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Abstract: Tissue segmentation of retinal optical coherence tomography (OCT) is widely used in
ophthalmic diagnosis. However, its performance in severe pathologic cases is still insufficient. We
propose a pixel-wise segmentation method that uses the multi-contrast measurement capability
of Jones matrix OCT (JM-OCT). This method is applicable to both normal and pathologic
retinal pigment epithelium (RPE) and choroidal stroma. In this method, “features,” which are
sensitive to specific tissues of interest, are synthesized by combining the multi-contrast images
of JM-OCT, including attenuation coefficient, degree-of-polarization-uniformity, and OCT
angiography. The tissue segmentation is done by simple thresholding of the feature. Compared
with conventional segmentation methods for pathologic maculae, the proposed method is less
computationally intensive. The segmentation method was validated by applying it to images
from normal and severely pathologic cases. The segmentation results enabled the development of
several types of en face visualizations, including melano-layer thickness maps, RPE elevation
maps, choroidal thickness maps, and choroidal stromal attenuation coefficient maps. These
facilitate close examination of macular pathology. The melano-layer thickness map is very similar
to a near infrared fundus autofluorescence image, so the map can be used to identify the source
of a hyper-autofluorescent signal.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

OCIS codes: (170.4500) Optical coherence tomography; (170.4470) Ophthalmology; (170.6935) Tissue characterization;
(170.5755) Retina scanning; (100.2960) Image analysis; (110.4500) Optical coherence tomography.

References and links
1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A.

Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
2. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and

C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using
polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061704 (2010).

3. S. J. Chiu, M. J. Allingham, P. S. Mettu, S. W. Cousins, J. A. Izatt, and S. Farsiu, “Kernel regression based
segmentation of optical coherence tomography images with diabetic macular edema,” Biomed. Opt. Express 6,
1172–1194 (2015).

4. D. C. Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical
coherence tomography images,” Opt. Express 6, 10200–10216 (2005).

5. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers
in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).

6. M. K. Garvin, M. D. Abrámoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation
of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imag. 27,
1495–1505 (2008).

7. A. Yazdanpanah, G. Hamarneh, B. R. Smith, and M. V. Sarunic, “Segmentation of intra-retinal layers from optical
coherence tomography images using an active contour approach,” IEEE Trans. Med. Imag. 30, 484–496 (2011).

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 2955 

#325547 https://doi.org/10.1364/BOE.9.002955 
Journal © 2018 Received 6 Mar 2018; revised 22 May 2018; accepted 23 May 2018; published 6 Jun 2018 

https://doi.org/10.1364/OA_License_v1
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.002955&domain=pdf&date_stamp=2018-06-06
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.9.002955&domain=pdf&date_stamp=2018-06-22


8. L. d. Sisternes, J. Hu, D. L. Rubin, and M. F. Marmor, “Localization of Damage in Progressive Hydroxychloroquine
Retinopathy On and Off the Drug: Inner Versus Outer Retina, Parafovea Versus Peripheral Fovea,” Invest. Ophthalmol.
Vis. Sci. 56, 3415–3426 (2015).

9. V. Kajić, M. Esmaeelpour, B. Považay, D. Marshall, P. L. Rosin, and W. Drexler, “Automated choroidal segmentation
of 1060 nm OCT in healthy and pathologic eyes using a statistical model,” Biomed. Opt. Express 3, 86–103 (2012).

10. V. Kajić, B. Považay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of
intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,”
Opt. Express 18, 14730–14744 (2010).

11. L. de Sisternes, G. Jonna, J. Moss, M. F. Marmor, T. Leng, and D. L. Rubin, “Automated intraretinal segmentation of
SD-OCT images in normal and age-related macular degeneration eyes,” Biomed. Opt. Express 8, 1926 (2017).

12. L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer
boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomed. Opt.
Express 8, 2732–2744 (2017).

13. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain
imaging,” Opt. Express 13, 5483–5493 (2005).

14. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14,
7821–7840 (2006).

15. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with
optical micro-angiography,” Opt. Express 16, 11438–11452 (2008).

16. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, and
D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express
20, 4710–4725 (2012).

17. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for
birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992).

18. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the
human eye,” Prog. Retin. Eye Res. 30, 431 – 451 (2011).

19. J. F. de Boer, C. K. Hitzenberger, and Y. Yasuno, “Polarization sensitive optical coherence tomography — a review
[Invited],” Biomed. Opt. Express 8, 1838–1873 (2017).

20. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K.
Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,”
Opt. Express 16, 16410–16422 (2008).

21. B. Baumann, W. Choi, B. Potsaid, D. Huang, J. S. Duker, and J. G. Fujimoto, “Swept source / Fourier domain
polarization sensitive optical coherence tomography with a passive polarization delay unit,” Opt. Express 20,
10229–10241 (2012).

22. Y. Lim, Y.-J. Hong, L. Duan, M. Yamanari, and Y. Yasuno, “Passive component based multifunctional jones matrix
swept source optical coherence tomography for Doppler and polarization imaging,” Opt. Lett. 37, 1958–1960 (2012).

23. M. J. Ju, Y.-J. Hong, S. Makita, Y. Lim, K. Kurokawa, L. Duan, M. Miura, S. Tang, and Y. Yasuno, “Advanced
multi-contrast Jones matrix optical coherence tomography for Doppler and polarization sensitive imaging,” Opt.
Express 21, 19412 (2013).

24. Y.-J. Hong, M. Miura, M. J. Ju, S. Makita, T. Iwasaki, and Y. Yasuno, “Simultaneous Investigation of Vascular
and Retinal Pigment Epithelial Pathologies of Exudative Macular Diseases by Multifunctional Optical Coherence
TomographyMultifunctional Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 55, 5016–5031 (2014).

25. S. Sugiyama, Y.-J. Hong, D. Kasaragod, S. Makita, S. Uematsu, Y. Ikuno, M. Miura, and Y. Yasuno, “Birefringence
imaging of posterior eye by multi-functional Jones matrix optical coherence tomography,” Biomed. Opt. Express 6,
4951 (2015).

26. K. A. Vermeer, J. Mo, J. J. A. Weda, H. G. Lemij, and J. F. de Boer, “Depth-resolved model-based reconstruction of
attenuation coefficients in optical coherence tomography,” Biomed. Opt. Express 5, 322–337 (2013).

27. A. C. Chan, Y.-J. Hong, S. Makita, M. Miura, and Y. Yasuno, “Noise-bias and polarization-artifact corrected optical
coherence tomography by maximum a-posteriori intensity estimation,” Biomed. Opt. Express 8, 2069–2087 (2017).

