brought to you by TCORE

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 43 (2018) 7773-7783

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Assessment of the adequacy of different Mediterranean waste biomass types for fermentative hydrogen production and the particular advantage of carob (*Ceratonia siliqua* L.) pulp

Joana Ortigueira ^{a,b}, Carla Silva ^b, Patrícia Moura ^{a,*}

^a LNEG, Laboratório Nacional de Energia e Geologia, Unidade de Bioenergia, Estrada do Paço do Lumiar, 1649-038 Lisboa, Portugal

^b Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal

ARTICLE INFO

Article history: Received 10 November 2017 Received in revised form 23 February 2018 Accepted 5 March 2018 Available online 30 March 2018

Keywords: Dark fermentation Clostridium butyricum Carob pulp Brewery's spent grain Corn cobs Microalgal biomass

ABSTRACT

The conversion of agro-industrial byproducts, residues and microalgae, which are representative or adapted to the Mediterranean climate, to hydrogen (H₂) by C. butyricum was compared. Five biomass types were selected: brewery's spent grain (BSG), corn cobs (CC), carob pulp (CP), Spirogyra sp. (SP) and wheat straw (WS). The biomasses were delignified and/or saccharified, except for CP which was simply submitted to aqueous extraction, to obtain fermentable solutions with 56.2–168.4 g total sugars L⁻¹. In small-scale comparative assays, the H₂ production from SP, WS, CC, BSG and CP reached 37.3, 82.6, 126.5, 175.7 and 215.8 mL (g biomass)⁻¹, respectively. The best fermentable substrate (CP) was tested in a pH-controlled batch fermentation. The H₂ production rate was 204 mL (L h)⁻¹ and a cumulative value of 3.9 L H₂ L⁻¹ was achieved, corresponding to a H₂ production yield of 70.0 mL (g biomass)⁻¹ or 1.6 mol (mol of glucose equivalents)⁻¹. The experimental data were used to foresight a potential energy generation of 2.4 GWh per year in Portugal, from the use of CP as substrate for H₂ production.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Introduction

Global warming and issues of national security due to dependence on oil and gas imports have increased the renewable energy research at an unprecedented rate during the last decade [44]. Regarding biomass use for biofuels, efforts based on the rational use of waste, crop leftovers and agro-industrial byproducts must be undertaken, to avoid any competition between food and energy production [17]. Any analysis concerning the production and conversion of biofuels must take into consideration which renewable resources are available at a local and regional level, therefore depending on geographic location, climate specifications and biomass availability [55], while ensuring their possible exploration preserves the natural biodiversity, and soil, fodder and water

* Corresponding author.

E-mail addresses: joana.ortigueira@lneg.pt (J. Ortigueira), camsilva@fc.ul.pt (C. Silva), patricia.moura@lneg.pt (P. Moura). https://doi.org/10.1016/j.ijhydene.2018.03.024

^{0360-3199/© 2018} Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.