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Efficient Recovery of Essential Matrix from Two
Affine Correspondences

Daniel Barath, and Levente Hajder

Abstract—We propose a method to estimate the essential
matrix using two affine correspondences for a pair of calibrated
perspective cameras. Two novel, linear constraints are derived
between the essential matrix and a local affine transforma-
tion. The proposed method is also applicable to the over-
determined case. We extend the normalization technique of
Hartley to local affinities and show how the intrinsic camera
matrices modifies them. Even though perspective cameras are
assumed, the constraints can straightforwardly be generalized
to arbitrary camera models since they describe the relationship
between local affinities and epipolar lines (or curves). Benefiting
from the low number of exploited points, it can be used in
robust estimators, e.g. RANSAC, as an engine, thus leading
to significantly less iterations than the traditional point-based
methods. The algorithm is validated both on synthetic and
publicly available datasets and compared with the state-of-the-
art. Its applicability is demonstrated on two-view multi-motion
fitting, i.e. finding multiple fundamental matrices simultaneously,
and outlier rejection.

Index Terms—epipolar geometry, essential matrix, affine cor-
respondence, minimal method

I. INTRODUCTION

The estimation of epipolar geometry between a pair of
images is a key-problem for the recovery of relative camera
motion and has been studied for decades. Luong and Fougeras
showed that this relationship can be described by the so-
called 3 × 3 fundamental matrix [1]. Since then, several
approaches have been proposed to cope with this problem.
The well-known seven and eight-point algorithms [2] need no
a priori information about the camera parameters to estimate
the fundamental matrix from point correspondences. However,
exploiting the intrinsic camera parameters (focal length, prin-
cipal point, etc.), the estimation can be done using six [3], [4],
[5], [6] or five correspondences [7], [8], [9], [10].

In this paper, we assume intrinsic parameters and two affine
correspondences to be known between a pair of images to
recover the essential matrix. An affine correspondence consists
of a point pair and the related local affine transformation
mapping the infinitesimally close vicinity of the point in the
first image to that of in the second one. Nowadays, several ap-
proaches are available for the estimation of local affine trans-
formations. Beside the well-known affine-covariant feature
detectors [11] such as MSER, Hessian-Affine, Harris-Affine,
there are some modern ones based on view-synthesizing, e.g.
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ASIFT [12], ASURF or MODS [13]. They obtain accurate
local affinities and many correspondences by transforming
the original image with an affine transformation to create
a synthetic view. Then a feature detector is applied to the
warped images. The final local affinity related to a point pair
is estimated as the combination of the transformation regarding
to the current synthetic view and the affine transformation
which the applied detector obtains.

Using local affinities for fundamental matrix estimation is
not a new idea. Perdoch et al. [14] and Chum et al. [15]
proposed methods using two and three affine correspondences,
respectively. Even so, they provide only approximations –
the error is not zero even for noise-free input – since
they generate point correspondences exploiting local affine
transformations and apply the six [3] and eight-point algo-
rithms [2], respectively. Nevertheless, local affinities cannot
generate point correspondences since they are defined as the
partial derivative, w.r.t. the image directions, of the related
homography. Thereby, they are valid only infinitesimally close
to the observed point [16]. Bentolila et al. [17] showed that
two affine transformations yields three conic constraints on
fundamental matrix estimation and three affine correspon-
dences are enough. Recently, an approach is proposed by
Raposo and Barreto [18] which is slightly similar to the base
algorithm proposed in this paper. Providing a derivation on
the basis of homographies and applying the solver of the five-
point algorithm [8], they estimate the epipolar geometry using
two affine correspondences. Unlike them, we show that this
relationship can be formalized directly, considering the way
how a local affinity affects the epipolar lines. Through the
proposed formulation, it can straightforwardly be seen that the
relationship holds for arbitrary central camera models. Also,
the solver we propose leads to results superior to [18] as it is
demonstrated in Sec. IV.

The contributions of this paper are as follows: (i) Two
linear constraints are derived from a local affine transformation
showing its direct relationship to the epipolar geometry –
the way how it affects the epipolar lines. Not approach-
ing the problem as a derivation of homographies (as [18]
does), the constraints can easily be generalized to arbitrary
camera model, e.g. omni-directional ones. (ii) The proposed
constraints make the estimation possible using two affine
correspondences. The method is generalized to solve the over-
determined case as well and provides only one globally opti-
mal essential matrix. It is demonstrated both on synthesized
and real world test that the algorithm is superior to the state-
of-the-art in term of the accuracy of the estimated camera
motion. (iii) It is shown how the multiplication of the point
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locations by the camera matrices modifies the local affinities,
thus making the method applicable to image pairs captured
by different camera set ups. The normalization technique of
Hartley [19] is extended to affine transformations to achieve
numerically stable estimates in the over-determined case.

II. PRELIMINARIES AND NOTATION

2D point correspondences are represented by their homo-
geneous form as p =

[
u v 1

]T
(1st image) and p′ =[

u′ v′ 1
]T

(2nd image). The related local affine transfor-
mation A is written as its linear part (left 2 × 2 submatrix)
since the translation is determined by the point locations:

A =

[
a1 a2
a3 a4

]
. (1)

An affine correspondence (AC) consists of a point pair and
the related local affinity.

Let operator M[i:k,j:l] denote the (k− i+1)× (l− j +1)-
sized submatrix of matrix M (0 < i < k and 0 < j < l).
Vector v[i:k] is the vector consisting of the elements of vector
v from ith to kth (i < k). Formula |v| is considered as the
L2 norm of v.

