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Abstract

Oil spill incidents in the sea or harbours occur with some regularity during explo-

ration, production, and transport of petroleum products. In order to mitigate the impact

of the oil spill in the marine life, immediate, safety, effective and eco-friendly actions must

be taken. Autonomous vehicles can assume an important contribution by establishing a

cooperative and coordinated intervention.

This dissertation presents the development of two path planning control-laws, the

first one an autonomous surface vehicle (ASV) being able to contour the oil spill while

is deploying microorganisms and nutrients (bioremediation) capable of mitigate and

contain the oil spill spread, and the second one for a unmanned aerial vehicle (UAV) in

order to perform the coverage of the entire spillage area with the same microorganisms

and nutrients deployment capabilities.

In order to validate both methods, a simulation environment was developed in Gazebo

with a oil spill scenario, an ASV and an UAV.

Field tests have been conducted in the Leixões Harbour in Porto, Portugal.

Keywords:

Path planning, oil spill, detection, mitigation, simulation, Gazebo, PX4, UAV, STORK

I, ASV, ROAZ II, Artificial Potential Field, Normal Vectors.
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Resumo

Incidentes relacionados com derrames de petróleo no oceano ou em portos ocorrem

com alguma regularidade, durante a exploração, produção e transporte de petróleo e seus

derivados. Para mitigar o impacto desses derramamentos na fauna e flora marinha de

uma forma imediata, segura, efectiva e amiga do ambiente novas ações são necessárias.

Véıculos autonomos podem providenciar uma importante contribuição establecendo uma

intervenção cooperativa e coordenada.

Esta dissertação apresenta o desenvolvimento de dois algoritmos de controlo para o

planeamento de trajectórias, a primeira para um véıculo de superf́ıcie autónomo (ASV)

ser capaz de contornar o peŕımetro do derrame enquanto distribui microorganismos e

nutrientes (bio-remediação), capazes de mitigar e conter a propagação do derramamento

de petróleo e a segunda para um véıculo aéreo não-tripulado (UAV) ser capaz de cobrir

todo a área de derrame enquanto distribui os mesmos microorganismos e nutrientes.

De forma a validar ambos os métodos, um ambiente de simulação foi desenvolvido

em Gazebo com cenário do derrame de petróleo, um ASV e um UAV.

Testes de campo foram realizados no porto de Leixões, no Porto, Portugal.

Palavras-Chave:

Path planning, derrame de petróleo, deteção, mitigação, simulação, Gazebo, PX4, UAV,

STORK I, ASV, ROAZ II, Artificial Potential Field, Normal Vectors.
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Chapter 1

Introduction

Marine oil spills have a large economic and ecologic impact in the world community,

with high losses in the marine life in the ecosystems. Oil spill incidents occur with some

regularity during the exploration, production, and transport of petroleum products[4][5].

Recently, in 2010, the Deepwater Horizon oil spill in the Gulf of Mexico, depicted in

Figure 1.1, has been considered one of the largest accidental marine oil spill in the history

of the petroleum industry with more than 210 million gallons of crude oil released in the

ocean surface over 180.000 km2 with the oil spill cleaning process involving over 39.000

personnel, 5000 vessels and 110 aircrafts[6]. In 2002 at coast of Galicia (North of Spain),

the tanker Prestige sank at 250km from the coast and spilled more than 60.000 tons of

oil crude over thousands of kilometres causing great harm to the local fishing industry.

Figure 1.1: Deepwater Horizon platform explosion on April 20, 2010.
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1.1. Dissertation Scope Chapter 1

The current oil spill cleaning technology includes physical (e.g. controlled burning;

absorbing) and chemical (e.g. dispersing) actions, which is largely constrained by mar-

itime conditions. Though these treatments are important to rapidly control the diffusion

and drift of the oil, they are not suitable for ecological restoration. Recently, bioremedi-

ation using microorganisms to degrade the remaining spilled oil has been proposed as a

cost-effective alternative to the use of chemical additives[7]. In order to improve the oil

spill mitigation, in situ operational technologies must be developed to ensure immedi-

ate, safety, effective and eco-friendly actions to minimise the environmental damages[8].

Following these requirements, several autonomous vehicles have been developed, such as

the Seaswarm (MIT Senseable City Lab)[9] and Protei: Open Source Sailing Drone[10].

Common to both autonomous vehicles is the oil spill mitigation being based in a system

for ocean-skimming and oil removal, which is a limitation in future interventions due to

the impact of the oil in the mechanical parts.

This dissertation proposes to address the development of two path planning control-

laws, the first for an autonomous surface vehicle (ASV) being able to contour the oil

spill while is deploying microorganisms and nutrients (bioremediation) capable of miti-

gate and contain the oil spill spread and the second for a unmanned aerial vehicle (UAV)

allowing it to perform the coverage of the entire spillage area with the same microor-

ganisms and nutrients deployment capabilities. In order to evaluate the path-planning

developed algorithms, a simulation was also addressed during the dissertation with the

goal of creating an oil spill scenario and the subsequent mitigation actions in a robotic

simulator.

1.1 Dissertation Scope

This dissertation developed in the context of the master in Electrical and Computer

Engineering in the branch of Autonomous Systems of the School of Engineering of the

Polytechnic Institute of Porto (ISEP). It is also based in the FCT - Portuguese Founda-

tion for Science and Technology as part of project ROSM – Robotic Oil Spill Mitigation

(POCI-01-0145-FEDER-24055) and by the EU SpilLess project: First-line response to

oil spills based on native microorganism cooperation1, through Blue Labs: innovative so-

lutions for maritime challenges program. (EASME/EMFF/2016/1.2.1.4/02/SI2.749374

-SpilLess). In both projects, the goal is the development of an autonomous and coordi-

nated action able to increase the efficiency of the bioremediation process, by deploying

1https://ec.europa.eu/easme/en/first-line-response-oil-spills-based-native-microorganisms-
cooperation

2



Chapter 1 1.2. Background and motivation

microorganisms and nutrients on identified targets, with the required amounts, and by

making oil spill combat from air (UAV) and water surface (ASV), as depicted in Figure

1.2. The UAV is responsible for detecting the oil spill area through a thermographic

camera and combat the leakage inner areas by spreading lyophilized native microbial

consortium dust over the oil spill, while the ASV release the product mixed with water

on the stroke border areas.

Figure 1.2: Oil spill simulation scenario. Cooperative ASV/UAV oils spill perception

and mitigation(bioremediation).

1.2 Background and motivation

During the last years, the LSA from ISEP, has played a fundamental role in the

development of autonomous robotic systems to operate in distinct scenarios, aerial, ter-

restrial or aquatic (surface or underwater), with applications ranging from monitoring

and mapping to search and rescue. In this environment and within the scope of SpilLess

and ROSM projects, the need to perform perception and navigation algorithms in a

simulation environment is a challenging requirement, and therefore a motivation for this

work.

This dissertation will try to reduce the impacts of oil spillage incidents on the en-

3



1.3. Objectives Chapter 1

vironment with an attempt to develop a mitigation strategy more efficient and robust

than the physical and chemical like controlled burning, ocean-skimming, absorbing and

dispersion, that will be achieved through an action of bioremediation. The problem of

simulating a complex manoeuvre for an ASV robot and for an UAV and a comparative

analysis of simulators for marine robotics are presented.

1.3 Objectives

Having in mind the requirements of the SpilLess and ROSM projects described above

and the challenges imposed by an oil spill, the main objectives of this dissertation are:

• Integrate the first line responses to oil spill incidents with the support of hetero-

geneous autonomous vehicles;

• Cooperative perception, combine information from different sensors with different

levels of oil spill detection accuracy;

• Cooperative and coordinated manoeuvres in order to maximise the efficiency (max-

imum overlap of the bacteria-oil area);

• UAV: Oil spill area detection, through the thermographic camera and combat the

leakage inner areas by spreading lyophilized native microbial consortium dust over

the oil spill, while ensuring optimal coverage;

• ASV: Contour the oil spill area while releasing the powder mixed with water on

the stroke border areas;

• Increase the overall efficiency of the oil spill combat missions;

• Decrease the overall time of reaction and mission costs;

• Development of a realistic simulation scenario able to identify and represent the

mitigation manoeuvres;

• Solution validation through field tests and proof-of-concept through demonstration

at a “quasi-real” scenario.

1.4 Dissertation Structure

This dissertation is organised in seven chapters. In Chapter 1 a brief introduction of

this dissertation, its scope and objectives, the background and motivation are presented.

4



Chapter 1 1.4. Dissertation Structure

In Chapter 2, a study of methods and approaches already developed by the scientific

community for autonomous aerial and surface vehicles path planning methods, oil spill

detection and mitigation strategies are described.

In Chapter 3, the fundamentals that support this dissertation focusing mainly on

the trajectory planning techniques and robotic simulators that could be the support to

develop and study a novel method for oils spill mitigation are presented.

In Chapter 4, the proposed architecture and control-law manoeuvres for the ASV

and UAV are present and detailed.

In Chapter 5, the system implementation with a description of the vehicles used for

the trials are presented. In this chapter the author addresses also the creation of an oil

spill scenario in the simulator and the mitigation manoeuvres representation.

In Chapter 6, the simulation results for each vehicle in the presence of different

obstacles and also the field tests performed in Leixões harbour with the developed path

planning in the presence of a simulated oil spill.

Finally, in the Chapter 7 the conclusions taken from the development of this disser-

tation are presented as well as some lines of future work.

5
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Chapter 2

State of the Art

In this chapter an analysis of the methods and algorithms already developed and used

by the community for path-planning and obstacle avoidance, in autonomous vehicles, are

addressed.

An analysis of the current strategies applied to oil spillage detection and mitigation

is also presented in this chapter.

2.1 Path planning for autonomous vehicles

The applications of the autonomous mobile robot in many fields such as industry,

space, defence and transportation, and other social sectors are growing day by day[11].

To achieve those complex operations, path planning algorithms capable of handling static

and dynamic environments are necessary.

A standard path planning algorithm will simply try to find the optimal path, clear

of obstacles, from the initial position to the goal, minimising the distance and therefore

energy and time spent. For some specific applications, a coverage path planning is

necessary, in that case, the algorithm computes an optimal path that ensures a complete

coverage of the interest area, while avoiding the obstacles present in the environment.

Literature surveys of standard and coverage path planning techniques, used for mobile

robot navigation, can be found in [11] and [12], respectively.

2.1.1 UAVs Path Planning Methods

The specific path planning algorithm for an UAV attempts to compute an optimal

and collision free path, while having the physical and temporal constraints into account.

7



2.1. Path planning for autonomous vehicles Chapter 2

A large portion of the studied implementations can be included into one of the following

categories[13][14]:

• Sampling-based methods: These approaches require the previous knowledge

of the environment for its sampling into nodes. They can be divided into two

subcategories, passive methods like Probabilistic Roadmaps (PRM), K-PRM, S-

PRM, 3D Voronoi, Visibility Graphs, etc., that generate road-maps from the initial

node to the target node but are not capable of determine the optimal path having

to resort to an additional algorithm and active methods like Rapidly-exploring

Random Trees (RRT), Dynamic Domain RRT, RRT-Star, Artificial Potential Field

(APF), etc., that are capable of both processes.

These algorithms are of easy implementation and appropriate for static and dy-

namic path planning conditions, being suitable for real-time implementation.

An implementation of Probabilistic Roadmaps by Kavraki[15] demonstrates the

division of the algorithm into two phases, the learning phase where the collision-

free roadmap is created and the query phase where the best path is chosen.

An example of a Rapidly-exploring Random Tree method from 2011 by Shen[16]

details the incremental construction of a tree through samples spread in the space.

