
Diffuse Solid-Fluid Interface Method
for Dispersed Multiphase Flows

by

Tanyakarn Treeratanaphitak

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Chemical Engineering

Waterloo, Ontario, Canada, 2018

c© Tanyakarn Treeratanaphitak 2018





Examining Committee Membership

The following faculty served on the Examining Committee for this thesis. The decision of
the Examining Committee is by majority vote.

External Examiner: Li Xi
Assistant Professor
Dept. of Chemical Engineering
McMaster University

Supervisor: Nasser Mohieddin Abukhdeir
Associate Professor
Dept. of Chemical Engineering
University of Waterloo

Internal Members: Hector Budman
Professor
Dept. of Chemical Engineering
University of Waterloo

Jeff Gostick
Associate Professor
Dept. of Chemical Engineering
University of Waterloo

Internal-External Member: Fue-Sang Lien
Professor
Dept. of Mechanical and Mechatronics Engineering
University of Waterloo

iii





This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

v





Statement of Contributions

Section 3.1.2 in Chapter 3 and Chapters 4 and 5 have been incorporated in a paper that

has been submitted for publication, T. Treeratanaphitak and N. M. Abukhdeir. Phase-

bounded finite element method for two-fluid incompressible flow systems. Int. J. Multi-

phase Flow (Submitted July 3, 2018).

vii





Abstract

Industrial chemical engineering processes such as bubble columns, reactors and sep-

arators involve multiphase flows of two or more fluids. In order to improve the design

and operation of these processes, an understanding of their multiphase hydrodynamics is

essential. An emergent tool in studying multiphase flow systems that is becoming readily

accessible to researchers is computational fluid dynamics (CFD) simulation. CFD sim-

ulations of multiphase flow systems enable researchers to explore the effect of different

combinations of operating conditions and designs on pressure drop, separation efficiency,

and heat and mass transfer without the cost and safety issues incurred by experimental

design and pilot studies. Consequently, CFD simulations are increasingly relevant for the

design and optimization of chemical process equipment. The multiphase hydrodynamic

model that is often used to study chemical engineering processes is the two-fluid (Euler-

Euler) model. In this model, the fluids are treated as inter-penetrating continua and fluid

phase fractions are used to describe the average spatial composition of the multiphase fluid.

Generally, the physical boundaries (e.g. vessel walls, reactor internals, etc.) in nu-

merical simulations using the two-fluid model are defined by the mesh or grid, i.e. the

mesh/grid boundaries correspond to an approximation of the physical boundaries of the

system. The resulting conformal mesh/grid could potentially contain a large number of

skewed elements, which is undesirable in numerical simulations. One approach to address

this issue involves approximation of solid boundaries using a diffuse solid-fluid interface ap-

proximation. This approach allows for a structured mesh to be used while still capturing

the desired solid-fluid boundaries. The diffuse-interface method also allows for the simula-

tion of moving boundaries without the need for manipulation of the underlying mesh/grid

or interpolation of boundary variables to the nearest node. This allows for the geometry

of the domain of interest (i.e. process equipment) to be easily modified during the process

of simulation-assisted design and optimization.

In the two-fluid model, phase fractions are used to describe the composition of the

mixture and are bounded quantities. Consequently, numerical solution methods used in

simulations must preserve boundedness for accuracy and physical fidelity. Firstly, a phase-

bounded numerical method for the two-fluid model is developed in which phase fraction
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inequality constraints are imposed through the use of an implicit variational nonlinear

inequality solver. The numerical method is verified and compared to an established explicit

numerical method. The effect of using separate phasic pressure fields as opposed to the

commonly used single-pressure assumption is also found to be non-negligible in dilute

dispersed flows (less than 3% gas fraction).

Subsequently, the phase-bounded numerical method is extended to support a diffuse-

interface method for the imposition of solid-fluid boundaries. The diffuse-interface is used

to define physical boundaries and boundary conditions are imposed by blending conserva-

tion equations from the two-fluid model with the solid boundary condition. Simulations

of two-dimensional channel flow and flow past a stationary cylinder are used to validate

the diffuse-interface method. This is achieved by comparing the bubble plume width and

time evolution of the overall gas hold-up from the diffuse-interface simulations with results

obtained using boundary-conformal meshes. The results from the channel flow simulations

are found to be in agreement with the boundary-conformal mesh solution when the inter-

face width is sufficiently small. In the case of flow past a stationary cylinder, similar flow

features are observed in both diffuse-interface and reference simulations.
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Chapter 1

Introduction

1.1 Research Motivation

Two-phase gas-liquid flow systems are prevalent in industrial processes and, consequently,

the hydrodynamical behavior of gas-liquid systems is of significant interest. Examples of

gas-liquid flow systems include bubble columns [1–4], loop reactors [5, 6], nuclear reactor

cores [7, 8], cyclones [9], hydrocarbon pipelines [10–12] and disengagers [13]. The hydro-

dynamical behavior of gas-liquid systems is complicated and dependent on many factors

[14, 15], which are both difficult to control and measure experimentally. Thus, the use of

experimentation alone to study gas-liquid hydrodynamics is costly, time-consuming and

does not provide access to the dynamic spatially varying flow field. Computational fluid

dynamics (CFD) is a necessary approach to augmenting experimental research in that it

addresses these challenges.

Significant progress has been made in the development of models of gas-liquid flows

and their application to CFD simulations of multiphase flows [16–20]. Information on

important process information such as pressure drop, separation efficiency, temperature

distribution and reaction yield can be obtained from multiphase CFD simulations. The

simulations can be used to study process sensitivity to the operating conditions as well as a

screening tool for researchers to devise experimental set-ups involving conditions that merit
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further study. In addition to studying the hydrodynamical behavior of gas-liquid systems,

CFD can also be used to design equipment through traditional iterative methods or more

advanced automated topological optimization methods [21–27] by performing simulations

of different designs.

There are two important aspects to performing CFD simulations of multiphase flows:

the choice of the multiphase modeling approach and the specification of the geometry. The

choice of multiphase modeling approach will depend on the system of interest as certain

methods are better-suited for specific systems. Factors such as computational cost and the

desired information are crucial when choosing the appropriate method. The performance

of the CFD simulations is also contingent on proper specification of the domain geometry.

In industrial processes, the domain geometry will correspond to that of the equipment of

interest, which are often highly complex. How this geometry is specified is essential to the

performance and stability of the simulations.

Current approaches to modeling two-phase flows fall into three main categories: two-

fluid (Euler-Euler), Euler-Lagrange and interface-tracking models. Of the three family of

methods, the two-fluid model is the least computationally intensive and is thus an attractive

approach to modeling gas-liquid systems. The two-fluid model approximates the fluids as

inter-penetrating continua with conservation equations formulated for each phase [16]. This

method requires interphase momentum transfer constitutive relationships that describe the

momentum exchange between each phase. The selection of these constitutive relationships

has been shown to affect the simulation results significantly [28, 29].

In the Euler-Lagrange approach, the fluid is treated as a continuum but the dispersed

phase is treated as discrete particles whose motions are determined through simultaneously

solving Newton’s equations of motion for each particle [1, 30–33]. This has the benefit of

accurately resolving the motion of the individual particles/droplets/bubbles. However, this

benefit has the added cost of the computational requirement for computing the equations of

motion for the dispersed phase being significantly higher than that of the two-fluid model

[32].

Interface-tracking multiphase models include volume-of-fluid (VOF) [34], marker-and-

cell (MAC), level-set [35] and phase-field methods [36–43]. These methods are well suited
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for systems with segregated flows such as systems involving slug flow [44, 45]. However, for

dispersed systems, these approaches require the resolution of all of the interfaces between

the fluid and the dispersed phase, which is typically infeasible for industrially relevant

scales [46, 47].

A crucial aspect in the use of CFD for design and optimization of process equipment is

the specification of internal physical features, which can have highly complex shapes. These

features need to be specified as physical boundaries in the simulation, which can be achieved

by either using a conformal mesh or an embedded domain method. With a conformal mesh,

the geometry is defined such that once generated, the mesh surfaces correspond to the

physical boundaries. This process can be tedious, time-consuming and is computationally

challenging and subject to numerical instability for complicated geometries. Additionally, if

the internal features are changed, which is likely the case during the design and optimization

process, the mesh will also have to change, thus requiring the mesh to be regenerated. In

the case of moving mesh problems, methods like the arbitrary Lagrangian-Eulerian (ALE)

method [48] are used, but ALE requires the mesh to be deformed as the boundary moves.

Instead of using a conformal mesh, the physical boundaries can be “embedded” in

the problem using methods such as fictitious domain [49], immersed boundary [50, 51]

and diffuse domain/interface [52–56] methods. The physical boundaries are defined in the

embedded domain method through the use of a level-set function, a phase-field, etc. Since

the physical boundaries are not explicitly defined by the domain mesh, it is not required

to conform to the physical boundaries and a simple structured mesh can be used. This has

the benefit of avoiding skewed elements that are detrimental to the numerical accuracy of

the solution. The ease in which the internal features can be modified during the simulation

is highly beneficial when optimizing a design since the field that describes the boundaries

can directly be modified by the optimization scheme.

Physical boundaries that are defined using fictitious domain and immersed boundary

methods are generally sharp boundaries whose effect may be approximated through dis-

tribution of the boundary over a number of mesh elements. This requires the solution

field to be interpolated from the physical boundary to the nearest neighboring node/cell

[57]. Special consideration must also be paid when handling mesh elements that are cut by
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the embedded boundaries [56]. The diffuse domain/interface method defines the physical

boundaries using a phase-field. For example, the phase-field can vary between zero and

one [56]:

φ =

1, physical domain,

0, otherwise,
(1.1)

where φ is the phase-field.

As previously discussed, the phase-field approach where the phase-field describes the

gas-liquid interface in a thermodynamically consistent manner has been extensively used

to model multiphase flows [36–43]. This method does not require for the solution to be

interpolated at every time step since the phase-field ensures the smooth transition from

the fluid to the solid phase. The boundary normal vector is computed from the gradient

of the phase-field, aiding in the imposition of Neumann boundary conditions. The diffuse-

interface method is also agnostic to the numerical method used to solve the governing

equations. Based on these factors, the diffuse-interface method is an attractive approach

in imposing physical boundaries in simulations involving multiphase flow modeled using

the two-fluid model.

1.2 Objectives

The overall objective of this research is to develop, verify and validate a diffuse-interface

method for imposing physical boundaries when solving the two-fluid model equations.

To complete the aforementioned objectives, the following studies have been conducted:

1. Development, verification and partial validation of a phase fraction-bounded finite

element method for the solution of the two-fluid model equations using modified

incremental pressure correction scheme (TFM-IPCS).

2. Development, verification and partial validation of a diffuse-interface blended method

for the imposition of physical boundaries.
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1.3 Structure of Thesis

This thesis is organized into seven chapters: Chapter 2 – background, Chapter 3 – literature

review, Chapter 4 – finite element formulation for the solution of the two-fluid model,

Chapter 5 – phase-bounded finite element method for two-fluid incompressible flow systems,

Chapter 6 – diffuse-interface blended method for physical boundaries and Chapter 7 –

conclusions and recommendations for future work.

Chapter 2 describes the relevant theoretical background to the studies. The two-fluid

model is introduced along with the background on the numerical method used in the

studies. Solution methods for single-phase incompressible Navier-Stokes equations are also

described.

Chapter 3 provides an overview of the current literature on the different solution meth-

ods for the two-fluid model and embedded domain methods for multiphase flow systems.

Methods to address the numerical complexities of the two-fluid model such as phase frac-

tion boundedness and the ill-posedness of the model are also discussed.

Chapter 4 presents the finite element formulation for the solution of the two-fluid model

that is used in the studies presented in Chapters 5 and 6. This includes the numerical

scheme used for the time discretization and the weak formulation of the governing equa-

tions.

The solution method presented in Chapter 4 is then used in Chapter 5 in conjunction

with a novel approach to ensuring phase fraction boundedness in the two-fluid model. Sim-

ulation results of a gas-liquid bubble column with and without the boundedness constraint

are presented and compared to results from the two-fluid solver from the package OpenFOAM.

The effect of the common assumption that the two phases share the same pressure field

even in bubbly flow is also included in this chapter.

Chapter 6 presents a diffuse-interface approach for imposing physical boundary condi-

tions. The governing equations are solved using the solution method presented in Chap-

ter 5. Results from two-phase simulations of a bubble column and flow past a cylinder

are presented. Validation of the diffuse-interface method using boundary-conformal mesh

simulations is also presented in this chapter.
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Lastly, Chapter 7 summarizes the conclusions from this work and recommendations for

future work.
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Chapter 2

Background

2.1 Gas-Liquid Hydrodynamics

The multiphase system of interest in this work is the gas-liquid flow system. Different flow

regimes exist for gas-liquid flow systems that are dependent on the configuration of the

system in question. The main gas-liquid systems that are of industrial interest include flow

in horizontal pipes and vertical pipe flow [58]. This section will provide an overview of the

different flow regimes in the aforementioned gas-liquid flow systems.

2.1.1 Horizontal Flow

Horizontal gas-liquid flow is commonly found in oil and gas pipelines and power plants

[10]. The different flow regimes in horizontal pipe flow are shown in Fig. 2.1. At low gas

and liquid velocities, stratified flow is present [59]. In stratified flow, only the liquid phase

is present at the bottom of the pipe and the gas-liquid interface has minimal curvature. As

the gas velocity increases, waves such as Kelvin-Helmholtz waves appear [58] (wave flow

region in Fig. 2.1). If the gas velocity is further increased, atomization will occur and a

turbulent film can form, resulting in annular flow [58]. When the liquid velocity increases,

the waves can form a liquid bridge as it touches the top of the pipe, resulting in liquid
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slugs forming. Slugs can cause vibrations in pipes and are undesirable in a piping system

[10]. At high liquid velocities but low gas velocities, bubble flow can occur and the gas

bubbles will be concentrated near the top of the pipe due to buoyancy force [58].

Figure 2.1: Different flow regimes in gas-liquid flow in horizontal pipes [60].

2.1.2 Vertical Flow

Vertical gas-liquid flow can be classified into two main systems: bubble columns (superficial

vl = 0) and gas-liquid cocurrent flow (superficial vl 6= 0). Bubble columns are readily found

in chemical engineering applications [1] while gas-liquid cocurrent flow is found in nuclear

reactors [61]. Figure 2.2 shows a flow regime map for gas-liquid bubble columns as a
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function of the superficial gas velocity and pipe diameter. The flow regime as a function

of liquid and gas superficial velocities for cocurrent upward flow is shown in Fig. 2.3.

Figure 2.2: Flow regime as a function of gas superficial velocity and column diameter [15].

Gas-liquid flows in vertical pipes can be classified into the following flow regimes [14,

58, 62, 63]: dispersed bubble, vortical-spiral (transitional) flow, turbulent (also referred

to as churn-turbulent or slug) and annular flow regimes. In the dispersed bubble regime,

the bubble size is relatively uniform due to very little coalescence occurring in the column.

This type of multiphase flow corresponds to low gas velocities, where the liquid is carried

upwards near the bubbles and falls downward in the area between the bubbles (Fig. 2.4

left). As the gas velocity increases, the bubbles start to move in clusters, exhibiting

collective behavior, which eventually leads to coalesce into large segregated regions. The

larger bubbles move in a spiral manner while the smaller bubbles move up and down near

the wall (Fig. 2.4 center). This regime is the transition between dispersed flow to fully

turbulent flow (Fig. 2.4 right). In turbulent flow, the bubble coalescence is increased and

results in large slugs that disrupt the continuous nature of the flow. In smaller pipes, slug
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Figure 2.3: Different flow regimes in cocurrent gas-liquid flow in vertical pipes [61].

flow is present and in larger pipes, a heterogeneous phase such as the one shown in Fig. 2.4

is present [15]. Annular flow occurs when the gas velocity is further increased and the slugs

coalesce [58].

2.2 Two-Fluid Model

In modeling gas-liquid flows using the two-fluid model, each of the phases in the system

is considered to be a continuous fluid. Each of the phases has its own set of conservation

equations that are coupled together through interphase transfer terms. It is impractical to

solve for the local instantaneous motion of the fluid, thus averaging schemes are used to

solve for the macroscopic flow behavior instead [16]. Time-averaged quantities are denoted

by an overbar, �. A double-overbar, �, denotes a phasic average quantity, which are defined

as the time-averaged quantity divided by the phase fraction, �/αi. A hat, �̂, denotes a

mass-weighted mean phasic average quantity (Favre average), defined as ρi�/ρi.
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Figure 2. Flow pattern of the central bubble stream in 
a gas-liquid bubble column system. 
U, 2.9 cm/s and U,=O cm/s. 

matching fluid as it may alter the hydrodynamic characteristics 
of the system through the change of liquid properties. 

A tube-orifice type of distributor (Fan et al., 1982) is used 
to provide uniformity of gas and liquid flows. Tap water is 
used as the liquid phase for most cases. The sodium iodide 
solution, however, is used for the test of three-phase fluidi- 
zation when the refractive index matching technique is applied. 
Neutrally buoyant Pliolite particles of 200-500 pm are used as 
the liquid tracer. To ensure that the seeding particles follow 
the flow closely and have virtually no effects on the flow 
behavior, the concentration of the seeding particles is main- 
tained below 0.170 and the Stokes number of the seeding par- 
ticles is ascertained to be much smaller than 1. Air is used as 

the gas phase. The gas pressure is maintained within 4 to  10 
psig (28 to  69 kPa) upstream of the gas plenum. The superficial 
gas velocity ranged from 0.1 to 5.5 cm/s, and the superficial 
liquid velocity ranged from 0.0 to 7.4 cm/s in this study. Two 
types of particles including 500 pm glass beads (p, = 2.5 g/cm3) 
and 1.5 mm acetate beads (p,= 1.25 g/cm3) are used as the 
solids phase. The solids holdup ranged from 0 to  10% in this 
study. 