28. S. Makita, K. Kurokawa, Y.-J. Hong, M. Miura, and Y. Yasuno, “Noise-immune complex correlation for optical
coherence angiography based on standard and Jones matrix optical coherence tomography,” Biomed. Opt. Express 7,
1525 (2016).

29. B. Baumann, S. O. Baumann, T. Konegger, M. Pircher, E. Götzinger, F. Schlanitz, C. Schütze, H. Sattmann,
M. Litschauer, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Polarization sensitive optical coherence tomography of
melanin provides intrinsic contrast based on depolarization,” Biomed. Opt. Express 3, 1670–1683 (2012).

30. S. Makita, Y.-J. Hong, M. Miura, and Y. Yasuno, “Degree of polarization uniformity with high noise immunity using
polarization-sensitive optical coherence tomography,” Opt. Lett. 39, 6783 (2014).

31. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized jones matrix optical coherence tomography: performance and
local birefringence imaging,” Opt. Express 18, 854–876 (2010).

32. D. Kasaragod, S. Makita, S. Fukuda, S. Beheregaray, T. Oshika, and Y. Yasuno, “Bayesian maximum likelihood
estimator of phase retardation for quantitative polarization-sensitive optical coherence tomography,” Opt. Express 22,
16472 (2014).

33. D. Kasaragod, S. Makita, Y.-J. Hong, and Y. Yasuno, “Noise stochastic corrected maximum a posteriori estimator for

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 2956 



birefringence imaging using polarization-sensitive optical coherence tomography,” Biomed. Opt. Express 8, 653
(2017).

34. M. A. Kirby, C. Li, W. J. Choi, G. Gregori, P. Rosenfeld, and R. Wang, “Why choroid vessels appear dark in clinical
OCT images,” Proc. SPIE 10474, 1047428 (2018).

35. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst., Man, Cybern. 9, 62–66
(1979).

36. C. A. Curcio, M. Johnson, M. Rudolf, and J.-D. Huang, “The oil spill in ageing bruch membrane,” Br. J. Ophthalmol.
95, 1638–1645 (2011).

37. D. Sundararajan, Morphological Image Processing (Springer Singapore, Singapore, 2017), chap. 8, pp. 217–256.
38. J. J. Weiter, F. C. Delori, G. L. Wing, and K. A. Fitch, “Retinal pigment epithelial lipofuscin and melanin and

choroidal melanin in human eyes,” Invest. Ophthalmol. Vis. Sci. 27, 145 (1986).
39. A. Zhang, Q. Zhang, and R. K. Wang, “Minimizing projection artifacts for accurate presentation of choroidal

neovascularization in oct micro-angiography,” Biomed. Opt. Express 6, 4130–4143 (2015).
40. M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved optical

coherence tomographic angiography,” Biomed. Opt. Express 7, 816–828 (2016).
41. C. Balaratnasingam, J. D. Messinger, K. R. Sloan, L. A. Yannuzzi, K. B. Freund, and C. A. Curcio, “Histologic

and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular
degeneration,” Ophthalmology 124, 644–656 (2017).

42. M. Miura, S. Makita, S. Sugiyama, Y.-J. Hong, Y. Yasuno, A. E. Elsner, S. Tamiya, R. Tsukahara, T. Iwasaki, and
H. Goto, “Evaluation of intraretinal migration of retinal pigment epithelial cells in age-related macular degeneration
using polarimetric imaging,” Sci. Rep. 7, 3150 (2017).

43. Y. Ikuno, K. Kawaguchi, T. Nouchi, and Y. Yasuno, “Choroidal thickness in healthy Japanese subjects,” Invest.
Ophthalmol. Vis. Sci. 51, 2173 (2010).

44. L. Duan, M. Yamanari, and Y. Yasuno, “Automated phase retardation oriented segmentation of chorio-scleral interface
by polarization sensitive optical coherence tomography,” Opt. Express 20, 3353–3366 (2012).

45. M. Yamanari, S. Makita, Y. Lim, and Y. Yasuno, “Full-range polarization-sensitive swept-source optical coherence
tomography by simultaneous transversal and spectral modulation,” Opt. Express 18, 13964–13980 (2010).

46. M. Yamanari, K. Ishii, S. Fukuda, Y. Lim, L. Duan, S. Makita, M. Miura, T. Oshika, and Y. Yasuno, “Optical
Rheology of Porcine Sclera by Birefringence Imaging,” PLoS ONE 7, e44026 (2012).

47. R. F. Spaide, H. Koizumi, and M. C. Pozonni, “Enhanced depth imaging spectral-domain optical coherence
tomography,” Am. J. Ophthalmol. 146, 496 (2009).

48. A. C. Chan, K. Kurokawa, S. Makita, M. Miura, and Y. Yasuno, “Maximum a posteriori estimator for high-contrast
image composition of optical coherence tomography,” Opt. Lett. 41, 321 (2016).

49. A. C. Chan, Y.-J. Hong, S. Makita, M. Miura, and Y. Yasuno, “Noise-bias and polarization-artifact corrected optical
coherence tomography by maximum a-posteriori intensity estimation,” Biomed. Opt. Express 8, 2069–2087 (2017).

50. L. Duan, Y.-J. Hong, and Y. Yasuno, “Automated segmentation and characterization of choroidal vessels in
high-penetration optical coherence tomography,” Opt. Express 21, 15787–15808 (2013).

51. J. Tian, P. Marziliano, M. Baskaran, T. A. Tun, and T. Aung, “Automatic segmentation of the choroid in enhanced
depth imaging optical coherence tomography images,” Biomed. Opt. Express 4, 397–411 (2013).

52. J. Mazzaferri, L. Beaton, G. Hounye, D. N. Sayah, and S. Costantino, “Open-source algorithm for automatic choroid
segmentation of OCT volume reconstructions,” Sci. Rep. 7, 42112 (2017).

53. J. Lammer, M. Bolz, B. Baumann, M. Pircher, B. Gerendas, F. Schlanitz, C. K. Hitzenberger, and U. Schmidt-Erfurth,
“Detection and Analysis of Hard Exudates by Polarization-Sensitive Optical Coherence Tomography in Patients With
Diabetic Maculopathy,” Invest. Ophthalmol. Vis. Sci. 55, 1564–1571 (2014).