• Node-based methods: Similarly to the Sampling-based methods, the Node-

based methods generate a path through several nodes, however, this nodes are

created through the previous obtainment of sensory data. The list of created algo-

rithms based upon this approach is fairly extensive with examples as A*, Lifelong

Planning A* (LPA), Theta*, Lazy Theta*, Dynamic A* (D*), D* Lite and Har-

mony Search, most of which can also be applied to the output of Sampling-based

methods.

The A* algorithm, first described by Dijkstra[17], is responsible for computing the

fastest path, with the lowest cost, to the target node, through the node graph in

the implementation of Musliman[18].

An implementation of the Theta* algorithm by Filippis[19] takes into account the

vehicle attitude to plan its trajectory in a 3D environment.

A simpler implementation by Grzonka[20] generates a 2D trajectory for the vehi-

cle, using the D* Lite algorithm. This implementation allow the generation of a

posterior 2.5D trajectory with the inclusion of the Yaw component.

8
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• Mathematical model methods: This approach uses the models of the vehicle

and environment, with the kinematic and dynamic limitations, to compute the

cost function that will identify the optimal path for the vehicle. This approach

is commonly used offline due to its high demand for computational power. Some

classes of problems included into this category are Mixed-Integer Linear Program-

ming (MILP), Binary Linear Programming, Nonlinear Programming and Extended

Kalman Filter (EKF).

An example of an EKF implementation combined with Simultaneous Localisation

and Mapping (SLAM), by Huh[21], demonstrates how the 3D point cloud is gen-

erated from the sensory data and the how the EKF filter estimates the vehicle and

landmarks states.

• Bio-inspired methods: These methods replicate the biological behaviour with-

out the construction of complex environment models and try to converge to the

solution, this procedure however, requires a high computational power.

The bio-inspired methods can be divided into two subcategories, Neural Networks

that generate a dynamic landscape for the neural activities and Evolutionary Algo-

rithms (EA) that select randomly feasible solutions as the first generation, the en-

vironment, robot’s capacity, goal and other constraints are taken into consideration

when planning the next step, the process stops when a pre-set value is achieved.

Some examples of Evolutionary Algorithms are generic algorithm, memethic al-

gorithm, particle swarm optimisation, ant colony optimisation and shuffled frog

leaping algorithm.

The memethic algorithm is used in [22] by Shahidi to obtain a optimal path free

of collisions, using a small population and in a few generations.

• Multi-fusion based methods: To plan an optimal trajectory in a 3D environ-

ment, these methods combine several different simpler algorithms. These methods

are also divided into two subcategories, Integration of Algorithms that integrate

several path planning algorithms to achieve an optimal trajectory and Algorithms

Ranking that also use several path planning algorithms to achieve an optimal tra-

jectory but in a consecutive way.

An interesting implementation by Masehian[23] integrates a visibility graph with

a Voronoi diagram and a potential field to achieve the shortest and safest path.

There is two specific implementations of area coverage that are worth mentioning.

The first by Maza et al.[24], tackles the adversities of a cooperative action between

9
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multiple UAVs for exploration of an area, this goal is achieved with the polygon area

decomposition and with efficient coverage algorithms that rely on zigzag patterns. The

second implementation by Schwager et al.[25], presents a decentralised control strategy

for positioning and orienting multiple robotic cameras to collectively monitor an envi-

ronment, this approach is capable of handling adjustments on the number of vehicles

and vehicles with different degrees of mobility.

2.1.2 ASVs Path Planning Methods

After the aerial and underwater vehicles contribution to the scientific world, the

interest in Autonomous Surface Vehicles (ASVs) has grown considerably. Although

ASVs present a high potential in maritime applications, their ability to detect and avoid

obstacles still lacks development, being typically focused on above-surface obstacles while

neglecting the need for the detection of sub-surface obstacles such as waters with reefs

or lakes with shallow banks[26].

Although most of the 2D path planning techniques described before could be adapted

to ASVs, the most noticeable development in this field was the integration of the Inter-

national Regulations for Avoiding Collisions at Sea (COLREGs)[27], within the obstacle

avoidance algorithms, reducing the ocean navigation conflicts and maritime accidents at-

tributed to human error, while simultaneously, establishing legal policies for unmanned

vessels[28].

The modern COLREGs were delineated in 1972 by the International Maritime Or-

ganisation as a set of rules for potential collision scenarios, as crossing paths, head-on

and overtaking, in a maritime environment. Although these rules describe possible ma-

noeuvres to avoid collisions, their creation was designed for human navigators usage,

being dependent of the operator experience and interpretation. It is estimated that the

subjective nature of COLREGs and human error are related to 89% to 96% of marine

collisions. Therefore, if autonomous surface vehicles can operate in accordance with

these rules, maritime collisions can be vastly reduced.

In 2012, Naeem et al.[29] proposed an approach that relies on a simple waypoint

by line-of-sight guidance strategy, coupled with a manual biasing scheme. The vehicle

follows the direct route through the multiple waypoints defined between the initial and

goal positions, when no obstacles are found on its path. When an obstacle is detected

by the onboard vision-based detection system, a bias is added to the current reference

heading angle, in order to avoid an obstacle. The added bias is compliant with the

COLREGs regulations. After the obstacle is overpassed, the heading angle, between the

10



Chapter 2 2.1. Path planning for autonomous vehicles

vehicle current position and the next waypoint, is computed once more.

Another implementation by Campbell et al.[30], uses an obstacle detection system

based on vision-LIDAR (light detection and radar), accesses the risk for the vehicle and

with an heuristic path planner, avoids obstacles in a COLREGs regulations compliant

way.

A worth mentioning implementation of COLREGs compliant path planning for ASVs

was recently developed by Hu et al.[31], this approach, in addition to the COLREGs

compliant obstacle avoidance algorithm and the risk assessment, enforces a multiobjec-

tive optimisation based on particle swarm optimisation re-planning the original path.

Other examples of navigation and obstacle avoidance in accordance with the Coast

Guard Collision Regulations, for Autonomous Surface Vehicles, by Benjamin et al in

2006 and by Pinto et. al in 2013, can be found in [32] and [33], respectively.
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2.2 Oil Spill Detection

The detection of an oil spill and its simultaneous mapping has been subject of mul-

tiple distinct implementations in the past years and can occur through several different

sensors. The interest in this field [34] comes from the urgency in reducing the impact of

such incidents in the environment. Data relative to the spill such as the precise location

and movement, support an effective action in order to reduce the impact of the pollution

in the environment.

As stated before, several sensors can be used to achieve oil spill surveillance and map-

ping, varying from visible spectrum, infrared and thermographic cameras to fluorosensor

lasers and radars, carried by aircrafts, UAVs or on satellites. In this section, techniques

with each sensor will be presented and analysed not with goal of being implemented

during the dissertation but in order to understand the vehicle behaviour during the oil

spill intervention.

2.2.1 Visible Spectrum Camera

The oil has an interesting aspect, it shows higher reflectance than water while not

presenting a specific light absorption/reflection behaviour, this means that for oil identi-

fication, one has rely on contrast differences from the oil to the enclosing waters within

the visible region of the electromagnetic spectrum (400 to 700nm approximately).

An example for a visible spectrum camera application can be found in [35], where

a push-broom scanner method is used. This method is described as the use of a CCD

(Charge-Coupled Device) detector and an optical system to direct ground elements to

different parts of the CCD detector.

Oil spill detection with visible spectrum cameras has however several disadvantages,

being the most noticeable the harsh weather conditions and the action of the light or

its absence in the environment. The effect of this last can however be reduced since

its known that the light, when it its the water surface at 53 degrees (Brewster angle)

becomes polarised in parallel with the water surface, so a detector can be set for this

specific angle and polarised lens can be used.

In the last years different approaches have been developed, one of them is the ex-

ploration of hyperspectral imaging in this scenario, that like other spectral imaging,

collects and processes information from across the electromagnetic spectrum. Although

hyperspectral imaging requires the computation of extensive data, not ideal for a real-

time propose, a technique called spectral un-mixing is commonly used for characterising

individual pixels, that can be used for oil monitoring[34].
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Even if visible spectrum cameras present worse results on oil spill detection than

termographic cameras for example, due to the sun glint in the ocean surface that can

be falsely identified as an oil spill, they will continue to be widely used for support

operations due to its economic aspect.

2.2.2 Infrared Camera

The oil spill, when exposed to a heat source, as the sun, will emit infrared radiation

and since the emissivity from the oil is distinct from the water is possible to detect

a distinct substance in the water. This behaviour of emission of radiation as thermal

energy is not completely understood since thick oil spills appear hot and intermediate oil

thickness appears cool. While not completely understood, this transition seems to occur

between the thickness of 50 and 150 µm, furthermore the minimum detectable layer for

an oil slick is between 10 and 70 µm, making thin oil spills undetectable with infrared

cameras.

The largest portion of infrared sensing of oil spills occur in the thermal infrared, at

wavelenghts of 8-14 µm. During daylight, thick spills appear warmer than the surround-

ing water since they absorb solar radiation faster, while thin films tend to appear cooler

than oil-free water. This lower temperature can be correlated with the electromagnetic

interference on the oil layer. During the night-time the behaviour is completely inverted

with thin spills appearing warmer than the surrounding water and thicker spills acting as

thermal insulators thus appearing cooler[36]. This contrast is supposedly higher during

daylight as stated by Dickins[37].

Hover and Plourde[38] evaluated the day and night imaging capabilities of ship-

mounted thermographic sensors operating in 8 to 15 µm range, as well as hand-held

sensors exploiting the 3 to 5 µm interval and found both types of systems useful in the

identification of oil slicks, although the performance of individual sensors depended on

environmental conditions and sensor tuning.

Even though infrared cameras present several disadvantages as not being capable of

providing thickness measurements and the possibility of false detections from seaweeds,

sediment, organic matter, shoreline, and oceanic fronts, they are still widely used for oil

detection due its the availability of the market at a reduced cost.

2.2.3 Fluorosensor Laser

Fluorosensor lasers take advantage of the presence of aromatic compounds in petroleum

products, these compounds absorb ultraviolet light and become electronically excited,
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this excitation is transformed into a fluorescence emission, primarily in the visible region

of the spectrum, ranging from 400 to 650 nm, with peak centres in the 480 nm region.

Since other natural fluorescing substances emit at sufficiently different wavelengths than

oil (e. g. chlorophyll yields a sharp peak at 685 nm), in most cases is easy to identify,

with high certainty, if oil is present in the environment.

Some lasers increase even further its sensitivity and selectivity using a technique

called ”gating”, opening their detectors at the precise time that the signals return from

the surface. This feature can be taken even further to target specific regions below the

surface on the water column as deep as 2 meters[39]. As a sampling instrument, the

laser repetition rate and the velocity of the vehicle carrying the sensor are important

in the sampling rate of the surface where the oil contamination is being observed. At

ground speeds of 100–140 knots, at a laser repetition rate of 100 Hz, a fluorescence

spectrum is collected approximately every 60 cm along the flight path. This decreases

if the instrument is scanning.

The capability to identify oil presence in water, shoreline, soil, plants, ice and snow[40]

is proving the enormous potential of fluorosensor lasers in an oil spill identification

scenario.

2.2.4 Radar

Radar sensors became the standard sensor for mapping oil offshore, either carried by

aircrafts or as a satellite sensor. Its oil detecting capability comes from the attenuation of

the capillary waves, resulting in a ”dark” region within the ”sea clutter”, formed by the

microwaves reflection in the oil-free water[41]. For a correct perception, low to moderate

wave/wind conditions are necessary, bellow 1.5 m/s wind speeds the ”sea clutter” formed

is insufficient for oil spill detection and wind speeds stronger than 10 m/s difficult the

visibility of wave troughs.