The laser sheeting technique is utilized for flow visualization. 
A 4 W argon ion laser system is used as the laser source, and 
a laser sheet of 2-5 mm thickness is created through the use 
of a cylindrical lens. Measurements are conducted at several 
different radial locations with the laser sheet projected along 
the vertical axial plane. A high resolution (800 x 490 pixel) 
CCD camera equipped with variable electronic shutter ranging 
from 1/60 to  1/8,000 s is utilized to  record the image of the 
flow field. A slide mirror oriented at an angle of 45" to  the 
front view of the column is used to  observe the flow at the 
location 90" from the front; images of both the front and side 
views are recorded simultaneously in a same video frame (Fig- 
ure 2). The 3-D motion of the central bubble stream is then 
identified by correlating the bubble motion from both images. 

A particle image velocimetry (PIV) system developed by 
Chen and Fan (1992) is applied to measure local flow properties 
of a 3-D fluidized bed. This PIV technique consists of laser 
sheeting, video recording, and image processing as the three 
major parts. Besides the ability of measuring the full-field flow 
information including velocity vectors, holdups, and acceler- 
ations, this PIV system is able to  discriminate the flow prop- 
erties among different phases which renders it unique and 
suitable for three-phase fluidization measurements. A com- 
plete description of the operating principles and calibration of 
the PIV system can be found in Chen and Fan (1992). Note 
that all the gas or liquid velocities described in this article refer 
to  the superficial velocities unless otherwise noted. 

1 1 0 0  

Dispersed bubble regime Vortical-spiral flow regime Turbulent flow regime 

Figure 3. Flow regimes in a 3-D bubble column and gas-liquid-solid fluidization system. 
- 

AIChE Journal July 1994 Vol. 40, No. 7 1095 

Figure 2.4: Different flow regimes in gas-liquid bubble columns [14].

2.2.1 Mass Conservation

The general expression for the conservation of mass for a phase q, in the absence of inter-

phase mass transfer and reaction, is given as follows [16]:

∂(αqρq)

∂t
+∇ ·

(
αqρqv̂q

)
= 0, (2.1)

where αq is the time-averaged local phase fraction of phase q, ρq is the time-averaged phasic

average density and v̂q is the time-averaged mass-weighted mean phase velocity.
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2.2.2 Momentum Conservation

The conservation of momentum for phase q is given as [16]:

∂
(
αqρqv̂q

)
∂t

+∇ ·
(
αqρqv̂qv̂q

)
= −∇

(
αqPq

)
+∇ ·

(
αqτq

)
+ αqρqĝq +Mq

+ Pq,i∇αq −∇αq · τq,i,
(2.2)

where Pq is the time-averaged phasic pressure, τq is the time-averaged phasic viscous stress

tensor, ĝq is the time-averaged mass-weighted mean phase gravitational acceleration, Mq

is the interphase momentum source term, Pq,i∇αq and ∇αq · τq,i are the contributions of

interfacial stresses and the subscripts indicate the fluid-dispersed phase pairing and type

of force, respectively. In the dispersed flow regime, the interfacial pressure and shear stress

of the continuous, c, and dispersed, d, phases can be assumed to be equal to each other

Pc,i ≈ Pd,i = Pint (neglecting surface tension effects) and τc,i ≈ τd,i [16, 64]. Additionally,

the pressure of the dispersed phase can be approximated by the interfacial pressure, Pd ≈
Pint [16]:

∂
(
αcρcv̂c

)
∂t

+∇ ·
(
αcρcv̂cv̂c

)
= −αc∇Pc +∇ ·

(
αcτc

)
+ αcρcĝ +Mc

+
(
Pint − Pc

)
∇αc −∇αq · τc,i,

(2.3a)

∂
(
αdρdv̂d

)
∂t

+∇ ·
(
αdρdv̂dv̂d

)
= −αd∇Pint +∇ ·

(
αdτd

)
+ αdρdĝ +Md

−∇αd · τc,i.
(2.3b)

The effect of the interfacial shear stress is significant in the segregated flow regime [65].

In this work, the focus will be on the dispersed flow regime, therefore, the interfacial

shear stress contribution is assumed to be negligible. The conservation of momentum for

a dispersed flow system is thus:
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∂
(
αcρcv̂c

)
∂t

+∇ ·
(
αcρcv̂cv̂c

)
= −αc∇Pc +∇ ·

(
αcτc

)
+ αcρcĝ +Mc

+
(
Pint − Pc

)
∇αc,

(2.4a)

∂
(
αdρdv̂d

)
∂t

+∇ ·
(
αdρdv̂dv̂d

)
= −αd∇Pint +∇ ·

(
αdτd

)
+ αdρdĝ +Md. (2.4b)

For the sake of brevity, the average notations are omitted in the subsequent sections. The

quantities are assumed to be averaged quantities corresponding to the definition above.

2.2.3 Interfacial Forces

The interphase momentum transfer term Mq, defined as the transfer of momentum into

phase q, is the sum of the contributions from the different modes of momentum trans-

fer: drag, lift, virtual mass, wall lubrication, etc. The momentum transfer term for the

continuous phase with the aforementioned contributions is [16, 66, 67]:

Mc = Mc,drag +Mc,lift +Mc,virtual mass +Mc,wall +Mc,other. (2.5)

Given that the momentum exchange between the phases should sum to zero, momentum

transfer of the dispersed phase d is given as:

Mc = −Md. (2.6)

Drag Force

The drag force term in Eqn. (2.5) is the sum of the form and skin drag forces which are

due to the imbalance of pressure and shear forces at the interface, respectively [16]. Drag

acts in the opposite direction of the relative motion of the bubble/particle. The interphase

momentum transfer of phase c due to drag for a dispersed phase d in fluid c, Mc,drag, is
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given as [16]:

Mc,drag =
1

2
ρcαd

CD
rd
‖vr‖vr, (2.7)

where rd is the ratio of the volume to projected area of the bubble/particle, CD is the drag

coefficient and vr is the relative velocity between the dispersed and continuous phases,

vr = vd − vc. For spherical bubbles/particles:

Mc,drag =
3

4
ρcαd

CD
dd
‖vr‖vr, (2.8)

where dd is the bubble/particle diameter.

Lift Force

Lift is the force exerted on the bubbles/particles that governs the transverse movement of

the dispersed phase in a fluid and is a result of shear forces and the asymmetric pressure

distribution around the dispersed particle/bubble [28, 68, 69]. The direction of lift is

perpendicular to the direction of flow. The expression for the momentum transfer to the

continuous fluid c due to lift is given as [69, 70]:

Mc,lift = CLρcαdvr × (∇× vc), (2.9)

where CL is the lift coefficient.

Virtual Mass Force

The virtual mass (or added mass) force is related to the acceleration of one phase in

relation to another [69]. As the dispersed phase is accelerating in the continuous phase,

it is displacing the surrounding fluid, increasing the inertia. The momentum transfer to

phase c due to virtual mass force is given as [69, 70]:

Mc,virtual mass = αdρcCVM

(
Ddvd
Dt

− Dcvc
Dt

)
, (2.10)
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where CVM is the virtual mass coefficient, Dd/Dt and Dc/Dt are the material derivatives

with respect to phases d and c, respectively.

Wall Lubrication Force

The wall lubrication force is a wall effect that occurs in bubbly flow where the continuous

phase wets the walls. It occurs when a bubble’s proximity to the wall results in asymmetric

drainage of fluid around the bubble. The side that is close to the wall will drain slower due

to the no-slip condition. The asymmetry creates a hydrodynamic force normal to the wall

that pushes the bubble away from the wall [67]. The wall lubrication force is given as [7]:

Mc,wall = −CWαdρc‖vr − (vr · nW )nW‖2nW , (2.11)

where CW is the wall coefficient and nW is the unit normal outward on the wall.

Interfacial Pressure

The interfacial pressure is determined from a volume average of the solution of potential

flow around a single sphere [67, 71]. This interfacial pressure is given by:

Pc,i = Pc − CPρcvr · vr, (2.12)

where CP is the interfacial pressure coefficient representing the flow near the bubble and

the shape of the bubble [71]. For the case where the particle/bubble size distribution

is uniform, the inviscid flow solution is used to approximate the value of the interfacial

pressure coefficient, CP = 0.25 [64, 72].
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2.3 Numerical Method for Partial Differential Equa-

tions

The governing equations in the two-fluid model are partial differential equations (PDEs).

Generally, analytical solutions to PDEs only exist for unique, simplified cases. Thus, the

solution to the PDEs in the two-fluid model is obtained numerically. In this section, the

numerical method for the solution of partial differential equations is introduced along with

some common solution methods for single-phase incompressible Navier-Stokes equations.

2.3.1 Method of Weighted Residuals

The method of weighted residuals is a method to approximate solutions for ordinary and

partial differential equations. The solution to the differential equation is approximated by

a parameterized approximate solution, the trial solution. The trial solution to the equation

is expressed in terms of trial or basis functions, for example [73]:

ya(x) =
N∑
i=1

aiϕi(x), (2.13)

where ya is the trial solution, ai is a set of coefficients that will help the trial solution

satisfy the differential equation, ϕi is the trial (basis) function that satisfies the boundary

conditions and N is the number of trial functions. The residual is defined as [73]:

L(ya) = R, (2.14)

where the left-hand side represents the differential equation where if y is the exact solution

to the differential equation, L(y) = 0, and R is the residual. Substituting the trial function

in Eqn. (2.13) will give a residual error function:

R(x) = L

(
N∑
i=1

aiϕi(x)

)
. (2.15)
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From Eqn. (2.15), the only parameters on the right-hand side that can be changed for a

given trial function are {ai}, the determination of which results in an approximation to

the solution of the differential equation.

When the residual error function is zero over its domain the solution is exact, thus

any numerical solution should have a residual that obeys this constraint within acceptable

tolerances. The residual error over the entire solution domain needs to be minimized, but

the residual defined in Eqn. (2.15) is a function of position. To minimize the residual over

the entire domain, the residual needs to be integrated. This is achieved by computing the

weighted integral over the domain [74]:

〈R(x), wj(x)〉Ω =

∫
Ω

R(x)wj(x)dx = 0, (2.16)

where 〈�, �〉 is the inner product operator, wj is the weighting (test) function and Ω rep-

resents the domain. The choice of weighting function can vary and result in different

numerical methods belonging to the family of the method of weighted residuals such as,

subdomain, least squares, Galerkin, moment and collocation methods [73]. Finite volume

and finite element are examples of subdomain and Galerkin methods, respectively, and are

commonly used in solving fluid flow problems.

2.3.2 Finite Element Method

In this work, the governing equations are solved using the Galerkin finite element method

(FEM). The governing equations are reformulated into their weak formulations, where the

condition that the solution to a differential equation must satisfy the differential equation

at every point in the domain is relaxed. Instead, the solution will weakly (i.e. on average

over the whole domain) satisfy the differential equation. If the solution to the differential

equation is smooth, the solution to the differential equation is also the solution of the

weak formulation [75]. The weak formulation is obtained through the method of weighted

residuals and takes the form of Eqn. (2.16). For the case of the Galerkin method, the test
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function is from the same family of functions as the basis function(s) [73, 75]:

wj = ϕj(x). (2.17)

Using the following Poisson problem as an example:

−∇2y = f on Ω, n · ∇y = h on ΓN , (2.18)

where Ω is the domain and Γ is the boundary of the domain. Taking the inner product

of the residual function with the test function and using integration by parts, the weak

formulation of the problem is as follows:∫
Ω

∇ϕ · ∇ydΩ−
∫

Ω

ϕfdΩ−
∫

ΓN

ϕhdΓ = 0. (2.19)

The choice of the basis functions can affect the accuracy and convergence of the solution

[75]. In FEM, the basis functions are local interpolating functions over parts of the domain.

These subdomains are known as “elements” and the solution is represented in terms of

piece-wise interpolating functions, which often are low order polynomials. An example

of this representation with linear (first order polynomial) basis functions for an arbitrary

function ya with the same form as that of Eqn. (2.13) is given in Fig. 2.5. The basis

functions at nodes 1–3 are piece-wise linear functions whose values are one at the node and

zero elsewhere. The coefficient ai in Eqn. (2.13) corresponds to the value of the function

at that particular node. From Fig. 2.5, it is clear that the accuracy of the representation

increases as the spacing between the nodes decreases.

In FEM jargon, the piece-wise polynomials that make up each element are called ele-

ment shape functions. The element shape functions are defined on a reference coordinate

system, (ξ, η) for two-dimensional problems (Fig. 2.6). Each mesh element can be mapped

to the reference coordinate and the corresponding linear system to the differential equation

can be constructed in terms of the reference element [76]:

AeKey = Aef e, (2.20)
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Ω1 Ω2 Ω3 Ω4

Nodes 0 1 2 3 4 x

ya

Figure 2.5: Linear piece-wise representation of ya (solid line) and the corresponding basis
functions (dashed lines). Figure adapted from Ref. [75].

where Ae is an assembly operator that is applied to the local element matrix, Ke, and

nodal vector, f e, and y is a vector of unknowns. Ke and f e are quantities that correspond

to the linear system if the domain is the reference element. The assembly operator maps

Ke and f e from the reference (local) element to the actual (global) mesh element [76].

Compared to the other popular spatial discretization methods such as finite difference

and finite volume, the finite element method has several benefits. FEM is a more general

method that can handle unstructured meshes with much more ease than the other two

methods. Unlike the finite volume method that is locally conservative over each subdomain,

the finite element method is globally conservative over the entire domain and the residual

is globally satisfied. Increasing the order of the interpolating polynomial, increasing the

mesh density or a combination of the two, can increase the accuracy of the approximation.

2.3.3 Method of Lines

Numerical solutions to partial differential equations with a time derivative are obtained

using the method of lines (MOL) [77]. The idea behind the method of lines is to discretize

the spatial derivatives in the PDE using methods such as finite volume or finite element,

leaving behind a system of initial value problems (IVPs). The spatial derivatives are now

algebraic expressions and solution methods for IVPs can be used to solve the PDE system.
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Figure 2.6: Quadrilateral elements and element shape functions [76].
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At each point in space, there is a “line” of values, corresponding to the solution in the

time domain (Fig. 2.7). The lines combine to form the solution of the PDE over time and

space. An example of the method of lines is discussed below.

Figure 2.7: Method of lines solution [77].

Using an example of a transient version of the Poisson problem in Eqn. (2.18):

∂y

∂t
= ∇2y + f, (2.21)

where the initial condition is y(x, t = 0) = 0. The spatial derivative can be discretized in

the same manner as that in Section 2.3.2 or using some other spatial discretization method.

Let D denote the discretized Laplacian operator, Eqn. (2.21) then becomes:

dyi
dt

= D(yi) + f, (2.22)

where the time derivative is no longer a partial derivative and yi is the trial solution at the

i-th point in the discretized domain. This IVP can be solved using any of the established
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IVP solution methods such as explicit or implicit Euler:

yn+1
i − yni

∆t
= D(yni ) + fn explicit Euler, (2.23)

yn+1
i − yni

∆t
= D(yn+1

i ) + fn+1 implicit Euler. (2.24)

2.3.4 Solution Methods for Single-Phase Incompressible Navier-

Stokes Equations

The focus of this work will be on flow systems where the fluid is incompressible. Unlike the

case in compressible flows where the pressure can be determined from an equation of state

that is a function of density and temperature [78], the density in incompressible flows is

constant. The Navier-Stokes equations for single-phase incompressible flow are as follows

[79]:

ρ
∂v

∂t
+ ρ∇ · (vv) = −∇P +∇ · τ + f , (2.25)

∇ · v = 0. (2.26)

This poses a challenge for researchers to develop solution methods that account for the

pressure-velocity coupling. An overview of the four families of solution methods for pressure-

velocity coupling will be provided in this section.

Artificial Compressibility

The artificial compressibility method was also developed by Chorin [80, 81]. The method

is based on the idea that the density in the governing equations is now an artificial density.

The pressure is then described through an equation of state that is a function of the

artificial density and artificial compressibility [80]:

P =
ρ

δ
, (2.27)
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where δ is the artificial compressibility. The artificial compressibility is obtained from the

artificial sound speed [80]:

c =
1

δ1/2
, (2.28)

where c is the artificial sound speed. The choice of c is essential as it affects the performance

of the numerical method. Since the artificial density is no longer constant, the mass

conservation equation becomes [80]:

∂ρ

∂t
+∇ · v = 0, (2.29)

where the time derivative of the artificial density is equal to the mass conservation equation

if the flow is incompressible. Substituting in Eqns. (2.27) and (2.28):

1

c2

∂P

∂t
+∇ · v = 0. (2.30)

This method is generally used for computing steady-state solutions since the time evolution

of the pressure field is not necessarily accurate but the steady-state value is.

Projection

The projection method was first developed by Chorin [81, 82] for computing transient

solutions to the Navier-Stokes equations. The method involves computing a tentative

velocity, v∗, either implicitly or explicitly from the pressure at the previous time step [76]:

ρ
v∗ − vn

∆t
+ ρv∗ · ∇v∗ = −∇P n +∇ · τ ∗ + f ∗, implicit, (2.31)

ρ
v∗ − vn

∆t
+ ρvn · ∇vn = −∇P n +∇ · τ n + fn, explicit. (2.32)

This tentative velocity is not divergence-free and will not satisfy the conservation of mass.

