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Abstract. Detecting early faults in rolling element bearings is a crucial measure for the health maintenance of rotating
machinery. As faulty features of bearings are usually demodulated into a high-frequency band, determining the informative
frequency band (IFB) from the vibratory signal is a challenging task for weak fault detection. Existing approaches for IFB
determination often divide the frequency spectrum of the signal into even partitions, one of which is regarded as the IFB by
an individual selector. This work proposes a fuzzy technique to select the IFB with improvements in two aspects. On the one
hand, an IFB-specific fuzzy clustering method is developed to segment the frequency spectrum into meaningful sub-bands.
Considering the shortcomings of the individual selectors, on the other hand, three commonly-used selectors are combined
using a fuzzy comprehensive evaluation method to guide the clustering. Among all the meaningful sub-bands, the one with
the minimum comprehensive cost is determined as the IFB. The bearing faults, if any, can be detected from the demodulated
envelope spectrum of the IFB. The proposed fuzzy technique was evaluated using both simulated and experimental data, and
then compared with the state-of-the-art peer method. The results indicate that the proposed fuzzy technique is capable of
generating a better IFB, and is suitable for detecting bearing faults.
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1. Introduction

Healthy rolling element bearings are vital to the
safe and effective operation of rotating machinery.
Hence bearing fault detection is a crucial task in
mechanical system maintenance [1]. To detect weak
bearing faults as early as possible, different condition
information has been reported with different applica-
tions [2–4]. Among these, vibration signal analysis
has proven to be simple yet effective for bearing fault
detection.
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23 6276 8469; Fax: +86 23 62769374; E-mail: E-mail:
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When a rolling element moves over a damaged
surface, an impulsive force is produced that excites
resonances in the mechanical system. The reso-
nant responses may be modulated by the passage of
the fault through the load zone or of the changing
transmission path between the impact point and the
measurement point [5]. In addition, the fault-induced
impulsive features are often buried among back-
ground noise and interference, making bearing fault
detection a challenge [6]. Vibration demodulation is
an effective technique to recover weak impulsive fea-
tures from contaminated and modulated raw signals
[7]. The successive application of vibration demod-
ulation to detect bearing faults comprises three main
steps [8]: (1) determine the informative frequency
band (IFB) around the resonance frequency of the
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system [9]; (2) bandpass filter the vibration signal
using the IFB; and (3) generate the demodulated
envelope spectrum to identify faulty characteristic
frequency and its harmonics.

With a known pattern for the rotating machinery,
one may employ the resonance frequency band of
the system to bandpass filter the vibratory signal. If
such prior knowledge is unavailable and there is a
change in the severity of the defect, determining the
IFB becomes the most challenging task when using
vibration demodulation for bearing fault detection
[10].

The determination of the IFB involves two main
issues: the selector and the location of the infor-
mative band. Different statistical parameters have
been employed as the selector to determine the IFB.
Antoni and Randall [11] applied the kurtosis as a
selector (statistical tool) for components taken from
the spectrogram for each frequency bin. Bozchalooi
and Liang [12] used a smoothness index for vibra-
tion signal denoising and fault detection. Gryllias
and Antoniadis [13] proposed a peak energy cri-
terion as the selector for bearing resonance bands.
Obuchowski et al. [9] employed a set of statistics,
namely Jarque-Bera, Kolmogorov-Smirnov, Cramer-
von Mises, Anderson-Darling, quantile-quantile plot
and local maxima for IFB selection. According to
the literature, kurtosis is sensitive to the impulsive
feature included in the IFB, and hence widely used
for bearing fault diagnosis. However, the kurtosis is
also sensitive to spiking noises, and therefore prone
to the influence of outliers. The smoothness index,
though immune to outliers, is weak for discriminating
signals of smaller value. The selectors based on statis-
tical moments are more sensitive to single, incidental
impulses. As for the empirical cumulative distribu-
tion function, the quantile–quantile plot and the local
maxima, further processing methods are required in
some cases. Considering the fact that a mono-selector
is not versatile for all cases of bearing fault detection,
Li et al. [14] suggested an entropy-weighted method
using different selectors to guide bearing fault diag-
nosis. To our knowledge, these selectors all belong in
the “hard” category and do not take into account the
fuzzy nature of the attributes.

To determine the location of the IFB band, fre-
quency, time-frequency, and nonlinear frames have
been reported to cope with machinery vibratory sig-
nals. The most direct approach for determining the
IFB is the frequency domain. Antoni [15] proposed
a dyadic signal decomposition scheme incorporat-
ing kurtosis (kurtogram) or negentropy (inforgram).