Two distinct types of radar can be employed, Synthetic Aperture Radar (SAR) that

uses the forward motion of the vehicle to simulate a long antenna, trying to replicate

the other type of radar, the Side-Looking Airborne Radar (SLAR), to obtain satisfac-

tory spatial resolution, independent of the range but requiring sophisticated electronic

processing, making this solution more expensive than SLAR. Even though studies show

a far superior performance by SAR[42], SLAR is widely used on oil spill remote sensing,

mainly due to its lower price.

Apart from the wind/waves speed limitations, this sensor presents still another im-

portant disadvantage, the possibility of false positives from fresh water slicks, calm areas,
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wave shadows behind structures or topographical features, shallow seaweed beds, bio-

genic oils and sea-life sperm. However, radars provide a very good solution for large-area,

night-time, and foul weather detection work.

15



2.3. Oil Spill Mitigation strategies Chapter 2

2.3 Oil Spill Mitigation strategies

Immediate and efficient responses to oil spills are of extreme importance to reduce

the economic and ecological impacts of such incidents. The quality of the response

is dependent on several factors such as, the water temperature, the locale and most

importantly, on the specific type of oil spilled.

In the last years a wide range of oil spill countermeasures were developed, most of

them can be inserted into one of the following categories[43]:

• Mechanical methods have the simplest concept, the use of booms (floating bar-

riers) to contain the oil spreading, enclosing the spill into a well defined area, while

using oil skimmers to remove the oil floating on the water surface. Mechanical

methods are still widely used due to their simplicity, however they can only be

enforced on calm waters;

• Chemical methods though more efficient than mechanical methods when prop-

erly applied, could endanger countless species. These methods transform the

physico-chemical properties of the oil mainly through dispersants, mixture of emul-

sifiers and solvents that improves the separation of the particles, breaking the oil

slick into small droplets. These small droplets however, can be dispersed into the

water column and when in high concentration have an acute lethal toxicity for

many species, especially on fish eggs and coral;

• Bioremediation demonstrates enormous potential for oil spill cleanups with the

use of microorganisms such as Fusobacteria species or biological agents to colonise

and degrade hydrocarbons present in the oil, though its practical use is still re-

stricted;

• Controlled oil burning effectively reduces the amount of oil in the water in situ,

at a low cost, however the viscous and dense residue may sink and extends air

pollution;

• Solidifying the oil could be an option in oil spills. With the use of dry ice pellets

and hydrophobic polymers the liquid oil is solidified into a floatable rubber-like

material, that can be more conveniently collected and recycled.

• Vacuum and centrifuge the mixture of oil and water is another approach that

obtains near pure oil as an end result. There is a debate either the resulting water

should be returned to the sea or not, improving the efficiency of the process, this

is not entirely accepted due to the amount of oil present in the resulting water.

16



Chapter 2 2.3. Oil Spill Mitigation strategies

Technologies that allow a safe, immediate, effective and eco-friendly operation of

oil spill removal, in situ, have been under development in the recent years. A specific

area that grow from that development was the application of autonomous vehicles for

ocean exploration and conservation, with two important projects being developed in

2010, Seaswarm[9] and Protei[10]. The autonomous vehicles designed within the scope

of these projects, reduce the operational time and protect the health and safety of the

cleaning crew by working as an organised fleet or ”swarm” of vehicles, that rely on

ocean-skimming and oil removal techniques, this can be viewed as a limitation of both

approaches since there is a considerable impact of oil in the mechanical parts.

This evolution on oil spill mitigation techniques has primarily occurred in the form of

hardware development. The research on advanced software-based navigation algorithms

still lacks sufficient attention and support, however some cases are worth mentioning,

like the approach developed by Jin and Ray[6], that uses a multi-resolution navigation

algorithm that, seamlessly, integrates the concepts of local navigation and global navi-

gation, based on the sensory information for oil spill cleaning in dynamic and uncertain

environments, using autonomous vehicles as a single agent. The developed algorithm

provides a complete coverage of the search area for clean-up of the oil spills and does not

suffer from the problem of having ”local minima”, which is commonly encountered in

potential-field-based methods through adaptive decision making and online re-planning

of vehicle paths.
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Chapter 3

Fundamentals

3.1 Path planning techniques

Considering the requirement of the ASV being able to navigate on the stroke border

areas of the oil spill, the path planning methods explored for this vehicle were focused on

the ability to have a cost function capable of cover all area but at the same time avoid, in

a robust manner, the oil spill. Therefore, one of the methods presented in this chapter is

the Potential Functions (or Potential Fields), applied in [44][45] and [46], where several

gradient vector fields are created, attracting the vehicle towards the target or repelling

it from the obstacles. The method generates repelling vectors once the vehicle is within

a range of a new obstacle, and the sum of all vectors provides the direction for the

movement of the vehicle. This method is computationally efficient although in some

scenarios it has a limitation, the existence of a critical point called ”Local Minima”,

where the vehicle can be attracted to it and will not be able to generate an escape safe

position. In [47], obstacle avoidance using potential fields is applied into a non-holonomic

vehicle, with two independently driven wheels and is not capable of sideways movement,

resulting in the attractive and repulsive forces being applied on the front and on the

rear body of the vehicle, being the repulsive forces computed by the distance between

obstacle points and the contour of the vehicle’s body, those repulsive and attractive

forces constitute the resultant force that determines the motion of the vehicle.

Another approach proposed by Lumelsky and Stepanov [48], is based on curvature

estimation. This real-time path-planning algorithms rely on sensor-based exploration

[49], the boundary curvature of the obstacles are followed by the vehicle until a condition

is reached, through this boundary curve following, the vehicle is able to reach the target.
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Similar approaches were presented in [50], [51] and [52]. Zhang and et.al[53] propose

a novel curvature-based steering control law able to produce the obstacle avoidance

behaviour for unicycle type robots travelling at a constant speed.

To obtain a efficient and complete coverage manoeuvre of the oil spill, Voronoi algo-

rithms were studied to be applied into the UAV path planning algorithm. An interesting

approach by Cortés et al.[54] relies on Voronoi partition of the environment to control

and coordinate a sensor coverage action between a group of autonomous vehicles, where

each autonomous vehicle implements a control law designed based on the gradient de-

scent method that minimises the coverage cost in space and time, leading to an optimal

partitioning. The implementation of Abbasi et al.[55] also presents the control algo-

rithm of an heterogeneous group of robots to achieve coverage over an area resorting

to Voronoi diagrams, while ensuring an ideal allocation of robots to distinct regions of

interest. Similar Voronoi approaches were presented in [56] and [57].

The path planning algorithm for the UAV was also inspired on the approach by

Schwager et al.[25] that presents a decentralised control strategy capable of achieving

area coverage (environment monitoring), with the fields of view of multiple cameras on

distinct aerial platforms, resorting to a cost function that, unlike most approaches, does

not involve a Voronoi partition.

3.1.1 Potential Fields

The Artificial Potential Field (APF) method was first proposed by Khatib [58] and

can be simply described as ”magnetic fields”, that are simulated for the goal position and

for any obstacle present in the scenario. The goal position attracts the the robot, while,

simultaneously, the robot is repelled from any obstacles in its path. In theory then, with

correctly designed potential fields, the robot will follow the shortest trajectory to the

goal position while avoiding getting too close to an obstacle.

The overall potential field, at any moment, in the robot q, U(q), in the Equation 3.1,

can be described as a sum of the attraction force towards the goal Ugoal and the sum of

every repulsive force of obstacles in the vicinity
∑
Uobstacle.

U(q) = Ugoal(q) +
∑

Uobstacle(q) (3.1)

The attractive force towards the goal, represented in the Figure 3.1, is given by

the Equation 3.2, where ∆d(q, goal) represents the euclidean distance between the goal

position and the robot q.
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Figure 3.1: Representation of the attractive forces towards the goal.[1]

Ugoal(q) = ∆d(q, goal)2 (3.2)

The potential barrier imposed by each individual obstacle, represented in the Figure

3.2, is given by the Equation 3.3, where ∆d(q, obstacle) represents the euclidean distance

between a specific obstacle and the robot q. This potential barrier rises to infinity when

the robot approaches the obstacle.

Uobstacle(q) = ∆d(q, obstacle)−1 (3.3)

If all the potential fields from the goal and from the obstacles are combined, it’s

possible to obtain the overall potential field represented in the Figure 3.3. From here is

possible to compute the most favourable path for the robot to reach the goal position,

Figure 3.4.

This approach presents, however a disadvantage, in certain scenarios, as in a ”U”

shaped obstacle in the vehicle path, represented in the Figure 3.5, if the vehicle is

attracted to the ”inner” area of the obstacle, it will never be able to get out of it and

reach the goal position, this places are called ”Local Minima”.
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Figure 3.2: Representation of the repulsive forces imposed by each obstacle.

Figure 3.3: Representation of the overall potential field.
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Figure 3.4: Representation of the most favourable trajectory for the vehicle to reach the
goal position.

Figure 3.5: Representation of a scenario that contains a Local Minima.
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3.1.2 Probabilistic Roadmap

Probabilistic Roadmap (PRM)[15][59] is a path planning algorithm that computes a

collision-free trajectory, from the starting configuration of the robot to a goal configu-

ration. It receives as inputs the initial and goal position for the robot and the position

of every obstacle in the map. A defined maximum number of random samples are dis-

tributed within the map, only in the space free of obstacles. To those samples is added

also the initial and target positions. From there, each sample tries to ”connect itself” to

a defined maximum number of closest neighbour samples, by straight segments that do

not escape the configuration space, creating the roadmap, if any sample is not connected

in this roadmap, the number maximum of closest neighbours is increased until they’re

all connected.

After the roadmap is built, the shortest way from the initial position to the goal

position, through the samples, is computed. For this demanding computational step

several algorithms can be used, being the A* (A star) algorithm[60], first described

Dijkstra[17], the most frequent. This approach uses all the possible paths to the target,

to determine which one has the smallest cost (smallest distance).

The number of random samples added to the configuration space of the robot in the

beginning, is directly linked to the resultant trajectory from the initial position to the

goal position, when the number of samples tends to infinite it’s possible to obtain the

shortest resulting trajectory. In the Figure 3.6 it’s possible to see the difference in the

resulting trajectory, within the same map in having increased the number of random

samples.

PRM has been applied with excellent results to free flying and articulated robots

moving in the plane or in space, as well as to non-holonomic robots.

2https://www.mathworks.com/help/robotics/ug/probabilistic-roadmaps-prm.html
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Figure 3.6: Comparison between the probabilistic roadmaps (in blue) and resulting
trajectories (in orange) in the same map with different number of random samples, 50
(left) and 250 (right).2

3.1.3 Voronoi

Voronoi Diagrams are one of the most fundamental data structures in computational

geometry. In [61], [62] and [63] a better description of the algorithm, its application and

importance in a wide variety of fields inside and outside of outside computer science, are

presented. Given a set P , of points, called sites in this specific algorithm to differentiate

them from arbitrary points, a Voronoi diagram is simply the subdivision of a space into

cells, with one cell per each site p ε P .

V or(p, P ) = {x : |px| ≤ |qx|, ∀q ε P} (3.4)

A point q lies in the cell corresponding to a site pi ε P if:

Euclidean Distance(q, pi) <Euclidean distance(q, pj), for each pi ε P , j 6= i.

In the Figure 3.7, we can see the terms used to describe Voronoi diagrams.

The division between two cells, in a Voronoi diagram, is made by a line segment,

of infinite length, unless other conditions are imposed. This line segment is Euclid’s

compass and straight-edge construction of the perpendicular bisector, Figure 3.8.

