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SINC-seq: correlation of transient gene
expressions between nucleus and
cytoplasm reflects single-cell physiology
Mahmoud N. Abdelmoez1,2†, Kei Iida3†, Yusuke Oguchi4†, Hidekazu Nishikii5, Ryuji Yokokawa1, Hidetoshi Kotera1,
Sotaro Uemura4, Juan G. Santiago6 and Hirofumi Shintaku1,2*

Abstract

We report a microfluidic system that physically separates nuclear RNA (nucRNA) and cytoplasmic RNA (cytRNA)
from a single cell and enables single-cell integrated nucRNA and cytRNA-sequencing (SINC-seq). SINC-seq
constructs two individual RNA-seq libraries, nucRNA and cytRNA, per cell, quantifies gene expression in the
subcellular compartments, and combines them to create novel single-cell RNA-seq data. Leveraging SINC-seq, we
discover distinct natures of correlation among cytRNA and nucRNA that reflect the transient physiological state of
single cells. These data provide unique insights into the regulatory network of messenger RNA from the nucleus
toward the cytoplasm at the single-cell level.
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Background
Single-cell sequencing is a powerful tool for exploring
epigenetic, genomic, and transcriptional heterogeneities
at an unprecedented resolution [1–6]. RNA-seq with
single nuclei (nucRNA-seq) [7, 8] is an emerging option
for profiling gene expressions of cells in tissues that
cannot be readily dissociated, such as the adult brain
and frozen samples. nucRNA-seq is further capable of
coupling with sorting by fluorescence-activated cell
sorters [4, 7–9], Fluidigm C1 [5], and Drop-seq [10], and
has demonstrated feasibilities of identifying cell types
and cell cycles [11] with nucRNA-seq data. Grindberg et
al. [7] reported that the gene expression with single nu-
clei is similar to that with entire single cells, with only
3.5% of the genes exhibiting differential expression.
However, this was performed by comparing nucRNA-seq
vs. single-cell RNA-seq (scRNA-seq) from different single
cells. Such studies hypothesize that the nucRNA expression

is representative of whole cells, but, to date, there has been
no direct evidence of the nuclear-to-cytoplasmic correl-
ation. Investigating the cytoplasmic RNA (cytRNA) and
nuclear RNA (nucRNA) expressions with the same single
cell are essential to assess the validity of using
nucRNA-seq, especially for the analysis of transient
biological processes.
Recent technical advances have enabled combined

sequencing at multi-omic levels within the same single
cells [12–14] and helped us to understand the links
underlying the regulatory cascade. Several microfluidic
[15–18] and non-microfluidic protocols [19, 20] offer
parallel transcriptional and genomic analyses on the
same single cell by fractionating the cytRNAs and nuclei
of single cells. However, we know of no work that has
reported an integrated nucRNA-seq and cytRNA-seq
with the same cell to study RNA transport and gene
regulation and function through splicing of precursor
messenger RNA (pre-mRNA) [21, 22].
Here we demonstrate a novel single-cell sequencing

method, SINC-seq, which combines a microfluidic
protocol that physically fractionates nuclear and cyto-
plasmic RNAs and a subcellular RNA-seq pipeline to
dissect RNA expressions in the individual subcellular
compartment. We use SINC-seq to explore both
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correlated and uncorrelated gene expression between
the compartments of single K562 human leukemic cells.
We further explore correlation dynamics that reflect the
transient response of differentiating K562 cells vs. eryth-
roid cells under a perturbation of sodium butyrate
(NaB), a histone deacetylase inhibitor. We show that the
epigenetic modification via NaB changes the degree of
correlation between cytRNA and nucRNA expression
substantially. These data reveal how eukaryotes manage
subcellular RNA expressions via intercompartment
regulation.

Results
A microfluidic platform for single-cell integrated nuclear
and cytoplasmic RNA-sequencing: SINC-seq
To dissect transcriptional correlation in the subcellular
compartments, we designed SINC-seq to combine elec-
trophoretic fractionation of cytRNA from the nucleus
[16–18] with off-chip RNA sequencing (Fig. 1a, b).
SINC-seq constructs individual RNA-seq libraries with
cytRNA and nucRNA and integrates the sequencing data
in a new format which we term an “in silico single cell.”
SINC-seq starts with a microfluidic protocol that lever-
ages a hydrodynamic trap that captures a single cell and
then concentrates an electric field to selectively lyse the
cytoplasmic membrane while leaving the nuclear
membrane relatively intact. The trap also retains the cell
nucleus during an electric field-based extraction of
cytRNA that is initiated within 1 s of the electric field
activation (see Fig. 1b, c, Additional file 1: Figure S1,
Additional file 2: Movie S1, and Methods). Hence, our
microfluidic protocol enables subcellular fractionation
by coupling electric lysis [23, 24] and rapid transition to
isotachophoresis (ITP)-based nucleic acid extraction
from single cells [16, 17]. We confirmed that the nuclei
retained their integrity by, for example, staining genomic
DNA with Hoechst (Fig. 1c). The microfluidic system
completes the entire process with voltage control via
three end-channel electrodes and outputs the cytRNA
and nucleus to different wells in less than 5 min. We
note that the hydrodynamic trap integrated in this work
couples hydrodynamic flow and electric field concen-
tration and enables approximately 20-fold reduction
in the applied voltage compared to our previous
protocol [16–18]. Further, the microfluidic design
allows a buffer exchange for the single cell using
pressure-driven flow and introduction of the ITP buf-
fer chemistry. This approach helps reduce the back-
ground noise associated with cell-free RNA in the
original cell solution (Additional file 1: Figure S1e).
These key improvements allowed us to study RNA
expressions in subcellular compartments of single
cells systematically. We serially processed single cells
and prepared about eight pairs of RNA-seq libraries

