4-cycle. Let k ≥ 11. If Γ is k-critical, then |V (G) \ V (C)| ≤ k − 2 and all vertices in
V (G) \ V (C) are bipods of Γ.

Proof. Suppose not. Let M be a k-mosaic of C that does not extend to G. Let C =
u1u2u3u4u1. If C has a chord, say u1u3, then G〈u1u2u3u1〉 = u1u2u3u1 and G〈u1u4u3u1〉 =
u1u4u3u1 by Theorem 5.1.5, and we have that |V (G) \ V (C)| = 0, a contradiction. Thus,
we may assume that C has no chords.

By Corollary 4.2.5, there exists a vertex v ∈ int(C) such that v is adjacent to u,w ∈
V (C) where φM(u) = φM(w). Since φ(M) is proper and acyclic, there is at most one pair
of vertices of C that have the same colour in φ(M). Without loss of generality, say that
φM(u1) = φM(u3) = k. Thus, there exists a vertex in V (G) \ V (C) that is adjacent to u1
and u3. Let A be the (non-empty) set of vertices in V (G) \ V (C) that are adjacent to u1
and u3.

Claim 5.1.7. The size of A is at most k − 2.

Proof. Suppose not. Let v ∈ A. Since G is C-critical for acyclic k-colouring, there exists a
k-mosaic MC of C which extends to a k-mosaic M ′ of G−v, but not to G. Notice that there
are at least k vertices adjacent to u1 and u3 in G−v: the k−2 vertices of A, and the other
vertices u2, u4 of C. Let A′ = (A\{v})∪ {u2, u4}. Recall that φM(u1) = φM(u3) = k; thus,
φM ′(u1) = φM ′(u3) = k. For all vertices a ∈ A′, we have that φM ′(a) 6= φM ′(u1); hence,
the colours of the vertices of A′ in φ(M ′) are in [k− 1]. By the Pigeonhole Principle, there
exist vertices x, y ∈ A′ such that φM ′(x) = φM ′(y). Now u1xu3yu1 is a cycle in Gij(φ(M ′)),
a contradiction.

By Theorem 5.1.5, the interiors of all triangles in G are empty. That is, for every
triangle T in G, G〈T 〉 = T . Therefore, if G is a triangulation, then V (C)∪A are the only
vertices of G and we have |V (G)\V (C)| ≤ k−2. Thus, we may assume that there exists a
4-cycle C ′ = u1xu3yu1 where x, y ∈ A such that int(C ′) is non-empty and int(C ′)∩A = ∅.
If C ′ has a chord, then it is a triangulation and therefore the interior of C ′ is empty; hence,
C ′ has no chords.

Notice that G = (G\int(C ′))∪G〈C ′〉) and C ⊆ G\int(C ′). Furthermore, (G\int(C ′))∩
G〈C ′〉 = C ′. Thus, by Lemma 5.1.2, G〈C ′〉 is C ′-critical for acyclic k-colouring. Let M
be a k-mosaic of G \ int(C ′) that does not extend to G and let M ′ be the restriction of
M to C ′. Note that u1, u3 ∈ V (C ′), and φM ′(u1) = φM(u1) = k = φM(u3) = φM ′(u3).
Furthermore, since φ(M) is proper and acyclic, the only pair of vertices of C ′ that have
the same colour in φ(M) (and thus in φ(M ′)) is (u1, u3). By Corollary 4.2.5, there exists
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a vertex v ∈ int(C ′) that is adjacent to u1 and u3. By the definition of A, we have that
v ∈ A; thus, {v} ⊆ int(C ′) ∩ A, which implies that int(C ′) ∩ A 6= ∅, a contradiction.

5.2 Calculations

In this section, we establish some bounds which will be used in the proof of the Main
Theorem 5.3.5.

Lemma 5.2.1. Let Γ = (G,C) be a canvas where C is the outer cycle of G and |V (C)| ≥ 5
and G contains a chord uv of C. Let C1 and C2 be the cycles that bound the two inner
faces of C + uv. Let Gi = G〈Ci〉 for each i ∈ {1, 2}. Let k ≥ 1 and let z = 36k. If all of
the following hold for each i ∈ {1, 2}:

(i) if |V (Ci)| = 3, then |V (Gi) \ V (Ci)| = 0;

(ii) if |V (Ci)| = 4, then |V (Gi) \ V (Ci)| ≤ k;

(iii) if |V (Ci)| ≥ 5, then |V (Gi) \ V (Ci)| ≤ |V (Ci)| − γi for some 5− εz ≥ γi ≥ 4.8 + εz;

then ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy for some 5− εz ≥ γ ≥ 4.8 + εz, where y = 12k.

Proof. If both C1 and C2 are 3- or 4-cycles, then |V (C)| ≤ 6 and we have that

ε|V (G) \ V (C)| = ε(|V (G1) \ V (C1)|+ |V (G2) \ V (C2)|)
≤ 2εk.

Since z− y ≥ 2k, we have that 2εk ≤ εz− εy. Since 5− εz ≥ γ, it follows that εz ≤ 5− γ.
Thus,

ε|V (G) \ V (C)| ≤ 5− γ − εy
≤ |V (C)| − γ − εy,

for some 5− εz ≥ γ ≥ 4.8 + εz, as desired.

If one of C1, C2 is a 3- or 4-cycle, say C1, and the other, say C2, has length at least 5,
then

ε|V (G) \ V (C)| = ε(|V (G1) \ V (C1)|+ |V (G2) \ V (C2)|)
≤ εk + |V (C2)| − γ2.
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Since |V (C1)|+ |V (C2)| = |V (C)|+2 and |V (C1)| ≥ 3, it follows that |V (C2)| ≤ |V (C)|−1.
Since z − y ≥ k, we have that εk ≤ εz − εy. Thus,

ε|V (G) \ V (C)| ≤ εz − εy + |V (C)| − 1− γ2.

Since 5 − εz ≥ 4.8 + εz, it follows that 0.2 ≥ 2εz. Thus, we have that 0.1 ≥ εz. Since
0.1 − 1 ≤ 0, it follows that ε|V (G) \ V (C)| ≤ |V (C)| − γ2 − εy. Thus, we have that
ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy, for some 5− εz ≥ γ ≥ 4.8 + εz, as desired.

Otherwise, if |V (C1)|, |V (C2)| ≥ 5, then

ε|V (G) \ V (C)| = ε(|V (G1) \ V (C1)|+ |V (G2) \ V (C2)|)
≤ |V (C1)|+ |V (C2)| − γ1 − γ2
= |V (C)|+ 2− γ1 − γ2.

Since 2− γ1 ≤ 2− (4.8 + εz) ≤ −εy, we find that ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy, for
some 5− εz ≥ γ ≥ 4.8 + εz, as desired.

Lemma 5.2.2. Let Γ = (G,C) be a canvas where C is the outer cycle of G and |V (C)| ≥ 5
and Γ contains a dividing bichord uvw. Let C1 and C2 be the cycles that bound the two inner
faces of C + uvw. Let Gi = G〈Ci〉 for each i ∈ {1, 2}. Let k ≥ 1 and let z = 36k. If, for
each i ∈ {1, 2}, we have that |V (Gi)\V (Ci)| ≤ |V (Ci)|−γi for some 5−εz ≥ γi ≥ 4.8+εz,
then ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy for some 5− εz ≥ γ ≥ 4.8 + εz, where y = 12k.

Proof. Since |V (Gi) \ V (Ci)| ≤ |V (Ci)| − γi for some 5 − εz ≥ γi ≥ 4.8 + εz, for each
i ∈ {1, 2}, it follows that:

ε|V (G) \ V (C)| = ε(|V (G1) \ V (C1)|+ |V (G2) \ V (C2)|+ 1)

≤ |V (C1)|+ |V (C2)| − γ1 − γ2 + ε

= |V (C)|+ 4− γ1 − γ2 + ε.

Since γ1 ≥ 4.8− εz and ε ≤ εz ≤ 0.1, we have that ε|V (G) \ V (C)| ≤ |V (C)|+ 4− 4.8−
εz − γ2 + 0.1. Since 4.1 − 4.8 ≤ 0, it follows that ε|V (G) \ V (C)| ≤ |V (C)| − εy − γ2.
Thus, we have that ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy, for some 5− εz ≥ γ ≥ 4.8 + εz, as
desired.