Barszcz and Jabłoński [16] proposed a protrugram
using the kurtosis of the envelope spectrum ampli-
tudes of the demodulated signal as an extension of
the kurtogram. For dyadic or similar signal decom-
position, the frequency band is evenly divided into
sub-bands to determine which sub-band is the best
for the informative band. In the time-frequency plane,
He et al. [17] determined the optimal bandpass fil-
ter using wavelets. Li and Liang [18] developed a
generalized synchrosqueezing transform to perform a
time-frequency analysis of the vibratory signals [19].
Moreover, in the nonlinear frame, Flandrin et al. [20]
suggested empirical mode decomposition (EMD) as a
filter bank for signal processing. Using a mathemati-
cal morphology technique, Li and Liang [21] reported
a multi-scale autocorrelation approach incorporating
mathematical morphological (MM) wavelet slices for
the diagnosis of rolling element bearing faults. Opti-
mal scale band demodulation of the impulsive feature
has also been proposed for bearing defect diagnosis
[22]. It should be noted that under the time-frequency
frame, the optimized bandpass filter can be inter-
preted as a counterpart of the IFB. However, under a
nonlinear frame such as EMD and MM, the optimal
scale for signal denoising is not directly correlated to
the IFB, but can be regarded as the mapping of the IFB
in a nonlinear dimension. No matter which frame is
exploited, the most popular methods for locating the
informative band are based on the mean segmentation
of the whole band (or scale). There are three natures of
the conventional mean segmentation technique. First,
mean segmentation lacks physical meaning due to its
direct grouping. Second, the commonly-used dyadic
or level-by-level decomposition exhibits coarse pre-
cision in determining the band edges. Third, these
methods are a form of “hard” splitting that fail to take
into account the fuzzy nature of the segments. As a
pilot attempt, Hou et al. [23] proposed a clustering-
based segmentation approach for bearing vibratory
signal demodulation. The internal homogeneity of the
vibration data was taken into account to guide the fre-
quency band clustering. Although data homogeneity
is a good selector in normal cases, it is insufficient
for fault diagnosis as the impulsive nature is ignored
during clustering.

Inspired by the fact that real information is
generally fuzzy instead of “hard” for different cases,
this work proposes a fuzzy technique to improve
the IFB determination performance in two aspects.
First, an IFB specific fuzzy clustering method is
developed to divide the frequency spectrum into
meaningful, unequal sub-bands [24]. Second, three
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commonly-used criteria are combined using a fuzzy
comprehensive evaluation method to guide the
frequency band segmentation [25]. Among all the
meaningful sub-bands, the one with the minimum
comprehensive cost is determined as the IFB. Appli-
cation of the above mentioned fuzzy techniques is
evaluated using both simulated and experimental
data. The proposed fuzzy technique replaces the
classical “hard” approach to determine the IFB.

The rest of the paper is structured as follows.
The domain-specific fuzzy clustering algorithm and
fuzzy comprehensive evaluation of selectors are pro-
posed in Section 2. The addressed fuzzy technique is
applied to the bearing fault detection in Section 3. A
simulation case is illustrated in Section 4 and three
experiments with real data are shown in Section 5
to evaluate the proposed technique. Conclusions are
given in Section 6.

2. Fuzzy determination of the IFB

2.1. Fuzzy clustering of the frequency spectrum

For a vibratory signal x(t) collected from a rolling
element bearing, its frequency spectrum X(f ) is
given by

X(f ) = (x(t)) =
∫ +∞

−∞
x(t)e−2πjftdt, (1)

where (.) is the Fourier transform function. The
frequency spectrum X(f ) (f = f1, f2, . . . , fN ) is
a finite set of N spectral samples. A frequency band
is a subset of X(f ) with consecutive frequency points

B(a, b) = {X(fa), X(fa+1), . . . , X(fb)}. (2)

In this way, the c-segmentation of the frequency
spectrum is a partition of X(f ) in c non-overlapping
frequency bands, i.e.,

Bc
X = {Bi(ai, bi)|1 ≤ c}, (3)

where a1 = f1, bc = fN , and ai = bi−1 + 1.
As stated earlier, classical IFB determination

techniques usually employ some time-frequency
decomposition framework such as a short-time
Fourier transform and wavelet transform for group-
ing the spectrum into mean partitions. Clustering is
an effective tool to find internally homogeneous seg-
ments from a given series where consecutive data
points are grouped in terms of their similarity. As the
fuzzy C-means (FCM) generalizes disjoint cluster-

ing, this work develops a variant of the classical FCM
clustering for generating more meaningful, unequal
sub-bands. The cost function of the FCM can be
expressed as [26]

J(μ) =
N∑

i=1

c∑
j=1

μm
ij d2

ij, (4)

where μij(0 ≤ μij ≤ 1) is the membership degree
of the frequency point X(fi) in cluster cj , dij =∥∥X(fj) − ej

∥∥ is the distance or dissimilarity between
the frequency point X(fi) and the jth cluster center
ej , and m is a real number greater than 1 [27].

