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Abstract
An axiomatic approach is applied to the problem of extracting a ranking of

the alternatives from a pairwise comparison ratio matrix. The ordering induced
by row geometric mean method is proved to be uniquely determined by three
independent axioms, anonymity (independence of the labelling of alternatives),
responsiveness (a kind of monotonicity property) and aggregation invariance, which
requires the preservation of group consensus, that is, the pairwise ranking between
two alternatives should remain unchanged if unanimous individual preferences are
combined by geometric mean.
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1 Introduction
Preferences of decision makers are often represented by pairwise comparisons when numer-
ical answers to questions like ’How many times alternative 𝑖 is better than alternative 𝑗?’
are collected into a positive reciprocal matrix (Saaty, 1980). The basic issue in this field is
to derive weights from a given set of comparisons, which can be used for measuring the
importance of certain decision options, or for determining a ranking of the alternatives.
Naturally, the assignment of weights is not necessarily based on the pairwise comparisons
paradigm (see, e.g., Janicki and Soudkhah (2014)), even though we will use this approach
throughout the paper.
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Since one can choose among a plethora of weighting methods, an axiomatic approach is
worth to consider for this purpose. Introduction and justification of reasonable properties
may reveal the advantages and disadvantages of certain procedures, and the axioms may
even characterize, uniquely determine the weights.

Probably the first work on this topic, Fichtner (1984) characterized the row geometric
mean – sometimes called logarithmic least squares – method (Rabinowitz, 1976; Crawford
and Williams, 1980, 1985; De Graan, 1980) by using four axioms, correctness in the
consistent case, comparison order invariance, smoothness and power invariance. Further-
more, the eigenvector method (Saaty, 1980) is uniquely determined by correctness in the
consistent case, comparison order invariance, smoothness and rank preservation (Fichtner,
1986), that is, it can be obtained with changing only one property in the previous result.

From this set of axioms, correctness in the consistent case and comparison order
invariance are almost impossible to debate. Nevertheless, there exists a goal-programming
method satisfying power invariance and a slightly modified version of smoothness besides
these two basic axioms, which possesses the additional property that the presence of a
single outlier cannot prevent the identification of the correct priority vector (Bryson, 1995).
Cook and Kress (1988) approached the problem by focusing on distance measures in order
to get another goal programming method on an axiomatic basis.

Smoothness and power invariance can be entirely left out from the characterization of
the row geometric mean method. Barzilai et al. (1987) substitute them with a consistency-
like axiom by introducing two procedures which are required to result in the same preference
vector: (1) some pairwise comparison matrices are aggregated to one matrix and the
solution is computed for this matrix, (2) the priorities are derived separately for each matrix
and combined by the geometric mean. We think it is not a simple condition immediately to
adopt. Barzilai (1997) replaced this axiom and comparison order invariance with essentially
demanding that each individual weight is a function of the entries in the corresponding row
of the pairwise comparison matrix only. Joining to Dijkstra (2013), we are also somewhat
uncomfortable with this premise. Csató (2018c) characterizes row geometric mean by
assuming the weight vector to be independent of an arbitrary multiplication of matrix
elements along a 3-cycle by a positive scalar.

To conclude, the problem of weight derivation seems to be not finally settled by previous
axiomatizations. Therefore we want to provide a characterization of the row geometric
mean ranking from the perspective of group decision making.

Focusing on the ranking is a departure from the existing literature, which requires
some explanation. First, similarly to the case of inconsistency indices (Csató, 2018a,b), our
setting probably makes the axioms more easy to motivate and the result to understand.
Second, weighting methods are often used only to determine a ranking of the alternatives
(Saaty and Hu, 1998). Third, the main result essentially depends on an axiom called
aggregation invariance (Csató, 2017), that is, the pairwise ranking between two alternatives
should remain unchanged if unanimous individual preferences are combined by geometric
mean. According to our knowledge, this property does not have an equivalent form for
ratings, while similar conditions have been extensively used in social choice theory (Young,
1974; Nitzan and Rubinstein, 1981; Chebotarev and Shamis, 1998; van den Brink and
Gilles, 2009; González-Dı́az et al., 2014; Csató, 2018d,e). Furthermore, since the exact
meaning of aggregation invariance is determined by the aggregation procedure of pairwise
comparison matrices, our axiomatization practically follows from the central work of Aczél
and Saaty (1983) on synthesizing ratio judgements.

Other axioms used in the characterization are relatively straightforward: anonymity
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is probably the most natural independence property, while responsiveness is a standard
monotonicity condition directly implied by the representation of decision makers’ prefer-
ences.

Presenting an axiomatic characterization does not mean that we accept all properties
involved as wholly justified and unquestionable. However, if one agrees with our axioms,
then geometric mean remains the only choice. Consequently, using any other method
requires explaining the violation of at least one axiom.

The paper has the following structure. Section 2 defines pairwise comparison matrices,
weighting and ranking methods. Section 3 recalls the axioms introduced in Csató (2017),
and presents three new properties. Some connections among these requirements are
revealed in Section 4. Section 5 analyses the rankings induced by the eigenvector and
row geometric mean methods with respect to the axioms. Section 6 provides the main
result, a characterization of the row geometric mean ranking. Finally, our contributions
are summarized in Section 7.

2 Preliminaries
Let R𝑛

+ and R𝑛×𝑛
+ be the set of positive (with all elements greater than zero) vectors of size

𝑛 and matrices of size 𝑛 × 𝑛, respectively. Let 𝑁 = {1, 2, . . . , 𝑛} be the set of alternatives.

Definition 2.1. Pairwise comparison matrix: Matrix A = [𝑎𝑖𝑗] ∈ R𝑛×𝑛
+ is a pairwise

comparison matrix if 𝑎𝑗𝑖 = 1/𝑎𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

The set of pairwise comparison matrices of size 𝑛 × 𝑛 is denoted by 𝒜𝑛×𝑛.
Let 1 ∈ 𝒜𝑛×𝑛 be the pairwise comparison matrix with all of its elements equal to 1.
A pairwise comparison matrix A ∈ 𝒜𝑛×𝑛 is said to be consistent if 𝑎𝑖𝑘 = 𝑎𝑖𝑗𝑎𝑗𝑘 for all

1 ≤ 𝑖, 𝑗, 𝑘 ≤ 𝑛. Otherwise, it is inconsistent.

Definition 2.2. Weight vector : Vector w = [𝑤𝑖] ∈ R𝑛
+ is a weight vector if ∑︀𝑛

𝑖=1 𝑤𝑖 = 1.

The set of weight vectors of size 𝑛 is denoted by ℛ𝑛.

Definition 2.3. Weighting method: Mapping 𝑓 : 𝒜𝑛×𝑛 → ℛ𝑛 is a weighting method.

A weighting method assigns a weight vector to every pairwise comparison matrix.
Several weighting methods have been suggested in the literature, see Choo and Wedley

(2004) for an overview. We discuss only two of them, which are probably the most popular.
The eigenvector method has also been addressed in the paper that introduced the crucial
axiom of our characterization (Csató, 2017). The row geometric mean method is in the
focus of the discussion.

