Visual C++ shared memory (OpenMP)
programming.

José Maria Cdmara Nebreda, César Represa Pérez, Pedro Luis Sanchez Ortega
Visual C++shared memory (OpenMP) programming. 2018

Area de Tecnologia Electrénica

Departamento de Ingenieria Electromecanica

Universidad de Burgos




Table of contents

INEFOAUCTION <.ttt st et et e bt e bt e s b e sae e s bt et e e b e e bt e beesmeesaeesareenbeens 3
Chapter 1: SOIULION SETEINGS ....vviiiciiiieccie e e e s bee e e s e e e s enabeee s eares 4
Chapter 2: A simple multithreaded Program ..........eeeiiiieiiiiiee e 6
Chapter 3: BackgroUNd WOIKEIS. ......ciiiiiiiiieiiieecciiee ettt e ettt e e estee e sete e e e st e e s s sbee e e ssabeee s snabeeesenanees 11
Chapter 4: MatriX MUILIPIY cooveeee e e e e e e e e ba e e e eeabe e e e eearaee e ennees 13
Chapter 5: tiMers aNd COUNTETS ......ciiiiiiiie ettt e e e etr e e e e eate e e e e bae e e eeabaeeeeenbeeesennnees 18

P fOrMANCE COUNTEIS. ... eiiiiiietie ettt ettt ettt et e st esab e e sabeesbeeesabeesabeessnbeesneeesareenns 18

T2 0= T PO PPN 20




Introduction
Parallel programing is widely used to solve complex computational problems by making the most
of a limited number of hardware resources. Several paradigms have been proposed:

e Shared memory (OpenMP)

e Distributed memory (MPI)

e Heterogeneous computation (CUDA)

e Hybrid: mixing at least two of the previous ones

These alternatives can be seen as “mid-level” programming approaches. Not too high so you still
take control of most of what’s been done underneath, not too low so you don’t get involved in a

daunting task.

Most of the above-mentioned options are usually presented as extensions to high level
programming languages, and those languages are often those more adequate when efficient
computation comes at stake. One of them is C/C++.

Applications making use of these parallelization techniques are usually hidden to the common
users and, in many cases unknown to programmers. However, in the last years parallel hardware
has become available to all users so it makes sense to take advantage of it within a single
application. Writing multithreaded code at a lower level makes it tedious and prone to mistakes in
the form of race conditions, deadlock and more.

In this manual we try to give an example of how parallel programming paradigms can be included
in most application easily and with high improvement on overall system performance. In this
particular case we aim to explain how to insert shared memory OpenMP sections within Visual C++
code. Our development tool will be MS Visual Studio 2017 Community version and we will use
Windows Forms templates for simplicity. It aims to help either those who are used to writing
desktop applications and want to embed parallel code within or those who are used to
parallelization but don't know how to insert it into a desktop application.




Chapter 1: Solution settings

Before we can create multithreaded application, we have to make some settings:

1. Create a Visual C++ project using MS Visual Studio 2017 (File->New->Project). If the
Windows Forms template does not show up, you’ll probably need to install the software

highlighted in Figure 1.