1. Introduction

Optical coherence tomography (OCT) [1] is a powerful imaging modality, particularly in the field
of ophthalmology, because it offers cross-sectional and three-dimensional (3-D) tomography
with high contrast. OCT reveals the retinal layers, by measuring backscattering intensity, making
OCT-based diagnoses integral to current-day ophthalmology. As the popularity of OCT increases,
the demand for automatic and quantitative analysis of retinal morphology, such as automatic area
segmentation of specific tissues or pathologic regions [2, 3] and/or layer segmentation of the
retinal layers [4–7], also increases.
Examples of automatic segmentation methods include the peak-detection method [4], graph

theory and dynamic programing [5], the 3-D graph method [6], and the active contour method [7].
These conventional methods work well in OCT images of tissue without severe structural abnor-
malities. However, in heavily damaged or degenerated tissue, the accuracy of the segmentation
becomes inadequate [4, 8]. Some methods have overcome this limitation, but they generally
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require an iterative process and are time-consuming [9–12].
OCT angiography (OCTA) [13–16] and polarization-sensitive OCT (PS-OCT) [17–19] are

functional extensions of OCT that measure the blood flow and polarization properties of
the sample, respectively. Multi-functional Jones matrix OCT (JM-OCT) is a comprehensive
version of OCTA and PS-OCT that measures conventional scattering OCT, OCTA, phase
retardation/birefringence and degree-of-polarization-uniformity (DOPU) tomographies [20],
simultaneously [21–25]. Although such images have been used for subjective observations, only
a few methods for morphological analysis using JM-OCT have been reported [2, 18, 20].
Since JM-OCT provides multiple images with different contrasts, it should provide more

information than conventional OCT does, and the increased information should enable more-
convenient and less-time-consuming segmentation methods. In addition, if a segmentation method
were designed to use only the multiple-contrast information without morphological information,
it would become a robust segmentation method not only for normal to moderately pathologic
cases, but also for cases with extensive morphological changes.
In this paper, we demonstrate a new segmentation method that exploits multiple types of

images obtained by JM-OCT, including the attenuation coefficient (AC), DOPU, and OCTA. In
the segmentation process, we synthesized “features” from the above-mentioned multi-contrast
JM-OCT images, and designate them as primary optical features. A synthesized feature is
designed to be sensitive to particular tissues of interest, denoted as target tissues, so applying a
single threshold to the synthesized feature enables the segmentation of the target tissue. This
method is not a boundary-delineation segmentation, but a pixel-wise classification that labels
each pixel as either a target or non-target tissue. This method is also designed not to depend upon
morphological information, so it is equally applicable to OCT images from normal and severely
structurally damaged retinas. In addition, this method does not include an iterative process and
thus can be computed quickly.

Furthermore, we create several types of en face maps, by combining the multiple contrasts from
JM-OCT with the segmentation results from retinal pigment epithelium (RPE) and choroidal
stroma. The en face maps, including a melano-layer thickness map, RPE elevation map, choroidal
thickness map and average choroidal stromal AC map, facilitate the identification of pathologic
retinal structures. We evaluate the clinical utility of this new method by applying it to several
clinical cases, which include pigment epithelial detachment (PED), geographic atrophy (GA),
and exudative age-related macular degeneration (AMD).

2. Jones matrix optical coherence tomography system

Two custom-made swept-source-based JM-OCT prototypes with similar specifications were used
to obtain multi-contrast images. The first system, which is a laboratory prototype for testing
normal subjects [23], uses a wavelength sweeping laser with a scanning frequency of 100 kHz, a
center wavelength of 1048 nm, a sweeping wavelength range of 123 nm, and a measured depth
resolution of 6.2 µm in tissue. The other system is a clinical prototype that is used for evaluating
patients [25]. It uses a wavelength sweeping laser with a scanning frequency of 100 kHz, a
center wavelength of 1060 nm, a sweeping wavelength range of 110 nm, and a measured depth
resolution of 6.6 µm in tissue. Both systems scan an area of 6 mm × 6 mm of retina in 6.6 s with
a horizontal fast raster scan protocol. The volumetric data consist of 512 A-lines (horizontal) ×
256 vertical positions × 4 repetitive scans at each vertical position.
JM-OCT simultaneously measures a set of multi-contrast images including backscattering

intensity, AC, OCTA, DOPU, and birefringence image. The scattering intensity is calculated by
coherent composition [23, 24] and is similar to conventional OCT. The AC is calculated from the
scattering intensity using a model-based reconstruction method by Vermeer et al. [26] with an
extension for polarization diversity detection (Eqs. (12) and (14) of Ref. [27]). By employing
the AC, we can regulate the OCT intensity signal, which is susceptible to opacity of ocular
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media, such as cataracts, and to shadowing by abnormal hyper-scattering materials in the retina.
OCTA is computed by the complex Jones matrix correlation method with noise correction [28].
Noise-corrected OCTA is a complex decorrelation without a noise offset. While OCTA is a
decorrelation, it ranges not only between [0.0, 1.0] but also takes negative values or values larger
than 1.0 to cancel the noise offset statistically. DOPU is known to be low if melanin exits [29],
therefore it selectively contrasts melanin-containing tissues such as the RPE [20]. In our particular
implementation, DOPU is computed withMakita’s noise correction [30], and a 3 pixel (transverse)
× 3 pixel (depth) kernel. Similar to the OCTA with noise-offset correction, this noise-corrected
DOPU also not only ranges between [0.0, 1.0] but also takes negative values or values of more than
1.0. The birefringence was computed by combining depth-localized Jones matrix analysis [31]
and subsequent maximum a posteriori (MAP) birefringence estimation [32, 33]. The size of the
depth-localized Jones matrix was 9 pixels (34 µm) and the kernel size of the MAP birefringence
estimation was 2 pixels (transverse) × 2 pixels (depth). Please note that the birefringence is only
used to help understand the retinal pathology, but is not used for the segmentation.

3. Multi-contrast segmentation

3.1. Segmentation method

The multi-contrast segmentation method is based on the idea of feature engineering. In this
segmentation method, a “feature”, which is sensitive to a specific target tissue, is synthesized by
combining the multi-contrast images. Once the feature has been synthesized, tissue classification
is achieved by applying a simple threshold to the feature. This tissue classification is pixel-wise
segmentation and does not use morphological information. And, hence, it can easily be applied
to cases with severe morphological abnormality.
Our method is designed for the segmentation of RPE and choroidal stroma. The feature

synthesis for these tissues depends upon prior knowledge about the contrast properties of these
tissues in the multi-contrast images (as summarized in Table 1). For example, both the RPE and
choroidal stroma contain melanin. Hence they should show low DOPU, while the inner retina
should show high DOPU. Choroidal stroma consists of dense vasculature, hence its OCTA signal
should be high, whereas the RPE has no OCTA signal. The choroidal lumen is expected to have
low OCTA signal because of signal washout [34].

Table 1. Contrast properties of retinal tissues. ‘+’ and ‘-’ symbols indicate high and low,
respectively.

