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Abstract: The cyclic adenosine monophosphate (cAMP)-responsive element-binding protein H
(CREBH, encoded by CREB3L3) is a membrane-bound transcriptional factor that primarily localizes
in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates
the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins
related to lipoprotein lipase (LPL) activation. CREBH in the small intestine reduces cholesterol
transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH
in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy
with peroxisome proliferator-activated receptor α (PPARα), has a crucial role in upregulating Fgf21
expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism.
CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα) in
regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and
lipid metabolism in the liver and small intestine.
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1. Introduction

Obesity is a high-risk metabolic disorder leading to various complications, including cardiovascular
disease, hyperlipidemia, and type II diabetes [1–3]. Numerous cellular stress and inflammatory
signaling pathways are activated by ectopic accumulation of fat in various tissues, resulting in insulin
resistance, pancreatic β-cell dysfunction, and hepatic steatosis [4]. The liver is the central metabolic
organ regulating the key aspects of glucose and lipid metabolism, including gluconeogenesis, fatty
acid β-oxidation, lipoprotein uptake and secretion, and lipogenesis [5]. Given that the portal vein
is the critical path along which insulin signaling is conveyed from the pancreas during the fed state,
the hepatic glucose and lipid metabolism are directly under the control of nutrient signaling.

Glucose and lipid metabolism are regulated by cooperating transcription factors. cAMP response
element-binding protein (CREB) is a typical transcriptional factor that regulates gluconeogenic gene
expression in an energy-depleted condition. A typical transcription factor for lipid metabolism
is the membrane-bound protein, sterol regulatory element-binding protein (SREBP). The three
isoforms of SREBPs are SREBP-1a, SREBP-1c, and SREBP2, which localize in the endoplasmic
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reticulum (ER). SREBP-1c mainly regulates fatty acid synthesis gene expression. SREBP-2 regulates
cholesterol synthesis gene expression. SREBPs are escorted by SREBP cleavage activation protein
(SCAP), a cholesterol sensor protein, to Golgi, thereby cleaved by site-1 protease and site-2 protease,
and transferred to the nucleus. SREBPs thus play a pivotal role in lipid metabolism.

However, despite numerous studies, the mechanisms of transcription in metabolism do not
fully remain clear. Therefore, we need to better understand the functions of transcription factors in
regulating gene expression including the metabolism of glucose, triglyceride, and cholesterol. Cyclic
AMP-responsive element-binding protein 3-like 3 (CREB3L3, CREBH) possesses similarity to SREBP
with regards to its localization and the activation process of its cleavage system [6]. CREBH has
a homology with the cAMP response elements (CRE)/activating transcription factor (ATF) family
molecules and binds to the same consensus sequences as these molecules [6]. Consistent with this,
CREBH also increases gluconeogenesis-related gene expression. In contrast, CREBH can activate
hepatic expression of Fgf21, an anti-metabolic syndrome hormone [7,8]. Mutations in CREBH have
been identified in patients with extreme hypertriglyceridemia, and these mutations produce no
functional CREBH protein. CREBH has a crucial role in triglyceride (TG) metabolism to regulate
the expression of apolipoproteins related to lipoprotein lipase (LPL) activation in the liver [9]. More
intriguingly, SREBP and CREBH make a good contrast for activation in nutritional abundance and
depletion, respectively. CREBH might antagonize SREBP functions, leading to an improvement in
lipid metabolism. This review summarizes the new transcriptional factor CREBH, which controls
glucose and lipid metabolic genes (see Table 1).

Table 1. The list of cAMP-responsive element-binding protein H (CREBH) direct target genes and
mediating co-factors.

Metabolic Function Target Gene Co-Factor Reference

Metabolic hormone Fgf21 PPARα [8,10]
Gluconeogenesis Pck1, G6pc CRTC2 [11,12]

Fatty acid oxidation Ppara – [8,10]
Cpt1a – [7]

Ketogenesis Bdh1 – [7]
Apolipoprotein Apoa1 HNF4α [13]

Apoa4, Apoa5, Apoc2, Apoc3 – [9,14]
Apob – [15,16]

SREBP suppressor Insig2a – [17]
Fatty acid elongation Elovl2, Elovl5, Elovl6 – [18]

Lipid droplet formation Fsp27β – [19]
Cholesterol absorption Npc1l1 – [20]

SREBP: sterol regulatory element-binding protein, PPARα: Peroxisome proliferator-activated receptor α, CRTC2:
CREB/CREB-regulated transcriptional coactivator 2, HNF4α: hepatocyte nuclear factor 4α, cAMP: cyclic
adenosine monophosphate

