

Malondialdehyde-modified LDL-related variables are associated with diabetic kidney disease in type 2 diabetes

著者別名	鈴木 浩明, 小林 和人, 岩? 仁, 矢藤 繁, 関谷 元博, 矢作 直也, 島野 仁					
journal or	Diabetes research and clinical practice					
publication title						
volume	141					
page range	237-243					
year	2018-07					
権利	(C) 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/					
URL	http://hdl.handle.net/2241/00153162					

doi: 10.1016/j.diabres.2018.05.019

Title

Malondialdehyde-modified LDL-related variables are associated with diabetic kidney disease in type 2 diabetes

Shoko Furukawa¹, Hiroaki Suzuki¹, Kazuya Fujihara², Kazuto Kobayashi¹, Hitoshi Iwasaki¹, Yoko Sugano¹, Shigeru Yatoh¹, Motohiro Sekiya¹, Naoya Yahagi¹, Hitoshi Shimano^{1,3}

¹Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan

²Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan

³International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan

Corresponding Author: Hiroaki Suzuki, MD, PhD. Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan

Phone: +81-29-853-3053 Fax: +81-29-853-3174

E-mail: hirosuzu@md.tsukuba.ac.jp

1 Abstract

- 2 Background and Aims: Oxidized low-density lipoprotein (oxLDL) causes the development of
- 3 atherosclerosis and kidney injury. Although circulating oxLDL levels were reportedly increased in type 2
- 4 diabetic patients with macroalbuminuria, it remains unclear whether albuminuria or the reduced glomerular
- 5 filtration rate (GFR) is independently associated with the circulating oxLDL level. This study aimed to
- 6 elucidate the association between the stage of diabetic nephropathy and serum malondialdehyde-modified
- 7 LDL (MDA-LDL) and the ratio of MDA-LDL to LDL-cholesterol (MDA-LDL/LDL).
- 8 **Methods and Results:** This retroactive cross-sectional study used data from 402 patients with type 2
- 9 diabetes. Patients undergoing hemodialysis were excluded. Serum MDA-LDL levels were significantly
- increased with increases in severity of albuminuria (103 \pm 44 U/L, 109 \pm 54 U/L, and 135 \pm 72 U/L for
- normoalbuminuria, microalbuminuria, and macroalbuminuria, respectively; P for trend = 0.020) but not
- 12 according to the estimated GFR (eGFR). An increased MDA-LDL/LDL ratio was significantly associated
- with both increased albuminuria (35 \pm 13, 37 \pm 14, and 40 \pm 15 for normoalbuminuria, microalbuminuria, and

macroalbuminuria, respectively; P for trend = 0.003) and reduced eGFR (34 ± 13 , 36 ± 13 , 38 ± 12 , and 51 ± 13 1 28 for grade 1, 2, 3 and 4, respectively; P for trend = 0.002). Multiple linear regression analysis showed that 2 neither the albumin excretion rate nor eGFR but ln-transformed triglycerides and LDL-C levels were 3 independent determinants of both serum MDA-LDL levels and MDA-LDL/LDL ratios. 4 Conclusion: Serum MDA-LDL levels and MDA-LDL/LDL ratios were increased in those with dyslipidemia 5 associated with diabetic kidney disease. 6 7 **Keywords:** malondialdehyde-modified low-density lipoprotein; type 2 diabetes; albuminuria; estimated 8 glomerular filtration rate; dyslipidemia 9 10 **Abbreviations** 11

AER, albumin excretion rate: BMI, body mass index; CKD, chronic kidney disease; CVD, cardiovascular

disease; DPP-4, dipeptidyl peptidase-4; eGFR, estimated glomerular filtration rate; EPA, eicosapentaenoic

12

- 1 acid; FPG, fasting plasma glucose; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density
- 2 lipoprotein-cholesterol; ln AER, ln-transformed AER; ln HDL-C, ln-transformed HDL; ln TG, ln-transformed
- 3 TG; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL
- 4 cholesterol ratio, oxLDL, oxidized low-density lipoprotein; TG, triglycerides

1 1. Background

11

12

13

patients with CAD [4].

Diabetes mellitus is a high-risk state for atherosclerosis, leading to increased morbidity and mortality 2 3 due to cardiovascular disease (CVD). It is also widely accepted that chronic kidney disease (CKD) presents a substantial risk for CVD. The presence of both diabetes and CKD is associated with a higher incidence of 4 myocardial infarction and all-cause mortality compared with diabetes or CKD alone [1]. 5 Oxidized low-density lipoprotein (oxLDL) has a pivotal role in the initiation and progression of 6 atherosclerosis. oxLDL elicits foam cell formation, leading to increased release of inflammatory cytokines 7 and chemokines from foam cells. It also stimulates medial smooth muscle cell migration into the intima, which 8 was shown to be an important process for intimal thickening in atherosclerotic lesions [2]. Serum 9 malondialdehyde-modified LDL (MDA-LDL), which is a type of oxidized LDL, was reported as a prognostic 10

presence and development of coronary artery disease [5, 6]. The MDA-LDL/LDL was independently

marker for future cardiac events in patients with stable angina and coronary stent implantation [3] or in diabetic