Lemma 5.2.3. Let Γ = (G,C) be a canvas where C is the outer cycle of G and |V (C)| ≥ 5
and Γ contains a 6-double-pod v such that G has no chords of C and Γ has no dividing
bichords. Let C1, C2, . . . , C6 be the cycles that bound the six inner faces of C ∪ legs(v). Let
Gi = G〈Ci〉 for each i ∈ {1, 2, . . . , 6}. Let k ≥ 1 and let z = 36k. If all of the following
hold for each i ∈ {1, 2, . . . , 6}:
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(i) if |V (Ci)| = 3, then |V (Gi) \ V (Ci)| = 0;

(ii) if |V (Ci)| = 4, then |V (Gi) \ V (Ci)| ≤ k;

(iii) if |V (Ci)| ≥ 5, then |V (Gi) \ V (Ci)| ≤ |V (Ci)| − γi for some 5− εz ≥ γi ≥ 4.8 + εz;

then ε|V (G) \ V (C)| ≤ |V (C)| − γ − εy for some 5− εz ≥ γ ≥ 4.8 + εz, where y = 36k.

Proof. First note that, since Γ has a 6-double-pod, we have that |V (C)| ≥ 6. If Ci is a 3-
or 4-cycle for all i ∈ {1, 2, . . . , 6}, then for some 5− εz ≥ γ ≥ 4.8 + εz:

ε|V (G) \ V (C)| ≤ ε
6∑
i=1

(|V (Gi) \ V (Ci)|) + 7ε

≤ 6εk + 7ε.

Since 2z − y = 36k ≥ 6k + 7, it follows that 6εk + 7ε ≤ 2εz − εy. Since 5 − εz ≥ γ, we
have that εz ≤ 5− γ. Thus,

ε|V (G) \ V (C)| ≤ 5− γ + εz − εy.

Since |V (C)| ≥ 6, we have that |V (C)| − 1 ≥ 5. Recall that εz ≤ 0.1. Thus,

ε|V (G) \ V (C)| ≤ |V (C)| − 1− γ + 0.1− εy
≤ |V (C)| − γ − εy,

as desired.

Now suppose at least one of C1, . . . , C6 has at least 5 vertices. Let t denote the number
of C1, . . . , C6 that are 3- or 4-cycles. Since not all of C1, . . . , C6 are 3- or 4-cycles, we have
that 6− t ≥ 1. Without loss of generality, suppose |V (Ci)| ≥ 5 for i ∈ {1, . . . , 6− t}.

Claim 5.2.4.
∑6−t

i=1(|V (Ci)| − 4) ≤ |V (C)| − t.

Proof. For each i ∈ {1, . . . , 6 − t}, we have that Ci has at most 4 edges that are not
in E(C). Thus, it follows that

∑6−t
i=1(|V (Ci)| − 4) ≤

∑6−t
i=1 |E(Ci) ∩ E(C)|. Notice that

|E(Ci) ∩ E(C)| ≥ 1 for all i ∈ {6 − t, . . . , 6}. Since E(C1) ∩ E(C), . . . , E(C6) ∩ E(C) are
pairwise disjoint, it follows that

∑6−t
i=1 |E(Ci)∩E(C)| ≤ |E(C)| − t = |V (C)| − t. Thus, we

have that
∑6−t

i=1(|V (Ci)| − 4) ≤ |V (C)| − t, as desired.
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Thus,

ε|V (G) \ V (C)| ≤ ε
6∑
i=1

(|V (Gi) \ V (Ci)|) + 7ε

≤ ε
6−t∑
i=1

(|V (Ci)| − γi) + tεk + 7ε

≤
6−t∑
i=1

|V (Ci)| −
6−t∑
i=1

(γi) + tεk + 7ε

≤
6−t∑
i=1

(|V (Ci)| − 4) + 4(6− t)−
6−t∑
i=1

(γi) + tεk + 7ε.

By Claim 5.2.4, we have that
∑6−t

i=1(|V (Ci)| − 4) ≤ |V (C)| − t. Since z = 36k, it follows
that tk + 7 ≤ z. Thus,

ε|V (G) \ V (C)| ≤ |V (C)| − t+ 24− 4t−
6−t∑
i=1

(γi) + εz

≤ |V (C)| − γ1 + 24− 5t−
6−t∑
i=2

(γi) + εz.

Since γi ≥ 4.8 + εz for all i ∈ {1, . . . , 6}, it follows that
∑6−t

i=2(γi) ≥ (5 − t)(4.8 + εz) =
24− 4.8t+ 5εz − tεz. Thus,

ε|V (G) \ V (C)| ≤ |V (C)| − γ1 + 24− 5t− (24− 4.8t+ 5εz − tεz) + εz

≤ |V (C)| − γ1 − εz − 0.2t− 3εz + tεz.

Recall that εz ≤ 0.1. Hence, we have that 0.2t ≥ tεz, which implies that −0.2t+ tεz ≤ 0.
Since −3εz ≤ 0 and z = y, it follows that

ε|V (G) \ V (C)| ≤ |V (C)| − γ1 − εy.

Hence, we have that ε|V (G)\V (C)| ≤ |V (C)|−γ− εy, for some 5− εz ≥ γ ≥ 4.8 + εz,
as desired.

5.3 Proving the Main Result

In this section, we prove the Main Theorem 5.3.5.
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Definition 5.3.1. Let Γ = (G,C) be a canvas with a bichord uvw where v ∈ B(Γ). We
say u and w are the parents of v.

Definition 5.3.2. Let Γ0 = (G0, C0) be a canvas where C0 is the outer cycle of G0 and
|V (C0)| ≥ 5. Let Γi = (Gi, Ci) = R(Γi−1, B(Γi−1)) for each i ∈ {1, 2, 3}. Let X ⊆ V (Ci)
for some i ∈ {0, 1, 2, 3}. We say that Ai is the set of ancestors of X if A0 = X and
Aj = Aj−1 ∪ {a : a is a parent of a′ where a′ ∈ Aj−1} for all j ∈ {1, . . . , i}.

Proposition 5.3.3. Let Γ0 = (G0, C0) be a canvas where C0 is the outer cycle of G0 and
|V (C0)| ≥ 5. Let Γi = (Gi, Ci) = R(Γi−1, B(Γi−1)) for each i ∈ {1, 2, 3}. Let X ⊆ V (Ci)
for some i ∈ {0, 1, 2, 3} and let Ai be the ancestors of X. It follows that |Ai| ≤ |X|(i +
2)(i+ 1)/2.

Proof. If i = 0, then A0 = X and we have that |A0| = |X| = |X|(0 + 2)(0 + 1)/2, as
desired. If i = 1, then at most all of the vertices in X are in B(Γ0) and their parents are
distinct; thus, |A1| ≤ 3|X| = |X|(1 + 2)(1 + 1)/2, as desired. Suppose i ∈ {2, 3}. Let
v ∈ Ai and suppose v has two parents u,w in Ai where each of u,w have two parents in
Ai. Since uvw is not a dividing bichord, it follows that dist(u,w) = 2; thus, u and w have
a parent in common. Hence, we have that u and w have at most three parents x, y, z.
If x, y, z all have parents in Ai, then without loss of generality, x and y have a parent in
common, and y and z have a parent in common. Thus, we have that x, y, z have at most
four parents. Hence, if i = 2, then |A2| ≤ 6|X| = |X|(2 + 2)(2 + 1)/2, as desired. If i = 3,
then |A3| ≤ 10|X| = |X|(3 + 2)(3 + 1)/2, as desired.

Proposition 5.3.4. Let k ≥ 12 and let Γ = (G,C) be a canvas where C is the outer cycle
of G such that G is C-critical for acyclic k-colouring. The maximum size of a bundle B
on u,w ∈ V (C) is k − 1.

Proof. Since B is a bundle on u,w, it follows that distC(u,w) = 2. Let x be the vertex
that is adjacent to both u and w in C. Let v ∈ B such that all vertices in B \ {v} are in
the interior of the cycle C ′ = vuxwv. Let G′ = G〈C ′〉. Since G = (G \ int(C ′)) ∪ G′ and
C ′ ⊆ (G\ int(C ′)) and G′ 6= (G\ int(C ′))∩G′, it follows by the Key Lemma 5.1.2 that G′ is
C ′-critical for acyclic k-colouring. By Theorem 5.1.6, we have that |V (G′)\V (C ′)| ≤ k−2.
Since V (G′) \ V (C ′) = B \ {v}, it follows that |B| ≤ k − 1.