per day. We hope to automate (and parallelize) the
SINC-seq protocol in the future and thereby increase
the rate of single-cell processing.
We note that subcellular fractionation of proteins

from single cells by electroporation was first reported by
Lu and co-workers [23, 24]. Our method leverages a
similar subcellular fractionation via electric field and also
uniquely enables RNA sequencing by delivering the sub-
cellular components to two independent downstream
extraction ports, including the cytRNA fraction trans-
ported via ITP [16, 17]. We hope to further extend our
protocol and perhaps enable protein analyses in the
future (see Qu et al. [25] for an example of fractionation
of nucleic acids vs. proteins using ITP).

Library preparation and quality control with SINC-seq
To critically evaluate SINC-seq, we performed experi-
ments with 93 single cells of K562 human myeloid
leukemia cells and generated 186 corresponding RNA-seq
libraries using an off-chip Smart-seq2 protocol [26].
Ziegenhain et al. [27] recently reported a comprehensive
comparison of scRNA-seq protocols including Drop-seq,
Smart-seq with C1 (Fluidigm), and Smart-seq2. Among
these methods, their work showed that Smart-seq2 is the
most sensitive with the highest number of detected genes
per cell. Further, Habib et al. [10, 28] recently reported a
DroNc-seq platform approach which performs
single-nucleus RNA-seq. The work demonstrated that
DroNc-seq detected an average of 3295 and 5134 genes,
respectively, for nuclei and cells of 3T3 cells. Here we have
leveraged the sensitivity of the Smart-seq2 protocol and a
full-length coverage to explore the retention of introns.
Both cytRNA-seq and nucRNA-seq of SINC-seq yielded

4.64 million reads per sample (Additional file 1: Figure
S2b, c). The average transcriptomic alignments were 94 ±
1% (mean ± standard deviation (SD)) and 93 ± 1%, respect-
ively, with cytRNA-seq and nucRNA-seq (Additional file 1:
Figure S2d). Of the 93 single cells analyzed, all showed
successful extraction as determined by monitoring the
ionic current of the ITP process during extraction (Add-
itional file 1: Figure S1c). Of these 93 single cells, 84
passed quality control (QC) for both cytRNA-seq and
nucRNA-seq. Nine of the 93 cells failed the QC for either
cytRNA-seq or nucRNA-seq. Further, in seven of the sam-
ples that failed QC, we observed low yield in the amplifi-
cation of either cytRNA or nucRNA. In two of the
samples, we observed incomplete fractionation. Thus,
after the QC, we achieved 168 data sets consisting of 84
pairs of cytRNA-seq and nucRNA-seq (see Additional file 1:
Supplementary Information section titled “Fractionation
stringency”, Additional file 1: Figure S2, Additional file 3:
Table S1, and Additional files 4 and 5).
We note that our protocol yielded smaller amounts of

complementary DNA (cDNA) for extracted nucRNA
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than for cytRNA. The yield of cDNA with nucRNA was
on par with that of single nuclei prepared with an
off-the-shelf kit (PARIS Kit, Thermo Fisher Scientific) in
which the cell membrane was lysed with a chemical
agent. We thus hypothesize that the smaller amount of

cDNA from the nucRNA fractions is due to the smaller
amount of RNA in a nucleus compared to the cytRNA
amount for the same cell. The total amount of cDNA
per single cell was 26 ± 16% less than that obtained
with a conventional single-cell protocol on average

a

d

g

e
f

b c

Fig. 1 Single-cell integrated nuclear and cytoplasmic RNA-seq (SINC-seq). a SINC-seq and conventional scRNA-seq. b Workflow of SINC-seq. Single-cell
isolation at a hydrodynamic trap via pressure-driven flow (t = 0 s); lysis of cell membrane and cytRNA extraction with isotachophoresis (ITP)-aided
nucleic acid extraction (t > 0 s); ITP acceleration by changing voltages (t = 40 s); voltage deactivation and sample collection from the wells of the
microchannel (t > 200 s). c Fluorescence microscopy images of the trapped single cell and nucleus after cytRNA extraction (stained with Hoechst) and
extracted cytRNA stained with SYBR Green II. Scale bars are 20 μm. d Venn diagram of mean numbers of detected genes in cytRNA-seq and nucRNA-
seq. e Percent proportion of abundance of transcripts in the cytoplasm. f Differential expression analysis between cytRNA and nucRNA. Genes
enriched in cytRNA are on the right-hand side. Blue, genes with p values less than 0.001 and absolute log2 fold changes greater than unity. g
Correlation coefficients of gene expression pattern computed with respect to the conventional scRNA-seq; our novel in silico single-cell normalization
showed the best correlation with the scRNA-seq. We also include correlation of nucRNA vs. its in silico single cell
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(Additional file 1: Figure S2a). We attribute this as
mainly due to the loss at collecting cytRNA from the
outlet well after ITP using a standard micropipette [17].

