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Abstract

This thesis is concerned with the parallel, adaptive solution of hyperbolic conservation
laws on unstructured meshes.

First, we present novel algorithms for cell-based adaptive mesh refinement (AMR) on
unstructured meshes of triangles on graphics processing units (GPUs). Our implementa-
tion makes use of improved memory management techniques and a coloring algorithm for
avoiding race conditions. The algorithm is entirely implemented on the GPU, with neg-
ligible communication between device and host. We show that the overhead of the AMR
subroutines is small compared to the high-order solver and that the proportion of total run
time spent adaptively refining the mesh decreases with the order of approximation. We
apply our code to a number of benchmarks as well as more recently proposed problems
for the Euler equations that require extremely high resolution. We present the solution
to a shock reflection problem that addresses the von Neumann triple point paradox. We
also study the problem of shock disappearance and self-similar diffraction of weak shocks
around thin films.

Next, we analyze the stability and accuracy of second-order limiters for the discontinu-
ous Galerkin method on unstructured triangular grids. We derive conditions for a limiter
such that the numerical solution preserves second order accuracy and satisfies the local
maximum principle. This leads to a new measure of cell size that is approximately twice
as large as the radius of the inscribed circle. It is shown with numerical experiments that
the resulting bound on the time step is tight. We also consider various combinations of
limiting points and limiting neighborhoods and present numerical experiments comparing
the accuracy, stability, and efficiency of the corresponding limiters.

We show that the theory for strong stability preserving (SSP) time stepping methods
employed with the method of lines-type discretizations of hyperbolic conservation laws may
result in overly stringent time step restrictions. We analyze a fully discrete finite volume
method with slope reconstruction and a second order SSP Runge-Kutta time integrator to
show that the maximum stable time step can be increased over the SSP limit. Numerical
examples show that this result extends to two-dimensional problems on triangular meshes.

Finally, we propose a moment limiter for the discontinuous Galerkin method applied to
hyperbolic conservation laws in two and three dimensions. The limiter works by finding di-
rections in which the solution coefficients can be separated and limits them independently
of one another by comparing to forward and backward reconstructed differences. The lim-
iter has a precomputed stencil of constant size, which provides computational advantages
in terms of implementation and runtime. We provide examples that demonstrate stability
and second order accuracy of solutions.
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Chapter 1

Introduction

This thesis is concerned with the development of robust, parallel algorithms for the numeri-
cal approximation of solutions to hyperbolic conservation laws in two and three dimensions
using the discontinuous Galerkin (DG) method. Hyperbolic conservation laws are partial
differential equations (PDEs) that model wave propagation and have applications in com-
putational fluid dynamics (CFD). Weak solutions of such equations admit discontinuities,
which can be difficult to approximate numerically. Therefore, the development of reliable
numerical methods for this class of PDEs is important for many applied problems in CFD
and engineering. Popular methods to solve hyperbolic PDEs include finite difference and
finite volume methods with high order reconstructions, e.g., ENO and WENO schemes.
These methods attain high order accuracy using an order-dependent stencil and can be
unwieldy on complex geometries and unstructured meshes. In contrast, the DG method
presents a number of advantages. First, the method is of arbitrarily high order and has a
compact, order-independent stencil. It is also suitable for execution on parallel architec-
tures since an element only requires information about itself and its neighbors. Second,
it can be defined on different element geometries, e.g. triangles, quadrilaterals, and on
complex domains. Finally, it is straightforward to use this method with adaptive mesh
refinement (AMR) algorithms that refine or coarsen elements in the mesh or modify an
element’s order of approximation.

In this thesis, we have focused on (1) the development and implementation of AMR
algorithms parallelized on graphics processing units (GPUs) and on (2) the development
and analysis of novel limiting techniques for the DG method on unstructured meshes of
triangles and tetrahedra. GPUs are popular for the parallelization of numerical solvers
for PDEs [3-0] due to their low cost and impressive compute capabilities. Adaptive, un-
structured computational fluid dynamics (CFD) solvers on GPUs must leverage the high
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floating point operation (FLOP) throughput available by optimizing memory transfers and
reducing latencies [3,7]. We propose and implement novel algorithms for cell-based adap-
tive mesh refinement on unstructured meshes of triangles on graphics processing units.
Our implementation makes use of improved memory management techniques and a color-
ing algorithm for avoiding race conditions. Using our GPU-accelerated AMR, algorithm,
we solve a number of problems in gas dynamics that are intractable without some form
of adaptive mesh refinement. In particular, we provide numerical evidence in support of
Guderley Mach reflection, which requires element sizes on the order of 107% and meshes
comprising over 5 million elements. We also solve a problem concerning the interaction of
a shock with a thin, reflecting film and determine the location of shock disappearance.

For nonlinear conservation laws, a stabilization procedure, such as slope limiting, is
required to prevent instabilities that can occur in the presence of discontinuities in the
numerical solution. Limiters from the finite volume framework can sometimes be modi-
fied to act on DG solutions, though there are limiters devised to stabilize DG solutions
specifically [3,9]. These limiters compare the DG solution values on the edges to values re-
constructed from averages on neighboring elements. In this thesis, we analyze the stability
and accuracy of second-order limiters for the discontinuous Galerkin method on unstruc-
tured triangular meshes. We also present a limiter that can be viewed as a first step in the
generalization of the moment limiter in [10, | 1] to unstructured meshes, or as a standalone
second order limiter with proven stability and accuracy properties. It is a lightweight and
simple limiting procedure that is composed of two independent one-dimensional limiters.
The implementation of the limiter is easily parallelizable and straightforward as it uses the
minmod function to compare the solution coefficients to suitable forward and backward
differences.

We now describe the discontinuous Galerkin method in two and three dimensions, give
an overview of adaptive mesh refinement techniques, provide a description of reflection
problems in gas dynamics, and finally, describe limiters in the context of the DG method.

1.1 The discontinuous Galerkin method

Hyperbolic conservation laws are partial differential equations of the form
u;+V-F(u) =0, (1.1)

with the solution u(x,t) = (u,ug, ..., upr)7 defined on Q x [0,7] such that x € Q C R,
T is the final time and F(u) is the flux function. Additionally, the initial condition along



Q4 Q?)
Ql Q) 5
Qo €y 9
(a) Conforming mesh of two triangles. (b) Nonconforming mesh of five triangles.

Figure 1.1: Possible meshes of a square domain.

with appropriate boundary conditions are prescribed. In this thesis, we consider two- and
three-dimensional hyperbolic PDEs; i.e., d = 2, 3.

The discontinuous Galerkin method can be formulated by first dividing the domain 2
into an unstructured mesh of triangles or tetrahedra such that Q = |J, ;. Typically, a
mesh produced by a mesh generator is conforming (Figure 1.1a). However, an adaptive
mesh refinement algorithm can split an element into four smaller triangles by connecting
edges’ midpoints, which may produce a nonconforming mesh (Figure 1.1b). The weak
form of the conservation law is obtained by multiplying equation (1.1) by a test function
v € HY(Q;) and integrating on element €);. After applying the divergence theorem, we
obtain

/ wudx — / F(u) - Vudx +/ vF(u)-ndl =0, Yo € H' (), (1.2)
of of %,
where n is the unit outward facing normal on the element’s boundary 0€2;. In two di-
mensions, each element €); is mapped to the canonical triangle (2., having vertices at
(0,0),(1,0),(0,1), using the transformation

T Til Ti2 T3 l1—r—s
vyl =11 W2 Vi3 r , (1.3)
1 1 1 1 S
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Figure 1.2: Canonical elements (2.

where (x;,v;)1.23 are the vertices of ; in the physical space (Figure 1.2a). We label the
edge defined by (0,0) and (1,0) of the canonical triangle edge 1, (1,0) and (0,1) edge 2,
and (0,1) and (0,0) edge 3. The Jacobian of the transformation is

J; = (%’,2 — X1 X33 — l'i,l) _ (1.4>

Yiz2 —Yix Yi3 — Vi

In three dimensions, each element €); is mapped to the canonical tetrahedron 2., having
vertices at (0,0,0),(1,0,0),(0,1,0),(0,0,1), using the transformation

x Ti1 Ti2 Ti3 Tig l—r—s—1t
i1 Yi2 Ui i 4 r
) yz, yz, yz,S yz, , (15)
z il 22 23 24 S
1 1 1 1 1 t

where (x;,v;, 2:)1,..4 are the vertices of €; in the physical space (Figure 1.2b). We label
the face opposite vertex (1,0,0) face 1, the face opposite vertex (0,1,0) face 2, the face
opposite vertex (0,0,1) face 3, and the face opposite the vertex (0,0,0) face 4 (Figure



1.2b). The Jacobian of the transformation is

Tio — Ti1 Ti3 — X1 Lia — T4l
Ji= Y2 —Yi1 Yi3z— Vi1 Yia— Vi1 |- (1.6)
Zi2 T 21 Z3 T Rl R4 T R0

We define SP(2.) to be the space of polynomials of order up to p on €2, and {¢},—o.... N1
to be the set of orthonormal basis functions on S(§2.) [12, 3], where the number of basis
functions N;l for the space of order p in d spatial dimensions is

(p+1D(p+2)ifd=2,
(p+1p+2)(p+3)ifd=3.

d_
Np—

[N ST

The linear basis in two dimensions is
900 = \/Ea
w1 = —2+ 6r, (1.7)
Yo = —2V/3 + 2V/3r + 4v/3s,

and in three dimensions is

Yo = V6,

1 = —V10 + 4V/10r,

w2 = =25 + 2v/5r + 6v/5s,

Y3 = —2v/15 + 2v/15r + 2v/15s + 4v/15¢.

(1.8)

The exact solution on element (2; is approximated by U;, which is a linear combination

d_
of the basis functions ¢y, i.e. U; = ZkNﬁo ! Ci kP, Where ¢; ), = [cl{k, cik, e ,C%C]T
are referred to as the degrees of freedom (DOFs). As continuity between elements is not
imposed, the solution is multivalued in the boundary integral. We therefore introduce a
numerical flux F*(U;, U;) to allow information exchange between adjacent cells §2; and

2;. We assume that the numerical flux is consistent, monotone, and differentiable. With



v chosen to be ¢y, equation (1.2) now becomes

d 1
2, = — F(U,) - -1 .
T Cik = 7 7 </Q (U;) - (Vi ;) det J; dx

2

JENZ.j#i 0.5

o F*(U;, U;) - ng dl), k=0,---,NI—1, (19)

where N7 is the set of indices of €2; and of elements that share an interface with ;, 9, ;
is the interface shared by €2; and €2;, and n; ; is the outward pointing unit normal on that
interface. In two dimensions, 02, ; is a linear segment, i.e. an edge and in three dimensions,
it is a triangle, i.e. a face. 0€);; is also referred to as e, where s is the index of the edge
or face. We use numerical quadrature rules of order 2p and 2p 4+ 1 to evaluate the volume
and surface integrals in (1.9), respectively [9]. The system of equations (1.9) can be solved
in time using a standard ordinary differential equation (ODE) solver of order p + 1, e.g. a
Runge-Kutta (RK) method.

As the volume and surface integral contributions can be computed cell-by-cell and
face-by-face, respectively, the method is predisposed to applications on highly parallel
GPU architectures [3]. We now give an overview of the application programming interface
(API), CUDA, with which the DG method can be implemented on NVIDIA GPUs.

1.2 CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture) is an API for general purpose
GPU computing on NVIDIA GPUs. The CPU, named the host, directs the GPU, named
the device, through API calls that transfer memory and execute parallel algorithms, called
kernels. Kernels are executed by threads in parallel, or in lock-step, i.e. in a Single
Instruction Multiple Data (SIMD) fashion. That is, the same instruction set is executed
on different data units simultaneously.

There are many considerations that must be taken into account when designing a kernel.
The programmer is tasked with mapping data elements to threads such that memory con-
tention (race conditions) is avoided, while also ensuring memory is accessed in an efficient
manner for optimal (coalesced) memory transfers.