Definition 2.4. Eigenvector method (𝐸𝑀) (Saaty, 1980): The eigenvector method is the
mapping A → w𝐸𝑀(A) such that

Aw𝐸𝑀(A) = 𝜆maxw𝐸𝑀(A),

where 𝜆max denotes the maximal eigenvalue, also known as principal or Perron eigenvalue,
of (positive) matrix A.
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Definition 2.5. Row geometric mean method (𝑅𝐺𝑀) (Rabinowitz, 1976; Crawford and
Williams, 1980, 1985; De Graan, 1980): The row geometric mean method is the mapping
A → w𝑅𝐺𝑀(A) such that the weight vector w𝑅𝐺𝑀(A) is the unique solution of the
following optimization problem:

min
w∈ℛ𝑛

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

[︃
log 𝑎𝑖𝑗 − log

(︃
𝑤𝑖

𝑤𝑗

)︃]︃2

. (1)

𝑅𝐺𝑀 seeks for a weight vector that generates the consistent pairwise comparison
matrix which is the closest to the pairwise comparison matrix A if the metric of logarithmic
least squares is applied. Therefore it is often called the logarithmic least squares method.

The name row geometric mean originates from the formula of the solution to (1), which
is

𝑤𝑅𝐺𝑀
𝑖 (A) =

∏︀𝑛
𝑗=1 𝑎

1/𝑛
𝑖𝑗∑︀𝑛

𝑘=1
∏︀𝑛

𝑗=1 𝑎
1/𝑛
𝑘𝑗

.

Weighting methods are often used to derive a ranking of the alternatives. Ranking ⪰
is a weak order on the set of alternatives 𝑁 , so it is complete (for all 𝑖, 𝑗 ∈ 𝑁 : 𝑖 ⪰ 𝑗 or
𝑖 ⪯ 𝑗) and transitive (for all 𝑖, 𝑗, 𝑘 ∈ 𝑁 : 𝑖 ⪰ 𝑗 and 𝑗 ⪰ 𝑘 implies 𝑖 ⪰ 𝑘).

The asymmetric and symmetric parts of a ranking ⪰ will be written as ≻ and ∼,
respectively: 𝑖 ≻ 𝑗 if and only if 𝑖 ⪰ 𝑗 and not 𝑗 ⪰ 𝑖, 𝑖 ∼ 𝑗 if and only if 𝑖 ⪰ 𝑗 and 𝑗 ⪰ 𝑖.

The set of possible rankings on 𝑛 alternatives is denoted by R𝑛.

Definition 2.6. Ranking method: Mapping 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is a ranking method.

A ranking method assigns a ranking of the alternatives to every pairwise comparison
matrix. We use the convention that ⪰𝑔

A is the ranking assigned by ranking method 𝑔 for
pairwise comparison matrix A ∈ 𝒜𝑛×𝑛.

All weighting methods induce a ranking method, for instance:

∙ the eigenvector ranking method is denoted by ⪰𝐸𝑀 , where 𝑖 ⪰𝐸𝑀
A 𝑗 if and only if

𝑤𝐸𝑀
𝑖 (A) ≥ 𝑤𝐸𝑀

𝑗 (A);

∙ the row geometric mean ranking method is denoted by ⪰𝑅𝐺𝑀 , where 𝑖 ⪰𝑅𝐺𝑀
A 𝑗 if

and only if 𝑤𝑅𝐺𝑀
𝑖 (A) ≥ 𝑤𝑅𝐺𝑀

𝑗 (A).

3 Axioms
The six properties discussed here concern ranking methods, that is, they only deal with
the relative importance of alternatives. Some earlier works have used similar axioms
for rankings. Saaty and Vargas (1984) introduce the properties strong and weak rank
preservation. Genest et al. (1993) examine the effect of a coding parameter for ordinal
preferences on the ordering of alternatives from 𝐸𝑀 . Csató and Rónyai (2016) discuss a
condition on the ranking of alternatives derived from an incomplete pairwise comparison
matrix. Pérez and Mokotoff (2016) show an example of strong rank reversal in group
decision making by 𝐸𝑀 .

First, let us briefly recall three axioms from Csató (2017).

Axiom 3.1. Anonymity (𝐴𝑁𝑂): Let A = [𝑎𝑖𝑗] ∈ 𝒜𝑛×𝑛 be a pairwise comparison matrix,
𝜎 : 𝑁 → 𝑁 be a permutation on the set of alternatives, and 𝜎(A) = [𝜎(𝑎)𝑖𝑗] ∈ 𝒜𝑛×𝑛 be
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the pairwise comparison matrix obtained from A by this permutation such that 𝜎(𝑎)𝑖𝑗 =
𝑎𝜎(𝑖)𝜎(𝑗). Ranking method 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is anonymous if 𝑖 ⪰𝑔

A 𝑗 ⇐⇒ 𝜎(𝑖) ⪰𝑔
𝜎(A) 𝜎(𝑗)

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

𝐴𝑁𝑂 demands the ranking of alternatives to be independent of their labels, which is
important because the ’names’ of the alternatives can be arbitrary. This property was used
under the name comparison order invariance by Fichtner (1984) for weighting methods.

Definition 3.1. Aggregation of pairwise comparison matrices: Let A(1) =
[︁
𝑎

(1)
𝑖𝑗

]︁
∈ 𝒜𝑛×𝑛,

A(2) =
[︁
𝑎

(2)
𝑖𝑗

]︁
∈ 𝒜𝑛×𝑛, . . . , A(𝑘) =

[︁
𝑎

(𝑘)
𝑖𝑗

]︁
∈ 𝒜𝑛×𝑛 be any pairwise comparison matri-

ces. Their aggregate is the pairwise comparison matrix A(1) ⊕ A(2) ⊕ · · · ⊕ A(𝑘) =[︂
𝑘
√︁

𝑎
(1)
𝑖𝑗 𝑎

(2)
𝑖𝑗 · · · 𝑎

(𝑘)
𝑖𝑗

]︂
∈ 𝒜𝑛×𝑛.

Aggregation is equivalent to taking the geometric mean of all corresponding matrix
elements. Aczél and Saaty (1983) show geometric mean to be the only reasonable ag-
gregation procedure, the unique quasiarithmetic mean satisfying reciprocity and positive
homogeneity. According to reciprocity, the aggregated matrix is a pairwise comparison
matrix, too, while positive homogeneity means that multiplying all individual preferences
by the same positive scalar leads to an appropriate change in the aggregated preferences.

Axiom 3.2. Aggregation invariance (𝐴𝐼): Let A(1), A(2), . . . , A(𝑘) ∈ 𝒜𝑛×𝑛 be any pairwise
comparison matrices. Let 𝑔 : 𝒜𝑛×𝑛 → R𝑛 be a ranking method such that 𝑖 ⪰𝑔

A(ℓ) 𝑗 for
all 1 ≤ ℓ ≤ 𝑘. 𝑔 is called aggregation invariant if 𝑖 ⪰𝑔

A(1)⊕A(2)⊕···⊕A(𝑘) 𝑗, furthermore,
𝑖 ≻𝑔

A(1)⊕A(2)⊕···⊕A(𝑘) 𝑗 if 𝑖 ≻𝑔

A(ℓ) 𝑗 for at least one 1 ≤ ℓ ≤ 𝑘.

𝐴𝐼 is an intuitive condition of group decision making: if individuals unanimously agree
that alternative 𝑖 is not worse than 𝑗, this relation should be preserved when their opinions
are combined, i.e., it should also be reflected by the collective preferences.