Theorem 5.3.5 (Main Theorem). For each k ≥ 12, there exists ε = ε(k) > 0 such that
if a canvas Γ = (G,C) where C is the outer cycle of the plane graph G is k-critical and
|V (C)| ≥ 5, then ε|V (G) \ V (C)| ≤ |V (C)| − γ for some 5 − εz ≥ γ ≥ 4.8 + εz where
z = 36k.
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Proof. Suppose not. Let Γ0 = (G0, C0) where C0 is the outer cycle of G0 be a counterex-
ample with |V (G0)|+ |E(G0)| minimized. Thus, we have that G0 is C0-critical for acyclic
k-colouring and |V (C0)| ≥ 5. Let Γi = (Gi, Ci) = R(Γi−1, B(Γi−1)) for each i ∈ {1, 2, 3}.

Claim 5.3.6. Gi does not contain a chord of Ci, for each i ∈ {0, 1, 2, 3}.

Proof. Suppose, towards a contradiction, that Gi does contain a chord of Ci. Let u and
v be the endpoints of the chord. Let Ai be the set of ancestors of {u, v}. By Proposition
5.3.3, it follows that |Ai| ≤ |X|(i + 2)(i + 1)/2 ≤ 2(20)/2 = 20 and |Ai \ V (C0)| ≤
|X|((i− 1) + 2)((i− 1) + 1)/2 ≤ 2(12)/2 = 12.

Let Γ′0 = (G′0, C
′
0) = Γ0. For each j = 1, . . . , i, let Γ′j = (G′j, C

′
j) = R(Γ′j−1, B) where

B = B(Γ′j−1) ∩ Ai.

Let Ci,1 and Ci,2 be the cycles that bound the two inner faces of C ′i + uv. Let Gi,j =
G′i〈Ci,j〉 for each j ∈ {1, 2}. Since G′i = (G′i \ int(Ci,j))∪Gi,j and C ′i ⊆ (G′i \ int(Ci,j)) and
Gi,j 6= (G′i \ int(Ci,j))∩Gi,j, it follows by the Key Lemma 5.1.2 that Gi,j is Ci,j-critical for
acyclic k-colouring, for each j ∈ {1, 2}.

For each j ∈ {1, 2}, if Ci,j is a 3-cycle, then by Theorem 5.1.5 we have that |V (Gi,j) \
V (Ci,j)| = 0. If Ci,j is a 4-cycle, then by Theorem 5.1.6 we have that |V (Gi,j) \ V (Ci,j)| ≤
k. Otherwise |V (Ci,j)| ≥ 5, and since Γ0 is a minimum counterexample we have that
ε|V (Gi,j) \ V (Ci,j)| ≤ |V (Ci,j)| − γi,j, for some 5− εz ≥ γi,j ≥ 4.8 + εz.

Thus, by Lemma 5.2.1, it follows that ε|V (G′i)\V (C ′i)| ≤ |V (C ′i)|−γi−εy for some 5−
εz ≥ γi ≥ 4.8 + εz, where y = 12k. By Proposition 4.3.8, we have that |V (C ′i)| = |V (C0)|.
Notice that each vertex a ∈ Ai is either in V (C0) or in B(Γj) for some j ∈ {0, . . . , i}. Thus,
it follows that a is in a bundle Ba, for all a ∈ Ai\V (C0). By Proposition 5.3.4, we have that
|Ba| ≤ k−1 for all a ∈ Ai. Let B =

⋃
a∈Ai

(Ba). That is, B is the union of the ancestors in
Ai\V (C0) and their bundles. Thus, we have that |B| ≤ |Ai\V (C0)|(k−1) ≤ 12(k−1). Let
y′ = 12(k−1). By the construction of Γ′i, we have that (V (G0)\V (C0))\(V (G′i)\V (C ′i)) =
B. Thus, it follows that |V (G0)\V (C0)|− |V (G′i)\V (C ′i)| ≤ y′. Notice that y′ ≤ y; hence,
we have that y′ − y ≤ 0. Therefore,

ε|V (G0) \ V (C0)| ≤ ε|V (G′i) \ V (C ′i)|+ εy′

≤ |V (C ′i)| − γi − εy + εy′

≤ |V (C0)| − γi + ε(y′ − y)

≤ |V (C0)| − γi.

Thus, we have that ε|V (G0) \ V (C0)| ≤ |V (C0)| − γ for some 5− εz ≥ γ ≥ 4.8 + εz, which
contradicts the assumption that Γ0 is a counterexample.
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Claim 5.3.7. Γi does not contain a dividing bichord, for each i ∈ {0, 1, 2, 3}.

Proof. Suppose, towards a contradiction, that Γi does contain a dividing bichord, uvw. Let
Ai be the set of ancestors of {u,w}. By Proposition 5.3.3, it follows that |Ai| ≤ |X|(i +
2)(i+1)/2 ≤ 2(20)/2 = 20 and |Ai\V (C0)| ≤ |X|((i−1)+2)((i−1)+1)/2 ≤ 2(12)/2 = 12.

Let Γ′0 = (G′0, C
′
0) = Γ0. For each j = 1, . . . , i, let Γ′j = (G′j, C

′
j) = R(Γ′j−1, B) where

B = B(Γ′j−1) ∩ Ai.

Let Ci,1 and Ci,2 be the cycles that bound the two inner faces of C ′i + uvw. Let
Gi,j = G′i〈Ci,j〉 for each j ∈ {1, 2}. Since G′i = (G′i\ int(Ci,j))∪Gi,j and C ′i ⊆ (G′i\ int(Ci,j))
and Gi,j 6= (G′i \ int(Ci,j))∩Gi,j, it follows by the Key Lemma 5.1.2 that Gi,j is Ci,j-critical
for acyclic k-colouring, for each j ∈ {1, 2}.

Since uvw is a dividing bichord, it follows that distC′
i
(u,w) ≥ 3; thus, we have that

|V (Ci,1)|, |V (Ci,2)| ≥ 5. Hence, since Γ0 is a minimum counterexample, we have that
ε|V (Gi,j) \ V (Ci,j)| ≤ |V (Ci,j)| − γi,j, for some 5− εz ≥ γi,j ≥ 4.8 + εz.

Thus, by Lemma 5.2.2, it follows that ε|V (G′i)\V (C ′i)| ≤ |V (C ′i)|−γi−εy for some 5−
εz ≥ γi ≥ 4.8 + εz, where y = 12k. By Proposition 4.3.8, we have that |V (C ′i)| = |V (C0)|.
Notice that each vertex a ∈ Ai is either in V (C0) or in B(Γj) for some j ∈ {0, . . . , i}. Thus,
it follows that a is in a bundle Ba, for all a ∈ Ai\V (C0). By Proposition 5.3.4, we have that
|Ba| ≤ k−1 for all a ∈ Ai. Let B =

⋃
a∈Ai

(Ba). That is, B is the union of the ancestors in
Ai\V (C0) and their bundles. Thus, we have that |B| ≤ |Ai\V (C0)|(k−1) ≤ 12(k−1). Let
y′ = 12(k−1). By the construction of Γ′i, we have that (V (G0)\V (C0))\(V (G′i)\V (C ′i)) =
B. Thus, it follows that |V (G0)\V (C0)|− |V (G′i)\V (C ′i)| ≤ y′. Notice that y′ ≤ y; hence,
we have that y′ − y ≤ 0. Therefore,

ε|V (G0) \ V (C0)| ≤ ε|V (G′i) \ V (C ′i)|+ εy′

≤ |V (C ′i)| − γi − εy + εy′

≤ |V (C0)| − γi + ε(y′ − y)

≤ |V (C0)| − γi.

Thus, we have that ε|V (G0) \ V (C0)| ≤ |V (C0)| − γ for some 5− εz ≥ γ ≥ 4.8 + εz, which
contradicts the assumption that Γ0 is a counterexample.

Claim 5.3.8. Γi does not contain a 6-double-pod, for each i ∈ {0, 1, 2, 3}.

Proof. Suppose, towards a contradiction, that Γi does contain a 6-double-pod, v. Let
Ai be the set of ancestors of {u : u ∈ feet(v)}. By Proposition 5.3.3, it follows that
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|Ai| ≤ |X|(i+2)(i+1)/2 ≤ 6(20)/2 = 60 and |Ai\V (C0)| ≤ |X|((i−1)+2)((i−1)+1)/2 ≤
6(12)/2 = 36.

Let Γ′0 = (G′0, C
′
0) = Γ0. For each j = 1, . . . , i, let Γ′j = (G′j, C

′
j) = R(Γ′j−1, B) where

B = B(Γ′j−1) ∩ Ai.