Warps are collections of 32 threads. They are grouped into blocks of a size determined
by the programmer. The entire collection of blocks constitutes all the parallel elements of
a kernel. Though it is possible to implement a synchronization point across the threads
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in a specific block, the only way to synchronize across all threads in a kernel is by exiting
the kernel. Upon kernel termination, the programmer is guaranteed that all threads have
completed their respective work. This is crucial to know when designing kernels that may
present race conditions.

There is a complex memory hierarchy on NVIDIA GPUs that we only briefly summarize
here. Global memory is shared among threads and is located in GPU video memory
(DRAM). Modern NVIDIA GPU platforms, such as the NVIDIA Tesla K40, have 12 GB
of global memory available. Thread local memory is located on low-latency registers, or, if
the registers are full, there is spillage into global memory. The programmer can minimize
the effect of high latency global memory accesses through efficient data access patterns,
i.e. coalesced reads and writes, and minimization of the number of reads and writes to
global memory. An optimized data flow on the GPU entails a coalesced load of data from
global memory, manipulation of these data in the registers, then a coalesced write back to
global memory.

1.3 Adaptive mesh refinement

AMR is a technique that modifies the mesh in order to efficiently distribute computational
resources over the domain. Common types of adaptivity include anisotropic adaptivity, p-,
and h-refinement. Anisotropic adaptivity spatially relocates, or smooths, the geometrical
nodes of the mesh [14]. P-refinement strategies aim to increase the local degree of approx-
imation in smooth regions of the solution [15, 16]. Finally, h-refinement strategies enrich
the mesh locally with new elements in order to capture fine structures of the solution or
shocks.

Implementations of AMR are numerous and include PARAMESH [17], Chombo [18],
deal.ii [19], and AMRClaw [20]. H-adaptivity has been implemented as patch-, block-, or
cell-based refinement.

The idea behind patch-based refinement, or component grids, is to superimpose pro-
gressively refined Cartesian grids until the desired accuracy is obtained [21] (Figure 1.3b).
Subgrids communicate with one another and are advanced in time using local time step-

ping.
In block-based refinement, a predefined number of elements is grouped together into
blocks [22,23]. Refinement and coarsening operations execute on blocks of cells, rather

than individual elements (Figure 1.3c). Only inter-block connectivity is required since the
blocks are scaled versions of one another.



(a) Initial mesh. Shaded (b) Patch-based refine- (c) Block-based refine- (d) Cell-based refine-
elements are flagged for ment. ment. ment.
refinement.

Figure 1.3: Patch-, block-, and cell-based refinement strategies on regular grids.

(a) Initial unstructured mesh of triangles. (b) Cell-based refinement.
Shaded triangles are flagged for refinement.

Figure 1.4: Cell-based refinement on an unstructured mesh of triangles.



In cell-based h-refinement, cells are refined independently of one another, which requires
more connectivity data than block-based refinement (Figure 1.3d). Usually, parent-child
relations between coarse and fine elements are organized into a quadtree or octree data
structure for two- and three-dimensional codes [24], respectively. The advantage of this
approach is that fewer elements may be needed for a prescribed error tolerance and that it
is well suited to unstructured meshes. We focus on cell based h-adaptivity on unstructured
meshes of triangles in this thesis (Figure 1.4), though the work we present here generalizes
to other AMR strategies.

Cell-based h-adaptivity has been used extensively on serial and parallel CPU architec-
tures in CFD codes, e.g., [25—27]. However, GPU architectures present their own challenges.
During AMR, elements and their corresponding data may be added or removed from the
mesh. Updating the data arrays can lead to memory management issues, e.g., ensuring
that arrays contain contiguous information without excessive copying.

1.4 Reflection problems in gas dynamics

There are a number of reflection problems in gas dynamics that are intractable without
some form of adaptive mesh refinement. In this thesis, we consider a number of AMR
benchmarks as well as two more challenging problems. The first problem is resolving
Guderley Mach reflection and the second is resolving the shock disappearance point in a
diffraction problem. Guderley Mach reflection has previously been simulated on manually
constructed, logically Cartesian grids. Here we present fully adaptive computations on
an unstructured mesh, which allows us to obtain a more accurate position of the triple
point and contribute to the body of numerical evidence for Guderley’s solution. There
are several self-similar reflection patterns that can result from the oblique reflection of a
shock against a wedge. Regular reflection occurs when the incident (I) and reflected (R)
shocks meet at the wall (Figure 1.5a). Single Mach reflection occurs when the point at
which the incident and reflected shocks meet detaches from the wall (Figure 1.5b). This
point is called the triple point (TP) and is connected to the wall via the Mach stem (MS).
A slipline (S) also originates at the triple point. Under different wedge angles and shock
strengths, a more complex reflection pattern is observed, called double Mach reflection.
The reflected shock creates a second triple point (TP’), Mach stem (MS’), and slipline (S’)
(Figure 1.5¢). The theory of regular and Mach reflection was developed by von Neumann
and allowed the prediction of the type of reflection pattern that occurs (regular or Mach
reflection) based on the wedge angle and shock strength. However, some difficulty was
encountered when applying the theory to weak shocks. Early experimental evidence seemed
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Figure 1.5: Regular reflection, single and double Mach reflection. The incident (I), primary
and secondary reflected shocks (R, R’), Mach stems (MS, MS’) and sliplines (S, S’) are
indicated. The sonic line in the Guderley Mach reflection case is indicated by the dashed-
dotted line.
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to indicate that in some parameter regimes, Mach reflection was the observed reflection
pattern even though this was not allowed in von Neumann’s theory. One proposed solution
is that a singularity could be present behind the triple point, invalidating assumptions in
von Neumann’s theory. Another solution was proposed by Guderley, where there is an
expansion fan and a supersonic patch behind the triple point [28]. Early experimental
and numerical studies were unable to determine the correct solution. This is because
the region of interest is very small, on the order of 10~%. To properly resolve this flow
feature, cell sizes on the order of 107¢ are required in the neighborhood of the triple point.
Recently, numerical and experimental evidence has suggested that Guderley’s solution is
correct [29-31] (Figure 1.5d).

1.5 Limiters

Oscillations in numerical solutions given by high order numerical methods appear due
to Gibbs’ phenomenon in the presence of discontinuities. We illustrate this on a simple
example by solving the linear advection equation, u;+u, = 0 on the periodic domain [—1, 1],
with a finite volume method using the upwind numerical flux and a slope reconstruction.
The initial condition is the pulse ug(z) = 1 if < 0 and ug(x) = 0 otherwise. The
numerical solution at 7" = 0.5 is given in Figure 1.6a, where a number of overshoots
and undershoots are present near the discontinuities. For linear fluxes, these oscillations
may or may not be acceptable in the final solution. For nonlinear fluxes however, these
nonphysical oscillations may lead to numerical instability. In this case, a stabilization
procedure, such as slope limiting, must be used to suppress oscillations in the solution in
case of wave steepening and shock formation. Using a slope limiter, e.g., the superbee
limiter, an oscillation-free numerical solution can be obtained (Figure 1.6b). Typically,
a slope limiting procedure modifies the numerical slope on each element such that it lies
in a locally defined range. Then, a global stability property of the numerical solution
is deduced. For one-dimensional problems, slope limiters that enforce a total variation
diminishing (TVD) property have been successful [32]. However, an extension of this
approach to two-dimensions was shown to yield at most first order accurate schemes [33].
For two-dimensional problems, slope limiters that maintain a local maximum principle can
also preserve second order accuracy [34].

Limiting in multidimensional space is more difficult than in one dimension. In one
dimension, there is only one limiting direction and a clear forward and backward neigh-
boring element. In multiple dimensions, it is not obvious in which direction the slope
must be limited, or how to define a neighboring element. Most work in multidimensional
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Figure 1.6: Linear advection example illustrating Gibbs’ phenomenon.

limiting has concerned two-dimensional numerical schemes. For example, there are direc-
tional derivative limiters and moment limiters on Cartesian grids. Directional derivative
limiters reduce the x and y partial derivatives by constant factors such that the value of
the numerical solution at the surface quadrature points is contained in a local interval
defined by neighboring elements. Barth-Jespersen type limiters multiply both z and y
partial derivatives by the same constant factor between 0 and 1 [2,35]. A less restrictive
type of limiter solves a small linear program on each element such that x and y partial
derivatives are multiplied by different factors [36]. One way of determining which elements
are neighboring is finding all elements that share a geometrical vertex with the limited ele-
ment. The difficulty with using this type of limiter is that the number of vertex neighbors
increases quickly with dimension. In one dimension, there are only two vertex neighbors.
On good quality two dimensional unstructured meshes of triangles, we have observed that
each element can have up to 20 vertex neighbors. On good quality three dimensional un-
structured meshes of tetrahedra, this number can reach 120, which leads to an exorbitant
amount of computational work. The influence of using a subset of the vertex neighborhood
for two-dimensional limiting was examined in [2]. The number of vertex neighbors that
compose the limiting stencil varies from element-to-element, unless the mesh is structured.
This can lead to inefficiencies for codes implemented on parallel computing architectures
such as GPUs [2]. Specifically to the Euler equations of gas dynamics, positivity preserving
limiters for density and pressure as well as entropy bounding limiters have been examined
in [37-10] for high order DG solutions.
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1.6 Outline of thesis

This thesis is structured as follows. In Chapter 2, we describe our GPU parallelized h-
adaptive implementation of the DG method. Using these GPU algorithms, we solve a
number of popular benchmarks in gas dynamics and two less common shock reflection
problems that are intractable without some form of mesh adaptivity. In Chapter 3, we
analyze the stability and accuracy of second-order slope limiters for the discontinuous
Galerkin method on unstructured triangles. In Chapter 4, we study the optimal CFL
number of SSP time stepping methods in one dimension used with the method of lines-
type discretizations of hyperbolic conservation laws. In Chapters 5 and 6, we describe our
novel approach to moment limiting on unstructured meshes of triangles and tetrahedra,
respectively.
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Chapter 2

Adaptive mesh refinement on
unstructured meshes of triangles

In this chapter, we discuss and implement code optimization techniques for high order finite
element GPU codes that support runtime adaptive mesh refinement (AMR). Our imple-
mentation presents a number of novelties. First, it is entirely implemented on the GPU.
Many AMR solvers in the literature are actually hybrid CPU-GPU solvers, whereby the
main solver is implemented on the GPU and some algorithms that modify the adaptively
refined mesh are offloaded onto the CPU. CFD codes on GPUs can easily present race
conditions when multiple threads attempt to write to the same memory location, e.g., in
writing the surface contribution to the right-hand-side of two elements that share an edge
or face. A suboptimal solution is extensive amounts of buffer memory [7]. In anisotropic
adaptivity, a race condition can also occur when the code is modifying the position of the
geometrical vertices of the mesh. In both cases, a coloring algorithm for work scheduling is
a suitable solution [7,11,12]. The edge coloring of the initial, conforming mesh is done in
the preprocessing stage. Based on this initial coloring, we describe a fast runtime mapping
from parent to children which extends the edge coloring to adaptively refined meshes (Sec-
tion 2.1.5). The resulting edge coloring is also used in mesh smoothing subroutines that
force adjacent elements to not differ by more than a prescribed difference in refinement
level (Section 2.2.1). We propose an efficient stream-compaction operation that ensures
that data is contiguous in memory. Finally, we apply our optimized code to a number
of computationally difficult problems in gas dynamics that are intractable without mesh
adaptivity.

Our h-adaptive DG-GPU algorithm is implemented in NVIDIA CUDA C and comprises
a DG module and AMR module. In the DG module, we calculate the RHS of (1.9) on
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a static mesh and advance the solution in time. Every N time steps, the AMR module
adapts the mesh to the solution by refining and coarsening select elements. We show the
organization of our AMR and RHS evaluation subroutines in Algorithm 1.

Algorithm 1 Pseudocode for AMR solver

step=1;1t=0;

while ¢t <T" do
Advance ¢" to ¢"*! with the DG method and RK time stepping. > DG module
if mod(step, ') == 0 then

AMR module.

end if
step+—+
t+= At

end while

2.1 DG module

In this section we describe how the DG module is organized and give a brief overview of
the subroutines that evaluate the right-hand-side of (1.9). For a more detailed treatment
of these aspects of the solver, see [3,7].