SINC-seq dissects the difference in subcellular gene
expression
To benchmark the technical aspects of SINC-seq, we
assessed the sensitivity and repeatability of gene expres-
sion analyses with an in silico single-cell analysis. In this
assessment, we used 56 pairs of nucRNA-seq and
cytRNA-seq data taken with unperturbed K562 cells
which were cultured under standard conditions (without
NaB treatment). (See a comprehensive benchmark of
SINC-seq in Additional file 1: Figures S3–S6 and the
Supplementary Information section.) SINC-seq consist-
ently detected 6210 ± 1400 (mean ± SD) and 5690 ± 1500
genes per cytRNA and nucRNA, respectively, and 8200
± 1100 genes per cell with transcripts per million (TPM)
greater than 1 (see Fig. 1d and comprehensive data in
Additional file 1: Figure S3). SINC-seq also revealed that
~ 16% of transcripts were in the nucleus and ~ 84% in
the cytoplasm (see Fig. 1e and also section titled “Com-
puting cyt-normalized vs. nuc-normalized data: in silico
single-cell normalization” in Methods) and also showed
enriched expression of 226 and 3035 genes, respectively
(Fig. 1f ). Grindberg et al. [7] performed enrichment ana-
lyses with individually normalized reads per kilobase per
million mapped reads (RPKM) values from nuclei and
single cells. Compared to Grindberg’s work, our in silico
single-cell approach uniquely enables quantitative com-
parison of gene expression and enrichment analyses
between cytoplasm and nucleus. On average, SINC-seq
displayed about a 5.3% smaller fraction of detected
genes, 8070 ± 1100 genes at the sum total reads of
2.2 million (M) reads, than the conventional scRNA-seq,
which detected 8520 ± 1100 genes (n = 12, 2.2 M reads).
Again, we attribute this mainly to the losses associated
with the collection of the cytRNA from the outlet well
of the chip using a standard micropipette [17]. Notably,
our in silico single-cell data showed a wider dynamic
range in the detection of genes as compared to
scRNA-seq (Additional file 1: Figure S4a). We attribute
this improvement in the dynamic range of in silico single
cells to the sequencing depth in nucRNA-seq. SINC-seq
analyzed RNA expressions in the nucleus and cytoplasm
individually with a similar number of sequencing reads.
This means that nucRNA-seq has more depth per unit
RNA template than cytRNA because of the smaller
amount of nuclear RNA. This feature facilitates the
detection of low abundant nuclear RNAs, hence result-
ing in a larger dynamic range for SINC-seq in silico cell
analysis. To assess the validity of the gene detection with
TPM < 1 in nucRNA-seq, we evaluated the detection of
genes compared with bulk nucRNA-seq. Of 4235 genes

with 0.01 < TPM < 1 in nucRNA-seq, bulk nucRNA-seq
detected 4034 genes. This supports the conclusion that
the detection of genes was not an artifact. We further
evaluated this issue by analyzing with the coverages of
the three lowest abundant genes (TPM~ 0.01)
(Additional file 1: Figure S4b–d). Compared to conventional
scRNA-seq, the in silico single-cell data showed a correl-
ation with a mean coefficient of correlation r = 0.866 com-
puted with a log-transformed expression (log10(TPM+ 1))
(Fig. 1g). The nucRNA-seq also showed a correlation with
scRNA-seq (different cells) with a mean coefficient of correl-
ation r= 0.711, consistent with the results of Grindberg et
al. [7]. Importantly, nucRNA-seq showed a higher correl-
ation with its in silico single cell (same cells) than those with
single cells (different cells), supporting the conclusion that
the nucRNA-seq expression also reflects the transient gene
expression of its respective single cell. This finding indicates
that SINC-seq for the first time reveals the correlation of
transient gene expression between nucRNA and cytRNA.
Combined, an average gene expression profile of 12 in silico
single cells (see Additional file 1: Figure S7 for the definition
of 12 in silico single cells) showed an excellent matching
with that of 12 scRNA-seq (Pearson correlation coefficient
of r= 0.972, see Additional file 1: Figure S3q). The total
number of detected genes (TPM> 1) in the 12 in silico
single cells at an average sequencing depth of 2.2 M reads
was 11,131, of which 9757 genes were also detected from 12
scRNA-seq averages (Additional file 1: Figure S3t). We again
stress that the in silico normalization and resulting
scRNA-seq is a novel method which uniquely leverages a
physical separation and recovery as well as minimal
cross-contamination enabled by our electrophoretic
fractionation.