A point q lies on a Voronoi edge between sites pi and pj if the largest empty circle

centred at q touches only pi and pj – A Voronoi edge is a subset of locus of points

equidistant from pi and pj.
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Figure 3.7: Terms used in Voronoi Diagrams.

Figure 3.8: Perpendicular bisector representation.
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Figure 3.9: Circumcenter representation.

Figure 3.10: Graphical representation of a Voronoi Diagram.

Multiple collinear sites form a series of parallel lines while three non-collinear sites

form Voronoi half lines that coincide in a Voronoi vertex. This vertex is the circumcenter

of the triangle formed by the three sites, the only point that is at an equal distance from

all vertices of the triangle, Figure 3.9.

A point q is a vertex if the largest empty circle centred at q touches at least 3 sites

– A Voronoi vertex is an intersection of 3 more segments, each equidistant from a pair

of sites.

In the figure 3.10, it’s presented an example of a Voronoi diagram, with a set of points

P, and the cell division computed using Euclidean distances.
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3.2 ROS - Robot Operating System

Developed in 2007 by the U.S. robot company Willow Garage, ROS[64] stands for

Robot Operating System but, in fact, ROS is not a real operating system. It can be

described as a middleware since it stands between the aplication and the operating

system on each individual machine it is capable of message-passing between processes,

and package management with various ROS libraries open-source with implementations

of common robotics functionality and algorithms, focused on maximising code reuse in

the robotics research and development. Several implementations are distributed as ROS

packages with each ROS distribution or through code sharing sites such as GitHub3.

The representation of the processes of this middleware can be done in a graph ar-

chitecture with several independent processes, called nodes, these nodes communicate

between themselves through a publisher-subscriber mechanism sending data streams,

known as topics. This peer-to-peer communication is controlled by a master node, cre-

ated obligatorily using the roscore command when starting. The various existent nodes

could be running on the same or on a different machine, being responsible for subscribe,

process and publish data, control actuators between other operations.

To clarify the publish/subscribe messaging mechanism, depicted in Figure 3.11 an

example of a possible communication is presented. In this example on the robot, the

Camera Node takes care of the communication with the camera, another node on the

robot, the Image Processing Node processes the image data and a Image Display Node,

on a external laptop, displays images on a screen. To start every nodes registers itself

with the ROS Master. In registering with the ROS Master, the Camera Node states

that it will publish a topic called ”/image data”. Both of the other nodes register that

they wish to subscribe to the topic ”/image data” thus, once the Camera Node receives

some data from the Camera, it sends the topic directly to the other two nodes. It is also

possible for a node to request a message at a specific time, registering a service with the

ROS Master.

It’s possible to integrate ROS with real-time code to mitigate the flaw in this mid-

dleware of not being an real-time system. This capability is of major importance in a

large number of applications were low latency in robot control is a critical aspect.

ROS provides a platform to develop a distributed and highly independent modular

system to control a robot. The constituent modules i.e. nodes have limited knowledge

of other nodes in system and communicate over TCP (or UDP) via standard messages

i.e. topics. This is a great strength and enables rapid and clean development and high

3www.github.com
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Figure 3.11: Example of the publish/subscribe messaging model.[2]

reusability. This does come, however, with a performance drawback as communication

must be done over network infrastructure which can slow down things considerably

especially if the message consists of huge sized data like video streams or lidar scan, to

overcome this efficiency issue and still provide the same benefits of standardised message

passing infrastructure, ROS presents the concept of nodelets. Nodelets can use the same

interface of subscribing and publishing to topics, however, when a nodelet subscribes or

publishes to a topic in the same nodelet manager, instead of message being passed over

TCP/IP, only a C++ boost pointer to message is passed.

The software is open-source and free for both commercial and research use. Its open-

source packages vary from hardware drivers, robot models, data-types, planning, per-

ception, simultaneous localisation and mapping, simulation tools, and other algorithms

that can be built with different programming languages like C++, Python, Octave and

LISP.

As shown in Figure 3.12, ROS consists of a client library to support various program-

ming languages, a hardware interface for hardware control, communication for data

transmission and reception, the Robotics Application Framework to help create various

Robotics Applications, the Robotics Application which is a service application based on

the Robotics Application Framework, Simulation tools which can control the robot in a

virtual space, and Software Development Tools.
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Figure 3.12: ROS components[3]

3.3 Robotic Simulators

Experiments with unmanned vehicles are complex, costly, time-consuming and in

some circumstances potentially dangerous, involving the risk of losing or damaging the

robots, so in most cases, the most promising course of action is the simulation of the

situation. Simulators are useful tools for the development of unmanned vehicle software,

algorithm benchmarking and system preliminary validation, that may later, improve the

performance of the robots, in real life experiments.

Many simulation tools[65][66][67][68][69] have been used and specifically developed

for robotics development purposes. The inclusion of proper dynamics, visual realism,

wide variety of sensors, interfaces, modelling tools and real-time sensor-based control are

major factors in a simulator.

From 2D low fidelity simulators such as Player/Stage[70] to 3D dynamic simulators

such Gazebo[69], MORSE[65], USARSim[71], UWSim[72] or V-REP[73], these systems

allow for simulation of mobile robots and their interactions with the environments. Some

simulators, such as Gazebo for instance, have hardware in loop capabilities allowing for

multiple stages of subsystem validation with real hardware.

Marine robotics[74][75][76][77], focused simulators have been developed either for

specific simulation scenario requirements or as more or less generic tools under multiple

European research projects such as Co3-AUVs[78], RAUVI[79] or TRIDENT[80] with

30



Chapter 3 3.3. Robotic Simulators

UWSim[72].

Nowadays, numerous simulators are available in the market, this research will be fo-

cused on simulators compatible with ROS such as Gazebo, UWSim and MORSE. Apart

from the ROS compatibility, the software’s are built on modern rendering and physics en-

gines and have large support communities. All of the listed simulators are open source.

As described previously, ROS is a distributed system where different nodes can run

on different computers and mainly communicate through ”topics”, via publishing/sub-

scribing mechanisms. For instance, the ROS interface of UWSim, allows running the

simulator as another ROS node that can communicate with the rest of the architecture

with the standard ROS communication facilities.

Robotics simulations have been presented in many projects and conferences, some of

the most relevant are DARPA Robotics Challenge (DRC), ICRA, RoboCup and more

recently in Space Robotics Challenge (SRC), a NASA Centennial Challenge. Earlier

in 2007, during the International Conference on Robotics and Automation (ICRA’07)

Robin Murphy, presented a survey[66], were the state of the art on robotic simulators,

a subject under an early development, was analysed. In that survey a set of available

and open source simulators capable of handling a wide spectrum of vehicles, such as

unmanned terrestrial, aerial, surface and subsurface vehicles, were explored under the

most diverse scenarios and situations such as urban search and rescue, bomb disposal,

surveillance and military purposes. This study ended up with the conclusion that there

was no need to build a robotic simulator from the ground since there was already avail-

able, in the market, multiple solutions with reasonable physical and functional fidelity.

Nowadays, robotic simulation has evolved and numerous simulators are available in the

market, this softwares are built upon modern rendering and physics engines and have

large support communities. In 2014, Cook, Vardy and Lewis et al. [81] reviewed and

compared multiple robot simulators for multi-vehicle operations.

In order to obtain a better comparison between them, different criteria were defined:

• Physical Fidelity: As the name suggests, this field allow a deeper comparison

between the softwares, on their physical fidelity, being this, the capability for a

correct interaction between the robot and the environment/objects, between the

robot and its arms/actuators or between those actuators and the environment/ob-

jects. Simple actions such as pushing, picking or grasping objects involve a complex

calculation of simulated forces and collisions.

• Sensor Modelling: This criteria defines the capability of the software in the

precise simulation of multiple sensors.
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• Required Knowledge/Experience: The amount of knowledge/experience re-

quired to work with the simulator software in a proficient way.

• Visual Fidelity: Quantifies the fidelity of the visualisation on the simulator,

where details such as water reflection, water refraction, sediments flotation, waves

movement and clouds representation are taken into account.

This and other criteria are summarised in Table 3.1.

Table 3.1: Simulator Comparison
Simulator Gazebo UWSim MORSE

3D Rendering Engine ogre3D OSG Blender

Physics Engine ODE/Bullet/Simbody/DART Bullet Bullet

Programming Language C++ C++ Python

Middleware

Support
ROS/Player/Sockets ROS

ROS/YARP/Pocolibs/

MOOS/Sockets

Operating System Linux/MacOS X/Windows Linux Linux/MacOS X

Formats Support SDF/URDF URDF URDF

Open Source Yes Yes Yes

Adequate Documentation High Low Medium

Physical Fidelity High Medium Medium

Sensor Modelling High High Medium

Required Knowledge Medium Medium High

Visual Fidelity Medium High High

3.3.1 UWSim

In order to have a simulator for marine robotics research and development, UWSim[72][82]

was developed in the scope of the RAUVI and TRIDENT research projects. UWSim is

currently used in different ongoing projects funded by European Commission (MORPH

[83] and PANDORA [84]) in order to perform hardware in the loop experiments and to

reproduce real missions from the captured logs. UWSim is not only useful for software

validation, but also for benchmarking mechanisms inside the simulator, so that control

and vision algorithms can be easily compared in common scenarios.

This underwater and surface robotic simulator renders realistic images through Open-

SceneGraph (OSG)4 rendering engine, Bullet5 physics engine and osgOcean6 plugin.

OSG is an open source 3D graphics application, while the plugin osgOcean was devel-

oped to enhance the reality of the underwater simulation in OSG, it adds visual improve-

4http://trac.openscenegraph.org/
5http://bulletphysics.org/
6https://github.com/kbale/osgocean/
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ments such as waves, water coloration, reflection/refraction, flotation of sediments, etc.

The toolkit is written in standard C++ using OpenGL7 and runs on various operating

systems including Microsoft Windows, Mac OS X, Linux, IRIX, Solaris, FreeBSD and re-

cently also Android. The Bullet physics engine adds the physical reliability, by detecting

any kind of collisions or even with physical interactions between multiple robots/objects

such as push or grab.

The physics engine is used only to handle contact forces and the implementation

of the vehicle dynamics, including the simulation of thrust forces. It is located in one

monolithic ROS node, but it could be modified to adhere to a more modular structure.

UWSim possess also an interface to communicate with external software such as Matlab,

using ROS nodes.

A vehicle in UWSim is composed of a 3D model, created by user, that can be posi-

tioned in the scene by setting 6 degrees of freedom. Support for kinematic chains are

included. The robots are described with an XML file, according to the URDF format,

that can include kinematic, dynamic and visual information. Interfacing with Matlab is

also possible, through the ipc bridge ROS package.

The model can be complemented with other dynamic models like those corresponding

to the marine environment (hydro-dynamics, waves, wind, underwater currents, etc.),

to the actuators (thrusters and control surfaces as rudders or fins), and to the sensors

(sonar, DVL, etc.).

UWSim allows the dynamic simulation of rigid body motion, by using a state-space

dynamic model in terms of state variables representing body linear and angular velocities

and positions. It takes as inputs the forces and torques that act on the body and

their current state vector value. The output is a future estimation of the state vector.

Customizable widgets can be added to the main window that show specific data to the

user. The data acquired during a survey mission, with a real robot, can be logged and

then reproduced in UWSim in order to analyse the vehicle trajectory. Vehicle dynamics

can also be simulated with Matlab.