Let Ci,1, Ci,2, . . . , Ci,6 be the cycles that bound the six inner faces of C ′i ∪ legs(v). Let
Gi,j = G′i〈Ci,j〉 for each j ∈ {1, 2, . . . , 6}. Since G′i = (G′i \ int(Ci,j)) ∪ Gi,j and C ′i ⊆
(G′i \ int(Ci,j)) and Gi,j 6= (G′i \ int(Ci,j)) ∩ Gi,j, it follows by the Key Lemma 5.1.2 that
Gi,j is Ci,j-critical for acyclic k-colouring, for each j ∈ {1, 2, . . . , 6}.

For each j ∈ {1, 2, . . . , 6}, if Ci,j is a 3-cycle, then by Theorem 5.1.5 we have that
|V (Gi,j) \ V (Ci,j)| = 0. If Ci,j is a 4-cycle, then by Theorem 5.1.6 we have that |V (Gi,j) \
V (Ci,j)| ≤ k. Otherwise |V (Ci,j)| ≥ 5, and since Γ0 is a minimum counterexample we have
that ε|V (Gi,j) \ V (Ci,j)| ≤ |V (Ci,j)| − γi,j, for some 5− εz ≥ γi,j ≥ 4.8 + εz.

Thus, by Lemma 5.2.3, it follows that ε|V (G′i) \ V (C ′i)| ≤ |V (C ′i)| − γi − εy for some
5− εz ≥ γi ≥ 4.8 + εz, where y = 36k + 36. By Proposition 4.3.8, we have that |V (C ′i)| =
|V (C0)|. Notice that each vertex a ∈ Ai is either in V (C0) or in B(Γj) for some j ∈
{0, . . . , i}. Thus, it follows that a is in a bundle Ba, for all a ∈ Ai \V (C0). By Proposition
5.3.4, we have that |Ba| ≤ k − 1 for all a ∈ Ai. Let B =

⋃
a∈Ai

(Ba). That is, B is
the union of the ancestors in Ai \ V (C0) and their bundles. Thus, we have that |B| ≤
|Ai \V (C0)|(k−1) ≤ 36(k−1). Let y′ = 36(k−1). By the construction of Γ′i, we have that
(V (G0) \ V (C0)) \ (V (G′i) \ V (C ′i)) = B. Thus, it follows that |V (G0) \ V (C0)| − |V (G′i) \
V (C ′i)| ≤ y′. Notice that y′ ≤ y; hence, we have that y′ − y ≤ 0. Therefore,

ε|V (G0) \ V (C0)| ≤ ε|V (G′i) \ V (C ′i)|+ εy′

≤ |V (C ′i)| − γi − εy + εy′

≤ |V (C0)| − γi + ε(y′ − y)

≤ |V (C0)| − γi.

Thus, we have that ε|V (G0) \ V (C0)| ≤ |V (C0)| − γ for some 5− εz ≥ γ ≥ 4.8 + εz, which
contradicts the assumption that Γ0 is a counterexample.

Claim 5.3.9. Γi does not contain a non-unique, non-dividing bichord, for each i ∈ {0, 1, 2, 3}.

Proof. Suppose not. That is, there exists i ∈ {0, 1, 2, 3} such that Γi contains a non-
dividing bichord uvw where v /∈ B(Γi). Since uvw is not a dividing bichord of Γi, we have
that distCi

(u,w) = 2. Since v /∈ B(Γi), there exists at least one other neighbour of v in Ci.
By the Unique Bichord Lemma 4.3.1, it follows that |V (Ci)| ≤ 6. Since |V (Ci)| = |V (C0)|,
we have that |V (Ci)| ≥ 5.
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Let u1, u2, . . . , ut be the neighbours of v in Ci. Notice 3 ≤ t ≤ 6. If |V (Ci)| = 6 and
t = 6, then u1, . . . , ut are precisely the vertices of Ci; hence, it follows that u1vu4 is a
dividing bichord, which is a contradiction. Thus, it follows that t ≤ 5.

Let Ai be the set of ancestors of {u1, . . . , ut}. By Proposition 5.3.3, it follows that
|Ai| ≤ |X|(i+2)(i+1)/2 ≤ 5(20)/2 = 50 and |Ai\V (C0)| ≤ |X|((i−1)+2)((i−1)+1)/2 ≤
5(12)/2 = 30.

Let Γ′0 = (G′0, C
′
0) = Γ0. For each j = 1, . . . , i, let Γ′j = (G′j, C

′
j) = R(Γ′j−1, B) where

B = B(Γ′j−1) ∩ Ai.
Let Ci,1, . . . , Ci,t be the cycles that bound the t inner faces of C ′i + vu1 + · · · + vut.

Let Gi,j = G′i〈Ci,j〉 for each j ∈ {1, . . . , t}. Since G′i = (G′i \ int(Ci,j)) ∪ Gi,j and C ′i ⊆
(G′i \ int(Ci,j)) and Gi,j 6= (G′i \ int(Ci,j)) ∩ Gi,j, it follows by the Key Lemma 5.1.2 that
Gi,j is Ci,j-critical for acyclic k-colouring, for each j ∈ {1, . . . , t}.

Since v is not in a dividing bichord, it follows that 3 ≤ |V (Ci,1)|, . . . , |V (Ci,t)| ≤ 4.
Thus, for some 5− εz ≥ γ ≥ 4.8 + εz:

ε|V (G′i) \ V (C ′i)| ≤ ε
t∑

j=1

(|V (Gi,j) \ V (Ci,j)|) + ε

≤ tεk + ε

≤ εz − εy
≤ 5− γ − εy
≤ |V (C ′i)| − γ − εy,

where y = 30k.

By Proposition 4.3.8, we have that |V (C ′i)| = |V (C0)|. Notice that each vertex a ∈ Ai
is either in V (C0) or in B(Γj) for some j ∈ {0, . . . , i}. Thus, it follows that a is in a bundle
Ba, for all a ∈ Ai \ V (C0). By Proposition 5.3.4, we have that |Ba| ≤ k − 1 for all a ∈ Ai.
Let B =

⋃
a∈Ai

(Ba). That is, B is the union of the ancestors in Ai \ V (C0) and their
bundles. Thus, we have that |B| ≤ |Ai \ V (C0)|(k − 1) ≤ 30(k − 1). Let y′ = 30(k − 1).
By the construction of Γ′i, we have that (V (G0) \ V (C0)) \ (V (G′i) \ V (C ′i)) = B. Thus, it
follows that |V (G0) \ V (C0)| − |V (G′i) \ V (C ′i)| ≤ y′. Notice that y′ ≤ y; hence, we have
that y′ − y ≤ 0. Therefore,

ε|V (G0) \ V (C0)| ≤ ε|V (G′i) \ V (C ′i)|+ εy′

≤ |V (C ′i)| − γ − εy + εy′

≤ |V (C0)| − γi + ε(y′ − y)

≤ |V (C0)| − γi.
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Thus, we have that ε|V (G0) \ V (C0)| ≤ |V (C0)| − γ for some 5− εz ≥ γ ≥ 4.8 + εz, which
contradicts the assumption that Γ0 is a counterexample.

By Claims 5.3.7 and 5.3.9, it follows that, for all i ∈ {0, 1, 2, 3}, if Γi contains a bichord
uvw, then v ∈ B(Γi). For all i ∈ {0, 1, 2, 3}, we have that Ci has no chords by Claim 5.3.6
and Γi has no 6-double-pods by Claim 5.3.8.

Claim 5.3.10. Γ0 does not contain a bichord.

Proof. Let M be a k-mosaic of C0 that extends to G0[V (C0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2)].
Thus, by Lemma 4.3.12, we have that M extends to G0. Since G0 is C0-critical for acyclic
k-colouring, it follows that G0 = G0[V (C0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2)]. Hence, we have
that |V (G0)| = |V (C0)|+ |B(Γ0)|+ |B(Γ1)|+ |B(Γ2)| ≤ (3k + 1)|V (C0)|. Thus, it follows
that |V (G0) \ V (C0)| ≤ 3k|V (C0)|. Let 5 − εz ≥ γ ≥ 4.8 + εz. Since z ≥ 15k, we have
that 5 − 15kε ≥ γ; thus, it follows that ε ≤ 1

3k
− γ

15k
. Note that since γ

5
< 1, it follows

that 1
3k
− γ

15k
> 0. Since ε ≤ 1

3k
− γ

15k
, we have that 3kε ≤ 1 − γ

5
. Also, note that since

|V (C0)| ≥ 5, we have that − |V (C0)|
5
≤ −1. Thus,

ε|V (G0) \ V (C0)| ≤ 3kε|V (C0)|

≤ |V (C0)| −
γ|V (C0)|

5
≤ |V (C0)| − γ,

which contradicts the assumption that Γ0 is a counterexample.