The pressure at the next time step is computed from the pressure Poisson equation that
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is obtained by taking the divergence of Eqn. (2.34):

∇2P n+1 = ρ
∇ · v∗

∆t
. (2.33)

The velocity at the next time step is computed from the following equation [76]:

ρ
vn+1 − v∗

∆t
+∇P n+1 = 0. (2.34)

The main benefits of this method are that the method is general and does not require

arbitrary parameters. The equations do not change when moving from two-dimensions to

three-dimensions, which is not the case in some methods.

SIMPLE

The Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) was originally de-

veloped for staggered grids by Patankar and Spalding [83]. This method is essentially a

predictor-corrector method to obtain the steady-state solution of the Navier-Stokes equa-

tions where an initial pressure field, P ∗, is provided [83]. The initial pressure field is used

to obtain a first approximation of the velocity field, v∗, by solving the momentum equation

in every dimension. The discretized momentum equation used to solve for v∗ will depend

on the numerical and discretization methods which are not discussed here. The correct

pressure and velocity fields are [78]:

P = P ∗ + P ′, (2.35a)

v = v∗ + v′, (2.35b)

where the primes denote correction values. Eqn. (2.35) is substituted into the momentum

and mass conservation equations to obtain an expression for the correction values. The

contribution of v′ from neighboring nodes is omitted from the velocity correction [78]. The

pressure update is obtained by substituting Eqn. (2.35) into Eqn. (2.26) which yields the
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pressure Poisson equation in terms of P ′ [83]:

P ′i =
∑
nb

anbP
′
nb +Rm

i , (2.36)

where nb denotes the neighboring nodes, a is the coefficient and Rm
i is the residual from

evaluating Eqn. (2.26). The corrections in Eqn. (2.35) need to be relaxed to improve the

convergence of the solution [78]. The algorithm is repeated until convergence is reached.

This method is a variation of the projection method previously presented with the pressure

correction being computed instead of the pressure at each iteration.

PISO

The PISO (Pressure-Implicit with Splitting of Operators) method was developed for tran-

sient simulations by Issa [84]. It is very similar to the SIMPLE method with the main

exception aside from it being a transient method being the additional correction step.

PISO performs a fixed number of pressure and velocity correction steps within a time step

[84]. Similar to the projection method, the incremental value in each prediction-correction

step does not satisfy Eqn. (2.26) [84]. The first prediction is obtained in the same manner

as in the projection method where ∇ · v∗ 6= 0. The incremental velocity and pressure

values can be generalized as follows [84]:

ρ
vi − vn

∆t
+ ρvi−1 · ∇vi−1 =∇ · σi−1 + fn+1, (2.37)

∇2P i−1 =∇ ·
(
∇ · τ i−1 − ρvi−1 · ∇vi−1

)
+∇ · fn+1 +

ρ∇ · vn

∆t
, (2.38)

where i refers to the current correction step. Unlike SIMPLE, it does not require relaxation

in the pressure correction step [85]. The prediction and correction steps can be repeated

as many times as needed to satisfy a convergence criterion. In practice, Issa [84] found

that the two correction steps are sufficient.
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Chapter 3

Literature Review

In the previous chapter, the theoretical background of the two-fluid model and the nu-

merical method for the solution of flow problems are discussed. In this chapter, pertinent

literature on numerical solution to TFM and associated complexities (Section 3.1) and

approaches to imposing solid boundaries in multiphase flow (Section 3.2) are reviewed.

3.1 Solution Methods for the Two-Fluid Model

Solution methods for TFM are based on the methods developed for the Navier-Stokes

equations (Section 2.3.4). The solution procedure is similar to that of single-phase flow

but with the addition of a second momentum equation and a more complex conservation

of mass equation. In this section, the different solution methods for TFM reported in the

literature are reviewed. This also includes the discussion of the well-posedness of TFM

and techniques to ensure phase fraction boundedness in TFM.

Extensions to both (transient) SIMPLE [17, 86] and PISO [87, 88] methods were made

to accommodate the governing equations in the two-fluid model. The two-phase extensions

of SIMPLE and PISO are commonly found in solvers using the finite volume method [87,

89]. The assumption is made that the two fluids share the same pressure field, thus there

is only one pressure unknown. Explicit methods were used for the temporal discretization
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of the governing equations. The phase fractions are first computed using values from the

previous time step. The pressure and velocities are computed using SIMPLE or PISO with

the phase fractions held constant [87]. The phase fractions are later updated with the new

pressure and velocities using Eqn. (2.1).

The projection and artificial compressibility methods have also been extended to the

two-fluid model and solved using finite element [90, 91]. In the projection method, the

incremental velocity is obtained using pressure and phase fractions from the previous time

step semi-implicitly, where the relative velocity in the interfacial coupling term is at n+ 1.

The pressure is computed using the pressure Poisson equation that is now formulated using

the sum of the momentum equations from the phases. The velocity is updated with the

new pressure but the phase fractions are still from the previous time step. Finally, the

phase fractions are updated using Eqn. (2.1) using the new velocities [90].

The artificial compressibility approach used by Giordano and Magi [91] is also an ex-

plicit method. The pressure equation is now formulated using divergence term obtained

from when the mass conservation equations are summed together and the phasic density

is constant [91]: ∑
q

∇ · (αqvq) = 0. (3.1)

The governing equations and the pressure equation are solved in a coupled manner to

obtain the solution to the equations.

3.1.1 Phase-Fraction Boundedness in the Two-Fluid Model

An important aspect of the two-fluid model is the boundedness of phase fractions. The

sum of phase fractions must equal to one at every point in the simulation domain (equality

constraint) and the phase fraction of each individual phase needs to be bounded between

zero and one (inequality constraint). Mathematically, the two constraints are represented
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as follows: ∑
q

αq = 1, (3.2)

0 ≤ αq ≤ 1. (3.3)

Equation (3.2) is inherently satisfied in the two-fluid model when solving the conservation of

mass equation for only one of the phases, typically the dispersed phase. The phase fraction

of the continuous phase is simply 1 − αd. Equation (3.3) is not inherently satisfied and

additional steps must be taken to ensure that the individual phase fractions are bounded.

The two-fluid model has been implemented in several commercial software packages [89,

92, 93] that are readily available. Other implementations such as NEPTUNE CFD [94, 95] and

OpenFOAM [87, 96] also exist. A comparative study of some of the TFM implementations

is available in the literature [94, 97]. Some of the packages [87, 89, 93, 98] include details

on how phase fraction boundedness is enforced.

The different approaches to maintaining phase fraction boundedness available in lit-

erature can be broken down into four categories: thresholding [99], flux limiting [100],

artificial diffusion [93] and remapping [87, 101]. The use of phase fraction bounding tech-

niques can have an effect on the fidelity of the solution. In this section, existing approaches

in maintaining phase fraction boundedness are reviewed.

Depending on the formulation of the momentum equation used, thresholding can be

necessary to avoid issues with division by zero. The value of the phase fraction below a

threshold is set to be equal to the threshold, typically a small value. One can also choose

to threshold the phase fraction outside the momentum equation, this involves zeroing out

negative phase fraction values and setting all values above one to be equal to one after

the solving Eqn. (2.1). This is the approach taken in Ref. [92]. Thresholding the phase

fraction from Eqn. (2.1) will result in a change in the profile and gradient of the phase

fraction.

Oliveira and Issa [101] implemented a two-equation method to satisfy Eqns. (3.2)

and (3.3) in their in-house code. Equation (2.1) was discretized using an upwind scheme
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and solved for both the dispersed and continuous phases. The upwinding ensured that the

lower bound in Eqn. (3.3) is satisfied. The resulting phase fractions were then rescaled by

a factor of 1/(α∗d + α∗c), where α∗d and α∗c are the values obtained from the conservation of

mass equation, satisfying Eqn. (3.2). Since the rescaled individual phase fractions satisfy

the lower inequality bound and Eqn. (3.2), the upper inequality bound is also satisfied.

In previous versions of OpenFOAM, Weller [87] reformulated the conservation of mass

equation such that the phase fraction can be bounded when the conservative form is used.

The dispersed phase velocity vd was decomposed into mean and relative components [87]:

vd = αcvc + αdvd + αcvr. (3.4)

Substituting Eqn. (3.4) into Eqn. (2.1) and dividing by ρd:

∂αd
∂t

+∇ · [αd(αcvc + αdvd)] +∇ · (vrαdαc) = 0. (3.5)

The resulting equation is nonlinear and the boundedness of the solution may be compro-

mised when using a higher order spatial discretization scheme [102]. To solve the equation

using an iterative linear solver while maintaining the boundedness of the phase fractions,

the phase fraction was remapped using a quadratic equation that is a function of both

phase fractions [87]:

α∗d =
1

2

[
1− (1− αd)2 + (1− αc)2]. (3.6)

In more recent versions of OpenFOAM, phase fraction boundedness is ensured through the

use of a limiter that is based on flux corrected transport called multidimensional universal

limiter for explicit solution (MULES) [100]. MULES allows for the possibility of specifying

global minimum and maximum values for a given field [98]. The flux that is used to

compute the phase fraction in the finite volume method is adjusted by a correction term,

λ, and the resulting phase fraction is bounded.

The artificial diffusion approach adds a diffusion term to the conservation of mass

equation that will help regularize the solution. In the commercial package COMSOL [93],

artificial diffusion is used in the conservation of mass equation of the dispersed phase to
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minimize the possibility of a negative phase fraction:

∂αd
∂t

+∇ · (αdvd) = −∇ · (−νb∇αd), (3.7)

where νb is the “barrier” viscosity:

νb =
µd
ρd

(
exp

[
max

(
− αd

0.0025
, 0
)]
− 1
)
. (3.8)

The barrier viscosity is nonzero when the phase fraction is a negative value. The artificial

diffusion term only minimizes the possibility of a negative phase fraction, it does not guar-

antee that the phase fraction will be positive. Artificial diffusion can alter the governing

equation even if the diffusion term is only active when the phase fraction is negative. When

the conservation of momentum equation is solved, the phase fractions are thresholded to

be between zero and one to regularize the solution [93]. In COMSOL, the convective form of

the momentum equation is scaled by the phase fraction, which results in 1/α terms in the

momentum equation, these terms are also thresholded.

3.1.2 Well-Posedness of the Two-Fluid Model

A mathematical model is considered to be well-posed if all of the following are true [64]:

• a solution exists,

• the solution is uniquely determined and

• the solution depend on the initial and boundary conditions continuously.

The well-posedness of the model can affect the stability and accuracy of the solution.

An ill-posed two-fluid model can contain unphysical instabilities and excessive numerical

diffusion [103]. The TFM CFD practitioners often neglect the ill-posed nature of the

equations as many adhere to the criterion that the mesh/grid size must be larger than the

bubble size. The effect of this criterion is that the high frequency oscillations that arise

from the ill-posedness are coarsened out at the expense of numerical accuracy [104]. This
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criterion is based on the idea that since TFM is an averaged model, the length-scale of

the computational mesh/grid should be larger than the length-scale of that it is averaging

[105]. However, TFM is a continuum model and it should not be affected by the mesh/grid

size if well-posed. Thus, it is important to understand the factors that can improve the

well-posedness of the two-fluid model.

Drew and Passman [64] studied the well-posedness of the two-fluid model with the

simplest form of TFM:

∂(αqρqvq)

∂t
+∇ · (αqρqvqvq) = −αq∇P +Mq,drag, (3.9)

where the phasic pressures are assumed to be in equilibrium, the viscous stress effects are

neglected and the interphase drag is an algebraic expression. This equation is a first-order

partial differential equation whose eigenvalues are infinite and complex unless vc = vd [64].

The authors also explored the case where the viscous stress of the continuous phase is

taken into account. The viscous stress of the continuous phase was treated as a separate

variable in the characteristic analysis. From this analysis, the authors concluded that the

equations are well-posed for cases where vc 6= vd given µc > 0, which are most practical

cases.

In cases where the viscous stress is either neglected (e.g. inviscid flow) or approximated

by an algebraic expression (e.g. algebraic expression for wall stress), the two-fluid model is

still ill-posed. Numerous attempts have been made to make the two-fluid model well-posed,

including adding the contribution of virtual mass to the momentum exchange [106–108],

using interfacial pressure in the governing equations [106, 108–110], adding a momentum

flux [111], adding a turbulent dispersion contribution [104] and adding a collision force [112]

to the momentum equation. The reported effects of some of the approaches have been

contradictory [103] and often dependent on the constants (e.g. virtual mass coefficient,

interfacial pressure coefficient, etc.) used in the added physics [106, 113, 114].

However, it is important to note that recent work on this topic appears to contradict

the conclusion drawn by Drew and Passman [64] that accounting for the viscous stress in

the continuous phase is sufficient for the model to become well-posed. Vaidheeswaran et al.
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[112] performed a characteristic analysis on the two-fluid model with the viscous stresses of

both phases taken into account along with virtual mass, interfacial pressure and collision

force. In this case, the viscous stress is considered as the second derivative of the velocity,

not a separate variable like in the work by Drew and Passman [64]. The authors found that

the two-fluid model is only well-posed up to αd ≤ 0.26 when virtual mass and interfacial

pressure are considered, which is in agreement with the work carried out by Pauchon and

Banerjee [72], and unconditional well-posedness is only achieved when a collision force is

added. Additionally, Vaidheeswaran [104] and López de Bertodano et al. [105] stated that

the mesh/grid size criterion is unnecessary when the model is well-posed and can result in

a loss in accuracy of the solution.

3.2 Embedded Domain Methods for Multiphase Flows

Physical boundaries in multiphase flow systems can be prescribed using an embedded do-

main method where the information about the physical boundaries is stored independently

from the mesh. Embedded domain methods for multiphase flow systems reported in the

literature have been largely limited to the immersed boundary method with a few studies

conducted using the diffuse-interface method. This section will provide a review of the

different studies involving embedded domain methods for multiphase flows.

3.2.1 Immersed Boundary Method

Immersed boundary (IB) methods are methods that treat the solid boundary as being

“immersed” inside the simulation grid. They allow for a fixed grid to be utilized for the

simulation domain and do not require the mesh to be regularized as the solid bound-

ary moves [50] like in arbitrary Lagrangian-Eulerian methods [48]. The term “immersed

boundary” was first coined by Peskin [115] and is often associated with Peskin-type meth-

ods where a forcing term is introduced to impose the solid boundary and the location of
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the solid boundary is tracked in the Lagrangian frame [50, 51]:

ρ
∂v

∂t
+ ρv · ∇v = −∇P + µ∇2v + f + ffluid−solid. (3.10)

However, other methods such as the Navier-Stokes/Brinkman equations [116] are also

considered immersed boundary methods. The literature on immersed boundary methods

is vast (see Refs. [50, 51] and references therein) and often pertains to single-phase flow

systems. In this section, the scope is limited to studies using the immersed boundary

method to impose solid boundaries in multiphase fluid flow systems.

Solid Boundary without Flow-Induced Movement

Studies involving immersed boundary methods for multiphase flows in the literature are

conducted primarily on multiphase systems with few interfaces where the solid bound-

ary is either stationary or is moving at a known velocity. Systems without flow-induced

movement are found in studies of wave propagation [117–123], with applications to ship

hydrodynamics and oceanography, injectors [124, 125], porous media [126], hydroplaning

[127], etc. This type of flow is modeled using interface-capturing methods such as volume-

of-fluid (VOF) [34], level-set (LS) [128] and constrained interpolation profile (CIP) [129].

The use of an interface capturing method means that the momentum equation is of the

same form as the Navier-Stokes equations but with a source term to account for surface

tension. This allows for existing solution techniques to the Navier-Stokes equations to be

used to solve the momentum equation.

In the studies reviewed in this section, solid boundary was identified using an indicator

function that can either be smooth [117–123, 125, 126, 130–132] or discrete [124, 127, 133].

Son [130] introduced a solid phase fraction, α, that is zero inside the solid, one in the

fluid and between zero and one near the fluid-solid interface. The distance away from the

fluid-solid interface was used to determine a phase fraction. The transition between fluid

to solid was described using a smoothed Heaviside function. The governing equations were
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weighted by α [130]:

∇ · (αv) = 0 for all α, (3.11a)

αρ
∂v

∂t
+ αρv · ∇v = −α∇P +∇ ·

(µ
α
∇v
)

+ αf α > 0, (3.11b)

v = 0 α = 0. (3.11c)

Equation (3.11) is valid for the case where the immersed boundary is stationary. This

method was validated with simulations of bubbles adhering to a cylindrical solid [130] and

the results were found to be comparable to the exact solution for simulations with different

contact angles. The immersed boundary treatment was modified to use discontinuous phase

fractions and was used to simulate a piezoelectric inkjet process in a subsequent work from

Suh and Son [124]. The nozzle geometry was defined using the immersed boundary and the

results were found to be in good agreement with other numerical studies in the literature.

Arienti and Sussman [125] studied multiphase diesel injectors with the combined level-

set volume-of-fluid/immersed boundary method. The immersed boundary was taken into

account in the pressure Poisson equation (see Section 2.3.4) with a condition that the

tentative velocity is equal to the solid velocity at the solid faces. This condition was

also maintained in the velocity update step. Figure 3.1 shows the pressure distribution

from the simulation of a diesel injector. The injector geometry was specified using the

immersed boundary method. The velocity profiles at different cross-sections obtained from

simulations were compared to experimental data for the same type of diesel injector. Unlike

the results from the validation cases where the flow and geometry were much simpler, the

results from the diesel injector study only showed some qualitative agreement with the

experimental results.