2. The Gene Regulation of CREB3L3 in Response to Nutrient Condition

The liver-specific transcription factor CREBH is a basic leucine zipper domain member of the
CREB/ATF family. The amino acid sequence of CREBH contains a region extensively homologous to
the b-Zip domain for three transcription factors belonging to the CREB/ATF family: Drosophila box-B
binding factor-2 (BBF-2), human leucine zipper protein (LZIP), and mouse old astrocyte specifically
induced substance (OASIS). Between the b-Zip domain and the other leucine zipper, CREBH also
contains a hydrophobic stretch of 17 amino acids that may potentially constitute a transmembrane
domain similar to that found in LZIP [6]. The KDEL-like sequence in CREBH—“GDEL”—can behave
as an ER retrieval sequence. Within the putative transmembrane domains and a portion of the lumenal
domains of regulated intramembrane proteolysis (RIP)-regulated ER-localized proteins, CREBH
displays a high degree of sequence conservation. Homologous sequences of the cleavage by site-1
protease (S1P) and site-2 protease (S2P) of the SREBP and the activating transcription factor 6 (ATF6) are
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found in CREBH. Located in the ER, CREBH contains a transmembrane domain homologous to those
of SREBP and ATF6. Under ER stress, CREBH moves to the Golgi apparatus, where S1P and S2P cleave
its amino-terminal portion. The amino-terminal portion of CREBH transfers to the nucleus, inducing
genes responsible for the systemic inflammatory response [15]. Fasted or insulin-resistant states induce
CrebH expression, resulting in the accumulation of the nuclear form of CREBH [21]. In fasted states,
glucagon-protein kinase A (PKA) signaling activates CrebH expression and then activates CREBH
transcriptional activity via post-translational modification [11]. Glucocorticoids produced and secreted
by the adrenal gland bind to hepatic glucocorticoid receptors (GRs), which exert antagonizing effects
on insulin and promote gluconeogenesis. Activated GRs induce CrebH expression by directly binding
to the glucocorticoid transcriptional response element in the promoter region of CREBH [11]. CrebH
expression is also induced by some kinds of fatty acids such as palmitate, oleate, and eicosapenonate.
via mediating PPARα activation [21]. Thus, CrebH expression in the liver is efficiently increased by
PPARα agonists such as fenofibrate, Wy14643, and pemafibrate [10,21,22]. In fact, CrebH promoter
contains a peroxisome proliferator responsive element (PPRE) for PPARα transactivation [21]. In the
livers of PPARα KO mice, CrebH expression is significantly reduced; conversely, in the livers of CREBH
KO mice, Ppara expression is significantly decreased [10]. Ppara promoter also contains a CREBH
binding site (CHRE) [10]. PPARα agonist-mediated gene expression requires CREBH because it is
suppressed in CREBH KO mice [10]. CREBH and PPARα form mutual auto-loop regulation at the
transcription level. In the liver, but not in the intestine, hepatocyte nuclear factor 4α (HNF4α)—a
transcription factor for gluconeogenesis—directly binds to the promoter of CrebH and activates its
expression [23]. In the refed state, CrebH expression is suppressed by insulin [24].

CrebH expression is significantly induced by proinflammatory cytokines such as interleukin
6 (IL6), IL1β, and tumor necrosis factor α (TNFα), as well as ER stress inducers such as dithiothreitol
(DTT), thapsigargin, and Brefeldin A (BFA) [15]. CREBH interacts with activating transcription factor
6 (ATF6)—an ER stress-related transcription factor—to synergistically activate gene expression of major
acute phase response (APR) genes such as serum amyloid P-component and C-reactive protein [15].
However, there seems a controversy about the induction of CrebH expression in response to ER
stress [14]. Further investigation into CREBH and ER stress especially in relation to ATF6 is necessary.

3. CREBH Regulates Fgf21 Expression in the Liver and Subsequently Regulates Glucose and
Lipid Metabolism

CREBH directly binds to the proximal region of the Fgf21 promoter and upregulates Fgf21
expression. Overexpression of CREBH in the liver upregulates hepatic Fgf21 expression, accompanied
by an increase in plasma levels of fibroblast growth factor 21 (FGF21), a unique member of the FGF
family with hormone-like actions [25]. FGF21 is a key mediator of starvation that activates lipolysis in
white adipose tissue (WAT) and increases fatty acid oxidation and ketogenesis in the liver [26,27] and
has therapeutic effects on obesity-related metabolic disturbances such as insulin resistance, diabetes,
and hypertriglyceridemia in ob/ob mice, diet-induced obese mice, and diabetic monkeys [28,29]. Fgf21
expression is well known to be regulated by PPARα, which plays a key role in lipid oxidation and is
induced by fasting or by consumption of a ketogenic diet (high-fat, low-carbohydrate diet) [26,27].
In a fasted state and fed on a ketogenic diet, CREBH KO mice markedly suppress Ppara and Fgf21
expression [7,10]. Cooperation between CREBH and PPARα upregulates Fgf21 expression [8,10];
the two operate as transcriptional co-activators [8]. Nuclear CREBH activates the Ppara promoter
in an autoloop fashion and is crucial for the ligand transactivation of PPARα by interacting with its
transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)
(Figure 1) [10]. Consequently, the target genes of CREBH and PPARα are overlapped. In comparisons
between CREBH KO mice and PPARα KO mice in a fasted condition and fed a ketogenic diet, the direct
targets of CREBH are identified as Cpt1a, fatty acid oxidation, and Bdh1, ketogenesis [7]. Both CREBH
and PPARα are crucial transcription factors in fatty acid oxidation and ketogenesis in the livers of
energy-depleted mice.
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Figure 1. Scheme of Fgf21 transcriptional regulation by the interaction between CREBH and PPARα. 
Fgf21 promoter has a PPARα-binding site (PPRE) and a CREBH-binding site (CHRE), which are 
partially overlapped. (A) CREBH and PPARα directly bind to their own binding sites on the Fgf21 
promoter. (B) CREBH regulates PPARα transcriptional activity as a co-activator and by peroxisome 
proliferator-activated receptor gamma coactivator 1α (PGC-1α) recruiting. (C) CREBH and PPARα 
form a complex on the Fgf21 promoter and synergistically activate Fgf21 expression. 