The distance dij = ∥∥X(fi) − ej

∥∥ for the FCM is a
geometric definition of the dissimilarity. However,
the impulsiveness resulting from the bearing fault
should be reflected by other statistical criteria such
as kurtosis. Hence the classical FCM in frequency
spectrum clustering for bearing fault detection lacks
the physical meaning of impulsiveness. Hence we
develop a FCM variant for this problem that takes
into account two aspects. First, the frequency spec-
trum X(f ) is a series, which restricts the non-null
membership degrees of a frequency point X(fi) to
only consecutive clusters, i.e.,

μij =
{

μij ; fi ∈ [cj−1, cj+1]

0 ; Otherwise
,
∑

μij = 1.

(5)
Second, our goal for the frequency spectrum clus-

tering is to find the IFB whose selectors are not
identical to the classical distance dij . Nevertheless,
the IFB is still an internally homogeneous sub-band.
Hence we propose the following dissimilarity index
to replace the usual FCM distance

∥∥X(fj) − ej

∥∥ by:

dij = N(Hij) + N(Sij), (6)

where N(.) stands for a normalized function that
assigns the same importance to its arguments (Sij and
Hij), Sij being the selector cost which will be high-
lighted in the next subsection, and Hij denoting the
homogeneity between the frequency point X(fi) and
the jth cluster center ej , as given by

Hij =

√√√√√√
ej∑

k=ai

(
X(fk) − X(fai, fej)

)2

ej − ai

/
X(fai, fej),

(7)
where X(fai, fej) is the mean of the frequency band
between fai and ej .
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With these two improvements, one can employ
the expectation–maximization algorithm to update ej

and μij towards the optimal solutions (i.e., ejopt and
μijopt) of the segments [28]. After obtaining ejopt and
μijopt, each frequency point can be grouped into one
of the c segments using the following equation:

X(fi) ∈

⎧⎪⎨
⎪⎩

B(aj, bj) ; μkjopt > μ(k,j+1)opt

for all k ∈ [aj, i]

B
(
aj+1, bj+1

)
; otherwise

(8)
In this way, the frequency spectrum is divided as

the sum of c sub-bands, i.e.,

X(f )|f=f1,...,fN
= B(a1, b1) ∪ . . . ∪ B(ac, bc).

(9)

2.2. Fuzzy comprehensive evaluation of IFB
selectors

As introduced in the previous subsection, the selec-
tor cost Sij should be calculated for the application in
the proposed clustering method. It is well known that
the vibratory signal for a rolling element bearing with
a defective inner race, outer race or ball exhibits cycli-
cal impulsive features. As the impulses are usually
modulated in the high-frequency resonance band, the
one with the most evident impulsive characteristics
can be regarded as the IFB. By analyzing the statis-
tical indexes of the bearing vibratory signal, one can
characterize its cyclical impulsive component. Hence
in fault detection the effective statistical indexes have
been employed as “selectors” [9], the commonly used
ones among them being the kurtosis, smooth index
and crest factor.

For the jth frequency band B(aj, bj) computed
from the bearing vibratory signal x(t), the corre-
sponding temporal component is expressed as

xj(t) = −1[B(aj, bj)], (10)

where −1 denotes the inverse Fourier transform. The
kurtosis of xj(t) is given by

K(xj(t)) =
E
{

xj(t) − E
{
xj(t)

}4
}

E
{

(xj(t) − E
{
xj(t)

}
)2
}2 , (11)

where E{.} represents the mathematical expectation.
Generally, stronger impulses generate greater kurto-
sis values. Hence 1/K(xj(t)) can be employed as the
selector cost for kurtosis. As introduced in Ref. [12],
kurtosis is sensitive to all impulses, including spiking
outliers. If spiking noises occur in the non-resonance

band then the kurtosis selector may wrongly identify
the non-resonance band as the IFB.

Compared with the kurtosis, the smoothness index
is insensitive to the outlier. The definition of the
smooth index is [12]

H(xj(t)) = GM(xj(t))

AM(xj(t))
, (12)

where AM(.) and GM(.) represent the arithmetic
mean and the geometric mean, respectively, which
are given by

AM(xj(t)) = 1

M

M∑
t=1

xj(t), GM(xj(t))

=
(

M∏
t=1

xj(t)

) 1
M

, (13)

where M is the length of the discrete time t. Usu-
ally, a smaller smoothness index results from a greater
impulsive component. Hence the selector cost of the
smoothness index is H(xj(t)) itself. Although the
smoothness index is immune to the outlier, Gryllias
and Antoniadis [13] point out that the smoothness
index is actually insensitive to smaller values.