The MDA-LDL-to-LDL cholesterol ratio (MDA-LDL/LDL) could predict the

- associated with the coronary artery calcification score in patients with hemodialysis [7].
- 2 Recent studies have shown that oxLDL can contribute to the development of diabetic nephropathy
- 3 through inducing injuries to podocytes [8], tubulointerstitial cells [9] and endothelial cells [10]. Production of
- 4 collagen IV in mesangial cells was also reported as a contributor to the progression of diabetic nephropathy,
- 5 which is stimulated by oxLDL-containing immune complexes [9]. Immunoglobulin G antibodies reacting with
- 6 MDA-LDL lysine epitopes in circulating immune complexes were noted as a predictor of the development of
- 7 macroalbuminuria in patients with type 2 diabetes [11]. Circulating oxLDL was reportedly increased in
- 8 albuminuria in patients with diabetic nephropathy as well as in patients with end-stage renal diseases [12-14].
- 9 Although albuminuria was negatively correlated with the estimated glomerular filtration rate (eGFR) [15],
- there have been no studies on the association between oxLDL and eGFR in diabetes. Moreover, it is not clear
- whether albuminuria or eGFR is independently associated with circulating oxLDL levels.
- To elucidate the association between the stage of diabetic nephropathy and serum MDA-LDL or the
- 13 MDA-LDL/LDL, we conducted a cross-sectional study of patients with type 2 diabetes.

1 **2. Methods**

2

2.1. Study participants

- 3 We conducted a retrospective cross-sectional study using data on patients with type 2 diabetes who were
- 4 admitted to the University of Tsukuba Hospital from January 2012 to December 2015. All patients had
- 5 undergone a structured interview, physical examination, and laboratory analysis. We excluded data on patients
- 6 undergoing hemodialysis, with the complications of diabetic ketoacidosis, hyperglycemia hyperosmolar
- 7 syndrome, viral hepatitis, liver cirrhosis, malignancy, endocrine disorders affecting serum lipid levels,
- 8 infectious diseases, inflammatory diseases, pregnancy, renal diseases other than diabetic kidney disease, and
- 9 the use of systemic glucocorticoids, and who were under 20 years of age. Hypertension was defined as systolic
- 10 blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg and/or the current use of
- antihypertensive agents. This retrospective study was approved by the Ethics Committee of the University of
- 12 Tsukuba Hospital and conducted according to the Declaration of Helsinki.

2.2. Laboratory Analysis

- Blood samples were collected in the morning after an overnight fast within 3 days after admission.
- 2 Plasma glucose and serum total cholesterol, high-density lipoprotein-cholesterol (HDL-C), triglycerides (TG),
- 3 and creatinine levels were determined using an automated analyzer (7700 clinical analyzer; Hitachi High-
- 4 Technologies Corporation, Tokyo, Japan). HbA1c was measured by high-performance liquid chromatography
- 5 (Tosoh Corporation, Tokyo, Japan). Serum LDL-C levels were measured by a homogeneous assay (Sekisui
- 6 Medical, Tokyo, Japan). Serum concentrations of MDA-LDL were quantitated by an enzyme-linked
- 7 immunosorbent assay (Sekisui Medical, Tokyo, Japan). Albumin excretion rate (AER) was measured using
- 8 24-hour urine specimens. eGFR was calculated using an equation modified for the Japanese: eGFR = 194×10^{-10}
- 9 sCre $^{-1.0949}$ × Age $^{-0.287}$ × 0.739 (if female) [16]. AER and eGFR were categorized according to the 2012 Kidney
- Disease: Improving Global Outcomes clinical practice guidelines [17].

11 **2.3. Statistical Analysis**

- 12 Continuous variables were expressed as mean \pm SD or median and interquartile range based on distribution.
- Values of TG, HDL-C, and AER were log transformed due to their non-normal distribution. MDA-LDL-

- 1 related variables (MDA-LDL and MDA-LDL/LDL) and lipid parameters were stratified by nephropathy
- 2 categories (AER <30, \geq 30<300, or \geq 300 mg/day; eGFR \geq 90, \geq 60<90, \geq 30<60, or <30 ml/min/1.73m²) and
- 3 were compared by the Kruskal-Wallis test because homogeneities of variance were not assumed for all
- 4 variables. A Jonckheere–Terpastra test was used to analyze trends through categories. A Pearson's correlation
- 5 coefficient or a Spearman's correlation coefficient was used to examine bivariate associations between MDA-
- 6 LDL-related variables and clinical parameters, depending on distributions of the values of the parameters. A
- 7 multiple linear regression analysis was performed to study independent determinants of MDA-LDL-related
- 8 variables. A logistic regression analysis was conducted to examine whether MDA-LDL-related variables were
- 9 independent predictors of the presence of CVD. Statistical analyses were performed using the Statistical
- 10 Package for Social Science Statistics (version 23.0; Chicago, IL, USA). Statistical significance was considered
- 11 at a P value of <0.05.

3. Results

2

3.1. Characteristics of Participants

- Initially, data on 1,014 patients with type 1 and type 2 diabetes were examined; however, patients
- 4 were excluded for the following reasons: undergoing hemodialysis (n = 6), diabetic ketoacidosis or
- 5 hyperglycemia hyperosmolar syndrome (n = 40), acute illness (n = 88), perioperative period (n = 3), viral
- 6 hepatitis and/or liver cirrhosis (n = 40), malignancy (n = 135), endocrine disorders affecting serum lipid levels
- 7 (n = 121), inflammatory diseases (n = 24), pregnancy (n = 33), renal diseases other than diabetic kidney disease
- 8 (n = 14), use of systemic glucocorticoids (n = 33), MDA-LDL and/or other lipid parameters not measured (n = 14), use of systemic glucocorticoids (n = 33), MDA-LDL and/or other lipid parameters not measured (n = 34), where (n = 14) is a simple parameter of (n = 34).
- 9 = 15), and age under 20 years (n = 6). After these exclusions, 456 patients were eligible for analysis. Of these,
- we analyzed data on 402 patients who had type 2 diabetes.
- 11 Table 1 shows the characteristics of the study participants. Their mean age was 57 \pm 13 years, median
- duration of diabetes was 9.0 (3.0 16.0) years, mean body mass index (BMI) was 27.0 \pm 5.4 kg/m², mean
- fasting plasma glucose (FPG) was 9.4 \pm 2.7 mmol/L, and mean HbA1c level was 9.9 \pm 1.9%. In terms of