Cell-cycle-related genes show correlated expression in
cytoplasm and nucleus
To view the landscape of the correlation between nucRNA
and cytRNA, we computed the cross-correlation of indi-
vidual genes as a measure of covariation in the two subcel-
lular compartments with 56 pairs of data taken with
unperturbed K562 cells, and we ranked the genes by order
of the value of the coefficient of correlation (Fig. 2a). We
identified 1720 positively correlated genes and 29 nega-
tively correlated genes with p < 0.05. Gene ontology ana-
lysis revealed that the correlated genes had cell cycle as an
enriched function (Fig. 2b) and the negative correlation
had RNA splicing (Fig. 2c). We note that identification of
uncorrelated genes with this approach was technically
challenging, as the method resulted in many uncorrelated
genes with negligible significance (making it impossible to
neglect the null hypothesis). In this section, we thus
focused analyses on positively correlated and negatively
correlated genes identifiable with statistical significance.
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To dissect the correlated gene expression, we focused
on cell cycle based on transcriptional oscillations [2] and
phase-score analysis [3] (Additional file 1: Supplementary
Information). Apart from the analysis of the correlation
landscape, we obtained a list of cell-cycle genes [29] and
extended an approach proposed by Klein et al. [2] to
observe the behavior of individual cell-cycle genes. The in
silico single-cell data showed the progression of the cell
cycle with a correlated variation of in-phase genes and
negative correlation of out-of-phase genes (G1 vs. G2)
(Fig. 2d), consistent with scRNA-seq of K562 [2], and also
with the progression of the phase score (Additional file 1:
Figure S8a). Similarly, both cytRNA-seq and nucRNA-seq
data revealed the cell cycle (Fig. 2e, f and Additional file 1:
Figure S8b, c). Notably, we found that the negative correl-
ation among out-of-phase genes was slightly higher in the
nucRNA (U test, p = 8 × 10− 26, Additional file 1: Figure
S8d). On the other hand, the correlation among in-phase
genes was higher in the cytRNA, which may indicate
further modulation in the cytoplasm.

To explore how the transcriptional oscillations in the
nucRNA modulated the gene expression in the cytRNA, we
extended the analyses to compute the cross-correlation
between cytRNA and nucRNA with cell-cycle genes. The
cell-cycle genes showed synchronized oscillation in each of
the two subcellular compartments (Fig. 2g), consistent with
the observation that the subpopulations segregated into the
G1 and G2 groups showed corresponding up-regulation
and down-regulation of G1 and G2 genes (Additional file 1:
Figure S8e, f, and Supplementary Information). Together,
these results suggest that the cytRNA and nucRNA have
similar expression patterns of cell-cycle genes and that both
of them solely have a potency to detect the cell cycle.

Nuclear-retained introns attenuate the transcriptional
oscillation
We next studied the retained intron (RI)-mediated
regulation of mRNA transport [30–32] leveraging the
intron-rich reads with nucRNA-seq of SINC-seq (see
Additional file 1: Figure S9 for comprehensive statistics

a b c

d

e f g

Fig. 2 Landscape of cross-correlation between cytRNA and nucRNA unveiled transcriptional oscillation of cell-cycle genes in nucRNA highly
correlated with expression in cytRNA. a Quantile plot of genes sorted in order of the coefficients of cross-correlation. b Gene ontology analysis
with positively correlated genes (p < 0.05) in the quantile plot and c negatively correlated genes. d–f Cell-cycle genes in in silico single-cell data,
cytRNA, and nucRNA show correlation with in-phase genes (G1 vs. G1 or G2 vs. G2) and negative correlation with out-of-phase genes (G1 vs. G2).
List of genes of G1 and G2 phases are provided in Additional file 1: Figure S8. g Transcriptional oscillation of cell-cycle genes in nucRNA cross-
correlated with the gene expression in cytRNA
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on intron detection). After filtering RIs (Methods),
SINC-seq detected 1760 ± 570 RIs per cell, of which
1290 ± 540 and 780 ± 290 were detected with
nucRNA-seq and cytRNA-seq, respectively (Fig. 3a). We
identified 242 nuclear-retained introns (NRIs) in 213
genes (Methods). Gene ontology analysis [33] deter-
mined that the 213 genes had enriched functions like
metabolism of RNA and RNA splicing (Fig. 3b), consist-
ent with previous studies [31, 34, 35]. We examined the
relationship between the probability of NRI and gene
expression in each individual (subcellular) fraction. We
observed a positive correlation between them in the
nucRNA (r = 0.42, p < 0.01, Fig. 3c), while there was no
correlation in the cytRNA (r = − 0.006, p = 0.9, Fig. 3d).
In contrast, we observed different enriched functions
with cytoplasmic-enriched RIs (CRIs) and no correlation
between probabilities of CRI and gene expression
(Additional file 1: Figure S10a–c). For a better under-
standing of the function of NRIs, we examined the
expression patterns of the top seven genes that were
highly associated with NRI-mediated regulation (Fig. 3e–g
and Additional file 1: Figure S10d–h). Notably, the seven

genes contained three splicing-related genes [36] and a
small nucleolar RNA (snoRNA) host gene [37]. These data
lead us to hypothesize that the NRIs likely attenuate the
transcriptional oscillation in the nucleus via fine-tuning of
the RNA metabolism in order to maintain the gene
expression and functional RNAs in the cytoplasm.