The crest factor acting as an IFB selector is similar
to kurtosis. The greater the impulsive component, the
bigger the crest factor will be. For the temporal signal
xj(t) corresponding to the jth frequency band, its crest
factor is expressed as

C(xj(t)) = max(xj(t)) − AM(xj(t))

RMS(xj(t))
, (14)

where RMS(.) is the root mean square function given
by

RMS(xj(t)) =
√√√√ 1

M

M∑
t=1

x2
j (t). (15)

Similar to kurtosis, the selector cost of the crest
factor can be express as 1/C(xj(t)). Compared with
kurtosis, the crest factor is less sensitive to outliers,
but also less sensitive to the cyclical impulses.

Based on the aforementioned analysis, it is clear
that any one of the above selectors is insufficient
to deal with different complicated bearing vibratory
signals, although individually they can be effective
for the selection of the IFB in certain cases. On the
one hand, real information is generally fuzzy instead
of “hard” for different cases. On the other hand, the
fuzzy comprehensive evaluation is a powerful tool for
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combining different selectors in an integrated fash-
ion. Hence in this work the fuzzy comprehensive
evaluation is applied to combine different selectors
for the selection of the IFB, i.e. [29],

Aj = F
(
In(xj(t))

)
, (16)

where F (.) is the fuzzy comprehensive evaluation
model, and In is the nth mono-selector cost. In this
work, we have

I1(xj(t)) = 1

K(xj(t))
, I2(xj(t)) = H(xj(t)), and

I3(xj(t)) = 1

C(xi(t))
. (17)

For each frequency point X(fi) in cluster cj , the
temporal waveform correlated to its band can be
denoted as xij(t). Putting all xij(t) together, one has
the following series

x = {x11(t), x21(t), . . . , xN1(t), x12(t), . . . , xN2(t)

, . . . , x1c(t), x2c(t), . . . xNc(t)}. (18)

Normalizing all the mono-selector cost values to
[0, 1] yields the following vector

LIn(x) =
In(xij(t)) −

Nc

min
k=1

(In(xij(t)))

Ncl
max
k=1

(In(xij(t))) −
Ncl

min
k=1

(In(xij(t)))

. (19)

For the nth selector, the mean function LIn and
the standard deviation σn of its normalized vector are
respectively expressed as

LIn = 1

Nc

Nc∑
k=1

LIn(x),

σn = 1

Nc − 1

√√√√ Nc∑
k=1

(
LIn − LIn

)2
. (20)

Furthermore, one can calculate the total mean LL0
and total standard deviation σ0 for all the selector
costs as

LI0 = 1

n

∑
n

CLIn, σ0 = 1

2

√∑
n

(
LIn − LI0

)2
.

(21)
By employing a triangular membership function,

the fuzziness of the nth selector cost can be calculated
as [30]

Ĩn = {pn1, pn2, pn3}
= {LIn − 2σn, LIn, LIn + 2σn}. (22)

Similarly, the fuzziness of the total selector cost
can be expressed as

Ĩ0 = {p01, p02, p03}
= {LI0 − 2σ0, LI0, LI0 + 2σ0}. (23)

The nearness between the nth cost fuzziness and
the total cost fuzziness is therefore calculated as

Tn = 1

1 +
∣∣∣pn1+4pn2+pn3−p01−4p02−p03

6

∣∣∣ . (24)

In real applications, a large Tn means that the nth
cost fuzziness is nearer to the total cost fuzziness,
and vice visa. Hence the weight for the nth selector
should be proportional to its nearness. Based on this
observation, combining Equations (16–19) yields

Sij = Tn∑
n

Tn

LIn(xij(t)). (25)

Plugging Equation (25) into Equation (6) can gen-
erate the whole dissimilarity index dij to guide the
clustering process of the frequency spectrum.

3. Application to the bearing fault detection

3.1. Bearing fault detection using the IFB

According to the aforementioned fuzzy technique,
a required parameter for the clustering procedure is
the number of clusters c. Although in general it would
be difficult to find an optimal number c for different
cases, we can follow the idea of the kurtogram to seg-
ment the frequency spectrum into different bands Bjc

for (c = 1, 2, 3, . . . P), as shown in Fig. 1. Among
the different bands, the one corresponding to the min-
imum selector cost (minS) is the IFB Bopt, whose
corresponding c is the optimal number of segments
copt.

After determining of the IFB X(fopt) = Bopt
(aopt, bopt), one can perform the envelope demod-
ulation as

v(t) = mod
( (

−1(X(fopt))
))

. (26)

where v(t) is the demodulated envelope from the IFB,
mod(.) stands for modulo operation, and H (.) repre-
sents the Hilbert transform.