The ith element of the essential and fundamental matrices
(E and F) in row-major order is denoted as ei and fi, respec-
tively (i ∈ [1, 9]). In contrast to the rest of the paper, in the
appendix, the elements of F are indexed as fjk (j, k ∈ [1, 3]).

The relationship of essential and fundamental matrices is
written as F = K′−TEK−1, where K and K′ are the intrinsic
parameters of the two cameras. Fundamental matrix F ensures
the epipolar constraint as p′TFp = p′TK′−TEK−1p = 0. In
the rest of the paper, we assume that points p and p′ have
been premultiplied by K and K′. This assumption simplifies
the epipolar constraint to

q′TEq = 0, (2)

where q and q′ are the points multiplied by K and K′. Two
additional constraints can be considered on the essential matrix
E. The first one is called trace constraint [2], it is as follows:

2EETE− tr(EET)E = 0. (3)

This matrix equation yields nine polynomial equations for
the elements of E. The second restriction ensures that the
determinant of the essential matrix must be zero:

det(E) = 0. (4)

These two properties will help us to recover the essential and
fundamental matrices exploiting two affine correspondences.

III. TWO-POINT ALGORITHM

First, the linear relationship of the essential matrix and an
affine transformation is described in this section. Then we
exploit it to estimate the essential matrix from two affine
correspondences.

A. Relationship of Essential Matrix and Local Affinities

The aim of this section is to show the direct relationship
of the essential matrix and a local affinity and to prove that
it can be written in linear form. Even though we derive it
for E, these formulas hold for F if the point locations have
not been (pre)multiplied by the intrinsic matrices. Local affine
transformation A is defined as the partial derivative of the
projection function [16]. Note that A has to be modified by
the intrinsic matrices before the estimation, this will be shown
in a latter section.

Suppose that essential matrix E, point pair p, p′, and the
related affinity A are given. It can be proven straightforwardly
that A transforms v to v′ (see Fig. 1(a)), where v and v′ are
the directions of the epipolar lines (v,v′ ∈ R2) in the 1st and
2nd images [17], respectively. It can be seen that transforming
the infinitesimally close vicinity of p to that of p′, A has to
map the lines going through the points. Therefore, Av ‖ v′.

Note that this statement holds for arbitrary central camera
models, e.g. omni-directional ones, since the line directions
are determined by the first-order approximation, i.e. the local
affinity, of the projection functions [20].

l l
,

p p’

e e’C C’

v v’
A

(a) Projections p and p′ of a spatial point are given on cameras C and C′.
Vectors v and v′ are the directions of the corresponding epipolar lines l
and l′. Local affine transformation A transforms v into v′.

l1 l1
,

l2 l2
,
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q
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(b) The constraint for scale states that the ratio of |p−q| and d′ determines
the scale between vectors A−Tn and n′.

Fig. 1. The proposed constraints.

As it is well-known from computer graphics [21], formula
Av ‖ v′ can be reformulated as follows:

A−Tn = βn′, (5)

where n and n′ are the normals of the epipolar lines (n,n′ ∈
R2, n⊥v, n′⊥v′). Scalar β denotes the scale between the
transformed and the original vectors if |n| = 1 and |n′| = 1.
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These normals are calculated as the first two coordinates of
epipolar lines

l = ETp′ =
[
a b c

]T
, l′ = Ep =

[
a′ b′ c′

]T
. (6)

Since the common scale regarding to normals n = l[1:2] =[
a b

]T
and n′ = l′[1:2] =

[
a′ b′

]T
is originated from the

essential matrix, Eq. 5 is modified as follows:

A−Tn = −n′. (7)

Detailed proof can be seen in the Appendix. Formulas 6 and
7 yield two equations which are linear in the parameters of
the essential matrix as follows:

(u′ + a1u)e1 + a1ve2 + a1e3 + (v′ + a3u)e4 +

a3ve5 + a3e6 + e7 = 0 (8)
a2ue1 + (u′ + a2v)e2 + a2e3 + a4ue4 +

(v′ + a4v)e5 + a4e6 + e8 = 0. (9)

where ai is the ith element of A in row-major order (i ∈
[1, 4]), as it is defined in Eq. 1. Points (u, v) and (u′, v′) are
the points in the images, and ej (j ∈ [1, 9]) is the jth element
of the essential matrix

To summarize this section, the linear part of a local affine
transformation gives two equations, represented by linear for-
mulas, for essential matrix estimation. A point correspondence
yields a third one through the epipolar constraint. Therefore
an affine correspondence leads to three constraints. As the es-
sential matrix has five Degrees-of-Freedom (DoF), two affine
correspondences are enough for estimating E, moreover, the
estimation is overdetermined.

Remark that the proposed formulas (Eq.22) of [18] are
exactly the same. The solution in [18] however is found
intuitively after algebraic manipulations with no geometric
interpretation provided. In contrast, we proved here that these
formulas describe the way how a local affinity transforms the
normal of the epipolar lines between the images.

B. The Proposed Solver

In this section, the proposed 2-point algorithm based on the
introduced constraints is discussed. Suppose that two point
pairs (p1,p

′
1) and (p2,p

′
2) and the related affinities A1 and

A2 are given. Fig. 2 shows how A1 and A2 transform the
infinitesimally close vicinities of the points from the first to
the second images.