- 1 renal function, the mean eGFR was $86.6 \pm 29.5 \text{ mL/min/}1.73\text{m}^2$ and median AER was 13.8 (6.2 47.7)
- 2 mg/day. The mean MDA-LDL value and MDA-LDL/LDL were 107 \pm 50 U/L and 36 \pm 14
- 3 [U/L]/[mmol/L], respectively.
- 4 Almost half of the patients were treated with sulfonylureas, metformin, and/or dipeptidyl peptidase-4 (DPP-
- 5 4) inhibitors (41%, 41%, and 47%, respectively). Thirty-eight percent of patients were prescribed renin-
- 6 angiotensin system inhibitors. Statins were used by 38% of patients and other lipid lowering drugs were
- 7 prescribed for smaller groups (fibrate, ezetimib, and eicosapentaenoic acid [EPA] for 3%, 2%, and 3% of
- 8 participants, respectively).

9 3.2. Associations between MDA-LDL-related variables and renal function

- Table 2 shows the associations between the AER and lipid parameters. Serum MDA-LDL levels trended
- towards a positive association according to worsening of the category of albuminuria (p = 0.006, p for trend
- 12 = 0.020), and the MDA-LDL/LDL showed a significant positive association as the category of albuminuria
- worsened (p = 0.008, p for trend = 0.003). As shown in Table 3, MDA-LDL levels did not differ significantly

- among the categories of eGFR (p = 0.321, p for trend = 0.527). On the other hand, the MDA-LDL/LDL had
- a significant positive association with deterioration of the eGFR (p = 0.013, p for trend = 0.002).
- 3 3.3. Associations between MDA-LDL-related variables and clinical parameters
- 4 As shown in Table 4, MDA-LDL levels were positively correlated with diastolic blood pressure, FPG, HbA1c,
- 5 In-transformed AER (ln AER), In-transformed TG (ln TG), and LDL (p = <0.001, 0.006, <0.001, <0.001,
- 6 <0.001, and <0.001, respectively), whereas they were inversely correlated with age, taking statins, and ln-
- 7 transformed HDL (ln HDL-C) (p = <0.001, <0.001, and 0.001, respectively). The levels of MDA-LDL/LDL
- 8 had a positive correlation with hypertension, CVD, ln AER, statins, and ln TG (p = 0.003, <0.001, 0.002,
- 9 <0.001, and <0.001, respectively), whereas there was an inverse correlation with eGFR, ln HDL-C, and LDL-
- 10 C (p = 0.005, <0.001, and <0.001, respectively).
- 3.4. Multiple linear regression analyses of MDA-LDL-related variables
- 12 To determine the clinical parameters that were independently associated with MDA-LDL-related variables, a
- multiple linear regression analysis was performed that included the following variables: age, sex, CVD,

- 1 current smoking, BMI, hypertension, FPG, HbA1c, eGFR, ln AER, ln TG, ln HDL-C, LDL-C, taking statins
- 2 and/or ezetimib, taking fibrates and/or EPA, and taking renin-angiotensin system inhibitors. Results showed
- 3 that not AER nor eGFR but LDL-C and ln TG were independent determinants of both MDA-LDL and MDA-
- 4 LDL/LDL (adjusted $R^2 = 0.451$ and 0.332, respectively) (Table 5).
- 5 3.5. Logistic regression analyses of MDA-LDL-related variables
- 6 Logistic regression analyses showed that MDA-LDL/LDL was an independent predictor of CVD but that
- 7 MDA-LDL was not after adjustments for age, sex, duration of diabetes, hypertension, smoking, dyslipidemia,
- 8 eGFR and AER (model 1) or age, sex, duration of diabetes, hypertension, smoking, dyslipidemia and diabetic
- 9 kidney disease (model 2) (Supplemental Table 1).

1 **4. Discussion**

13

In this study, we examined the association between the stage of diabetic nephropathy and serum 2 3 MDA-LDL-related variables. There were three major findings in the current study. First, serum MDA-LDL levels were significantly increased with increases in the severity of albuminuria but not with those of eGFR. 4 Second, both increased albuminuria and reduced eGFR were significantly associated with an increased MDA-5 6 LDL/LDL. Third, multiple linear regression analyses showed that not albuminuria nor eGFR but ln TG and LDL-C levels were independent determinants of both serum MDA-LDL levels and the MDA-LDL/LDL. 7 Whether circulating oxLDL levels are increased in patients with type 2 diabetes with severe 8 albuminuria is controversial. It was shown that serum oxLDL levels were increased in type 2 diabetic patients 9 with macroalbuminuria [13, 18] which is consistent with this study, but one study could not find such an 10 11 association [19]. Since AER levels are negatively correlated with eGFR and Honda et al. reported that serum MDA-LDL levels were significantly lower in patients with CKD stage 5 than in those with CKD stage 2-3 or 12

stage 4 [20], it is possible that a decreased eGFR obscures the association between serum oxLDL levels and