Note that aggregation invariance does not allow for different weights of decision makers.
However, if the weights are rational numbers, then 𝐴𝐼 is equivalent to this more general
requirement.

Pérez and Mokotoff (2016) introduced a weaker property called group-coherence for
choice where alternative 𝑖 should have the highest priority in each pairwise comparison
matrices.

Definition 3.2. Opposite of a pairwise comparison matrix: Let A = [𝑎𝑖𝑗] ∈ 𝒜𝑛×𝑛 be a
pairwise comparison matrix. Its opposite is the pairwise comparison matrix A− ∈ 𝒜𝑛×𝑛

such that 𝑎−
𝑖𝑗 = 1/𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Taking the opposite is equivalent to reversing all preferences of the decision-maker,
and transposing the original pairwise comparison matrix.

Axiom 3.3. Inversion (𝐼𝑁𝑉 ): Let A ∈ 𝒜𝑛×𝑛 be a pairwise comparison matrix. Ranking
method 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is invertible if 𝑖 ⪰𝑔

A 𝑗 ⇐⇒ 𝑖 ⪯𝑔
A− 𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛.

Inversion implies that a reversal of all preferences changes the ranking accordingly.
An equivalent version of 𝐼𝑁𝑉 for weighting methods has been implicitly investigated in
Johnson et al. (1979), and introduced under the name scale inversion in Barzilai (1997).
An analogous axiom is invariance under inversion of preferences for inconsistency indices
(Brunelli, 2017), which requires the inconsistency of an arbitrary pairwise comparison
matrix and its opposite to be the same.

The three properties below are probably first presented here.
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Axiom 3.4. Rational scale invariance (𝑅𝑆𝐼): Let A, A(𝜅) ∈ 𝒜𝑛×𝑛 be two pairwise
comparison matrices such that 𝑎

(𝜅)
𝑖𝑗 = 𝑎𝜅

𝑖𝑗 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and 𝜅 ∈ Q+ is a positive
rational number. Ranking method 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is called rational scale invariant if
𝑖 ⪰𝑔

A 𝑗 ⇐⇒ 𝑖 ⪰𝑔

A(𝜅) 𝑗.

Rational scale invariance is an adaptation of power invariance (Fichtner, 1984) for
ranking methods: the ordering of the alternatives does not change if a different scale is
used for pairwise comparisons. For example, when only two verbal expressions, ’weakly
preferred’ and ’strongly preferred’ are allowed, the ranking is required to be the same if
these preferences are represented by values 2 and 3, or 4 and 9, respectively. This property
has been implicitly investigated in Genest et al. (1993).

𝑅𝑆𝐼 demands the invariance only in the case of a positive rational exponent. Naturally,
one can define it for all positive real numbers, but this weaker form will be enough for us.

Axiom 3.5. Independence of irrelevant comparisons (𝐼𝐼𝐶): Let A, A′ ∈ 𝒜𝑛×𝑛 be two
pairwise comparison matrices and 1 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ 𝑛 be four different alternatives such that
A and A′ are identical but 𝑎′

𝑘ℓ ̸= 𝑎𝑘ℓ (𝑎′
ℓ𝑘 ̸= 𝑎ℓ𝑘). Ranking method 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is

called independent of irrelevant comparisons if 𝑖 ⪰𝑔
A 𝑗 ⇐⇒ 𝑖 ⪰𝑔

A′ 𝑗.

𝐼𝐼𝐶 implies that ’remote’ comparisons – not involving alternatives 𝑖 and 𝑗 – do not
affect the pairwise ranking of 𝑖 and 𝑗. It has a meaning if 𝑛 ≥ 4. Analogous axioms are
extensively used in social choice theory, for example, in Arrow’s impossibility theorem
(Arrow, 1950).

Sequential application of independence of irrelevant comparisons may lead to any
pairwise comparison matrix Ā ∈ 𝒜𝑛×𝑛, for which 𝑎̄𝑔ℎ = 𝑎𝑔ℎ if {𝑔, ℎ} ∩ {𝑖, 𝑗} ≠ ∅, but all
other elements are arbitrary.

Axiom 3.6. Responsiveness (𝑅𝐸𝑆): Let A, A′ ∈ 𝒜𝑛×𝑛 be two pairwise comparison
matrices and 1 ≤ 𝑖, 𝑗 ≤ 𝑛 be two different alternatives such that A and A′ are identical
but 𝑎′

𝑖𝑗 > 𝑎𝑖𝑗 (𝑎′
𝑗𝑖 < 𝑎𝑗𝑖). Ranking method 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is called responsive if

𝑖 ⪰𝑔
A 𝑗 ⇒ 𝑖 ≻𝑔

A′ 𝑗.

Responsiveness is a natural monotonicity condition, similar to positive responsiveness
(van den Brink and Gilles, 2009) and positive responsiveness to the beating relation
(González-Dı́az et al., 2014): if alternative 𝑖 is ranked at least as high as alternative 𝑗,
then it should be ranked strictly higher when their comparison 𝑎𝑖𝑗 changes in favour
of alternative 𝑖. An analogous axiom monotonicity on single comparisons is used for
inconsistency indices by Brunelli and Fedrizzi (2015), where the authors provide a further
discussion of its origin.

To conclude, all of our six axioms have a parallel version in different topics such as
social choice theory or measurement of inconsistency.

4 Implications among the axioms
In this section, some implications among properties presented in Section 3 will be revealed.

Lemma 4.1. 𝐴𝑁𝑂 and 𝐴𝐼 imply 𝐼𝑁𝑉 .

Proof. Let 𝑔 : 𝒜𝑛×𝑛 → R𝑛 be a ranking method satisfying 𝐴𝑁𝑂 and 𝐴𝐼. Assume to
the contrary that there exist alternatives 𝑖 and 𝑗 with a pairwise comparison matrix A
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such that 𝑖 ⪰𝑔
A 𝑗 and 𝑖 ≻𝑔

A− 𝑗. Consider the aggregated pairwise comparison matrix
A + A− = 1. Anonymity implies 𝑖 ∼𝑔

1 𝑗, while aggregation invariance leads to 𝑖 ≻𝑔
1 𝑗, a

contradiction. See also Csató (2017, Lemma 4.1).

Remark 4.1. 𝐴𝑁𝑂 and 𝐼𝑁𝑉 do not imply 𝐴𝐼.
Remark 4.1 is verified by a counterexample.

Example 4.1. Consider the ranking method based on arithmetic means: 𝑔 : 𝒜𝑛×𝑛 → R𝑛

such that 𝑖 ⪰𝑔
A 𝑗 if ∑︀𝑛

𝑘=1 𝑎𝑖𝑘 ≥ ∑︀𝑛
𝑘=1 𝑎𝑗𝑘. It is anonymous and invertible, but not

aggregation invariant as the following matrices show:

A(1) =

⎡⎢⎣ 1 4 4
1/4 1 9
1/4 1/9 1

⎤⎥⎦ and A(2) =

⎡⎢⎣ 1 1/4 4
4 1 1

1/4 1 1

⎤⎥⎦ , therefore

B = A(1) ⊕ A(2) =

⎡⎢⎣ 1 1 4
1 1 3

1/4 1/3 1

⎤⎥⎦ .