For the ith (i ∈ {1, 2}) correspondence, the combination of
formulas Eqs. 8, 9, and Eq. 2 can be written as Cix = 0,
where x =

[
e1 e2 e3 e4 e5 e6 e7 e8 e9

]T
is the

vector of the unknown elements of the essential matrix. Matrix
Ci is the coefficient matrix consisting of three rows, where
the first two are the coefficients of Eqs. 8, 9. The third one
contains the coefficients related to the well-known formula
p′TEp = 0. Note that the algorithm can straightforwardly be
extended to n > 2 points by concatenating their Ci matrices. If
at least three correspondences are given, the solution vector x
is obtained as the eigenvector related to the smallest eigenvalue
of matrix CTC, where matrix C is the concatenated coefficient
matrix and of size 3n× 9.

C C’

p1

p2

p2‘

p1‘
A1

A2

Fig. 2. Projections of two spatial points are given on cameras C and
C′. Corresponding local affine transformations A1 and A2 transforms the
infinitesimally close vicinities of point pairs (p1,p′1) and (p2,p′2) between
the image pair.

Considering the two point case, C is of size 6× 9 as C =[
CT

1 CT
2

]T
. Its null space is 3-dimensional, therefore, the

solution of the system is given by the linear combination of
the three corresponding singular vectors of C as

x = αd+ βe+ γf , (10)

where d, e, and f are the singular vectors. Parameters α, β,
and γ are unknown non-zero scalar values. These scalars are
defined up to a common scale, therefore, one of them can be
chosen to an arbitrary value. In the proposed algorithm, γ = 1.

By substituting this formula to the trace (Eq. 3) and
determinant (Eq. 4) constraints ten polynomial equations
are given. They can be formed as Qy = b, where Q
and b are the coefficient matrix and the inhomogeneous
part (coefficients of monomial 1), respectively. Vector y =[
α3 β3 α2β αβ2 α2 β2 αβ α β

]
consists of the

monomials of the system. Q is of size 10 × 9, therefore, the
system is solvable and overdetermined since ten equations are
given for nine unknowns. Its optimal solution in least squares
sense is given by y = Q†b, where matrix Q† is the Moore-
Penrose pseudo-inverse of matrix Q.

The elements of the solution vector y are dependent. Thus
α and β can be obtained in multiple ways, e.g. as α1 = y8,
β1 = y9 or α2 = 3

√
y1, β2 = 3

√
y2. To choose the best

candidates, we paired every possible α and β, thus obtaining
nine solutions, and selected the one minimizing Eq. 3, i.e. the
trace constraint. The fundamental matrix is finally calculated
as F = K′−TEK−1.

Remark that for applications not requiring real time perfor-
mance, numerically optimizing α and β to minimize Eq. 3 is
a straightforward choice. Nevertheless, to our experiments, the
method leads to stable results without additional optimization.

C. Transformation of Local Affinities by the Camera Matrices
The aim of this section is to show how the multiplication of

the point coordinates by the intrinsic parameters modifies the
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corresponding local affinities. Unlike to the rest of the paper,
we assume here that points p and p′ are not multiplied by
K−1 and K′−1. The original relationship between the affine
parameters comes from Eq. 7 by replacing the normals with
FTp′ and Fp as follows:

(Â−TFTp′)(1:2) = −(Fp)(1:2), (11)

where Â is of size 3× 3 as follows:

Â =

[
A 0
0 1

]
.

Because of F = K′−TEK−1, Eq. 11 is modified as

(Â−TK−TETK′−1p′)(1:2) = −(K′−TEK−1p)(1:2).

Let us denote K′−1p′ and K−1p with q′ and q, respectively.
After elementary modifications, it can be written as

(ETq′)(1:2) = −(KTÂTK′−TEq)(1:2).

Therefore, due to the transformation of the intrinsic parame-
ters, the original local affinity A must be modified as

Ã = (K′−1ÂK)(1:2,1:2). (12)

However, matrix A remains the same if K = K′ and the shear
is zero for both cameras.

Note that this is a mandatory step if the two images are
taken by cameras with different intrinsic parameters.

D. Normalization of Affine Parameters

It is well-known that numerical instability makes the nor-
malization of the input data essential [19]. After normalizing
the point coordinates, the measured affine transformation are
not valid any more (w.r.t. the normalized coordinates), they
have to be normalized as well. Let us denote the normalizing
transformations in the two images by T1 and T2 which
translate the point sets into the origin and their mean distance
from that to

√
2. The normalization of the point coordinates

(which have been premultiplied by the intrinsic parameters)
is trivial as p̃ = T1p and p̃′ = T2p

′ [2]. The normalized
essential matrix can be calculated from the original as follows:
Ẽ = T−T

2 ET−11 . After point normalization the relationship of
the essential matrix and the affine transformation (Eq. 7) is
modified as follows:

(Â−T(TT
2ẼT1)

Tp′)(1:2) = −(TT
2ẼT1p)(1:2),

where Â is the same 3× 3 matrix as in the previous section.
After elementary modifications, it can be written as

(ẼTT2p
′)(1:2) = −(T−T

1 ÂTTT
2ẼT1p)(1:2).

Thus
ÃT = (T−T

1 ÂTTT
2)(1:2,1:2).

The normalized affine transformation Ã is calculated as

Ã = (T2ÂT−11 )(1:2,1:2).