Sodium butyrate treatment on K562 drives diverging
gene expression in subcellular compartments
To explore the correlation dynamics under perturbation,
we further performed SINC-seq by differentiating K562
cells along the erythroid lineage with NaB (see
Methods), sampling 8–13 cells per day over 5 days. We
used NaB to modulate the histone acetylation process
and observed transient effects of the epigenetic modifi-
cation on the correlation through the changes in tran-
scriptional activation and export of mRNA to the
cytoplasm. With 41 successful SINC-seq data sets (82
RNA-seq data in total), we detected differentially
expressed genes (DEGs); 264 up-regulated and 177
down-regulated genes were in cytRNA, and 64
up-regulated and 2 down-regulated genes were in

a

e f g

b c

d

Fig. 3 NRI-mediated attenuation of transcriptional oscillation in nucRNA. a Heatmap of the probability of RI in cytRNA and nucRNA fractions. NRI
was identified in the upper right region indicated with the broken white line. b Gene ontology analysis with NRI, showing enriched functions like
metabolism of RNA and RNA splicing. c, d Correlation analysis between the probability of NRI and the fold change of gene expression among
cells with NRI and without NRI (Spl spliced) in nucRNA (upper panel) and cytRNA (lower panel), respectively. e Expression of seven genes that were
highly regulated by NRI in nucRNA (p < 0.0003, Mann-Whitney U test), comparing with NRI vs. without NRI (Spl) in an individual fraction. f
Coverage of SRSF5 and g HNRNPDL genes showing higher intron reads in the nuclear fraction. Coverages of ARGLU1, GAS5 (SNHG2), FBXO9,
VAMP2, and PI4KAP1 genes are provided in Additional file 1: Figure S10
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nucRNA (Additional file 1: Figure S11). We examined
the dynamics of the cross-correlation of DEG expression
between cytRNA and nucRNA along the differentiation
by ordering cells with the pseudotime computed using
Monocle (version 2.4.0) [38, 39] to in silico single-cell
data (Fig. 4a, Additional file 1: Figure S12a). To provide
the statistical significance, we divided cells into five
groups with the pseudotime (see the divisions in Fig. 4a)
and evaluated the cross-correlation of gene expression
between nucRNA and cytRNA (Additional file 1: Figure
S12b). The cross-correlation between cytRNA and
nucRNA exhibited a gradual decrease with increasing
pseudotime, suggesting that the subcellular gene expres-
sion patterns behaved differently and diverged as the
differentiation proceeded. We also found that non-DEGs
showed a less significant change in the coefficient of
cross-correlation with the differentiation (Additional file 1:
Figure S12c). We further explored this observation with
the control experiments (Additional file 1: Figure S12c–e).
We found that the cross-correlation with DEGs showed
no apparent change with unperturbed cells along the
pseudotime (Additional file 1: Figure S12d). These find-
ings and data with population controls at day 0 and day 4
(Additional file 1: Figure S12e) indicate that the change in
the cross-correlation was not an artifact but reflects the
dynamics of cytRNA and nucRNA along the differenti-
ation. Notably, the cross-correlation between nucRNA on
day 4 and cytRNA on day 1 (near the top right corner in
Fig. 4a) was lower compared to that between nucRNA on
day 1 and cytRNA on day 4 (near the bottom left corner),
suggesting that nucRNA was the driver of the diverging
gene expression.
We hypothesize that the divergence of gene expres-

sions in the two subcellular compartments reflects the
transient responses of different regulatory pathways in

cytRNA and nucRNA. To leverage the different behav-
iors of nucRNA and cytRNA, we introduced a
localization-embedded principal component analysis
(L-PCA) that computed principal components (PCs)
with the subcellular gene expressions of DEGs (Fig. 4b).
In the L-PCA, we treated genes in cytRNA and nucRNA
as different ones and represented a single cell as a vector
having double dimension instead of using the conven-
tional approach. As expected, L-PCA resolved the trajec-
tory of the differentiation slightly differently compared
to a conventional PCA that computed PCs with in silico
single-cell data (Fig. 4c). To further corroborate the
L-PCA, we performed PCA on data sets of an individual
fraction, showing this specific and unique transient in
the nucRNA — that is the day 3 cluster was furthest
from the day 0 cluster in nucRNA (Additional file 1: Fig-
ure S12f, g). With our data set, it was difficult to con-
clude whether L-PCA can offer better clustering than
conventional PCA. However, these results at least dem-
onstrated that the L-PCA with SINC-seq is practical and
potentially useful when analyzing a biological process in-
volving regulations at multiple layers of single cells.