The overexpression of the active portion of CREBH in the livers of mice ameliorates the 
physiology of diet-induced obesity, hypertriglyceridemia, hyperglycemia, insulin resistance, and 
obesity. CREBH significantly induces Ppara and its target genes—including fatty acid oxidation genes 
such as Acox1 and Cpt1a—indicating that CREBH can activate fatty acid oxidation in the liver. CREBH 
regulates the gene expression of lipoprotein lipase modulators such as Apoa4, Apoa5, Apoc2, and 
Apoc3, resulting in the activation of LPL activity [9]. The increase in plasma FGF21 levels caused by 
CREBH overexpression leads to increased energy expenditure with the increase of thermogenesis 
genes such as Ucp1 and Ppargc1a in WAT [10]. 

In contrast, some reports have revealed that Fgf21 expression is regulated via various 
transcription factors (Table 2). Endoplasmic reticulum (ER) stress regulates Fgf21 expression via ER 
stress-related transcription factors, including activating transcription factor 4 (ATF4), CCAAT 
enhancer binding protein homologous protein (CHOP), and X-box-binding protein 1 (XBP1) [30–32]. 
In response to amino acid deprivation, ATF4 induces Fgf21 expression [32]. Mitochondrial 
dysfunction induced by autophagy deficiency in the skeletal muscle increases Fgf21 expression 
depending on ATF4 [33]. XBP1 has an indirect effect on Fgf21 expression. XBP1 directly activates 
Ppara expression and subsequently increases Fgf21 expression in a fasting condition [34]. In an 
overnutrient condition, Fgf21 expression is also increased. It depends on the carbohydrate-responsive 
element-binding protein (ChREBP), which is efficiently activated by carbohydrates, including 
glucose and fructose [35]. ChREBP-mediated Fgf21 expression requires PPARα, inducing the 
accessibility of ChREBP to the carbohydrate-responsive element (ChoRE) site in the Fgf21 promoter 
[36]. Conversely, liver X receptor (LXR) downregulated Fgf21 expression in the liver when fed with 
a high-cholesterol diet [37]. 
  

Figure 1. Scheme of Fgf21 transcriptional regulation by the interaction between CREBH and PPARα.
Fgf21 promoter has a PPARα-binding site (PPRE) and a CREBH-binding site (CHRE), which are
partially overlapped. (A) CREBH and PPARα directly bind to their own binding sites on the Fgf21
promoter. (B) CREBH regulates PPARα transcriptional activity as a co-activator and by peroxisome
proliferator-activated receptor gamma coactivator 1α (PGC-1α) recruiting. (C) CREBH and PPARα
form a complex on the Fgf21 promoter and synergistically activate Fgf21 expression.

The overexpression of the active portion of CREBH in the livers of mice ameliorates the physiology
of diet-induced obesity, hypertriglyceridemia, hyperglycemia, insulin resistance, and obesity. CREBH
significantly induces Ppara and its target genes—including fatty acid oxidation genes such as Acox1 and
Cpt1a—indicating that CREBH can activate fatty acid oxidation in the liver. CREBH regulates the gene
expression of lipoprotein lipase modulators such as Apoa4, Apoa5, Apoc2, and Apoc3, resulting in the
activation of LPL activity [9]. The increase in plasma FGF21 levels caused by CREBH overexpression
leads to increased energy expenditure with the increase of thermogenesis genes such as Ucp1 and
Ppargc1a in WAT [10].

