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Abstract The importance of focusing on the research of

viable models to predict the behaviour of structures which

may possess in some cases complex geometries is an issue

that is growing in different scientific areas, ranging from

the civil and mechanical engineering to the architecture or

biomedical devices fields. In these cases, the research effort

to find an efficient approach to fit laser scanning point

clouds, to the desired surface, has been increasing, leading

to the possibility of modelling as-built/as-is structures and

components’ features. However, combining the task of

surface reconstruction and the implementation of a struc-

tural analysis model is not a trivial task. Although there are

works focusing those different phases in separate, there is

still an effective need to find approaches able to intercon-

nect them in an efficient way. Therefore, achieving a rep-

resentative geometric model able to be subsequently

submitted to a structural analysis in a similar based plat-

form is a fundamental step to establish an effective expe-

ditious processing workflow. With the present work, one

presents an integrated methodology based on the use of

meshless approaches, to reconstruct shells described by

points’ clouds, and to subsequently predict their static

behaviour. These methods are highly appropriate on

dealing with unstructured points clouds, as they do not

need to have any specific spatial or geometric requirement

when implemented, depending only on the distance

between the points. Details on the formulation, and a set of

illustrative examples focusing the reconstruction of cylin-

drical and double-curvature shells, and its further analysis,

are presented.

Keywords Points clouds � Meshless methods � Structural
behaviour � Fibre reinforced composite materials �
Nanocomposites

Introduction

During recent years, the use of 3D data acquisition devices

has greatly increased resulting in the widespread dissemi-

nation of point clouds representations of sampled real-

world objects. This reality denotes the importance of a

greater investment in the research of efficient and robust

approaches that provide not only the possibility of recon-

struct surfaces from these point clouds, but also the pos-

sibility of further analysis of the surface without changing

substantially the basis of the approach used in the first

problem.

In this context, recent works (Huber et al. 2010; Bosch

et al. 2014) have mentioned the potential of 3D laser

scanning and Building Information Models (BIM) in fields,

such as civil engineering, architecture, and construction,

where frequent access to detailed and semantically rich

information of as-built and as-is status of construction

objects is required. Therefore, the use of acquisition data

devices, such as laser scanners, can provide remarkable

benefits if efficient approaches to handle, process, and store

the information obtained are developed and implemented.
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It is also worth of mention that, normally, these 3D

acquisition processes typically produce point clouds which

are incomplete, noisy, and non-uniformly sampled. These

characteristics grant to the modelling processes and meth-

ods, requirements associated with pre-processing tech-

niques used to eliminate as much as possible the sampling

errors, varying sampling density, and registration errors,

i.e., find feasible modelling processes departing from

unorganized 3D laser scanning point clouds. To note that

concerning to the actual state-of-the-art, one is far from

getting an immediate digital representation of the physical

surface/component using an entirely automatic procedure.

From the literature review carried out, it is possible to

notice that there are several possible techniques to obtain

surfaces from ordered point clouds which, typically, find a

single-curve segment that approximates or interpolates the

given points, fitting the curve to the points by minimizing

an error criterion (Rusinkiewicz and Levoy 2000). If points

are ordered, piecewise polynomial curves can also be fitted

to them. Difficulties arise, however, when the points have

random/unknown positions. In recent years, some

researchers have proposed approaches to obtain surfaces

from unorganized points. Another work focused on the

reconstruction of point set surfaces from point clouds based

on the method of moving least squares was proposed by

Alexa et al. (2001). Further approaches following the idea

of locally polynomial surface patches to confined point

neighbourhoods are proposed in Nealen (2004). Hoppe

et al. (1992) described an algorithm for the reconstruction

of a polyhedral surface from an unorganized set of points,

which is based on region growing. They used a plane that is

fitted to a neighbourhood around each data point, providing

an estimate of the surface normal for the point. The surface

normals are propagated using a minimal spanning tree, and

then, a signed-distance function is constructed in small

vicinities around the data points. In his works, Taubin

(1991, 1993) reconstructed the surfaces by global algebraic

fitting. The author fitted a polynomial implicit function to a

point set by minimizing the distance between the point set

and the implicit surface, and developed a first-order

approximation of a Euclidean distance to improve later the

approximation.

Alternative approaches based on implicit representation

of object surfaces with radial basis functions (RBF) were

presented by Carr et al. (1997, 2001) and Beatson et al.

(2001). In these works, the authors used these functions to

reconstruct cranial bone surfaces from 3D CT scans. Data

surrounding large irregular holes in the skull were inter-

polated using thin-plate spline RBF. In Carr et al.

(1997, 2001), the authors mentioned that these functions

offer several advantages over piecewise polynomial inter-

polants and may simplify problems related to the process of

smoothing and re-meshing existing noisy surfaces. New

methods of surface reconstruction were presented by Turk

and Obrien (2002), Dinh et al. (2002), and Morse et al.

(2001), being specially relevant to highlight the one

developed by Morse and his colleagues in which they

proposed an algebraic method for creating implicit surfaces

using linear combinations of radial basis interpolants to

form complex models from scattered surface points. In

their work, they explored and extended implicit interpola-

tions methods to develop approaches computationally less

complex, and more suitable for systems of large numbers

of scattered surface points using compactly supported

radial basis interpolants.

The use of different reconstruction techniques and its

potential use with finite-element commercial applications

have drawn the attention of a few researchers more

recently. Among the works published on this subject, we

may note the work carried out by Barazzetti et al. (2015),

which described the use of BIM models derived from point

clouds for structural simulation based on finite-element

analysis. BIM interoperability has reached a significant

level of development and detail, which is enabled by the

great number and density of laser point clouds. However,

from the finite-element analysis, this may be an effective

drawback, thus requiring the rationalization of the BIM,

without a drastic reduction of the BIM model, using

tetrahedral meshes for finite-element analysis. In another

work carried out by Yang et al. (2014), the authors studied

the health assessment of concrete structures with a finite-

element model created in Ansys, based on the information

obtained by terrestrial laser scanning (TLS). The authors

concluded that the benefit of TLS lied mainly in the pos-

sibility of a surface-based validation of results predicted by

the finite-element analyses. A semi-automatic procedure to

transform three-dimensional point clouds of complex

objects to three-dimensional finite-element models was

presented by Castellazzi et al. (2015). When the starting

point clouds represent the inner and outer surfaces of the

scanned structure, the finite-element model obtained will

represent the solid 3D structure. In a related work, Szolo-

micki (2015) considered the application of 3D scanning to

create a numerical model of historical buildings, and not

just as used to build inventory documentation with the

visualization of a building and the corresponding creation

of 3D models. To this purpose, the authors used computer-

aided design (CAD) programs to create an appropriate

numerical model for subsequent static finite-element

analysis (FEA). In addition, in other fields of knowledge,

these approaches are becoming more familiar. An illus-

tration of this is the review work carried out by Wittek

et al. (2016). In that work, they have envisaged advances in

computing and engineering technologies that may extend

surgeons’ ability to plan and carry out surgical interven-

tions. They focused on methods for the generation of
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patient-specific computational grids used for solving partial

differential equations governing the mechanics of the body

organs. Another subject considered is related to the meth-

ods used for the identification and assignment of patient-

specific material properties to tissues and boundary con-

ditions. The authors carried a state-of-the-art in this area

and enumerated asset of topics which may deserve the

development of future research. In the context of the finite-

element analyses, namely concerning to the static and

dynamic analysis of plates using meshfree methods; in the

last years, one can refer the work, developed by Ferreira

et al. (2005) in which multiquadric RBF were used. In that

work, it was carried out the static analysis of a simply

supported functionally graded plate modelled by a third-

order shear deformation theory. More recently, Tornabene

et al. (2013) presented a work, applying RBF to a general

higher order equivalent single-layer formulation for the

free vibrations of doubly curved laminated composite

shells and panels. The theoretical development was based

on Carrera Unified Formulation, in particular by deducting

and defining explicitly the fundamental nuclei of a multi-

layered double-curved shell structure.