Discussion
A fundamental question is how the transcriptional oscil-
lation in the nucRNA, which is inherently stochastic, is
transported to and correlated with gene expression in
the cytRNA. SINC-seq enabled direct and quantitative
comparison of gene expressions between a nucleus, a
cytoplasm, and a whole cell of the same single cell. This
comparison reveals that the cell may conceivably
fine-tune a portion of its expression upon transport to
the cytoplasm (e.g., with NRI genes), while preserving
correlation of other portions of its expression upon
transport (e.g., with cell-cycle-related genes). SINC-seq
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Fig. 4 Differentiation of K562 cells to erythroid cells shows a dynamical change of cross-correlation between cytRNA and nucRNA. a The cross-
correlation of DEG expression between cytRNA and nucRNA along with the pseudotime. Numbers along axes show groups of cells used in the
analysis shown in Additional file 1: Figure S12b. b L-PCA analysis of differentiating K562 cells to erythroid cells by sodium butyrate treatment. c
Conventional PCA analysis with differentiating K562 cells
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also revealed that the cells under external perturbation
dynamically alter the correlation and exhibit a unique
trajectory of differentiation at subcellular resolution.
These findings shed new light on the characteristics of
post-transcriptional regulations with a single cell and
subcellular compartment resolution.
Our study also suggests a compelling caution to an

approach that approximates the transcriptomic profile of
the whole cell with that of a single compartment without
validation. The SINC-seq platform will be broadly
applicable to different types of cells as long as they are
isolated as singles. The method thus will contribute to
validate existing subcellular RNA-seq methods [4, 5, 9–
11, 19, 20] and also define their limitations.

Conclusion
To dissect transcriptional correlation in subcellular com-
partments, we devised SINC-seq, which enables inte-
grated nuclear and cytoplasmic RNA-seq of single cells
by coupling physical fractionation of cytRNA from the
nucleus of a single cell with a high-throughput
RNA-seq. Leveraging SINC-seq, we explored the land-
scape of the correlation between nucRNA and cytRNA
with a total of 84 K562 cells, which corresponds to 168
RNA-seq libraries. The SINC-seq data unveiled three
distinct natures of correlation among cytRNA and
nucRNA that reflected the physiological state of single
cells: highly correlated expression in cell-cycle-related
genes, the distorted correlation via NRIs, and the correl-
ation dynamics along the differentiation of K562 cells to
erythroid cells under sodium butyrate perturbation.
These data provide unique insights into the regulatory
network of mRNA from the nucleus toward the cyto-
plasm at the single-cell level.

Methods
Cells
We purchased K562 cells (human lymphoblast,
chronic myelogenous leukemia) from RIKEN BioRe-
source Center and the Japanese Collection of
Research Bioresources (JCRB) cell bank. We cultured
the K562 cells in RPMI-1640 Medium (Life Technolo-
gies) with 10% fetal bovine serum and 1%
penicillin-streptomycin-glutamine at 37 °C in 5% CO2.
We washed the cells with phosphate-buffered saline
once and suspended them in a sample buffer
containing 50 mM imidazole, 25 mM 4-(2-hydro-
xyethyl)-1-piperazineethanesulfonic acid (HEPES), and
175 mM sucrose (pH 7.6) at a concentration of ~ 0.8
cells/μL and stored them on ice until the experiments
were performed. To differentiate the K562 cells, we
incubated them with 1 mM NaB (Sigma-Aldrich,
B5887) and harvested them after 96 h of induction.

Buffers
We designed buffers for ITP-based selective extraction,
separation (from the trapped nucleus), purification, and
transport of cytRNA to the cytRNA output well of the
chip (see more details in Shintaku et al. [16] and
Kuriyama et al. [17]). The leading electrolyte buffer (LE)
components were 50 mM Tris and 25 mM HCl contain-
ing 0.4% poly(vinylpyrrolidone) (PVP) (calculated pH of
8.1). The trailing electrolyte buffer (TE) components
were 50 mM imidazole and 25 mM HEPES containing
(initial calculated pH of 8.3) 0.4% PVP. We included
PVP to suppress electroosmotic flow. We purchased
Tris, HEPES, imidazole, and HCl from Sigma-Aldrich,
and PVP (molecular weight 1 MDa) from Polyscience.
We prepared all solutions in UltraPure DNase-/RNase-free
deionized (DI) water (Life Technologies).