In contrast, some reports have revealed that Fgf21 expression is regulated via various transcription
factors (Table 2). Endoplasmic reticulum (ER) stress regulates Fgf21 expression via ER stress-related
transcription factors, including activating transcription factor 4 (ATF4), CCAAT enhancer binding
protein homologous protein (CHOP), and X-box-binding protein 1 (XBP1) [30–32]. In response to
amino acid deprivation, ATF4 induces Fgf21 expression [32]. Mitochondrial dysfunction induced by
autophagy deficiency in the skeletal muscle increases Fgf21 expression depending on ATF4 [33]. XBP1
has an indirect effect on Fgf21 expression. XBP1 directly activates Ppara expression and subsequently
increases Fgf21 expression in a fasting condition [34]. In an overnutrient condition, Fgf21 expression is
also increased. It depends on the carbohydrate-responsive element-binding protein (ChREBP), which
is efficiently activated by carbohydrates, including glucose and fructose [35]. ChREBP-mediated Fgf21
expression requires PPARα, inducing the accessibility of ChREBP to the carbohydrate-responsive
element (ChoRE) site in the Fgf21 promoter [36]. Conversely, liver X receptor (LXR) downregulated
Fgf21 expression in the liver when fed with a high-cholesterol diet [37].
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Table 2. The list of transcription factors regulating Fgf21 expression.

Transcription Factor Inducer Reference

Up-Regulation

CREBH Fasting [8,10]
PPARα Fasting, Fibrates [8,10]

Activating transcription factor 4 (ATF4) Endoplasmic reticulum (ER) stress,
Amino acid deprivation [31–33]

CCAAT enhancer binding protein
homologous protein (CHOP) ER stress [31]

X-box-binding protein 1 (XBP1) ER stress, Fasting [30,34]
Carbohydrate-responsive

element-binding protein (ChREBP) Carbohydrate [35,36]

Down-Regulation

Liver X receptor (LXR) Cholesterol [37]

4. CREBH Regulates Gluconeogenesis Gene Expression

CREBH can bind to both CREs and Box B sequences. CREs are the response elements for CREB,
which contains gluconeogenesis genes such as phosphoenolpyruvate carboxykinase 1, cytosolic (Pck1),
glucose-6-phosphatase, and catalytic (G6pc). These genes are upregulated in the livers of mice in
a fasted state via directly binding CREB to CRE sequences in the promoter region of these genes.
Conceivably, CREBH was also reported to bind to and upregulate these genes [11,12]. CREBH
co-operates with CREB/CREB-regulated transcriptional coactivator 2 (CRTC2), a CREB transcriptional
modulator, to activate Pck1 and G6pc expression [11]. During fasting or in the insulin-resistant
state, CrebH expression is induced by the glucocorticoid receptor (GR)/PGC-1α complex, and the
HNF4α/PGC1α complex [11]. CREBH also regulates the rate-limiting enzymes for glycogenolysis
liver glycogen phosphorylase (Pygl) expression [38]. It has been reported that adenoviral CREBH
overexpression in the livers of mice induces gluconeogenesis genes and subsequently increases plasma
glucose levels while adenoviral knockdown of CREBH in the livers of mice significantly reduces
blood glucose levels [11]. In contrast, our report shows that although liver CREBH in transgenic mice
and adenoviral CREBH overexpression in the livers of mice induce gluconeogenesis genes, both the
hepatic expression and the plasma levels of FGF21 are significantly increased in these mice, resulting
in decreased plasma glucose levels [10]. The effects of CREBH on the regulation of plasma glucose
could be context-dependent.