Tissue AC DOPU OCTA
Inner retinal tissue + or - + + or -

RPE + - -
Choroidal stroma + - +
Choroidal lumen - + -

For RPE segmentation, we synthesize a new feature (FRPE) from AC, DOPU, and OCTA as

FRPE ≡ AC × (1 − DOPU) × (1 − OCTAb), (1)

where OCTAb is a binarized OCTA signal, which is created by applying Otsu’s method [35] to
the raw OCTA image. AC is represented as the decadic logarithm of the attenuation coefficient
in mm−1 unit. Since RPE has high AC, low DOPU, and no OCTA, this feature takes on large
values for RPE pixels. If FRPE is greater than or equal to 0.15, the pixel is classified as RPE. The
center-of-gravity in depth of the RPE pixels is computed for each A-line to reduce classification
errors. If the depth position of a supposed RPE pixel is more than 50-pixel above (190 µm in
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(c)(b) (d)

(e) (f) (g) (h)

(a)

0.5 mm 0 1-3.0 3.0

Fig. 1. Multi-contrast images and segmentation results for a normal case. (a) Scattering
intensity, (b) AC presented in the decadic logarithm of the attenuation coefficient in mm−1
unit, (c) DOPU, (d) binarized OCTA, (e) segmented RPE, (f) segmented choroidal stroma,
(g) RPE (red) and choroidal stroma (green) overlaid on scattering intensity, and (h) volume
rendering of RPE (red) and choroidal stroma (green). The scale bar indicates 0.5 mm × 0.5
mm.

tissue) or lower than 10 pixels (38 µm in tissue) from the center of gravity, then that pixel is
considered to represent a segmentation error, and is removed.
For choroidal stromal segmentation, another feature (FCS) is defined as

FCS ≡ (1 − DOPU) × OCTAb . (2)

If the choroidal stromal feature is greater than 0.1, then the pixel is classified as choroidal stroma.
Similarly to the RPE segmentation, if a choroidal stromal pixel is more than 100 pixels (380 µm
in tissue) away from its centroid, then that pixel is considered as an erroneously classified pixel
and removed.

It should be noted that, in Eqs. (1) and (2), if two parts of the equation have large negative values,
the feature (FRPE or FCS) then erroneously takes a large positive value, although it is expected to
take a value that is smaller than the classification threshold for correct classification. However,
this situation cannot occur. First, the DOPU values in both Eqs. (1) and (2) are determined with
Makita’s noise correction and thus can have values that are smaller than 0.0 or larger than 1.0.
Therefore, (1 − DOPU) in these equations may have both negative and positive values. Second,
the AC is a decadic logarithm of the attenuation coefficient with units of mm−1. Thus, if the
attenuation coefficient is smaller than 1.0 mm−1, or as an equivalent, if the mean free path of a
photon is longer than 1.0 mm, the AC has a negative value. However, this is not likely to happen
in our case. In addition, we enforce the positivity of the AC by forcibly setting it to zero if it took
a negative value. Third, both OCTAb and (1 − OCTAb) can only have positive values because
OCTAb is binary. In summary, only one part of each equation, i.e., (1 − DOPU), can have a
negative value. Therefore, a larger feature value always indicates that the pixel is more likely to
be the target tissue.

3.2. Segmentation result

The segmentation method was validated by applying it to the OCT data from a normal subject. The
multi-contrast images in Figs. 1(a)-(d) show scattering intensity (a), AC (the decadic logarithm
of the attenuation coefficient in mm−1 unit) (b), DOPU (c), and binarized OCTA (d). Hereafter,
all AC images are presented in the decadic logarithm of the attenuation coefficient in mm−1 unit.
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(c)(b)(a) (d)

(e) (f) (g) (h)

0.5 mm -3.0 3.0 0 1

Fig. 2. Multi-contrast images and segmentation results for a PED case. (a) Scattering intensity,
(b) AC, (c) DOPU, (d) binarized OCTA, (e) segmented RPE, (f) segmented choroidal stroma,
(g) RPE (red) and choroidal stroma (green) overlaid on scattering intensity, and (h) volume
rendering of RPE (red) and choroidal stroma (green). The scale bar indicates 0.5 mm × 0.5
mm.

Figures 1(e) and 1(f) show segmented RPE and choroidal stroma, respectively. The segmented
pixels are overlaid on the scattering intensity in Fig. 1(g), where red and green pixels indicate
RPE and choroidal stroma, respectively. Segmentations were performed for all B-scans in the
volume, and the RPE and choroidal stromal pixels were volume-rendered [Fig. 1(h)]. As shown
in Fig. 1, our method produced reasonable segmentation results.
The tissue classification method was also applied to pathologic cases with severe structural

deformation of the retina. Figure 2 shows a case of PED, where the types of images correspond
to those in Fig.1. In the scattering intensity [Fig.2(a)], hyper-penetration is visible (red arrow),
which indirectly suggests that the RPE is absent. Despite the hyper-penetration, RPE appears to
be present in the scattering intensity [Fig.2(a)] and AC images [Fig.2(b)], although it is severely
detached. The appearance of RPE in the scattering image could be an artifact caused by the
oil spill in aging Bruch’s membrane [36]. Although the apparent presence of RPE cannot be
rejected as an artifact based only on the scattering information, the DOPU image [Fig.2(c)]
provides additional information to correctly reject it. In the DOPU image, the low-DOPU signal,
an indicator of melanin, is absent at the top of the PED, so it can be concluded that the RPE is
absent there. The RPE segmentation result [Fig. 2(e)] supports that conclusion.

The third example of the tissue classification method is an AMD case with hard exudates [Fig.
3]. The order of the sub-figures is identical to that in Figs. 1 and 2. In the scattering intensity,
AC, DOPU, and OCTA images (panels (a)-(d), respectively), the hard exudates appear with high
scattering, high attenuation, low-DOPU, and no OCTA signal, i.e., no flow. These properties are
similar to those of RPE, so the hard exudates are erroneously segmented as RPE, as shown in
Fig.3 (red arrow). A possible way to distinguish the hard exudates from RPE is discussed later, in
Section 5.

4. En face visualization of pathology

As demonstrated in panel (h) of Figs. 1 to 3, our method is easily applied to volumetric data. The
method allows us to create several types of en face images, to clarify retinal pathology. In this
section, we describe the method for creating four types of en face maps, and discuss their clinical
utility.
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(c)(b) (d)(a)

(e) (f) (g) (h)

0.5 mm 0 1-3.0 3.0

Fig. 3. Multi-contrast images and segmentation results for a case of AMD with hard exudates.
(a) Scattering intensity, (b) AC, (c) DOPU, (d) binarized OCTA, (e) segmented RPE,
(f) segmented choroidal stroma, (g) RPE (red) and choroidal stroma (green) overlaid on
scattering intensity, and (h) volume rendering of RPE (red) and choroidal stroma (green).
The scale bar indicates 0.5 mm × 0.5 mm.