Here 1 ≺𝑔

A(1) 2 because of ∑︀𝑛
𝑘=1 𝑎

(1)
1𝑘 = 9 < 10.25 = ∑︀𝑛

𝑘=1 𝑎
(1)
2𝑘 and 1 ≺𝑔

A(2) 2 as ∑︀𝑛
𝑘=1 𝑎

(2)
1𝑘 =

5.25 < 6 = ∑︀𝑛
𝑘=1 𝑎

(1)
2𝑘 , but 1 ≻𝑔

B 2 since ∑︀𝑛
𝑘=1 𝑏1𝑘 = 6 > 5 = ∑︀𝑛

𝑘=1 𝑏2𝑘.

Remark 4.2. 𝐴𝐼 and 𝐼𝑁𝑉 do not imply 𝐴𝑁𝑂.
Remark 4.2 is verified by a counterexample.

Example 4.2. Consider the ranking method based on the first column: 𝑔 : 𝒜𝑛×𝑛 → R𝑛

such that 𝑖 ⪰𝑔
A 𝑗 if 𝑎𝑖1 ≥ 𝑎𝑗1. It is aggregation invariant and invertible, but not anonymous.

Lemma 4.2. 𝐴𝑁𝑂 and 𝐴𝐼 imply 𝑅𝑆𝐼.

Proof. Consider two pairwise comparison matrices A, A(𝜅) ∈ 𝒜𝑛×𝑛 and a ranking method
𝑔 : 𝒜𝑛×𝑛 → R𝑛 with 𝑖 ⪰𝑔

A 𝑗. It can be assumed without loss of generality that 𝜅 = 𝑘/ℓ

and 0 < 𝑘 ≤ ℓ, 𝑘, ℓ ∈ Z. Then 𝑎𝜅
𝑖𝑗 = 𝑎

𝑘/ℓ
𝑖𝑗 is the geometric mean of 𝑘 pieces of 𝑎𝑖𝑗 and ℓ − 𝑘

pieces of 1 for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. In other words, A(𝜅) = A ⊕ · · · ⊕ A ⊕ 1 ⊕ · · · ⊕ 1, where
the number of A-s is 𝑘 and the number of 1-s is 𝑘 − ℓ in the aggregation. Since 𝑖 ⪰𝑔

1 𝑗
due to anonymity, 𝑖 ⪰𝑔

A(𝜅) 𝑗 is implied by aggregation invariance, thus 𝑔 is rational scale
invariant.

Note that the proof of Lemma 4.2 does not work directly if the exponent is allowed to
be irrational.
Remark 4.3. 𝐴𝑁𝑂 and 𝑅𝑆𝐼 do not imply 𝐴𝐼.

Remark 4.3 is verified by a counterexample.

Example 4.3. Consider the ranking method based on the product of favourable compar-
isons: 𝑔 : 𝒜𝑛×𝑛 → R𝑛 such that 𝑖 ⪰𝑔

A 𝑗 if ∏︀𝑛
𝑘=1,𝑎𝑖𝑘≥1 𝑎𝑖𝑘 ≥ ∏︀𝑛

𝑘=1,𝑎𝑗𝑘≥1 𝑎𝑗𝑘. It is anonymous
and rational scale invariant, but not aggregation invariant as the following matrices show:

A(1) =

⎡⎢⎣ 1 2 1/9
1/2 1 1
9 1 1

⎤⎥⎦ and A(2) =

⎡⎢⎣ 1 1/8 9
8 1 1

1/9 1 1

⎤⎥⎦ , therefore
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B = A(1) ⊕ A(2) =

⎡⎢⎣ 1 1/2 1
2 1 1
1 1 1

⎤⎥⎦ .

Here 1 ≻𝑔

A(1) 2 because 2 > 1 and 1 ≻𝑔

A(2) 2 as 9 > 8, but 1 ≺𝑔
B 2 since 1 < 2.

Remark 4.4. 𝐴𝐼 and 𝑅𝑆𝐼 do not imply 𝐴𝑁𝑂.
Remark 4.4 is verified by a counterexample.

Example 4.4. Consider the ranking method based on the first column: 𝑔 : 𝒜𝑛×𝑛 → R𝑛

such that 𝑖 ⪰𝑔
A 𝑗 if 𝑎𝑖1 ≥ 𝑎𝑗1. It is aggregation invariant and rational scale invariant, but

not anonymous.

Lemma 4.3. 𝐴𝑁𝑂 and 𝐴𝐼 imply 𝐼𝐼𝐶.

Proof. Assume to the contrary, and let A, B ∈ 𝒜𝑛×𝑛 be two pairwise comparison matrices
and 1 ≤ 𝑖, 𝑗, 𝑘, ℓ ≤ 𝑛 be four different alternatives such that A and B are identical except
for 𝑏𝑘ℓ ̸= 𝑎𝑘ℓ, furthermore, 𝑔 : 𝒜𝑛×𝑛 → R𝑛 is a ranking method with 𝑖 ⪰𝑔

A 𝑗 but 𝑖 ≺𝑔
B 𝑗.

An anonymous and aggregation invariant ranking method is invertible according to
Lemma 4.1, hence 𝑖 ≻𝑔

B− 𝑗. Denote by 𝜎 : 𝑁 → 𝑁 the permutation 𝜎(𝑖) = 𝑗, 𝜎(𝑗) = 𝑖,
and 𝜎(𝑘) = 𝑘 for all 𝑘 ̸= 𝑖, 𝑗. Anonymity leads to 𝑖 ≻𝑔

𝜎(B) 𝑗, while 𝑖 ⪰𝑔
𝜎(A)− 𝑗 because of

𝐴𝑁𝑂 and 𝐼𝑁𝑉 .
Consider the pairwise comparison matrix C = A ⊕ B− ⊕ 𝜎(A)− ⊕ 𝜎(B). Its elements

𝑐𝑔ℎ are as follows:

∙ {𝑔, ℎ} ∩ {𝑖, 𝑗} ≠ ∅: it can be assumed without loss of generality that 𝑔 = 𝑖.
Then 𝑐𝑖ℎ = 4

√︁
𝑎𝑖ℎ · 1/𝑎𝑖ℎ · 1/𝑎𝑗ℎ · 𝑎𝑗ℎ = 1 since 𝑏𝑖ℎ = 𝑎𝑖ℎ, [𝜎(𝑎)]𝑖ℎ = 𝑎𝑗ℎ, and

[𝜎(𝑏)]𝑖ℎ = 𝑏𝑗ℎ = 𝑎𝑗ℎ.

∙ {𝑔, ℎ} ∩ {𝑖, 𝑗} = ∅ and |{𝑔, ℎ} ∩ {𝑘, ℓ}| ≤ 1: 𝑐𝑔ℎ = 4
√︁

𝑎𝑔ℎ · 1/𝑎𝑔ℎ · 1/𝑎𝑔ℎ · 𝑎𝑔ℎ = 1
since 𝑏𝑔ℎ = 𝑎𝑔ℎ, [𝜎(𝑎)]𝑔ℎ = 𝑎𝑔ℎ, and [𝜎(𝑏)]𝑔ℎ = 𝑏𝑔ℎ = 𝑎𝑗ℎ.