5. CREBH Regulates Lipid Metabolism in Fatty Liver

5.1. Deficiency of CREBH Exacerbates Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic
Steatohepatitis (NASH)

CREBH KO mice, when fed an atherogenic high-fat (AHF) diet, show a massive accumulation
of hepatic lipid metabolites and a significant increase in plasma TG levels. CREBH KO mice increase
Non-Alcoholic Steatohepatitis (NASH) activities. In this metabolic stress, CREBH increases gene
expression related to (1) triglyceride synthesis: FA synthase (Fasn), acetyl co-enzyme A (CoA)
carboxylase 1 (Acc1), Acc2, Stearoyl-CoA desaturase 1 (Scd1), and diacylglycerol acetyltransferase 2
(Dgat2); (2) cholesterol synthesis: 24-dehydrocholesterol reductase (Dhcr24) and long-chain-FA-CoA
ligase 1 (Acs1); (3) fatty acid elongation: elongation of very-long-chain FAs protein (Elovl)2, Elovl5,
Elovl6, and peroxisomal trans-2-enoyl-CoA reductase (Pecr); (4) fatty acid oxidation: Cpt1a, Cyp4a10,
Cyp4a14, Cyp2b9, Cyp2b13, FA desaturase (Fads)1, Fads2, Acox1, and Ppara; (5) lipolysis: Apoc2, Apoa4,
Apoa5, and Apoc3; (6) lipolysis-stimulated lipoprotein receptor: lecithin-cholesterolacyl transferase
(Lcat), and acyl-CoA thioesterase 4 (Acot4); and (7) lipid transport: sterol carrier protein 2 (Scp2) [18].
The upstream genes for lipogenic regulators, including Chrebp, Lxra, PPARγ-coactivator-1α (Ppargc1a),
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Ppargc1b, and fat-specific protein 27 (Fsp27), are controlled by CREBH. Lipid droplet growth and
TG storage in white adipocytes is promoted by FSP27, a lipid droplet-associated protein. There are
two FSP27 isoforms, namely, FSP27α and FSP27β. FSP27β contains 10 additional amino acids at
the N-terminus of the original FSP27 (FSP27α). WAT and the liver specifically express Fsp27α and
Fsp27β transcripts, respectively, which are driven by distinct promoters. The Fsp27β promoter is
directly activated by CREBH [19]. Using a common NASH model—methionine choline-deficient
(MCD) diet feeding—the effects of CREBH on NASH were evaluated. CREBH tissue-specific
KO mice were developed using the one-step clustered regularly interspaced short palindromic
repeats/CRISPR-associated endonuclease 9 (CRISPR/Cas9) system [39]. Liver-specific CREBH
KO mice also displayed severe hepatitis in MCD diet feeding without an increase in liver lipid
contents [39]. The plasma marker levels for liver injury—such as alanine transaminase (ALT) and
aspartate transaminase (AST)—are severely increased by a deficiency of CREBH in the liver, which
also significantly increases the gene expression of inflammation and liver fibrosis [39]. The deficiency
of CREBH in the liver could have a crucial role in developing NAFLD and NASH. CREBH, activated
by triglyceride accumulation, induces FGF21, which suppresses adipose tissue lipolysis, ameliorating
hepatic steatosis [40]. When fasted or fed a ketogenic diet, CREBH KO mice develop severe hepatic
steatosis because of decreased hepatic fatty acid oxidation [7] and increased adipose tissue lipolysis [40].
A ketogenic diet activates both CrebH and Fgf21 expression, indicating a positive correlation between
both factors [7]. FGF21 production was impaired in CREBH KO mice, and adenoviral overexpression
of FGF21 suppressed adipose tissue lipolysis and improved hepatic steatosis in these mice [40]. In a
negative feedback loop, CREBH regulates non esterified fatty acids (NEFA) flux from adipose tissue to
the liver via FGF21. Supporting the role of CREBH in lipogenesis and lipolysis, the overexpression of
the activated form of CREBH protein in the liver significantly increases the accumulation of hepatic
lipids but reduces plasma TG levels in mice [40]. Taken together, the better strategy for improving
fatty liver and hyperlipidemia—CREBH overexpression or CREBH deficiency—remains unclear.

A cluster of ER membrane-bound proteins, including insulin-induced gene-1 (Insig-1) and
gene-2 (Insig-2), and SREBP cleavage-activating protein (SCAP), control the regulation of SREBP
signaling [41–43]. CREBH induces the expression of a liver-specific isoform of Insig-2—Insig-2a—which
downregulates the translocation of SREBP-1c from the ER to the Golgi and reduces de novo
lipogenesis [17]. The CREBH-Insig-2a signaling pathway inhibits hepatic de novo lipogenesis and
prevents the onset of hepatic steatosis and hypertriglyceridemia [17]. CREBH and SREBPs interact to
regulate lipid metabolism. CREBH is activated by energy shortage; conversely, SREBPs are activated by
overnutrition. These two molecules keep a balance to maintain cellular lipid levels at the transcriptional
level. CREBH is therefore a key metabolic regulator of hepatic lipogenesis, fatty acid oxidation,
and lipolysis under metabolic stress [18].

5.2. CREBH Regulates Very Low-density Lipoprotein( VLDL) Particle Metabolism in Fatty Liver

Liver TG content is regulated by the balance between fatty acid uptake, synthesis, and oxidation,
and TG synthesis and export via secretion of TG-rich VLDL [44,45]. In NAFLD, both TG synthesis
and secretion are increased, but TG export is insufficient to prevent steatosis [46,47]. The assembly
of a greater number of VLDL particles and/or larger VLDL particles containing more core TG
increases TG export in the liver as well as VLDL secretion [48,49]. Plasma VLDL levels increase
during APR, but ApoB, a molecule constituting VLDL, is not clarified as the APR gene [50,51].
CREBH is reported to activate ApoB expression [15]. ApoB expression is reduced in the fetal livers
of CREBH KO mice, and CREBH binds to the ApoB promoter region, resulting in an increased ApoB
expression [15,16]. TG-rich lipoprotein secretion is upregulated in wild-type (WT) mice treated with
an acute fat load, but this phenomenon is not observed in CREBH KO mice [16]. TNFα treatment
activates CrebH expression and increases ApoB biosynthesis and VLDL secretion in the liver [16].
Lipopolysaccharide (LPS)- or high-fat diet-induced inflammation also increases ApoB production,
resulting in hyperlipoproteinemia in WT mice but not in CREBH KO mice [16]. It is possible that
CREBH could mediate inflammation and hepatic VLDL overproduction in chronic metabolic diseases.
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Apoa4 increases after TG absorption to facilitate intestinal chylomicron assembly and TG
secretion [52,53]. Hepatic Apoa4 expression is increased with high hepatic TG levels in steatosis [14]
and both acute and chronic hepatosteatosis [54]. CREBH is identified as a major regulator responsible
for Apoa4 expression in both the liver and the intestine [14].