- 1 severity of albuminuria. However, this possibility is unlikely because serum MDA-LDL levels had a
- 2 significant positive association with the AER but no significant association was observed between serum
- 3 MDA-LDL levels and the eGFR in the current study.
- In the current study, the MDA-LDL/LDL was significantly correlated with both albuminuria and
- 5 eGFR in bivariate analyses. However, those associations did not persist after adjustment for confounding
- 6 factors. To our knowledge, this is the first investigation of the association between MDA-LDL/LDL and
- 7 albuminuria or eGFR. It was shown that the oxLDL-to-LDL-C ratio or MDA-LDL/LDL was a superior
- 8 predictor of coronary artery disease compared with the serum MDA-LDL level in cross-sectional studies [5,
- 9 21] and a prospective study [22]. Both increased urinary albumin levels and decreased eGFRs were reportedly
- independent predictors of CVD in type 2 diabetes [23-25]. In the current study, not serum MDA-LDL levels
- but the MDA-LDL/LDL was an independent predictor of CVD after adjustment for confounding factors
- including AER and eGFR or complicating diabetic kidney disease.
- 13 It was shown that serum oxLDL or MDA-LDL levels had positive associations with serum TG and

- 1 LDL-C levels [26-28] and negative associations with serum HDL-C levels [28]. Dyslipidemia in CKD is
- 2 characterized by elevated serum TG levels and increased proportions of small dense LDL particles and
- 3 decreased serum HDL-C [29]. Serum LDL-C values are increased according to the severity of albuminuria
- 4 [30]. The current results showed that serum ln TG and LDL-C were significantly and positively correlated
- 5 with serum MDA-LDL levels in bivariate analyses. MDA-LDL/LDL had a significantly positive correlation
- 6 with In TG and a negative correlation with LDL-C. Serum HDL-C levels had a significantly negative
- 7 correlation with both serum MDA-LDL and the MDA-LDL/LDL. Serum ln TG and LDL-C but not serum ln
- 8 HDL-C, ln AER, and eGFR were independent determinants of serum MDA-LDL levels and MDA-LDL/LDL
- 9 in multiple linear regression analyses. The studies in which serum TG and/or LDL-C were increased according
- 10 to the severity of albuminuria showed significantly increased serum oxLDL levels in macroalbuminuria in
- 11 type 2 diabetes [13, 18]. On the other hand, serum LDL-C values seemed not to be different among categories
- of albuminuria in the study that showed no association between serum oxLDL levels and severity of
- 13 albuminuria [19]. Consequently, increased serum MDA-LDL and MDA-LDL/LDL accompanied by increased

- 1 AERs or decreased eGFRs probably result from dyslipidemia associated with diabetic kidney disease.
- There is limited evidence of the association between MDA-LDL or oxLDL and CKD in nondiabetic
- 3 study participants. Kuchta and colleagues reported that plasma oxLDL levels were significantly increased in
- 4 all stages (stage 3, stage 4, stage 5, hemodialysis and peritoneal dialysis) of CKD including that in patients
- 5 with diabetes in addition to CKD in comparison with healthy study participants [31]. They also showed that
- 6 mean plasma TG levels in all CKD groups were higher than that in healthy individuals [31]. However, this
- 7 study did not analyze the association between circulating oxLDL levels and TG levels with bivariate or
- 8 multivariate analysis so it remains unclear whether the association between circulating oxLDL levels and CKD
- 9 stages is independent of dyslipidemia.
- Although serum levels of TG and LDL-C were the only independent determinants of both serum
- MDA-LDL levels and MDA-LDL/LDL, these lipid parameters could only contribute less than 50% to the
- value of MDA-LDL-related variables (Table 5). The logistic regression analyses showed that the MDA-
- 13 LDL/LDL was an independent determinant of the presence of CVD after adjustments for age, sex, duration of

- diabetes, hypertension, smoking, dyslipidemia and diabetic kidney disease. Therefore, measuring serum
- 2 MDA-LDL levels in addition to serum lipid levels could provide further information when assessing
- 3 cardiovascular risk in patients with advanced diabetic kidney disease.
- 4 Several limitations of this study should be addressed. First, it was retrospective and cross-sectional,
- 5 which does not allow us to derive any cause-effect relationship. Although both AER and eGFR were not
- 6 independent determinants of MDA-LDL-related variables in this study, the possibility that increased MDA-
- 7 LDL or MDA-LDL/LDL promotes albuminuria and/or an eGFR decline is not excluded. Moreover, there was
- 8 a small number of participants with macroalbuminuria or an eGFR of less than 30 mL/min/1.73 m². Therefore,
- 9 we might have underestimated the association between MDA-LDL or MDA-LDL/LDL and albuminuria or
- 10 eGFR in the multivariate analyses. Serum LDL-C and ln TG were independent determinants of MDA-LDL-
- related variables. Seventy percent of the participants with CVD were taking lipid-lowering drugs in contrast
- 12 to 34% of those without CVD. Thus, taking lipid-lowering drugs could obscure the association between the
- 13 MDA-LDL-related variables and the risk of CVD (data not shown). Second, most of our patients had been

1	hospitalized for poor glycemic control. These issues could have introduced selection bias. Our results should
2	be confirmed in prospective studies.
3	In conclusion, increased serum MDA-LDL levels and MDA-LDL/LDL in type 2 diabetic patients with
4	albuminuria or decreased eGFR possibly results from dyslipidemia associated with diabetic kidney disease.
5	
6	Author's contributions
7	SF designed the study, analyzed the data, and wrote the manuscript. HSu and KF designed the study and wrote
8	the manuscript. KK, HI, SY, YS, MS, NY, and HSh contributed to the discussion and reviewed the manuscript.
9	All authors read and approved the final manuscript.
10	Acknowledgements
11	The authors thank the senior and chief residents who worked for the Department of Endocrinology and
12	Metabolism, University of Tsukuba Hospital.
13	Competing Interests

1	The authors declare that they have no competing interests.
2	Funding
3	This work was supported by a Grant-in-Aid for Scientific Research (#15K01701) from the Japan
4	Society for the Promotion of Science (JSPS) and a grant from the Takeda Pharmaceutical Company Limited.