In the present paper, one proposes an integrated

methodology based on meshless approaches and using

radial basis functions. These functions are used to recon-

struct the surfaces of the hybrid composite shells and to

perform their static analyses. However, due to specific

requirements and characteristics (Bernardo and Loja

2015a, b) of the problems to solve and to distinct methods

and their achievements, in the first phase of this work, one

uses radial basis functions with compact-support (CS-RBF)

and in the second phase, one uses multiquadric functions.

The results obtained allow concluding on the good

performance of this meshless integrated methodology

devoted to reconstruction and structural analysis.

Radial basis functions interpolation

Concerning to the method used to solve the problem asso-

ciated with the surface reconstruction, in this work, one

constructs a signed-distance function to avoid the trivial

solution (Carr et al. 2001; Bernardo et al. 2015), that

function f which defines implicitly the surface is zero

everywhere. The associated problem is: given n distinct

points {(xi, yi, zi)}i=1
n on a surface M in<3, find a surface M0

that is a reasonable approximation to M in<3. If the surface

M consists of all the points (x, y, z) that satisfy the equation:

f ðx; y; zÞ ¼ 0; ð1Þ

then we say that f implicitly defines M. Here, we want to

approximate a signed-distance function given a set of zero-

valued surface points and non-zero off-surface, leading to a

problem that can be stated as follows: given a set of distinct

nodes, X ¼ fxigNi¼1 � <3, find an interpolant s: {fi}i=1
N , R

such that

sðxiÞ ¼ fi i ¼ 1; . . .;N: ð2Þ

In addition, the smoothest interpolant s(x) has the simple

form (particular example of an RBF) given by:

sðxÞ ¼ pðxÞ þ
XN

i¼1

kiUðjx� xijÞ; ð3Þ

where the second part of the equation can be one of the

RBF functions mentioned in Carr et al. (1997, 2001),

Bernardo and Loja 2015), p has a low degree and the RBF

is a real-valued function on [0, ?), usually unbounded and

with a compact-support (Wendland 1995). In this context,

the points xi are referred to as the centres of the RBF.

Radial basis functions are popular for interpolating

scattered data, as the associated system of linear equations

is guaranteed to be invertible under very smooth conditions

on the locations of the data points (Cheney and Light 1999;

Savchenko et al. 1995). In general, if the polynomial in

Eq. (3) is of degree m, then it has to be implied that the side

conditions (orthogonality) imposed on the coefficients ki are

XN

i¼1

kiqðxiÞ ¼ 0; ð4Þ

for all polynomials q with m being its highest degree. This

leads to a linear system, which is solved to obtain the

coefficients that specify the RBF. Let {p1,…,pl} be a basis

for polynomials with highest degree m, and let

c = {c1,…,cl} be the coefficients. Then, Eqs. 2 and 4 may

be written as follows:

A P

PT 0

� �
A

0

� �
¼ B

k
c

� �
¼ f

0

� �
; ð5Þ

where

Ai;j ¼ Uðjxi � xjjÞ; i; j ¼ 1; . . .;N ð6Þ

P ¼

1 x1 y1
1 x2 y2
1 x3 y3

� � �
p1ðx1Þ
p1ðx2Þ
p1ðx3Þ

..

. . .
. ..

.

1 xn yn � � � p1ðxnÞ

2
666664

3
777775
: ð7Þ

By solving the linear system (5), one determines k and c,
and hence s(x). However, the matrix B in Eq. 5 is typically

bad conditioned as the number of data points N gets larger.

This means that substantial errors will easily creep into any

standard numerical solution.

However, due to the reasons mentioned in Bernardo and

Loja (2015), in this work, we interpolate the compactly
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supported radial basis functions, which are briefly descri-

bed in the following subsection. In addition, the terms pi,j
are not considered.

Shells surface reconstruction

Construction of a signed-distance function to fit

a surface

To fit an implicit function to a surface, one has to find a

function f which implicitly defines a surface M0 and satis-

fies the following equation:

f ðxi; yi; ziÞ ¼ 0 i ¼ 1; . . .; n; ð8Þ

where {(xi, yi, zi)}i=1
n are points lying on the surface. To

avoid the trivial solution, off-surface points are appended

to the input data and are given non-zero values. This gives

the interpolation problem:

find f such that:

f ðxi;yi; ziÞ ¼ 0; i¼ 1; . . .;n; ðon-surface pointsÞ
f ðxi;yi; ziÞ ¼ di 6¼ 0; i¼ nþ 1; . . .;N; ðoff-surface pointsÞ:

ð9Þ

This still leaves the problem of generating the off-sur-

face points {(xi,yi,zi)}i=n?1
n and the corresponding values di.

A possible selection for f is a signed-distance function,

where the di are chosen to be the distance to the closest on-

surface point. Points outside the object are assigned posi-

tive values, while points inside the object are assigned

negative values. These off-surface points which may be

assigned either side of the surface (Fig. 1) are generated

from projections along surface normals.

Due to the increase of points, one has to estimate the

surface normals and to determine the appropriate projec-

tion distance. In the case of a mesh, it would be straight-

forward to define off-surface points, since normals are

implied by the mesh connectivity at each vertex. However,

in the present case, we have unorganized points-cloud data,

and thus, normals will have to be estimated from a local

neighbourhood of points.

Principal component analysis for normal estimation

In the present work, the normal at a point is estimated, by

choosing a set of neighbour points close to the point con-

sidered. This proximity is determined upon a given search

radius. The search is performed by an algorithm based on

the construction of a kd tree (Bentley 1975), containing the

information of the nearest points of each point pi, struc-

tured in a tree that keeps the positions of the points (right,

left, top, or down). The unitary normal vector of the plane

is determined via principal component analysis (PCA),

(Hoppe et al. 1992; Chalmovianský and Juttler B 2003) by

carrying the three main steps:

– Search for all points within a certain point neighbour-

hood pi 2 P,

– Estimation of the direction of the normal ni for pi via

PCA,

– Consistent orientation of the generated normals ni.

With respect to the first step, one can say that the

neighbourhood of each point pi 2 P consists of the k

nearest neighbours in the data set, that is

Pi ¼ fpi;0; . . .; pi;k�1g: ð10Þ

Finally, one selects the scalar product ni�nj as the cri-

terion to check if the normals are well oriented comparing

to the nearest neighbourhood points, i.e., if the resulting

value is far from the unit value, the normal of this point is

not computed, and consequently, the normal points to the

point are not computed either. However, one has to bear

in mind that this method of seeking the normal vectors

may lead to some significant errors if the chosen points to

estimate the normals are not so close to the candidate

points. In general, it is difficult to achieve a robust esti-

mation of the normals everywhere. If normal direction or

sense is ambiguous at a particular point, then a normal is

not fitted at that point, instead that point is left as a ‘‘zero-

point’’ (just lied in the surface). Once the normals are

computed, the position of the off-points created toward

the direction of those normals can be calculated as

follows:

Fig. 1 Illustration of the off

and on-surface points
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ðxNþi; yNþi; zNþiÞ ¼ pi þ dnoi
¼ ðxi þ dnoxi ; yi þ dnoyi ; zi þ dnozi Þ

ðx2Nþi; y2Nþi; z2NþiÞ ¼ pi � dnoi
¼ ðxi � dnoxi ; yi � dnoyi ; zi � dnozi Þ;

ð11Þ

where d is the distance considered, between the in-surface

points and the corresponding off-surface points, and no
x;y;z
i ,

i = 1,…,n, denote the normals estimated for each coordi-

nate axis.