2.1.1 Data ordering and ID numbers

Every element and edge is assigned a unique identification integer (ID). The IDs of the
elements and edges of the initial conforming mesh are given sequentially based on the
output of the mesh generator. We store the IDs for elements and edges of the current
mesh in arrays called elem 1ist and edge_list (Figure 2.1). After the AMR module is
executed, the position an element or edge occupies in elem list or edge_ list may no
longer correspond to its ID. This is because elements will be added and removed within
the list due to refinement and coarsening subroutines. Therefore, we store the positions
of IDs in elem_id2pos to avoid searching elem list. In the example presented in Figure
2.1, the element with ID 7, 7, is at the fifth index of elem list, i.e. elem list[5] = 7.
Then, elem_id2pos[7] = 5. The same is done in edge_id2pos for edges in edge_list.
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index 0 1 2 3 4 5 6 7

elem list 2 3 1 0 4 7 5 6
elem_id2pos 3 2 0 1 4 6 7 5

Figure 2.1: The value of elem_id2pos[i] indicates the location of €2;’s ID in elem list.

2.1.2 Element information

The DOFs are organized into arrays named cO, ci, ..., each of length N, which is the
number of elements in the mesh. There is one array for every basis function and equation,
i.e. the number of arrays is N, x M, where NNV, is the number of basis functions and M is
the number of equations in (1.1). The right-hand-side of (1.9) is stored in a similar manner
in arrays named rhsO, rhsi, ... . This guarantees coalesced reads and writes in computing
the volume integral [7]. The DOFs are organized in the same order as the element IDs in
elem list. For example, c7 is at index 5 of c0 (Figure 2.1).

Additional data required for the computation of (1.9) such as element vertices, coor-
dinate transformation Jacobians, and precomputed basis function values are also stored.
Element connectivity is stored as the ID numbers of a triangle’s three edges (element-to-
edge connectivity data, Figure 2.2a). A triangle may have more than three edges if one
or more of its neighbors have been refined, e.g. €2; has four edges in Figure 1.1. For such
nonconforming triangles, the parent ID of the refined edges is stored instead, e.g., edge 1D
4 is stored rather than 6 and 9. The IDs 6 and 9 are found using the edge tree structure
(Section 2.2.2).

2.1.3 Edge information

Edge normals and lengths are required for the computation of (1.9). Refining or coarsening
an edge does not introduce new edge normals for straight-sided triangles. Therefore, we
only store the normals and lengths of edges in the original mesh. Edges in the current
mesh store their refinement level. To find the current edge length, simple arithmetic is
done when evaluating the surface contribution term by dividing the original edge length
by 2", where r is the edge refinement level. An edge points to its left and right element, i.e.
the two elements that share it (Figure 2.2b); the ID of an edge’s left and right elements
are stored as integers in the arrays left_elem and right_elem.
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Figure 2.2: Connectivity information stored for the refined mesh in Figure 1.1.

2.1.4 Right-hand-side evaluation kernels

A standard RK time integrator requires the evaluation of the RHS of (1.9). This time
stepping module consists of two kernels that evaluate the volume terms

1
F(U,)- "(J1! 10 -
det J; / (Uy) - T(J; ) Ve det Jid€, 1)
and surface terms ,
a / SO"JF<U1'7 Uj) "N dl. (2.2)
det J; jenisi 090,

One thread per element is launched for the first kernel eval volume. Thread t; computes
the volume integral terms for €2; in (2.1). The thread then stores the volume contribution
in rhs0, rhsi, ... The data for this kernel is accessed in a coalesced fashion. We illustrate
this in Figure 2.3 where thread s accesses the sth positions of arrays c0, c1, ...

Similarly, one thread t; per edge ();;, i.e. es, is launched for the second kernel,
eval_surface. Thread t; loads the solution coefficients of its edge’s left and right ele-
ments, then it computes the surface integral terms for edge e, in (2.2). The thread then
adds the surface contribution to the right-hand-side of its edge’s left and right element in
rhsO, rhsi, ... . In this kernel, memory is not guaranteed to be accessed in a coalesced
fashion. This is because consecutive edges may not necessarily have consecutive left and
right elements due to the unstructured nature of the mesh.
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thread idx 0 1 2 3 4 5 6 7 8 9

c0 €10,0 cr0| €20 C11,0| €30 C6,0 C4,0 C8,0 €0,0 €9,0

cl €10,1 C7,1 C2.1 Ci1,1| €31 Ce,1 C4.1 8,1 €o,1 C9,1

elem_list 10 7 2 11 3 6 4 8 0 9

Figure 2.3: eval volume coalesced read access pattern.

2.1.5 Coloring

Thread t, in the eval_surface kernel evaluates the surface integral along the sth edge
in edge_list. Then, t; adds its surface contribution to the right-hand-side of the edge’s
left and right element. The race condition can arise if two threads simultaneously attempt
to write their surface contribution to the same element (Figure 2.4). An edge coloring
algorithm that partitions the edges of a conforming mesh was proposed in [7]. The race
condition can be avoided by executing eval_surface over all edges of the same color in
separate kernel launches (Figure 2.5). In [7], a simple mapping of the colors between
coarse and fine elements is proposed as it is impractical to recolor the entire mesh when it
is adaptively refined (Figure 2.6). The first child edge retains the color of its parent and
the second child takes the parent’s color incremented by three. If the parent’s color is c,
then the children’s colors are ¢ and mod(c + 2,6) + 1, e.g., if the parent’s edge color is 1,
then its children’s colors are 1 and 4. Each new interior edge takes the color of the edge
on the parent element to which it is parallel. This process is easily reversible during the
coarsening operation. These algorithms result in the minimum number of colors used, i.e.,
3 and 6 colors on conforming and nonconforming meshes of triangles, respectively.
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Figure 2.4: Race condition arises when threads t; and ¢; write simultaneously to the

memory location of €2;.

(a) Edge coloring with col-(b) Kernel launch over(c) Kernel launch over(d) Kernel launch over
ors 1, 2, and 3. edges of color 1. edges of color 2. edges of color 3.

Figure 2.5: Avoiding the race condition with coloring. The arrows indicate the elements
to which each thread writes its surface contribution.
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coarsen

Figure 2.6: Mapping the initial coloring to refined triangles and back.

2.2 Adaptive mesh refinement

We discuss in this section the implementation details of the adaptive mesh refinement
module of the code. First, we compute an indicator on each cell from which we determine
which elements to flag for refinement or coarsening. During one execution of the AMR
subroutines, we allow the refinement level of a cell to be adjusted by at most one. The
exception is the initial condition where the AMR module is executed a number of times
until a predefined maximum refinement level is reached.

2.2.1 Mesh smoothing

After elements are flagged for refinement or coarsening (Section 2.2.8), we perform mesh
smoothing to avoid creating a mesh where the refinement levels of neighboring elements
differ by more than one (Figure 1.1, right), i.e., we require that

ri =l <1, (2.3)

20



/\
\/
VAV,
\V/

(a) ‘1’ indicates refinement, ‘-1’ in- (b) Mesh after refinement, coarsen-
dicates coarsening, and ‘0’ indicates ing, and smoothing operations. The
that the element is neither coarsened dashed line shows the elements added
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Figure 2.7: Mesh smoothing operation.

where r; and r; are the refinement levels of adjacent elements €2; and €);, respectively.
For example, in Figure 2.7a we display a mesh with AMR flags ‘-1’, ‘1’, or ‘0’ on each
element, indicating whether it should be coarsened, refined, or neither. These AMR flags
are stored in the array edr, ‘element difference in refinement’. When 2; and €2, are
refined, the refinement level of their children and €2 will differ by two, which violates the
nonconformity constraint (2.3). We therefore must smooth the mesh to reduce this jump.

We implement this operation by launching one thread per edge in a kernel called smooth
(Algorithm 2). Each thread loads the left and right element of its designated edge. Using
the elements’ current refinement levels and edr value, the element refinement levels after
the AMR operation are computed. If their updated refinement levels do not satisfy the
nonconformity constraint (2.3), then the AMR flag in edr of either the left or right element
is modified such that a more refined mesh is obtained. For example, on edge ¢y in Figure
2.7a, the refinement levels after the AMR operation will be 2 on €2;’s children and 0 on
. Consequently, we refine 2y once (Figure 2.7b).

We execute smooth on all edges of the same color in separate kernel launches. This
is done in order to avoid memory contention when modifying the AMR flag array edr.
Without coloring, threads operating on edges ey and e; in Figure 2.7a could write their
result simultaneously to the position in memory corresponding to 2y in edr. smooth is
launched multiple times until the nonconformity condition (2.3) is satisfied for all elements.
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After mesh smoothing, it is finalized which elements are to be refined or coarsened.
Thus, we may proceed to executing the refinement and coarsening subroutines.

Algorithm 2 Mesh smoothing operation
procedure SMOOTH(edr)
le, re<— positions of left and right element.
left_after, right_after< level after refinement of left and right elements
if left_after-right_after > 1 then
edr[re] =1
else if right_after-left_after > 1 then
edr[le] =1
end if
end procedure

2.2.2 Tree structures

The parent-children relations of elements and edges are stored in tree data structures,
where parents and children point to one another. The tree structure for the elements in
the refined mesh of Figure 1.1 are shown in Figure 2.8. The elements and edges that are
active in the refined mesh are highlighted in blue and do not have children.

2.2.3 Connectivity

In order to evaluate the surface contributions in (2.2), each thread of the kernel eval_surface
needs the IDs of the left and right elements sharing its assigned edge, i.e., edge-to-element
connectivity data (Figure 2.2b). After the mesh is refined and coarsened, it is necessary to
update mesh connectivity to reflect the addition and removal of elements, e.g., find the new
left and right elements sharing an edge. We do this by using the tree structure described
above.

First, we refine the edge tree by splitting edges flagged for refinement, assign new IDs
to child edges, and update the IDs in edge_list. Similarly, we refine the element tree
and update the IDs in elem_list. From the edge and element trees, we can compute the
connectivity between new elements and edges.

As an example, consider the refined mesh in Figure 1.1. First the edges of €y are
refined and the new IDs for the child edges of ey, e3, and e4 are assigned (Figure 2.8,
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€0 €1 €2 €3 €4

Pt

€5 €6 €7 €8 €9 €l0| €11| €12]| €13

Figure 2.8: Tree for the refined mesh in Figure 1.1. Elements and edges shaded in blue are
active in the current mesh.

bottom). Next, () is refined and the new IDs for the children are assigned. The IDs of
the child elements’ outer edges can be found from the already updated edge tree, e.g. e7
and eqg. Then, the edge IDs of the interior child triangle €25 must be created, e, €12, and
e13. Now that the new elements know the IDs of their edges, i.e. we have the updated
element-to-edge connectivity (Figure 2.2a), the left and right elements of the new edges in
edge_list can be updated.

By our convention, a triangle points to three edges that have the same refinement level.
For elements that have more than three edges, e.g. €2, in Figure 1.1, the ID of the refined
edges’ parent is stored instead. In our example, {; points to eq, es, and e4, which are all
of refinement level 0. From the edge tree, we can find that e, points to eg and eg (Figure
2.2a).

2.2.4 Coarsening

Coarsening is done ‘in-place’, i.e., this modification to the mesh does not require a buffer
and avoids large amounts of memory transfers (Figure 2.9a). coarsen list contains a
list of parent element IDs that are to replace their children. We place the parent ID in
the first child’s position in elem list and flag the other children’s memory locations as
unused. We illustrate in Figure 2.9a how elem list is updated to reflect the coarsening
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Figure 2.9: Access pattern for refinement and coarsening kernels.

of elements €2y, 9, Q3, and €2;. Thread 2 places the parent element ID of the cluster,
i.e. ()5, in the list position of its first child element ID, i.e. in the position of element €2;.
The freed memory spaces of the three other children are indicated by dashes. All the data
associated with elements are dealt with in a similar fashion, e.g., the DOF's of the parent
element )5 are placed in the old memory location of the first child, €2;.