By Claims 5.3.6, 5.3.10, and 5.3.8, we have that G0 does not contain a chord of C0 and
Γ0 does not contain a bichord or a 6-double-pod. Thus, by the converse of the General
Structure Lemma 5.1.4, it follows that Γ0 is not k-critical, which is a contradiction.
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Chapter 6

Extending the Main Result

In this chapter we show that the Main Theorem 5.3.5 implies that the family of graphs
which are critical for acyclic k-colouring, where k ≥ 12, is hyperbolic and strongly hyper-
bolic.

6.1 Hyperbolic

In this section, we prove that the family of graphs which are critical for acyclic k-colouring,
where k ≥ 12, is hyperbolic.

Theorem 6.1.1. For each k ≥ 12, there exists c > 1 such that if G is plane and S is a
non-empty independent set of G whose vertices are incident with the outer face of G and
G is S-critical for acyclic k-colouring, then |V (G)| ≤ c(|V (S)| − 1).

Proof. Suppose not. Let Γ0 = (G0, S0) be a counterexample where |E(G0)| + |V (G0)| is
minimized.

Claim 6.1.2. S0 does not contain a cut vertex.

Proof. Suppose, towards a contradiction, that v ∈ V (S0) is a cut vertex. Let H1 and H2

be the two components of G0 − v and let Gi = G0[V (Hi) ∪ {v}], for each i ∈ {1, 2}. Let
Si = S0 ∩ V (Gi), for each i ∈ {1, 2}. For each i ∈ {1, 2}, it follows from the Key Lemma
5.1.2 that Gi is Si-critical for acyclic k-colouring.

Since Γ0 is a minimal counterexample, it follows that |V (Gi)| ≤ c(|V (Si)| − 1) for all
i ∈ {1, 2}. Thus, we have that |V (G1)|+ |V (G2)| ≤ c(|V (S1)|+ |V (S2)| − 2). Notice that
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|V (G1)| + |V (G2)| = |V (G0)| + 1 and |V (S1)| + |V (S2)| = |V (S0)| + 1. Now, it follows
that |V (G0)| + 1 ≤ c(|V (S0)| − 1). Thus, we have that |V (G0)| ≤ c(|V (S0)| − 1), which
contradicts the minimality of Γ0.

Let v0, . . . , vn−1 be the cyclic order of the vertices of S0 around the outer face of G0.
By Claim 6.1.2, we have that each vertex of S0 appears once in v0, . . . , vn−1.

For each i ∈ {0, . . . , n− 1}, add vertices ui, wi and the path viuiwivi+1 to G0.
1 Embed

these paths in the outer face of G0 and let G′ denote the resulting graph. Let C0 be the
union of these paths; that is, let C0 =

⋃n−1
i=0 (viuiwivi+1). Notice that C0 is the outer cycle of

G′ and |V (C0)| = 3|V (S0)|. Let X = {ui, wi : i ∈ {0, . . . , n−1}}. Notice that G′ \X = G0.

Claim 6.1.3. G′ is C0-critical for acyclic k-colouring.

Proof. Suppose not. Thus, there exists a proper subgraph H of G′, where H ⊇ C0, such
that every k-mosaic of C0 that extends to H, also extends to G′. Since G0 is S0-critical for
acyclic k-colouring and H ⊇ C0 ⊇ S0, we have that there exists a k-mosaic MS of S0 that
extends to H \X, but not G0. Let φ be a k-colouring of C0 where φ(v) = φMS

(v) for all
v ∈ V (S0) and φ(ui) 6= φ(wi) ∈ [k] \ {φ(vi), φ(vi+1)} for all i ∈ {0, . . . , n− 1}.

Subclaim 6.1.4. MS extends to φ.

Proof. Suppose not. Notice that φ|S0 = φ(MS); thus, Definition 3.2.8(1) holds for MS

extending to φ. Since MS does not extend to φ, it follows from Definition 3.2.8(2) that

G̃′ij(φ,MS) contains a cycle C ′ for some i 6= j ∈ [k]. Since S0 is an independent set in
G′, it follows that C ′ contains at least one vertex in X. Without loss of generality, say
u1 ∈ V (C ′).

Notice that the cycle C ′ in G̃′ij(φ,MS) is equivalent to a subgraph C ′′ in G′ij(φ) where
C ′′ is a cycle or a collection of paths with endpoints in V (S0). Let P be the component
of C ′′ in G′ij(φ) that contains u1. Notice that NG′(u1) = {v1, w1}; thus it follows that
v1, w1 are the neighbours of u1 in P . Notice, by the construction of φ, we have that
φ(v1), φ(u1), φ(w1) are pairwise distinct. Thus, it follows that P is not in G′ij(φ), which is
a contradiction.

Let MC = Mosaic[φ,MS]. Note that MC exists by Proposition 3.3.7.

Subclaim 6.1.5. MS is the restriction of MC to S0.

1Note that here and in the remainder of this proof, indices are taken mod n.

63



Proof. Let u 6= v ∈ V (S0). Since MS extends to MC , we have that Pij(MS) is a refinement
of Pij(MC) for all i 6= j ∈ [k]. Thus, for all i 6= j ∈ [k], if u, v are in the same part of
Pij(MS), then u, v are in the same part of Pij(MC). Notice that there is no (u, v)-path
in (C0)ij(φ). Since, for all i 6= j ∈ [k], we have that Pij(MC) is the smallest common
coarsening of Pij(MS) and Pij(Mosaic[φ]), it follows that if u, v are not in the same part
of Pij(MS), then u, v are not in the same part of Pij(MC). Thus, we have that Pij(MS) =
{P ∩ V (S0) : P ∈ Pij(MC)}, for all i 6= j ∈ [k]. Now, since φ(MS) = φ(MC)|S0 , it follows
that MS is the restriction of MC to S0.

Subclaim 6.1.6. MC extends to H.

Proof. By Subclaim 6.1.5, we have that MS is the restriction of MC to S0. Notice that
G′ = C0 ∪ (H \ X) and C0 ∩ (H \ X) = S0. Since MS extends to H \ X, it now follows
from Proposition 3.3.16 that MC extends to H.

Subclaim 6.1.7. MC does not extend to G′.

Proof. Suppose, towards a contradiction, that MC extends to a k-mosaic M of G′. By
Subclaim 6.1.5, we have that MS is the restriction of MC to S0. Notice that G0 and C0

are subgraphs of G′ and G0 ∩C0 = S0. Thus, we have that MS is the restriction of MC to
G0 ∩C0. Let M ′ be the restriction of M to G0. Now, by Proposition 3.3.15, it follows that
MS extends to M ′. Thus, we have that MS extends to G0, which is a contradiction.

By Subclaims 6.1.6 and 6.1.7, we have that the k-mosaic MC of C0 extends to H, but
not to G′, which is a contradiction.

Notice that |V (G′)\V (C0)| = |V (G0)|−|V (S0)|. Since |V (C0)| = 3|V (S0)|, if |V (C0)| <
5, then we have that |V (C0)| = 3. Thus, by Theorem 5.1.5, it follows that G′ is not
C0-critical for acyclic k-colouring, which contradicts Claim 6.1.3. Thus, it follows that
|V (C0)| ≥ 5.

Since |V (C0)| ≥ 5, we have by Theorem 5.3.5 that ε|V (G′) \ V (C0)| ≤ |V (C0)| − γ for
some 5−εz ≥ γ ≥ 4.8+εz where z = 36k. Since |V (C0)| = 3|V (S0)| and |V (G′)\V (C0)| =
|V (G0)| − |V (S0)|, it follows that ε(|V (G0)| − |V (S0)|) ≤ 3|V (S0)| − γ. Thus, we have
that |V (G0)| ≤ (3 + ε)|V (S0)|/ε − γ/ε. Since γ ≥ 4.8 and ε ≤ 0.1, it follows that
|V (G0)| ≤ 3+ε

ε
(|V (S0)|−1). Let c ≥ 3+ε

ε
and now it follows that Γ0 is not a counterexample,

which is a contradiction.

Proposition 6.1.8. A graph G is critical for acyclic k-colouring if and only if G is ∅-
critical for acyclic k-colouring.
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Proof. If G is critical for acyclic k-colouring, then there exists an acyclic k-colouring of
every proper subgraph H of G, but there does not exist an acyclic k-colouring of G. Thus,
it follows that the mosaic of ∅ extends to a k-colouring of H for every proper subgraph H
of G, but the mosaic of ∅ does not extend to a k-colouring of G. Thus, it follows that G
is ∅-critical for acyclic k-colouring.