References

1

- 2 1. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, James MT, Hemmelgarn BR. Risk
- of coronary events in people with chronic kidney disease compared with those with diabetes: a
- 4 population-level cohort study. The Lancet. 2012; 380(9844):807-14.
- 5 2. Kohno M, Yokokawa K, Yasunari K, Kano H, Minami M, Ueda M, Yoshikawa J. Effect of natriuretic
- 6 peptide family on the oxidized LDL-induced migration of human coronary artery smooth muscle cells.
- 7 Circ Res. 1997; 81(4):585-90.
- 8 3. Ito T, Fujita H, Tani T, Ohte N. Malondialdehyde-modified low-density lipoprotein is a predictor of
- 9 cardiac events in patients with stable angina on lipid-lowering therapy after percutaneous coronary
- intervention using drug-eluting stent. Atherosclerosis. 2015; 239(2):311-7.
- 11 4. Kotani K, Tashiro J, Yamazaki K, Nakamura Y, Miyazaki A, Bujo H, Saito Y, Kanno T, Maekawa M.
- 12 Investigation of MDA-LDL (malondialdehyde-modified low-density lipoprotein) as a prognostic
 - marker for coronary artery disease in patients with type 2 diabetes mellitus. Clin Chim Acta. 2015;
- 14 450:145-50.

13

- 5. Fujihara K, Suzuki H, Sato A, Kodama S, Heianza Y, Saito K, Iwasaki H, Kobayashi K, Yatoh S,
 - Takahashi A et al. Circulating malondialdehyde-modified LDL-related variables and coronary artery
- stenosis in asymptomatic patients with type 2 diabetes. J Diabetes Res. 2015; 2015:507245.
- 18 6. Miyazaki T, Shimada K, Sato O, Kotani K, Kume A, Sumiyoshi K, Sato Y, Ohmura H, Watanabe Y,
- Mokuno H et al. Circulating malondialdehyde-modified LDL and atherogenic lipoprotein profiles
- 20 measured by nuclear magnetic resonance spectroscopy in patients with coronary artery disease.
- 21 Atherosclerosis. 2005; 179(1):139-45.
- 22 7. Asamiya Y, Yajima A, Tsuruta Y, Otsubo S, Nitta K. Oxidised LDL/LDL-cholesterol ratio and
- coronary artery calcification in haemodialysis patients. Nutr Metab Cardiovasc Dis. 2013; 23(7):619-
- 24 27.
- 25 8. Nosadini R, Tonolo G. Role of oxidized low density lipoproteins and free fatty acids in the
- pathogenesis of glomerulopathy and tubulointerstitial lesions in type 2 diabetes. Nutr Metab
- 27 Cardiovasc Dis. 2011; 21(2):79-85.

- 1 9. Abdelsamie SA, Li Y, Huang Y, Lee MH, Klein RL, Virella G, Lopes-Virella MF. Oxidized LDL
- 2 immune complexes stimulate collagen IV production in mesangial cells via Fc gamma receptors I and
- 3 III. Clin Immunol. 2011; 139(3):258-66.
- 4 10. Tousoulis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, Stefanadis C.
- 5 Diabetes mellitus-associated vascular impairment: novel circulating biomarkers and therapeutic
- 6 approaches. J Am Coll Cardiol. 2013; 62(8):667-76.
- 7 11. Lopes-Virella MF, Hunt KJ, Baker NL, Virella G, Investigators VGo. High levels of AGE-LDL, and
- 8 of IgG antibodies reacting with MDA-lysine epitopes expressed by oxLDL and MDA-LDL in
- 9 circulating immune complexes predict macroalbuminuria in patients with type 2 diabetes. J Diabetes
- 10 Complications. 2016; 30(4):693-9.
- 12. Lobo J, Santos F, Grosso D, Lima R, Barreira AL, Leite M, Jr., Mafra D, Abdalla DS. Electronegative
- LDL and lipid abnormalities in patients undergoing hemodialysis and peritoneal dialysis. Nephron
- 13 Clin Pract. 2008; 108(4):c298-304.
- 14 13. Nakhjavani M, Esteghamati A, Khalilzadeh O, Asgarani F, Mansournia N, Abbasi M. Association of
- macroalbuminuria with oxidized LDL and TGF-beta in type 2 diabetic patients: a case-control study.
- 16 Int Urol Nephrol. 2010; 42(2):487-92.
- 17 14. Ujihara N, Sakka Y, Takeda M, Hirayama M, Ishii A, Tomonaga O, Babazono T, Takahashi C,
- Yamashita K, Iwamoto Y. Association between plasma oxidized low-density lipoprotein and diabetic
- 19 nephropathy. Diabetes research and clinical practice. 2002; 58(2):109-14.
- 20 15. Wu MT, Lam KK, Lee WC, Hsu KT, Wu CH, Cheng BC, Ng HY, Chi PJ, Lee YT, Lee CT. Albuminuria,
- 21 proteinuria, and urinary albumin to protein ratio in chronic kidney disease. J Clin Lab Anal. 2012;
- 22 26(2):82-92.
- 23 16. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H,
- 24 Hishida A et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney
- 25 Dis. 2009; 53(6):982-92.
- 26 17. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO clinical practice
- 27 guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013; 3:1-