Coarsening four children leads to the removal of a section of the element and edge trees.
We keep track of the memory and ID numbers freed during the coarsening operation in
order for them to be reused during a refinement operation. For this reason, coarsening, if
required, is always executed before refinement.

The solution coefficients on a parent element are obtained using an L. projection on
the four child elements. The projection is implemented as a dot product of the solution
coefficients on the children and weights that have been precomputed for fast execution.

2.2.5 Refinement

Refinement is also done ‘in-place’ (Figure 2.9b). refine_list contains a list of element IDs
that are to be refined. The position of the parent element in elem_list is taken by its first
child. The IDs for the three remaining children are placed in free memory locations, if any
were made available during coarsening. If there are no free locations within the list, then
the additional IDs are concatenated to the end of the array. All the data associated with
elements are dealt with in a similar fashion. For example, in Figure 2.9b, €); in refine list
is refined by thread 5. The first child ID €35 overwrites 27, the rest (13, Q14, and Qy5) are
placed in the remaining available memory locations of elem 1ist indicated by dashes. The
DOFs of the four child elements are obtained with an L, projection, which is equivalent
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edge_color 3 3 3

Figure 2.10: Without ordering of the edge IDs, eval_surface will have inactive threads,
reducing parallelism.
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(a) Launch over edges of color 1. (b) Launch over edges of color 2. (c) Launch over edges of color 3.

Figure 2.11: With ordering of the edge IDs, all threads of eval _surface will be active.

to a dot product of the parent DOF's and weights, which have been precomputed for fast
execution.

2.2.6 Edge reordering

The surface integral kernel, eval _surface, is executed on the edges of a particular color in
separate launches. If the edges in edge_list are not ordered by color, then the parallelism
of eval _surface will be reduced. This is because some threads will be inactive during the
kernel execution (Figure 2.10). The edges in edge_list are not guaranteed to be ordered
by color after the mesh is refined and coarsened. Therefore, after the AMR subroutines
complete, the edges in edge 1ist must be reordered by color. This will guarantee all
threads in the launches of eval _surface are active (Figure 2.11).

2.2.7 Memory management
In Sections 2.2.4 and 2.2.5, we described how the coarsening and refinement operations are

done in-place. This is to avoid using buffers and unnecessary memory transfers. However,
if the total number of elements in the mesh is reduced by the refinement and coarsening
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operations, there will be ‘holes’ in the the data arrays. This will reduce the efficiency of
memory accesses by making some reads and writes uncoalesced. Therefore, these ‘holes’
must be filled to make the data contiguous in memory.

Algorithm 3 Compaction
procedure COMPACTION(out, in, out_flag, in flag)
idx < thread index
if in flag[idx| then
out|out_flag[idx|| < in[idx]
end if
end procedure

This operation on GPUs is called a ‘stream compaction’ and it does not have a simple
solution. Typically, a compaction is done using an operation called a prefix sum. A prefix
sum takes as input an array of integers in_flag and outputs another array out_flag. The
element at the nth index of the output array is given by the formula

n—1

out_flag[n| = Z in_flagli] for n > 0, (2.4)
=0

and out_flag[0] is set to 0 (Figure 2.12). Now, assume that we wish to copy selected data
from the array in into the array out. in flag is an integer array of 0’s and 1’s, which
indicates whether the data at the corresponding position in in must be preserved (‘1) or
removed (‘0’). After computing the prefix sum for in_flag, a compaction kernel (Algorithm
3) is launched that creates a new array out without the unwanted data. This procedure
is illustrated in Figure 2.12. There are application programming interfaces (APIs) that
provide an implementation of the prefix sum and compaction operations. Unfortunately,
the standard implementations of the stream compaction operation are not suitable for our
purposes. This is because we may have GBs of data where only a small fraction of the
elements in those arrays require removal. Executing the compaction kernel will always
result in all the data of the compacted array being moved to a new location, regardless
of the number of elements being removed. A more efficient solution is to implement an
in-place compaction, which we will now describe.

Suppose we wish to remove the elements from the array of integers in Figure 2.13 using
in flag. According to in_flag, the compacted array will have a length of 6. Let us refer
to the position between indices 5 and 6 as the ‘pivot’. The idea is to fill the holes to the left
of the pivot with elements from the right of the pivot. First, we find the elements to the
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in flag 1 0 0 1 0 0 1 1 0 1 1
prefix_scan <
out_flag 0 1 1 1 2 2 2 3 4 4 5
before compaction in 3 9 4 3 7 5 8 1 0 2 1
L — —
after compaction  out 3 3 8 1 2 1

Figure 2.12: Example of a standard compaction algorithm.

right of the pivot for which in_flag is ‘1’ and store their position in the array from. Next,
we find the elements located to the left of the pivot for which in_flag is ‘0’ and store their
positions in to. Populating to and from is done using the prefix-scan from CUB [13]. The
final step is to launch a kernel which completes the data transfer in-place (Algorithm 4).
This operation does not preserve the initial ordering of the data, but this is not important
in our application.

Algorithm 4 In-place compaction
procedure IN_PLACE_COMPACTION(in, to, from)
idx < thread index
in[to[idx]] < in[from[idx]]
end procedure

2.2.8 Refinement strategy

In this work, we are not concerned with the optimal way to flag an element for coarsening
or refinement. Therefore, we adopt the following simple strategy reported in the literature
[11]. We compute on €; the refinement indicator ¢;. Then, we compare ¢; to reference
values €, = € and €. = €¢/J, where € and § are prescribed constants. 2; is refined if ¢; > ¢,.
A cluster of four elements, €2;, €0;, Qy, €, with the same parent element, is coarsened if
€, €5, €k, € < €.. We choose the simple refinement indicator
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array index 0 1 2 3 4 5 6 7 8 9 10

inflag| 4 0 0 1 0 0 1 1 0 1 1
A
pivot
to 1 2 4 5 from 6 7 9 10
before compaction 3 9 4 3 7 5 8 1 0 2 1

after compaction 3 8 1 3 2 1

Figure 2.13: In-place compaction implementation.

Figure 2.14: Minimum cell height h; = min(H; 1, H; 2, H; 3) [2].
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where VU; is the gradient evaluated at the cell centroid and h; is the minimum cell height
(Figure 2.14, [2]).
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2.3 Computed examples

2.3.1 Initial-boundary value problems

We solve the two-dimensional Euler equations, which can be written in form (1.1) with the
fluxes

pu pU
2
_ pu” +p _ puv
Fl(U) = puv and FQ(U) = p’U2 + D s (26)
(E+p)u (E+pv

where U = [p, pu, pv, E]. The system is closed with the equation of state

p
p=(-1(E-La+0).
where v = 1.4 is the adiabatic constant for air, p is the density, v and v are components
of the velocity vector, and FE is the energy.

2.3.1.1 Smooth isentropic vortex

We use this example to illustrate the runtime performance of our AMR algorithm. This
example was solved on an NVIDIA Titan X Pascal. The problem with initial conditions
stated in Table 2.1 has the exact solution U(x,y,t) = Ug(x,y —t), i.e. the initial vortex is
advected in the y direction with speed 1 [15]. It is solved until the final time 7" = 2 on the
domain [—10, 10]? with the exact solution used as boundary conditions. The initial mesh
is coarse and composed of 180 unstructured triangles.

First, we perform an initial mesh adaptation to accurately capture the initial conditions.
Then, we run the mesh adaptation subroutines every time step. In this example, we allow
at most six levels of refinement. The size of the mesh for all orders of approximation
was about 30,000 elements and did not vary substantially during the simulation. This is
expected since the solution is a translation of the initial conditions.

The breakdown of compute time in seconds for solutions with p = 1...4 is reported in
Table 2.2. The same data, but as a percentage of total AMR time, are shown in Figure
2.15. We report the timings in terms of seven subroutines: determineParents, smooth,
coarsen, refine, compaction, determineSideOrder, reorderSides, and other. The
procedures grouped in other include computing the refinement indicator (2.5), updat-
ing mesh connectivity and tree structures. determineParents looks up the parent IDs

30



T
2 ~—1
p (1—(7—1)(581@ 6’”)7 '
Sy 1,
u R €2
1
v 1— ;—%eﬁr
p Tl

Table 2.1: Initial conditions for the smooth isentropic vortex problem (Example 2.3.1.1),
where r = 25(1 —2? —y?), S =13.5, M = 04, and R = 1.5.

of the elements flagged for coarsening and stores them in coarsen list (Figure 2.9a).
determineSideOrder determines the new order of the edge IDs based on their color and
reorderSides reorders them and edge data to avoid race conditions in eval_surface.

In Table 2.2, we notice that the time spent in the AMR subroutines increases with the
order of approximation as the number of calls to the time stepping and mesh adaptation
modules increases with p. This is because the time step size scales inversely with the order
of the method for the DG method of order approximation p paired with an RK scheme of
order p + 1. In Table 2.3, we list the data from Table 2.2 normalized by the number of
time steps. For subroutines that only depend on the number of elements in the mesh, we
observe that the normalized timings are similar for all polynomial orders.

We also note from Table 2.2 that the fraction of the total runtime spent in the AMR
module of the code decreases with p. This is because the number of RK stages and
the cost of computing the RHS of (1.9) increases with p. For orders p = 1 to 3, the
smooth subroutine is the most time consuming operation because it is difficult to parallelize
efficiently on the GPU (Section 2.2.1).

Note that refinement is usually performed less frequently than after every time step
as is done for this example, e.g., we may refine when the solution moves two cell widths.
For the RK-DG method where p = 1,2, 3,4, this means every 8, 12, 16, 20 time steps,
respectively [10]. Therefore, for practical applications, the overhead associated with the
AMR subroutines is small compared to the total runtime of the solver, especially for high
order simulations.

2.3.1.2 Kelvin-Helmholtz instability

Next, we solve the Kelvin-Helmholtz instability problem on the domain [—1,1]?, with the
initial conditions given in Table 2.4 and illustrated in Figure 2.16 [1]. The initial conditions
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Subroutine 1 2 3 4
determineParents 0.44 0.64 0.84 1.03
smooth 1.21 1.75 2.29 2.81
coarsen 0.49 0.91 1.71 2.90
refine 0.76 1.24 2.03 3.39
compaction 0.49 0.78 1.16 1.67
determineSideOrder 0.70 1.00 1.32 1.62
reorderSides 0.18 0.25 0.33 0.41
other 0.49 0.73 0.96 1.21
AMR time 4.76 (0.45) | 7.30 (0.20) | 10.63 (0.09) | 15.05 (0.04)
Total solver runtime 10.54 36.83 121.33 380.67

Table 2.2: Break-down of time spent in each AMR subroutine in seconds for Example
2.3.1.1. The number in parentheses is the fraction of the total runtime spent in the AMR
module of the code, when refining every time step.

Subroutine 1 2 3 4
determineParents 195.93 | 196.18 | 198.41 | 198.27
smooth 539.08 | 537.41 | 542.00 | 541.03
coarsen 216.95 | 279.58 | 404.79 | 558.14
refine 335.65 | 381.98 | 480.29 | 652.52
compaction 216.66 | 239.40 | 275.16 | 321.12
determineSideOrder | 310.73 | 309.06 | 312.01 | 311.20

reorderSides 78.13 77.82 78.42 79.02

other 218.06 | 224.95 | 226.57 | 233.06
AMR time 2111.19 | 2246.38 | 2517.65 | 2894.35

Table 2.3: Timings in Table 2.2 divided by the number of time steps. Values are reported
in microseconds per time step. The grayed rows correspond to operations with runtimes
that are independent of the order of approximation.
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Figure 2.15: Percentage of the AMR runtime spent in each subroutine.
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Table 2.4: Density, velocity, and pressure of the three layers of fluid where w = 0.1 and
s = 0.05/v/2 [1] (Example 2.3.1.2).

describe three fluid layers. The outer layers are dense, rightward moving fluids that are
sandwiching a less dense leftward moving fluid. In the neighborhood of the interfaces, the
fluids are perturbed with an oscillatory vertical velocity. These interfaces are sliplines,
which will lead to a rich production of vortices in the numerical solution. We prescribe
the initial state at the horizontal boundaries of the domain and impose periodic boundary
conditions at the vertical boundaries. The initial mesh is composed of two triangles.