∙ |{𝑔, ℎ} ∩ {𝑘, ℓ}| = 2: it can be assumed without loss of generality that 𝑔 = 𝑘 and
ℎ = ℓ. Then 𝑐𝑘ℓ = 4

√︁
𝑎𝑘ℓ · 1/𝑏𝑘ℓ · 1/𝑎𝑘ℓ · 𝑏𝑘ℓ = 1.

Consequently, C = 1, hence anonymity implies 𝑖 ∼𝑔
C 𝑗. However, 𝑖 ≻𝑔

C 𝑗 from aggregation
invariance, which is a contradiction.

Remark 4.5. 𝐴𝑁𝑂 and 𝐼𝐼𝐶 do not imply 𝐴𝐼.
Remark 4.5 is verified by a counterexample.

Example 4.5. Consider the ranking method based on arithmetic means: 𝑔 : 𝒜𝑛×𝑛 → R𝑛

such that 𝑖 ⪰𝑔
A 𝑗 if ∑︀𝑛

𝑘=1 𝑎𝑖𝑘 ≥ ∑︀𝑛
𝑘=1 𝑎𝑗𝑘. It is anonymous and independent of irrelevant

comparisons, but not aggregation invariant (see Example 4.1).

Remark 4.6. 𝐴𝐼 and 𝐼𝐼𝐶 do not imply 𝐴𝑁𝑂.
Remark 4.6 is verified by a counterexample.

Example 4.6. Consider the ranking method based on the first column: 𝑔 : 𝒜𝑛×𝑛 → R𝑛

such that 𝑖 ⪰𝑔
A 𝑗 if 𝑎𝑖1 ≥ 𝑎𝑗1. It is aggregation invariant and independent of irrelevant

comparisons, but not anonymous.
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Figure 1: Relations between 𝐴𝑁𝑂, 𝐴𝐼, and a third axiom

(a) Third axiom: 𝐼𝑁𝑉

𝐴𝑁𝑂 𝐴𝐼

𝐼𝑁𝑉

𝐴
𝐵𝐶

(b) Third axiom: 𝑅𝑆𝐼

𝐴𝑁𝑂 𝐴𝐼

𝑅𝑆𝐼

𝐷
𝐸𝐹

(c) Third axiom: 𝐼𝐼𝐶

𝐴𝑁𝑂 𝐴𝐼

𝐼𝐼𝐶

𝐺
𝐻𝐼

Main results of this section are summarized in Figure 1. On Figure 1.a, it can be
seen that area 𝐴 is covered by the circle of axiom 𝐼𝑁𝑉 , in other words, 𝐴𝑁𝑂 and 𝐴𝐼
imply 𝐼𝑁𝑉 (Lemma 4.1). Furthermore, the sets denoted by 𝐵 and 𝐶 are non-empty
according to Remarks 4.1 and 4.2, respectively. Analogously, since 𝐴𝑁𝑂 and 𝐴𝐼 imply
𝑅𝑆𝐼 (Lemma 4.2), area 𝐷 on Figure 1.b is covered by the circle of axiom 𝑅𝑆𝐼, and the
sets denoted by 𝐸 and 𝐹 are non-empty according to Remarks 4.3 and 4.4, respectively.
Finally, area 𝐺 on Figure 1.c is covered by the circle of axiom 𝐼𝐼𝐶 due to Lemma 4.3, and
the sets denoted by 𝐻 and 𝐼 are non-empty according to Remarks 4.5 and 4.6, respectively.

5 Analysis of two ranking methods
In the following, we continue the investigation of the ranking methods presented in
Section 2, with respect to Axioms 3.1-3.6.

Proposition 5.1. The eigenvector ranking method satisfies 𝐴𝑁𝑂 but violates 𝐴𝐼, 𝐼𝑁𝑉 ,
𝑅𝑆𝐼, and 𝐼𝐼𝐶.

Proof. See Csató (2017, Lemma 4.2) for 𝐴𝑁𝑂.
Violation of 𝐼𝑁𝑉 has been proved first probably in Johnson et al. (1979) and discussed

in Csató (2017, Lemma 4.3). It implies the violation of 𝐴𝐼 because of Lemma 4.1.
For rational scale invariance, we use an example of Genest et al. (1993), adapted from

Kendall (1955):

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 2 1/2 2 2
1/2 1 1/2 2 2 1/2
1/2 2 1 2 2 2
2 1/2 1/2 1 1/2 1/2

1/2 1/2 1/2 2 1 2
1/2 2 1/2 2 1/2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
leads to w𝐸𝑀(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2286
0.1430
0.2102
0.1321
0.1430
0.1430

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, while

A(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 4 1/4 4 4
1/4 1 1/4 4 4 1/4
1/4 4 1 4 4 4
4 1/4 1/4 1 1/4 1/4

1/4 1/4 1/4 4 1 4
1/4 4 1/4 4 1/4 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
results in w𝐸𝑀(A(2)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.2640
0.1267
0.2261
0.1297
0.1267
0.1267

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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therefore 2 ≻𝐸𝑀
A 4 but 2 ≺𝐸𝑀

A(2) 4.
Breaking of 𝐼𝐼𝐶 can be verified by the following matrices:

A =

⎡⎢⎢⎢⎣
1 1 1 3
1 1 2 1
1 1/2 1 1

1/3 1 1 1

⎤⎥⎥⎥⎦ leads to w𝐸𝑀(A) =

⎡⎢⎢⎢⎣
0.3254
0.2855
0.2034
0.1858

⎤⎥⎥⎥⎦ , while

A′ =

⎡⎢⎢⎢⎣
1 1 1 3
1 1 2 1
1 1/2 1 4

1/3 1 1/4 1

⎤⎥⎥⎥⎦ results in w𝐸𝑀(A′) =

⎡⎢⎢⎢⎣
0.2880
0.2917
0.2855
0.1347

⎤⎥⎥⎥⎦ .

Pairwise comparison matrices A and A′ differ only in the comparison of alternatives 3
and 4, but 1 ≻𝐸𝑀

A 2 and 1 ≺𝐸𝑀
A′ 2.

On the basis of Proposition 5.1, eigenvector ranking method is placed somewhere in the
region 𝐶 on Figure 1.a, in the region 𝐹 on Figure 1.b, and in the region 𝐼 on Figure 1.c.

Proposition 5.2. The row geometric mean ranking method satisfies 𝐴𝑁𝑂, 𝐴𝐼, 𝐼𝑁𝑉 ,
𝑅𝑆𝐼, 𝐼𝐼𝐶, and 𝑅𝐸𝑆.