Applying the Fourier transform to the demodulated
envelop v(t), the obtained envelope spectrum v(f )
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c=P B1P B2P … … … … … … BP-1,P BPP

c=P-1 B1,P-1 B2,P-1 … … … … … BP-1,P-1

… … … … … … … …

c=copt B1copt B2copt … Bopt (minS) … Bcopt,copt

… B1c B2c … Bcc

c=3 B13 B23 B33

c=2 B12 B22

c=1 B11

Fig. 1. Determination of the IFB using different c values.

can be used to detect the possible bearing fault. For a
defective bearing, the ball pass frequency of the outer
ring (BPFO) and the ball pass frequency of inner ring
(BPFI) can be calculated as [31]

BPFO(fc) = w

2

(
1 − d

D
cos α

)
fr, and

BPFI(fc) = u

2

(
1 + d

D
cos α

)
fr, (27)

where w is the number of rolling elements, d the
diameter of the rolling element, D the pitch diameter,
α the contact angle, fc the characteristic frequency,
and fr the rotating frequency. If the faulty character-
istic frequency (e.g., BPFO, BPFI) and its harmonics
can be identified from V (f ), one can accordingly
detect the existence of a bearing fault.

3.2. Overview of the present technique
for the bearing fault detection

Based on the aforementioned explanations, Fig. 2
illustrates the flowchart for the present technique used
for bearing fault detection, which is also summarized
below.

Step 1. Collect vibratory signal x(t) from the
rolling element bearing to be monitored;

Step 2. Calculate its Fourier spectrum X(t) using
Equation (1);

Step 3. Perform specific fuzzy clustering (as
detailed in section 2) of the frequency spectrum with
c = 1, 2, 3 . . . , P , and the dissimilarity depicted by
Equation (6);

Step 4. From all the clustered sub-bands, deter-
mine the IFB Bopt with the minimum selector cost
(minS) as described in Fig. 1;

Step 5. Calculate the optimal demodulated enve-
lope v(t) from the obtained IFB using Equation (26);

Step 6. Calculate the envelope spectrum V (f ) by
applying the Fourier transform to v(t); and

Vibratory signal

...

fc

Fourier spectrum

Fuzzy clustering with
fuzzy comprehensive

evaluation of selectors

IFB determination

Optimal demodulated envelope Fault detect result

IFB

Fig. 2. Procedure of the present fuzzy technique for the bearing
fault detection.

Step 7. Detect the bearing fault by identifying fc

Equation (27) and its harmonics in V (f ), if any. End.

4. Evaluation using simulated data

For a defective rolling element bearing, its vibra-
tion measurement x(t) can be simulated by [17]

x(t) = G(t)
∑

n

u(t − q/fc) + θ(t) + δ(t), (28)

where δ(t) is the noise component, θ(t) the interfer-
ence harmonic component, G(t) the amplitude of the
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Fig. 3. Evaluate the present fuzzy technique using the simulated bearing data: (a) temporal waveform; (b) Fourier representation; (c) clustering
results; (d) membership curves when copt = 13, (e) optimal demodulated envelope v(t) from the IBF, and (f) its Fourier representation V (f ).
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Laptop

DAQ 1

DAQ 2

Tachometer

Bearing 1Shaft

Fault

Fault

AccelerometerBearing 2 Flywheel Coupling Motor Inverter

Fig. 5. Experimental setup for the bearing fault detection.

impulsive component, q the number of impulses, fc

the faulty characteristic frequency, and u(t) the peri-
odic impulse response function given by

u(t) =
{

e−dbt sin(2πf0t) ; t > 0

0 ; t ≤ 0
(29)

where db represents the band width, and f0 denotes
the central frequency of the informative (resonance)
frequency band.

Following the vibratory signal model formu-
lated by Equations (28) and (29), a simulated
faulty bearing is considered with following parame-
ters: G(t) = [2.2, 2.6] V, db = 650 Hz, fc = 49 Hz,
f0 = 2500 Hz, θ(t) is the sum of the two harmonic
components, i.e., 0.2 sin(163πt) and 0.3 cos(61πt),
and δ(t) is Gaussian white noise with signal-to-noise
ratio (SNR) –10 dB. Letting sampling frequency fs =
12000 Hz and the simulation duration 1 sec, one can
obtain the temporal waveform of the simulated sig-
nal plotted in Fig. 3(a), and its Fourier spectrum as
shown in Fig. 3(b).

The proposed fuzzy determination technique is
then applied for the Fourier spectrum clustering
with c = 1, 2, . . . , 15. The clustering results for
the Fourier spectrum are displayed in Fig. 3(c)
where the IFB is automatically identified as Bopt =
[2311, 2783] Hz at the 13th clustering (copt = 13).
Notice that in this figure dark blue areas correspond

to higher values of membership degrees. To further
illustrate the clustering process, the obtained mem-
bership curves at copt = 13 are shown in Fig. 3(d).
From the IFB, the optimal demodulated envelope v(t)
of the IFB is calculated and shown in Fig. 3(e). Its
frequency representation V (f ) is plotted in Fig. 3(f),
where the faulty characteristic frequency (fc =
49 Hz) and its harmonics can be clearly identified.