This step consists on determining the value of the

function f whose zero contour (isosurface f = 0) interpo-

lates the point cloud data x1,…,n, and whose isosurface

f = 1 and f = -1 interpolate xþnþ1;...;2n and x�2nþ1;...;3n,

respectively, that is

f ðxiÞ ¼
0 i ¼ 1. . .n
1 i ¼ nþ 1. . .2n
�1 i ¼ 2nþ 1. . .3n:

8
<

: ð12Þ

The values of ±1 for the auxiliary data are assigned in

an arbitrary way. Such choice does not affect the quality of

the results, as we are interested in the zero isosurface of f.

Compactly supported radial basis functions

As previously mentioned, in the present work, we use

compactly supported (CS-RBF) as interpolant functions to

construct the linear system of equations. We made this

option, based on the literature review carried out, which

pointed Wendland CS-RBF functions as being feasible

choices as interpolant functions once they guarantee the

creation of sparse and positive-definiteness matrices of the

linear system (Wendland 1995). In general, the solutions of

the minimum-degree polynomial for compact, locally

supported radial basis functions have the form:

f ðxiÞ ¼
ð1� rÞpPðrÞ r\1

0 otherwise.

�
ð13Þ

The computation of the function considers Shepard’s

Method, which is known to build interpolations and

approximations with good properties under the present

conditions. In fact, in these cases, the grid is composed by

scattered nodes, and the basis reproduces exactly complete

linear polynomials being the method applicable in any

number of spatial dimensions. Shepard’s Method is used

here also due to its benefits that include better conditioning

of discrete equations and easier handling of essential

boundary conditions in applications to PDE. Furthermore,

compared to moving least-squares approximations, the

construction of the basis is quite fast (Krysl and Belytshko

2000). In this method, the influence domains XI can be of

any shape and a weight function wi(x) is associated with

each node i. Its value is non-negative inside XI, vanishes on

the boundary dXI, and is non-zero at the node. An

approximation can be written as a linear combination,

according to:

ukðxÞ ¼
XN

i¼1

xiðxÞui; ð14Þ

where ui are the nodal parameters, and xi(x) are the basis

functions of compact-support, which are constructed from

the weight functions associated with the nodes, wiðxÞ

xiðxÞ ¼
wiðxÞPN
k¼1 wkðxÞ

: ð15Þ

Wendland (1995) has derived radial basis functions for

various degrees of continuity (Ck) and dimensionality

(d) of the interpolated function. These functions have a

unitary radius of support, but they can be scaled to allow

any desired radius of support a. The system of equations

using the CS-RBF has the same form as Eq. 6, but the

construction of the linear system considering that type of

interpolant makes use of an important feature of RBF

functions, namely the fact that they have a finite support.

Multidimensional binary search tree

A kd tree is a multidimensional binary tree which grants

good flexibility on performing different types of queries,

and it has the following sorting property for a tree with

point �x at the root and subtrees Tleft and Tright:

8�y 2 Tleft : �y
d � xd

8�y 2 Tright : �y
d � xd;

ð16Þ

where the sorting dimension d changes at each level of the

tree. kd trees can be used to find all points within distance r

of a particular constraint (Bentley 1975). While a number

of points must still be tested explicitly, the multidimen-

sional sorting nature of the kd tree allows a large number of

points to be rejected at each level of the tree (Morse et al.

2001). The resulting matrix is extremely sparse (Bernardo

and Loja 2015). In the present work, we perform a query,

that search for each surface point considered, the nearest

neighbour points by considering the distance between the

points (represented by a radius). The linear system of

equations is then solved iteratively, considering in each

loop a particular centre �ci, with a corresponding

neighbourhood.

Selection of radius of support and isosurface extraction

Due to the finite extent of CS-RBF, only those points

within the radius of support of one of the original positions

have non-zero values. Hence, it is crucial to properly select

that radius of support to achieve optimal efficiency of
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computation and results. Too small a radius can produce

basis functions that are unable to span the inter-constraint

gaps. Too large a radius does not adversely affect the

results but reduces the sparseness of the matrix, thus

increasing the computation required. It is necessary to

select a radius of support that is both large enough to

produce effective results and not so large that the compu-

tation becomes impractical.

For all the points outside the radius of support, consid-

ered in each iteration of the surface reconstruction, all the

terms in Eq. 4, with exception to the polynomial term, are

zero. In this way, these embedding functions are not the

same as those normally used for implicit surfaces—the

implicit surface represented is not the only set of zero-

valued points in the space. However, the implicit surface

does form a unique contiguous locus of zero-valued points

passing through the constraints. An isosurface extractor

may be used to extract this surface by seeding it with any

one of the initial constraints. To note that, care must be

taken, so that the step size of the extractor does not cause it

to jump outside the band of non-zero points. It is easy to

explicitly recognize when no non-zero terms are found in

Eq. 4 (as none of the constraint point lie within the radius

of support of the point being evaluated).

Structural analyses of cylindrical shells

Multiscale composite average properties

In the present work, the reconstructed shells are made of

laminated composite materials. Despite the development of

a number of approaches to predict the macroscopic average

properties of these materials, one can say that the rule of

mixtures is one of the most usually used schemes to predict

the average properties of such materials, mainly due to its

simplicity. For this reason and because of the availability

of published results based on this homogenization scheme,

we will also use it here. In this study, one has additionally

considered multiscale composites, which are obtained by

the inclusion of carbon nanotubes (CNT) on the more

‘‘traditional’’ fibre reinforced laminated composites

(Fig. 2).

This more recent composites constitution is leading to a

new generation of advanced composite materials, in the

field of advanced, high-performance materials (Raffie and

He 2014). Nanotubes/fibre/polymer multiscale nanocom-

posites (CNTFPC) can reduce weight drastically with the

same or better performance when compared to the tradi-

tional metallic materials and deserve a special attention.

The nanocomposites can be regarded as isotropic materials,

as the CNT are assumed to be uniformly dispersed and

randomly oriented through the matrix. It is assumed that

these nanoinclusions show a perfect adhesion to the

embedding matrix which is also considered to have no

voids.

The average material properties of the multiscale lami-

nated composite can be predicted according to a combi-

nation of Halpin–Tsai scheme and micromechanics

approach via two steps in the hierarchy. Therefore,

according to the Halpin–Tsai equation, the tensile modulus

of the nanocomposite matrix, ENC, where the superscript

NC stands for nanocomposite, can be expressed as follows:

ENC ¼ EER

8
5

1þ 2bddV
CN

1� bddVCN

� �
þ 3

1þ 2 lCN=dCNð ÞbdlVCN

1� bdlVCN

� �

ð17Þ

with

bdl ¼
ðECN

11 =E
ERÞ � ðdCN � 4tCNÞ

ðECN
11 =E

ERÞ þ ðlCN � 2tCNÞ

bdd ¼
ðECN

11 =E
ERÞ � ðdCN � 4tCNÞ

ðECN
11 =E

ERÞ þ ðdCN � 2tCNÞ ;
ð18Þ

where ECN
11 , V

CN, lCN, dCN, and tCN are the Young’s mod-

ulus, volume fraction, length, outer diameter, and the

thickness of CNT, respectively, and VER and EER indicate

the volume fraction and Young’s modulus of the isotropic

epoxy resin matrix, respectively.