Proof. The anonymity of row geometric mean ranking is obvious.
Aggregation invariance: Take some pairwise comparison matrices A(1), A(2), . . . , A(𝑘) ∈

𝒜𝑛×𝑛 such that 𝑖 ⪰𝑅𝐺𝑀
A(ℓ) 𝑗, that is, ∏︀𝑛

𝑚=1 𝑎
(ℓ)
𝑖𝑚 ≥ ∏︀𝑛

𝑚=1 𝑎
(ℓ)
𝑗𝑚 for all 1 ≤ ℓ ≤ 𝑘. It implies

𝑘
√︁∏︀𝑘

ℓ=1
∏︀𝑛

𝑚=1 𝑎
(ℓ)
𝑖𝑚 ≥ 𝑘

√︁∏︀𝑘
ℓ=1

∏︀𝑛
𝑚=1 𝑎

(ℓ)
𝑗𝑚, which is equivalent to 𝑖 ⪰𝑅𝐺𝑀

A(1)⊕A(2)⊕···⊕A(𝑘) 𝑗. Fur-
thermore, if 𝑖 ≻𝑅𝐺𝑀

A(ℓ) 𝑗, that is, ∏︀𝑛
𝑚=1 𝑎

(ℓ)
𝑖𝑚 >

∏︀𝑛
𝑚=1 𝑎

(ℓ)
𝑗𝑚 for at least one 1 ≤ ℓ ≤ 𝑘, then

𝑘
√︁∏︀𝑘

ℓ=1
∏︀𝑛

𝑚=1 𝑎
(ℓ)
𝑖𝑚 > 𝑘

√︁∏︀𝑘
ℓ=1

∏︀𝑛
𝑚=1 𝑎

(ℓ)
𝑗𝑚, so 𝑖 ≻𝑅𝐺𝑀

A(1)⊕A(2)⊕···⊕A(𝑘) 𝑗.
Inversion, rational scale invariance and independence of irrelevant comparisons: They

immediately follow from 𝐴𝑁𝑂 and 𝐴𝐼 according to Lemmata 4.1, 4.2, and 4.3, respectively.
Responsiveness: Let A, A′ ∈ 𝒜𝑛×𝑛 be two pairwise comparison matrices and 1 ≤ 𝑖, 𝑗 ≤

𝑛 be two different alternatives such that A and A′ are identical but 𝑎′
𝑖𝑗 > 𝑎𝑖𝑗 . Assume that

𝑖 ⪰𝑅𝐺𝑀
A 𝑗, namely, ∏︀𝑛

𝑘=1 𝑎𝑖𝑘 ≥ ∏︀𝑛
𝑘=1 𝑎𝑗𝑘. Then ∏︀𝑛

𝑘=1 𝑎′
𝑖𝑘 >

∏︀𝑛
𝑘=1 𝑎𝑖𝑘 ≥ ∏︀𝑛

𝑘=1 𝑎𝑗𝑘 >
∏︀𝑛

𝑘=1 𝑎′
𝑗𝑘,

therefore 𝑖 ≻𝑅𝐺𝑀
A′ 𝑗.

On the basis of Proposition 5.2, row geometric mean ranking method is placed some-
where in the region 𝐴 on Figure 1.a, in the region 𝐷 on Figure 1.b, and in the region 𝐺
on Figure 1.c.

It is known that 𝐸𝑀 and 𝑅𝐺𝑀 are equivalent if 𝑛 ≤ 3 (Crawford and Williams,
1985). Hence the counterexample for 𝐼𝐼𝐶 in Proposition 5.1 is minimal with respect to the
number of alternatives. However, it remains to be seen whether the eigenvector ranking
method satisfies 𝑅𝑆𝐼 for 𝑛 = 4 and 𝑛 = 5.

The eigenvector ranking method is not analysed with respect to responsiveness here.

6 A characterization of the row geometric mean rank-
ing method

It has been presented in Section 5 that the ranking induced by row geometric mean is
compatible with the six properties introduced in Section 3. Lemmata 4.1, 4.2, and 4.3
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have also revealed that 𝐴𝑁𝑂 and 𝐴𝐼 are powerful axioms. According to our central result,
they, together with 𝑅𝐸𝑆, characterize this specific ordering.

Theorem 6.1. The row geometric mean ranking method is the unique ranking method
satisfying anonymity, aggregation invariance and responsiveness.

Proof. Row geometric mean ranking method satisfies 𝐴𝑁𝑂, 𝐴𝐼 and 𝑅𝐸𝑆 due to Proposi-
tion 5.2.

Take an arbitrary pairwise comparison matrix A ∈ 𝒜𝑛×𝑛 and an anonymous, aggrega-
tion invariant and responsive ranking method 𝑔 : 𝒜𝑛×𝑛 → R𝑛. It can be assumed without
loss of generality that 1 ⪰𝑅𝐺𝑀

A 2 because row geometric mean ranking satisfies 𝐴𝑁𝑂. It is
enough to show that 1 ⪰𝑔

A 2 and 1 ≻𝑔
A 2 if 1 ≻𝑅𝐺𝑀

A 2.
Assume that 1 ∼𝑅𝐺𝑀

A 2, namely, ∏︀𝑛
𝑗=1 𝑎1𝑗 = ∏︀𝑛

𝑗=1 𝑎2𝑗. If 𝑛 = 2, then A = 1, therefore
anonymity provides that 1 ∼𝑔

A 2.
For 𝑛 ≥ 3, the proof is based on the following idea. As a first step, some transformations

will be made in order to get a pairwise comparison matrix where the ranking according to
𝑔 can be deduced from anonymity in the second step, while in the third part it will be
proved that the pairwise ranking of alternatives 1 and 2 is not influenced by the previous
transformations. Only the anonymity and aggregation invariance of 𝑔 will be used in this
process.

I. Consider the pairwise comparison matrix B ∈ 𝒜𝑛×𝑛 such that 𝑏1𝑗 = 𝑎1𝑗 and
𝑏2𝑗 = 𝑎2𝑗 for all 1 ≤ 𝑗 ≤ 𝑛 but 𝑏𝑘ℓ = 1 if 3 ≤ 𝑘, ℓ ≤ 𝑛. Note that B = A if 𝑛 = 3.
Let 𝜎𝑚 : 𝑁 → 𝑁 be the permutation 𝜎𝑚(1) = 1, 𝜎𝑚(2) = 2, and 𝜎𝑚(𝑘) =
3 + [(𝑚 + 𝑘 − 3) mod (𝑛 − 2)] for all 3 ≤ 𝑘 ≤ 𝑛 where 0 ≤ 𝑚 ≤ 𝑛 − 3. For
instance, 𝜎1(3) = 4, 𝜎1(4) = 5, and 𝜎1(𝑛) = 3 if 𝑛 ≥ 5. Let 𝜎𝑚(B) be the
pairwise comparison matrix obtained from B by permutation 𝜎𝑚. It is clear that
𝜎0(B) = B.
Consider the pairwise comparison matrix C = 𝜎0(B) ⊕ 𝜎1(B) ⊕ 𝜎2(B) ⊕ · · · ⊕
𝜎𝑛−3(B) ∈ 𝒜𝑛×𝑛. Its elements in the upper triangle – which uniquely determine
a pairwise comparison matrix due to its reciprocity – are 𝑐12 = 𝑎12, 𝑐1𝑘 =
𝑛−2
√︁∏︀𝑛

ℓ=3 𝑎1ℓ for all 3 ≤ 𝑘 ≤ 𝑛, 𝑐2𝑘 = 𝑛−2
√︁∏︀𝑛

ℓ=3 𝑎2ℓ for all 3 ≤ 𝑘 ≤ 𝑛, and 𝑐𝑘ℓ = 1
for all 3 ≤ 𝑘, ℓ ≤ 𝑛. Note that C = B if 𝑛 = 3.
Define the pairwise comparison matrix D ∈ 𝒜𝑛×𝑛 such that 𝑑12 = 1, 𝑑1𝑘 =
1/
(︁

𝑛−2
√︁∏︀𝑛

𝑗=1 𝑎1𝑗

)︁
for all 3 ≤ 𝑘 ≤ 𝑛, 𝑑2𝑘 = 1/

(︁
𝑛−2
√︁∏︀𝑛

𝑗=1 𝑎2𝑗

)︁
for all 3 ≤ 𝑘 ≤ 𝑛,

and 𝑑𝑘ℓ = 1 for all 3 ≤ 𝑘, ℓ ≤ 𝑛.
Consider the pairwise comparison matrix E = C ⊕ D. Its elements are 𝑒12 =
√

𝑎12 = 𝛼, 𝑒1𝑘 = 𝑛−2
√︁

1/𝛼 for all 3 ≤ 𝑘 ≤ 𝑛, 𝑒2𝑘 = 𝑛−2
√

𝛼 for all 3 ≤ 𝑘 ≤ 𝑛, and
𝑒𝑘ℓ = 1 for all 3 ≤ 𝑘, ℓ ≤ 𝑛 as the geometric means of its row elements are ones.