In this simulator it is also possible to visualise different underwater virtual scenarios

that can be configured using standard 3D modelling software (ex: Blender8, 3D Stu-

dio Max, etc). Controllable underwater vehicles, as well as simulated sensors can be

added to the scene and accessed externally through network interfaces. This allows to

easily integrate the visualisation tool with existing control architectures. The scenes in

UWSim are XML-formatted documents that describes the general scenario, and simula-

7https://www.opengl.org/
8https://www.blender.org/
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tion parameters. On the other and, robots are described with an URDF (Unified Robotic

Description File) file. However, a scene XML file may make a reference to an URDF file

for including a robot into the scene. The UWSim scene XML file is divided in blocks,

which define the different aspects of the scene. The available blocks are the oceanState

block that allows configuring ocean parameters, simParams block, that makes possible

to modify the settings of the simulator, the camera block for set the main camera pa-

rameters, the vehicle tag that is used to create and configure underwater robots and

the sensors available on them, the object block that allows inclusion of other 3D models

to interact with the robots and the ROS interfaces block that allows the attachment

of ROS interfaces to certain objects, robots or sensors, specifying the communication

possibilities. The supported 3D models formats are all that are supported by OSG, like

.osg, .obj, .ive, .stl, .3ds and others. So, it is possible to use a 3D modelling program

such as Blender to simply export the 3D model with one of the formats above.

All the different robots sensors and actuators can be interfaced with external software

through the network. UWSim includes an interface for its integration with ROS, that is

a set of libraries and tools that assist software developers create robotic applications.

This allows to seamlessly validate control methods developed in ROS either on

UWSim or on the real robots, as long as they provide the same interface. Through

the ROS interfaces, it is possible to access/update any vehicle position or velocity, to

move arm joints, and to access the data generated by virtual sensors. This provides to

the software the capability to detect collisions and forces and automatically updating

the scene accordingly. The different bodies collision shapes can be automatically gener-

ated from the 3D models. In addition, it is possible to set the position and attitude of

collision shapes automatically from the scene graph, which is necessary, for instance, for

updating the collision shapes transforms of kinematic chains like manipulators.

The output variables (position and attitude of vehicles) are published on the ROS

network and captured by the UWSim core for updating the visualisation.

It is also possible to use UWSim for mission playback. For instance, the navigation

data acquired during a survey mission with a real robot can be logged and then repro-

duced in UWSim in order to analyse the vehicle trajectory. If bathymetry and images

of the seafloor are gathered during the survey, it would be possible to build a textured

terrain from them and visualise it in UWSim.

There are twelve sensors available for vehicles in the current version of UWSim such

as camera, range sensor, pressure sensor, DVL, IMU, Global Positioning System (GPS),

Multibeam, force sensor and structured light projector.

UWSim is not a difficult software to work with, though it requires some level of
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previous experience using ROS. The UWSim wiki page contains articles on installing

the software and on the configuration and creation of simulation scenes.

The major drawbacks in UWSim are that is only a kinematic simulator and even with

its external dynamic module coded in Matlab it is only capable of handling single-body

vehicles, excluding most of the situations, where a AUV carry a robotic arm and the

aspect that there is no convenient way of extending the software, any modifications, e.

g. adding a new type of sensor must be written in the core source code.

3.3.2 Gazebo

One of the most used softwares, is Gazebo, a primary tool used by ROS for simula-

tions, which is very common among robotics professionals and academics. It was built

with ROS compatibility since the beginning, and is easy to work with, however, it is also

possible the use of another middleware wrapper for Gazebo, such as YARP plugin (Yet

Another Robot Platform)[85]. This simulator uses Bullet for physics simulation.

Gazebo features high fidelity models and a enormous user base, a recent example of

use is shown in [86]. Gazebo supports plugins, allowing users to embed custom C++

code into simulations. Communication method used by Gazebo, are topics that export

simulated data to third party applications. Gazebo topics are flexible but, there is no

data transfer control.

This simulation software uses the Ogre3D9 rendering engine and, in opposition to

UWSim, supports multiple physics engines, being the first to support four different

physics engines such as ODE10, Bullet, Simbody11 and DART12, being its default physics

engine ODE. Having this in mind, its clear that, the physical fidelity of this simulator

will be dependent on the physics engine chosen for the compilation. The simulation

system is also able to simulate multi-robot collaboration.

Gazebo overcomes the drawbacks of UWSim, since it handles better the dynamics,

contact physics and is very versatile through its plugin-based design.

As UWSim is only a kinematic simulator, the URDF used to describe the robots

are usually simpler that the Gazebo ones, that contains all the inertial and collision-

related data. On the opposite, the scene file, used to describe the whole world setup in

UWSim, contains all information about the considered simulation while the same data

is separated in several files when using Gazebo. The considered modelling is focused

9http://www.ogre3d.org/
10http://www.ode.org/
11https://github.com/simbody/simbody/
12https://dartsim.github.io/
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on the main effects due to hydrodynamic forces, that are drag and buoyancy that are

already available through plugins. A possible improvement is to take into account the

added inertia and Coriolis, but these effects are even harder to quantify precisely.

Gazebo uses Simulation Description Format (SDF) and Universal Robot Description

Format (URDF), to describe the simulation, the robot and its sensors, this data can

be used in any other software that supports this format. A robot model in SDF is

mainly a set of links and joints. The links represent the rigid parts of the robot, and the

joints represent connections between two links and therefore define the kinematic and

dynamic properties of the robot. In a world file, the simulation world is described, which

are lighting, simulation step size, simulation frequency and other simulation properties.

Robot, sensor or world models are described in their respective SDF file, an XML format

designed for Gazebo. The URDF file format used by ROS is automatically converted to

SDF format when used by Gazebo. Visual geometries used by the rendering engine are

provided in COLLADA format and the collision geometries in .stl format. In Gazebo 8,

.obj format was added as alternative input option for COLLADA (.dae format).

Gazebo’s rendering system is not optimised for underwater scenario, where underwa-

ter characteristics are not taken into account. However, Gazebo simulator gives the user

the possibility to extend the simulation with plugins. It can be extended for new dynam-

ics, rendering, sensors and world models. Graphical user interface is included to visualise

the scenario with extended capabilities. Regarding future work within this project, one

of the most noticeable features missing in this underwater robotics simulator for the

Gazebo environment is the lack of characteristic visual effects as floating particles and

proper light damping as a function of water depth, along with the generation of waves

on the sea surface.

As a drawback, Gazebo’s rendering system has a far worse performance, where un-

derwater characteristics such as water colour, visibility and floating particles are not

represented. Since Gazebo 6, the software already includes a hydrodynamics package

where the buoyancy and drag forces is already taken into account.

In 2014[74], Olivier Kermorgant developed freefloating gazebo13, a plug-in for the

integration between Gazebo and UWSim, achieving a realistic simulation, where the

dynamics from Gazebo and the appropriate visualisation from UWSim are combined.

In 2016, within the scope of the SWARMs project, a open-source package for Gazebo

simulator was created, named UUV (Unmanned Underwater Vehicle) simulator[77] for

underwater intervention and multi-robot simulation where a realistic ocean environment

representation was achieved.

13https://github.com/freefloating-gazebo/freefloating gazebo/
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Another example of the integration between Gazebo and other softwares, is mentioned

in [87]. This work consists in the integration between Rock-Gazebo, which provides a

solution to simulate ROCK (Robot Construction Kit)14 based systems in Gazebo. This

solution synchronises framework components in the simulation. All components states

are updated within the simulation step, thus synchronising the simulation. The syn-

chronisation is important to define robots states and control the data transfer. It also

includes Vizkit3d15 visualisation plugins that make the simulator more flexible, allowing

the user to include features, such as, an underwater environment or even a spatial envi-

ronment.The underwater environment was released in the simulation-gazebo underwater

package. This package is parsed by a Gazebo world file and reads the simulation param-

eters like the model centre of buoyancy, water level, fluid density and drag coefficient.

Various sensors are already available in Gazebo such as camera, multi-camera (stereo),

laser scanner, IMU, GPS, sonar, etc. There is also a provided application programming

interface, for the creation of new sensors as plugins for Gazebo.

For an inexperienced user, Gazebo can be fairly easy understood and used, with the

help of the large number of tutorials available in Gazebo’s web-page and with a big

community, though it also requires some previous experience with ROS for a deeper

understanding. Gazebo has a regularly updated and well-defined road-map for new

releases. The integration with ROS, also developed by OSRF16, is already guaranteed

through Gazebo/ROS packages. Contributions from the Gazebo user community allow

it to be regularly improved with new features.

3.3.3 MORSE

MORSE[88] uses Blender Game Engine and the Bullet physics engine. Physical fi-

delity is completely dependent of the fidelity provided by the Bullet engine. Attached

components such as arms and grippers, can interact with the world up until some de-

gree, fine grasping of objects is generally not possible. MORSE can be entirely controlled

from the command-line. Two configuration are provided by MORSE for time handling:

best effort, that tries to keep a real-time simulation and fixed step that ensures accu-

racy of simulation. Multiple middlewares are compatible with MORSE, including ROS,

YARP, Pocolibs17, Mavlink18 and MOOS19. In addition to those, MORSE also supports

14http://rock-robotics.org/
15http://rock-robotics.org/stable/documentation/graphical user interface/450 vizkit3d.html/
16https://www.openrobotics.org/
17https://github.com/openrobots/pocolibs/
18http://qgroundcontrol.org/mavlink/
19http://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.php/
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a socket-based protocol that allows the integration of unsupported middlewares or tools.

The most stable and extensible method of communicating data between the MORSE

simulator and an external process, is with the use of ROS.

Like UWSim and Gazebo, MORSE already includes multiple sensors including ac-

celerometer, battery sensor, contact sensor, depth camera, GPS, odometry sensor, laser

scanner, etc. It’s also provided a convenient facility for the creation of nonexistent

sensors and actuators.

MORSE provides multiple tutorials divided by levels of proficiency, making the gen-

eral use of the simulator by inexperienced users easier. The programmer can choose to

either use Blender’s internal integration engine for basic physics models, such as the dif-

ferential drive robot, or the programmer can integrate complex models with the use of an

external C++ program. One additional property of MORSE are modifiers. Those can

modify data produced by sonar (”perfect data”), by adding additional noise functions,

similarly to the Gazebo and UWSim simulators.

MORSE is designed to allow simulations of multiple robots systems. The biggest

advantage of using Blender is the high customisation and the high level of graphical

detail that can be achieved, thanks to the advanced modelling of meshes, and effects such

as texturing, lighting and shades. Blender also offers the capability of using multiple

camera views, displaying a global view of the scenario, as well as views from each of the

cameras on–board the various robots. MORSE component consists of a Python and a

Blender file. The Python file defines an object class for the component type, with its

state variables, data and logical behaviour. The Blender file specifies the visual and

physical properties of the object in the simulated world. Sensors and actuators have a

reference to the robot they are attached to, and the relative position/orientation with

respect to it.

MORSE have many advantages like high detail world, ability to create new sensor

and cameras view, but at the same time, presents the drawback of having to understand

its interface, as well as the additional computational overhead.
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Conceptual approach

This chapter will describe the conceptual approach formalised in this dissertation,

starting with a brief description of the proposed architecture, followed by a detailed

explanation on the UAV and ASV trajectory computation proposed methods.

4.1 Proposed Architecture

Figure 4.1: Proposed Architecture for Oil Spill Mitigation.
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In this section the oil spill mitigation proposed architecture, for a cooperative action

between the ASV and the UAV, is described. The figure 4.1 depicts the data flow

between both vehicles through a middleware, a middleware is used to allow the increase

of the number of vehicles used in the manoeuvre. The oil spill is either detected through

a monocular camera on the UAV or through a simulation of that camera within the

Gazebo simulator scenario. The frame containing the oil spill is processed to extract the

coordinates of the points that form the oil contour, this contour points image coordinates

are then transformed into real-world coordinates, WCT , and sent through the middleware

to the ASV. The aerial vehicle is also responsible for using those contour points positions,

that describe the oil spill, to plan its oil spill mitigation waypoints position in the world

referential, depicted in the Figure as WγUAV .