4.1. En face map generation

A melano-layer thickness map is created by counting the number of pixels of segmented RPE
at each A-line. Such a map primarily represents the thickness of the RPE. However, the RPE
is severely deformed in some pathologic cases, and the melanin exists not only at the RPE but
may also have migrated into other tissues. Therefore, we refer to this map as a “melano-layer
thickness map” rather than an RPE thickness map.
An RPE elevation map is derived by calculating the depth centroid position of segmented

RPE pixels at each A-line, i.e., the mean depth position of RPE. This type of map depicts RPE
elevation, and deformations such as drusen.
A choroidal thickness map is created by detecting the anterior and posterior edges of

the choroidal stroma. To detect the choroidal edges, we first apply a morphological closing
operation [37] (with a 7-pixel × 7-pixel rectangle structuring element) to the segmented choroidal
stroma. The uppermost and lowermost pixels are considered to be the anterior and posterior
boundaries, respectively. As the name suggests, this map quantifies choroidal thickness.

We also created the choroidal stromal AC map, by using the segmented choroidal stroma as a
mask to restrict the region of interest. The en face choroidal-stromal AC map is generated by
computing the mean AC of choroidal stroma at each lateral position. Here the AC is averaged in
linear representation and then converted into logarithmic space for image display.

4.2. En face visualization results

4.2.1. RPE disorders

Melano-layer thickness maps and RPE elevation maps were created for four eyes of four cases: a
normal case, a geographic atrophy (GA) case, and two PED cases, as shown in Fig. 4 (first to
fourth columns , respectively). The first row displays representative OCT cross-sections for these
types of cases, and the second row displays composite images in which segmented RPE (red)
and choroidal stroma (green) are overlaid on the OCT. The location of these cross-sections are
indicated by dashed horizontal lines in the en face maps [Figs. 4(i)-(p)].

The third row [Figs. 4(i)-(l)] shows the melano-layer thickness maps where the brighter color
indicates thickener melano-layer. In the normal subject [Fig. 4(i)], a relatively thick (bright)
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Fig. 4. Examples of en face RPE analysis. The first row shows representative OCT cross-
sections. The second row shows the same OCT cross-section, but with the segmented RPE
and choroidal stroma overlaid as red and green pixels, respectively. The third and fourth
rows are melano-layer thickness maps and RPE elevation maps, respectively. The first to
fourth columns represent normal and GA cases, and two PED cases. The positions of the
OCT cross-sections (first and second rows) are indicated by horizontal dashed lines on the
en face images (third and fourth rows).
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melano-layer is observed at the fovea, which agrees with a previous report of histological
analysis [38]. In the GA subject [Fig. 4(j)], RPE atrophy is clearly observed as a zero-thickness
(black) region. In the PED subjects [Figs. 4(k)-(l)], the RPE is missing and the melano-layer is
thickened at the location of the detached RPE. The interpretation of the melano-layer thickness is
discussed in Section 4.2.2.
Note that the retinal vascular patterns appear in the melano-layer thickness maps as zero-

thickness regions (black). Similar artifacts can also be found in Fig. 1(h). These are generated by
the OCTA projection artifact. Specifically, the retinal flow casts an OCTA shadow artifact on the
RPE, which appears as pseudo-flow. Because our RPE segmentation algorithm assumes that no
flow occurs in the RPE, this pseudo-flow leads to misclassification of the RPE as non-RPE tissue.
Additionally, this ultimately causes the vascular pattern artifact that occurs in the melano-layer
thickness map. These artifacts can be avoided through use of one of the previously demonstrated
projection-resolved OCTA methods [39, 40]. However, we did not use such an algorithm for
this demonstration. This is because this paper aims to demonstrate a method that uses multiple
contrast information, and we therefore tried to avoid the use of other information as far as possible.
The RPE elevation maps [Fig. 4(m)-(p)] illustrate RPE deformation and elevation. The bulk

curvature, which is caused by both the morphology of the eye globe and the geometrical depth-
curvature of the OCT imaging field, is not corrected. Therefore, all of the cases, including the
normal case, show large but slow variation of RPE depth-position, as indicated by the color
changes. In the GA case, [Fig. 4(n)], the drusen appear as tiny elevation specks (arrows). In the
PED subjects [Figs. 4(o) and (p)], the shapes of the RPE detachments can clearly be seen.

4.2.2. Melano-layer thickness map and near infrared fundus autofluorescence

The melano-layer thickness maps are very similar to the near infrared fundus autofluorescence
(NIR-AF) images, as shown in Fig. 5 for three pathologic cases. The first to third columns show
cases of serous PED, drusenoid PED, and exudative AMD, respectively. The first to fourth rows
show the melano-layer thickness maps, NIR-AF images, representative OCT cross-sections, and
the OCT cross-sections with segmented RPE pixels (red) overlaid. The locations of the cross-
sections are indicated by the horizontal dashed lines in the corresponding melano-layer thickness
maps. The NIR-AF images were recorded with a confocal scanning laser ophthalmoscope (HRA
2, Heidelberg Engineering, Germany) having an excitation wavelength of 788 nm and detected
emission wavelength of > 800 nm.

Similar patterns can be seen between the thick melano-layer regions [first row of Fig. 5, (a)-(c)]
and hyper-autofluorescent regions [second row of Fig. 5, (d)-(f)]. The melano-layer thickness map
is based not only on the RPE layer but also any other melanin-containing tissue, including RPE
cells that have migrated. Similarly, the NIR-AF signal becomes stronger if the tissue contains
more melanin, for example in the cases of thickened RPE and RPE migration [36,41]. Namely,
both of the melano-layer thickness map and the NIR-AF become bright with any types of melanin
containing tissues. These contrast properties of the melano-layer thickness map and NIR-AF, can
explain the similar patterns in the figure.
Although they have similarities, the melano-layer thickness map has an great advantage over

the NIR-AF as the segmented RPE image provides 3-D information, as demonstrated in Fig.
5(k)-(n). This 3-D information within the melano-layer thickness map can be used for further
interpretation of the NIR-AF, such as localizing the source of hyper NIR-AF signal.
In the serous PED case (the first column), the maps show a thick melano-layer [Fig. 5(a),

arrow] and a corresponding hyper-fluorescent pattern in the NIR-AF [Fig. 5(d), arrow]. The
depth-resolved segmented RPE image [Fig. 5(k)] shows that this signal in the melano-layer
thickness map originates from the thickened RPE, which is technically classified as sloughed
RPE [36]. This strongly implies that the source of the hyper fluorescence is also the migrated
RPE.
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Fig. 5. Comparisons between melano-layer thickness maps [(a)-(c)] and NIR-AF images
[(d)-(f)]. The third row [(g)-(j)] shows representative OCT cross-sections, and the fourth row
[(k)-(n)] shows the same OCT images but with the segmented RPE overlaid as red pixels.
The position of each cross-sectional image is indicated on the corresponding sub-figure
(a)-(c). The columns represent serous PED, drusenoid PED, and exudative AMD cases from
left to right.