II. It is shown that 1 ∼𝑔
E 2 ∼𝑔

E · · · ∼𝑔
E 𝑛. Anonymity implies 3 ∼𝑔

E 4 ∼𝑔
E · · · ∼𝑔

E 𝑛.
Let 𝜎1,2 : 𝑁 → 𝑁 be the permutation 𝜎1,2(1) = 2, 𝜎1,2(2) = 1, and 𝜎1,2(𝑘) = 𝑘 for
all 3 ≤ 𝑘 ≤ 𝑛. Let 𝜎1,2(E) be the pairwise comparison matrix obtained from E by
the permutation 𝜎1,2. Note that 𝜎1,2(E) = E−. Ranking method 𝑔 is anonymous
and aggregation invariant, so it satisfies inversion according to Lemma 4.1. If
1 ≻𝑔

E 3 and 2 ≻𝑔
E 3, then 𝐴𝑁𝑂 implies 2 ≻𝑔

𝜎1,2(E) 3, but 𝐼𝑁𝑉 results in 2 ≺𝑔
E− 3,

a contradiction. If 1 ≺𝑔
E 3 and 2 ≺𝑔

E 3, then 𝐴𝑁𝑂 implies 2 ≺𝑔
𝜎1,2(E) 3, but 𝐼𝑁𝑉

results in 2 ≻𝑔
E− 3, a contradiction.
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Due to the anonymity of the ranking method 𝑔, it can be supposed without loss
of generality that 1 ≻𝑔

E (3 ∼𝑔
E 4 ∼𝑔

E · · · ∼𝑔
E 𝑛) ≻𝑔

E 2. Let 𝜎2,𝑚 : 𝑁 → 𝑁 be the
permutation 𝜎2,𝑚(1) = 1, 𝜎2,𝑚(2) = 𝑚, 𝜎2,𝑚(𝑚) = 2, and 𝜎2,𝑚(ℓ) = ℓ for all
ℓ ̸= 𝑚, 3 ≤ ℓ ≤ 𝑛 where 3 ≤ 𝑚 ≤ 𝑛. Let 𝜎2,𝑚(E) be the pairwise comparison
matrix obtained from E by the permutation 𝜎2,𝑚.
It can be checked that [𝜎1,2(𝑒)]𝑖𝑗 = [𝜎2,3(𝑒)]𝑖𝑗 [𝜎2,4(𝑒)]𝑖𝑗 · · · [𝜎2,𝑛(𝑒)]𝑖𝑗 for all 1 ≤
𝑖, 𝑗 ≤ 𝑛, in other words, 𝜎1,2(E)(1/(𝑛−2)) = 𝜎2,3(E) ⊕ 𝜎2,4(E) ⊕ · · · ⊕ 𝜎2,𝑛(E).
Anonymity implies 1 ≻𝑔

𝜎2,𝑚(E) 2 for all 3 ≤ 𝑚 ≤ 𝑛, therefore aggregation invariance
leads to 1 ≻𝑔

𝜎2,3(E)⊕𝜎2,4(E)⊕···⊕𝜎2,𝑛(E) 2, and rational scale invariance (an immediate
consequence of 𝐴𝑁𝑂 and 𝐴𝐼 according to Lemma 4.2) results in 1 ≻𝑔

𝜎1,2(E) 2. But
𝐼𝑁𝑉 and 1 ≻𝑔

E 2 also leads to 1 ≺𝑔
E− 2, which is a contradiction.

To summarize, we have derived 1 ∼𝑔
E 2 ∼𝑔

E 3 ∼𝑔
E · · · ∼𝑔

E 𝑛.

III. Anonymity implies 1 ∼𝑔
D 2 since 𝑑12 = 1 and 𝑑1𝑘 = 𝑑2𝑘 for all 3 ≤ 𝑘 ≤ 𝑛, which

means 1 ∼𝑔
C 2 because 1 ∼𝑔

E 2, E = C ⊕ D and 𝑔 is aggregation invariant.
Furthermore, permutation 𝜎𝑚, used in the definition of pairwise comparison
matrix B, does not affect alternatives 1 and 2, therefore 1 ∼𝑔

B 2. 𝐴𝑁𝑂 and
𝐴𝐼 also imply independence of irrelevant comparisons (see Lemma 4.3), hence
1 ∼𝑔

A 2.

We have verified up to this point that 1 ∼𝑅𝐺𝑀
A 2 implies 1 ∼𝑔

A 2. If 1 ≻𝑅𝐺𝑀
A 2,

namely, ∏︀𝑛
𝑗=1 𝑎1𝑗 >

∏︀𝑛
𝑗=1 𝑎2𝑗, then consider the pairwise comparison matrix A′ ∈ 𝒜𝑛×𝑛

where 𝑎′
𝑘ℓ = 𝑎𝑘ℓ for all 1 ≤ 𝑘, ℓ ≤ 𝑛 except for 𝑎′

12 = 𝑎12
√︁∏︀𝑛

𝑗=1 𝑎2𝑗/
∏︀𝑛

𝑗=1 𝑎1𝑗 as well as
𝑎′

21 = 𝑎21
√︁∏︀𝑛

𝑗=1 𝑎1𝑗/
∏︀𝑛

𝑗=1 𝑎2𝑗 in order to preserve reciprocity. Therefore

𝑛∏︁
𝑗=1

𝑎′
1𝑗 =

⎛⎝ 𝑛∏︁
𝑗=1

𝑎1𝑗

⎞⎠⎯⎸⎸⎷∏︀𝑛
𝑗=1 𝑎2𝑗∏︀𝑛
𝑗=1 𝑎1𝑗

=
⎛⎝ 𝑛∏︁

𝑗=1
𝑎2𝑗

⎞⎠⎯⎸⎸⎷∏︀𝑛
𝑗=1 𝑎1𝑗∏︀𝑛
𝑗=1 𝑎2𝑗

=
𝑛∏︁

𝑗=1
𝑎′

2𝑗,

and it has been proved above that 1 ∼𝑔
A′ 2. So 1 ≻𝑔

A 2 due to the responsiveness of 𝑔.