If G is ∅-critical for acyclic k-colouring, then for each proper subgraph H of G there
exists a k-mosaic of ∅ that extends to H, but not to G. Since there is only one mosaic of
∅, we have that there exists an acyclic k-colouring of H for all proper subgraphs H of G,
but there does not exist an acyclic k-colouring of G. Thus, it follows that G is critical for
acyclic k-colouring.

Theorem 6.1.9. The family F of graphs which are critical for acyclic k-colouring, where
k ≥ 12, is hyperbolic.

Proof. Let k ≥ 12 and let G be a graph that is critical for acyclic k-colouring, where G
is embedded on a surface Σ with Euler genus g. Let γ : S1 → Σ be a closed curve that
bounds an open disk ∆ and intersects G only in vertices. We may assume that ∆ includes
at least one vertex of G; otherwise there is nothing to show. Let S be the set of vertices
of G intersected by γ. Let X be the set of vertices drawn in ∆ (not including S). Let
B = G[S ∪X] and let A = G \X. Notice that G = A∪B and ∅ ⊆ A and B 6= A∩B = S.
By Proposition 6.1.8, it follows that G is ∅-critical for acyclic k-colouring. Thus, by the
Key Lemma 5.1.2, it follows that B is S-critical for acyclic k-colouring. Hence, by Theorem
6.1.1, we have that |V (B)| ≤ c(|V (S)|−1) for some c > 1 depending on k. Thus, it follows
that F is hyperbolic.

6.2 Strongly Hyperbolic

In this section, we show that the family of graphs which are critical for acyclic k-colouring,
where k ≥ 12, is strongly hyperbolic. In order to do this, we need to redefine a few
definitions for plane graphs bounded by two cycles, rather than one. We also need two
cycle versions of several lemmas and theorems from Chapters 4 and 5.

Definition 6.2.1. Let G be a plane graph with two cycles, C and C ′, where without loss
of generality, V (C) ⊆ int(C ′). The interior of C ∪ C ′, denoted int(C ∪ C ′), is the set of
vertices contained in the interior of the annulus bounded by C ∪ C ′. Let G〈C ∪ C ′〉 =
G[C ∪ C ′ ∪ int(C ∪ C ′)].
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Definition 6.2.2. A bichord of a canvas Γ = (G,C∪C ′), where C and C ′ are the two cycles
that bound G, is a path P = uvw where v ∈ V (G) \ V (C ∪ C ′) and u 6= w ∈ V (C ∪ C ′)
such that distC∪C′(u,w) ≥ 2. We say P is a dividing bichord if distC∪C′(u,w) ≥ 3 or
distC∪C′(u,w) = 2 and, without loss of generality, C ′ is drawn in the face of degree 4
induced by C ∪ P .

Definition 6.2.3. A bipod of a canvas Γ = (G,C ∪C ′), where C and C ′ are the two cycles
that bound G, is a vertex v ∈ V (G) \ V (C ∪ C ′) such that v is in at least one bichord.

Definition 6.2.4. Let Γ = (G,H) be a canvas and let v ∈ V (G) \ V (H). Recall NH(v) =

N(v) ∩ V (H) and let Ñ2
H(v) = {u ∈ V (H) : u ∈ N(N(v) \ NH(v))}. Let feet(v) =

NH(v) ∪ Ñ2
H(v). We refer to the vertices in feet(v) as the feet of v.

Definition 6.2.5. An r-double-pod of a canvas Γ = (G,H) is a vertex v ∈ V (G) \ V (H)
where |feet(v)| = r.

Definition 6.2.6. Let v be an r-double-pod of a canvas Γ = (G,H). Since feet(v) =
NH(v) ∪ N2

H(v), there exists, for each u ∈ feet(v), a (v, u)-path Pu of the form vu or
vwu where w ∈ N(v) \ NH(v), in G. Fix such a path Pu for each u ∈ feet(v) and let
legs(v) = {Pu : u ∈ feet(v)}. Notice that |legs(v)| = r.

Lemma 6.2.7 (Two Cycle Extension Lemma). Let Γ = (G,C ∪ C ′) be a canvas where C
and C ′ are the cycles that bound G. Given a k-mosaic M of C, we have that M extends
to G unless there exists at least one of the following:

(i) a chord of C ∪ C ′, or

(ii) a bichord uvw of Γ where φM(u) = φM(w), or

(iii) an r-double-pod v of Γ where |{φM(u) : u ∈ feet(v)}| ≥ k − 6.

The proof of the Two Cycle Extension Lemma follows almost identically to the proof
of the Extension Lemma 4.2.1.

Corollary 6.2.8. If Γ = (G,C ∪C ′) is a canvas where C and C ′ are the cycles that bound
G, and |V (C)|, |V (C ′)| = 3, and dist(C,C ′) > 4, we have that every k-mosaic M of C
extends to G.

Corollary 6.2.9. Let Γ = (G,C ∪ C ′) be a canvas where C and C ′ are the cycles that
bound G, |V (C)| = 4, |V (C ′)| = 3, and dist(C,C ′) > 4. Given a k-mosaic M of C, we
have that M extends to G, unless there exists a bichord uvw of Γ where φM(u) = φM(w)
and u,w ∈ V (C).
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Corollary 6.2.10. Let Γ = (G,C ∪ C ′) be a canvas where C and C ′ are the cycles that
bound G, |V (C)| = 4, |V (C ′)| = 4, and dist(C,C ′) > 4. Given a k-mosaic M of C, we
have that M extends to G, unless there exists a bichord uvw of Γ where φM(u) = φM(w)
and either u,w ∈ V (C) or u,w ∈ V (C ′).

Lemma 6.2.11 (Two Cycle Unique Bichord Lemma). Let Γ = (G,C ∪ C ′) be a canvas,
where C and C ′ are the two cycles that bound G and |V (C)|, |V (C ′)| ≥ 7. Let v be a bipod
of Γ. If v is not in a dividing bichord, then it is in a unique bichord.

Notice that if v is not in a dividing bichord of a canvas Γ = (G,C ∪ C ′), where C and
C ′ are the two cycles that bound G, then either NC∪C′(v) ⊆ V (C) or NC∪C′(v) ⊆ V (C ′).
Thus, we have that Lemma 6.2.11 follows from Lemma 4.3.1.

Definition 6.2.12. Let B(Γ) denote the set of bipods of the canvas Γ = (G,C∪C ′), where
C and C ′ are the two cycles that bound G, that are in a unique, non-dividing bichord.

Lemma 6.2.13. Let Γ = (G,C ∪C ′) be a canvas, where C and C ′ are the two cycles that
bound G, and |V (C)| ≥ 4, |V (C ′)| ≥ 5. Without loss of generality, say V (C) ⊆ int(C ′).
Let B ⊆ B(Γ) and let EC denote the set of chords of C ∪ C ′. The graph G[V (C ∪ C ′) ∪
B] \ (E(G[B]) ∪EC) has exactly one interior face bounded by two cycles C1 and C2 where
|V (C1 ∪ C2)| ≥ 9.

The proof of Lemma 6.2.13 uses Lemma 4.3.3 twice.

Definition 6.2.14. Let Γ = (G,C ∪C ′) be a canvas where G is bounded by the cycles C
and C ′, and |V (C)| ≥ 4, |V (C ′)| ≥ 5. Without loss of generality, let V (C) ⊆ int(C ′). Let
B ⊆ B(Γ) and let EC denote the set of chords of C ∪C ′. By Lemma 6.2.13, there exists a
unique interior face of G[V (C ∪ C ′) ∪ B] \ (E(G[B]) ∪ EC) bounded by two cycles C1, C2

where |V (C1 ∪ C2)| ≥ 9. Let G′ = G〈C1 ∪ C2〉 and let Γ′ = (G′, C1 ∪ C2). We say that Γ′

is the relaxation of Γ with respect to B, denoted R(Γ, B).

Just as in Chapter 4, we may think of a canvas and its relaxation as being different
generations. If Γ is a canvas and Γ′ = R(Γ, B(Γ)), we may think of Γ′ as being the
generation below Γ. The remaining definitions and propositions that lead up to the “Fourth
Generation” Lemma 4.3.12 have natural two cycle versions.