Note that this equation is the same as Eq. 12 and holds for
all transformations that can be written by 3× 3 matrices e.g.

the camera intrinsic parameters and the normalizing transfor-
mations in the image space.

The affinities used during the estimation are normalized by
both the normalizing transformations and the intrinsic param-
eters. Thus affine transformation A is modified as follows:

A = (T2K
′−1ÂKT−11 )(1:2,1:2)

Note that the proposed normalization is possible only if more
than two correspondences are given. Otherwise, only the
normalization by the intrinsic parameters is required.

IV. EXPERIMENTAL RESULTS

The proposed method is validated both on synthesized and
real world data in this section. A Matlab implementation is
included as Alg. 1.1

A. Validation on Synthesized Tests

In order to test the proposed method in a fully controlled
synthetic environment, two perspective cameras are generated
by their projection matrices P and P′. Their common intrinsic
parameters are focal lengths fx = fy = 600 and principal
point p0 =

[
300 300

]T
. For the tests, three types of camera

motions are considered: forward, sideways and random mo-
tions. The lengths of these motions are 2 and the distances of
the plane origins from the camera centers are 10 along axis
Z and around 0.1 along axes X and Y . We do not check
whether a point is visible on both cameras or not since it does
not affect the results of the methods. Having more than one
plane is required to get a non-degenerate set up, thus points
are sampled on 100 different random planes and projected
onto the cameras. Zero-mean Gaussian-noise is added to the
point locations. Homography is calculated using the plane
parameters [2]. The affine transformation related to each point
pair is calculated exploiting the noisy coordinates and the
ground truth homography as it is given in [22]:

a1 =
h11 − h31u′

s
a2 =

h21 − h31v′

s

a3 =
h12 − h32u′

s
a4 =

h22 − h32v′

s

where hij (i, j ∈ {1, 2, 3}) is an element of the homography
matrix, s = hT

3[u v 1]T and hT
3 is the last row the homog-

raphy. The obtained essential matrices are decomposed into
translation and rotation components [2] and compared to the
ground truth motion.

The error of an estimated rotation matrix was calculated as
follows:

er = | rodrigues(RT
gtRest) | (13)

where Rgt is the ground truth and Rest is the estimated rotation
matrices. Function rodrigues converts a rotation matrix to
vector r ∈ R3 where |r| is the angle of rotation around
axis r/|r|. Since the length of the translation vector cannot
be recovered due to the scale ambiguity of the perspective
projection, the error of the translation vector is the angle (in

1C++ implementation is available at http://web.eee.sztaki.hu/∼dbarath/.
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degrees) between the estimated and ground truth vectors. It is
as follows:

et = acos(tT
gttest), |tgt| = |test| = 1, (14)

where tgt and test are the ground truth and estimated transla-
tions, respectively.

In Fig. 3, we compare four methods: the proposed algorithm
applied to two correspondences (Proposed), the normalized
version of the proposed method applied to five point pairs
(Normalized Prop.), the five-point algorithm [8] (Nistér) and
the technique proposed in [18] (Raposo et al.). The top row
shows the mean error (vertical axis) of the obtained rotation
matrices plotted as the function of the noise σ (horizontal
axis). The bottom row reports the quality of the estimated
translation vectors. The mean angular error (in radians, vertical
axis) w.r.t. the ground truth translation is plotted as the
function of the noise σ (horizontal axis).

For the first column of Fig. 3, forward motion and no
rotation is applied to the cameras. It can be seen that the
proposed method exploiting two correspondences outperforms
both the five-point algorithm and that of Raposo et al. The
translation vector obtained by the normalized algorithm is
sensitive to this kind of motion, however, the estimated
rotation matrix is the most accurate. The second column
reports the error if only sideways motion is considered. In
these tests, the proposed method and that of Raposo et al.
achieved similar accuracy. The normalized version is superior
to all competitor methods in both terms. If random motion is
applied (third column), the rotation obtained by the proposed
two-point algorithm outperforms both the methods of Nistér
and Raposo et al. while achieving similar results to Raposo
et al. for the translation vector. The normalized algorithm
provided the most accurate results in both aspects. The last
column reports the results for nearly planar scenes. Only a
small Gaussian-noise with 10−5 standard deviation is added
to the plane tangents having the same base point. It can be
seen that the 5-point algorithm leads to the most accurate
translation vectors, however, the proposed methods outperform
the competitor ones for estimating the camera rotation.

Concluding the synthesized tests, the proposed algorithm
(without normalization) outperforms the competitor ones in
four out of the eight tests and achieve similar results in
the remaining ones. The normalized version applied to five
correspondences is superior to all methods in both terms
except two test cases.

B. Real World Experiments

To test the proposed solver on real world images, we
downloaded the strecha dataset [23] consisting of image se-
quences of buildings. All images are of size 3072×2048. The
ground truth projection matrices are provided. The methods
were applied to all possible image pairs in each sequence.
The Hessian-Affine detector [11] encapsulated into the view-
synthesizer of ASIFT [12] was used to obtain affine covariant
correspondences. This combination performed the best in
[24]. For each image pair, a reference point set with ground
truth inliers was obtained by calculating the fundamental

matrix from the projection matrices [2]. Correspondences were
considered as inliers if the symmetric epipolar distance was
smaller than 1.0 pixel. All image pairs with less than 50 inliers
were discarded. Also, pairs were removed where none of the
methods found the ground truth essential matrix. In total, 714
pairs were used in the evaluation. The used errors of the
rotations and translations were the same as the ones which
were used for the synthesized tests.