- 1 150.
- 2 18. Ujihara N, Sakka Y, Takeda M, Hirayama M, Ishii A, Tomonaga O, Babazono T, Takahashi C,
- 3 Yamashita K, Iwamoto Y. Association between plasma oxidized low-density lipoprotein and diabetic
- 4 nephropathy. Diabetes Res Clin Pract. 2002; 58(2):109-14.
- 5 19. Behzadi P, Torabi F, Amini M, Aminorroaya A. Comparison of ox-LDL Levels in Diabetic Patients
- 6 with Normo-, Micro-, and Macroalbuminuria with Their First Degree Relatives and the Healthy
- 7 Control Group. Int J Endocrinol. 2012; 2012:167154.
- 8 20. Honda H, Hirano T, Ueda M, Kojima S, Mashiba S, Hayase Y, Michihata T, Shibata T. High-density
- 9 lipoprotein subfractions and their oxidized subfraction particles in patients with chronic kidney disease.
- Journal of atherosclerosis and thrombosis. 2016; 23(1):81-94.
- 11 21. Huang H, Mai W, Liu D, Hao Y, Tao J, Dong Y. The oxidation ratio of LDL: a predictor for coronary
- 12 artery disease. Disease markers. 2008; 24(6):341-9.
- Huang H, Ma R, Liu D, Liu C, Ma Y, Mai W, Dong Y. Oxidized low-density lipoprotein cholesterol
- and the ratio in the diagnosis and evaluation of therapeutic effect in patients with coronary artery
- disease. Dis Markers. 2012; 33(6):295-302.
- Drury PL, Ting R, Zannino D, Ehnholm C, Flack J, Whiting M, Fassett R, Ansquer JC, Dixon P, Davis
- 17 TM et al. Estimated glomerular filtration rate and albuminuria are independent predictors of
- cardiovascular events and death in type 2 diabetes mellitus: the Fenofibrate Intervention and Event
- Lowering in Diabetes (FIELD) study. Diabetologia. 2011; 54(1):32-43.
- 20 24. Ninomiya T, Perkovic V, de Galan BE, Zoungas S, Pillai A, Jardine M, Patel A, Cass A, Neal B, Poulter
- N et al. Albuminuria and kidney function independently predict cardiovascular and renal outcomes in
- 22 diabetes. J Am Soc Nephrol. 2009; 20(8):1813-21.
- 23 25. Solini A, Penno G, Bonora E, Fondelli C, Orsi E, Arosio M, Trevisan R, Vedovato M, Cignarelli M,
- 24 Andreozzi F et al. Diverging association of reduced glomerular filtration rate and albuminuria with
- coronary and noncoronary events in patients with type 2 diabetes: the renal insufficiency and
- cardiovascular events (RIACE) Italian multicenter study. Diabetes Care. 2012; 35(1):143-9.
- 27 26. Hurtado-Roca Y, Bueno H, Fernandez-Ortiz A, Ordovas JM, Ibañez B, Fuster V, Rodriguez-Artalejo

- F, Laclaustra M. Oxidized LDL Is Associated With Metabolic Syndrome Traits Independently of
- 2 Central Obesity and Insulin Resistance. Diabetes. 2016:db160933.
- 3 27. Takahashi R, Imamura A, Yoshikane M, Suzuki M, Cheng XW, Numaguchi Y, Ikeda N, Murohara T,
- 4 Okumura K. Circulating malondialdehyde-modified low-density lipoprotein is strongly associated
- 5 with very small low-density lipoprotein cholesterol concentrations in healthy men. Clin Chim Acta.
- 6 2009; 399(1-2):74-8.
- 7 28. Matsuda M, Tamura R, Kanno K, Segawa T, Kinoshita H, Nishimoto O, Nishiyama H, Kawamoto T.
- 8 Impact of dyslipidemic components of metabolic sycdrome, adiponectin levels, and anti-diabetes
- 9 medications on malondialdehyde-modified low-density lipoprotein levels in statin-treated diabetes
- patients with coronary artery disease. Diabetology & Metabolic Syndrome. 2013; 5(77).
- 11 29. Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol Metabolism in CKD. Am J
- 12 Kidney Dis. 2015; 66(6):1071-82.
- 13 30. Hirano T. Abnormal lipoprotein metabolism in diabetic nephropathy. Clin Exp Nephrol. 2014;
- 14 18(2):206-9.
- 15 31. Kuchta A, Pacanis A, Kortas-Stempak B, Cwiklinska A, Zietkiewicz M, Renke M, Rutkowski B.
- Estimation of oxidative stress markers in chronic kidney disease. Kidney Blood Press Res. 2011;
- 17 34(1):12-9.