Apoa4 affects the trafficking kinetics of nascent ApoB-containing lipoproteins through a direct
association with ApoB in the secretory pathway [55,56]. Apoa4 also regulates hepatic lipid content
by activating nascent VLDL particle expansion and TG efflux without increasing the number of
ApoB-containing lipoprotein particles secreted from the liver [54]. The direct interaction between
Apoa4 and the amino terminus of ApoB slows the secretory trafficking of VLDL particles, allowing
the addition of more lipid molecules to the expanding VLDL particle before secretion [56]. Thus,
Apoa4 plays a crucial role in VLDL particle expansion during TG-rich lipoprotein assembly and in
mobilizing TG for secretion, which protects against hepatosteatosis without increasing the demand for
ApoB synthesis. The reduction of ApoB or microsomal triglyceride-transfer protein (MTP) activity
attenuates VLDL particle assembly, which attenuates CREBH processing and Apoa4 expression, despite
a dramatic increase in liver TG content.

Increasing hepatic TG content is necessary, but not sufficient, for CREBH-dependent Apoa4
activation. Instead, an aspect of the VLDL assembly and secretion pathway is essential for CREBH
activation. Hepatocytes are unique relative to the non-lipoprotein-producing cells in that TG synthesis
and storage must be coupled to their translocation across the ER membrane to form lumenal lipid
droplets, which then serve as a substrate for TG acquisition by ApoB [49,57]. Steatosis-induced Apoa4
expression leads to increased TG secretion and a reduction in hepatic lipid content by promoting VLDL
particle expansion without increasing the number of VLDL particles [54]. This pathway probably
evolved to increase hepatic TG flux from the steatotic liver into the plasma through VLDL particle
expansion, thereby protecting the liver from lipid toxicity.

Hepatic Apoa4 expression is strongly increased in the mouse models of steatosis [54,58].
Hepatosteatosis-induced hepatic Apoa4 expression is regulated by the proteolytic processing of
CREBH [14]. The fact that ApoB and MTP deficiencies block CREBH processing suggests that lipid
movement into the ER, or another related function of these proteins, initiates vesicular trafficking of
CREBH to the Golgi and CREBH processing to release the active form of CREBH. CREBH and Apoa4
play a coordinated role in promoting the assembly and secretion of larger, TG-enriched VLDL particles,
thereby increasing hepatic TG efflux without increasing the number of VLDL particles.

6. CREBH Regulates Lipoprotein Metabolism

6.1. CREBH Regulates the Expression of Apoa4, a Multitasking Apolipoprotein, in the Liver and
Small Intestine

Apoa4, an apolipoprotein associated with high-density lipoproteins (HDLs) that is expressed
and secreted in the liver and the small intestine, is a direct target for CREBH [14]. In mouse models,
Apoa4 expression in the liver strongly increases during steatosis [54,58,59]. In humans, Apoa4 is
primarily expressed in the small intestine [60,61]. Human genome-wide expression profiling studies
have revealed that hepatic Apoa4 expression is also induced during steatosis, and that both alcoholic
and nonalcoholic steatohepatitic CREBH induction increases hepatic Apoa4 expression. Conversely,
research on CREBH KO mice reveals a reduction in Apoa4 expression in both the liver and the small
intestine [14].

Apoa4 is transferred from chylomicrons and VLDL to HDL in exchange for ApoCs, thereby
activating lipolysis of TG-rich lipoproteins by LPL [62,63]. Apoa4 plays a role in reverse cholesterol
transport and affords protection from atherosclerosis [64], and is also involved in fat absorption in the
small intestine [65–67], the central regulation of food intake [68], and the regulation of insulin secretion
from β-cells [69]. CREBH contributes to these Apoa4-mediated actions in maintaining the systemic
and whole-body lipid metabolism.
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Leucine zipper protein (LZIP) is a CREBH-like transcription factor containing a transmembrane
domain [70]. The DNA binding domain of LZIP shares 84% homology with that of CREBH [6].
LZIP regulates Apoa4 expression because LZIP and CREBH share the promoter-binding region [71].
In addition, there is a possibility that LZIP and CREBH form a complex that mediates Apoa4
expression [71].