Lemma 6.2.15 (Two Cycle “Fourth Generation” Lemma). Let Γ0 = (G0, C0 ∪ C ′0) be a
canvas, where C0 and C ′0 are the cycles that bound G0, and |V (C0)| ≥ 4, |V (C ′0)| ≥ 5, and
dist(C0, C

′
0) > 10. Let Γi = (Gi, Ci ∪C ′i) = R(Γi−1, B(Γi−1)) for each i ∈ {1, 2, 3}. If all of

the following hold for all i ∈ {0, 1, 2, 3}:
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(i) Ci ∪ C ′i has no chords,

(ii) every bipod v of Γi is such that v ∈ B(Γi),

(iii) Γi has no 6-double-pod,

and a k-mosaic M of C0 ∪ C ′0 extends to G0[V (C0 ∪ C ′0) ∪ B(Γ0) ∪ B(Γ1) ∪ B(Γ2)], then
M extends to G0.

The proof of Lemma 6.2.15 follows almost identically to the proof of Lemma 4.3.12.

Lemma 6.2.16 (Two Cycle General Structure Lemma). If a canvas Γ = (G,C ∪ C ′),
where C and C ′ are the cycles that bound G, is k-critical for k ≥ 12, then there exists at
least one of the following:

(i) a chord of C ∪ C ′, or

(ii) a bichord of Γ, or

(iii) a 6-double-pod of Γ.

Notice that the Two Cycle General Structure Lemma 6.2.16 follows from the Two
Cycle Extension Lemma 6.2.7, just as the General Structure Lemma 5.1.4 follows from the
Extension Lemma 4.2.1.

Theorem 6.2.17. If k ≥ 12, then there does not exist a canvas Γ = (G,C ∪ C ′) where C
and C ′ are the cycles that bound G, |V (C)|, |V (C ′)| = 3, and dist(C,C ′) > 4 such that Γ
is k-critical.

The proof of Theorem 6.2.17 follows from Corollary 6.2.8, just as Theorem 5.1.5 follows
from Corollary 4.2.4.

Theorem 6.2.18. Let Γ = (G,C ∪ C ′) be a canvas, where C and C ′ are the cycles that
bound G, |V (C)| = 4 and |V (C ′)| ≤ 4, and dist(C,C ′) > 4. If Γ is k-critical where k ≥ 12,
then |V (G) \ V (C ∪ C ′)| ≤ 2k − 4 and each vertex in V (G) \ V (C ∪ C ′) is a bipod v of Γ
where N(v) ⊆ V (C) or N(v) ⊆ V (C ′).

The proof of Theorem 6.2.18 is similar to the proof of Theorem 5.1.6 and uses Corollaries
6.2.9 and 6.2.10.
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Theorem 6.2.19. Let Γ = (G,C ∪ C ′) be a canvas, where C and C ′ are the cycles that
bound G, and |V (C)|, |V (C ′)| ≤ 4. If Γ is k-critical where k ≥ 12, then |V (G)\V (C∪C ′)| ≤
|V (C ∪ C ′)|+ 8 + 3ε− γ for some 5− εz ≥ γ ≥ 4.8 + εz where z = 36k.

The proof of Theorem 6.2.19 uses a claim, similar to Claim 6.2.21 below, and Theorems
6.2.18 and 6.2.17.

Theorem 6.2.20. For each k ≥ 12, there exists ε = ε(k) > 0 such that if a canvas
Γ = (G,C1 ∪C2) where C1 and C2 are the cycles that bound G and G is (C1 ∪C2)-critical
for acyclic k-colouring and |V (C1)| ≥ 5, then ε|V (G) \ V (C1 ∪C2)| ≤ |V (C1)|+ |V (C2)|+
20 + 9ε− γ for some 5− εz ≥ γ ≥ 4.8 + εz where z = 36k.

Proof Sketch. Suppose not. Let Γ0 = (G0, C0 ∪C ′0), where G0 is bounded by the cycles C0

and C ′0, be a counterexample with |V (G0)|+ |E(G0)| minimized. Thus, we have that G0 is
(C0 ∪ C ′0)-critical for acyclic k-colouring and at least one of |V (C0)|, |V (C ′0)| is at least 5.

Claim 6.2.21. dist(C0, C
′
0) > 10.

Proof Sketch. Suppose, towards a contradiction, that dist(C0, C
′
0) ≤ 10. Let P = v1, v2,

. . . , vn be a path from C0 to C ′0 such that |V (P )| = n ≤ 11. Since G0 is plane and P is a
(C0, C

′
0)-path, there are two (local) well-defined sides of P . Let EL (ER) denote the set of

edges incident with P on the left (right).

Let G′0 be the graph obtained from G0 by making a copy of P , called P ′, and making
the edges of ER incident with P ′ instead of P . Let P ′ = v′1, v

′
2, . . . , v

′
n where v′x is the copy

of vx for each x ∈ [n]. Notice that G′0 has an outer cycle, call it C.

Since G0 is (C0 ∪ C ′0)-critical for acyclic k-colouring, it follows that every proper sub-
graph H of G0 where (C0 ∪ C ′0) ⊆ H, there exists a k-mosaic of (C0 ∪ C ′0) that extends
to H, but not to G0. Notice that every subgraph H ′ of G′0 corresponds to a subgraph H
of G0 (by identifying P and P ′). For each subgraph H ′ of G′0 where C ⊆ H ′, let H be
the corresponding subgraph of G. Let M be the k-mosaic of (C0 ∪ C ′0) that extends to a
k-colouring φH of H, but not to G0.

Now we define a k-colouring φ of C. Let φ(u) = φM(u) for all u ∈ V (C0 ∪ C ′0). Let
φ(vx) = φH(vx) and φ(v′x) = φH(vx) for all x ∈ [n]. Let {Pij : i 6= j ∈ [k]} be a collection
of partitions of V (G′0) where each Pij is the smallest common coarsening of Pij(M) and
Pij(Mosaic[φ]) such that vx, v

′
x are in the same part of Pij for all x ∈ [n]. Let MC be the

k-mosaic of C defined by φ and {Pij : i 6= j ∈ [k]}.

Subclaim 6.2.22. MC extends to H ′.

69



Subclaim 6.2.23. MC does not extend to G′0.

By Subclaims 6.2.22 and 6.2.23, it follows that for all proper subgraphs H ′ of G′0 where
C ⊆ H ′, we can find a k-mosaic of C which extends to H ′, but not to G′0. Thus, it follows
that G′0 is C-critical for acyclic k-colouring.

By Theorem 5.3.5, it follows that ε|V (G′0) \V (C)| ≤ |V (C)| − γ for some 5− εz ≥ γ ≥
4.8+εz where z = 36k. Since |V (C)| = |V (C0)|+ |V (C ′0)|+20 and |V (G′0)| = |V (G0)|+11,
we have that

ε(|V (G0)|+ 11− |V (C0 ∪ C ′0)| − 20) ≤ |V (C0 ∪ C ′0)|+ 20− γ.

Thus, it follows that

ε|V (G0) \ V (C0 ∪ C ′0)| ≤ |V (C0 ∪ C ′0)|+ 20 + 9ε− γ.

Hence, we have that Γ0 is not a counterexample, which is a contradiction.

Let Γi = (Gi, Ci∪C ′i) = R(Γi−1, B(Γi−1)) for each i ∈ {1, 2, 3}. Since dist(C0, C
′
0) > 10,

it follows that dist(Ci, C
′
i) > 10− 2i for each i ∈ {1, 2, 3}.

Thus, we have that all of the following hold for all i ∈ {1, 2, 3}:

• If Gi contains a chord uv of Ci ∪ C ′i, then u, v ∈ V (Ci) or u, v ∈ V (C ′i).

• If Γi contains a bichord uvw, then u,w ∈ V (Ci) or u,w ∈ V (C ′i).

• If Γi contains a 6-double-pod v, then u ∈ V (Ci) for all u ∈ feet(v) or u ∈ V (C ′i) for
all u ∈ feet(v).

Claim 6.2.24. Gi does not contain a chord of Ci ∪ C ′i, for each i ∈ {0, 1, 2, 3}.

Proof Sketch. Suppose not. Without loss of generality, say Gi contains a chord uv of Ci.
Let Ai be the set of ancestors of {u, v}. By Proposition 5.3.3, it follows that |Ai| ≤ |X|(i+
2)(i+1)/2 ≤ 2(20)/2 = 20 and |Ai\V (C0)| ≤ |X|((i−1)+2)((i−1)+1)/2 ≤ 2(12)/2 = 12.