The ASV subscribes to the contour points world coordinates, WCT , and uses the

developed control-law path planning algorithm, to plan its oil mitigation waypoints,
WγASV . Furthermore, both vehicles share their positions, WPASV and WPUAV , through

the middleware, to plan efficiently the cooperative manoeuvre.

In order to evaluate the performance of the control-law algorithms, a simulation en-

vironment was developed in Gazebo under the framework ROS. This approach provides

a straightforward integration between the simulation environment and the real robots.

Considering the careful analysis of simulators presented in section 3.3, the decision

for the Oil Spill Simulator fell in the Gazebo Simulator due to its better performance

in sensor modelling and physical fidelity. This simulator granted the author the capa-

bility to recreate a environment with high visual and physical fidelity, with behaviours

as buoyancy or drag and with a vast number of already developed sensors. Different

perspectives of this simulation environment are depicted in the Figures 5.6, 5.7 and 5.8.

40



Chapter 4 4.2. UAV’s trajectory computation

4.2 UAV’s trajectory computation

To compute the UAV trajectory, in a efficient manner, is necessary to know in advance

the optimal manoeuvre height for the UAV, represented in the Figure 4.2 as the distance

between the spreader nozzle and the surface, and the angle of dispersion of the powder

spreader nozzle.

Figure 4.2: Angle of dispersion of the powder spreader nozzle.1

Assuming that the dispersion of the nozzle forms the cone depicted in Figure 4.3

and to simplify the algorithm computation, its action area on the water surface can be

roughly estimated as the largest square to fit in the base of said cone, represented in blue

in the Figure. The length of said square, L, can be obtained if the manoeuvre height for

the UAV, H, and the angle of dispersion of the powder spreader nozzle, θ are known.

First, the diagonal of the cone base, D, is computed using the equation 4.1. The next

step is to use the equation 4.2, to obtain the length of the action square.

D = 2 ∗ (H ∗ tan θ) (4.1)

D2 = L2 + L2 ⇔ L =
√

(D2)/2 (4.2)

After the determination of the dimensions of the action area, is possible to start

the computation of the UAV’s trajectory. This trajectory should ensure a complete

1https://www.lorric.com/en/WhyLORRIC/Nozzle/Cone-spray-coverage-by-distance
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Figure 4.3: Coverage area of the powder spreader nozzle.

coverage of the surface of the spill, for a distribution of the lyophilized powder over its

entire surface.

To achieve the trajectory depicted in red in the Figure 5.14, the UAV path planning

algorithm starts by dividing the points that define the spill into several horizontal layers,

represented in the same figure in green, with the corresponding width from the action

area square, at the previously determined flight altitude.

The computed UAV’s waypoints, represented in the Figure 4.4, correspond to the

minimum and maximum contour points, along the X axis on each horizontal layer. These

waypoints, depicted as red asterisks, when reached in the correct order and maintaining

the flight altitude between them, ensure complete coverage of the oil spill area with

minimal overlap and consequently, minimal waste of resources.
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Figure 4.4: Waypoints computation through the minimum and maximum contour points
along the X axis on each horizontal layer.
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4.3 ASV’s trajectory computation

The computation of the trajectory for the ASV, is obtained through potential fields

applied to the surface vehicle. This non-holonomic vehicle is incapable of sideways

movement since it only has two independently driven thrusters, resulting in distinct

attractive and repulsive forces, Ugoal(q) and Uobstacle(q), respectively, being applied on

the front and on the rear body of the vehicle, being the repulsive forces, represented in

Figure 4.5, computed by the distance between obstacle points and the contour of the

vehicle’s body, those repulsive and attractive forces constitute the resultant force, U(q),

represented in Figure 4.6, that determines the motion of the vehicle.

Figure 4.5: Repulsive forces applied to the ASV for oil spill avoidance.

Figure 4.6: Resultant force from repulsive and attractive forces.
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For the scenario described on this dissertation, the used algorithm can’t be the stan-

dard Potential Fields algorithm, since there is no real goal defined and the objective

is not simply to avoid getting to close to obstacles, but to follow the contour bound-

aries of an obstacle, the oil spill, while maintaining a safety distance from it. From the

standard Potential Field approach two new algorithms were created to better suit the

needs of this scenario, in addition to those, a third algorithm based on a new curvature-

based approach, formulated in this dissertation and denominated ”Normal Vectors”, this

approach computes a new and enlarged contour.

4.3.1 Method I: Artificial Potential Fields with 8 interchangeable goals

To obtain the obstacle contour behaviour, for each individual contour detected, 8

interchangeable goals were created on the extremes of the contour. One at a time, each

of these goals attract the robot, in a successive clockwise way, granting the vehicle a

almost circular motion centred in the centroid of the oil spill (obstacle). Apart from the

attractive force exerted by a predetermined goal at any moment, Ugoal(q), the sum of

the repulsive forces exerted by each of the near contours of the oil spill,
∑
Uobstacle(q), is

still exerted over the robot. This algorithm follows the standard potential field equation,

presented in the equation 4.3, to compute the resulting force at any moment, U(q).

U(q) = Ugoal(q) +
∑

Uobstacle(q) (4.3)

This algorithm, will move the robot towards the next goal, avoiding to get to close to

the obstacle boundary, granting it then, in theory, a contour trajectory distanced from

the obstacle’s boundaries. This distance can be increased if the ratio between attractive

and repulsive forces is increased and vice versa.

4.3.2 Method II: Artificial Potential Fields with an extra Tangential

Force

The second approach is also an adaptation of the Potential Fields algorithm, this

time the robot is simultaneously attracted to the goal, positioned in the centre of the

obstacle and repelled by each point in its contour. This set of forces keep the robot at

a determined distance from the obstacle’s boundaries. This distance can be adjusted by

balancing the ratio of attracting and repulsive forces.

Now to grant a contour motion to the robot, a third force is applied to it, the resultant

force from a new Tangential Field, described in [89] and depicted in Figure 4.7. This
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Figure 4.7: Representation of the behaviour of the orientation component of the Tan-
gential Force.

clockwise circular motion, by itself, forces the robot to move in a circular motion, with

the motion centre aligned with the oil spill centre. Now, instead of simply following

the equation 4.3, a Tangential force, Utangential is combined with the attractive and

the repulsive forces, as represented in the equation 4.4, moving the robot on a contour

trajectory, distanced from the obstacle’s boundaries.

U(q) = Ugoal(q) +
∑

Uobstacle(q) + Utangential(q) (4.4)

While Utangential represents a constant force during the entire path planning, that can

be adjusted to surpass the ”local minimas” on each scenario, its orientation component,

α, varies during the manoeuvre depending on the ASV position relatively to the obstacle

centroid, as depicted in Figure 4.7. That orientation can be obtained with the equation

4.5, where PW
ASV x and PW

ASV y represent the position of the ASV and PW
obstacle x and

PW
obstacle y represent the position of the obstacle (oil spill) centroid.

α = arctan2(PW
ASV y − PW

obstacle y, P
W
ASV x− PW

obstacle x)− π/2 (4.5)

4.3.3 Method III: Control Points through Normal Vectors with Arti-

ficial Potential Fields

This algorithm computes a new enlarged contour, resorting to normal vectors at

points from the original contour. After obtained the new control points from the enlarged

contour, they are put through a standard potential field algorithm as goals, following

the equation 4.3 to compute the resulting force. The algorithm moves the surface vehicle

through all of the points, while avoiding getting too close to the original contour.

The control points previously described are computed using a method that resorts

to Normal Vectors. This method uses three successive oil spill contour points at a
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time (N − 1, N and N + 1) to form a new set of points, distanced from the original

contour points, that describe a new, enlarged contour. This newly generated list of

points represents then, the intended ASV trajectory.

The algorithm starts by taking three consecutive points from the contour, N-1(xN−1,

yN−1), N(xN , yN ) and N+1(xN+1, yN+1) and computing the Euclidean distance d(N −
1, N + 1) between N-1 and N+1, equation 4.6.

d(N − 1, N + 1) =
√

(xN−1 − xN+1)2 + (yN−1 − yN+1)2 (4.6)

The variables Dx and Dy are obtained by simply taking the positions differences in

x and y, respectively, and divide them by the Euclidean distance calculated previously,

as represented in equations 4.7 and 4.8.

Dx =
(xN−1 − xN+1)

d(N − 1, N + 1)
(4.7)

Dy =
(yN−1 − yN+1)

d(N − 1, N + 1)
(4.8)

Now, with Dx and Dy computed, is relatively easy to obtain a new point (x, y),

distanced κ from N(xN , yN ), as represented in equations 4.9 and 4.10.

x = xN + κ ∗Dy (4.9)

y = yN − κ ∗Dx (4.10)

By repeating this procedure through every successive combination of three points in

the contour (N − 1, N and N + 1), a new set of points is obtained, distanced from the

original contour points, that describe a new, enlarged contour, representing then, the

intended ASV trajectory.

These equations describe the simple procedure of taking three consecutive points from

the original contour, N −1, N and N + 1, grey points at the figure 4.8, compute the line

segment that passes through N − 1 and N + 1, represented in black. Next, the normal

vector to that line segment at N is obtained, represented in red in the figure. The last

step is the computation of a new point, represented in green, on that normal, distanced

κ from the original point N .
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Figure 4.8: New point based on three consecutive contour points.
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Chapter 5

Implementation

In this chapter, a brief description of the UAV and ASV used for the field tests,

described later on this dissertation, is presented, followed by an explanation on how

the oil spill scenario was created and simulated on the Gazebo simulator. The process

of identifying the oil spill in the camera frame, the extraction of its contour borders,

the computation of its real world position and the computation of the UAV and ASV

trajectories from the simulated scenario are also addressed in this chapter.

5.1 Autonomous Vehicles

5.1.1 Unmanned Aerial Vehicle (UAV): STORK I

STORK I, depicted in Figure 5.1, is an hexarotor UAV, built in 2015 by a Portuguese

research institution, INESC TEC and by the Autonomous Systems Lab of the School of

Engineering of the Polytechnic Institute of Porto (ISEP), capable of autonomous take-off

and landing, real time sensor data acquisition with on-board processing and autonomous

missions with obstacle avoidance.

The vehicle was developed by INESC TEC for this project, built from carbon fiber

and plastic, with 90 cm of total diameter and with a height of 70 cm, a payload capacity

of 4.9 kg and with an autonomy reaching the 25 minutes of flight. The UAV makes use

of the open-source autopilot from Pixhawk project, running PX4 firmware.

The navigation sensors, IMU and Ublox Neo M8N Global Navigation Satellite System

(GNSS) and the interchangeable sensorial payload, 0.3 MP PointGrey Firefly FMVU-

03MTC-CS visible camera, 2.3 MP Pointgrey Grasshoper GS3-U3-23S6C-C, termo-

graphic camera and a LIDAR allow the vehicle to be suitable for a wide range of distinct
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Figure 5.1: Hexarotor AUV STORK I.

applications such as search and rescue, aerial surveillance and inspection, 3D mapping

and target identification, localisation and tracking.

For the SpilLess and ROSM projects a sprinkler like, spraying system for the Lyophilized

powder, described in the Figure 5.2, was designed and linked to the UAV bellow its frame,

visible in the Figure 6.3.

Figure 5.2: UAV’s spraying system for the Lyophilized powder.