Immersed boundary method was also used in studies involving porous media. Patel et

al. [126] combined an existing immersed boundary method with volume-of-fluid to model

water flooding in porous media for enhanced oil recovery applications. The method was

first validated with simulations of an oil droplet in water on a spherical solid. The droplet

shape at different contact angles was used as the basis for comparison between simulation

results and the analytical solution. The droplet shapes were in excellent agreement with the
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Figure 3.1: Multiphase simulation of a Diesel injector using the immersed boundary method
[125].
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analytical solution. Water flooding in an oil-water system with different porous medium

configurations was simulated to determine the amount of residual oil.

Another application of immersed boundary method for multiphase flows is in modeling

free surface interactions with solid structures. A VOF/IB method was developed by Shen

and Chan [117–119] to study fluid-structure interaction and wave propagation/generation

with stationary and moving solid boundaries. A forcing term was added to the momentum

equation (Eqn. (3.10)) to impose the solid boundary and the term was treated as diffuse

with respect to its influence on the fluid’s momentum. The simulations were validated

using experimental results and the profiles of the free surface were found to be in agreement.

However, the simulated systems in Refs. [117–119] are all for the case where the solid is fully

immersed in the liquid and the gas is never in contact with the solid. A similar method was

used by Zhang and co-workers [120, 121] to model fluid sloshing in a horizontally-agitated

tank [120] and a rotating ellipse in a tank [121]. Simulations were performed to reduce the

wave height in the horizontally-agitated tank by studying different baffle configurations.

A variation of the VOF/IB method was used by Gsell et al. [122] to study propagating

waves over a complex bottom. The transition from solid to fluid was described using a

hyperbolic tangent function. The behavior of a solitary wave as it hits the shore was

modeled using the VOF/IB method for different shore configurations. The profile of the

free surface near the shore was compared to experimental results and simulation results

where the simulation domain is described using a body-fitted mesh. Results experiments

and simulations were found to be in good agreement with each other.

Wave-body interactions in ship hydrodynamics were studied by Yang and Stern [123]

using a level-set/immersed boundary method with a forcing term. The method was first

validated using simulations of water entry and exit. The results were compared to existing

numerical results and the results were found to be in good agreement (Fig. 3.2). The model

was then used to simulate ship hydrodynamics where a ship is moving at a fixed velocity

in water (Fig. 3.3), good agreement was found near the immersed boundary due to higher

grid resolution near the boundary.

The immersed boundary method with direct forcing had also been used to study the

wetting process of solid particles [131]. The constrained interpolation profile method was
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spanwise, and vertical directions, respectively. Note that in this case a half domain is used due to the symmetric shape of the
Wigley hull with respect to the vertical center plane and that a steady flow condition is used. A non-uniform Cartesian grid of
512! 120! 120 is used to cover the half domain. The grid is stretched to cluster more points near the hull surface, espe-
cially, in the bow and stern regions.

Fig. 15 shows a comparison of the wave pattern obtained with the Cartesian grid solver and the experimental data from
[7]. The simulation gives a remarkably accurate wave pattern with well-matched wave length and amplitude. However, the
amplitude of the second trough is slightly under-predicted as the grid there is not fine enough. Also, there is an under-pre-
diction of the upward velocity in the wake caused by the artificially thickened boundary layer, which results in a smaller
wave peak located downstream of the stern.

To further demonstrate the accuracy and efficiency of the current computational method, two additional simulations are
setup for the Wigley hull case: one using the current solver on a coarser Cartesian grid of 256! 68! 68 (1.2 million grid
points), shown on the top of Fig. 16; and the other using the CFD solver CFDShip-Iowa version 4 [5] on an overset grid of
the above coarse Cartesian grid and a body-fitted grid of 161! 79! 75 (0.95 million grid points) attached to the hull surface,
shown on the bottom of Fig. 16. CFDShip-Iowa version 4 is a general-purpose Reynolds-averaged Navier–Stokes (RANS) sol-
ver with a focus on ship hydrodynamics. It solves unsteady turbulent free-surface flows around moving ships on multi-block
overset body-fitted grids with a blended k" !=k"x turbulence model and a level-set method for free-surface capturing. The
reader is referred to [5] for more details about this solver.

The comparison of results from both simulations is given in Fig. 16. Significantly improved wave field is obtained from the
Cartesian grid solver as compared with the single-phase overset grid RANS solver. Possible reasons for the better resolution
of the wave pattern with the Cartesian grid solver than the body-fitted grid solver include the following among others: (a)
the spatial discretization of the Cartesian grid solver is much less diffusive, especially, a fifth-order HJ WENO scheme versus a
second-order upwind scheme for the level-set solvers which are used in the former and the latter, respectively; and (b) the
time-averaging RANS simulation in the latter results in more dissipation in the free-surface waves. However, the RANS solu-
tion in the wake does match the experimental data better than that of the Cartesian grid solver, although coming from an
expensive body-fitted grid of another nearly 1 million points for resolving the boundary layer.

4.3.2. Model 5365
The DTMB1 model 5365, Research Vessel (R/V) Athena, is a very streamlined ship with a transom stern, which adds com-

plexities on the flow because it results in boundary layer separation and stern wave breaking for larger ship speeds. At the se-
lected speed ðFr ¼ 0:25Þ, the transom is wet and separation occurs. For the case, the domain size and the grid are the same as the
fine grid Wigley hull simulation shown above.

The wave field with a highly unsteady transom is shown in Fig. 17. Similar to the Wigley hull case, the Cartesian grid sol-
ver predicts phase and amplitude of the wave system quite accurately. Wave cuts at several spanwise cross planes are com-
pared with the experimental data in Fig. 18. The overall agreement with the experimental data [10] is excellent. There is
some phase difference near the bow due to inadequate grid resolution for the bow region although the very steep bow wave
is generally captured. Also the waves are dissipated farther away and downstream of the ship ðy=L ¼ 0:308; x=L & 1:8Þ as a
result of grid stretching.

4.3.3. Model 5512
The surface combatant model DTMB 5512 (hull shape shown in Fig. 19) has a sonar dome on the bow, which is an

additional geometric complexity with respect to the R/V Athena model. There are extensive data available for this ship at
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Fig. 11. Comparison of the free-surface profiles: — present simulation; ! boundary element simulation [12].

1 David Taylor Model Basin, now the Naval Surface Warfare Center, Carderock Division, Bethesda, MD.

J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616 6607

Figure 3.2: Comparison of free surface profiles at different times in Ref. [123]. – results
from Ref. [123] � reference simulation.

The instantaneous wave field from the one-way coupled hybrid RANS/LES approach is given in Fig. 19. The comparison of
the averaged wave field and the experimental data [14] is given in Fig. 21, with a plane section of the Cartesian grid shown. In
the near field, the agreement is satisfactory. The very coarse grid used in the far-field results in a poor prediction of the wave
field in that region. The comparison of the wave field between the coupled approach and the one with no-slip wall (hull)
boundary condition is shown in Fig. 22. The overall wave pattern of the coupled approach is very similar to the latter. How-
ever, it exhibits much better agreement with experimental data in the wake area. It indicates that the more realistic near-
wall velocity distribution ‘‘borrowed” from the body-fitted RANS solver gives improved wake wave prediction, comparing to
the uncoupled approach with a linear near-wall velocity distribution, which is no longer valid on such a coarse grid.

To further demonstrate the effects of a wall-layer approximation on the flow field, the mean streamwise velocity distri-
bution at the nominal wake plane from the coupled approach is compared with the ensemble-averaged experimental data
from [29] in Fig. 23. The overall boundary layer velocity distribution is very close to the experimental data. However, the
current computation under-predicts the turbulence in the near hull region, which is expected as the outer LES simulation
receives no turbulence information from the boundary layer. As shown in Fig. 23, the immediate consequence of the defi-
cient turbulence activity is that the vortices induced by the sonar dome in the boundary layer still have a strong effect in

Fig. 18. Wave cuts at four different spanwise planes for the Athena R/V at Fr ¼ 0:25: — cartesian grid LES results; j experimental data from [10].

Fig. 19. Instantaneous wave field of the Model DTMB 5512 at Fr ¼ 0:28 from the one-way coupled hybrid RANS/LES simulation. The contours of the free-
surface elevation range from "5# 10"3 to 5# 10"3 with intervals of 5# 10"5.

Fig. 20. yþ distribution from the body-fitted RANS solution at the nominal propeller plane for the model DTMB 5512 at Fr ¼ 0:28.

6612 J. Yang, F. Stern / Journal of Computational Physics 228 (2009) 6590–6616

Figure 3.3: Free surface elevation from ship hydrodynamics simulation in Ref. [123]
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used to describe the fluid-fluid interaction and a forcing term was added to the momen-

tum equation. The deformation pattern obtained from numerical simulation of droplet

impingement on a solid wall was found to be in qualitative agreement with experimental

observations.

An alternative to the direct forcing approach for accounting for immersed solid bound-

aries is to add a penalization term to the momentum equation [50]. The Brinkman equation

from porous media was used to penalize the velocity when the solid is present [116]. The

solid was treated as a porous medium with a very low permeability. This approach had

been used by Horgue et al. [133] and Vincent et al. [127] to study capillary and hydroplaning

flows, respectively. In both studies, the solid was identified using a discrete mask function.

The solid boundary corresponds to the boundaries of cells that are fully immersed. In

order to have an accurate representation of the solid boundary with this approach, a fine

mesh grid is required.

Gas-liquid-solid flow inside a rotating drum was modeled using a discrete element

method/volume-of-fluid (DEM-VOF) method with an immersed boundary by Sun and

Sakai [132]. The discrete element method was used to track the particles inside the physical

domain and volume-of-fluid is used to resolve the gas-liquid interface. The solid boundary

was imposed using a forcing term. The simulation was validated by comparing the particle

bed width and height with experimental results (Fig. 3.4). The particle bed width and

height were within 2% relative error of each other. In their later work [134], the volume-

of-fluid/immersed boundary method was extended to simulate more complex geometries.

The system was a twin-screw kneader with the screw moving with a fixed rotation speed.

The simulation results showed qualitative agreement with experimental results.

Solid Boundaries with Flow-Induced Movement

In the event that the solid is moving due forces exerted by the fluid, its motion is determined

by solving the Lagrangian form of Newton’s second law [50, 51]:

ρs
∂2X

∂t2
=∇ · σs + Fs, (3.12)
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(b) and (d), respectively. We note that, this is not a consequence of the
physical confinement of the wall but a numerical artifact depending
on the grid resolution and configuration.

Another correction is applied when determining the flow velocity
at particle positions, as described by the biased interpolation proce-
dure in Section 4.3. Its effectiveness is examined in a different rotating
tank system. The dimensions of the tank are kept the same, but it
revolves with a faster speed of 100 rpm. A loose, regular solid bed of
160,000 particles with diameter of 1 mm is used instead. This solid
bed is initially suspended in the lower part of the tank and does not
touch the surrounding walls. The friction between particles and tank
is set to zero. Modifications are made so to magnify the effect of fluid
drag and to eliminate the frictional acceleration. Note that the
treatment for the void fraction is always valid in this computation.
Fig. 22 gives snapshots at t¼0.005 s of simulation results (a) with and
(b) without the velocity correction. As indicated by the velocity
contour in Fig. 22(b), the thin layer of particles adjacent to the front
wall exhibits an abnormal velocity distribution, which is mostly
ascribable to the fluid drag since the wall friction is zero. According
to the general form of drag force (17), the drag force is proportional to
the relative velocity. Therefore a improper interpolation of the velocity
field partially blending the contribution of a rapidly rotating boundary
will inevitably overestimate the drag force and consequently lead to
spurious behavior of the fluid–particle system. With the adoption of
the correction based on biased velocity interpolation, those problems
can be suppressed to a large extent, as implied by Fig. 22.

In this way, the problems caused by indiscriminate inclusion of
boundary data have been revealed through our numerical tests and
discussions. It is doubtlessly proved that the proposed treatments for
the fluid–particle interaction is vital for gas–solid–liquid flow systems
involving complex boundaries.

9. Conclusions

In this study, we developed the DEM–VOF method based on
an Eulerian–Lagrangian description for the three-dimensional

simulation of gas–solid–liquid flows. The fluid and particle phases
are computed by using the VOF method and the DEM, respectively,
and they are coupled in the context of the volume-averaging
approach. Curved walls and moving boundaries are efficiently
simulated thanks to the adoption of the SDF and IB method with
special treatments of near-wall interphase interactions. Compared
with existing models, the proposed method adopts a consistent
formulation of fluid–particle interaction and it can simulate
complex three-phase flow behaviors involving large deformation
of free surface and liquid displacement induced by the particle
motion. Moreover, it has also enlarged the computational window
by providing great freedom and ability to treat general geometries
with ease.

After some model verifications, the DEM–VOF method is then
applied to several three-phase flow problems. In the first test, the
water entry and subsequent sedimentation of a particle bed is
simulated, in which complicated free surface deformation and
particle motion comparable with a Rayleigh–Taylor instability
have been observed. The water displacement of solid particles is
also reproduced, implying a good volume conservation property of
our model. The second test is the gas–solid–liquid wave propaga-
tion of a three-phase dam break problem. The violent motion of
the water-glass beads mixture and vortex generated in the air
phase are successfully computed and their dynamic snapshots
agree well with experimental photographs at different stages. The
temporal variations of the surge front and column height are also
compared with experimental data. Finally, the gas–solid–liquid
flow in a rotating cylindrical tank is considered as a test case
involving curved, moving boundaries. The quasi-steady results are
validated against an experiment. In respects of the macroscopic
behaviors such as the solid bed shape and size, excellent agree-
ment are found between them. Through the numerical tests, we
have demonstrated the flexibility and accuracy of the DEM–VOF
method in performing high-fidelity simulations for gas–solid–
liquid flows.

In this study, the fluid–particle hydrodynamic force is consid-
ered to the dominant interaction term for the gas–solid–liquid
flow problems of interest. As a future investigation, another
important effect arising from particle–interface interaction, i.e.
the capillary force, is to be modeled and introduced for the current
numerical framework, which will allow for more advanced simu-
lations of three-phase systems such as granular wetting and
flotation. Very recently we have been working on a DNS method
for three-phase flows with direct calculation of both hydrody-
namic and capillary forces. It can help develop useful correlations
and effective force models for this purpose.

Fig. 20. Rotating drum: (a) particles and free surface at quasi-steady state and (b) comparison of solid bed shape where the red dashed line shows the computed shape. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 5
Rotating drum: comparison of the bed size.

Bed width Bed height

Experiment 93.9 mm 67.8 mm
Simulation 92.3 66.8 mm
Relative error 1.70% 1.47%

X. Sun, M. Sakai / Chemical Engineering Science 134 (2015) 531–548546

Figure 3.4: Gas-liquid-solid rotating drum. (left) Simulation results (right) experimental
results, dashed line indicate computed bed shape from simulations [132].

where ρs is the density of the solid, X is the coordinates in the Lagrangian frame, σs

is stress tensor for the solid and Fs is the external force on the solid. From this, the

translational and rotational velocities of the solid are computed and the solid velocity at

each point is computed from the following expression [135]:

vs = vs,t + ωs,r × r, (3.13)

where vs,t is the solid translational velocity, ωs,r is the solid rotational velocity and r is

the distance between the solid point and the center of the solid. This solid velocity is used

to obtain the forcing term in the immersed boundary method with direct forcing.

Deen et al. [135] used a front-tracking/immersed boundary method to study the inter-

action between gas bubbles and solid spherical particles. Simulations of a gas bubble rising

in a suspension of solid particles were performed to study how the presence of the solid

particles affects the terminal rise velocity of the bubble. The surface tension of bubble

was high enough that the particles will not penetrate the bubble. It was found that the

solid particles significantly decreased the terminal velocity of the bubble. The immersed

boundary method was also used to model the behavior of solid objects at the free surface

such as a wedge [136, 137] or a barge [137]. These type of studies are particularly useful
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in oceanography where free surfaces are prevalent.

3.2.2 Diffuse-Interface Method

The immersed boundary methods discussed in the previous section all treat the solid

boundary as a sharp interface. A solid fraction may be used to smear the interface when

computing the forcing term, but the interface itself remained sharp. This requires for the

velocity to be interpolated to obtain the velocity at a particular node of interest at every

time step, which can be costly in large-scale simulations. An alternative to this is to use

a diffuse-interface to describe the solid boundary. The diffuse-interface enables the use of

the Eulerian frame for both the solid and fluid.

Patel and Natarajan [57] developed a diffuse-interface immersed boundary method for

multiphase systems where the fluid was modeled using the volume-of-fluid method. The

solid velocity boundary condition was imposed by blending the fluid conservation of mo-

mentum equation with the solid velocity. The fluid-solid interface is diffuse over several

cells. Validation of the method was performed for different systems including the motion

of a rectangular barge, water entry of a circular cylinder and sedimentation of circular

particles. The results were in good agreement with other numerical solutions of the same

system and exhibited qualitative agreement with experimental results.