The drusenoid PED case (second column) also shows similar patterns in the melano-layer
thickness map [Fig. 5(b)] and NIR-AF [Fig. 5(e)], as indicated by red arrows. The depth-resolved
segmented RPE image [Fig. 5(l)] shows that the source of these appearances in the melano-layer
thickness map and the NIR-AF are hyper-reflective foci (arrow).

The exudative AMD case (the third column) also shows similar patterns between the melano-
layer thickness map [Fig. 5(c)] and the NIR-AF image [Fig. 5(f)], as indicated by the red
arrows. Based on the depth-resolved segmented RPE map [Fig. 5(m) and 5(n)] and a previous
demonstration of polarimetric imaging of AMD [42], this pattern is expected to originate from
migrated melanin in the retina [Fig. 5(m), red arrow] and hyperreflective foci [Fig. 5(n), red
arrow]. However, the red circles mark an example of disagreement between the melano-layer
thickness map and the NIR-AF. In the circular region, the melano-layer thickness map shows a
hyper signal that appears to be thickening of the RPE, but the NIR-AF shows hypo-AF. In the
OCT cross-section, the RPE at the corresponding region shows a slightly irregular shape [Fig.
5(i), as indicated by the yellow half-bracket and shown magnified in the inset], which implies
deterioration of the RPE. The depth-resolved segmented RPE image [Fig. 5(m)] reveals that some
parts of the choroid in this region are misclassified as RPE, perhaps because of the choroidal
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melanin. This choroidal melanin and the relatively short wavelength used for the NIR-AF provide
a partial explanation of the source of the discrepancy. Specifically, the NIR-AF signal originates
not only from the RPE but also from the choroidal melanin. The NIR-AF signal originating from
the choroidal melanin can be scattered or blocked well by the abnormal RPE. Therefore, the
NIR-AF signal shows hypo-AF, while the misclassified RPE pixels in the choroid cause the hyper
signal in the melano-layer thickness map.

4.2.3. Choroidal characteristics

To analyze choroidal characteristics, we created choroidal thickness maps and choroidal stromal
ACmaps for one eye from each of four subjects. Figures 6(a)-(d), respectively, show representative
OCT B-scans from one nearly emmetropic eye (with spherical equivalent refractive error (SE) of
-0.50 D), two moderately myopic eyes (SE -3.00 D and -3.75 D), and one highly myopic eye (SE
-7.50). In Fig. 6(e)-(h), the segmented RPE and choroidal stroma are overlaid on the OCT B-scan
as red and green pixels, respectively.

The choroidal thickness maps [Fig. 6(i)-(l)] demonstrate a trend for eyes with higher myopia to
show a thinner choroid, which agrees with the common knowledge about choroidal thickness of
normal and myopic subjects [43]. Although the right part of Fig. 6(j) and the left part of Fig. 6(k)
show thin choroid, those regions could be artifacts caused by the large choroidal vessels visible
in Figs. 6(f) and 6(g). However, the thinning at the right side of Fig. 6(l) is real, as shown in the
corresponding cross-sectional image [Fig. 6(h)].

Unlike the choroidal thicknessmaps, the choroidal stromalACmaps [Fig. 6(m)-(p)] demonstrate
that myopic eyes show a higher AC (i.e., a higher scattering coefficient) than normal eyes. This
difference could be attributed to the following causes. In general, it is known that the myopic
choroid is thinner than the normal choroid [43]. This difference may result in a more dense
choroidal stroma in myopic eyes. The thinner choroid can also cause a higher melanin density.
The difference in vascular volume fractions between the normal and choroidal stromata may also
affect the AC. While the large choroidal vessels are not included in the segmented choroidal
stroma, the fractions of the smaller vessels and capillaries would alter the AC. However, it is still
open to question whether or not a higher vascular fraction would result in a higher or lower AC.

5. Discussion

5.1. Segmentation repeatability

To evaluate the segmentation repeatability, the same eye was scanned twice and both choroidal
thickness maps and melano-layer thickness maps were created, as shown in Fig. 7. The first and
second rows in the figure represent the first and second measurements, respectively. From left to
right, the columns show representative OCT cross-sections with segmented RPE (red) and the
choroidal stroma (green), the melano-layer thickness maps, and the choroidal thickness maps.
The ‘×’ symbol represents the position of the fovea in each image.

While some lateral motions occurred, the melano-layer thickness maps show good inter-
measurement agreement, i.e., good repeatability. The mean melano-layer thicknesses in the two
cases were 14.3 ± 6.9 µm and 14.8 ± 7.5 µm (i.e., the mean ± the standard deviation over the
measured area).
The choroidal thickness maps also show good inter-measurement agreement, other than at

some of the focal points. The mean choroidal thicknesses in the two cases were 224.8 ± 57.1 µm
and 224.5 ± 61.2 µm (i.e., the mean ± the standard deviation over the measured area). The focal
disagreements did not originate from the segmentation method itself. For example, the horizontal
line in Fig. 7(f) (indicated by the red arrow) is caused by rapid eye motion. The thin horizontal
tracts [highlighted by the red circles in Fig. 7(f)] were caused by the nonoptimized depth location
of the choroid. Specifically, the choroid was located too close to the zero-delay and went partially
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Fig. 6. Examples of en face maps representing choroidal characteristics. The first row shows
representative OCT cross-sections. The second row shows the same OCT cross-sections, but
with the segmented RPE and choroidal stroma overlaid as red and green pixels, respectively.
The third and fourth rows show choroidal thickness maps and choroidal stromal AC maps,
respectively. The first to fourth columns represent normal to myopic cases with the spherical
equivalent refractive errors of -0.50, -3.00, -3.75, -7.50 D, respectively. The position of the
OCT cross-sections (first and second rows) are indicated by horizontal dashed lines on the
en face images (third and fourth rows).
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Fig. 7. Comparison of pairs of measurements of the same subject. The two rows represent
the two different measurements. The first column shows OCT cross-sections overlaid with
the segmented RPE (red) and the choroidal stroma (green). The second and third columns
show the melano-layer thickness maps and the choroidal thickness maps, respectively. The
‘×’ symbols indicate the foveal positions, while the red circles and the arrow shown in (f)
indicate the discrepancies between the two measurements.

beyond the depth measurement range.