The volume fraction of CNT can be expressed as

follows:

VCN ¼ wCN

wCN þ ðqCN=qERÞ � ðqCN=qERÞwCN
; ð19Þ

where wCN is the weight fraction of the CNT; qCN and qER

are the densities of the CNT and epoxy resin matrix,

respectively. The Poisson’s ratio and mass density q can be

expressed using Voigt rule of mixtures:

Fig. 2 Schematic representation multiscale composite laminate
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mNC ¼ VCNmCN þ VERmER

qNC ¼ VCNqCN þ VERqER

VER ¼ 1� VCN

ð20Þ

being qCN and qER are the mass densities of the CNT and

epoxymatrix, mCN and mER are the Poisson’s ratio of the CNT
and the epoxy resin matrix, respectively. As the quantity of

CNT dispersed in the epoxy resin is small, the Poisson’s ratio

of the CNT composite may be assumed to be the same as that

of the epoxy resin. The weight fraction and consequently the

volume fraction of the carbon nanotubes are considered to be

sufficiently small not to compromise its dispersion in the

matrix. This topic deserves a special attention, as from the

studies carried out, one may conclude that a good dispersion

of the carbon nanotubes is crucial to improve the mechanical

response of a composite material. Nevertheless, obtaining a

good dispersion is not easy, because, due to Van der Waals

forces among the nanoinclusions and the surroundingmatrix,

the carbon nanotubes naturally tend to agglomerate and to

constitute bundles or ropes. Although these agglomerates

may contribute to a natural damping which may be useful in

certain situations, their lower aspect ratios provide a more

limited capacity to carry and transfer the loads (Hu et al.

2006; Thostenson et al. 2005; Tornabene et al. 2016).

Finally, the average material properties of the final

multiscale CNTFPC (carbon nanotubes/fibre/polymeric

resin composite) are assumed to be orthotropic, and the

determination of the elastic stiffness elastic coefficients is

done using the corresponding material constitutive relation

(Reddy 2004).

Donnell first-order shear deformation theory

To enable the analysis of the laminated composite shells, one

considers the use of the first-order shear deformation theory

(FSDT) of Donnell (Reddy 2004; Ferreira and Roque

2007, 2009). The shell is assumed to be constituted by a finite

number of orthotropic layers with uniform thickness.Onewill

consider that (n1, n2, f) denote the orthogonal curvilinear

coordinates (shell coordinates), such that then1- and n2-curves
are curvature lines on the middle surface f = 0, and f-curves
are straight lines orthogonal to the surface f = 0. For cylin-

drical and spherical shells, the lines of principal curvature

coincide with the coordinate lines. The values of the principal

radii of curvature are represented by R1 and R2. According to

these assumptions, the displacement field is given as follows:

u ¼ 1þ f
R1

� �
u0 þ f/1

v ¼ 1þ f
R2

� �
v0 þ f/2

w ¼ w0;

ð21Þ

where u0 and v0 are the membrane displacements, /1 and

/2 denote rotations of the normals relative to the n1 and n2
axes, respectively, and w0 is the transverse deflection of the

shell mid-plane. The relations among strains and dis-

placements referred to an orthogonal curvilinear coordinate

system lead to a deformation field described as follows,

where x and y denote the cartesian coordinates:

� ¼ ½�1; �2; �6�T ¼ ð�0þ fKÞ; �S ¼ ½�4; �5�T ð22Þ

being:

�0 ¼ ½u0;x þ w=R1; v0;y þ w=R2; u0;y þ v0;x�T

K ¼ j1; j2; j6½ � ¼ ½/1;x;/2;y;/1;y þ /2;x�T

�S ¼ ½/1 þ w0;y;/2 þ w0;x�T
ð23Þ

where x and y represent the Cartesian coordinates. The

stress–strain relations for a generic kth layer are then given

as follows:

rk ¼ Qk�k; sk ¼ QS
k �

S
k

rk ¼ ½r1; r2; r6�Tk ; � ¼ ½�1; �2; �6�Tk
sk ¼ ½s4; s5�Tk ; �Sk ¼ ½�4; �5�Sk :

ð24Þ

The expressions of the reduced stiffness elastic coeffi-

cients, as well as the transformed ones, are given in liter-

ature (Reddy 2004). The principle of virtual work for this

problem yields:

Zhk=2

�hk=2

Z

Xk

½r1d�k1 þ r2d�
k
2 þ r6d�

k
6 þ s4d�

k
4 þ s5d�

k
5�

0
B@

1
CA

dxdydf�
Z

X

q0dwð Þdxdy ¼ 0: ð25Þ

After integrating in the thickness, one obtains:
Z

Xk

½N1d�01 þM1dj1 þ N2d�02 þM2dj2 þ N6d�06

þM6dj6 þ Q2d�04 þ Q1d�05 � q0dw�dxdy ¼ 0 ð26Þ

being q the distributed transverse load, and Ni, Mi, and Qi

the stress resultants:

ðNi;MiÞ ¼
XN

k¼1

Zfk

fk�1

rki ð1; fÞdf; Qi ¼
XN

k¼1

Zfk

fk�1

ski df; ð27Þ

where N denotes the number of the orthotropic layers of the

shell and fk, fk-1 the top and bottom f-coordinates of the
kth lamina. The governing equilibrium equations can be

derived from Eq. 26, by integrating the displacement gra-

dients by parts and setting the coefficients of du0, dv0, dw0,

and dhx,y to zero (Ferreira and Roque 2007, 2009).
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The Kansa method (multiquadrics)

In this phase of the work, one considers multiquadric radial

basis functions, which depend only on the distance to a

centre point xj and has the form U(||x - xi|) (Kansa 1990).

Thus, for a set of nodes xj,…,xN [ X , <, the radial basis

functions centered at xj are defined as follows:

UjðxÞ 	 Uðjjx� xjjjÞ 2 <d; ð28Þ

where ||x - xj| is the Euclidean norm. The multiquadric

functions used have the form: U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððx� xjÞ2 þ c2Þ

q
with

c ¼ 2=
ffiffiffiffi
N

p
, in which N denote the number of nodes used in

each edge of the plate grid. One of the main advantages of

radial basis functions is the insensitivity to spatial dimen-

sion, making the implementation of this method much

easier than, e.g., finite elements. Pairwise distances

between points are the only geometric properties required

by the method.

Kansa’s unsymmetrical collocation method is consid-

ered in the present work. Thus, a boundary-valued problem

with a domain X 2 <d and a linear elliptic partial differ-

ential equation can be written as follows:

LuðxÞ ¼ sðxÞ in X

BuðxÞdX ¼ sðxÞ on dX;
ð29Þ

where dX represents the boundary of the problem. We use

points along the boundary (xj, j = 1,…,NB) and in the

interior (xj, j = NB ? 1,…,N). Collocation with the

boundary data at the boundary points and with PDE ate the

interior leads to equations:

sBðxÞ ¼ pmðxÞ þ
X

in

kiBUðjjx� xjjjÞ ¼ FðxiÞ; i ¼ 1; . . .;NB

sLðxÞ ¼ pmðxÞ þ
X

in

kiLUðjjx� xjjjÞ ¼ SðxiÞ; i ¼ NB þ 1; . . .;N;

ð30Þ

with F(xi) and S(xi) being prescribed values at the boundary

nodes and the function values at the interior nodes,

respectively. This corresponds to a system of equations

with an unsymmetrical coefficient matrix, which in matrix

form appears as:

BU
LU

� �
k½ � ¼ F

S

� �
: ð31Þ

Numerical applications

In this section, we present two validation cases and a set of

studies to illustrate the reconstruction of the shells and after

that, their static analysis. To illustrate the present integrated

methodology, we used synthetic point clouds, equivalent to

what we would get if real clouds were used after removal

of noisy points. The first set of points clouds represent

cylindrical shells with R=a ¼ 5;R=a ¼ 10;R=a

¼ 20;R=a ¼ 50 and R=a ¼ 100, where R represent the

curvature radius and a is the shell side length. These clouds

had, respectively, 436, 456, 471, 505, and 527 points,

trying to denote a low resolution 3D laser scanning process.