A diffuse-domain method was developed by Aland et al. [54] where both the fluid

and solid-fluid interfaces were described using diffuse-interfaces. The fluid-fluid interface

was resolved using the Cahn-Hilliard equation, which, unlike interface-capturing schemes

(volume-of-fluid, level-set, etc.), is thermodynamically consistent. Another phase-field was

used to describe the solid-fluid interface. The Neumann boundary conditions in the system

were imposed using the gradient of the solid-fluid phase-field as the normal vector and

Dirichlet boundary conditions were specified using a penalty method. This method was

used to simulate various cases of solid interacting with multiphase flow including droplet

sliding down a ramp, solid impacting on a liquid-liquid interface (Fig. 3.5), droplet moving

in a serpentine channel and flow field in thin film growth by electrodeposition.
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Figure 3.5: Solid ball impacting into a liquid-liquid interface [54].
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Chapter 4

Finite Element Formulation for the

Solution of the Two-Fluid Model

Prior to developing a diffuse-interface method for imposing solid boundaries in multiphase

flow, a solver for the two-fluid model equations is developed. In this work, the governing

equations for the two-fluid model that were presented in Section 2.2 are solved using the

finite element method. The finite element method requires the weak formulation of the

governing equations, which are presented in this chapter. The time discretization and

adaptive time-stepping scheme used in this work are also introduced in this chapter.

4.1 Modified Incremental Pressure Correction Scheme

From Section 2.2, the governing equations for the two-fluid model are as follows:

∂(αqρq)

∂t
+∇ ·

(
αqρqv̂q

)
= 0, (2.1)
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∂
(
αcρcv̂c

)
∂t

+∇ ·
(
αcρcv̂cv̂c

)
= −αc∇Pc +∇ ·

(
αcτc

)
+ αcρcĝ +Mc

+
(
Pint − Pc

)
∇αc,

(2.4a)

∂
(
αdρdv̂d

)
∂t

+∇ ·
(
αdρdv̂dv̂d

)
= −αd∇Pint +∇ ·

(
αdτd

)
+ αdρdĝ +Md. (2.4b)

In this work, only the interphase momentum transfer due to drag is considered. The fluid-

fluid system of interest is a gas-liquid system where liquid, l, is the continuous phase and

gas, g, is the dispersed phase, the governing equations will reflect this from hereon in.

Substituting Eqns. (2.8) and (2.12) into (2.4) and dropping the averaging notation:

∂(αlρlvl)

∂t
+∇ · (αlρlvlvl) = −αl∇Pl +∇ · (αlτl) + αlρlg

+
3

4
αgρl

CD
db
‖vr‖vr − Cpρlvr · vr∇αl,

(4.1a)

∂(αgρgvg)

∂t
+∇ · (αgρgvgvg) = −αg∇(Pl − Cpρlvr · vr) +∇ · (αgτg) + αgρgg

− 3

4
αgρl

CD
db
‖vr‖vr.

(4.1b)

The both the gas and liquid phases are assumed to be Newtonian fluids, thus the viscous

stress tensor is τq = µq
(
∇vq +∇vTq

)
. For compactness, τq is retained in the subsequent

equations.

The conservation of momentum equations defined in Eqn. (4.1) are the conservative

form, but their solution becomes degenerate as the phase fraction approaches zero. To

avoid this issue, the dimensionless convective form of the momentum equations, scaled

by αqρq, is used instead. The dimensionless quantities are defined as follows: ṽ = v/vs,

t̃ = t/ts, x̃ = x/xs, P̃ = (P−P0)/Ps, g̃ = g/gs, ∇̃ = xs∇ and d̃b = db/xs. The parameters

vs, ts, xs, Ps and gs are scaling parameters that represent the characteristic velocity, time,

length, pressure and gravitational force scales of the system, respectively. This results in
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Table 4.1: Dimensionless groups

Parameter Expression
Time ts = vs/xs

Pressure
Ps = ρlgsh
P0 = 0

Euler number Euq = Ps/ρqv
2
s

Reynolds number Req = ρqvsxs/µq
Froude number Fr = vs/

√
gsxs

the following scaled equations:

∂ṽl

∂t̃
+ ṽl · ∇̃ṽl = −Eul∇̃P̃l +

1

Rel

∇̃αl · τ̃l
αl

+
1

Rel
∇̃ · τ̃l +

1

Fr2
g̃

+
3

4

αg
αl

CD

d̃b
‖ṽr‖ṽr − CP ṽr · ṽr

∇̃αl
αl

,

(4.2a)

∂ṽg

∂t̃
+ ṽg · ∇̃ṽg = −Eug∇̃P̃l + CP∇̃(ṽr · ṽr)

ρl
ρg

+
1

Reg

∇̃αg · τ̃g
αg

+
1

Reg
∇̃ · τ̃g +

1

Fr2
g̃ − 3

4

ρl
ρg

CD

d̃b
‖ṽr‖ṽr,

(4.2b)

∂αg

∂t̃
+ ∇̃ · (αgṽg) = 0, (4.2c)

αl = 1− αg, (4.2d)

where the dimensionless groups are given in Table 4.1 and Eqn. (4.2d) is a result of the

equality constraint (Eqn. (3.2)).

The governing equations are solved using a modification of the incremental pressure

correction scheme (IPCS) [138]. IPCS was originally developed for single-phase flow and

has been shown to be efficient and accurate [139]. In this work, a modification is made

to accommodate for the addition of the conservation of mass and second conservation of

momentum equation in the two-fluid model. Explicit Euler time discretization is used to

demonstrate the form of the discretized equations. There are four steps in the scheme,

the first step is to compute a tentative velocity, ṽ∗q , using pressure and velocities from the
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previous time step:

ṽ∗l − ṽnl
∆t

+ ṽnl · ∇̃ṽnl = −Eul∇̃P̃ n
l +

1

Rel

∇̃αnl · τ̃
n+ 1

2
l

αnl
+

1

Rel
∇̃ · τ̃ n+ 1

2
l

+
1

Fr2
g̃ +

3

4

αng
αnl

CD

d̃b
‖ṽnr ‖ṽnr − CP ṽnr · ṽnr

∇̃αnl
αnl

in Ω, (4.3a)

ṽ∗g − ṽng
∆t

+ ṽng · ∇̃ṽng = −Eug∇̃P̃ n
l + CP∇̃(ṽnr · ṽnr )

ρl
ρg

+
1

Reg

∇̃αng · τ̃
n+ 1

2
g

αng
+

1

Reg
∇̃ · τ̃ n+ 1

2
g +

1

Fr2
g̃

− 3

4

ρl
ρg

CD

d̃b
‖ṽnr ‖ṽnr

in Ω, (4.3b)

ṽ∗q = ṽn+1
q,BC on ΓD, (4.3c)

n · τ̃ n+ 1
2

q = 0 on ΓN , (4.3d)

where τ̃
n+ 1

2
q =

(
τ̃ ∗q + τ̃ nq

)
/2. The

(
∇̃αnq

)
/αnq term is approximated by ∇̃

(
lnα′q

)
where α′q

is αnq thresholded to be above a minimum value, 10−5 in this work. Then, the tentative

velocity is used to compute an update to the pressure field. Using the conservative form

of the momentum equations and the incompressibility criterion of the two-fluid model,

∇ ·
∑

q αqvq = 0, the following pressure Poisson equation is obtained:

∇̃ ·
[∑

q

Euqα
n
q ∇̃(P̃ n+1

l − P̃ n
l )

]
= ∇̃ ·

∑
q

(
αnq ṽ

∗
q

∆t

)
in Ω, (4.4a)

n · ∇̃
(
P̃ n+1
l − P̃ n

l

)
= 0 on ΓD, (4.4b)

P̃ n+1
l = P̃ n+1

l,BC on ΓN . (4.4c)
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This pressure is used to update the velocity fields:

ṽn+1
l − ṽ∗l

∆t
= −Eul∇̃

(
P̃ n+1
l − P̃ n

l

)
in Ω, (4.5a)

ṽn+1
g − ṽ∗g

∆t
= −Eug∇̃

(
P̃ n+1
l − P̃ n

l

)
in Ω, (4.5b)

ṽn+1
q = ṽn+1

q,BC on ΓD. (4.5c)

Finally, the phase fractions are computed using the updated velocity field:

αn+1
g − αng

∆t
+ ∇̃ ·

(
αn+1
g ṽn+1

g

)
= 0 in Ω, (4.6a)

αn+1
g = αn+1

g,BC on ΓD, (4.6b)

αn+1
l = 1− αn+1

g in Ω. (4.6c)

4.2 Weak Form of Governing Equations

The time-discretized equations presented in the previous section are solved using the

method of lines. The finite element method is used to approximate the spatial derivatives

in the differential equations. FEM requires the differential equations to be formulated into

their weak formulations. In this section, weak formulations of Eqns. (4.3a), (4.3b), (4.4a),

(4.5a), (4.5b) and (4.6a) with the appropriate boundary conditions are described. The

time discretization scheme is still the explicit Euler method but extension to other time

discretization schemes is possible.

47



Tentative Velocity Taking the inner product of Eqns. (4.3a) and (4.3b) with the test

function for each phase, ϕq, and integrating over the domain yields the following:

〈
ṽ∗l − ṽnl

∆t
,ϕl

〉
Ω

+
〈
ṽnl · ∇̃ṽnl ,ϕl

〉
Ω

= −
〈
Eul∇̃P̃ n

l ,ϕl

〉
Ω

+

〈
1

Rel

∇̃αnl · τ̃
n+ 1

2
l

αnl
,ϕl

〉
Ω

−
〈

1

Rel
τ̃
n+ 1

2
l , ∇̃ϕl

〉
Ω

+

〈
1

Rel
n · τ̃ n+ 1

2
l ,ϕl

〉
ΓN

+

〈
1

Fr2
g̃,ϕl

〉
Ω

+

〈
3

4

αng
αnl

CD

d̃b
‖ṽnr ‖ṽnr ,ϕl

〉
Ω

−

〈
CP ṽ

n
r · ṽnr

∇̃αnl
αnl

,ϕl

〉
Ω

,

(4.7a)〈
ṽ∗g − ṽng

∆t
,ϕg

〉
Ω

+
〈
ṽng · ∇̃ṽng ,ϕg

〉
Ω

= −
〈
Eug∇̃P̃ n

l − CP∇̃(ṽnr · ṽnr )
ρl
ρg
,ϕg

〉
Ω

+

〈
1

Reg

∇̃αng · τ̃
n+ 1

2
g

αng
,ϕg

〉
Ω

−
〈

1

Reg
τ̃
n+ 1

2
g , ∇̃ϕg

〉
Ω

+

〈
1

Reg
n · τ̃ n+ 1

2
g ,ϕg

〉
ΓN

+

〈
1

Fr2
g̃,ϕg

〉
Ω

−
〈

3

4

ρl
ρg

CD

d̃b
‖ṽnr ‖ṽnr ,ϕg

〉
Ω

,

(4.7b)

where the subscript Ω denotes integral over the entire domain and ΓN denotes integral over

boundaries where the Neumann boundary condition applies. From Eqn. (4.3d), the normal

component of the viscous stress tensor is equal to zero, substituting the relationship into
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the weak formulation:〈
ṽ∗l − ṽnl

∆t
,ϕl

〉
Ω

+
〈
ṽnl · ∇̃ṽnl ,ϕl

〉
Ω

= −
〈
Eul∇̃P̃ n

l , ϕ
〉

Ω
+

〈
1

Rel

∇̃αnl · τ̃
n+ 1

2
l

αnl
,ϕl

〉
Ω

−
〈

1

Rel
τ̃
n+ 1

2
l , ∇̃ϕl

〉
Ω

+

〈
1

Fr2
g̃,ϕl

〉
Ω

+

〈
3

4

αng
αnl

CD

d̃b
‖ṽnr ‖ṽnr ,ϕl

〉
Ω

−

〈
CP ṽ

n
r · ṽnr

∇̃αnl
αnl

,ϕl

〉
Ω

,

(4.8a)

ṽ∗l |ΓD
= ṽn+1

l,BC , (4.8b)〈
ṽ∗g − ṽng

∆t
,ϕg

〉
Ω

+
〈
ṽng · ∇̃ṽng ,ϕg

〉
Ω

= −
〈
Eug∇̃P̃ n

l − CP∇̃(ṽnr · ṽnr )
ρl
ρg
,ϕg

〉
Ω

+

〈
1

Reg

∇̃αng · τ̃
n+ 1

2
g

αng
,ϕg

〉
Ω

−
〈

1

Reg
τ̃
n+ 1

2
g , ∇̃ϕg

〉
Ω

+

〈
1

Fr2
g̃,ϕg

〉
Ω

−
〈

3

4

ρl
ρg

CD

d̃b
‖ṽnr ‖ṽnr ,ϕg

〉
Ω

,

(4.8c)

ṽ∗g
∣∣
ΓD

= ṽn+1
g,BC , (4.8d)

where ΓD denotes the boundaries with Dirichlet boundary conditions.
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Pressure The weak formulation of the pressure Poisson equation (Eqn. (4.4a)) with the

test function, ϕp is:

−

〈∑
q

Euqα
n
q ∇̃(P̃ n+1

l − P̃ n
l ), ∇̃ϕp

〉
Ω

+

〈∑
q

Euqα
n
qn · ∇̃(P̃ n+1

l − P̃ n
l ), ϕp

〉
ΓD

=

〈
∇̃ ·

∑
q

(
αnq ṽ

∗
q

∆t

)
, ϕp

〉
Ω

.

(4.9)

Given Eqn. (4.4b), the equation can be rewritten as:

−

〈∑
q

Euqα
n
q ∇̃(P̃ n+1

l − P̃ n
l ), ∇̃ϕp

〉
Ω

=

〈
∇̃ ·

∑
q

(
αnq ṽ

∗
q

∆t

)
, ϕp

〉
Ω

, (4.10a)

P̃ n+1
l

∣∣∣
ΓN

= P̃ n+1
l,BC . (4.10b)

Velocity Update The inner products of Eqns. (4.5a) and (4.5b) with ϕq integrated over

Ω are: 〈
ṽn+1
l − ṽ∗l

∆t
,ϕl

〉
Ω

= −
〈
Eul∇̃(P̃ n+1

l − P̃ n
l ),ϕl

〉
Ω
, (4.11a)

ṽn+1
l

∣∣
ΓD

= ṽn+1
l,BC , (4.11b)〈

ṽn+1
g − ṽ∗g

∆t
,ϕg

〉
Ω

= −
〈
Eug∇̃(P̃ n+1

l − P̃ n
l ),ϕg

〉
Ω
, (4.11c)

ṽn+1
g

∣∣
ΓD

= ṽn+1
g,BC . (4.11d)

Phase Fraction Update Lastly, the same procedure is repeated where the inner product

of Eqn. (4.6a) with the test function ϕα is integrated over the simulation domain to give
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the following weak formulation:〈
αn+1
g − αng

∆t
, ϕα

〉
Ω

+
〈
∇̃ ·

(
αn+1
g ṽn+1

g

)
, ϕα

〉
Ω

= 0, (4.12a)

αn+1
g |ΓD

= αn+1
g,BC . (4.12b)

4.3 Adaptive Time-Stepping

The choice of time step is crucial to the numerical stability of the solution method and

the computational time required to complete a simulation. Adaptive time-stepping is used

in this work to select a time step that constrains the local error to a user-specified value

while maintaining numerical stability. The local error, l, of the solution obtained from a

p-th order method is proportional to the step size, l ∝ (∆t)p+1. The local error at time

tn+1 is given as:

ln+1 = ŷn+1 − yn+1, (4.13)

where ŷn+1 is the solution obtained from a higher order method and yn+1 is the solution

from the p-th order method.

The goal of adaptive time-stepping is to select a step size such that ‖ln+1‖ < εl, where

εl is the user-specified tolerance. This is achieved using the following expression [140]:

(∆t)′ = ∆t

(
0.9εl
‖ln+1‖

) 1
p+1

, (4.14)

where (∆t)′ is the new step size and 0.9 is a safety factor to increase the likelihood that the

new step size will result in a solution that conforms to the local error constraint. When

‖ln+1‖ > εl, Eqn. (4.14) will result in a new step size that is smaller than the original

step size. If that is the case, the computation is repeated with (∆t)′ until the local error

constraint is satisfied.

In fluid flow problems, an additional constraint in the form of the Courant number is
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also required [85]. The Courant number is the ratio of the step size and the characteristic

time associated with convection:

Co =
v∆t

h
, (4.15)

where v is the velocity and h is the mesh element size. In multidimensional systems, this

is given as:

Co =
∑
i

|vi|∆t
h

, (4.16)

where vi is the velocity component in the i direction. In multiphase flow, the Courant

number is the maximum of the Courant numbers obtained using the phasic velocities.

Generally, in single-phase flow, the Courant number is constrained to be less than one

[85] to maintain numerical stability. The step size should satisfy both the local error and

Courant number constraints. The local error constraint is first satisfied in Eqn. (4.14) and

the step size will be adjusted if the Courant number constraint is not satisfied. The new

step size is obtained using:

(∆t)′ = 0.9∆t
Comax
Co

. (4.17)

This new step size will replace (∆t)′ obtained from Eqn. (4.14).
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Chapter 5

Phase-Bounded Finite Element

Method for Two-Fluid

Incompressible Flow Systems

The phase fractions that are used to describe the mixture composition in the two-fluid

model are bounded quantities. The numerical solution method used to solve the two-

fluid model equations must therefore preserve the boundedness of the phase fractions for

accuracy and numerical fidelity. In this chapter, a numerical method for the two-fluid model

is developed where inequality constraints are imposed through the implicit nonlinear solver.

The method is verified and compared to an existing numerical method.