The density along with the adaptively refined meshes at T' = 2 with 6, 9, and 12 levels of
refinement are plotted in Figures 2.17 and 2.18. The number of elements in the final meshes
is approximately 4,000, 120,000, and 4,000,000. The AMR algorithms act predominantly
in the neighborhood of the sliplines. As we increase the number of refinement levels, the
vortices become more pronounced due to the reduction in numerical viscosity.
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Figure 2.16: Setup of the Kelvin-Helmholtz test problem (Example 2.3.1.2). The arrows
indicate the direction of fluid flow.

U; | Ug
p 8 1.4
s| 825 | 0
p| 1165 | 1

Table 2.5: Density, normal speed (s), and pressure of the incident U; and quiescent U,
states in Example 2.3.1.3.

2.3.1.3 Double Mach reflection

We use this example to demonstrate the algorithm’s performance on a transient shock
reflection problem. We solve double Mach reflection problem on the domain [0, 3.5] x [0, 1]
with the initial condition of a rightward-moving shock that propagates into a quiescent
gas [17]. The incident Mach 10 shock forms a 60° angle with a reflecting boundary, which
results in the reflection pattern shown in Figure 1.5c. We provide the setup in Figure 2.19
along with the incident U; and quiescent Ug states in Table 2.5. We solve the problem
until the final time of T = 0.2, allowing 3, 6, and 9 levels of refinement from an initial
unstructured mesh composed of 1,776 triangles. The adaptively refined meshes at the final
time are shown in Figure 2.20 along with the density isolines on the finest mesh in Figure
2.21.
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(¢) Mesh on white rectangle in Figure 2.17a. (d) Mesh on white rectangle in Figure 2.17b

Figure 2.17: Final solutions and adaptively refined meshes of the Kelvin-Helmholtz test
problem allowing 6 and 9 levels of refinement.
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(a) 12 levels of refinement. (¢) Zoom on red rectangle in Figure 2.18b.

Figure 2.18: Final solution and adaptively refined mesh of the Kelvin-Helmholtz test prob-
lem allowing 12 levels of refinement.

U, Uy

T

=1 z=35"

Figure 2.19: Double Mach reflection setup (Example 2.3.1.3).
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(e) 9 levels of refinement.

(b) Zoom on slipline region.

(d) Zoom on slipline region.

(f) Zoom on slipline region.

Figure 2.20: Final meshes of the double Mach reflection problem allowing 3, 6, and 9 levels

of refinement.
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(a) Density isolines. (b) Zoom on slipline region.

Figure 2.21: Density isolines at the final time on the mesh with 9 levels of refinement in
Figures 2.20e and 2.20f.

2.3.2 Boundary value problems

The initial-boundary value problem (1.1) can be restated as a boundary value problem in
the self-similar coordinates { = 7, 7 =¥, and 7 = Int, as follows

0 0 0

—U+ —(F(U) -¢U) + —(Fy(U) —nU) 4+ 2U = 0. 2.7
A steady state solution of (2.7) corresponds to a self-similar solution of (1.1) in (&,7)
coordinates. Self-similar form (2.7) is useful because adapting the mesh for steady state
solutions is simpler than for transient ones. This is because the relevant features in the
solution do not move after the initial transient phase passes. In this section, we solve (2.7)

where F;(U) and Fy(U) are the fluxes in (2.6).

2.3.2.1 Von Neumann triple point paradox

In this example, we present numerical evidence that supports Guderley’s solution to the von
Neumann triple point paradox. The problem setup consists of a weak, rightward moving
incident shock impinging obliquely on a wedge on a computational domain in the shape
of a circular sector (Figure 2.22a). The incident (I) and reflected (R) shocks detach from
the wedge and meet at a triple point (TP). The triple point is connected to the wedge via
a Mach stem (MS). We are interested in a very small portion of the reflection interaction
shown in Figures 2.22b and 2.22c. The supersonic patches predicted by the Guderley Mach
reflection are illustrated with dash-dotted lines in Figure 2.22c.
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MS
(a) Shock reflection pattern on the domain. (b) Zoom on the red  (¢) Zoom on the red cir-
rectangle in Figure cle in Figure 2.22b. The
2.22a. dashed-dotted line behind
the triple point is the sonic

line.

Figure 2.22: Incident (I) and reflected (R) shocks, with the Mach stem (MS) on the solution
domain, with zooms on the neighborhood of the triple point (TP).

A number of numerical investigations of this problem have been executed on block
adaptively refined grids [18] or distorted conforming grids [29,19]. Here we present results
on an unstructured mesh of triangles. The initial conforming mesh of the circular sector-
shaped domain in Figure 2.23a is shown in Figure 2.23b. The initial mesh is constructed
such that the elements are aligned with the incident shock.

The boundary conditions are given by a weak incident shock traveling at Mach 1.075
into a quiescent gas [29]. The incident U; and quiescent Uy, states are reported in Table
2.6, the boundaries on which they are imposed are shown in Figure 2.23a. With the
goal of determining an accurate position of the triple point, we resolve the full length of
the incident and Mach stem as opposed to only in a neighborhood of the triple point.
Additionally, we explicitly prescribe that elements lying on a half disk centered on the
triple point are refined to the maximum level (Figure 2.25¢). This is because the solution
varies little in that region and the refinement indicator we use has difficulty detecting the
complex reflection pattern. This small refined region moves with increasing pseudotime
7, following the triple point along the vertical line & = 1.075 to its final position in self-
similar coordinates (1.075,0.4111). We plot in Figure 2.24 the 1 coordinate as a function
of pseudotime 7.
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U, Ug
p | 1.57697 | 1.4
w | 0.12064 | 0O
v 0
p | 1.18156 | 1

Table 2.6: The incident U; and quiescent Uy states imposed as boundary conditions in
Example 2.3.2.1.

(a) Initial domain. The incident U; and quies- (b) Initial, conforming mesh of domain in Figure
cent Ug states are imposed on the red and blue 2.23a.

boundaries, respectively. The bottom boundary

is reflecting.

Figure 2.23: Initial domain and mesh for the von Neumann triple point paradox problem
in Example 2.3.2.1.

In Figure 2.25, we provide an adapted mesh, composed of ~ 800,000 elements, with ~
120,000 elements of minimum cell width h ~ 4.6 - 107% in the neighborhood of the triple
point, where h is defined in Figure 2.14. We compute the self-similar Mach number

i - V=P =P

C

)

where ¢ is the speed of sound, and plot the isolines of M in Figure 2.26. The solution
in Figure 2.26b was obtained by further refining the elements in the neighborhood of the
triple point in Figure 2.26a by a factor of 8. On the coarser mesh, only one supersonic
patch is discernible. However, two patches become visible with additional resolution. The
finer mesh is composed of ~ 6,200,000 elements, with ~ 5,000,000 elements of minimum
cell width h ~ 5.8 107" in the neighborhood of the triple point.
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Figure 2.24: The vertical coordinate of the triple point vs. pseudotime.

A

(a) Adaptively refined mesh for  (b) First zoom of Mach stem  (c¢) Second zoom of Mach stem
the solution in Figure 2.26a. and triple point region in Figure  and triple point region in Figure
2.25a. 2.25b.

Figure 2.25: The adaptively refined mesh for the solution in Figure 2.26a.
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Figure 2.26: 6 isolines for self-similar Mach numbers M in the range 0.996 to 1.02. The
red isoline corresponds to the sonic line, i.e., M = 1. The h is the approximate minimum
cell width in the neighborhood of the supersonic patches.
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2.3.2.2 Shock diffraction around a thin film

We now consider the problem of a shock interacting with a thin, reflecting film on a square
domain [—1.125,1.125]%. The thin film is located on the line £ = 0 between n = —1.125 and
1n = 0. The incident, horizontally oriented shock propagates downward to the thin film.
Once it hits the film, it reflects and diffracts around the obstacle. The incident shock is
weak and propagates at Mach 1.075. As the shock diffracts, it transforms into an expansion
wave in a self-similar fashion. Another characteristic of the flow is the development of a
vortex at the corner of the thin film. The incident (I) and reflected (R) shocks as well
as the point (P) where the shock disappears are illustrated in Figure 2.27a, after the
incident shock has passed the thin film. Since this interaction is self-similar, this figure
also illustrates the boundary conditions applied in (£,7) coordinates, which are given by
three constant states Ug, Uy, Ug, i.e., the reflected, incident, and quiescent states (Table
2.7). The thin film is modeled by a reflecting internal boundary condition, indicated on
the initial mesh in Figure 2.27b by a bold line. The reflected shock state Ug is computed
from the incident shock state U; by solving a one-dimensional Riemann problem about
the thin film (reflecting boundary).

We compute the sonic function

S=V(u—&+v-n?-c

The flow is subsonic when S < 0, supersonic when S > 0, and the sonic line is located where
S = 0. For this problem, refinement is driven by proximity to the sonic line. The final
mesh is comprised of ~ 2,800,000 elements where the smallest resolution is h ~ 4.8 - 107°
in the neighborhood of the sonic line.

The sonic function of the solution is plotted in Figure 2.28a. In Figures 2.28b and
2.28¢, cross sections of S are provided in the neighborhood of the shock disappearance
point on n = 0,—0.05,...,—0.25. On these cross sections, the shock is visible at the
coordinates (£,n): (0,1.0173), (—0.05,1.0219), and (—0.1,1.0240). The location of shock
disappearance seems to be about ~ (—0.15,1.0237), a more precise location is difficult
to determine. Finally, shock disappearance seems to occur on the sonic line as indicated

in [50] for the UTSDE.
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U, U: | Ug

p | 1.57697 | 1.77139 | 1.4
U 0 0 0
v | -0.12064 0 0

p | 1.18156 | 1.39066 | 1

Table 2.7: The incident Uy, reflected Ug, and quiescent Ug states imposed as boundary
conditions in Example 2.3.2.2.

Ur

(—1.125,0.97848)

<— (1.125, —1.07500)

(a) The incident (I) shock propagates into quiescent (Q) (b) Initial mesh for the shock diffraction
gas, diffracts around, and reflects (R) off the thin film. The problem. The bolded line corresponds to
shock disappears at P. The incident Uy, reflected Ug, and the thin film.

quiescent Ug states are imposed as boundary conditions on

the red, gray, and blue boundaries, respectively.

Figure 2.27: Initial setup and mesh for the shock diffraction problem in Example 2.3.2.2.
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Figure 2.28: Sonic function (S) and its cross sections for the shock diffraction problem in
Example 2.3.2.2.
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2.4 Summary

We have outlined a GPU-parallelized h-adaptive implementation of the DG method for hy-
perbolic conservation laws on unstructured meshes. The highlights of this implementation
are memory management and the use of a coloring algorithm to eliminate race conditions.
Our memory management techniques allow for quickly resizing the data arrays resulting
in the smallest number of necessary memory transfers. This is done by using a modi-
fied stream-compaction operation. The coloring algorithm prevents race conditions in the
evaluation of an integral over cell edges. It is also used in the smoothing subroutines to
ensure proper nonconformity between elements. In fact, the smoothing module is the most
expensive part of the AMR algorithm. This procedure can easily be done recursively on
CPUs, but it is difficult to implement efficiently on GPUs. This is because the smoothing
on one element may trigger smoothing of its neighbors. Using coloring yields a lightweight
implementation relative to an element-wise operation.