A similar methodology was followed for double-curvature

shells, where the number of points was 529 in all the cases.

Concerning to the static analysis of the shells, it was

considered that they would have their edges, all simply

supported or clamped, and the shape parameter c used, had

an approximated value of 2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNB=4Þ

p
, for NB total

boundary points. This was because we found that the edges

defined by the points provided by the isosurface approach

were relatively regular.

Validation examples

Laminated composite plates

In the present case, two simply supported laminated plates

with unit length edges are submitted to uniformly and

sinusoidal distributed loads, respectively. The material

properties of the first laminate, were: E1 = E2 = 10,920,

G23 = G12 = G13 = E2/2.5, and t12 = t21 = 0.25, and for

the second laminate: E1 = 10,920, E2 = E1/25

G12 = G13 = 0.5 E2, G23 = 0.2 E2, and t12 = 0.25. The

laminates possess the stacking sequence [0�/90�/90�/0�]
with equal thickness layers.

In Table 1, we can observe the mid-plane maximum

deflections obtained for the first laminate submitted to the

uniform pressure, and the values provided by (Ferreira and

Roque 2009) which used a third-order shear deformation

theory (TSDT). The results are presented in a non-dimen-

sional form using the multiplier �w ¼ 102wmaxh
3=q0a

4:

In the second case, where a sinusoidal load qz = q0-
sin(px/a)sin(py/b) was applied, the results are also pre-

sented in a non-dimensional form in Table 2.

By observing the maximum transverse deflection values

obtained, one can say that the present meshless approach

performs extremely well in the case of using regular grids

and the results obtained considering the randomly gener-

ated synthetic point cloud are also good for all the aspect

ratios. It is important to mention the fact that the points

considered and provided by the isosurface extraction in the

reconstruction approach are randomly distributed in the

space, giving additional uncontrolled parameters to the

meshless method.
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Laminated composite shells

In this case, it is considered a simply supported laminated

shell with an aspect ratio a/h = 10, submitted to a uni-

formly distributed load. The material properties of the first

laminate considered in this validation case were the fol-

lowing: E1 ¼ 10; 920;E2 ¼ E1

25
;G12 ¼ G13 ¼ 0:5E2;G23 ¼

0:2E2; m12 ¼ 0:25 being considered the layered configura-

tion [90�/0�]. In Table 3, we can observe the mid-plane

non-dimensional maximum deflections obtained with the

present model and the reference results (Reddy 2004). One

has used the same multiplier.

These results are complemented with the ones shown in

Table 4, obtained by Reddy (2004), where an additional

stacking sequence [0�/90�/0�] is also available. From the

results obtained, it is possible to conclude that the approach

used in the present work is also suitable for the static

analysis of moderately thick plates.

In the cases of unstructured point-clouds, the deviations

are higher but continue to be very acceptable, especially if

we refer the fact that the multiquadric method dependency

of the shape parameter needs to be further addressed.

In fact, when a regular grid is considered, a value of

2=
ffiffiffiffiffiffiffiffi
ðNÞ

p
, where N denotes the number of nodes used in

each edge of the plate grid, is appropriate. In more

uncontrolled situations, according to the studies carried

out, one can say that this subject may be object of further

studies, although there already exists, some optimization

approaches performed to find the optimum value of the

shape parameter.

Case study: cylindrical shells

Reconstruction of cylindrical shells

In this subsection, one presents the results obtained con-

sidering the reconstruction of cylindrical shells. For illus-

tration purposes, in Figs. 3 and 4, we can observe,

respectively, the original point cloud from which the sur-

faces of the cylindrical shell with R1/a = 5 were recon-

structed and the associated reconstructed surface.

The algorithm here implemented to reconstruct the

surfaces has a set of input parameters which have shown to

have a significant influence in the quality of the recon-

structed surface (Bernardo and Loja 2015). Hence, one can

say that the most relevant parameters in the algorithm are

Neval, Ncell, R, Rno, and the normal criterion. Briefly,

describing those parameters, we can refer to the first as the

number of edge points of the 3D grid used to evaluate the

interpolated RBF function.

Table 1 Non-dimensional

transverse deflection �w
a/h TSDT (Ferreira and

Roque 2009)

Present

17 9 17 grid Dev (%) Point cloud Dev (%)

10 4.7764 4.7683 0.17 4.7070 1.45

20 4.6077 4.6066 0.02 4.5391 1.49

50 4.5671 4.5749 -0.17 4.4777 1.96

100 4.5391 4.5838 -0.98 4.4986 0.89

First laminate

Table 2 Non-dimensional

transverse deflection �w. Second
laminate

a/h TSDT (Ferreira and

Roque 2009)

Present

17 9 17 grid Dev (%) Point cloud Dev (%)

4 1.7100 1.7087 0.08 1.6855 1.43

10 0.6628 0.6621 0.11 0.6477 2.28

20 0.4912 0.4908 0.08 0.4829 1.69

100 0.4337 0.4375 -0.88 0.4288 1.13

Table 3 Non-dimensional

transverse deflection �w
a/h FSDT (Reddy 2004) Present

17 9 17 grid Dev (%) Point cloud Dev (%)

5 9.8249 9.8058 0.19 9.9513 -1.29

10 10.1410 10.1018 0.39 10.1249 0.16

Laminated shell [0�/90�]
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The second denotes the number of edge points of the 3D

grid used as centres of the support domain when the

algorithm interpolates and evaluates the functions in each

iteration. The support radius R and Rno are the radii used to

search for the neighbours (making use of the kd tree)

during the interpolation phase and to search for the

neighbours that will be used to compute the normal vectors

of each point of the point, which is considered if the scalar

product ni�nj (only for closest neighbours) lay in the user

established interval. Such interval denotes the normal

criterion.

In addition, one can say that, in all the cases, we used

the following values for such parameters: Neval = 15,

Ncell = 10, R = 0.25, Rno = 0.175 and the normal crite-

rion in the interval [0.98–1.02]. From the previous studies

carried out, one can conclude that these values are appro-

priate for the reconstruction of the shell surfaces. We also

considered the compactly supported function CS-RBF C6

in all cases.

Detailed information about these parameters is pre-

sented in (Bernardo and Loja 2015). In addition, one must

say that the isosurface extraction carried out to reconstruct

the surfaces, provided 236, 236, 315, 259, and 257 points in

the cases where R1/a = 5, R1/a = 10, R1/a = 20, R1/a = 50,

and R1/a = 100, respectively.