5.1 Methodology

5.1.1 Simulation Conditions

The two-fluid model is generally well-suited for dilute systems where the phase fraction

of the dispersed phase is less than 3% [141]. At higher phase fractions, factors such as

turbulence, swarming, etc. play an non-negligible role in the hydrodynamical behavior of
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the system, resulting in interphase momentum transfer terms that are dependent on the

flow regime. In this study, the geometry and physical properties of the system are chosen

such that the flow remains dispersed for a long period of time to avoid such dependencies.

The simulation domain used is a two-dimensional channel with gas phase injected from

the bottom, as shown in Fig. 5.1. The computational mesh is generated using GMSH [142].

The interface drag coefficient CD is approximated using the Schiller-Naumann drag expres-

sion [143]. Momentum transfer due to lift and virtual mass are generally used as “tuning”

parameters to increase the agreement between experimental and simulation results [28] and

are thus neglected in this work. The Schiller-Naumann drag expression, physical proper-

ties and initial and boundary conditions are summarized in Tables 5.1 and 5.2. The inlet

gas velocity and phase fraction profiles follow a Gaussian distribution to ensure a smooth

transition from the no-slip boundary condition at the walls and to avoid potential issues

with discontinuities in the finite element method. In lieu of a wall lubrication force, the

phase fraction at the walls is set to zero (liquid wets the wall).

  0.05 m

0
.1

 m

y

x

Figure 5.1: Simulation domain.
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Table 5.1: Physical properties

Property Value
Gas density (kg/m3) 10
Liquid density (kg/m3) 1000
Gas viscosity (Pa s) 2× 10−5

Liquid viscosity (Pa s) 5× 10−3

Bubble diameter (m) 10−3

Drag constant max
[

24
Re

(1 + 0.15Re0.687), 0.44
]
, Re = ρl‖vr‖db

µl

Table 5.2: Initial and boundary conditions.

Condition

Initial
αg(x, 0) = 0

vg(x, 0) = vl(x, 0) = 0
P (x, 0) = ρlgs(0.1− y)

Inlet

vg(x, 0, t) =

(
0,min

(
t
t0
, 1
)

0.0616 exp

[
−( x

0.025)
2

2σ2

])
, t0 = 0.625 s, σ = 0.1

vl(x, 0, 0) = 0

αg(x, 0, t) = min
(
t
t0
, 1
)

0.026 exp

[
−( x

0.025)
2

2σ2

]
, t0 = 0.625 s, σ = 0.1

n · ∇(Pl(x, 0, t)− Pl(x, 0, t−∆t)) = 0

Walls
vg(±0.025, y, t) = vl(±0.025, y, t) = 0

αg(±0.025, y, t) = 0
n · ∇(Pl(±0.025, y, t)− Pl(±0.025, y, t−∆t)) = 0

Outlet
n · τg(x, 0.1, t) · n = n · τl(x, 0.1, t) · n = 0

t · vg(x, 0.1, t) = t · vl(x, 0.1, t) = 0
Pl(x, 0.1, t) = 0
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5.1.2 Numerical Methods

Simulations with the conditions described in the previous section are carried out using the

IPCS solver presented in Chapter 4. Adaptive time-stepping is used to constrain the local

error to ≤ 10−4. The second order Heun’s method is used to determine the local error of

the first order explicit method. It was found in test cases that the largest source of local

error is the velocity fields and that the local error between the velocity fields is comparable

between tentative and updated velocities. Therefore, only the tentative velocities are used

in determining the local error and thus decreasing the number of second order solves to

just one per time step.

Equation (2.1) is a pure advection equation, which is susceptible to node-to-node oscilla-

tions [144]. To prevent the oscillations from occurring in the simulations, Eqn. (4.6a) is sta-

bilized using the streamline-upwind/Petrov-Galerkin (SUPG) formulation for convection-

dominated flows. In the SUPG formulation, the test function in the finite element formu-

lation is modified to allow for upwinding [144]:

ϕ′ = ϕ+ τSUPGvd · ∇ϕ, (5.1)

where ϕ is the test function and τSUPG is given by:

τSUPG =
h

2‖vd‖
z, (5.2)

z = cothPeα −
1

Peα
. (5.3)

h is the element length and Pe is the Péclet number. In pure advection transport, the

Péclet number is infinite and z is thus equal to one.

In order to maintain phase fraction boundedness, the IPCS scheme is bounded through

the use of the nonlinear variational inequality solver SNES [145]. The inequality constraint

is formulated as a nonlinear equation that results in a function that is minimized to obtain

the constrained solution. The algorithm used to solve this problem is the reduced-space

method and is presented in Refs. [146, 147]. An alternative method, a bound-constrained
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solver for linear variational inequality from the TAO suite [148], which solves the problem

using the trust-region Newton method was also used for comparative purposes. To ensure

that the linear variation inequality solver converges at every time step, an additional con-

straint is placed on the time step such that the time step is decreased until the gradient of

the objective function satisfies the specified tolerance. However, this required the time step

to consistently be in the order of 10−8 while the SNES solver had no such requirement.

Thus, the SNES solver is used in the bounded simulations presented in the subsequent

sections.

5.2 Results and Discussion

In order to evaluate the effect of phase fraction boundedness on the IPCS scheme, sim-

ulations are initially performed with the assumption that the bulk and interfacial pres-

sures are equal, Pc = Pd = Pint (Section 2.2). These results are compared to each other

and to an alternative finite volume implementation of the two-fluid model in OpenFOAM,

twoPhaseEulerFoam. Following this, simulations are performed for the same conditions,

but without the assumption that Pc = Pint, which is both a more accurate approximation

and has been shown to increase the phase fraction interval over which the two-fluid model

is well-posed [71, 72, 112].

5.2.1 Effects of Phase Fraction Boundedness, Pc = Pint

Simulations were performed using physical properties in Table 5.1 and auxiliary conditions

in Table 5.2 using the (i) unbounded IPCS solver, (ii) the bounded IPCS solver and (iii)

the twoPhaseEulerFoam solver from OpenFOAM. All of these solvers use the assumption

that Pc = Pint. Figure 5.2 shows αg and the liquid velocity streamlines at various times

for the bounded simulation. Simulation results are shown starting at t = 1.25 s, when the

Rayleigh-Taylor instability [149] first manifests in the formation of a gas phase “plume”

as it convects through the liquid phase. As expected, as time increases the plume width

increases with increasingly large vortices in the liquid phase velocity forming in its wake.
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This morphology has been observed experimentally in the startup period of rectangular

bubble columns [150] and its observation serves as qualitative experimental validation of

the simulation results. For all three simulations (unbounded IPCS, bounded IPCS, and

twoPhaseEulerFoam), the bubble plume rises in the column center and vortices in the

liquid velocity are observed on each side of the plume.

The average bubble Reynolds numbers at t = 1.72 s computed using the definition given

in Table 5.1 for the unbounded IPCS, bounded IPCS and twoPhaseEulerFoam are 11.542,

11.369 and 11.724, respectively. The results from unbounded IPCS, bounded IPCS and

twoPhaseEulerFoam solvers at t = 1.72 s are given in Fig. 5.3. From Fig. 5.3, both the

unbounded and bounded IPCS solvers resulted in similar flow profiles and a qualitatively

similar plume is also observed in the twoPhaseEulerFoam simulation. However, the gas

plume appears to be rising at a faster rate and is wider in the twoPhaseEulerFoam sim-

ulation than in the IPCS simulations. This difference is possibly due to the difference in

how the phase fraction is bounded or in the spatial interpolation scheme.

1.25 s 1.41 s 1.56 s 1.72 s

Figure 5.2: Evolution of the phase fraction and liquid velocity streamline over time. Colors
denote αg.

Figure 5.4 shows the evolution of the minimum gas phase fraction, min (αg), for the un-

bounded and bounded IPCS solvers. For the unbounded solver, the magnitude of min(αg)
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αg vg vl

Figure 5.3: Surface plot of (left) phase fraction, (center) gas velocity and (right) liquid
velocity at t = 1.72 s from (top) unbounded IPCS, (middle) bounded IPCS and (bottom)
twoPhaseEulerFoam. 59



is found to be on the order of 10−4, which is on the order of the relative error tolerance

of the adaptive time-stepping method, but well above that of the underlying linear solver

(10−13). For the bounded solver, the magnitude is within the tolerance of the nonlinear

variational solver (10−11).

0.0 0.5 1.0 1.5 2.0 2.5
t (s)

4

2

0

m
in

(
g)

1e 4

bounded unbounded

Figure 5.4: Evolution of min(αg) over time.

Quantitative comparison of structure of the simulation results from the three solvers

was performed using spectral analysis of the phase fraction profiles. Figure 5.5 contains the

results from spectral analysis at t = 1.72 s for the three different solvers. The histograms

of the power spectral density of the phase fraction computed using the IPCS solvers also

contained near-zero (in the order of 10−40) power densities that were omitted from Figs. 5.5a

and 5.5c. The power spectral density distributions of the IPCS results are similar but

drastically different from that of the twoPhaseEulerFoam results. This is corroborated by

the power spectra shown in Figs. 5.5b, 5.5d and 5.5f. Again, the deviations are possibly

due to both the phase fraction different approaches to phase fraction boundedness and/or

the spatial interpolation schemes.
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Figure 5.5: Two-dimensional spectral analysis of the phase fraction at t = 1.72 s from (top)
unbounded IPCS, (middle) bounded IPCS and (bottom) twoPhaseEulerFoam solvers. Left:
histogram of power spectral density. Right: radially-averaged power spectrum.
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5.2.2 Effects of Phase Fraction Boundedness Pc 6= Pint

The previous simulations were performed with the assumption that the interfacial pressure

and the bulk pressure of the continuous phase are equal to each other. In this section, this

assumption is removed and a bounded IPCS simulation is performed to assess its effect,

which has been shown to increase the phase fraction interval over which the two-fluid

model is well-posed [71, 72, 112]. The flow profile at t = 1.72 s is shown in Fig. 5.6 and

is qualitatively similar to the results in Fig. 5.3. The spatial variation of the gas fractions

within the gas phase plume appears to be smoother than the results from the bounded

IPCS solver in the previous section (Fig. 5.3). The histogram of the power spectral density

(Fig. 5.7a) also shows qualitative agreement with Fig. 5.5c but the radially-averaged power

spectra of the two cases are slightly different (Figs. 5.5d and 5.7b).

αg vg vl

Figure 5.6: Surface plot of (left) phase fraction, (center) gas velocity and (right) liquid
velocity at t = 1.72 s from bounded IPCS with interfacial pressure.

The time evolution of the overall gas holdup, 〈αg〉, from the simulations with the

assumption Pc = Pint (Section 5.2.1) and the simulation with Pc 6= Pint are compared in

Fig. 5.8. The overall holdup from the IPCS solvers show little variation from each other,

with some expected variation between the solutions with Pc = Pint and Pc 6= Pint. However,
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Figure 5.7: Two-dimensional spectral analysis of the phase fraction at t = 1.72 s from
bounded IPCS with interfacial pressure. Left: histogram of power spectral density. Right:
radially-averaged power spectrum.

the gas holdup obtained from twoPhaseEulerFoam is consistently higher, although evolves

in a qualitatively similar manner as the IPCS variants. The peak observed in Fig. 5.8

corresponds to the point where the bubble plume is the largest, which is also right before

the plume starts to exit the simulation domain. Compared to the IPCS simulations, the

time in which the peak occurs is earlier for the twoPhaseEulerFoam simulation. This

supports the qualitative observations made that the size of the plume and the rate in which

the plume moves through the liquid are similar among the IPCS simulations but different

when simulations under the same conditions that are performed using twoPhaseEulerFoam.

5.3 Conclusions

A phase-bounded numerical method for the two-fluid model is developed using the incre-

mental pressure correction scheme. The phase fraction boundedness is imposed implicitly

through the use of the SNES variational inequality solver. Simulations are performed to

compare the solution obtained from the phase-bounded method and are found to be sim-

ilar to the unbounded method, but with the phase fraction equality constraints satisfied

within the tolerance of the nonlinear variational inequality solver. The results from the un-
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Figure 5.8: Time-evolution of gas holdup.

bounded method exhibit deviations of the minimum value of the gas phase fraction in the

domain that are several orders of magnitude greater than the linear solver error tolerance.

Qualitative agreement is found with an alternative bounded two-fluid model solver, the

twoPhaseEulerFoam solver in the OpenFOAM package, although quantitative agreement is

not found. This is attributed to either or both the difference in method for imposing phase

fraction bounds and approach to spatial interpolation. All numerical solutions are found

to agree qualitatively with experimental studies of two-dimensional rectangular bubble

columns in the literature.

Finally, the effects of the assumption of the interfacial and bulk pressures of the con-

tinuous phase being equal were studied using the phase-bounded method and found to be

non-negligible.
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Chapter 6

Diffuse-Interface Method for Physical

Boundaries

This chapter extends the numerical method developed in Chapter 5 to accommodate a

phase-field, φ, that describes the diffuse-interface between the fluid mixture and solid

boundaries. Simulation conditions in Chapter 5 are replicated with a diffuse-interface

defining the solid walls. Simulations of gas-liquid flow past a stationary cylinder are also

performed and the simulation results are compared to the results from a conformal mesh.

The effects of the interface length-scale and function on the solution are also studied.

6.1 Methodology

The solid physical boundaries are imposed by blending the governing equations of the

fluid with the solid Dirichlet boundary conditions. The diffuse-interface is described by

the smooth function φ, whose value is ±1 inside the phases and is between (−1, 1) in the

interface region [40]:

φ =

−1, fluid,

1, solid.
(6.1)
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From Eqn. (6.1), the governing equations of the fluid are weighted by (1− φ)/2 to ensure

that the equations are active inside the fluid. Similarly, the solid velocity boundary con-

ditions are weighted by (1 + φ)/2 so that the conditions are inactive inside the fluid but

active in the solid. The gradient of the phase-field is the normal vector from the interface

and the Neumann boundary condition can be imposed using n ≈∇φ/‖∇φ‖.

An example of this diffuse-interface approach is described using the following Poisson

problem:

−∇2y = f on Ω, n · ∇y = h on ΓN , y = g on ΓD. (6.2)

The physical domain is denoted by φ = −1 and the area outside the physical domain by

φ = 1. The equation is then weighted by (1− φ)/2 and the Dirichlet condition is weighted

by (1 + φ)/2:
1− φ

2

(
∇2y + f

)
+

1 + φ

2
(y − g) = 0. (6.3)

Taking the inner product of Eqn. (6.3) with the test function, ϕ:〈
1− φ

2
∇2y, ϕ

〉
Ω

+

〈
1− φ

2
f, ϕ

〉
Ω

+

〈
1 + φ

2
(y − g), ϕ

〉
Ω

= 0. (6.4)

The Neumann boundary condition is obtained by applying integration by parts to the

Laplacian term:〈
1− φ

2
∇2y, ϕ

〉
Ω

=

〈
1− φ

2
n · ∇y, ϕ

〉
Γ′
N

+

〈
1

2
∇φ · ∇y, ϕ

〉
Ω

−
〈

1− φ
2
∇y,∇ϕ

〉
Ω

, (6.5)

where Γ′N is the part of the simulation domain boundary that the Neumann boundary

condition applies to and n is the unit normal (outward) of the surface bounding the domain.

Substituting this back into Eqn. (6.4) and applying the Neumann boundary condition:〈
1− φ

2
h, ϕ

〉
Γ′
N

+

〈
1

2
h‖∇φ‖, ϕ

〉
Ω

−
〈

1− φ
2
∇y,∇ϕ

〉
Ω

+

〈
1− φ

2
f, ϕ

〉
Ω

+

〈
1 + φ

2
(y − g), ϕ

〉
Ω

= 0.

(6.6)
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Equation (6.6) is the weak formulation of Eqn. (6.2) with a diffuse-interface. The Neumann

boundary condition is imposed via the first and/or second terms, depending on whether

Γ′N exists or not. Similarly, should the Dirichlet boundary condition also apply to parts

of the simulation domain boundary, the boundary condition is applied by setting y = g at

Γ′D.

6.1.1 Numerical Method

Prior to delving into the diffuse-interface method, the notation that will be used for the

time discretization must be defined. The governing equations are solved using an adaptive

second/third order semi-implicit Adams-Bashforth/Backward-Differentiation (AB/BDI23)

scheme [151]. The third order AB/BDI3 scheme is used to estimate the local error of the

second order scheme. The explicit terms in the equation are discretized using the Adams-

Bashforth scheme and the time derivative is discretized using backward-differentiation

[151]. The following notation will be used to denote the numerator of the discretized time

derivative:

v∗
′
= a0v

∗ +
k∑
j=1

ajv
n+1−j, (6.7)

α(n+1)′ =
k∑
j=0

ajα
n+1−j, (6.8)

where aj is a coefficient associated with backward-differentiation that will later be defined

and k is the order of the method. The discretized explicit terms will be denoted as follows:

fn
′
=

k−1∑
j=0

bjf
n−j, (6.9)

where bj is a coefficient associated with the Adams-Bashforth scheme.

To account for the variable step size, the coefficients aj and bj are functions of the

previous time steps. This has the benefit of not having to interpolate between time steps
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to obtain the solution at tn−∆t and tn− 2∆t. Let r be the ratio of the previous step size

to the current step size:

rn =
tn − tn−1

∆t
, (6.10)

where tn−tn−1 is the step size used in the previous time step. The coefficients in AB/BDI2

can then be written in terms of rn [151]:

a0 =
2 + rn

1 + rn
, a1 = −1− 1

rn
, a2 =

1

rn(1 + rn)
, (6.11)

b0 = −a1, b1 = 1 + a1. (6.12)

The same can be done for AB/BDI3 where rn−1 = (tn−1 − tn−2)/∆t [151]:

a0 = 1 +
1

1 + rn
+

1

1 + rn + rn−1
,

a1 = −(1 + rn)(1 + rn + rn−1)

rn(rn + rn−1)
,

a2 =
1 + rn + rn−1

rnrn−1(1 + rn)
,

a3 = − 1 + rn

rn−1(rn + rn−1)(1 + rn + rn−1)
,

(6.13)

b0 = −a1,

b1 = −a2(1 + rn),

b2 = −a3(1 + rn + rn−1).