Microfluidic system setup
We fabricated polydimethylsiloxane (PDMS, Sylgard
184, Dow Corning) microchannel superstructures
(Additional file 1: Figure S1a, b) with a soft lithography
and bonded them to a glass substrate. SU-8 (SU-8 2025,
MicroChem) molds were prepared on glass substrates
with the microchannel patterns made of chromium thin
films, exposing the SU-8 to ultraviolet light through the
pattern. The nominal channel width and depth of the
microchannels were 50 μm and 25 μm, respectively. We
designed 3-μm-wide and 5-μm-long hydrodynamic traps.
We have optimized the size of the hydrodynamic trap as
3 μm wide and 25 μm deep so that it can capture a
single cell and trap a nucleus during the electric field
extraction of cytRNA. We observed some deformation
of cells due to the presence of the pressure-driven flow,
but observed no mechanical lyses prior to the applica-
tion of the electric field. This trapping process had a
timescale of several minutes.
Before each experiment, we preconditioned the micro-

channel by filling the inlet and outlet wells with washing
solutions and applying a vacuum to the waste well. Our
washing process was as follows: 1 M NaOH for 1 min,
1 M HCl for 1 min, and DI water for 1 min. All washing
solutions contained 0.1% Triton X-100 to suppress
bubble clogging in the hydrophobic microchannel.
Following this, we loaded 9.5 μL of LE and TE to the

outlet and inlet wells, respectively, and briefly applied a
vacuum to the waste well to exchange the solution in
the microchannel with LE and TE. The hydrodynamic
pressure induced by buffers in the inlet and outlet wells
created a pressure-driven laminar flow from both inlet
and outlet wells toward the waste well and formed a
stable LE-TE interface at the junction of three micro-
channels. We then picked up a single cell of interest
from the cell suspension by aspirating 1 μL using a
standard micropipette. We observed this process using a
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microscope and confirmed aspiration of a single cell.
We then dispensed this 1-μL volume into the inlet well
and introduced it into the microchannel via the
pressure-driven flow. Once we visually confirmed the
captured single cell at the hydrodynamic trap (Fig. 1c),
we added 9.5 μL of the TE to the waste well to reduce
the pressure-driven flow. We aborted our protocol in
cases where we observed two or more cells at the hydro-
dynamic trap. We placed 300-μm-diameter platinum
wire electrodes into the wells and applied − 150 V, −
170 V, and 0 V to the electrodes at the inlet, waste, and
outlet wells, respectively. The DC voltage created a con-
centrated electric field at the hydrodynamic trap
(Additional file 1: Figure S1d) and lysed the cytoplasmic
membrane within 1 s. Appropriate placement of the ITP
buffers with the DC electric field enabled an immediate
transition from the lysis to an ITP process that collects
and focuses cytRNA into an ITP-zone, TE-to-LE inter-
face. At 40 s, we changed the voltages to − 350 V and −
510 V at the inlet and waste wells, respectively, to accel-
erate the migration of the ITP zone. The ITP zone trans-
ported the cytRNA to the output well in about 100 s,
while the nucleus was retained at the hydrodynamic
trap. We also monitored the current during the extrac-
tion with a computer running a custom MATLAB
(Mathworks, Inc., Natick, MA, USA) script. The magni-
tude of the current decreased as the ITP zone (contain-
ing the focused cytRNA) advanced in the channel and as
the lower conductivity TE replaced the higher conduct-
ivity LE (Additional file 1: Figure S1c). The current
signal plateaued near t = 100 s, coincident with the time
at which the focused cytRNA eluted into the outlet well.
We deactivated the voltages at 200 s and used a standard
pipette to transfer two aliquots from the chip: 9.5 μL
from the outlet well containing the cytRNA and 1 μL
containing the cell nucleus from the inlet well. Detailed
descriptions of a similar protocol and chip, together with
a narrated video description, were reported by Kuriyama
et al. [18].

Library preparation and mapping analysis
We synthesized respective cDNA libraries from the
fractionated cytRNA and nucRNA separately using
Smart-seq2 (SMART-seq v4 Ultra Low Input RNA Kit
for Sequencing, Clontech) with 18 polymerase chain
reaction (PCR) cycles followed by purification with
Agencourt AMPure XP (Beckman Coulter). We exam-
ined the yield and quality of cDNA, respectively, with a
Qubit 2.0 Fluorometer (Thermo Fisher Scientific) and
quantitative PCR (qPCR) targeting GAPDH (glyceralde-
hyde-3-phosphate dehydrogenase, Hs02758991_g1,
Thermo Fisher Scientific) and HBG (gamma-globin
genes, Hs00361131_g1, Thermo Fisher Scientific). We
performed the tagmentation reaction with 200 pg cDNA

using a Nextera XT DNA Sample Preparation Kit (Illu-
mina) and purified the cDNA library following the man-
ufacturer’s protocol, except that we eluted the cDNA
sample with 24 μL instead of 50 μL (see Additional file 1:
Figure S2a for yields of cDNA). We pooled 98–108
libraries and sequenced them on an Illumina HiSeq
2500 with 100-base paired-end reads to an average depth
of 4.64 million reads (Additional file 1: Figure S2b, c).
We mapped the trimmed sequencing reads to the tran-
scripts derived from the human reference genome
(GRCh37.75) using the STAR (version 2.5.1b) mapping
program [40] with ENCODE options, and calculated
expression estimates with TPM using RNA-Seq by
Expectation-Maximization (RSEM v1.3.0) [41].
We performed DE analyses individually with cytRNA

and nucRNA comparing day 1–day 4 samples to day 0
samples. We used the MATLAB functions “nbintest”
and “mafdr” and identified significance with p values less
than 0.001 and absolute log2 fold changes greater than
unity.