In Fig. 4, one presents the extracted isosurface points (in

red) lying in the reconstructed surface. By observing it, one

can conclude that the present CS-RBF approach used to

reconstruct the shell surface provides a good approxima-

tion of the surface represented by the randomly distributed

points shown in Fig. 3. This turns expectable a relevant

Table 4 Non-dimensional

transverse deflection �w
Stack a/h R/a FSDT (Reddy 2004) Present

25 9 25 grid Dev (%) Point cloud Dev (%)

[0�/90�] 10 5 17.9440 18.1077 -0.91 18.2555 -1.74

10 19.0650 19.1158 -0.27 19.1291 -0.34

1030 19.4690 19.4422 0.14 19.5235 -0.28

100 5 1.7535 1.7646 -0.63 1.7044 2.80

10 5.5428 5.5359 0.12 5.6043 -1.11

1030 16.9800 16.9939 -0.08 16.7319 1.46

[0�/90�/0�] 10 5 9.7937 10.0367 -2.48 9.6084 1.89

10 10.1100 10.0125 0.96 10.2423 -1.31

1030 10.2200 10.2124 0.07 10.0574 1.59

100 5 1.5118 1.4888 2.27 1.4663 3.01

10 3.6445 3.6068 1.03 3.5823 1.71

1030 6.6970 6.6889 0.12 6.5829 1.70

Laminated shell [0�/90�], [0�/90�/0�]

Fig. 3 Synthetic point cloud of the cylindrical shell with R1/a = 5,

a = 1, 436 points

Fig. 4 Left reconstructed

surface of the cylindrical shell,

and the points (in red, 236)

provided by the isosurface

extraction. Right top view of the

surface
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level of confidence in the final output which will be used in

the next step of static analysis.

Static analysis of cylindrical shells

In the previous subsection, we performed the reconstruc-

tion of several cylindrical shells surfaces, being shown as

an example the mid-surface of a shell with a radii/length

R1/a = 5. In the present subsection, we are considering that

the reconstructed surfaces using the points obtained in the

isosurface extraction, which after imposing the boundary

conditions and applying a uniformly distributed load, are

going to be submitted to a static analysis study.

The material and geometrical properties are shown in

Table 5, in which the second and third cases consider

nanotubes (CNT) inclusions with a weight fraction contents

wCN = 0.04, and in all of them, the edges are simply

supported. A uniformly distributed load p0 = 105 is

applied. The other materials considered for the matrix and

reinforcement phases were, respectively, epoxy resin and

E-glass.

In all the cases, one has performed the calculation of

the deflections using a regular mesh grid and a unstruc-

tured point cloud in other to compare the deviations

between situations where the parameters are controlled

and where it this does not occur. Tables 6, 7, 8 show the

results of the deflections obtained for the three distinct

cases.

From Tables 6 and 7, one can conclude that the results

obtained when we consider a point-cloud are close to those

obtained in more controlled situations, especially if we

refer to shells with smaller curvatures. In fact, as expected

with the increase of the curvature, the deviation also gets

higher, although acceptable. This is due to the fact that, in

such situations, the shell is deeper and the first-order shear

deformation theory may give these deviations.

In addition, from these tables, one can refer that in the

case of [0�/90�/0�], the deviations are higher than those

obtained in [0�/90�] configuration.
In the second case, the composite plate has a stacking

sequence [0�/90�] and a 0.8 volume fraction is considered.

The results obtained are presented in Table 8, for two

aspect ratios, a/h = 10 and a/h = 20 allow concluding on

a fair agreement for all the aspect ratios.

By observing Table 9, it can be seen that the results

obtained when we consider a point-cloud are close to those

obtained using a regular grid of points, for the different

aspect ratios.

Tables 9, 10 are related to the maximum transverse

displacements of the cylindrical shells with different aspect

ratios a/h and R1/a, with single-walled and multi-walled

carbon nanotubes. There are also considered two different

stacking sequences [0�/90�] and [0�/90�/0�].
From these results, it is possible to understand from a

similar trend between the different stacking sequences

situations. It is also possible to see that the single-walled

nanotubes provide a stiffer behaviour when compared to

the multi-walled ones. This is an expected situation con-

sidering its material properties, particularly the aspect ratio

of the multi-walled carbon nanotubes (Costa and Loja

2016). Once the deflections, as well as the rotations around

x and y-axes are obtained, the reconstruction of these

generalized displacements’ surfaces along the unitary

length shell is easily carried out. In Fig. 5, one illustrates

Table 5 Cases considered in

the static analyses of cylindrical

shells

Case EM (GPa) mM EF (GPa) tF Other parameters

1 2.72 0.3 69 0.2 [0�/90�/0�]
2 Single-walled CNT

11.15

[0�/90�], R1/a = R2/a = inf

3 Multi-walled CNT

3.19

Table 6 First case maximum deflections w (10-4 m) ([0�/90�/0�];
Vf = 0.8, a/h = 10)

Stacking sequence R1/a 17 9 17 grid Point cloud Dev (%)

[0�/90�] 5 3.0669 2.9193 4.81

20 3.0488 3.0263 0.74

100 3.0532 3.0466 0.22

[0�/90�/0�] 5 2.2326 2.3669 -6.02

20 2.1342 2.1784 -2.07

100 2.0749 2.0991 -1.17

Table 7 First case—maximum deflections w (10-3 m) (Vf = 0.8, a/

h = 20)

Stacking sequence R1/a 17 9 17 grid Point cloud Dev (%)

[0�/90�] 5 2.2560 2.1164 6.19

20 2.3393 2.3204 0.81

100 2.3295 2.9089 0.88

[0�/90�/0�] 5 1.3548 1.3330 1.61

20 1.4100 1.3762 2.40

100 1.6228 1.5850 2.33
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these distributions along the shell domain, considering a

ratio R1/a = 5, a fibre volume fraction VF = 0.6, with the

inclusion of single-walled nanotubes in the matrix, a

stacking sequence of [0/90] and an aspect ratio a/h = 10.

These generalized displacements distribution sur-

faces, correspond, respectively, to the transverse

deflection and the rotations degrees of freedom (see

displacement field) which were reconstructed using the

Table 8 Second case—

maximum deflections w (m)
a/h Single-walled CNT Multi-walled CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

10 1.8854E-4 1.8617E-4 1.26 4.5818E-4 4.5242E-4 1.26

20 1.4486E-3 1.4271E-3 1.48 3.4808E-3 3.4400E-3 1.17

50 2.2447E-2 2.2191E-2 1.14 5.3858E-2 5.3011E-2 1.57

100 1.8011E-1 1.7639E-1 2.07 4.3587E-1 4.2394E-1 2.74

[0�/90�] plate

Table 9 Third case—maximum deflections w (10-4 m) (a/h = 10)

Stacking sequence R1/a Single-walled CNT Multi-walled CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

[0�/90�] 5 1.8479 1.8945 -2.52 4.5365 4.5216 0.33

20 1.8842 1.8508 1.77 4.5763 4.5085 1.48

100 1.8863 1.8764 0.52 4.5821 4.5523 0.65

[0�/90�/0�] 5 1.8246 1.8757 -2.80 3.2342 3.3100 -2.34

20 2.0938 2.1462 -2.50 2.8205 2.8644 -1.56

100 1.2987 1.3102 -0.89 2.9313 2.9012 1.03

Table 10 Third case—maximum deflections w (10-3 m) (a/h = 20)

Stacking sequence R1/a Single-walled CNT Multi-walled CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

[0�/90�] 5 1.3929 1.4466 -3.86 3.3965 3.5010 -3.08

20 1.4458 1.4241 1.50 3.5162 3.4486 1.92

100 1.4329 1.4400 -0.50 3.4799 3.4545 0.73

[0�/90�/0�] 5 1.3348 1.3801 -3.39 1.8788 1.9143 -1.89

20 2.2829 2.3520 -3.03 2.1497 2.1667 -0.79

100 1.1915 1.2111 -1.64 1.9522 1.9755 -1.19

Fig. 5 Deflections (left), rotations around x-axis (centre) and y-axis (right) reconstruction from point cloud of the cylindrical shell with R1/a = 5
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same method implemented for the surfaces geometrical

reconstruction.