Let Γ′0 = (G′0, C
1
0 ∪ C2

0) = Γ0 where C1
0 = C0 and C2

0 = C ′0. For each j = 1, . . . , i, let
Γ′j = (G′j, C

1
j ∪C2

j ) = R(Γ′j−1, B) where B = B(Γ′j−1)∩Ai. Without loss of generality, say
C1
i is the outer cycle of G′i.

Let Ci,1 and Ci,2 be the cycles that bound the two inner faces of C1
i + uv. Let Gi,j =

G′i〈Ci,j〉 for each j ∈ {1, 2}. Notice that either Gi,1 or Gi,2 contains C2
i . Without loss of

generality, say C2
i is a cycle in Gi,2.
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Since G′i = (G′i \ int(Ci,1)) ∪ Gi,1 and (C1
i ∪ C2

i ) ⊆ (G′i \ int(Ci,1)) and Gi,1 6= (G′i \
int(Ci,1)) ∩ Gi,1, it follows by the Key Lemma 5.1.2 that Gi,1 is Ci,1-critical for acyclic
k-colouring. Since G′i = (G′i \ int(Ci,2 ∪ C2

i )) ∪ Gi,2 and (C1
i ∪ C2

i ) ⊆ (G′i \ int(Ci,2 ∪ C2
i ))

and Gi,2 6= (G′i \ int(Ci,2 ∪ C2
i )) ∩ Gi,2, it follows by the Key Lemma 5.1.2 that Gi,2 is

(Ci,2 ∪ C2
i )-critical for acyclic k-colouring.

If Ci,1 is a 3-cycle, then by Theorem 5.1.5 we have that |V (Gi,1) \ V (Ci,1)| = 0. If
Ci,1 is a 4-cycle, then by Theorem 5.1.6 we have that |V (Gi,1) \ V (Ci,1)| ≤ k. Otherwise
|V (Ci,1)| ≥ 5, and by Theorem 5.3.5 we have that ε|V (Gi,1) \ V (Ci,1)| ≤ |V (Ci,1)| − γ, for
some 5− εz ≥ γ ≥ 4.8 + εz.

If |V (C2
i )|, |V (Ci,2)| ≤ 4, then it follows from Theorem 6.2.19 that |V (Gi,2) \ V (Ci,2 ∪

C2
i )| ≤ |V (Ci,2 ∪ C2

i )| + 8 + 3ε − γ for some 5 − εz ≥ γ ≥ 4.8 + εz. Otherwise, if one of
|V (Ci,2)|, |V (C2

i )| is at least 5, then since Γ0 is a minimum counterexample, we have that
ε|V (Gi,2)\V (Ci,2∪C2

i )| ≤ |V (Ci,2)|+ |V (C2
i )|+20+9ε−γ for some 5−εz ≥ γ ≥ 4.8+εz.

The rest of the proof follows similarly to the proof of Claim 5.3.6 and uses calculations
similar to those found in the proof of Lemma 5.2.1. In the end, we find that ε|V (G0) \
V (C0 ∪ C ′0)| ≤ |V (C0)| + |V (C ′0)| + 20 + 9ε − γ for some 5 − εz ≥ γ ≥ 4.8 + εz, which
contradicts the assumption that Γ0 is a counterexample.

Claim 6.2.25. Γi does not contain a dividing bichord, for each i ∈ {0, 1, 2, 3}.

Claim 6.2.26. Γi does not contain a 6-double-pod, for each i ∈ {0, 1, 2, 3}.

Claim 6.2.27. Γi does not contain a non-unique, non-dividing bichord, for each i ∈
{0, 1, 2, 3}.

The proofs of Claims 6.2.25, 6.2.26, and 6.2.27 follow similarly to the proof of Claim
6.2.24. In each proof, we start by supposing the claim is not true. Next, we define the
correct relaxation Γ′i of Γ0. After that, Γ′i is divided into smaller k-critical canvases using
the bichord or double-pod that it is assumed to have. All of these canvases have one outer
cycle, except for one, in which the graph is bounded by two cycles. This is why the addition
of 20 + 9ε does not compound in each calculation. The remainder of the proofs, including
the calculations, follow similarly to the proofs of Claims 5.3.7, 5.3.8, 5.3.9 and Lemmas
5.2.2, 5.2.3.

By Claims 6.2.25 and 6.2.27, it follows that, for all i ∈ {0, 1, 2, 3}, if Γi contains a
bichord uvw, then v ∈ B(Γi). For all i ∈ {0, 1, 2, 3}, we have that Ci ∪ C ′i has no chords
by Claim 6.2.24 and Γi has no 6-double-pods by Claim 6.2.26.

Claim 6.2.28. Γ0 does not contain a bichord.
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Proof Sketch. Let M be a k-mosaic of C0 ∪ C ′0 that extends to G0[V (C0 ∪ C ′0) ∪ B(Γ0) ∪
B(Γ1) ∪ B(Γ2)]. Thus, by Lemma 6.2.15, we have that M extends to G0. Since G0 is
(C0 ∪ C ′0)-critical for acyclic k-colouring, it follows that G0 = G0[V (C0 ∪ C ′0) ∪ B(Γ0) ∪
B(Γ1)∪B(Γ2)]. Hence we have that |V (G0)| = |V (C0∪C ′0)|+ |B(Γ0)|+ |B(Γ1)|+ |B(Γ2)| ≤
(3k + 1)|V (C0 ∪ C ′0)|. Thus, it follows that |V (G0) \ V (C0 ∪ C ′0)| ≤ 3k|V (C0 ∪ C ′0)|. Let
5 − εz ≥ γ ≥ 4.8 + εz. Since z ≥ 15k, we have that 5 − 15kε ≥ γ; thus, it follows that
ε ≤ 1

3k
− γ

15k
. Note that since γ

5
< 1, it follows that 1

3k
− γ

15k
> 0. Since ε ≤ 1

3k
− γ

15k
, we have

that 3kε ≤ 1− γ
5
. Also, note that since |V (C0 ∪ C ′0)| ≥ 5, we have that − |V (C0∪C′

0)|
5

≤ −1.
Thus,

ε|V (G0) \ V (C0 ∪ C ′0)| ≤ 3kε|V (C0 ∪ C ′0)|

≤ |V (C0 ∪ C ′0)| −
γ|V (C0 ∪ C ′0)|

5
≤ |V (C0 ∪ C ′0)| − γ,

which contradicts the assumption that Γ0 is a counterexample.

By Claims 6.2.24, 6.2.28, and 6.2.26, we have that G0 does not contain a chord of
C0 ∪ C ′0 and Γ0 does not contain a bichord or a 6-double-pod. Thus, by the converse of
the Two Cycle General Structure Lemma 6.2.16, it follows that Γ0 is not k-critical, which
is a contradiction.

Theorem 6.2.29. For each k ≥ 12, there exists c > 1 such that if G is plane and S is a
non-empty independent set of G whose vertices are incident with at most two faces of G
and G is S-critical for acyclic k-colouring, then |V (G)| ≤ c(|V (S)| − 1).

The proof of Theorem 6.2.29 follows similarly to the proof of Theorem 6.1.1, but relies
on Theorem 6.2.20 instead of Theorem 5.3.5. Additionally, in the proof of Theorem 6.2.29,
we add vertices to create two cycles that bound the graph, rather than just one.

Theorem 6.2.30. The family F of graphs which are critical for acyclic k-colouring, where
k ≥ 12, is strongly hyperbolic.

The proof of Theorem 6.2.30 follows similarly to the proof of Theorem 6.1.9, but relies
on Theorem 6.2.29 instead of Theorem 6.1.1.

Let us recall that we set out to prove Theorem 1.0.4, which says that, for each k ≥ 12
and each surface S, there are finitely many graphs that are critical for acyclic k-colouring
that embed in S.
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Proof of Theorem 1.0.4. This follows from Theorem 6.2.30 and Theorem 2.2.1, which is
Theorem 1.3 in [15].

Theorem 6.2.31. For each k ≥ 12 and each surface S, there exists a linear time algorithm
that decides whether a graph embedded in S is acyclically k-colourable.

Proof. Given k ≥ 12 and a surface S, we have by Theorem 1.0.4 that there are finitely
many graphs that embed in S which are critical for acyclic k-colouring. Let L be a list of
these graphs and notice that L can be generated in constant time since k and S are fixed.
By a result from Eppstein [9], we know that subgraph testing can be done in linear time
for graphs that embed in a fixed surface. Therefore, there exists an algorithm which checks
if a graph G embedded in S contains a graph in L as a subgraph in linear time. If the
algorithm finds that G does not contain a graph in L as a subgraph, then G is acyclically
k-colourable.
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