5.2. Comparison with other segmentation methods

The segmentation results were compared with the results of manual segmentation performed
by an expert ophthalmologist (indicated by MM) and also with the results obtained using our
previously demonstrated chorio-scleral interface (CSI) segmentation method, which was based
on phase-retardation PS-OCT imaging [44], as shown in Fig. 8. The first row compares the
RPE segmentations, where the segmentation results obtained by the present method and those
obtained by the expert are displayed using cyan and magenta colors, respectively. The second
row compares the choroidal segmentation results. The green pixels indicate the results obtained
using the present method and the red curves indicate the manually segmented CSI determined by
the expert. Figure 8(e) also shows a blue curve, which indicates a CSI that was automatically
segmented using our previously demonstrated automatic segmentation method, which was based
on phase-retardation PS-OCT [44]. Because this older algorithm is not applicable to pathologic
cases, it was performed only for the normal case. The columns from left to right represent the
normal case, the GA case, and two PED cases, which correspond to the cases shown in Fig. 4.
The figures show that the present method and the manual segmentation method gave similar

RPE segmentation results with the exception of two remarkable differences. The first difference
occurs at the atrophic region of the GA case [Fig. 8(b), as indicated by the arrows], where some
parts of the choroid were erroneously classified as RPE by the automatic segmentation method. It
seems that the absence of RPE in this region altered the scattering-image properties of the choroid.
This also resulted in the vascular pattern artifact shown in the melano-layer thickness map [Fig.
4(j)] in this atrophic region. The second difference occurs at the top of the pigment epithelial
detachment in the second PED case [Fig. 8(d), arrow]. Here, the automatic segmentation method
depicts a thickened RPE, while the manual segmentation results delineate the RPE as a thin layer.
In the corresponding OCT cross-section [see Fig. 4(d)], the RPE appears with an unclear border.
Therefore, it is difficult to determine whether manual segmentation is more rational than the
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Fig. 8. Comparisons of results obtained using the present method, manual segmentation,
and the previously demonstrated PS-OCT-based chorio-scleral interface (CSI) segmentation
method [44]. From left to right, the columns represent the normal case, the GA case, and
two PED cases. The first row compares the results of RPE segmentations using the present
method (cyan pixels) with those obtained by manual segmentation (magenta). The second
row compares choroidal stromata segmented using the present method (green) and CSIs
delineated using the previous PS-OCT-based method (blue) and by a human expert (red).
Because the previous PS-OCT-based method is not applicable to pathologic cases, it is only
shown in (e).

automatic segmentation method.
When the present method and the manual segmentation method were compared, the RPE

segmentation results showed root mean square (RMS) depth-position differences of 7.7 ± 6.8 µm,
24.8 ± 20.2 µm, 14.2 ± 9.4 µm, and 13.6 ± 11.4 µm for the normal, GA, and first and second PED
cases, respectively. Here, the depth-position of the RPE at each lateral position is defined using
the depth centroid of the RPE pixels. In the normal case, the error is approximately twice the
pixel-depth separation (4.0 µm) and is close to the resolution limit of the melano-layer thickness
measurement (11 to 12 µm; see the third paragraph of Section 5.6 for details). By factoring in
the pixel depth separation, the resolution limit, and the expected manual segmentation accuracy,
the depth position difference for the normal eye would be rational. Previous demonstrations of
morphological analysis-based automatic segmentation methods showed segmentation errors of
approximately 10 to 20 µm [11]. While the differences between the datasets used makes direct
comparison difficult, our nonmorphological method shows accuracy that is comparable with that
of the previously demonstrated morphological information-based segmentation method.
The CSI that was segmented using the present method shows good agreement with that

segmented using the old method [44] in the normal eye [Fig. 8(e)], except in the nasal region (on
the right in the image). The manual segmentation results agree well with those of the old method
in this region. Therefore, the present method would erroneously classify part of the sclera as a
choroidal stroma. Similar misclassification of the sclera can be found in the atrophic region in
the GA case [Fig. 8(f)], the nasal section (right) and the sclera beneath the apex region of the
PED in the first PED case [Fig. 8(g)], and the nasal section (left) of the second PED case [Fig.
8(h)]. In these erroneous regions, we find strong signals from the sclera. Therefore, we believe
that hyper-penetration can cause this type of misclassification. Because the sclera is known to
have strong birefringence [25, 45, 46], further improvement of the algorithm based on additional
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use of birefringence information may be able to resolve this issue.
In contrast, insufficient penetration into the deep tissue can also lead to an artifact. Our choroidal

thickness estimation method uses the noise-corrected DOPU and noise-corrected OCTA signals,
which fade away in the deeper low-signal-to-noise-ratio regions. Therefore, if the penetration into
the deep tissue is insufficient, the lower part of the choroidal stroma can be erroneously classified
as nonchoroidal tissue. In addition, if these deep misclassified regions are connected to the large
choroidal vessels, this can results in the incorrect appearance of thin regions in the choroidal
thickness maps. This would then cause the vascular pattern artifacts shown in Fig. 6(i)-(l). This
problem could be mitigated by either improving the signal-to-noise ratio using statistical methods,
such as frame averaging [47] or maximum likelihood estimation [48, 49], or supplementary use
of structure-based choroidal-vasculature envelope detection methods, such as that described in
Section 4.2 of Ref. [50].

5.3. Computation time

Some segmentation methods that can be applied to OCTs with pathologic macular layers have
been reported [9–12], but these methods employ complicated algorithms and iterative processes,
and therefore are computationally intensive and time-consuming. Our algorithm, instead, is
simple and does not rely on iteration. In addition, since our algorithm uses prior knowledge
about tissues’ optical contrast, it does not require a classifier-training process. The computation
time for this proposed method is less than 5 min for 580 × 500 × 256-pixel 3-D volume, i.e.
1.17 s/B-scan. This computation time includes not only the core segmentation process but also
inessential processes such as data loading and saving. The core segmentation processing takes
only around 1 min for the volume, i.e. 0.25 s/B-scan. The algorithm was implemented in Python
2.7 and processed on a PC with an Intel i7-6820HQ CPU@2.70GHz processor and 16GB of
RAM.

Because the present study intends to demonstrate the concept of nonmorphological pixel-wise
segmentation using JM-OCT, we ensured that the algorithm was as simple as possible. However,
the algorithm can made be faster or more robust by combining it with other conventional
segmentation methods. For example, by segmenting the inner limiting membrane using standard
structure-based segmentation methods, we can exclude the vitreous humor before application
of the present pixel-wise method. This will make the process faster and/or more robust. As
we discussed in Section 5.2, our choroidal-stromal segmentation procedure is still not highly
accurate. The additional use of conventional intensity-based CSI segmentation methods such as
those in Refs. [51, 52] can improve the accuracy of the segmentation process.