Case study: double-curvature shells

Reconstruction of double-curvature shells

In this subsection, one presents the results obtained con-

sidering the reconstruction of double-curvature shells. For

illustrating purposes, in Figs. 6 and 7, we can observe,

respectively, the synthetic point cloud randomly generated

for a subsequent reconstruction the surfaces of a double-

curvature shell with R1/a = R2/a = 5 with a unitary edge

length, and the associated reconstructed surface. The

original synthetic point cloud had 529 points and the iso-

surface points considered were 277.

The remaining parameters used in the reconstruction of

the shells’ surfaces were the same as already considered in

previous cases.

From Figs. 7 and 8, it is possible to conclude on a good

quality of the results in the reconstruction phase, being

visible in Fig. 8, the representation of the surface, and the

super-imposition of the isosurface points (in red), where it

is visible a good fitting.

Static analysis of double-curvature shells

The present subsection considers the reconstructed surfaces

using the points obtained in the isosurface extraction and,

after imposing the boundary conditions, the static analysis

was carried out for the four distinct cases enumerated in

Table 11. There were applied two distinct types of unitary

loads: a uniformly distributed load or a sinusoidal load.

In all the cases, the deflections were obtained using a

regular mesh grid and the unstructured point cloud. In all

the cases, where CNT were used, a weight fraction of 4%

was considered.

Tables 12, 13, 14, 15, 16 present the results obtained for

these cases, considering double-curvature shells with

R1 = R2.

From Table 10 and partially from Table 14, where we

can compare the deflections obtained using a regular grid

and the unstructured point-cloud, we can conclude that the

deviations calculated are similar to those obtained in the

[0�/90�] cylindrical shells.
The cases with a stacking sequence of [0�/90�/0�] seem

to follow the same trend, being the deviations higher,

although acceptable, in the cases where we have deeper

shells (R/a = 5), which is expected considering the shear

deformation theory used in this study.

Furthermore, one can say that, as expected, for the same

load, geometrical characteristics, and materials, the

Fig. 6 Synthetic point cloud of the doubled-curved shell with

R1/a = 5

Fig. 7 Surface reconstruction from point cloud of the doubled-curved

shell with R1/a = 5

Fig. 8 Surface reconstruction

from point cloud of the doubled-

curved shell with R1/a = 5
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maximum deflections are smaller when the edges are

clamped, which is an expected response pattern.

Table 13 confirms that the present approach leads again

to good results, with low deviations, in a wide range of

aspect ratios, from moderately thick to thin double-curva-

ture laminated shells, with diverse stacking sequences,

under different boundary conditions.

Again, from comparing the deflections obtained using a

regular grid and a point-cloud, shown in Tables 12 and

13, we can withdraw similar conclusions to the previous

cases.

For the present case study, Fig. 9 shows the shell

deflections, and rotations around x-axis and around y-axis

of a regular grid shell. In this illustration, it was considered

the case with the following parameters a/h = 10, R/

a = 20, VF = 0.6, wCN = 0.04, and the stacking sequence

[0�/90�], being all the edges clamped. The shell was sub-

jected to a uniformly distributed load.

The mentioned degrees of freedom surfaces of the shell

were reconstructed using the same method developed and

implemented for surfaces reconstructions departing from

unstructured points’ clouds.

Table 11 Cases considered in

the static analyses of double-

curvature shells

Case EM (GPa) mM EF (GPa) mF Other conditions

4 Single-walled CNT: 11.15

Multi-walled CNT: 3.19

0.3 69 0.2 [0�/90�]
Clamped edges

5 Without CNT: 2.72 [0�/90�/90�/0�]
6 Single-walled CNT: 11.15 Sinusoidal load p0 = 105

7 Multi-walled CNT: 3.19

Table 12 Fourth case—maximum deflections (Vf = 0.6)

a/h R/a Single-walled CNT Multi-walled CNT Without CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

10 5 5.924E-E-5 6.124E-5 -3.37 1.238E-4 1.265E-4 -2.21 1.380E-4 1.353E-4 1.98

20 6.155E-5 6.283E-5 -2.08 1.410E-4 1.421E-4 -0.83 1.562E-4 1.583E-4 -1.35

100 6.178E-5 6.199E-5 -0.33 1.435E-4 1.430E-4 0.38 1.592E-4 1.592E-4 -0.05

20 5 3.538E-E-4 3.606E-4 -1.91 6.500E-4 6.526E-4 0.37 6.788E-4 6.686E-4 1.50

20 4.260E-4 4.222E-4 0.88 9.254E-4 9.158E-4 1.03 9.465E-4 9.378E-4 0.92

100 4.286E-4 4.293E-4 -0.17 9.452E-4 9.492E-4 -0.43 1.042E-4 1.052E-3 -1.00

50 5 2.120E-3 2.071E-3 2.29 2.457E-3 2.409E-3 1.96 3.624E-3 3.587E-3 1.04

20 4.669E-3 4.676E-3 -0.95 1.075E-2 1.054E-2 1.91 1.222E-2 1.241E-2 -1.55

100 6.797E-3 6.754E-3 0.64 1.325E-2 1.305E-2 1.48 1.526E-2 1.535E-2 -0.60

Clamped edges

Table 13 Fifth case—maximum deflections (Vf = 0.6)

a/h R/a Single-walled CNT Multi-walled CNT Without nanotubes

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

10 5 1.275E-4 1.303E-4 -2.13 1.619E-4 1.662E-4 -2.69 2.682E-4 2.740E-4 -2.15

20 1.404E-4 1.421E-4 -1.24 2.496E-4 2.528E-4 -1.27 3.114E-4 3.039E-4 2.42

100 1.499E-4 1.487E-4 0.77 2.565E-4 2.588E-4 -0.89 3.390E-4 3.411E-4 -0.63

20 5 8.069E-4 8.160E-4 -1.13 1.361E-3 1.369E-3 -0.59 1.685E-3 1.722E-3 -2.20

20 1.122E-3 1.112E-3 0.91 2.299E-3 2.312E-3 -0.56 2.386E-3 2.399E-3 -0.53

100 1.241E-3 1.255E-3 -1.11 2.557E-E-3 2.574E-3 -0.68 2.686E-3 2.656E-3 1.12

50 5 4.742E-3 4.850E-3 -2.28 5.338E-3 5.267E-3 1.33 1.663E-2 1.687E-2 -1.42

20 7.883E-3 7.912E-3 -0.37 1.757E-2 1.723E-2 1.96 2.776E-2 2.740E-2 -1.31

100 9.570E-3 9.455E-3 1.20 2.257E-2 2.266E-2 -0.42 3.377E-2 3.388E-2 -0.32
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Conclusions

With the present work, the authors intended to establish a

continuous integrated process of surfaces reconstruction to

finite-element analysis. To this objective, one has

implemented meshless methods based on different types of

radial basis functions which were found to be the more

adequate for each of this process stage.