(6.14)

The step size is chosen using the adaptive time-stepping scheme outlined in Section 4.3.

6.1.2 Diffuse-Interface for Two-Fluid Model Equations

The diffuse solid-fluid interface is imposed by blending the governing equations of the

two-fluid model (Eqn. (4.3)) and the solid Dirichlet boundary condition together. This is

achieved by weighting the governing equations and solid boundary condition by (1− φ)/2

and (1 + φ)/2, respectively. The weighting allows for integrals over the physical domain
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to be reformulated into volume integrals over the simulation domain [56]. The resulting

system of equations is as follows:

1− φ
2

(
ṽ∗

′
q

∆t
+ ṽn

′

q · ∇̃ṽn
′

q

)
=

1− φ
2

[
RHSnq +

1

Req

∇̃αn′
q · τ̃ ∗q
αn′
q

+
1

Req
∇̃ · τ̃ ∗q +

1

Fr2
g̃

] in Ω, (6.15)

where:

RHSnl = −Eul∇̃P̃ n
l +

3

4

αn
′
g

αn
′
l

CD

d̃b

∥∥∥ṽn′

r

∥∥∥ṽn′

r − CP ṽn
′

r · ṽn
′

r

∇̃αn′

l

αn
′
l

, (6.16a)

RHSng = −Eug∇̃P̃ n
l + CP∇̃

(
ṽn

′

r · ṽn
′

r

) ρl
ρg
− 3

4

ρl
ρg

CD

d̃b

∥∥∥ṽn′

r

∥∥∥ṽn′

r , (6.16b)

with the following boundary conditions:

1 + φ

2
ṽ∗q = 0 in Ω, (6.17a)

1− φ
2
ṽ∗q =

1− φ
2
ṽn+1
q,BC on Γ′D, (6.17b)

n · 1− φ
2
τ̃ ∗q = 0 on Γ′N . (6.17c)

The weak formulation of Eqn. (6.15) follows the same procedure outlined in Section 4.2

but with the terms weighted by (1 − φ)/2. The differences are in the treatment of the

viscous stress term that results in the Neumann boundary condition and the addition of

solid Dirichlet velocity boundary conditions. Taking the inner product of the viscous stress

term:
1− φ

2

1

Req
∇̃ · τ̃ ∗q ,
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with the test function and using integration by parts results in the following:〈
1− φ

2

1

Req
∇̃ · τ̃ ∗q ,ϕq

〉
Ω

=

〈
1− φ

2

1

Req
n · τ̃ ∗q ,ϕq

〉
Γ′
N

+

〈
1

2Req
∇̃φ · τ̃ ∗q ,ϕq

〉
Ω

−
〈

1− φ
2

1

Req
τ̃ ∗q , ∇̃ϕq

〉
Ω

.

(6.18)

The second term in the right-hand side of Eqn. (6.18) allows for the imposition of a Neu-

mann boundary condition at the solid-fluid interface. In this work, the boundary condition

at the solid-fluid interface is a Dirichlet boundary condition and the term is therefore left

unconstrained. The weak formulation is thus:〈
1− φ

2

ṽ∗
′
q

∆t
,ϕq

〉
Ω

+

〈
1 + φ

2

a0ṽ
∗
q

∆t
,ϕq

〉
Ω

= −
〈

1− φ
2
ṽn

′

q · ∇̃ṽn
′

q ,ϕq

〉
Ω

+

〈
1− φ

2
RHSnq ,ϕq

〉
Ω

+

〈
1− φ

2

1

Req

∇̃αn′
q · τ̃ ∗q
αn′
q

,ϕq

〉
Ω

+

〈
1− φ

2

1

Req
n · τ̃ ∗q ,ϕq

〉
Γ′
N

−
〈

1− φ
2

1

Req
τ̃ ∗q , ∇̃ϕq

〉
Ω

+

〈
1− φ

2

1

Fr2
g̃,ϕq

〉
Ω

,

(6.19)

where the solid boundary condition is weighted by a0/∆t for consistency. The pressure

Poisson equation is derived from Eqn. (6.15) by taking the difference between the weighted

momentum equation for ṽn+1
q and ṽ∗q and neglecting the contributions of convection, viscous

stress and interphase momentum transfer:

− ∇̃ ·
[

1− φ
2

∑
q

Euqα
n′

q ∇̃
(
P̃ n+1
l − P̃ n

l

)]
=
a0

∆t
∇̃ ·

[
1− φ

2

∑
q

(
αn+1
q ṽn+1

q − αnq ṽ∗q
)]
.

(6.20)
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The right-hand side term can be separated into two terms:

a0

∆t
∇̃ ·

[
1− φ

2

∑
q

(
αn+1
q ṽn+1

q − αnq ṽ∗q
)]

=− a0

2∆t
∇̃φ ·

∑
q

(
αn+1
q ṽn+1

q − αnq ṽ∗q
)

+
a0

∆t

1− φ
2
∇̃ ·

∑
q

(
αn+1
q ṽn+1

q − αnq ṽ∗q
)
.

(6.21)

The first term is only active at the solid-fluid interface and given that the phase fraction

and velocity of the solid are always known, this term is assumed to be negligible. Using

the incompressibility condition, the pressure Poisson equation for two-phase flow using the

diffuse-interface method is thus:

∇̃ ·
[

1− φ
2

∑
q

Euqα
n′

q ∇̃
(
P̃ n+1
l − P̃ n

l

)]
=
a0

∆t

1− φ
2
∇̃ ·

(∑
q

αnq ṽ
∗
q

)
, (6.22)

with the following weak formulation:〈
1− φ

2

∑
q

Euqα
n′

q n · ∇̃
(
P̃ n+1
l − P̃ n

l

)
, ϕp

〉
Γ′
D

−

〈
1− φ

2

∑
q

Euqα
n′

q ∇̃
(
P̃ n+1
l − P̃ n

l

)
, ϕ̃p

〉
Ω

=

〈
a0

∆t

1− φ
2
∇̃ ·

(∑
q

αn
′

q ṽ
∗
q

)
, ϕp

〉
Ω

.

(6.23)

The new velocity update equation is simply sum of the update equation from IPCS weighted

by (1− φ)/2 and the solid Dirichlet boundary condition weighted by (1 + φ)/2:〈
1− φ

2
a0

ṽn+1
q − ṽ∗q

∆t
,ϕq

〉
Ω

+

〈
1 + φ

2

a0ṽ
n+1
q

∆t
,ϕq

〉
Ω

= −
〈

1− φ
2

Euq∇̃
(
P̃ n+1
l − P̃ n

l

)
,ϕq

〉
Ω

.

(6.24)

The boundary condition for the gas fraction, αg, at the solid-fluid interface is αg = 0 (liquid

wets the wall). Using the same blending procedure to apply the boundary condition yields

the following:
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〈
1− φ

2

α
(n+1)′
g

∆t
, ϕα

〉
Ω

+

〈
1 + φ

2

a0α
n+1
g

∆t
, ϕα

〉
Ω

+

〈
1− φ

2
∇̃ ·

(
αn+1
g ṽn+1

g

)
, ϕα

〉
Ω

= 0. (6.25)

6.1.3 Simulation Conditions

The diffuse-interface method is used to impose boundary conditions in dispersed gas-liquid

simulations of a two-dimensional channel (Fig. 6.1) and flow past a stationary cylinder

(Fig. 6.2). The physical properties of the fluids are the same as those reported in Ta-

ble 5.1. The width of the channel in Fig. 6.1 is twice that of the simulation domain in

Chapter 5. The channel walls will be imposed using a phase-field and the remaining bound-

ary conditions are the same as in Chapter 5. The new inlet boundary conditions are given

in Table 6.1. For the case of flow past a cylinder, parabolic velocity and gas fraction profiles

are used at the inlet (Table 6.2), no-slip and zero gas fraction conditions are imposed at

the channel and cylinder walls and outflow conditions are used at the outlet.

0.1 m

0
.1

m

Figure 6.1: Simulation domain for gas-liquid flow inside a channel with the diffuse-interface
method.
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Figure 6.2: Simulation domain for gas-liquid flow past a stationary cylinder with the
diffuse-interface method.

Table 5.1: Physical properties (repeated from page 55)

Property Value
Gas density (kg/m3) 10
Liquid density (kg/m3) 1000
Gas viscosity (Pa s) 2× 10−5

Liquid viscosity (Pa s) 5× 10−3

Bubble diameter (m) 10−3

Drag constant max
[

24
Re

(1 + 0.15Re0.687), 0.44
]
, Re = ρl‖vr‖db

µl
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Table 6.1: Initial and inlet conditions for gas-liquid channel flow with diffuse-interface.

Condition

Initial
αg(x, 0) = 0

vg(x, 0) = vl(x, 0) = 0
P (x, 0) = ρlgs(0.1− y)

Inlet

vg(x, 0, t) =

(
0,min

(
t
t0
, 1
)

1−φ
2

0.0616 exp

[
−( x

0.025)
2

2σ2

])
, t0 = 0.625 s, σ = 0.1

vl(x, 0, 0) = 0

αg(x, 0, t) = min
(
t
t0
, 1
)

1−φ
2

0.026 exp

[
−( x

0.025)
2

2σ2

]
, t0 = 0.625 s, σ = 0.1

n · 1−φ
2
∇(Pl(x, 0, t)− Pl(x, 0, t−∆t)) = 0

Table 6.2: Initial and inlet conditions for gas-liquid flow past a cylinder.

Condition

Initial
αg(x, 0) = 0

vg(x, 0) = vl(x, 0) = 0
P (x, 0) = ρlgs(0.4− y)

Inlet

vg(x, 0, t) =
(

0,min
(
t
t0
, 1
)

0.0616(0.025− x2)
)
, t0 = 0.625 s

vl(x, 0, 0) = 0

αg(x, 0, t) = min
(
t
t0
, 1
)

0.02(0.025− x2), t0 = 0.625 s

n · ∇P (x, 0, t) = 0
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6.2 Results and Discussion

To validate the diffuse-interface method for imposing static solid boundaries, simulations

of two-phase flow using the diffuse-interface are compared to simulation results from a

boundary-conformal mesh for both channel flow and flow past a cylinder. The effect of the

diffuse-interface length-scale and function type on the solution and the performance of the

method are discussed.

6.2.1 Channel Flow

The phase-field that defines the channel is described using the following hyperbolic tangent

function:

φ(x̃) = tanh

(
|x̃| − x̃c

0.5ε

)
, (6.26)

where x̃c = 0.5 is the scaled distance from the centerline to the channel wall and ε is a

parameter associated with the width of the diffuse-interface. The function will asymptoti-

cally approach φ = −1 and φ = 1, ensuring a smooth transition between the phases. The

scaled width of the interface, η, is approximated by the distance between φ = −0.999 and

φ = 0.999 which is given by η = ε tanh−1(0.999).

The presence of the diffuse-interface alters the way the no-slip boundary condition is

imposed at the channel walls. In the case of a boundary-conformal mesh, the velocities at

the walls are set to zero. However, in the diffuse-interface method, the no-slip condition

is blended with the governing equations for the two-fluid model. The sharpness of the

velocity gradient from the channel walls to the bulk is now a function of the diffuse-interface

function, interface width and the discretization scheme.

In this study, the spatial discretization scheme is the same for all of the simulations but

two different orders of the temporal discretization scheme are used to estimate the local

error. The difference between near-wall velocity gradients from second and third order

AB/BDI methods are the largest contributor to the local error and a local error tolerance

of εl = 10−4 resulted in very small step sizes. This issue is particularly significant in cases

where the diffuse-interface is large such as in channel flow. To alleviate the constraint on
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the step size, only the local error inside the fluid domain, where φ ≤ −0.999, is considered

when computing the new step size and the local error tolerance is relaxed to εl = 10−3.

The gas phase fraction profile at t = 1.72 s obtained from a simulation with a diffuse-

interface given by Eqn. (6.26) and ε = 0.02 is shown in Fig. 6.3. The profile for φ is

superimposed onto the image and thresholded to only show φ ≥ −0.999. Qualitatively,

the phase fraction profile is in agreement to that observed in Chapter 5. Figure 6.4 shows

the gas and liquid velocity streamlines inside the box given by x ∈ [−0.025, 0.025] and

y ∈ [0, 0.1] at the same time step. The reference solution from Chapter 5 (Fig. 5.6) is

reproduced in this chapter for comparative purposes. From Figs. 5.6 and 6.4, the velocity

profiles of both gas and liquid phases are similar with liquid recirculating in the wake of

the bubble plume.

αg φ

Figure 6.3: Surface plot of αg at t = 1.72 s with hyperbolic tangent diffuse-interface and
ε = 0.02. The grayscale colorbar denotes the phase-field that describes the diffuse-interface,
thresholded to show φ ≥ −0.999.

In addition to qualitative comparisons of the phase fraction profile and velocity stream-

lines, the time evolution of the gas hold-up from the diffuse-interface simulation will also

be compared to that of the reference solution from Chapter 5. The gas hold-up in the
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αg vg vl

Figure 5.6: Surface plot of (left) phase fraction, (center) gas velocity and (right) liquid
velocity at t = 1.72 s from bounded IPCS with interfacial pressure. (repeated from page
62)

αg vg vl φ

Figure 6.4: Surface plot of (left) αg, (center) gas velocity and (right) liquid velocity at
t = 1.72 s with hyperbolic tangent diffuse-interface and ε = 0.02.
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diffuse-interface simulation is computed as follows:

〈αg〉 =

∫
Ω

1−φ
2
αgdΩ∫

Ω
1−φ

2
dΩ

, (6.27)

where denominator is the volume of the physical domain. This comparison is reported in

the subsequent sections.

Effect of Interface Length-Scale

As previously discussed, the nature of the diffuse-interface can affect simulation results

and how well they closely replicate the boundary-conformal mesh solutions. This section

will explore the effect of interface length-scale on the solution. Simulations of the same

channel flow system is repeated with ε = 0.01, 0.04, 0.08 and 0.1. Figure 6.5 shows how

the φ = tanh(x/0.5ε) profile changes with different values of ε. ε = 0.01 corresponds to

the case where the interface is sharper and ε = 0.1 to the case where the interface is very

diffuse.

0.2 0.1 0.0 0.1 0.2
x

1.0

0.5

0.0

0.5

1.0

= 0.01
= 0.02
= 0.1

Figure 6.5: Comparison of diffuse-interface width generated using the same hyperbolic
tangent function with varying ε.
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As the interface widens, the contribution of local error from blending increases. But

given that this contribution is localized to the interface and that only the local error inside

the fluid is considered when computing the new step size, the step size is comparable

between all values of ε. Figures 6.6 and 6.7 show the gas phase fraction at t = 1.72 s for

simulations with ε = 0.01 and ε = 0.1, respectively. Visually, gas fraction profile from

ε = 0.01 is nearly identical to the case with ε = 0.02 but the profile from ε = 0.1 is notably

different from ε = 0.02. In Fig. 6.7, noticeable “wobbling” is observed in the gas column

below the plume and the plume is much narrower. This is due to the interface being very

diffuse and the effect of the solid boundary conditions is smeared further into the fluid

domain.

αg φ

Figure 6.6: Surface plot of αg at t = 1.72 s with hyperbolic tangent diffuse-interface and
ε = 0.01. The grayscale colorbar denotes the phase-field that describes the diffuse-interface,
thresholded to show φ ≥ −0.999.

The gas and liquid velocity streamlines from ε = 0.01 and ε = 0.1 are shown in Figs. 6.8

and 6.9, respectively. The streamlines from ε = 0.01 are qualitatively similar to those

observed in Figs. 5.6 and 6.4. However, the streamlines from ε = 0.1 are different from

the other simulations. The gas velocity streamlines appear to exhibit less curvature in the

wake of the bubble plume and the liquid velocity vortices in the wake of the plume are
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αg φ

Figure 6.7: Surface plot of αg at t = 1.72 s with hyperbolic tangent diffuse-interface and
ε = 0.1. The grayscale colorbar denotes the phase-field that describes the diffuse-interface,
thresholded to show φ ≥ −0.999.

narrower due to the highly diffuse nature of the interface.

Figure 6.10 shows the time evolution of the overall gas hold-up, 〈αg〉, inside the channel

up to 2.5 s from the hyperbolic tangent diffuse-interface simulations and the reference

solution. At narrow interface widths, evolution of the gas hold-up follows the same pattern

as the reference solution and the magnitude of overall hold-up is almost identical. However,

for ε = 0.1, the evolution of the hold-up is similar to the reference solution only up to the

point where the bubble plume leaves the channel. After this point, the hold-up deviates

from the reference solution, indicating that the flow behavior is different. In the reference

solution, the period after the bubble plume leaves the channel is where a straight vertical

column of bubbly flow is observed. In the case of ε = 0.1, the column of bubbly flow is

not straight (Fig. 6.4) and the onset of precessing flow occurs much earlier than the other

simulations.