Example 6.1. As an illustration of the proof of Theorem 6.1, it is worth to consider the
pairwise comparison matrices used in the derivations, which are as follows for 𝑛 = 4:

A =

⎡⎢⎢⎢⎣
1 𝑎12 𝑎13 𝑎14

1/𝑎12 1 𝑎23 𝑎24
1/𝑎13 1/𝑎23 1 𝑎34
1/𝑎14 1/𝑎24 1/𝑎34 1

⎤⎥⎥⎥⎦ , B = 𝜎0(B) =

⎡⎢⎢⎢⎣
1 𝑎12 𝑎13 𝑎14

1/𝑎12 1 𝑎23 𝑎24
1/𝑎13 1/𝑎23 1 1
1/𝑎14 1/𝑎24 1 1

⎤⎥⎥⎥⎦ ,

𝜎1(B) =

⎡⎢⎢⎢⎣
1 𝑎12 𝑎14 𝑎13

1/𝑎12 1 𝑎24 𝑎23
1/𝑎14 1/𝑎24 1 1
1/𝑎13 1/𝑎23 1 1

⎤⎥⎥⎥⎦ ,

C = 𝜎0(B) ⊕ 𝜎1(B) =

⎡⎢⎢⎢⎣
1 𝑎12

√
𝑎13𝑎14

√
𝑎13𝑎14

1/𝑎12 1 √
𝑎23𝑎24

√
𝑎23𝑎24

1/
√

𝑎13𝑎14 1/
√

𝑎23𝑎24 1 1
1/

√
𝑎13𝑎14 1/

√
𝑎23𝑎24 1 1

⎤⎥⎥⎥⎦ ,
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D =

⎡⎢⎢⎢⎣
1 1 1/

√
𝑎12𝑎13𝑎14 1/

√
𝑎12𝑎13𝑎14

1 1 √
𝑎12/

√
𝑎23𝑎24

√
𝑎12/

√
𝑎23𝑎24√

𝑎12𝑎13𝑎14
√

𝑎23𝑎24/
√

𝑎12 1 1√
𝑎12𝑎13𝑎14

√
𝑎23𝑎24/

√
𝑎12 1 1

⎤⎥⎥⎥⎦ .

Recall that 𝛼 = √
𝑎12, hence

E = C ⊕ D

⎡⎢⎢⎢⎢⎣
1 𝛼 1√

𝛼
1√
𝛼

1
𝛼

1
√

𝛼
√

𝛼√
𝛼 1√

𝛼
1 1√

𝛼 1√
𝛼

1 1

⎤⎥⎥⎥⎥⎦ , 𝜎1,2(E) = E− =

⎡⎢⎢⎢⎢⎣
1 1

𝛼

√
𝛼

√
𝛼

𝛼 1 1√
𝛼

1√
𝛼

1√
𝛼

√
𝛼 1 1

1√
𝛼

√
𝛼 1 1

⎤⎥⎥⎥⎥⎦ ,

𝜎2,3(E) =

⎡⎢⎢⎢⎢⎣
1 1√

𝛼
𝛼 1√

𝛼√
𝛼 1 1√

𝛼
1

1
𝛼

√
𝛼 1

√
𝛼√

𝛼 1 1√
𝛼

1

⎤⎥⎥⎥⎥⎦ , 𝜎2,4(E) = E− =

⎡⎢⎢⎢⎢⎣
1 1√

𝛼
1√
𝛼

𝛼√
𝛼 1 1 1√

𝛼√
𝛼 1 1 1√

𝛼
1
𝛼

√
𝛼

√
𝛼 1

⎤⎥⎥⎥⎥⎦ .

All three properties used in the proof of Theorem 6.1 are necessary according to the
following result.

Proposition 6.1. 𝐴𝑁𝑂, 𝐴𝐼, and 𝑅𝐸𝑆 are logically independent axioms.

Proof. It is shown that there exist ranking methods, which satisfy exactly two properties
from this set of three, but differ from the row geometric mean ranking method (and
therefore they are guaranteed to violate the third axiom):

1 𝐴𝑁𝑂 and 𝐴𝐼: flat ranking method, 𝑔 : 𝒜𝑛×𝑛 → R𝑛 such that 𝑖 ∼𝑔
A 𝑗 for all

alternatives 𝑖, 𝑗 ∈ 𝑁 and any pairwise comparison matrix A ∈ 𝒜𝑛×𝑛;

2 𝐴𝑁𝑂 and 𝑅𝐸𝑆: row arithmetic mean ranking method, 𝑔 : 𝒜𝑛×𝑛 → R𝑛 such
that 𝑖 ⪰𝑔

A 𝑗 for all alternatives 𝑖, 𝑗 ∈ 𝑁 and for any pairwise comparison matrix
A ∈ 𝒜𝑛×𝑛 if ∑︀𝑛

𝑘=1 𝑎𝑖𝑘 ≥ ∑︀𝑛
𝑘=1 𝑎𝑗𝑘;

3 𝐴𝐼 and 𝑅𝐸𝑆: a ranking method based on indices, 𝑔 : 𝒜𝑛×𝑛 → R𝑛 such that
𝑖 ≻𝑔

A 𝑗 for all alternatives 𝑖, 𝑗 ∈ 𝑁 and for any pairwise comparison matrix
A ∈ 𝒜𝑛×𝑛 if 𝑖 < 𝑗.

Figure 2 summarizes our findings from Theorem 6.1 and Proposition 6.1. First, the
three axioms meet at a unique point, denoted by the dot, since there is a unique ranking
method, the one induced by row geometric mean, that satisfies all of them. Second, the
intersection of any two properties, denoted by the labels 𝐽 , 𝐾, and 𝐿, is non-empty.

It is clear that 𝐴𝑁𝑂, 𝐴𝐼 and negative responsiveness (requiring the implication
𝑖 ⪯𝑔

A 𝑗 ⇒ 𝑖 ≺𝑔
A′ 𝑗 under the conditions of Axiom 3.6) are also independent and uniquely

determine the ordering opposite to the row geometric mean ranking. Naturally, this
observation has only a technical sense.
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Figure 2: Relations between 𝐴𝑁𝑂, 𝐴𝐼, and 𝑅𝐸𝑆

𝐴𝑁𝑂 𝐴𝐼

𝑅𝐸𝑆

𝐽

𝐾 𝐿

𝑅𝐺𝑀

7 Discussion
We have examined the problem of extracting a ranking of alternatives from a reciprocal
pairwise comparison ratio matrix. A characterization of the ordering induced by row
geometric means has been presented, which shows that a unique ranking can be derived
by requiring anonymity, aggregation invariance, and responsiveness. It is a solid argument
in favour of this particular method.

We do not suggest to accept the three axioms immediately. However, 𝐴𝑁𝑂 and 𝑅𝐸𝑆
seem to be difficult to debate, whereas 𝐴𝐼 follows from a well-known result of synthesizing
ratio judgements (Aczél and Saaty, 1983). Perhaps it is not only a coincidence that row
geometric mean has a number of other favourable properties (see, e.g. Barzilai et al. (1987);
Barzilai (1997); Dijkstra (2013); Csató (2015); Lundy et al. (2017); Csató (2018c)).

There are some obvious topics for further research. It is worth to consider whether
certain axioms (especially aggregation invariance) can be substituted in our main theorem.
Responsiveness of the eigenvector ranking method has been not discussed here. Several
other methods can be analysed with respect to these axioms. Finally, an extension to the
incomplete case, when some elements of the pairwise comparison matrix may be missing,
deserves a thorough investigation. Row geometric mean method has been defined on this
more general domain by Bozóki et al. (2010) on the basis of optimization problem (1),
without affecting at least one desirable property of the procedure (Bozóki and Tsyganok,
2017).
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