6.2. CREBH Regulates Lipoprotein Metabolism in Response to Endotoxemia

Bacterial infections induce various physiological changes and inflammation as well as affect
metabolism, particularly lipid metabolism in the host, which may result in hyperlipidemia [72]. During
infections, an increase in lipoprotein production and dysfunction of circulatory lipoprotein clearance
mechanisms cause TG levels to increase [73]. Plasma lipoproteins, particularly HDL, are markedly
reduced in sepsis. Clinical studies reveal that low plasma HDL is a prognostic factor in severe
sepsis [74,75], and HDLs may have a protective role in sepsis and endotoxemia as they decrease the
levels of circulating LPS [76,77].

CREBH functions as a stress-responsive transcription factor [15,18]. In response to LPS, CrebH
expression is upregulated in the liver [16,78]. TRAF6, an E3 ligase in the toll-like receptor (TLR)
signaling pathway, is involved in the regulation of target molecules via ubiquitination [79]. TRAF6 is
reported to be a crucial molecule in inflammation [56]. CREBH interacts with TRAF6, which induces
CREBH cleavage and subsequent activation of its transcriptional activity via ubiquitination [78].
In response to LPS stimulation, CREBH is activated and then upregulates Apoa4 expression and
subsequently promotes the production of HDLs as a part of the host response to bacterial infection [78].
CREBH has a crucial role in endotoxin-triggered HDL production and protects the liver against
endotoxin-induced injury [78].

7. Intestinal CREBH Overexpression Controls Intestinal Cholesterol Absorption

On feeding an AHF diet, mice overexpressing the active form of CREBH in the intestine exhibited
an apparent reduction of gallstone formation in gall bladders and plasma cholesterol levels compared
with those in WT mice [20]. CREBH increased cholesterol levels in feces and reduced intestinal
cholesterol levels, thereby indicating that CREBH suppresses the absorption of cholesterol from the
diet in the small intestine [20]. Niemann Pick C1-like 1 (NPC1L1) is a protein localized at the brush
border membrane of the enterocytes, mediating cholesterol absorption into the enterocytes. Ezetimibe
is a drug for hyperlipidemia that inhibits cholesterol absorption by blocking NPC1L1 intestinal
transporters, resulting in a decrease in plasma cholesterol levels. CREBH reduces Npc1l1 expression,
leading to a reduction in cholesterol absorption from the small intestine and in plasma cholesterol
levels [20]. CREBH might be a therapeutic target for the treatment of hyperlipidemia by inhibiting
cholesterol absorption. However, a thorough understanding of the CREBH functions in the small
intestine is currently lacking. Future studies in this area are necessary.

8. CREBH Regulates the Progression of Atherosclerosis

Atherogenic dyslipidemia with high plasma TG and LDL levels and low plasma HDL levels is a
risk factor for atherosclerosis and cardiovascular disease (CVD). Patients with combined homozygous
mutations in the glycosylphosphatidylinositol-anchored high-density lipoprotein–binding protein
1 (GPIHBP1) gene exhibit hypertriglyceridemia and severe CVD, suggesting that LPL-mediated TG
clearance is involved in atherosclerosis [80]. Apoa1 is produced in the liver and small intestine and
constitutes the predominant component of HDL [81]. Apoa1 interacts with the ATP-binding cassette
transporter A1 (ABCA1) and activates cholesterol efflux from peripheral tissues for reverse cholesterol
transport [82,83]. Apoa1 deficiency in low-density lipoprotein receptor (LDLR) KO mice increases
non-HDL-C, thereby accelerating the process of atherosclerosis [84]. Hepatic Apoa1 expression is
reduced in CREBH KO mice and increased in primary mouse hepatocytes overexpressing CREBH,
suggesting that CREBH might have a function in HDL metabolism [14]. CREBH deficiency suppressed
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Apoa1 expression in both the liver and the intestine and reduced plasma Apoa1 and HDL-C levels,
indicating that CREBH has a crucial role in the regulation of Apoa1 expression [13]. HNF4α, which
activates CrebH expression, also activates hepatic Apoa1 expression [85–88]. Thus, CREBH and HNF4α
co-operate to activate Apoa1 expression [13]. Apoa4 is involved in HDL metabolism by activating
lecithin:cholesterol acyltransferase, a key enzyme involved in the transfer of cholesterol to newly
synthesized HDL particles via the conversion of free cholesterol into cholesteryl esters [89,90], which
stimulates cholesterol efflux from macrophages [91] and activates the receptor-mediated uptake of
HDL by hepatocytes [92].

Furthermore, transgenic overexpression of human or mouse Apoa4 conferred protection against
atherosclerosis in mice [64,93,94]. CREBH deficiency results in high VLDL-TG and low HDL-C levels
in the plasma and accelerated atherosclerosis in LDLR KO mice. In contrast, CREBH overexpression in
the liver reduces plasma TG by activating LPL-mediated TG clearance by the transcriptional activation
of apolipoprotein genes, such as Apoa1, Apoa4, Apoa5, and Apoc2 [9]. CREBH also regulates FGF21 [9],
which stimulates LPL-mediated TG clearance [95], thereby contributing to hypertriglyceridemia in
CREBH KO mice. FGF21 deficiency in ApoE KO mice results in severe atherogenic phenotypes [96],
but administering FGF21 to these ApoE KO mice ameliorates atherosclerosis [97]. Thus, further
research is required to determine how the molecular mechanism of the progression of atherosclerosis
in CREBH KO mouse models contributes to dysfunction of the CREBH-FGF21 pathway.