The gas fraction is sampled along the line y = 0.08 m and the profile along the x-axis is

plotted in Fig. 6.11. This height corresponds to the widest part of the bubble plume. For
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αg vg vl φ

Figure 6.8: Surface plot of (left) αg, (center) gas velocity and (right) liquid velocity at
t = 1.72 s with hyperbolic tangent diffuse-interface and ε = 0.01.

αg vg vl φ

Figure 6.9: Surface plot of (left) αg, (center) gas velocity and (right) liquid velocity at
t = 1.72 s with hyperbolic tangent diffuse-interface and ε = 0.1.
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Figure 6.10: Time evolution of overall gas hold-up inside a channel with solid boundaries
defined by a hyperbolic tangent diffuse-interface.

the cases where ε = 0.01 and ε = 0.02, the αg profiles obtained using a diffuse-interface

to impose solid boundaries show good qualitative agreement with the reference solution

from Chapter 5. The agreement is improved as the interface becomes narrower but the

difference is relatively small. As the interface becomes wider, the αg profile is no longer in

agreement with the reference solution. The effect of the diffuse-interface is also clear here

as αg in Fig. 6.11c starts to transition from αg = 0 to a nonzero value further into the

domain.

To obtain a quantitative measure of how the diffuse-interface simulations compare with

the reference solution, the width of the bubble plume at y = 0.08 m is computed and

reported in Table 6.3. The plume widths from simulations with ε = 0.01 and ε = 0.02

are within 3% of the reference solution, supporting the observations made in this section.

The plume width from ε = 0.1 is 30% off from the reference solution, highlighting the

importance of the diffuse-interface width.
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Figure 6.11: αg profile along y = 0.08 m with different hyperbolic tangent diffuse-interface
widths.

Table 6.3: Bubble plume width at y = 0.08 m from simulations using hyperbolic tangent
diffuse-interface.

Study xplume (×10−2 m) Difference (%)
Reference 3.21 –
ε = 0.01 3.17 1.25
ε = 0.02 3.12 2.80
ε = 0.04 2.92 9.03
ε = 0.08 2.51 21.8
ε = 0.1 2.25 30.0
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Effect of Interface Function

The previous studies have been conducted with a hyperbolic tangent function as the phase-

field. Other functions can also be used to represent the diffuse-interface as long as it ensures

a smooth transition from the solid to the fluid region. An example of this is a piece-wise

cosine function where the interface region is described by a cosine function that is between

[−1, 1] and outside the interface region, φ = ±1. Unlike the hyperbolic tangent function

that asymptotically approaches the lower and upper bounds of φ, the piece-wise cosine

function will reach φ = ±1 exactly at the specified η, making it easier to control the

interface width. In this section, the following piece-wise cosine function is used to impose

the diffuse interface:

φ(x̃) = − cos

(
−πmin

[
1,max

(
0,
|x̃| − x̃c + 0.5η

η

)])
, (6.28)

where φ will be ±1 outside the region x̃ ∈ (x̃c − 0.5η, x̃c + 0.5η), depending on which side

of the channel wall is x̃ close to.

Figure 6.12 shows the how φ varies with respect to x when defined using a hyperbolic

tangent function, φ = tanh(x/0.5ε), and using a piece-wise cosine function centered at

xc = 0, φ = − cos(−πmin [1,max (0, (x+ 0.5η)/η)]), for a comparable interface width. The

width of the cosine interface is approximated by η = ε tanh−1(0.999), which corresponds

to the distance between φ = ±0.999 in the hyperbolic tangent case. From Fig. 6.12, the

transition of φ from −1 to 1 in the piece-wise cosine function is more gradual than the

hyperbolic tangent function, which results in lower values of ∇φ.

Figure 6.13 shows the gas fraction profile and velocity streamlines for simulations with

a piece-wise cosine diffuse-interface with a comparable interface width as the hyperbolic

tangent case. At small ε, the profiles are qualitatively similar to their hyperbolic tangent

counterparts. The bubble plume in the ε = 0.1 case is still noticeably narrower than the

reference solution but appears to be wider than the hyperbolic tangent result with the

same ε. The gas column below the plume also appears to be more stable than the results

in Fig. 6.9.

The significant difference between the results from different interface functions at ε =
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Figure 6.12: Comparison of diffuse-interface generated using hyperbolic tangent and piece-
wise cosine functions with ε = 0.02 and η = ε tanh−1(0.999).

0.1 is due to the piece-wise nature of Eqn. (6.28) and the approximation of the inter-

face width to obtain a comparable width as the asymptotic hyperbolic tangent func-

tion. In the piece-wise cosine function, the approximation η = ε tanh−1(0.999) produces a

diffuse-interface that approaches φ = ±1 over a similar length-scale as the hyperbolic

tangent function for small interface widths. However, at ε = 0.1, the difference be-

tween ε tanh−1(0.999) and ε tanh−1(0.9999), which are interface widths approximated by

φ = ±0.999 and φ = ±0.9999, respectively, is an order of magnitude larger than at ε = 0.01

and non-negligible. The hyperbolic tangent function smears the interface over a larger dis-

tance, which for larger values of ε, is detrimental to the performance of the method.

Figure 6.14 shows the time evolution of the overall gas-holdup for simulations with a

piece-wise cosine diffuse-interface. Similar to the hyperbolic tangent case, the gas hold-up

at small interface widths (ε = 0.01 and ε = 0.02) are in agreement with the reference

solution. At ε = 0.1, the gas hold-up is not in agreement with the reference solution after

the bubble plume starts to exit the simulation domain but the difference is not as drastic

as the hyperbolic tangent case in Fig. 6.10.
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αg vg vl φ

Figure 6.13: Surface plot of (left) phase fraction, (center) gas velocity and (right) liquid
velocity at t = 1.72 s with piece-wise cosine diffuse-interface and (top) ε = 0.01, (middle)
ε = 0.02 and (bottom) ε = 0.1.
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Figure 6.14: Time evolution of overall gas hold-up inside a channel with solid boundaries
defined by a piece-wise cosine diffuse-interface.

The αg profile at y = 0.08 m from the three cases are plotted with the reference solution

in Fig. 6.15. The results are similar to that observed in the previous section where ε = 0.01

and ε = 0.02 yielded profiles that are comparable to the reference solution but the profile

from ε = 0.1 is different from the reference solution. Figure 6.16 describes the error in the

phase fraction along the line y = 0.08 m as the interface width varies for both interface

functions. The error is defined as:

Error = ‖αg,ref − αg‖y=0.08 m, (6.29)

and can be described using the following power-law expression:

‖αg,ref − αg‖y=0.08 m = Aεm, (6.30)

where A is a constant and m is the exponent. For both interface functions, the error

follows an approximate first-order decay with the interface width where mtanh = 0.953 and

mcos = 0.896.
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The bubble plume width is computed and tabulated in Table 6.4. At ε = 0.01, the

bubble plume width is exactly the same as the hyperbolic tangent case. The ε = 0.02

yielded a small difference between the two interface functions but is still below 3%. The

use of the piece-wise cosine function as the interface improved the bubble plume width in

the very diffuse case, decreasing the difference from the reference solution by almost 10%.

This is due to the lack of smearing when φ is very close to ±1 in the piece-wise cosine

function compared to the hyperbolic tangent function.
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Figure 6.15: αg profile along y = 0.08 m with different piece-wise cosine diffuse-interface
widths.
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Table 6.4: Bubble plume width at y = 0.08 m from simulations using piece-wise cosine
diffuse-interface.

Study xplume (×10−2 m) Difference (%)
Reference 3.21 –
ε = 0.01 3.17 1.25
ε = 0.02 3.13 2.49
ε = 0.04 3.03 5.46
ε = 0.08 2.75 14.2
ε = 0.1 2.54 20.9
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tanh
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Figure 6.16: Error in αg profile along y = 0.08 m as a function of ε.
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6.2.2 Flow Past a Cylinder

The diffuse-interface method is also used to model two-phase flow past a stationary cylinder

for the first time with the two-fluid model. Simulations are performed using both the

hyperbolic tangent and piece-wise cosine interface functions. For the hyperbolic tangent

case, the cylinder is defined using the following function:

φ(x̃) = − tanh

(
‖x̃− x̃c‖ − R̃

0.5ε

)
, (6.31)

where x̃c = (0, 0.8) is the scaled diffuse-interface position vector that corresponds to the

center of the cylinder, R̃ = 0.1 is the scaled radius of the cylinder and ε is chosen to be

0.005, 0.01 and 0.02. The piece-wise cosine interface is defined by:

φ(x̃) = − cos

(
−πmin

[
1,max

(
0,
‖x̃− x̃c‖ − R̃ + 0.5η

η

)])
, (6.32)

where η = ε tanh−1(0.999). In this system, the presence of the diffuse-interface is expected

to have a larger impact on the flow profile due to the fact that the cylinder is directly

in the path of the flow. The diffuse-interface will smear the solid boundary, making the

cylinder appear slightly larger than if the boundary was defined using the mesh, which in

turn will affect the hydrodynamical behavior of the fluid.

Figure 6.17 shows the gas and liquid velocity streamlines along with the gas fraction

profile from the reference solution. The reference solution is obtained from performing a

simulation with the conditions outlined in Section 6.1.3 using a boundary-conformal mesh.

In the early stages of the simulation, gas moves around the cylinder, leaving a small area

behind the cylinder for liquid recirculation. As the gas travels further up the channel

(t = 3.13 s), it merges behind the cylinder and moves up the channel. The there are two

zones of liquid recirculation near the inlet, one on each side of the bubbly mixture. The

recirculation zones grow in size and their center move upward (t = 3.13 s). Over time, more

and more mixing occurs, resulting in a wavy column of bubbly mixture and a distorted

bubble plume at the very top. Several recirculation zones are present on either side of the
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wavy column where gas is occasionally pulled into the vortex, resulting in areas of higher

gas fractions.

3.13 s 4.69 s 6.25 s

Figure 6.17: Evolution of gas-liquid flow past a stationary cylinder with a boundary-
conformal mesh. Streamlines are of (top) gas and (bottom) liquid phases.

Figures 6.18 and 6.19 show the results at the same time steps from simulations using

a hyperbolic tangent and piece-wise cosine diffuse-interfaces with ε = 0.01, respectively.
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The results do not appear to significantly differ when different interface functions are used.

At t = 3.13 s, the gas phase fraction profile and the velocity streamlines appear to be the

same as the results from the reference simulation for both interface functions. This is not

the case starting at t = 4.69 s onward. The recirculation zones in the wake of the cylinder

predicted by the diffuse-interface simulations are wider and closer to the cylinder. This

appears to have affected the evolution of the gas and velocity profiles, resulting in a similar

features but different gas fraction and velocity profiles, confirming the prediction made

earlier in this section.

The time evolution of the overall gas hold-up is shown in Fig. 6.20. In the early stages

of the simulation, the hold-up evolves in the same manner as the reference solution. The

interface function does not appear to significantly affect the solution at ε = 0.01, supporting

the results from Section 6.2.1. But as the diffuse-interface interacts with the flow, the gas

hold-up diverges from the reference solution. This corresponds to the observations made

in Figs. 6.17 to 6.19. While the magnitude and the slope of the gas hold-up profiles from

the diffuse-interface simulations vary from the reference solution, the qualitative behavior

is still the same.

6.3 Conclusions

A diffuse-interface method for imposing solid boundaries in two-phase flow has been de-

veloped. The Dirichlet solid boundary conditions are imposed by blending the governing

equations of the two-fluid model with the Dirichlet boundary condition, resulting in a

smooth transition from the solid boundary to the fluid domain. To validate the method,

simulations of channel flow and flow past a cylinder are performed and the results are

compared to results from simulations with boundary-conformal meshes. The results from

diffuse-interface method for simulations of channel flow are found to be in agreement with

the reference solution when the diffuse-interface is sufficiently small. At small interface

widths, the choice of the interface function does not affect the accuracy of the solution.

When the interface is large, the solution is negatively affected. In two-phase flow past

a stationary cylinder, the results from the diffuse-interface simulations are in agreement
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3.13 s 4.69 s 6.25 s

Figure 6.18: Evolution of gas-liquid flow past a stationary cylinder with a hyperbolic
tangent diffuse-interface and ε = 0.01. The diffuse-interface is in grayscale and streamlines
are of (top) gas and (bottom) liquid velocities.
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3.13 s 4.69 s 6.25 s

Figure 6.19: Evolution of gas-liquid flow past a stationary cylinder with a piece-wise cosine
diffuse-interface and ε = 0.01. The diffuse-interface is in grayscale and streamlines are of
(top) gas and (bottom) liquid velocities.
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Figure 6.20: Time evolution of overall gas hold-up in flow past a stationary cylinder.

with the reference solution in the early stages of the simulation. As the flow interacts

with the cylinder, the diffuse-interface is found to affect the flow profile and the overall

gas hold-up. Similar flow features are still observed but at different locations and with

different magnitudes.
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Chapter 7

Conclusions and Recommendations

for Future Work

7.1 Conclusions

A diffuse-interface method for imposing solid-fluid boundaries for two-phase bubbly flow

using the two-fluid (Euler-Euler) model has been developed with implicitly-imposed phase

fraction boundedness. Simulations using the diffuse-interface two-fluid method developed

in this work are found to be in quantitative agreement with simulation results obtained

using a conformal mesh to impose solid-fluid boundaries. The presented method allows for

solid-fluid boundaries to be diffuse while still imposing the boundary conditions, which in

turn allows complex geometries to be represented and easily modified during the course of

the simulation.

The general conclusions of this work are:

• The use of an implicit nonlinear variational inequality solver can be used to impose

phase fraction boundedness for the numerical solution of the two-fluid model without

the introduction of ad hoc model contributions or post-processing.
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• The effect of the assumption of the phasic pressure equality in the two-fluid model

in dilute bubbly flow is non-negligible.

• Solid-fluid boundaries may be imposed in the two-fluid model through the use of a

diffuse-interface method.

• The width and structure of the diffuse-interface has a significant effect on the accuracy

of the imposed boundary conditions and consequently, the predicted flow profile as

compared to the conformal mesh/grid numerical solution.

• The time evolution of the gas hold-up and the gas phase fraction profile from the

diffuse-interface simulations of channel flow with sufficiently low interface widths are

in agreement with the reference simulation performed without a diffuse-interface.

7.2 Recommendations for Future Work

The main set of recommendations for future work in this area are focused on enhanced

physical fidelity of the model for dilute bubbly flows and include:

1. Bubble size distribution – At higher gas fractions, the bubbles will not be uniform in

size, changing the behavior of the flow [152, 153]. This effect needs to be taken into

account in the momentum exchange terms.

2. Bubble coalescence and breakup – As the bubbles move inside the domain, they could

collide and coalesce or break into smaller bubbles [154–157]. This will alter the bubble

size distribution and by extension, the interphase momentum exchange.

3. Bubble swarming – Large concentrations of bubbles within an area can have a swarm-

ing effect that alters the momentum exchange between the phases [13, 158, 159].

Taking this into account will improve the predictive nature of the simulations.

4. Momentum exchange – In this work, only the drag force is considered, however, there

are other interphase momentum exchange contributions that can affect the simulation
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results such as lift, virtual mass and wall lubrication force that should be considered

if they apply to the system. The constitutive relationships for momentum exchange

should also reflect the physics of the system and not be used as a tuning parameter

to obtain agreement with experimental results and/or reference solution.

5. Phase inversion – The situation where two continuous phases exist in the simulation

domain is also possible. This occurs in areas with higher gas fractions where the

gas phase becomes the continuous phase in those areas. The interphase momentum

exchange terms will be different when the continuous phase changes. This can be

taken into account in many ways, including introducing blending in the momentum

transfer terms [87] or using another diffuse-interface and solving two sets of governing

equations.

In this work, the Dirichlet boundary conditions are enforced using a blending method.

The drawback of this method is that it cannot impose Dirichlet boundary conditions on the

normal or tangential component of a vector without a priori knowledge of the unit normal

or tangent vector from the boundary. This can be addressed using Nitsche’s method [56]

to weakly impose the Dirichlet boundary condition.

Additionally, the diffuse-interface method developed in this work lays the groundwork

for potential studies involving topological optimization of multiphase flow systems. In the

future, an optimization routine can be incorporated to allow for the solid boundaries to be

adjusted to optimize a specific objective function without modifying the mesh.
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Appendix A

Supporting Information

A.1 Chapter 5 – Grid Convergence

To show mesh convergence, the bounded simulation with Pc = Pd is repeated for three

additional meshes, one coarser and two finer. Figure A.1 shows the time evolution of the

gas hold-up inside in the simulation domain over the period of 2.5 s. From Fig. A.1, the

time evolution of the gas hold-up does not exhibit a discernible difference as the grid is

refined from 22 052 elements to 39 402 elements. Thus, the mesh with 22 052 elements is

used for all of the simulations reported in Chapter 5.

A.2 Chapter 6 – Grid Convergence

Simulations of channel flow using a hyperbolic tangent diffuse-interface with ε = 0.01 are

performed with three different meshes. Figure A.2 shows the time evolution of the overall

gas hold-up over 2.5 s for simulations with 9800, 18 666 and 32 090 mesh elements. From

Fig. A.2, the time evolution of the overall gas hold-up remains unchanged as the mesh is

refined from 18 666 elements to 32 090. Therefore, the channel flow simulations in Chapter 6

are performed with 18 666 mesh elements.
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Figure A.1: Time evolution of gas hold-up for different number of mesh elements.
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Figure A.2: Time evolution of gas hold-up obtained from the hyperbolic tangent diffuse-
interface simulations of channel flow using different number of mesh elements.
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