Other vehicle specifications:

• On-board computation: Odroid XU3 running Ubuntu 14.04 with ROS Indigo;

• Weight: 3 kg;

• Power: rechargeable batteries (LiPo, 22000 mAh);

• Payload interfaces/ports: USB (2.0 and 3.0);

• Maximum height: 300 m;
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• Range: 300 m;

• Propulsion: six brushless rotors;

• Horizontal speed: 0-10 m/s;

• Vertical speed: 0-6 m/s (ascent and descent);

• Degrees of freedom: throttle, roll, pitch, yaw;

• Communications: Wi-Fi (5 GHz), telemetry (433 MHz), emergency stop (2.4 GHz);

• Navigation system: GPS, Flight Control Unit (with accelerometer, barometer,

gyroscope, magnetometer) and IMU.

5.1.2 Autonomous Surface Vehicle (ASV): ROAZ II

The vehicle ROAZ II, depicted in Figure 5.3, is a ASV with the shape of a catamaran,

built in 2008 by a Portuguese research company, INESC TEC and by the Autonomous

Systems Lab of the School of Engineering of the Polytechnic Institute of Porto (ISEP),

capable of autonomous operation as a result of on-board sensor processing and high

precision navigation.

Figure 5.3: Autonomous Surface Vehicle ROAZ II.
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Figure 5.4: ASV’s spraying system for the Lyophilized powder.

The developed vehicle with a length of 4.5 m, width of 2.2 m and weight of 400kg

with the capability to handle 300 kg more of payload, is built from Polyethylene and

Aluminium and it’s continuously being adapted to different projects and missions.

With several interchangeable sensors: Side-scan Sonar, Multibeam Echosounder, Sub-

Bottom Profiler, Video cameras (visible and thermographic), Sound velocity probe, DVL

with ADCP option, GPS with RTK and INS, Radar, Infra-red, and CTD (conductivity,

temperature, and depth) instrument, is suitable for a wide range of applications such

as aquatic environment monitoring, data collection and oceanography, environmental

modelling (oceanographic, 3D sea floor modelling), bathymetry, security, area patrol,

automated intrusion detection, target identification and tracking, search and rescue and

cmmunications relay in multi-vehicle scenarios and surface support to underwater assets.

For the SpilLess and ROSM projects a sprinkler like, spraying system for the Lyophilized

powder, described in the Figure 5.4, was designed and linked to the side of the ASV,

visible in the Figure 5.5. This system is composed by a water pump that obtains wa-

ter from the ocean and mixes the Lyophilized powder in that water before releasing it

through its sprinkler.

Other vehicle specifications:

• Deployment: boat trailer or crane;

• Power: rechargeable batteries (LiFePO4, 4800 Wh);

• Autonomy: 10 h;

• Range: 60-100 km;

• Payload interfaces/ports: ethernet, serial RS232/485, CAN bus (IP68 or underwa-

ter connectors plugs);
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Figure 5.5: Implementation of the spraying system in the ASV being the water pump
system noticeable in blue and the motorised sprinkler in red.

• Wireless communication (data/video);

• Propulsion: two electric thrusters (independent);

• Propulsion power: 10 HP;

• Maximum speed: 5 m/s (10 knots);

• Degrees of freedom: 3DOF;

• Communications: Wi-Fi, RF, Iridium, underwater acoustic communications;

• Modes of operation: teleoperation, autonomous waypoint following, station keep-

ing and adaptive autonomous mission.

• Landing system for UAVs;
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5.2 Scenario creation and simulation

To obtain a realistic simulation of the mitigation of an oil spill incident, the recre-

ation of this scenario was implemented within the Gazebo simulator. The main features

of this scenario are the oil spill in open waters, the existence of two vehicles, an ASV

ROAZ II and an UAV STORK I with the capability for a cooperative and coordinate

manoeuvre between them for the oil spill mitigation. That manoeuvre consists on a

contour trajectory by the ASV, while deploying microorganisms and nutrients (biore-

mediation), capable of mitigating and containing the spillage and, simultaneously, on a

coverage trajectory of the affected area by the UAV.

To achieve the level of realism depicted in the Figures 5.6, 5.7 and 5.8, several different

parts had to be combined:

Figure 5.6: Oil spill and vehicles simulation in Gazebo.

The usage of Ubuntu 14.04 LTS;

The installation of the chosen robotic simulator, Gazebo 7.0;

The installation of ROS Indigo;

The integration of the package ”uuv simulator” (Unmanned Underwater Vehicle sim-

ulator) from 2016, under constant development by Manhães et Al. [77]. This package

provided the simulation with an realistic ocean environment representation;

Modification of the squared mesh without thickness used by the ”uuv simulator”
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Figure 5.7: Oil spill from the ASV perspective.

Figure 5.8: Oil spill from the UAV perspective.
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Figure 5.9: Model of the ocean surface (left) and oil spill (right).

package to represent the ocean surface and exportation as two different meshes, ocean

surface mesh without the oil spill and the oil spill mesh itself, as depicted in Figure 5.9

and inclusion of both into the simulation world. If a new mesh was created for the oil spill

area and overlapped over the previously existent ocean mesh, the distinct wave motion

on both surfaces would be noticeable, therefore, the oil spill area must be removed from

the ocean surface mesh. For the oil spill mesh a darker colour is used;

The integration of the MAVROS ROS package, that supports the bridge between ROS

and the MAVLink protocol. This bridge allows the communication between computers

running ROS and MAVLink enabled autopilots, like the PX4 flight stack. Based on the

communication protocol between the PX4 and the application in ROS, we are able to

communicate between the low level UAV control and the high level.

The usage of Iris UAV model, depicted in Figure 5.11, from the SITL Gazebo simu-

lation, provided by the PX4 Developer Guide[90] that uses MAVROS MAVLink node to

communicate with PX4 Autopilot Firmware. This UAV model is used to simulate the

STORK I vehicle;

Integration of a undistorted camera model into the UAV with a plugin that publishes

the camera feed into a ROS topic, to obtain a aerial perspective of an oil spill scenario.

Integration of an realistic model of the ASV ROAZ II, depicted in Figure 5.12, into

the simulation world as a mesh in a Collada file (.dae format);

The author suggests the usage of the referred software, though later versions should

work correctly, with some minor adjustments if required.
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Figure 5.10: ROS/Gazebo integration with PX4.

Figure 5.11: Model of the Iris UAV.
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Figure 5.12: Model of the ROAZ II ASV.
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5.3 Spill identification and real world position computa-

tion

In order to identify and obtain the position of the oil spill, in the real world, a node

”move drone” was created that forces the UAV model to perform an ascending trajectory

to a higher position within the oil spill area. Ensuring that the entire affected area is

captured by the field of view of the camera. Once it reaches that position, waits for the

waypoint publication in the rostopic ”/drone waypoints”, to initiate the trajectory.

Once the entire spill it’s contained within its camera frame, a ROS node, named

”spillage detection node”, subscribes to the UAV camera feed, being published as a

rostopic, ”camera/image raw”. Based on that image, a findContours function from the

Open Source Computer Vision Library (OpenCV)1, with the correct threshold, obtained

through several tests for this specific scenario, is applied in order to obtain the position

of each point of the contour from the oil spill, in pixels from that frame, as depicted in

Figure 5.13.

Figure 5.13: Input (left) and output (right) through OpenCV ”findContours” function.

To obtain the projection of the contour points in the real world is necessary to go

through a series of transformations. The first matrix necessary to obtain that projection

is described in the equation 5.1 with K and corresponds to the camera Intrinsic Matrix,

a 3 by 3 matrix where fx and fy stand for the focal length, in pixels, x0 and y0 for the

principal point offset of the camera and s for the axis skew of the camera.

1https://docs.opencv.org/2.4/
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K =

fx s x0 0

0 fy y0 0

0 0 1 0

 =

568.238 0 644 0

0 568.238 482 0

0 0 1 0

 (5.1)

The rotation matrix between the camera and UAV body reference frames, Rb
c, is

presented in the equation 5.2. This 3 by 3 matrix is constant throughout the entire

manoeuvre, since the camera orientation does not change within the UAV body refer-

ence frame, and represent a Roll, Pitch and Y aw rotations of π, 0 and −π/2 radians,

respectively.

Rb
c = Y awb

c(−π/2) ∗ Pitchbc(0) ∗Rollbc(π) =

 0 −1 0

−1 0 0

0 0 −1

 (5.2)

The transformation matrix between the camera and UAV body reference frames, P b
c ,

is presented in the equation 5.3. This 4 by 4 matrix contains the rotation matrix between

the camera and UAV body reference frames, Rb
c, and the displacement between the

camera and UAV body reference frames, T b
c , this translation is also constant throughout

the entire manoeuvre.

P b
c =


T b
c x

Rb
c T b

c y

T b
c z

0 0 0 1

 =


0 −1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 1

 (5.3)

The rotation matrix between the UAV body and world reference frames, Rw
b , is pre-

sented in the equation 5.4. This 3 by 3 matrix represents the Roll, Pitch and Y aw

rotations of the UAV in relation to the world referential. This rotations and the trans-

lation matrix Tw
b are obtained through the subscription to the rostopic ”/mavros/lo-

cal position/pose”, that estimates the UAV pose (through GPS + IMU), being published

by the MAVROS node.

Rw
b = Y aww

b (γ) ∗ Pitchwb (β) ∗Rollwb (α) (5.4)

The transformation matrix between the UAV body and world reference frames, Pw
b ,

is presented in the equation 5.5. This 4 by 4 matrix contains the rotation matrix between

the UAV body and world reference frames, Rw
b , and the displacement between the UAV

body and world reference frames, T b
c .
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Pw
b =


Tw
b x

Rw
b Tw

b y

Tw
b z

0 0 0 1

 (5.5)

Considering the matrices previously defined it’s possible to compute an auxiliary

matrix, Ψ, that represents the position and attitude transformation matrix of the camera

to the world referential. This matrix is formed by the multiplication of K by the inverse

of P b
c and by the inverse of Pw

b , and its represented in the equation 5.6. In this matrix

the third column is removed to allow the multiplication in 5.8, this could only be done

since the author is assuming that the ocean surface is a plan with Z = 0 and the contour

points will be always on that plan.

Ψ = K ∗ [P b
c ]−1 ∗ [Pw

b ]−1 =

Ψ1 Ψ2 Ψ3 Ψ4

Ψ5 Ψ6 Ψ7 Ψ8

Ψ9 Ψ10 Ψ11 Ψ12

 =

Ψ1 Ψ2 Ψ4

Ψ5 Ψ6 Ψ8

Ψ9 Ψ10 Ψ12

 (5.6)

The matrix with each contour x and y positions, in pixels, from the image frame,

Image pos, is represented in the equation 5.7.

Image pos =
[
Pixelx Pixely 1

]
(5.7)

Lastly World pos corresponds to a vector with the x and y positions of that contour

point in real world coordinates. This operation, represented in the equation 5.8, must

be applied for each contour point.

World pos = Image pos ∗ [K ∗ [P b
c ]−1 ∗ [Pw

b ]−1]−1 = Image pos ∗Ψ−1 (5.8)
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5.4 UAV’s trajectory computation in the simulation sce-

nario

The same ROS node, ”spillage detection node” is responsible for the computation of

the optimal oil spill mitigation trajectory for the UAV. This trajectory is depicted, in

red, in the Figure 5.14 and is obtained through an orderly following of the waypoints,

depicted as red asterisks, by the UAV.
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Figure 5.14: UAV trajectory computation.

For the simulation of the UAV manoeuvre, within the Gazebo Simulator, a node

was created, ”move drone”, this plugin, described before is not only responsible for

sending the UAV to a higher position within the oil spill area for wider aerial perspec-

tive, but also for moving the UAV through the waypoints published into the rostopic

”/drone waypoints” once determined the trajectory.
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5.5 ASV’s trajectory computation in the simulation sce-

nario

To achieve the control-law for the ASV manoeuvre, the previously described ROS

node ”spillage detection node”, starts by subscribing to the ASV GPS position, through

the rostopic ”roaz gps”, to obtain a trajectory from the vehicle current position and

by receiving the vehicle behavior (waypoint/maneuover) to maintain from the oil spill

borders. With these values and the contour points real world positions, the node is

capable of computing a mitigation trajectory for the ASV based on the three methods

described bellow.