5.4. Relation to machine learning-based segmentation

The method presented in this paper can be understood by analogy to a simplified machine-learning
pixel-wise segmentation. We combined multiple optical properties into a single new value, a
so-called “feature”. This process is comparable to empirical feature engineering in which only a
single feature is created. In addition, the application of thresholding to the feature is regarded as
a way to divide a one-dimensional feature space into two sub-domains. So, the present method
has a great similarity to a feature-space based machine learning classification. There are two
notable points about our method. First, the feature is manually defined, based on prior knowledge
of the optical properties of the tissue. Second, the region boundary is determined empirically by
thresholding with a constant threshold value.
In the current algorithm, the threshold value for segmentation is determined empirically.

The analogy to the machine-learning based method implies that the threshold value could be
automatically determined by one of the standard machine-learning methods, such as perceptron or
support vector machines. However, this automation requires a training dataset, and the preparation
of the training dataset is burdensome to human experts. Hence, it remains an open question
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Fig. 9. The process to distinguish hard exudates from RPE. (a) shows a representative OCT
cross-section (scattering intensity). (b) shows the RPE as segmented by the method presented
in Section 3.1. (c) The corresponding birefringence cross-section. (d) The feature for hard
exudate segmentation [FHX, Eq. (3)] (e) The binary map created from (d) by applying
a threshold and subsequent morphological filtering. (f) Segmented RPE (red) and hard
exudates (blue) overlaid on the OCT cross-section. The scale bar indicates 0.5 mm × 0.5
mm.

whether the machine learning method is the best option.

5.5. Segmentation of hard exudates

As described in Section 3.2, hard exudates can be misclassified as RPE, because our RPE feature
is designed with AC, DOPU and OCTA, and the optical properties for hard exudates and the
RPE are similar. However, hard exudates appear with high birefringence, as shown in Fig. 9(c),
so introducing birefringence to the RPE feature may enable the separation of RPE from hard
exudates.

Figure 9 shows our preliminary attempt to distinguish the hard exudates from the RPE, in which
we use the birefringence and additional morphological information to generate a new feature
for hard exudates. Figure 9(a) shows an OCT cross-section with a large area of hard exudates
(reproduced from Fig. 3(a)). The first step is RPE segmentation, as described in the previous
section, to produce the segmented RPE Fig. 9(b), which is identical to Fig. 3(e). It is evident
here that the hard exudates have been misclassified as RPE. As shown in the corresponding
birefringence cross-section [Fig. 9(c)], the hard exudates possess high birefringence. Therefore, a
new feature for hard exudates is defined as

FHX(x, z) ≡ BR(x, z) × N [D(x, z)]2 ×MRPE(x, z), (3)

where BR is the birefringence value and D is the axial distance from the inner limiting membrane
(ILM) to the pixel of interest. N[D(x, y)] represents a normalization operation which scales a
2-D map (D(x, y)) as to make the minimum value 0 and the maximum value 1. MRPE is a binary
mask made from the segmented RPE. It equals 1 for RPE pixels and 0 for non-RPE pixels. x
and z are lateral and axial positions, respectively. Although these variables were omitted in the
previous equations [Eqs. (1) and (2)], they are explicitly written in this equation to show that this
feature includes morphological information. The ILM was identified by selecting the topmost
unity pixels in another feature

FILM(x, z) ≡ B [N [OCT] × (1 − OCTAb)] , (4)
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where B[ ] represents binarization with an empirically defined threshold of 0.4. The two-
dimensional map of FHX(x, z) is shown in Fig. 9(d). In that map, the exudates show high values
because they have high birefringence and are relatively close to the ILM. Although RPE sometimes
shows relatively high birefringence artifact, FHX(x, z) becomes low because the RPE is farther
from the ILM than the exudates are. The hard exudate pixels are finally segmented by application
of the threshold to the hard exudation feature as FHX(x, z) > 0.05, subsequent morphological
closing with a 9 × 9-pixel rectangle structuring element [Fig.9(e)], and multiplication again by
MRPE(x, z) Figure 9(f) shows the final segmented result in which the RPE pixels (red) and hard
exudate pixels (blue) are overlaid on the OCT cross-section.

It should be noted here that the hard exudates are also known to appear with low DOPU [24,53].
Therefore, the high birefringence of these exudates could in fact be an artifact rather than actual
high birefringence. While the present trial implementation of the process did work, further
investigation will be necessary to provide more robust hard-exudate segmentation.

5.6. Interpretation of “melano-layer thickness”

In this study, we have used the term “melano-layer thickness” to denote the total thickness of all
pixels that were classified as RPE, which are denoted as “RPE pixels,” at each A-line. While this
terminology provides an intuitive understanding, it may also be misleading. Therefore, we clarify
its interpretation here.

The melano-layer thickness is proportional to the number of RPE pixels contained in an A-scan.
It should be noted here that these RPE pixels are not necessarily connected to each other. All
isolated RPE pixels, such as those shown in Fig. 5(m), are included in the computation of the
thickness. While the term “layer thickness” is correct in the majority of cases, it is not an accurate
expression in certain cases, such as that shown in Fig. 5(m). This point should be carefully
considered when interpreting the melano-layer thickness.
The depth resolution of the segmentation is another factor that must be taken carefully into

consideration for the interpretation. The DOPU was used to segment the RPE pixels. The DOPU
was computed using a 3 × 3-pixel kernel, which corresponds to physical dimensions of 11 to 12
µm (depth) and 35 µm (lateral) in the tissue. Therefore, the depth resolution of the DOPU is less
than 11 or 12 µm, and the resolution of the melano-layer measurement is thus also less than 11
or 12 µm. This limitation of the resolution should also be considered as part of the interpretation.

6. Conclusion

We have proposed a pixel-wise segmentation method, which uses a “feature” synthesized from
multi-contrast images obtained by JM-OCT. Our method is applicable to retinal tissue with severe
structural abnormalities, as we have demonstrated by performing RPE and choroidal stromal
segmentation in normal and pathologic cases including PED, GA, and exudative AMD. Several
clinically useful en face maps were generated from the segmentation results. The melano-layer
thickness map, RPE elevation map, choroidal thickness map and choroidal stromal AC map
reveal the morphological and optical properties of segmented RPE and choroidal stroma. We
showed that the melano-layer thickness maps are very similar to NIR-AF images, and hence can
be used to identify the source of hyper-AF. We conclude that the proposed segmentation method
will be useful for both qualitative observation and quantitative analysis of macular disease.
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