As a robust estimator, we chose Graph-Cut RANSAC [25]
since it can be considered as state-of-the-art variant of
RANSAC, and its implementation is publicly available2. The
scoring function, i.e. the one determining the quality of a
model, was set to the MSAC-like truncated quadratic cost [26]
with noise σ set to 0.3 pixels (proposed in [27]). The point-
to-model residual function was the Sampson-distance. To
estimate essential matrices from a non-minimal sample, we
chose the normalized eight-point algorithm [19]. The mini-
mum iteration number was set to 100. Other parameters were
set to the default values of [25]. Note that instead of the eight-
point algorithm, the proposed normalized method could also
be used. However, to our experiments, the proportion of the
outliers in the set of affine transformations is often high. Thus
the least-squares fitting can fail.

Table I reports the results of GC-RANSAC combined with
minimal methods. The competitor ones were the proposed 2-
point algorithm, 3-point3 [17], 5-point4 [8], and the method
of Raposo et al. [18] techniques. The first two columns show
the sequence and the number of image pairs (Pair #). The
mean errors of the translation (et; in degrees) and rotation
(er; in degrees) are shown in the first two columns regarding
to each minimal method. Even though the differences are
fairly small, i.e. under a degree, the proposed solver leads
to the most accurate results with four times less iterations
than what the five-point algorithm requires. Fig. 4 contains
example results of the proposed method with inliers (circles)
and outliers (black crosses) drawn.

C. Processing Time

The proposed algorithm consists of two main steps. First,
the null space of a 6 × 9 matrix is calculated. Then the final
solution is given as the pseudo-inverse of a matrix of size
10 × 9. Both steps have negligible time demand, therefore,
the proposed algorithm is applicable even to online tasks. The
generalization to n correspondences modifies only the first
matrix to size 3n × 9 (n ≥ 2). The mean processing time
of 1000 runs of the 2-point version implemented in C++ is
approx. 530µsecs (53 × 10−5 seconds). The time demand of
the n-point version, i.e. the overdetermined case, is around 49
msecs (49× 10−3 seconds) for n = 4000.

Augmenting a robust estimator, e.g. RANSAC [29], with
the 2-point algorithm is beneficial since it yields significantly
faster convergence. See Table II reporting the theoretical iter-
ation number of RANSAC combined with different minimal

2https://github.com/danini/graph-cut-ransac
3Own implementation is used.
4Available at http://nghiaho.com/?p=1675

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TIP.2018.2849866

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://github.com/danini/graph-cut-ransac
http://nghiaho.com/?p=1675


6

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Noise (pixel)

Tr
an

sl
at

on
 e

rr
or

 (°
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Noise (pixel)

R
ot

at
io

n 
er

ro
r (

°)

Proposed
Normalized Prop.
Raposo et al.
Nistér

(a) Forward motion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

Noise (pixel)

Tr
an

sl
at

on
 e

rr
or

 (°
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Sideways motion

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise (pixel)

Tr
an

sl
at

on
 e

rr
or

 (°
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Noise (pixel)

R
ot

at
io

n 
er

ro
r (

°)

(c) Random motion
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(d) Nearly planar scene

Fig. 3. The errors (vertical axes) of the estimated rotations (top row; in radian; Eq. 13) and translations (bottom; in radian; Eq. 14) plotted as the function
of the noise σ (horizontal axes; in pixels). Each column represents a camera motion: (a) pure forward, and (b) sideways motion, (c) random motion, and (d)
nearly planar scene with cameras having random motion. The errors are the mean of 1000 runs on each noise σ. The reported algorithms: the proposed one
applied to a minimal sample (Proposed), the normalized version of the proposed method applied to five correspondences (Normalized Prop.), the technique
of Raposo and Barreto [18], and the 5-point algorithm proposed by David Nister [8].

TABLE I
ACCURACY OF MINIMAL METHODS FOR RELATIVE MOTION ESTIMATION ON THE Strecha DATASET [28] (6 SEQUENCES AND THUS 714 IMAGE PAIRS).
GC-RANSAC [25] WAS USED AS ROBUST ESTIMATOR. THE FIRST TWO COLUMNS SHOW THE SEQUENCES AND THE NUMBERS OF IMAGE PAIRS (PAIR
#). OTHER COLUMNS REPORT THE AVERAGE RESULTS (10 RUNS ON EACH IMAGE PAIR) OF THE COMPETITOR METHODS AT 95% CONFIDENCE. THE

MEAN ERROR OF THE OBTAINED TRANSLATIONS (eT ; IN DEGREES) AND ROTATIONS (eR ; IN DEGREES), THEIR STANDARD DEVIATION, AND THE NUMBER
OF REQUIRED ITERATIONS FOR GC-RANSAC (s) ARE WRITTEN INTO THE THREE COLUMNS REGARDING TO EACH METHOD. SEQUENCES: (A)

FOUNTAIN-P11, (B) ENTRY-P10, (C) HERZJESUS-P8, (D) CASTLE-P19, (E) CASTLE-P30, (F) HERZJESUS-P25. EXAMPLE IMAGE PAIRS ARE IN FIGURE 4.