For comparison, we apply the kurtogram to deter-
mine the IFB for the same simulated signal. The
kurtogram of the simulated signal x(t) is plotted in
Fig. 4(a) where one can identify the IFB as [2000,
3000] Hz corresponding to the maximum kurtosis.
The spectral result obtained by envelope demodula-
tion is shown in Fig. 4(b). A comparison of Figs. 3(f)
and 4(b) reveals that the SNR shown in Fig. 3(f) is
better than that in Fig. 4(b). This is due to a more
precise estimation of the IFB by the present fuzzy
technique. As modeled by Equations (28) and (29),
the given resonance band is [2175, 2825] Hz. The
present fuzzy technique with identified [2311, 2783]
Hz accounts for a 32.57% difference from the reso-
nance band, due to noise contamination. In contrast,
the kurtogram with identified [2000, 3000] Hz pro-
duces a 42.86% error with the given resonance band,
which introduces more noise to the bearing fault diag-
nosis. The comparison result indicates that the present
fuzzy technique is more effective for the IFB deter-
mination in bearing fault detection.
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Fig. 6. Experimental result for the bearing with the inner race fault: (a) waveform of the vibratory signal; (b) spectral representation;
(c) fuzzy clustering results with c = 1, 2, . . . , 15; (d) fuzzy comprehensive cost curves when copt = 7; (e) membership curves when
copt = 7; and (f) demodulated envelope spectrum from the IFB.

5. Experimental data analysis

In this section, an experimental setup as shown in
Fig. 5 was built to collect bearing condition data to test
the performance of the present approach. As shown
in Fig. 5, the output end of a motor (SIEMENS, 3-
phase, 2.0 HP) was connected to a shaft (� 30 mm) via
a coupling. Two flywheels were installed on the shaft
as the load, and two rolling element bearings (namely,
bearing 1 and bearing 2, SKF 1207 EKTN9/C3) were
used to support the shaft at its two ends. To adjust
the speed of the motor, an inverter (DANFOSS VLT

1.5 kW) was installed in a control panel. The rotating
speed of the motor was monitored by a tachometer
(COMPACT VLS5/T/LSR optical sensor) through a
data acquisition box (ERBESSD, DAQ 2 in short).
To monitor the health condition of the bearing, an
accelerometer (PCB ICP 353C03) was mounted on
the housing (SKF SNL 507–606) of bearing 1 to col-
lect vibration signals which were fed to another data
acquisition box (NI cDAQ-9234, DAQ 1 in short).
Both DAQ 1 and DAQ 2 were connected by a laptop
(HP Pavilion g4-2055la) for bearing fault detection
from the collected signals. During the experiments,
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Fig. 7. Experimental result for the bearing with the outer race fault: (a) vibratory signal; (b) Fourier spectrum; (c) clustering results with
c = 1, 2, . . . , 15; (d) fuzzy comprehensive cost curves for copt = 10; (e) membership curves for copt = 10; and (f) demodulated envelope
spectrum from the IFB.

three bearings were used to justify the fault detec-
tion capability. The first bearing had an inner race
fault, the second an outer race fault, and the third
no fault. The inner race fault (� 0.9 mm) and the
outer race fault (� 1 mm) were pre-planted on the
SKF 1207 EKTN9/C3 bearing as displayed also in
Fig. 5. The parameters of the bearing to be diag-
nosed were as follows: diameter of the rolling element
d = 8.70 mm, pitch diameter D = 53.5 mm, number of
balls (for each row) n = 15, and contact angle � = 0.
The characteristic frequencies for different faults can
be calculated from Equation (27) as: BPFO (fc) =
6.3 fr, and BPFI (fc) = 8.7 fr. For the experiments

in this section, the sampling frequency was set at
12 kHz.