We have presented a number of computed examples in gas dynamics demonstrating
the performance of the AMR algorithm. In particular, we computed two problems that
are intractable without AMR due to the extremely high resolution required to resolve
the solution features. We present numerical evidence that further supports Guderley’s
solution to the von Neumann triple point paradox. We also include numerical experiments
that suggest shock disappearance occurs on the sonic line in the self-similar diffraction of
a shock around a thin film. To our knowledge, these are the first results to the shock
diffraction problem on the full Euler equations.
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Chapter 3

Slope limiters in two dimensions

Weak solutions of hyperbolic PDEs admit discontinuities, which can lead to nonphysical
oscillations when high order numerical methods are employed. A popular technique to
stabilize the growth of these oscillations for methods that are formally second order accurate
is slope limiting. The gradient is computed directly by differentiating a polynomial solution,
e.g. in Galerkin methods, or reconstructed using neighboring solution means, e.g. finite
volume (FV) methods. A limiting algorithm will modify, or limit, this gradient so that the
solution at suitable points belongs to a specified, local range.

For one-dimensional problems, slope limiters that ensure a total variation diminishing
(TVD) property are frequently used [32,51-53]. In two dimensions, enforcing a TVD prop-
erty can lead to at most first order schemes [71]. A weaker requirement on the numerical
solution is enforcement of a local maximum principle, studied in [55] on two-dimensional
structured grids for steady state computations. This idea is used in [35] to reconstruct
non-oscillatory gradients on unstructured meshes of triangles. This limiter is quite popu-
lar due to its ease of implementation and computational simplicity. It consists in writing
the numerical solution as a sum of the cell mean and slope. The slope is then reduced by
a scalar between 0 and 1 such that the numerical solution at predetermined points lies in
a locally defined interval. Some limiters modify the x and y components of the gradient
separately, e.g. [30], by solving a small linear program on each element. Slope limiters can
operate on solution values at the edge midpoints [56], at the neighboring cell centroids [30],
or cell vertices as in [57-59]. In contrast to the above methods, classified as monoslope
methods, multislope methods have also been studied whereby the solution is reconstructed
and limited independently at each face of the element [60,61].
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Much literature on limiters has been devoted to finite volume methods. When transi-
tioning to the discontinuous Galerkin (DG) method, often the same limiters are applied.
However, second-order limiters for the discontinuous Galerkin method have been presented
in, e.g. [62] for one-dimensional problems and [9] for multidimensional problems. The lim-
iter proposed in [63] requires precomputation of several mesh-dependent geometric param-
eters on each cell, which increases computational complexity. This explains the popularity
of coupling the DG method with the so-called Barth-Jespersen limiter [35]: no geometric
data needs to be precomputed, and the limiter does not require a stencil larger than that
of the DG method. Another second-order limiter for the DG method on triangles was
presented in [8] and requires solving an optimization problem.

Classical limiters operate only on the linear approximations to the solution. Limiters
that work on higher than second order accurate approximations are needed and a significant
effort has been placed into finding such limiters. In [10, 1], the idea of moment limiters
was proposed, whereby the numerical solution’s dth derivative is limited using the (d—1)th
derivatives on neighboring cells. Generalizations of the moment limiter to unstructured
meshes were studied in [34,64]. Different approaches to high order limiting were described
in [65,60].

In this chapter, we analyze the Barth-Jespersen limiter [35] on two-dimensional un-
structured meshes of triangles, applied to linear and nonlinear problems using the DG
method. This limiter has been addressed in [67] for finite volume methods, but not for
the DG method. Despite its popularity, we argue that in its simplest form, it is not a well
performing limiter for the DG method.

The simplest implementation of the Barth-Jespersen limiter uses the edge neighbor-
hood and edge midpoints as limiting points. With these choices, we show that unstruc-
tured meshes are unlikely to yield second-order accurate numerical solutions, defeating the
purpose of high-resolution numerical methods. For these meshes, we show that the way a
refinement study is conducted will influence the observed rate of convergence of the solu-
tion. For example, refinement obtained by tiling the initial mesh or remeshing the domain
at a reduced cell size can yield first order convergence. One may observe second-order ac-
curacy in the L; norm with nested refinement, but first-order accuracy is still observed in
the Lo, norm. We prove that a remedy of this problem is to choose an alternative limiting
neighborhood, such that the limiting points lie in the admissibility region that we define.

In our analysis of second order limiters applied to DG, we address two issues: stability
and accuracy. For stability, we have proven that the numerical solution for scalar equa-
tions will satisfy a local maximum principle that ensures L., stability, provided a suitable
time step restriction is enforced. This new time step restriction follows from the stability
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analysis, and uses a new measure of cell size, which is the cell width in the direction of
flow. We show with numerical experiments that this time step restriction is tight. The
new measure is approximately double the radius of the inscribed circle, typically used with
maximum principle limiters and the DG method. As a result, the maximum allowable time
step doubles and the amount of computational work halves.

From our analysis, we find the range to which the cell means of the solution at the
next time step will belong, provided the above time step restriction is enforced. This range
is determined by the solution averages on nearby elements, i.e. on the neighbors used
in the limiting procedure. There is freedom in defining this neighborhood, e.g. we can
choose the elements that share edges or we can choose elements that share vertices with
the element being limited [68]. These neighborhoods are the most natural ones, though
others are possible, e.g. the entire mesh. We find that smaller neighborhoods introduce
too much numerical diffusion. In particular, limiting with the edge neighborhood is too
diffusive. On the other hand, if the neighborhood has a large and variable size, e.g. vertex
neighborhood on an unstructured grid, this can yield almost a threefold increase in the
time spent executing the limiting subroutines. This has implications for limiters that use
vertex-type neighborhoods [57,59,65,69].

The other aspect of the limiting algorithm is the choice of points at which the numerical
solution is checked for overshoots, i.e. the algorithm’s limiting points. In this chapter,
we study the one- and two-point Gauss-Legendre quadrature nodes as limiting points.
Checking for oscillations at quadrature points comes naturally in the DG implementation.
This is because the basis functions at these points are often precomputed, therefore solution
values can be obtained efficiently. Other choices are theoretically possible though seldom
done in practice. We have proven that one- and two-point limiting are sufficient for the
stability of linear and nonlinear problems, respectively. Two-point limiting may lead to first
order accuracy and catastrophically diffusive solutions on edge neighborhoods. Numerical
experiments verify that two-point limiting is more diffusive than one-point limiting on all
neighborhoods, though the difference is small for the vertex neighborhood. While the one-
point limiter with nonlinear fluxes will not guarantee that the minimum and maximum of
the solution are maintained, for all problems that we considered, the growth in the means
was small. Finally, we find that the number of limiting points does not affect code run
time as drastically as the size of the neighborhood. In the numerical experiments section
(Section 3.6), we discuss which combination of limiting points and neighborhoods should
be used.
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3.1 Limiting algorithm

With the following limiting algorithm, we seek to enforce the local maximum principle.
The numerical solution satisfies the local maximum principle if

min U < U?H < max U}, (3.1)
jeN; 7 jEN; 7
where N is a set containing the index of €2; and the indices of elements in the neighborhood
of ;, and U, is the cell average.

We previously defined the numerical solution in terms of basis functions and degrees of
freedom. Here, we rewrite it in terms of the cell average and slope at time step n:

UMx) =U; + VU - (x —x;), (3.2)

where x; is the centroid of €;, U, is the cell average, and VU is the solution gradient.

The limiting procedure applied to the numerical solution on €2; multiplies the gradient by

a coefficient «;, with the aim to enforce the maximum principle (3.1) on the means at the
next time step. The limited solution U*(x) is of the form

UMx) =U, +a,VU"- (x —x;). (3.3)

Limiting is done by comparing the values of U;(x) to the solution averages on neighboring
elements, where the points x can be quadrature points, element vertices, edge midpoints,
or other. We refer to these points as limiting points. If the solution at the limiting points
falls outside of the range defined by its neighbors, its slope is reduced by «;.

We collect the indices of the elements used in limiting the slope on €2; in a set. As with
limiting points, there is freedom in choosing a suitable neighborhood of €2;. For example,
the edge neighborhood is comprised of €; itself and all the elements that share an edge with
it, we refer to the set of these indices as Nf. The vertex neighborhood is comprised of €2;
itself and all elements that share a vertex with it, we refer to the set of these indices as N;.
We can also choose a reduced subset of N/, which we refer to as N;. These neighborhoods
are illustrated in Figure 3.1.

We execute the following algorithm to compute «:
1. Compute the minimum and maximum cell means on the elements in N;:

. TN TN
m; =minU; and M =maxU,. (3.4)
JEN; JEN;
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N

(a) Edge-neighborhood N¢: Q; (b) Vertex-neighborhood N}: ) Reduced neighborhood N7:
and all elements that share an Q; and all elements that share Q and three vertex nelghbors
edge with ;. a vertex with ;.

Figure 3.1: Edge, vertex, and reduced neighborhoods of €);.

2. Compute the coefficient y;(x;) at each limiting point x;

MU Ur(x) — T, >0,

Ur(x)=U; "’ v
yi(x)) = % if Ur(x;) — U, <0,
1, otherwise.

3. Find the smallest y;(x;) on €,

Y = mlin yi(xp).

4. If y; € (0,1), then the solution is outside the locally defined range, [m}', M|, for at
least one limiting point. Scaling the gradient by «; = y; brings that value into the
prescribed range. If y; > 1, then the solution at the limiting points lies in the range,
i.e. the current slope is acceptable and should not be modified, so a; = 1. Combining
the above into one formula, we have

a; = min(y;, 1).
5. The limited numerical solution U is now given by (3.3).

After limiting, the polynomial Uz” (x) is rewritten in terms of the basis functions and
the simulation continues.
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(a) One-point Gauss-Legendre quadrature (b) Two-point Gauss-Legendre quadrature
rule. rule.

Figure 3.2: Nodes of quadrature rules for edge integrals.

3.2 Time integration

We propagate (1.9) in time using an explicit two-stage second order Runge-Kutta (RK)
method, known as Heun’s method. For a system of ODEs of the form

d
P L(c),

the time stepping scheme, with a limiter, is given by Algorithm 5.

Algorithm 5 SSP-RK2 algorithm.
cM ="+ AtL(c")
Limit ¢!
c® =cW + AtL(cW)
n _1.n 1
¢t =1lcn 4 1c®
Limit c"*!

In the algorithm above, we limit the intermediate RK stage and the solution at level
t"*t1. The stability results we prove in the next section concern one forward Euler time
step, which is only first order accurate in time. The presented analysis extends to a special
subset of RK methods, called Strong Stability Preserving (SSP) schemes. This is because
such methods can be written as a convex combination of forward Euler steps [70]. Since
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each forward Euler step does not introduce new extrema, a convex combination of them
will not either. Note that Heun’s method is SSP.

3.3 Stability

We now prove stability of the DG scheme coupled with the limiter (3.3) under a suitable
time step constraint for linear and nonlinear equations. From (1.9), with the test function
bio = €22, where || is the area of the cell, we obtain the ordinary differential equation
for propagation of the mode corresponding to the constant basis function, ¢,

d 1

TN

/ag- | F*(U;(x),Uj(x)) -n dl.

JENG j#i

Multiplying both sides of the equation by ¢, recalling the orthonormal property of the
basis, and using U; = ¢; 0¢:0, we have

d =
Ui Z/ U;(x)) -n dl.

JGNerl 0,5

We apply one forward Euler time step to the equation above, and the scheme for the cell
average on {2; becomes

U = Z / F*(UP(x), Ul (x)) - n dl. (3.5)

JGNfJ#Z 05

In the case of nonlinear fluxes F(u), the DG method needs to integrate the boundary
integral with third order accuracy [9]. An efficient choice of approximation is the two-
point Gauss-Legendre quadrature rule, with x; ; , being the gth quadrature point on 0€2; ;.
Replacing the boundary integral in (3.5) with the quadrature rule gives

—n+1 1 89, * n n
A TVID D= ) S PR TR EPCT)

JENfJ#z q=1,2
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where |0€; ;| is the length of 0€; ;. For a linear flux, this becomes

77+l 77 ’8Q1,| *x(TTN n
U, =U -At Y ’Q'|] F* (U (%), Uj'(xi)) - mij, (3.7)
JENgj#i

where x; ; is the midpoint of the edge shared by (2; and ;. Before presenting the main
result, we state the following proposition, the proof of which is provided in A.