Table 1. Clinical characteristics of participants

n	402		
Female, n (%)	159 (40)	Antidiabetic drugs, n (%)	
Age (year)	57 ± 13	Sulfonylureas	164 (41)
Duration of diabetes (year)	9.0(3.0-16.0)	Metformin	164 (41)
Body mass index (kg/m ²)	27.0 ± 5.4	Thiazolidinedione	27 (7)
Hypertension*, n (%)	278 (69)	Glinides	11 (3)
Systolic blood pressure (mmHg)	134 ± 20	α-Glucosidase inhibitors	59 (15)
Diastolic blood pressure (mmHg)	78 ± 13	DPP-4 inhibitors	190 (47)
Current smoker, n (%)	107 (27)	GLP-1 receptor agonists	15 (4)
Cardiovascular disease, n (%)	84 (21)	SGLT-2 inhibitors	4(1)
Estimated GFR (mL/min/1.73m ²)	86.6 ± 29.5	Insulin	133 (33)
Albumin excretion rate (mg/day)	13.8 (6.2 - 47.7)	Antihypertensive drugs, n (%)	,
Fasting plasma glucose (mmol/L)	9.4 ± 2.7	Renin-angiotensin system inhibitors	n 154 (38) 138
HbA1c (%)	9.9 ± 1.9	Calcium channel blockers	(34)
C-reactive protein (mg/dL)	0.80 (0.03 – 0.23)	Diuretics	49 (12)
Total cholesterol (mmol/L)	5.0 ± 1.2	β-blockers	35 (8)
Triglycerides (mmol/L)	1.6(1.1 - 2.2)	Lipid lowering drugs	
HDL cholesterol (mmol/L)	1.09 (0.92 – 1.30)	Statins	152 (38)
LDL cholesterol (mmol/L)	3.1 ± 1.0	Fibrates	11 (3)
MDA-LDL (U/L)	107 ± 50	Ezetimibe	7 (2)
$MDA\text{-}LDL/LDL \left(\left[U/L \right]/\left[mmol/L \right] \right)$	36 ± 14	Eicosapentaenoic acid	12 (3)

Data are mean \pm SD or median (interquartile range). Hypertension: systolic blood pressure \geq 140 and/or diastolic blood pressure \geq 90 or taking antihypertensive drugs. DPP-4, dipeptidyl peptidase-4; GFR, glomerular filtration rate; GLP-1, glucagon-like peptide-1; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio; SGLT-2, sodium-glucose cotranspoter-2

Table 2. Associations between albumin excretion rate and lipid parameters

	Albu	P	P for trend		
	< 30	30 - < 300	300 -		
n	266	97	39		
MDA-LDL (U/L)	103 ± 44	109 ± 54	$135 \pm 72*\dagger\dagger$	0.006	0.020
MDA-LDL/LDL([U/L]/[mmol/L])	35 ± 13	37 ± 14	$40 \pm 15*$	0.008	0.003
Total cholesterol (mmol/L)	4.9 ± 1.0	4.9 ± 1.2	$5.9 \pm 2.0 * \dagger$	0.012	0.298
Triglycerides (mmol/L)	1.5(1.1-2.1)	1.7(1.1 - 2.6)	2.3 (1.7 – 3.5)***††	< 0.001	< 0.001
HDL cholesterol (mmol/L)	1.10(0.93 - 1.37)	1.07(0.91 - 1.24)	1.09(0.89 - 1.24)	0.124	0.044
LDL cholesterol (mmol/L)	3.0 ± 0.9	3.0 ± 1.0	3.4 ± 1.5	0.306	0.952

Data are mean \pm SD or median (interquartile range). * *P <0.05 and *** *P <0.001 vs. albumin excretion rate of <30. † *P <0.05 and † *P <0.01 vs. albumin excretion rate of 30 - <300. HDL; high-density lipoprotein; LDL, low-density lipoprotein; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio.

Table 3. Associations between estimated GFR and serum lipid parameters

	Estimated GFR (mL/min/1.73m ²)				P	P for trend
	90 -	< 90 - 60	< 60 - 30	< 30		
n	172	158	61	11		
MDA-LDL (U/L)	108 ± 50	107 ± 49	100 ± 45	141 ± 90	0.321	0.527
MDA-LDL/LDL ([U/L] / [mmol/L])	34 ± 13	36 ± 13	38 ± 12	51 ± 28	0.013	0.002
Total cholesterol (mmol/L)	5.2 ± 1.1	5.0 ± 1.3	$4.6 \pm 1.2*$	5.2 ± 1.5	0.002	< 0.001
Triglycerides (mmol/L)	1.6(1.1 - 2.2)	1.5(1.1-2.1)	1.7(1.3 - 2.4)	2.3(2.0-2.6)†	0.019	0.424
HDL cholesterol (mmol/L)	1.10(0.96 - 1.35)	1.13(0.97 - 1.33)	0.98 (0.85 - 1.13)**††	0.89(0.74 - 1.08)	< 0.001	0.001
LDL cholesterol (mmol/L)	3.2 ± 0.9	3.1 ± 1.0	$2.7 \pm 1.0***$ †	2.9 ± 1.1	< 0.001	< 0.001

Data are mean \pm SD or median (interquartile range). *P <0.05, **P <0.01 and **P <0.001 vs. eGFR of 90 -, †P <0.05 and ††P <0.01 vs. eGFR of <90 - 60. HDL; high-density lipoprotein; LDL, low-density lipoprotein; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio

Table 4. Correlations between MDA-LDL-related variables and clinical parameters

	MDA-LDL		MDA-LDI	L/LDL
	\overline{r}	P	r	P
Age	-0.221	< 0.001	-0.049	0.326
Systolic blood pressure	0.047	0.350	0.017	0.734
Diastolic blood pressure	0.187	< 0.001	0.088	0.077
Hypertension a)	-0.007	0.885	0.150	0.003
Cardiovascular disease a)	-0.095	0.056	0.178	< 0.001
Fasting plasma glucose	0.137	0.006	0.074	0.136
HbA1c	0.180	< 0.001	0.032	0.528
Estimated GFR	-0.001	0.989	-0.138	0.005
In Albumin excretion rate	0.200	< 0.001	0.157	0.002
Statins ^{a)}	-0.188	< 0.001	0.199	< 0.001
Fibrates a)	-0.028	0.578	-0.028	0.579
In Triglycerides	0.486	< 0.001	0.504	< 0.001
In HDL cholesterol	-0.158	0.001	-0.259	< 0.001
LDL cholesterol	0.547	< 0.001	-0.182	< 0.001