5.1. Experiment to detect an inner race fault

In this experiment, the bearing with the inner race
fault (right bearing in Fig. 5) was employed as bearing
1. The rotation speed of the shaft was set at 15 Hz (in
the frequency inverter) but the real fr was 14.6 Hz
(measured by the tachometer). The temporal wave-
form and its Fourier representation of the vibration
signal are shown in Fig. 6(a) and (b), respectively.
Using the present fuzzy technique, clustering results
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Fig. 8. Fault detection experiment for the normal bearing: (a) raw signal; and (b) spectral representation; (c) fuzzy clustering results with
c = 1, 2, . . . , 15; (d) fuzzy comprehensive cost curves for copt = 7; (e) membership curves for copt = 7; and (f) fault detection result.

with c = 1, 2, . . . , 15 are displayed in Fig. 6(c).
The smallest fuzzy comprehensive cost was found
at copt = 7, for which the fuzzy comprehensive cost
curves are highlighted in Fig. 6(d). In this figure, the
global minimum cost of 0.4019 is found at [3596,
5018] Hz; this is identified as the IFB. To further illus-
trate the clustering process, the membership curves
for copt = 7 are displayed in Fig. 6(e). In this fig-
ure, it is evident that the whole frequency spectrum is
clustered as 7 segments (i.e., [1, 16] Hz, [17, 163]
Hz, [164, 967] Hz, [968, 2342] Hz, [2343, 3595]
Hz, [3596, 5018] Hz, and [5019, 6000] Hz), among
which the 6th segment ([3596, 5018] Hz) is the IFB.

The IFB was used to produce the optimal demod-
ulated envelope spectrum as displayed in Fig. 6(f).
From this figure, one can see up to 4 harmonics of
the characteristic frequency BPFI (fc). This indicates
that an inner race fault can be detected for the bearing.

5.2. Experiment to detect the outer race fault

The bearing with an inner race fault was replaced
by a rolling element bearing with an outer race fault
(left bearing in Fig. 5. The rotating speed in this exper-
iment was set at fr = 15 Hz (the measured rotating
frequency was 14.8 Hz). The vibratory signal and its
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spectrum are shown in Fig. 7(a) and (b), respectively.
The present fuzzy technique was again applied for
spectral band clustering. The clustering results with
c = 1, 2, . . . , 15 are displayed in Fig. 7(c), where
the smallest fuzzy comprehensive cost can be found at
copt = 10. For this optimal clustering (copt = 10), the
fuzzy comprehensive cost curves and the membership
curves are plotted in Fig. 7(d) and (e), respectively.
One can observed from Fig. 7(d) that the minimum
cost of 0.3973 is related to the IFB [2135, 2668]
Hz, which is the same for Fig. 7(e). Through enve-
lope demodulation using the IFB, Fig. 7(f) plots the
spectrum V (f ) of the optimal demodulated enve-
lope. From this figure, one can identify the BPFO
(fc = 93.2 Hz) and its second, third, fourth, and fifth
harmonics. In contrast, only the second harmonic of
the rotation frequency (14.8 Hz) can be observed due
to the filtering effect of the IFB. This reveals that
bearing 1 has an outer race defect.

5.3. Normal bearing diagnosis experiment

In this subsection, the defective bearing was
replaced by a normal one to carry out the fault detec-
tion experiment. The vibration signal collected from
this configuration is displayed in Fig. 8(a). Figure 8(b)
shows the spectral representation of the vibratory
measurement. By applying the addressed fuzzy tech-
nique for the frequency spectrum, Fig. 8(c) shows
the fuzzy clustering results using c = 1, 2, . . . , 15.
It is found that the minimum fuzzy selector cost of
0.4693 is related to copt = 7. To further illustrate the
clustering process, for copt = 7, Fig. 8(d) and (e) plot
its fuzzy cost and the membership curves, respec-
tively. Using the identified IFB ([2011, 2889] Hz),
Fig. 8(f) displays the optimal demodulated envelope
spectrum. In this figure, one can observe the rotat-
ing frequency and its harmonics. Fortunately, none of
the faulty characteristic frequency can be found in the
optimal demodulated envelope spectrum. This means
that the monitored bearing is in a healthy condition.

It should be noted that the minimum fuzzy compre-
hensive cost as shown in Fig. 8 (0.4693) is larger than
those shown in Fig. 6 (0.4019) and Fig. 7 (0.3973).
This is due to the faulty feature of the rolling ele-
ment bearing. In the fault detection experiment as
illustrated in Fig. 8, the bearing is normal so that the
clustering cost will be greater than those associated
with the faulty cases. Hence, it seems that the min-
imum fuzzy comprehensive cost is an auxiliary tool
for the detection of possible bearing faults.