Nistér et al. [8] Raposo et al. [18] Bentolila et al. [17] Proposed
Pair # et er s et er s et er s et er s

(a) 55 0.17 ± 0.14 0.35 ± 0.51 200 0.20 ± 0.51 0.37 ± 0.51 100 0.24 ± 0.53 0.37 ± 0.60 132 0.15 ± 0.12 0.34 ± 0.51 100
(b) 17 0.27 ± 0.29 0.29 ± 0.33 114 0.25 ± 0.33 0.27 ± 0.30 100 0.21 ± 0.14 0.28 ± 0.34 142 0.35 ± 0.42 0.28 ± 0.33 100
(c) 28 0.18 ± 0.14 0.16 ± 0.09 110 0.26 ± 0.09 0.15 ± 0.07 100 0.19 ± 0.13 0.14 ± 0.06 172 0.17 ± 0.14 0.13 ± 0.05 117
(d) 88 1.15 ± 2.66 0.14 ± 0.09 502 1.29 ± 0.09 0.16 ± 0.09 100 0.99 ± 2.81 0.13 ± 0.08 197 1.03 ± 2.61 0.14 ± 0.08 102
(e) 251 1.47 ± 5.63 0.14 ± 0.08 602 1.76 ± 6.84 0.16 ± 0.09 105 2.09 ± 8.83 0.13 ± 0.08 201 1.40 ± 4.77 0.13 ± 0.07 106
(f) 275 0.36 ± 0.15 0.15 ± 0.09 538 0.37 ± 1.01 0.15 ± 0.07 110 0.37 ± 1.26 0.13 ± 0.09 235 0.36 ± 1.06 0.13 ± 0.13 108
all 714 0.79 ± 3.49 0.20 ± 6.82 490 0.94 ± 4.27 0.21 ± 0.19 105 1.03 ± 5.38 0.20 ± 0.21 205 0.76 ± 3.00 0.19 ± 0.19 105

methods. It is clear that the estimation exploiting two corre-
spondences is advantageous to achieve real time performance
even for high outlier ratio.

TABLE II
REQUIRED THEORETICAL ITERATION NUMBER OF RANSAC AUGMENTED

WITH MINIMAL METHODS (COLUMNS) WITH 95% PROBABILITY ON
DIFFERENT OUTLIER LEVELS (ROWS).

# of required points
Outl. 2 3 5 6 7 8
80% 74 ∼ 103 ∼ 104 ∼ 105 ∼ 105 ∼ 106

95% 1 197 ∼ 104 ∼ 107 ∼ 108 ∞ ∞
99% 29 856 ∼ 106 ∞ ∞ ∞ ∞

D. Application: Multi-motion Fitting

The clustering of correspondences to multiple rigid motions
in two-views is usually solved by applying a multi-model
fitting algorithm, e.g. PEARL [30] or Multi-X [31], combined
with a minimal method as an engine estimating fundamental

matrices. Recent approaches are based on a RANSAC-like
initialization, therefore, their results highly depend on the
applied minimal method, especially, on the size of the minimal
sample – the probability of finding an accurate model increases
if the model is estimable using less correspondences.

Table III reports the results of Multi-X method fitting mul-
tiple rigid motions, i.e. fundamental matrices, simultaneously.
Each row contains the results of a minimal method: the seven-
(7PT) and eight-point (8PT) algorithms and the proposed one
(2PT). The errors are the misclassification errors (ME), i.e. the
ratio of misclassified correspondences:

ME =
#Misclassified Points

#Points
,

reported in percentage. Columns are the test pairs of the
AdelaideRMF dataset5 which consists of 18 image pairs of
size 640×480 each containing point correspondences assigned
to rigid motions manually. Since the proposed method requires

5https://cs.adelaide.edu.au/∼hwong/doku.php?id=data
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(a) fountain-p11

(b) entry-p10

(c) herzjesus-p8

(d) castle-p19

Fig. 4. Example results of the proposed algorithm on image pairs from
the strecha dataset. Inliers drawn by circles and outliers by black crosses.
Every 10th correspondence is drawn. The used robust estimator is GC-
RANSAC [25]. Quantitative evaluation is in Table I.

affine correspondences, we applied AHessian-Affine to the
image pairs detecting as many correspondences as we can.
For all annotated correspondences, i.e. the point pairs provided
in the dataset, we searched the closest match in the detected
correspondence set, and replaced them with the matched
ones. Note that this could introduce error into the annotation,
however, these point pairs are used for all tests, including
the proposed and competitor methods, thus the comparison
remains fair.

Since we aim at estimating essential matrices, the intrinsic
camera calibration have to be known a priori. We estimated
those intrinsic parameters for each image pair from the
manually annotated point correspondences by the following
procedure. We assumed the semi-calibrated case: the principal
point was set to the center of the image and the pixel ratio
to one. It was assumed that the images in each pair have the

Fig. 5. Example two-view multi-motion fitting on pairs Gamebiscuit and
Cubebreadtoychips from the AdelaideRMF dataset. Color denotes motions.

same focal length f . In order to recover f , we applied [6] 6 to
a number of 6-sized subsets (20 times the point number of the
current motion) of the ground truth correspondences regarding
to each motion. Finally, weighted histogram voting [32] was
used to select the best candidate out of the obtained focal
lengths.

According to Table III, Multi-X leads to the most accurate
clusterings, in terms of misclassification error, if it is combined
with the proposed two-point algorithm.