Proposition 1. For a quadrature point x, there exists a multiplier 0 < r < 2 and another
quadrature point X' on a different edge, such that

For schemes (3.6) and (3.7), we have the following maximum principle result.

Theorem 1. Let m; = mingene my and M] = maxgeye My, where my and My are given
by (3.4). If m} < UMx) < M] for all quadrature points X; ; in (3.7) or x; ;4 in (3.6), and
At is subject to the CFL constraint

1 Pei
At < G min )\L:, (3.8)
where h; is the radius of the inscribed circle of €);, and \; is the magnitude of the wave
speed on §2;, then

o

7

e [m!, M. (3.9)

That is, the schemes (3.6) and (3.7) satisfy the local mazximum principle (3.1).

Proof. The proof consists of three steps. First, we write the solution mean at t"*!, [T

in the following form
U = 4T+ dUr(x), (3.10)

where the sum is over all edge quadrature points x, and Uj”(x) are understood to be the
solution values from either inside or outside the element €2;. Next, we show that under the
CFL constraint (3.8), the coeflicients d; are non-negative, and their sum is equal to 1, i.e.
they have

1. sum property:

di+Y di=1, (3.11)
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2. non-negativity property:
d; > 0. (3.12)

This means that U?H in (3.10) is a convex combination of solution values at ¢". Upon
application of the limiter (3.3), these values will be bounded, i.e. we have

3. limiting property:

U760 € [pin Ut a2 = o 017,
where x is understood to be an edge quadrature point. Finally, if the conditions in proper-
ties 1, 2, and 3 are satisfied, then the bounds (3.9) on U?H directly follow. We now prove
the theorem for linear problems, i.e. (1.1) with linear fluxes.

Linear problems. For linear problems we use the upwind numerical flux, which is given
by
(a . 1’12‘7]‘)U]n(X7;7j) lf] € Nie7_,

F* (U (xi5), U (%)) - mi 5 = {(a 0 )UN(x,,) if j € No*
1,] ) 2y i ’

where N~ and N are the sets of inflow and outflow neighbors, respectively, i.e. N©* =
{j:j € Nf,j#1, such that £ a-n;; > 0}. Therefore, scheme (3.7) becomes

—n 082, 08
U =T + At > la- ”H & ‘Jlm x; ;) — At Z a- Z,j\| le’”U;l(xZ,j). (3.13)
JENT ENJ o+ !
By the divergence theorem, we have the following relation
Z |an"j’a ‘N = 0. (314)
JENY j#i
Using (3.14) in (3.13), we have
—nt 0, —n
U =T ar Y Jacng 00 0. ('(U (xi5) = U7)
JEN{™
‘aQZ | n T
— At Z a-n| |j (Ui (xiy) — U;).

]GNe+
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Applying Proposition 1 to the outflow terms in the previous equation, we obtain

—n+1 —n |an, | n 5N
U =T A 3 e g U () = T)
JEN;
—A ) |a'ni,j|‘Ti|]ri,j(Ui — U"(xi5)),
jeENST

where 7; ; is the scaling coefficient r on edge 9€2; ;. Grouping terms allows us to write the
above equation in the form (3.10):

—nt1 092 5 092 5 —n
U5 =1-4t Y |a ng| |Q‘|J —At Y ya.ni,j|—|QA|J rij | U
JEN{ T ’ JENST !
a9, ; 09 .
Far Y el S At S Jamg g U, G15)

. y— . 7+
JEN? JEN{

We will now prove Properties 1 and 2.

Sum. The sum constraint is automatically satisfied because

092 5 1025

et e—
]ENi ]EN-

090, o9,
+At Z 7”1'7j|a'1'1i7j ‘ |Qr’ +At Z |a-n,~7j|| ‘Qljy

JENDT JENS™
=1

Non-negativity. First, note that the coefficients in (3.15)

09 ;]
|€2]

o -
At|a . Ili7j| and At|a . 1’17;7]'|M7“i7j
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corresponding to d; in (3.10) are always non-negative. Next, we will choose a local stable
time step At; such that d; is non-negative as well, i.e.

|09, 092,51

e et
JEN{ JEN?

Observing that |a - n;;| < ||a||, 7; < 2, extending the sums from NS* to Nf, and
rearranging the terms, we obtain the following upper bound on the sum terms in (3.16)

ZjeNf,j;éz‘ |aQi,j|
€] '

1092, 5] 1082, |
Atz Z |a~ni,j| |QZ|] +Atz Z |a-ni,j||Ti|jri7j§3Ati||aH

; €= : e,+
]GNZ- JEN.

Coefficient d; will be non-negative if

ZjeNf,j;éi |0€2;

Solving for At; yields the sufficient condition for the non-negativity property (3.12)

1 hci
Atz S ~ : )

6 ||all

where ol
hci = 2—17

’ 082,

|0€2;| is the perimeter of €2;, and h,; is the radius of the circle inscribed in €2;. Then the
non-negativity constraint on the entire mesh is

1 hci
At < émln :

Tall (3.17)

Finally, property 3 is guaranteed by limiter (3.3). Thus (3.9) is true, and the linear scheme
(3.7) is Lo, non-increasing with time in the means.

Nonlinear problems. We consider the scheme (3.6), and use the notation F; ;(Uy, Us) =
F*(Uy,U;) - n; j. Similar to the linear case, we use the divergence theorem to obtain

o9, F (U, T;) = 0. (3.18)

JENS.jFi
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Using (3.18) in (3.6), we obtain

—n 1 8Qz n n T T
UZJrl U — At Z 2|| ]| Z {Fz] U Xzyq) Uj (Xi,j,q))_F‘Z}j(Uian)}‘

JENZ,j#i q=1,2
Adding and subtracting F; ;(U; , U7 (Xij,q)) in the inner sum, we have
77+l 1 |aQ%J’ n n T 171
U =U —At Y 5 > AU (%i5q), U (%i3.0)) = Fos (U7, U7 (%i5.0)) )
q=1,2

JENE j#i €

—=n 3N

HF (U UM (xi54)) — Fiy (U7 T}

Using the mean value theorem, we obtain

—n+l  =—=n 1 ’an, ‘ oF; n n 77"
U =TI at 2L STl 2 a0, (6 Ui a7 Gae) = T
= i 1
JENZ.j#i
OF,j —n —n
+ 2 T U) (ki) = T)
F - and 8;}"; as the partial derivatives with respect to the first and second argu-
ments of F;;, respectively, & between U, and UP(x;;,) and & between U, and Ul (Xijg)
Introducing v; ; , = At; |a|s§22, ‘]‘ %};}f (&, Up(Xiq)), and v7; = At |8|%‘]| %IZJ (U}, &), we have

U _U + Z Z Uq - (qu>> Uzj,q(U}l(Xi,j,q)_U?)-

JEN? ];éz q=1,2
By the monotonicity property of the numerical flux

vl >0and — o2, > 0. (3.19)

Z]q

As in the case of a linear flux, we apply Proposition 1 to the Uln — UM(%,j,4) term, i.e.

U - U + Z Z Uwqrwq ! (Xigrg) — U?) - vi2,j,q<U]7'l(Xi,j,Q) _ﬁ;)>

JENF ]751 q=1,2
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where 7; ; , is the scaling coefficient  on edge 0€2; ; at the gth quadrature point. Grouping
terms yields

— 2 )| U

7.7 q l’-] q ,7,9 ?

l\'JIH

mfi- ¥

JENZ,j#iq=1,2

Z z]q Ti,j,q (XZ] q) Uzj,qU;l(Xi,j,q)} . (3.20)
jENf,j;é'L q:1,2
This is of the form (3.10). We will now prove properties 1 and 2.

Sum. The sum constraint is automatically satisfied because

d+Zd—1— Z Z ,]q Tij.q U'Q,j,q)

JEN{ j#iq=1 2
1 1
1 2
+ D {5 D Vigaliia — 2 > Vid
JENFj#i  q=12 q=1,2
= 1.

Non-negativity. First, note that the coefficients in (3.20) corresponding to the d; coeffi-
cients in (3.10) are always non-negative by (3.19). Next, we will choose a At; such that d;
is non-negative as well, i.e.

Z Z ,Jq Tija U'Q,j,q) > 0.

JENF,j#iq=1 2

Due to the differentiability of the numerical flux, there exists a \; such that 8Fl (&1, U (Xigg)) <

A and — 8F“ (UZ ,&) < A; hold. Similar to the linear case, a sufficient Condltlon on the
local time step At; is

Ai

6AL; <1.
i hc,i >~
A time step suitable for all elements is determined by minimizing the ratio h/\cfi, ie.
1 Pei
At < = min —=.
6 i i
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Finally, Property 3 is enforced with limiter (3.3). Thus (3.9) is true and the nonlinear
scheme (3.6) is L, non-increasing. O
Remark.

Here we derive a less restrictive CFL condition for linear problems. Consider the
coefficient

o,
di=1-At ) |a- H A Atz:m ~——ﬂmf (3.21)

JEN{T eENST 2

Because 0 < r;; < 2, it follows that d; is bounded below by

L-At Y fa- JHa 2At§:| ”H ||§d¢

. e,—
JGNZ‘

The non-negativity of d; is guaranteed if

O o
0<1-At Yy |a-nz-,j|| |Q.7|J| —2At Y ya-rlz,j|| |Qj|f| < d;. (3.22)

iENS~ N
]ENZ‘ jENi

From (3.14), we have the identity

— Z |8Qi7j|a~nm~: Z |aQi’j|a-nZ~,j.

e et
]ENZ‘ jENi

Because a-n;; < 0 for j € Ny~ and a-n;; > 0 for j € NJ'", this becomes

> loQullamil = > 09l ni). (3.23)

; €,— : e,+
]ENi ]ENi

For linear problems, three situations are possible. There can be two inflow edges and one
outflow edge, or one inflow edge and two outflow edges. In these two situations, there is
a single inflow or a single outflow edge. We refer to that edge as 0€); ;. Finally, when the
direction of flow is parallel to an edge, i.e. is one inflow and one outflow edge. In this case,
0 ; can refer to either the inflow or outflow edge. In terms of 0€; s, identity (3.23) now
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becomes
0Qslla- sl = Y 10lla-n, = > |0Q;]la-n,l.

JENST JENT
Using the above in (3.22), we obtain

1092 |

0<1-3Atla-n;| o

(3.24)

The area of the cell €; is %|6QZ 7|H; y, where H; j is the height of the cell measured from
the edge 0€); ; as shown in Figure 3.3a. Further, a simple geometric consideration reveals
that ||a||H;; = hasla - ny|, where hy; is the width of the cell in the direction of a as in
Figure 3.3a. The non-negativity constraint on the entire mesh is then given by

1
At < —min

; (3.25)

lal|
By geometrical considerations, we note that this hg; is larger than the radius of the in-
scribed circle h,; (Figure 3.3c). Therefore, this CFL condition (3.25) is less restrictive.

For systems of equations, in general, there is not a single direction along which infor-
mation is propagated. For simplicity, we propose to take the minimum possible cell width,
ie.,

2171- = min(HM, H@Q? Hi,3)7 (326)

where H;1, H;2, and H;3 are the cell widths perpendicular to the three edges of the
element, 0€)y, 0€2s, and 023, as shown in Figure 3.3b.

We have shown that at the next time step the solution means will satisfy a local
maximum principle that depends on the chosen limiting neighborhood. That is, U?H will
lie in the interval [m’, M'], where m’ and M’ depend on the elements involved in limiting by
(3.4). In the next section, we discuss how the choice of limiting points and neighborhoods
affects the accuracy of the numerical solution.
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(a) Cell size in the direction of (b) Cell size for systems h;; = (c) Comparison of minimum cell width
flow hg ;. min(H; 1, H; 2, H; 3). h:“ and radius of the inscribed circle
he.:.

Figure 3.3: Measures of cell size for time step restriction (3.25).