Parametric values are tested by Pearson's correlation. a) Non-parametric values are tested by Spearman's correlation. GFR, glomerular filtration rate; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ln HDL cholesterol, ln-transformed high-density lipoprotein cholesterol; ln triglycerides, ln-transformed triglycerides; MDA-LDL, malondialdehyde-modified low-density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio

Table 5. Multivariate association of MDA-LDL-related variables with clinical parameters

	MDA-LDL (Adjusted $R^2 = 0.451$)			MDA-LDL	MDA-LDL/LDL (Adjusted $R^2 = 0.332$)		
Covariates	β	Standard Error	P	β	Standard Error	P	
Age	-0.107	0.192	0.579	-0.054	0.058	0.346	
Sex	3.243	4.224	0.443	0.817	1.269	0.520	
Cardiovascular disease	1.531	5.136	0.766	0.933	1.543	0.546	
Current smoker	-6.638	4.734	0.162	-2.356	1.422	0.098	
BMI	-0.596	0.408	0.145	-0.236	0.123	0.055	
Hypertension	4.400	5.245	0.402	1.204	1.576	0.445	
Fasting plasma glucose	-1.261	0.845	0.136	-0.420	0.254	0.099	
HbA1c	2.063	1.187	0.083	0.566	0.357	0.113	
eGFR	-0.082	0.082	0.317	-0.027	0.025	0.266	
ln AER	0.291	1.228	0.813	-0.019	0.369	0.958	
In Triglycerides	38.185	3.556	< 0.001	15.286	1.390	< 0.001	
In HDL cholesterol	1.792	9.343	0.848	1.021	2.807	0.716	
LDL cholesterol	24.518	1.928	< 0.001	-4.084	0.692	< 0.001	
Taking statins and/or ezetimibe	-2.823	4.642	0.543	-1.258	1.395	0.368	
Taking fibrates and/or EPA	-4.887	8.311	0.557	-1.766	2.497	0.480	
Taking renin-angiotensin system inhibitors	1.463	4.879	0.764	1.870	1.466	0.203	

BMI, body mass index; eGFR, estimated glomerular filtration rate; ln AER, ln-transformed albumin excretion rate; ln Triglycerides, ln-transformed triglycerides; ln HDL, ln-transformed high-density lipoprotein; LDL, low-density lipoprotein; EPA, eicosapentaenoic acid; MDA-LDL, malondialdehyde-modified-low density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio

Supplemental Table. Logistic regression models for variables associated with the presence of cardiovascular disease

	Model 1		Model 2	
	OR (95% CI) P			
Age	1.03 (1.01 – 1.06) 0.010	1.04 (1.01 – 1.07) 0.003	1.04 (1.02 – 1.07) 0.001	1.04 (1.02 – 1.07) 0.000
Male sex	0.92 (0.46 – 1.82) 0.808	0.85 (0.43 - 1.70) 0.651	0.90 (0.46 – 1.78) 0.769	0.83 (0.42 – 1.63) 0.580
Duration of diabetes	1.03 (1.00 – 1.06) 0.039	1.03 (1.00 – 1.06) 0.024	1.03 (1.00 – 1.06) 0.032	1.03 (1.00 – 1.07) 0.022
Hypertension	4.13 (1.81 – 9.43) 0.001	3.92 (1.71 – 8.97) 0.001	3.79 (1.65 – 8.70) 0.002	3.57 (1.55 – 8.19) 0.003
Smoking	1.99 (0.98 – 4.07) 0.058	2.09 (1.03 – 4.25) 0.042	1.93 (0.96 – 3.89) 0.065	2.04 (1.01 – 4.13) 0.046
Dyslipidemia	1.52 (0.69 – 3.32) 0.292	1.33 (0.60 – 2.92) 0.484	1.65 (0.76 – 3.60) 0.208	1.38 (0.63 – 3.05) 0.419
eGFR	0.99 (0.98 – 1.00) 0.085	0.99 (0.98 - 1.00) 0.178		
AER	1.00 (1.00 – 1.00) 0.596	1.00 (0.90 - 1.00) 0.439		
Diabetic kidney disease			1.82 (1.06 – 3.15) 0.031	$1.64 (0.95 - 2.85) \ 0.077$
MDA-LDL	1.00 (0.99 – 1.00) 0.466		1.00 (0.99 – 1.00) 0.349	
MDA-LDL/LDL		1.02 (1.00 – 1.04) 0.032		1.02 (1.00 – 1.04) 0.035

Hypertension, systolic blood pressure \geq 140 and/or diastolic blood pressure \geq 90 and/or taking antihypertensive drugs; Smoking, having current and/or ever smoking history; Dyslipidemia, serum triglycerides levels \geq 1.7 mmol/L and/or serum high-density lipoprotein cholesterol levels < 1.03 mmol/L and/or low-density lipoprotein cholesterol levels \geq 3.62 mmol/L and/or taking lipid-lowering drugs; eGFR, estimated glomerular filtration rate; AER, albumin excretion rate; Diabetic kidney disease, eGFR < 60 and/or AER \geq 30 mg/day; MDA-LDL, malondialdehydemodified-low density lipoprotein; MDA-LDL/LDL, MDA-LDL-to-LDL cholesterol ratio; OR, odds ratio; CI, confidence interval