9. CREBH Rhythmically Interacts with the Transcription Factors for Lipid Metabolism

The proteolytic activation of CREBH in the liver exhibits typical circadian rhythms controlled by
the core clock oscillator brain and muscle arnt-like protein-1 (BMAL1) and the AKT/glycogen synthase
kinase 3β (GSK3β) signaling pathway. GSK3β-mediated phosphorylation of CREBH modulates
the association between CREBH and the coat protein complex II transport vesicles including Sec23,
Sec24, and Sar1, and thus—in a circadian manner—controls the ER-to-Golgi transport and subsequent
proteolytic cleavage of CREBH [98]. CREBH may indirectly interact with Sec24 through a potential
scaffold protein like the SREBP escort protein SCAP. This raises interesting questions about the effects
of CREBH on the SREBP cleavage system.

The circadian clock regulates CREBH proteolytic cleavage and post-translational acetylation
modification. Functionally, CREBH is required to maintain circadian homeostasis of hepatic glycogen
storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the
rate-limiting enzymes for glycogenolysis and gluconeogenesis, including Pygl, Pck1, and G6pc [38].
CREBH interacts with PPARα to synergize its transcriptional activities in hepatic gluconeogenesis [38].
In regulating hepatic glucose metabolism in mice, acetylation of CREBH at lysine residue 294 controls
the CREBH–PPARα interaction and synergy [38]. CREBH deficiency leads to reduced blood glucose
levels but increased hepatic glycogen during the daytime period or upon fasting [38]. CREBH has a
crucial role to control glucose homeostasis under the circadian clock or metabolic stress.

CREBH has reciprocal interactions with PPARα and LXRα, as well as the circadian oscillation
activator DBP and repressor E4BP4. CREBH regulates and interacts with PPARα [8] or LXRα [98] to
enhance CREBH transcriptional activity. CREBH interacts with the circadian oscillation activator DBP
and repressor E4BP4 to modulate CREBH transcriptional activity during the night-to-day transition
period [98]. The phase of CREBH–DBP interaction is complementary to that of CREBH–E4BP4
interaction, suggesting that DBP and E4BP4 may compete to interact with CREBH and thereby
modulate CREBH activities during various circadian phases [98]. PPARα interacts with CREBH in
the circadian phase that partially overlaps with the CREBH–LXRα interaction [98]. The interactions
among CREBH, PPARα, and LXRα may represent enhancing mechanisms facilitating CREBH peak
activity. LXRs consist of two isoforms—LXRα and LXRβ—acting as whole-body cholesterol sensors,
and their activation results in a net elimination of cholesterol from the body and amelioration of the
plasma lipoprotein profile by mobilization of cholesterol from the periphery [99,100], promoting its
excretion and limiting its absorption [101–103], reducing its cellular uptake [104], and enhancing its
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conversion to bile acids in mice [105]. Therefore, CREBH may play a crucial role as a modulator
for not only triglyceride metabolism but also cholesterol metabolism in the liver. CREBH may
function as a circadian-regulated liver transcriptional regulator integrating energy metabolism and
circadian rhythms.

10. Conclusions

The regulatory functions of CREBH include gene expression encoding lipogenic regulators,
triglyceride synthesis enzymes, enzymes or regulators in lipolysis and lipid transport, fatty acid
elongation enzymes, and fatty acid oxidation or cholesterol biosynthesis enzymes to regulate hepatic
lipid metabolism. CREBH also acts as a modulator to regulate some transcription factors related
to lipid metabolism. In particular and importantly, CREBH interacts with PPARα to regulate the
expression of PPARα target genes, including FGF21. PPARα improves systemic lipid metabolism;
thus, PPARα agonists can improve hypertriglyceridemia. In the small intestine, CREBH suppresses
cholesterol absorption from diet. There is a possibility that CREBH maintains lipid metabolism in
the interaction between the liver and the small intestine. CREBH overexpression in mice improves
diabetes, obesity, hypertriglyceridemia, and hypercholesterolemia. Conversely, CREBH KO mice
exhibit fatty liver and atherosclerosis. CREBH can therefore be a therapeutic target for the treatment of
hypertriglyceridemia. Further elucidation of the interaction between CREBH and other transcription
factors should increase the importance of CREBH as a regulator for metabolism. An important question
remains unanswered as to how CREBH is escorted to Golgi for cleavage and nuclear entry, which
could be a good pharmacological target. Therapeutic strategies designed to modulate CREBH activity
might be beneficial in the treatment of hyperlipidemia and obesity-associated metabolic diseases.
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