5.5.1 Method I: Artificial Potential Fields with 8 interchangeable goals

In the figure 5.15, the result of this first algorithm is presented. When the surface

vehicle is in the area A1, is attracted towards the top central goal, but once it enters

the area A2, is attracted towards the top right goal and so on, interchanging goals in a

clockwise direction. The same algorithm is applied to a scenario with multiple different

geometrical forms, in the figure 5.16.

Figure 5.15: Control-law performance of Method I in a simulated oil spill scenario.

This algorithm provides a good trajectory, though it is highly dependable on the

shape of the spill, as it is demonstrated on the figures 5.15 and 5.16, where the robot

found a ”local minima”, from which it is unable to leave.
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Figure 5.16: Control-law performance of Method I for a simulated scenario with different
geometric forms.

5.5.2 Method II: Artificial Potential Fields with an extra Tangential

Force

In the figures 5.17 and 5.18, the results of this second algorithm are presented and

though it looked promising, in theory, is also affected by a ”local minima”.

Figure 5.17: Control-law performance of Method II with Utangential=3.2 in a simulated

oil spill scenario.
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Figure 5.18: Control-law performance of Method II, with Utangential=3.2, for a simulated
scenario with different geometric forms.

The presence of ”local minimas” on this algorithm, can be surpassed, in the oil spill

scenario, by increasing the value of the tangential force. In the figure 5.17 that value

was 3.2, if increased up to 16.2, the robot is already capable of contour the entire spill,

as demonstrated in the figure 5.19. This raises another problem, with the increase of the

tangential force, the trajectory tends to a circular motion, not respecting then, the main

objective of this project, to follow closely the contour of an oil spill. Furthermore, there

is no way to define the ideal tangential force value, without the previous knowledge of

the entire shape of the obstacle.

If the tangential force is increased up to 30, in the scenario with multiple different

geometric forms, the algorithm fails, since the tangential force surpasses the repulsion

force created by the spill, moving the robot to the interior of the spill, as represented in

the figure 5.20.
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Figure 5.19: Control-law performance of Method II, with Utangential=16.2 in a simulated
oil spill scenario.

Figure 5.20: Control-law performance of Method II, with Utangential=30, for a simulated

scenario with different geometric forms.

5.5.3 Method III: Control Points through Normal Vectors with Arti-

ficial Potential Fields

The oil spill contour and the trajectory obtained with this algorithm are represented

in the figures 5.21 and 5.22.
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Figure 5.21: Control-law performance of Method III in a simulated oil spill scenario.

Figure 5.22: Control-law performance of Method III, for a simulated scenario with dif-

ferent geometric forms.

An overlap of the result trajectories for each method, at the oil spill scenario and at

the scenario with the multiple geometrical forms, are represented in the figures 5.23 and

5.24, respectively.
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Figure 5.23: Trajectories overlap comparison in a simulated oil spill scenario.

Figure 5.24: Trajectories overlap comparison, for a simulated scenario with different

geometric forms.

Since two methods were able to complete the contour, in the oil spill scenario, figures

5.19 and 5.21, the table 5.1 was elaborated to compare the travelled distance performed

by each method. In this table, the method III has a shorter travelled distance than the

method II with the Utangential = 16.2, which indicates a much closer contour following

trajectory of the oil spill.

68



Chapter 5 5.5. ASV’s trajectory computation in the simulation scenario

Table 5.1: Travelled distance performed by each method.

Method Travelled distance (m)

I Incomplete mission

II, Utangential = 3.2 Incomplete mission

II, Utangential = 16.2 1536

III 1238

For the scenario described in this dissertation, from the approaches tested, it became

clear that, the one that produced the best trajectory, for the oil spill mitigation, was the

Method III, that uses normal vectors to compute a list of control points that describe a

new and enlarged contour, this list of control points is then passed through a Potential

Field algorithm that uses them as successive goals. It is the easiest method to define a

exact distance, to be maintained in relation to the oil spill boundaries, along the entire

trajectory and does not present trajectory stops unlike the other algorithms that suffer

from ”local minimas”.

For the simulation of the ASV manoeuvre within the Gazebo Simulator the node

”move roaz” was created, this node is responsible for moving the surface vehicle model

through the waypoints published into the rostopic ”/surf waypoints” once determined

the trajectory.
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Chapter 6

Results

The results for this dissertation were obtained on April 23 and 24, in the preliminary

tests of the project SpilLess that occurred in the Leixões Harbour in Porto, Portugal,

depicted in Figure 6.1, where the oil spill was simulated on the Gazebo simulator scenario,

on a known position from the real world and the algorithms for the cooperative and

simultaneous manoeuvre between the UAV and the ASV were put to test. In this test

for the generation of the surface vehicle trajectory, the method III, generation of control

points through normal vectors and artificial potential field, was applied, since it provided

the best simulated results.

Figure 6.1: Experimental Field Tests at Leixões Harbour.

71



Chapter 6

The position of both vehicles was represented in real time in a ROS tool for 3D

visualisation, RViz, with a precise model of the oil spill included into the scenario for

manoeuvre monitoring from land. This representation is depicted in Figure 6.2, where

the ASV is represented in red, the UAV in green and the oil spill in black. In the figure is

also possible to observe, in real time, the orientation of the ASV’s sprinkler, represented

as a three dimensional white arrow and the ASV waypoints generated using the Method

III, represented as a two dimensional blue arrows.

Figure 6.2: RViz representation of the scenario and vehicles position.
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6.1 UAV’s trajectory

Prior to the UAV’s trajectory start, the container for the Lyophilized powder was

loaded with a pink powder, as depicted in Figure 6.3, in order to visualise the release

system in operation, this pink powder has a similar consistency to the Lyophilized pow-

der. The powder releasing is noticeable in Figure 6.4.

Figure 6.3: Powder loading into the UAV’s container.

Figure 6.4: UAV’s powder releasing system in action.
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After the powder was loaded into the UAV, the trajectory waypoints were generated

through the simulation environment and loaded into the UAV’s mission planner. The

computed trajectory was formed by 18 waypoints that describe an efficient ”zigzag”

manoeuvre for the oil spill mitigation. At that moment, the vehicle took of for an

autonomous waypoint following flight.

From the data obtained from the PX4 autopilot logs, from the performed trajectory,

it was possible to obtain the global estimated position from the UAV’s on board GPS

and IMU. The representation of that estimated trajectory is depicted in Figure 6.5.

In the Figure 6.6 is possible to perceive in addition, other information like the intended

trajectory, the estimated trajectory based only on the GPS and the trajectory waypoints.

Both representations were obtained using the online software PX4 Flight Review1.

Figure 6.5: UAV’s estimated trajectory representation.

Depicted in the Figure 6.7 is an overlap of the UAV’s waypoints (intended trajec-

tory), in green, and UAV’s performed trajectory, in blue. For a more comprehensible

representation, the detected oil spill contour was also included in the figure, in red. The

representation was obtained using the online software GPS Visualizer2.

1https://review.px4.io/
2http://www.gpsvisualizer.com/
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Figure 6.6: Representation of the data obtained from the UAV’s PX4 autopilot.

Figure 6.7: UAV trajectory representation from the PX4 global position logs.
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6.2 ASV’s trajectory

The sprinkler implemented into the ASV is visible in action in the Figure 6.8. A

Dynamixel servo motor was fixed to the ASV’s sprinkler, to allow the sprinkler to to

vary its angle of attack to the oil spill in a constant motion.

Figure 6.8: ASV sprinkler in action.

The ASV used for the experimental field tests, ROAZ II, has its own control base-

station, depicted in Figure 6.9, from where is possible to manually control it, define and

send waypoints for an autonomous waypoint following behaviour and the capability of

monitor all the data provided by ROAZ II such as sensor data, vehicle position and

trajectory, waypoints reached and next waypoint to be reached.

In the Figure 6.10 from a base station screenshot, is possible to identify the vehicle’s

current position by the red arrow, its performed trajectory by the red dots, the reached

waypoints, from 1 to 8, as green triangles and the waypoint 9 still to be reached, in yellow.

All these positions are presented on a realistic map. These 9 waypoints, represent the oil

spill contour manoeuvre. The manoeuvre is represented by this low number of waypoints

due too the minimal distance of 30 meters between each waypoint, this condition is

imposed by the reduced turning angle of this specific surface vehicle. This distance

between the waypoints can be easily altered in a parameter of the algorithm.

From the GPS attached to the ASV it was possible to represent the trajectories
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Figure 6.9: ASV ROAZ II field base station.

Figure 6.10: ASV trajectory representation in the basestation.
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performed by ROAZ II. In the Figures 6.11 and 6.12, those trajectories are represented

in blue. This manoeuvres were performed on two distinct days, 23 and 24 of April

of 2018, respectively, with a constant acceptance radius of 10 meters. It is noticeable

a larger drift from the intended trajectory in the Figure 6.12, this was due to harsh

weather conditions, strong wind and current. Both representations were obtained using

the online software GPS Visualizer.

Figure 6.11: ASV trajectory on April 23.
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Figure 6.12: ASV trajectory on April 24.

It is noticeable that the intended trajectory does not follow closely the oil spill bor-

ders during the entire manoeuvre, as explained before, this reduction of the number

of trajectory waypoints was necessary due to the reduced turning angle of this specific

surface vehicle.
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Chapter 7

Conclusion and Future Work

In this dissertation the simulation and experimental results for the control-laws for

the oil spill mitigation resorting to an UAV and an ASV are presented.

For the scenario previously described, from the approaches tested for the surface

vehicle, it became clear that, the method able of obtain the best trajectory, for the oil

spill mitigation, was the Method III, that uses normal vectors to compute a new and

enlarged contour, the control points from that new contour are then passed through an

Artificial Potential Field algorithm that uses them as successive goals. This method

demonstrated to be the easiest to define a precise distance, to be maintained in relation

to the oil spill boundaries, along the entire trajectory and did not present trajectory

stops unlike the other algorithms that suffer from ”local minimas”.

However, in the real-world applications, the autonomous vehicles must carry out the

clean-up tasks in more complicated scenarios, such as obstacle-rich environments that

contain islands and other cleaning vessels. To mitigate these and other adversities, the

following tasks are proposed as future work:

• Further improve the oil spill detection, discarding false positives from obstacles,

personnel rescue teams or oil spill mitigation vessels;

• Control the displacement or the spread of the oil spill by the action of the wind/cur-

rents and its degradation from the mitigation process, either by realistic weathering

models or through an aerial view of the environment during the entire process;

• Convert the UAV and ASV path planning methods into adaptive algorithms, ca-

pable of handling the displacement, spread or degradation of the oil spill;

• Modify the UAV path planning algorithm to ensure a mitigation action prioriti-

sation over the areas where the ASV has already taken action, thereby ensuring a
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more effective action.

• Continue improving the performance of the control law defined in this dissertation

as Method III.

• Replace the 8 interchangeable goals defined in the Method I for N interchangeable

goals, this N value keeps increasing while ”local minimas” still exist in the planned

trajectory.

• Increasing the ASV sprinkler’s reach so that the vehicle do not need to follow the

spill boundaries so closely.

A part of the work developed in this dissertation resulted in the publication of the

paper ”Control-law for Oil Spill Mitigation with an Autonomous Surface Vehicle” on

the conference OCEANS’18 MTS/IEEE Kobe / Techno-Ocean 2018.
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