Thus, in the first stage of this process, one proceeds to

the reconstruction of shells’ surfaces, described by

Table 14 Sixth case—maximum deflections (Vf = 0.6)

Stacking sequence a/h R/a Single-walled CNT Multi-walled CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

[0�/90�] 10 (10-4 w) 5 1.0951 1.0834 1.07 2.6726 2.7318 -2.22

20 1.1927 1.1851 0.64 2.8960 2.8987 -0.09

100 1.1991 1.2010 -0.16 2.9119 2.8969 0.52

20 (10-3 w) 5 0.6835 0.6675 2.34 1.6540 1.6451 0.54

20 0.9015 0.8892 1.37 2.1619 2.1260 1.66

100 0.9201 0.9171 0.33 2.2053 2.2220 -0.76

50 (10-2 w) 5 0.4763 0.4714 1.04 1.1291 1.1029 2.32

20 1.2708 1.2710 -0.02 3.0455 3.0192 0.86

100 1.4277 1.4174 0.72 3.4094 3.4396 -0.89

[0�/90�/0�] 10 (10-4 w) 5 1.0363 1.0690 -3.16 1.9700 2.0287 -2.98

20 1.1168 1.1255 -0.78 2.0984 2.0505 2.28

100 1.1735 1.1438 2.53 2.6213 2.5800 1.58

20 (10-3 w) 5 0.6448 0.6257 2.97 1.2653 1.3017 -2.88

20 0.8394 0.8298 1.14 1.3535 1.3793 -1.90

100 0.8581 0.8565 0.19 1.4629 1.4645 -0.11

50 (10-2 w) 5 0.4291 0.4401 -2.56 0.9635 0.9309 3.38

20 0.7053 0.7029 0.33 1.9994 2.0375 -1.91

100 1.1860 1.1919 -0.50 2.1637 2.1372 1.22

Table 15 Sixth case—

maximum deflections (not

considering nanotubes;

Vf = 0.6)

Stacking sequence a/h R/a 17 9 17 grid Point cloud Dev (%)

[0�/90�] 10 (10-4 w) 5 2.9901 3.0262 -1.21

20 3.2386 3.2620 -0.72

100 3.2558 2.2566 -0.03

20 (10-3 w) 5 1.8478 1.7819 3.57

20 2.4134 2.4507 -1.55

100 2.4600 2.4837 -0.96

50 (10-2 w) 5 1.2750 1.3021 -2.13

20 3.3915 3.4597 -2.01

100 3.8030 3.8107 -0.20

[0�/90�/0�] 10 (10-4 w) 5 2.1263 2.1463 -2.09

20 2.1024 2.3167 -2.78

100 2.2541 2.4456 0.15

20 (10-3 w) 5 1.6029 1.6251 -1.38

20 1.9345 1.9105 1.24

100 2.3992 2.4000 -0.03

50 (10-2 w) 5 1.1159 1.0914 2.20

20 2.1237 2.0599 3.00

100 2.3562 2.3087 2.02
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unstructured 3D point-clouds which may be acquired via

3D laser scanning, and in the second phase, and for illus-

tration purposes, a set of shell structures is analysed

through Donnell first-order shear deformation theory.

The results obtained either considering the reconstruc-

tion phase or the static analysis phase have shown to be

very promising. The inter-connection of the methods and

the association of these two phases have also proven to

provide an effective computational tool, allowing for a

complete workflow from the reconstruction phase to the

analysis one.

As far as the author’s knowledge, there is not any

published work proposing and illustrating the performance

of a similar integrated methodology. This combined

methodology can provide several advantages over others

available through different independent applications, which

always require an intermediate processing to turn com-

patible their output/input data.

It is worth mentioning that the present methodology is

very pertinent in many science fields, in the sense that it

allows to ease not just the optimization of databases which

include the information about the real condition of an

existing structure, but also the analysis of such structure.
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Table 16 Seventh case—maximum deflections (wCN = 0.04; Vf = 0.6)

Stacking sequence a/h R/a Single-walled CNT Multi-walled CNT

17 9 17 grid Point cloud Dev (%) 17 9 17 grid Point cloud Dev (%)

[0�/90�] 10 (10-4 w) 5 1.7181 1.6892 1.68 4.1859 4.1633 0.54

20 1.8733 1.8486 1.32 4.5501 4.6297 2.91

100 1.8831 1.8969 -0.73 4.5814 4.5983 -0.37

20 (10-3 w) 5 1.0615 1.0256 3.38 2.6134 2.5585 2.10

20 1.4274 1.4288 -0.10 3.3938 3.4551 -1.81

100 1.4491 1.4547 -0.39 3.4850 3.5105 -0.73

50 (10-2 w) 5 0.8626 0.8554 0.83 1.6939 1.6542 2.34

20 1.9851 2.0234 -1.93 4.7907 4.6899 2.10

100 2.2620 2.2188 1.91 5.3586 5.3378 0.39

[0�/90�/0�] 10 (10-4 w) 5 1.6114 1.5841 1.70 2.4750 2.4587 0.66

20 1.5984 1.5750 1.46 2.7748 2.8321 -2.07

100 1.8374 1.8229 0.79 2.8551 2.8753 -0.71

20 (10-3 w) 5 0.8517 0.8351 1.95 1.6416 1.6225 1.16

20 1.2393 1.2561 -1.36 2.2046 2.2536 -2.22

100 1.2417 1.2502 -0.68 2.2301 2.2777 -2.13

50 (10-2 w) 5 0.5433 0.5374 1.09 2.1640 2.1242 1.84

20 0.5856 0.5990 -2.29 3.1994 3.1220 2.42

100 1.8202 1.8009 1.06 3.9598 4.0025 -1.08

Fig. 9 Representations of mid-plane transverse displacement (left), the rotations around x-axis (centre) and y-axis (right)

126 Int J Adv Struct Eng (2017) 9:111–128

123



Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Alexa M, Behr J, Cohen-Or D, Fleishman S, Levin D, Silva CT

(2001) Point set surfaces. In: IEEE visualization, pp 21–28

Barazzetti L, Banfi F, Brumana R, Gusmeroli G, Oreni D, Previtali M,

Roncoroni F, Schiantarelli G (2015) BIM from laser clouds and

finite element analysis: combining structural analysis and

geometric complexity. In: The international archives of the

photogrammetry, remote sensing and spatial information

sciences, vol XL-5/W4, 2015 3D virtual reconstruction and

visualization of complex architectures, Avila, pp 345–350

Beatson RK, Cherrie JB, Ragozin DL (2001) Fast evaluation of radial

basis functions: methods for four-dimensional polyharmonic

splines. SIAM J Sci Math Anal 32(6):1272–1310

Bentley J (1975) Multidimensional binary search trees used for

associate searching. CACM 18(9):509–517

Bernardo GMS, Loja MAR (2015) Reconstruction of surfaces from

unstructured points clouds, using compactly-supported radial

basis functions. In: 2nd international conference on numerical

and symbolic computation

Bernardo GMS, Loja MAR (2015) Static and free vibrations behavior

of particulate composite plates using radial basis functions. In:

2nd international conference on numerical and symbolic

computation

Bosch FN, Guillemet A, Turkan Y, Haas CT, Haas R (2014) Tracking

the built status of MEP works: assessing the value of a Scan-vs-

BIM system. J Comput Civil Eng 28(4):1–28

Carr C, Fright WR, Beatson RK (1997) Surface interpolation with

radial basis functions for medical imaging. IEEE Trans Med

Imaging 16(1):96–107

Carr JC, Beatson RK, Cherrie JB, Mitchell TJ, Fright WR, McCallum

BC, Evans TR (2001) Reconstruction and representation of 3D

objects with radial basis functions. In: SIGGRAPH conference

proceedings, pp 67–76

Castellazzi G, D’Altri AM, Bitelli G, Selvaggi I, Lambertini A (2015)

From laser scanning to finite element analysis of complex buildings

by using a semi-automatic procedure. Sensors 15:18360–18380
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