6. Conclusions

In this paper, a fuzzy technique has been reported
to determine the informative frequency band (IFB)
for bearing fault detection. The frequency spectrum
of the bearing vibratory signal was segmented by
clusters found by a proposed application specific vari-
ant of fuzzy C-means (FCM) clustering. This was
capable of generating more meaningful sub-bands
than the classical mean partitions. As the origi-
nal FCM performs poorly in frequency spectrum
clustering, the work proposed a new dissimilarity
measure based on the selector cost and homogene-
ity. To better characterize the clustering cost for
different selectors, the fuzzy comprehensive evalu-
ation model was applied to combine three commonly
used selectors, i.e., kurtosis, smoothness index, and
crest factor. With the present fuzzy technique, the
IFB can be determined more meaningfully and accu-
rately. The optimal demodulated envelope spectrum
filtered by the IFB was then used to detect the exis-
tence of a bearing fault. The main contributions of
the present technique include: (1) fuzzy compre-
hensive evaluation by combining different selectors
makes the selector cost more effective in deter-
mining the IFB; (2) fuzzy clustering as a “soft”
segmentation method is more meaningful and finer
than classical “hard” mean partitions of the fre-
quency spectrum; and (3) joint fuzzy clustering and
fuzzy comprehensive evaluation are capable of deter-
mining the optimal IFB to enhance bearing fault
detection.

As reported in this paper, only the Fourier trans-
form was introduced for frequency band selection.
In addition to the Fourier transform, other time-
frequency tools such as wavelet transforms were used
for optimal filtering of the bearing vibratory signal. It
is noted that the present fuzzy technique can also be
used in these cases. The present fuzzy technique using
time-frequency tools and their application to rotating
machinery fault diagnosis will be investigated in our
further work.
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[16] T. Barszcz and A. Jabłoński, A novel method for the opti-
mal band selection for vibration signal demodulation and
comparison with the Kurtogram, Mechanical Systems and
Signal Processing 25(1) (2011), 431–451.

[17] W. He, Z.N. Jiang and K. Feng, Bearing fault detection
based on optimal wavelet filter and sparse code shrinkage,
Measurement 42(7) (2009), 1092–1102.

[18] C. Li and M. Liang, Time-frequency signal analysis for gear-
box fault diagnosis using a generalized synchrosqueezing
transform, Mechanical Systems and Signal Processing 26(1)
(2012), 205–217.

[19] C. Li, V. Sanchez, G. Zurita, M.C. Lozada and D. Cabrera,
Rolling element bearing defect detection using the general-
ized synchrosqueezing transform guided by time–frequency
ridge enhancement, ISA Transactions 60 (2016), 274–284.

[20] P. Flandrin, G. Rilling and P. Goncalves, Empirical mode
decomposition as a filter bank, IEEE Signal Processing
Letter 11(2) (2004), 112–114.

[21] C. Li, M. Liang, Y. Zhang and S. Hou, Multi-scale autocor-
relation via morphological wavelet slices for rolling element
bearing fault diagnosis, Mechanical Systems and Signal
Processing 31(8) (2012), 428–446.

[22] C. Li and M. Liang, Continuous-scale mathematical
morphology-based optimal scale band demodulation of
impulsive feature for bearing defect diagnosis, Journal of
Sound and Vibration 331 (2012), 5864–5879.

[23] S. Hou, M. Liang, Y. Zhang and C. Li, Vibration signal
demodulation and bearing fault detection: A clustering-
based segmentation method, IMeche Proceedings Part C:
Journal of Mechanical Engineering Science 228(11) (2014),
1888–1899.

[24] Y. Wang, X. Ma, M. Xu, Y. Wang and Y. Liu, Vehicle rout-
ing problem based on a fuzzy customer clustering approach
for logistics network optimization, Journal of Intelligent &
Fuzzy Systems (2015). doi: 10.3233/IFS-151578

[25] W. Niu and H. Zhang, A preference-based recommendation
method with fuzzy comprehensive evaluation, Intelligent
Decision Technologies 8(3) (2014), 179–187.

[26] P. Su, C. Shang and Q. Shen, A hierarchical fuzzy cluster
ensemble approach and its application to big data cluster-
ing, Journal of Intelligent & Fuzzy Systems 28(6) (2015),
2409–2421.

[27] J. Valente de Oliveira and W. Pedrycz, Advances in fuzzy
clustering and its applications, John Wiley & Sons Inc., New
York, NY, USA, 2007.

[28] J. Abonyi, B. Feil, S. Nemeth and P. Arva, Modified
Gath–Geva clustering for fuzzy segmentation of multivari-
ate time-series, Fuzzy Sets and System 149 (2005), 39–56.

[29] P. Fazendeiro and J. Valente de Oliveira, Observer biased
fuzzy clustering, IEEE Transactions on Fuzzy Systems 23(1)
(2015), 85–97.

[30] J. Guo, D. Fan, H. Che, Y. Duan, H. Wang and D. Zhang,
An approach to network security evaluation of computer
network information system with triangular fuzzy informa-
tion, Journal of Intelligent & Fuzzy Systems 28(5) (2015),
2029–2035.

[31] C. Li, R. Sanchez, G. Zurita, M. Cerrada, D. Cabrera and
R.E. Vásquez, Multimodal deep support vector classifica-
tion with homologous features and its application to gearbox
fault diagnosis, Neurocomputing 168 (2015), 119–127.