V. CONCLUSION

It is shown in this paper that a local affine transformation
yields two linear constraints for essential matrix estimation.
Exploiting these constraints, the essential matrix can efficiently
be recovered using two affine correspondences. Even though
the proposed solution assumes perspective camera model, it
can straightforwardly be generalized to arbitrary one, e.g.
omni-directional cameras. Also, the normalization of the affine
parameters are shown that is mandatory if the intrinsic camera
parameters differ or the point coordinates are normalized. It
is validated both on synthesized tests and 714 real image
pairs that combining the proposed solver with recent robust
estimators, e.g. Graph-Cut RANSAC, leads to results superior
to the state-of-the-art both in terms of geometric accuracy and
number of samples required.
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TABLE III
TWO-VIEW MULTI-MOTION FITTING ON THE ADELAIDERMF DATASET USING MULTI-X METHOD AUGMENTED WITH DIFFERENT MINIMAL METHODS
(ROWS): THE PROPOSED TWO-POINT ALGORITHM (2PT), THE SEVEN-POINT (7PT) AND EIGHT-POINT (8PT) METHODS. THE REPORTED ERRORS ARE
MISCLASSIFICATION ERRORS IN PERCENTAGE, I.E. THE RATIO OF THE MISCLASSIFIED CORRESPONDENCES. TEST PAIRS: (1) BISCUITBOOKBOX, (2)

BREADCARTOYCHIPS, (3) BREADCUBECHIPS, (4) BREADTOYCAR, (5) CARCHIPSCUBE, (6) CUBEBREADTOYCHIPS, (7) DINOBOOKS, (8) TOYCUBECAR,
(9) BISCUIT, (10) BOARDGAME, (11) BOOK, (12) BREADCUBE, (13) BREADTOY, (14) CUBE, (15) CUBETOY, (16) GAME, (17) GAMEBISCUIT, (18)

CUBECHIPS.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) AVG MED
2PT 5.0 5.1 2.2 7.2 6.1 4.9 7.2 5.5 29.4 8.2 2.7 5.2 11.5 27.8 3.7 7.3 3.7 7.0 8.3 5.8
7PT 3.9 5.5 1.7 7.8 6.1 4.3 11.4 6.0 30.3 8.6 2.7 2.5 11.8 29.8 5.2 7.7 3.0 8.1 8.7 6.1
8PT 4.6 8.4 2.2 7.2 7.3 6.1 10.6 6.5 32.1 8.6 2.7 3.3 8.3 28.5 4.8 8.6 2.7 9.2 9.0 7.3

APPENDIX A
PROOF OF THE LINEAR AFFINE CONSTRAINTS

It is trivial that an affine transformation A transforms the
direction of the corresponding epipolar lines to each other
as all affine transformations correctly modify the lines going
through the corresponding point locations [u v] and [u′ v′].
Therefore, Av ‖ v′, where v and v′ are the directions of the
epipolar lines on the first and second images.

As it is well-known in computer graphics [21], line normals
are transformed as A−Tn = βn′, where n = (FTp′)1:2 and
n′ = (Fp)1:2 are the normals of the epipolar lines (β 6= 0).
Lower index (1 : 2) denotes the first two elements of a vector.
We prove here that

A−Tn = −n′. (15)

Suppose that corresponding point pair p = [u v 1]T and
p′ = [u′ v′ 1]T are given. Let n = [nu nv]

T and n′ =
[n′u n′v]

T be the normal directions of epipolar lines

l1 = FTp′ = [l1,a l1,b l1,c]
T, (16)

and
l′1 = Fp = [l′1,a l′1,b l′1,c]

T, (17)

respectively. It is trivial that A−Tn = βn′ due to Av ‖ v′,
where β is a scale factor. First, it is shown how affine trans-
formation A transforms the length of n if it is a unit vector.
To calculate this scale factor β, it is required to introduce a
new point as close to p as possible determining epipolar lines
on both images and β as the ratio of distances from these new
lines. Let us introduce point q = p + δ

[
nT 0

]T
, where δ

is a small scalar value. Point q determines an epipolar line
l′2 = [l′2,a l′2,b l′2,c]

T on the second image as

l′2 = Fq = F
(
p+ δ

[
nT 0

]T)
= [s1 s2 s3]

T
,

where

s1 = l′1,a + δf11nu + δf12nv,

s2 = l′1,b + δf21nu + δf22nv,

s3 = l′1,c + δf31nu + δf32nv.

Then scale β is given by the distance d′ between line l′2 and
point p′. The setup is visualized in Fig. 1(b). The calculation
of distance d′ is given by the well-known formula as follows:

d′ =
|s1u′ + s2v

′ + s3|√
s21 + s22

. (18)

It is known that point p′ lies on l′1, which can be written as
l′1,au

′ + l′1,bv
′ + l′1,c = 0. This fact reduces Eq. 18 to

d′ =
|ŝ1u′ + ŝ2v

′ + ŝ3|√
s21 + s22

, (19)

ŝ1 = δf11nu + δf12nv,

ŝ2 = δf21nu + δf22nv,

ŝ3 = δf31nu + δf32nv.

To determine β, the introduced point q has to be moved
infinitesimally close to the location of p. In other words,
δ → 0. β is the ratio of the length of vector (p − q) and
the distance between point p′ and line l′2. The latter is δ,
while the former has just calculated in Eq. 19. Therefore the
square of β is written as

β2 = lim
δ→0

δ2

d′2
= lim
δ→0

δ2
(
s21 + s22

)
|ŝ1u′ + ŝ2v′ + ŝ3|2

. (20)

After elementary modifications, the final formula for scale β
is given as

β = ±
√
l′1,al

′
1,a+l

′
1,bl

′
1,b

|s̃1u′+s̃2v′+s̃3| , (21)

s̃i = fi1nu + fi2nv, i ∈ {1, 2, 3}.