3.4 Solution accuracy and admissibility region

In order to preserve second order accuracy, the limiting algorithm (3.3) must not modify
linear data. We call the set from which one can choose limiting points such that this
condition is not violated the admissibility region. First, we give a definition of this region,
and then prove in Theorem 2 that points from this region satisfy the desired property.

Definition 1. The limiter’s admissibility region is defined as the convex hull of the cen-
troids of the elements in N;, where N; is the neighborhood of €); involved in the limiter
(3.3). Geometrically, this region is a convezr polygon whose vertices are labeled vy, and or-
dered counterclockwise about their barycenter (Figure 3.4). Any point x in the region can
be written as

X = § VeV,
k

nykzl and v > 0.
k
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A WA"» A
Y= hd

(a) Edge-neighborhood, (b) Edge-neighborhood, (c) Vertex-neighborhood. Reduced-
equilateral triangles. deformed triangles. neighborhood.

Figure 3.4: Admissibility regions for 2; and various limiting neighborhoods.

By definition, the points x in the convex hull satisfy the following conditions

(x —xi) - aqr < (Vi —X;) - Qg (3.27)
(x—x;) Qi < (Vi1 — X;) - i, (3.28)

for all indices k, where q; are outward pointing unit vectors such that qy - (Vg1 —vi) =0,
i.e. they are vectors perpendicular to the boundaries of the convex hull. Additionally, the
pairs q; and qg.; are linearly independent.

We display examples of admissibility regions in Figure 3.4. These regions depend on
the neighborhood involved in computing the local minimum and maximum [m?, M*| in
the limiting procedure in Section 3.1. For the edge neighborhood the region is simply the
triangle formed by connecting the centroids of the elements that share an edge with €2;, as
shown in Figures 3.4a and 3.4b. For the vertex neighborhood, the shape is more complex,
as shown in Figure 3.4c.

The admissibility region of the vertex neighborhood usually contains all the limiting
points. An exception would be neighborhoods of elements that are located on the boundary
of the computational domain. The number of elements in the vertex neighborhood is
variable in unstructured meshes. This leads to memory inefficiencies in numerical codes
as the stencil for the limiter varies from element to element. This motivates defining the
reduced neighborhood. We iterate through all possible combinations of three elements
in the vertex neighborhood and choose the first subset such that all limiting points are
contained in its convex hull (Figure 3.4d).

Theorem 2. (i) If the limiting points lie in the admissibility region then linear data will
not be modified by the limiter (3.3). (ii) If a limiting point lies outside the admissibility
region, then there exists a gradient that will be modified by the limiter (3.3).
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Xi,1

(a) Edge neighborhood, with vectors qy. b) Admissibility region of Q; in Figure
3.5a.

Figure 3.5: Illustration for Theorem 2, where €; = (X1, X;2,X;3), and the admissibility
region is shaded.

Proof. We first prove part (i) of the theorem. Let us consider an admissibility region,
which is a polygon with vertices v, (Figure 3.5a). We denote by f, the angle formed by
the edges of the polygon at vertex vi. Since the region is convex, we have that 0 < 8, < .
We denote by 6 +1 the angle between q; and qj41. A simple geometric consideration
reveals that 0y 11 = ™ — B (Figure 3.5b) and, consequently, 0 < 0 41 < 7.

We consider a vector g = VU,. There exists an index K such that g lies between qg
and qg1 (Figure 3.5b). Since 0 < 0k k11 < 7, we can express g§ = ¢1qx + C2Qr+1 such
that ¢1,co > 0. Assume the limiting point x € €Q; is in the admissibility region. Therefore,
it satisfies (3.27) and (3.28), with index k = K + 1 and k = K, respectively, i.e.

(x —x;) - qr < (Vk41 — X;) - Ak,

(x =) A1 < (V4 — Xi) - dicra
Multiplying the first inequality by c¢;, and the second by ¢y, then summing, we have

(x—x) g < (Viky —Xi) - 8
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Adding the cell average U;, we have by (3.2),
Ui(x) < Ui(Vii1).

Therefore,

where M; is given in (3.4). The same reasoning can be applied to g = —VU;, which gives

—Ui<X) S —m,;.
Therefore,
m; < Ui(x),

VAN

where m; is given by (3.4). Therefore m;
algorithm (3.3), the slope is not limited.

Ui(x) < M;, x € ;, and by the limiter

We now prove part (ii) of the theorem by constructing a solution that will be limited
by algorithm (3.3) if a limiting point x € €2; lies outside of the admissibility region. In this
case, at least one inequality (3.27) or (3.28), e.g. (3.27) with index K, will not hold:

(VK_Xi>'qK < (X—Xz')'CIK.

However, each of the vertices v, of the admissibility region belongs to the region itself,
therefore by (3.27) and above, we have

(Vi —xi) -qr < (Vk — %) - dr < (X —X;) - qk. (3.29)

Let us assume that the global solution is a plane, whose gradient is qx. We add to (3.29)
the solution average U; on ;. Using (3.2), we obtain

Us(vy) < Us(x), Vk. (3.30)

Additionally, because the vertices of the admissibility region correspond to neighboring
element centroids, we have U;(vy) = Uy. Taking the maximum over k in (3.30) gives

Since U; evaluated at x exceeds its allowed range, the slope of U; will be limited by the
limiting algorithm (3.3). O
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Figure 3.6: Limiting point A is outside the admissibility region of €2;, described by vy, va,
and vs.

Remark: Part (ii) of this theorem has a simple geometric interpretation that is illus-
trated in Figure 3.6. U; is a linear function whose isolines are parallel lines. Since the
isoline passing through the limiting point, A, lies higher than the centroids on the neigh-
boring elements, the value of U; at A exceeds the value at the neighboring centroids and
the numerical solution on €2; will be limited.

3.5 Refinement studies

In the following discussion, we argue that limiting with the edge neighborhood should not
be used with the discontinuous Galerkin method. With this limiter, we are not guaranteed
that an element’s limiting points will all lie in the admissibility region. This will lead to a
reduced rate of convergence on smooth solutions. The observed rate of convergence under
mesh refinement will depend on a number of factors: the quality of the initial mesh, the
particular numerical solution, and the method of refinement. To illustrate this point, we
construct two sequences of meshes and conduct numerical simulations that demonstrate
different convergence behaviors. Here we analyze only the midpoint limiter, the two-point
limiter will perform even worse.

All numerical simulations were done using the DG code described in [3] written for
NVIDIA GPUs, using the code optimizations described in [7].
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(a) QO. (b) QL. (c) Q2.

Figure 3.7: Mesh sequence obtained through tiling.

3.5.1 Tiled refinement

We start with the initial mesh Q of a square domain 2. Then, QV is scaled by a factor of %,
and tiled over 2 to obtain the next mesh in the sequence Q;; that is, Q! is composed of four
scaled copies of Q°. We continue in a similar fashion, i.e. 2y contains 16 scaled copies of
Q. We show a sample initial mesh, and two subsequent meshes obtained through tiling in
Figure 3.7. The initial mesh is arbitrary with the only restriction that vertex placement on
opposing boundaries is identical. This is needed in order to avoid nonconforming elements
on the boundary of adjacent tiles. To simplify this discussion, we assume that elements on
tile boundaries are not limited.

To demonstrate a loss of accuracy under limiting, we examine the limiting operation
applied to a linear function u(x,y). On €, this function can be written as

ui(z,y) = alr — ;) + b(y — vi) + @,

where 7; is the average over €);, x;, y; are the coordinates of the cell centroid. After applying
the limiter to w;(z,y), we obtain the limited function

Ui(z,y) = aua(r — x;) + by — y;) + Wi,

where a; € [0, 1] is the limiting coefficient. This coefficient will not change upon translation
or scaling of the mesh, provided the numerical solution is linear.
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Figure 3.8: Shaded surfaces are described by the integrand |a(z — z;) + b(y — ;)| in (3.31).

The Ly norm of the error introduced due to limiting is

B0 = X [ fute.y) = Gifo.p)ldady
= Xi:(l — @) /Q |a(z — z;) + by — i) |dzdy. (3.31)

Each integral in the sum has a geometrical interpretation of the volume of two polyhedra
since a(z — x;) + b(y — y;) is zero along a line passing through the centroid of €2;. This
is illustrated in Figure 3.8, where the shaded planes are the surfaces described by the
integrand.

Shrinking the mesh by a factor of two, x’ = %x, shrinks the volume of the polyhedra
and, therefore, the error by a factor of eight. We have on the scaled mesh, €V, the L; error

By (QY) = éEl(QO).

Additionally, translating the mesh, x’ = x+d, does not change the error. On the translated
mesh, ', the L; error is

Ey (&) = Z(l - i) /Q ja((z + da) = (23 + da)) + 0((y + dy) — (yi + dy))|dxdy

— Z(l — ;) /Q la(x — x;) + by — y;)|dxdy

— By (2°).

To summarize, scaling the Q° by a factor of two reduces the error by a factor of eight
and translation does not affect the error. Thus, the L; error on ', which consists of four
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scaled and translated copies of Qy (Figure 3.7) is

B(Q) = %EI(QO) _ %El(QO).

This implies that the nth mesh in the tiled sequence has the error

£y (Q") = (%)nEl(Qo%

which indicates at most first order convergence in the general case.

3.5.2 Nested refinement

We now define a mesh sequence for which the same limiter, i.e. edge midpoints as limiting
points coupled with the edge neighborhood, will yield a second order approximation of the
initial data. We start by considering a mesh consisting of one element, ; (Figure 3.9a). It
is refined by splitting into four children, €;, €y, €, and Q,, (Figure 3.9b). We can show
that on the center child element of €2;, in this case 2}, linear data will not be limited. To
show this, note that the limiting points of €2;, €, are the midpoints of its edges:

1
&1 = §(Xj,3 +X;1),

1
&2 = 5 (X1 + %52), (3.32)
s = §(Xj,2 +X,3),

where X, 1, X, 2, and x; 3 are the vertices of (2;. Further, the vertices of {2, are the midpoints
of €2;’s edges:

1
Xj71 = E(Xi’l + Xi72)7
1
Xj2 = §(Xz‘,2 +Xi3), (3.33)

1
i3 = =(X;, 1)
X, 3 2(X3+X1)
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where x; 1, X; 2, and Xx; 3 are the vertices of {2;. Combining (3.32) and (3.33), we have

11 1
€j,1 ? % ;11 X1
€2 | = i 9 1 X2 | - (3.34)
£ 11 1)\
7,3 4 1 2 0,3
We also write the centroids x,,, Xj, and x; in terms of x; 1, X; 2, and x; 3:
2 1 1
o\ (g ) [
Xi 6 6 3/ \Xi3
Combining (3.34) and (3.35), we obtain
2 1 1
A AN
G \epog) |\
53‘,3 6 6 3 X

Therefore, by Definition 1 the limiting points of €2; belong to its admissibility region. Thus
linear data on €; will not be limited by (3.3). An example is given in Figure 3.9b, where
the limiting points lie inside the shaded admissibility region. In Figure 3.9¢c, the third mesh
in the sequence, 02, is shown. A simple geometric consideration reveals that elements that
do not share an edge with the boundary of the original element will not be limited. This is
because they are the center element of Q! scaled by a factor of %, translated and rotated.
Therefore, elements on which linear data is limited can only appear on the boundaries of
the initial mesh elements in Q° (Figure 3.9d). In the nth mesh of this sequence, there are
3(2" — 1) , n > 0, elements on the boundary.

We now construct a nested refinement sequence starting with an arbitrary initial trian-
gulation, Q°, with Ny triangles, of a square domain 2, e.g. the initial mesh in Section 3.5.1.
To obtain the first mesh in the sequence, 2!, we refine each cell as described above. Com-
pleting this procedure n times gives the nth mesh in the sequence, 2", which has 4™ Nj ele-
ments. The number of elements that can possibly be limited in 2" is Ny-3(2"—1), for n > 0.
The upper bound on the number of elements on which the function will be approximated
to first order grows linearly with h decreasing while the number of elements in the mesh
grows quadratically, 