Analysis of intron retention
We computed intron expressions with fragments per
kilobase of intron per million mapped reads (FPKM)
using 347,041 unique introns (longer than 50 nt) on the
genome annotation with 56 SINC-seq data of K562 cells
under standard culturing conditions. On average,
SINC-seq yielded 14.8% reads mapped to introns with
nucRNA-seq, but only 1.1% with cytRNA-seq. Further,
SINC-seq detected 38,800 ± 10,000 and 34,800 ± 8000
unique introns in nucRNA-seq and cytRNA-seq, re-
spectively, and 56,300 ± 9500 per cell with FPKM of
more than 0. We identified an RI that had at least 10%
expression level of the gene, 95% coverage in the in-
tronic region, and non-zero expression in the adjacent
exon. We discarded intron reads locating on a gene with
less than 2 TPM. On the other hand, we identified a
fully spliced intron that had less than 1% expression of
the gene and 50% coverage in the adjacent exon. We dis-
carded intron reads that failed the preceding criteria.
We validated the RI identification with splice site scores
[42], which showed lower values with RIs than fully
spliced introns, using 9mer (exonic 3mer + intronic
6mer) around the 5′ splice site (p value < 2.2 × 10− 16, U
test), and 23mer (intronic 20mer + exonic 3mer) around
the 3′ splice site (p value < 2.5 × 10− 12, U test). In total,
we detected 17,277 RIs, of which 14,134 and 2316 RIs
had a higher probability of RI in nucRNA and cytRNA,
respectively. The RI enrichment in the nucleus was
consistent with that for previous studies [30–32].
To identify NRIs, we calculated the probability of in-

tron retention defined as the proportion of cells with the
RI and identified NRIs that had 0.25 higher probability
in the nuclear fraction than in the cytoplasmic fraction.
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We then filtered unique NRIs, discarding smaller NRIs
that had overlap with a long NRI. On the other hand, we
identified CRIs that had 0.25 higher probability in the
cytoplasmic fraction than in the nuclear fraction.

Computing cyt-normalized vs. nuc-normalized data: in
silico single-cell normalization
We computed in silico single-cell RNA-seq (scRNA-seq)
data with cytRNA-seq and nucRNA-seq data, scaling the
raw TPM values and combining the cytRNA-seq and
nucRNA-seq data as

TPMin−silico ¼ TPMcyt þ TPMnuc; ðS1Þ

TPMcyt ¼ αTPM�; ðS2Þ

TPMnuc ¼ βTPM�; ðS3Þ

where α and β are normalization factors, which make
the summation of the TPM values, TPMin silico, of the in
silico single-cell data to be one million. We here write
raw TPM values with an asterisk and TPM values of in
silico single-cell data, cytRNA-seq, and nucRNA-seq,
respectively, with their subscripts. We calculate α and β
using ΔCt of qPCR data taken at the QC of cDNA
(Additional file 3: Table S1) as

α ¼ 2ΔCt

TPM�
cyt;geneA

TPM�
nuc;geneA

þ 2ΔCt
; ðS4Þ

β ¼ 1−α; ðS5Þ

where TPM*
cyt,geneA, TPM

*
nuc, geneA, and ΔCt are, respect-

ively, the raw TPM value of gene A with cytRNA-seq,
the raw TPM value of gene A with nucRNA-seq, and
ΔCt =Ctnuc, geneA – Ctcyt, geneA, which is ΔCt with
respect to gene A. We calculated pairs of α and β with
GAPDH and HBG genes (HBG1 +HBG2) as gene As,
and used the mean α and β to compute the TPM.
We here note that α and β, respectively, indicate the

(complementary) fractions of cytoplasmic transcripts
and nuclear transcripts in the in silico single cells. We
thus can quantify the fraction of the cytoplasmic tran-
script as shown in Fig. 1e.

L-PCA
The PCA for the conventional scRNA-seq uses an (n ×m)
matrix of gene expressions (n = number of genes) with
multiple samples (m = number of samples); however, our
L-PCA uses a (2n ×m) matrix of gene expressions, having
a twofold dimension compared to the conventional
matrix, derived from cytRNA-seq and nucRNA-seq. The
L-PCA was performed using PCA with “prcomp” in R.

Additional files

Additional file 1: Supplementary information and Figures S1–S12.
(DOCX 4587 kb)

Additional file 2: Movie S1. Electrical lysis and RNA extraction
visualized by SYBR Green II. (MOV 1279 kb)

Additional file 3: Table S1. Quality control of SINC-seq samples.
(XLSX 21 kb)

Additional file 4: Movie S2. Experimental run #55 with unsuccessful
fractionation. (MP4 1372 kb)

Additional file 5: Movie S3. Experimental run #69 with unsuccessful
fractionation. (MP4 1116 kb)
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