The epipolar line corresponding to point p is parameterized
as
[
l′1,a l′1,b l′1,c

]
= F[u v 1]T. Therefore, the normal

of the line is as n′ =
[
l′1,a l′1,b

]T
= (F

[
u′ v′ 1

]T
)(1:2).

Similarly, n = (FT
[
u′ v′ 1

]T
)(1:2). The numerator in

Eq. 21 can be rewritten as |n| =
√
l21,a + l21,b, while the

denominator is as follows:

s̃1u
′ + s̃2v

′ + s̃3 = nu(f11u
′ + f21v

′ + f31) +

nv(f12u
′ + f22v

′ + f32) = n2u + n2v = |n|2.

Thus

β = ± |n|
|n|2

= ± 1

|n|
.

The length of normal n is one, thus β = 1, and Eq. 5 is
modified as A−Tn = ±n′. Since the direction of the epipolar
lines on the two images must be the opposite of each other,
the positive solution can be omitted. The final formula is as
follows: A−Tn = −n′.
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Program 1: The Two-point Algorithm
1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 %% 2−p t a l g o r i t h m .
3 %% Use Matlab −7 . 0 ( 6 . 5 ) w i t h Symbol icMath Toolbox .
4 %% I n p u t :
5 %% The ”Matches” i s a 2 x8 m a t r i x c o n t a i n i n g two a f f i n e c o r r e s p o n d e n c e s .
6 %% Each row o f ”Matches ”: ( u1 , v1 , u2 , v2 , a1 , a2 , a3 , a4 ) .
7 %% ”K1” and ”K2” are two c a l i b r a t i o n m a t r i c e s .
8 %% Outpu t : f u n d a m e n t a l m a t r i x .
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 f u n c t i o n F = TwoPoin tFundamenta l ( Matches , K1 , K2 )
11 syms E e x y equ C
12 equ = sym ( ’ equ ’ , [1 1 0 ] ) ;
13 C = sym ( ’C ’ , [10 1 0 ] ) ;
14
15 M = z e r o s ( 6 , 9 )
16 f o r i = 1 : 2
17 u1 = Matches ( i , 1 ) ; v1 = Matches ( i , 2 ) ; u2 = Matches ( i , 3 ) ; v2 = Matches ( i , 4 ) ;
18 a1 = Matches ( i , 5 ) ; a2 = Matches ( i , 6 ) ; a3 = Matches ( i , 7 ) ; a4 = Matches ( i , 8 ) ;
19
20 M( 3∗ ( i −1) + 1 : 3∗ i , : ) = . . .
21 [ u1 ∗ u2 , v1 ∗ u2 , u2 , u1 ∗ v2 , v1 ∗ v2 , v2 , u1 , v1 , 1 ;
22 u2 + a1 ∗ u1 , a1 ∗ v1 , a1 , v2 + a3 ∗ u1 , a3 ∗ v1 , a3 , 1 , 0 , 0 ;
23 a2 ∗ u1 , u2 + a2 ∗ v1 , a2 , a4 ∗ u1 , v2 + a4 ∗ v1 , a4 , 0 , 1 , 0 ] ;
24 end
25
26 N = n u l l (M) ; %%% Compute t h e n u l l−space
27 e = x∗N ( : , 1 ) + y∗N ( : , 2 ) + N ( : , 3 ) ;
28 E = t r a n s p o s e ( reshape ( e , 3 , 3 ) ) ;
29 ET = t r a n s p o s e ( E ) ;
30
31 equ ( 1 ) = det ( E ) ;
32 equ ( 2 : 1 0 ) = expand (2∗E∗ET∗E−sum ( diag ( E∗ET ) )∗E ) ;
33
34 f o r i = 1 : 10
35 equ ( i ) = maple ( ’ s o r t ’ , maple ( ’ c o l l e c t ’ , equ ( i ) , ’ [ x , y ] ’ , ’ d i s t r i b u t e d ’ ) ) ;
36 f o r j = 1 : 9
37 op e r = maple ( ’ op ’ , j , equ ( i ) ) ;
38 C( i , j ) = maple ( ’ op ’ , 1 , o pe r ) ;
39 end
40 C( i , 1 0 ) = maple ( ’ op ’ , 10 , equ ( i ) ) ;
41 end
42
43 nC = dou b l e (C ) ; %%% Conver t t h e c o e f f i c i e n t m a t r i x t o numer ic f o r m a t
44 Res = pinv ( nC ( : , 1 : 9 ) ) ∗ (−nC ( : , 1 0 ) ) ; %%% Compute a lpha and b e t a
45 a l p h a = Res ( 8 ) ; beta = Res ( 9 ) ;
46
47 nE = a l p h a ∗N ( : , 1 ) + beta∗N ( : , 2 ) + N ( : , 3 ) ; %%% Compute t h e e s s e n t i a l m a t r i x
48 nE = t r a n s p o s e ( reshape ( E s s e n t i a l , 3 , 3 ) ) ;
49
50 F = inv ( K2 ’ ) ∗ nE ∗ inv ( K1 ) %%% Get t h e f u n d a m e n t a l m a t r i x
51 end
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