Medificando — Visual Studio Community 2017 — 15.4.2 X
Cargas de trabajo Componentes individuales Paquetes de idioma
Windows (3) Resumen
itori ik
Desarrollo de la plataforma universal de Windows = Desarrollo de escritorio de NET v Desarrollo para el escritorio con C
i e Incluidos
Cree aplicaciones para la Plataforma universal de Windows Compile WPF, Windows Forms y aplicaciones de consola
- = F ” v Caracteristicas principales de escritorio para Visu..
con C#, VB, JavaScript y, opcionalmente, C++. con C#, Visual Basic y F#.
Opcional
Conjunto de herramientas de VC++ 2017 V141 (x..
+,— Desarrollo para el escritorio con C++ Herramientas de generacion de perfiles de C++
Iﬂ.j Cree aplicaciones clésicas basadas en Windows con el Windows 10 SDK (10.0.16299.0) for Desktop C++...
conjunto de herramientas de Visual C= =, ATL y... Herramientas de Visual C++ para CMake
Compatibilidad con ATL para Visual C++
SDK de windows 8.1 y SDK de UCRT
ibilid Windows XP con C++
Web y nube (7) Compatibilidad de Windows XP con C
Compatibilidad con MFC y ATL (x86 y x64)
Desarrollo de ASPNET y web % Desarrollo de Azure Compatibilidad con C++/CLI
Compile aplicaciones web mediante ASP.NET, ASP.NET SDK de Azure, herramientas y proyectos para desarrollar Clang/C2 (experimental)
Core, HTML, JavaScript y herramientas de desarrollo de... aplicaciones en la nube y crear recursos. Médulos para biblioteca estandar (experimental)
IncrediBuild: Aceleracion de compilacion
‘Windows 10 SDK (10.0.15063.0) for Desktop C++..,
SDK de Windows 10 (10.0.14393.0)
"3 Desarrollo de Python Desarrollo de Node,js e ‘,m 10 Em . m;g; o
e Wi 0. .0)
Edicién, depuracion, desarrollo interactivo y control de Compile aplicaciones de red escalables con Nodejs, un SDK de Windows 10 (10.0,10240.0)
e Wind .0.10240.0)
cédige fuents de Python entomo de sjecusian JavaSeript controlade por sventss...
9 Conjunto de herramientas de VC
> Desarrollo de ASP.NET y web
Ubicacion
Tamafio de instalacién total: 3,08 GB
Si contina, indica que acepta la licencia de la edicién de Visual Studio que ha seleccionado. También puede descargar otro software con Visual Studic. Este software
tiene una licencia aparte, como se explica en los avisos de terceros o en la licencia que incluye el software. Si contindia, indica que también acepta esas licancias. Modificar
Figure 1
Nuevo proyecto ? x
I Recientes [.NET Framework 461 ~| Ordenar por: | Mas populares Buscar (Ctrl+E) P~
v . - N
Instalade %i CMake Project Wizards Tipe: VC =
4 Enlinea This package adds CMake Project Wizards for an initial CMake setup to Creado por: msdn_profile_rk
start from Versién: 0.90
4 Plantillas Descargas: 46200
b Other r Visual Studio 2017 Clasificacién: (2 Votaciones,
b Visual Basic der Env e\tertung kc;;nig mdoun'iFonEs:IquktE I..EJ!:—I' o Més informacion
Anwendungen mit einer Windows Benutzeroberflache) in C++/CLI...
b Visual C# S HEE : Informar de la extensién a Microsoft
b Visual C++ Ak . :
E:l NaneServerProjectExtensions
b Visual F# =] Template for a Nano Server compliant application. I I
Dewesoft X Plugin Template
Dewesoft X Plugin Template Wizard
iNo encuentra lo que busca?
Abrir el instalador de Visual Studic 1 -
Mombre: CppCLR_WinformsProjekt1
Ubicacién: | CAUsers\Admin'\source\repos - Examinar...
Solucion: | Crear nueva solucion
Mombre de la solucion: CppCLR_WinformsProjekt1 Crear directorio para la solucién
I:‘ Agregar a control de cédigo fuente
Cancelar

3.

Figure 2

In Project->Settings enable OpenMP compatibility as depicted in Figure 3.



i Form1 EI@ Paginas de propiedades de HelloWorld

Configuracion: | Active{Debug) ~ | Plataforma: | Active(Win32) w
4 Propiedades de configuracién Deshabilitar extensiones de lenguaje Mo
General Tratar WChar_t comeo tipe integrado Si({Zawchar_t)
Depuracidn Forzar ajuste en el ambito del bucle For Si (/Zc:forScope)
Directorios de VC++ Quitar cédigo y datos sin referencias Si (/Zc:inling)
4 GG Exigir reglas de conversién de tipo
General Habilitar infarmacién de tipo en tiempo de

Optimizacién

Compatibilidad con OpenMP Si (fopenmp)

Preprocesador

Estandar de lenguaje C++

EenseaitnldS G Habilitar médules de C++ (experimental) |

Idioma
Encabezados precomp
Archivos de salida

Informacidn de examel
Avanzadas

Todas las opciones
Linea de comandos

I Vinculador
I Herramienta Manifiesto

Figure 3

4. Since we will use some of the controls available in the tool box, type Ctl+Alt+X to gain
access to them. The controls will be visible when the designer window is selected only.

Now, we are ready to build our firs program. Let’s do it in the next chapter.




Chapter 2: A simple multithreaded program
In this chapter we will see how to construct the simplest multithreaded program. On that simply
counts the number of threads issued by the user.

Let’s find in the tool box, the controls we are about to use in this chapter:

Label A Label

Text box TextBox
Combo box & ComboBox
Button Button

Drag them onto the Form 1 canvas so it looks similar to Figure 4.

-

@ o EE=])

Set threads ~

Go

Figure 4

Controls take always a default name and those that include text, may have a default message as
well. You will find out that the button you inserted takes default name “button 1” and the same
default text. On the design view you just have to click on the control to get access to its properties
on the left down window of your screen. Change these values if you will. You can change button 1
text property to “Go” for instance, as shown in Figure 5. It will then look exactly as in Figure 4.

Propiedades > 0 x
Go System.Windows.Forms.Button -
E]n (@] £ | £

ImageAlign MiddleCenter =

Imagelndex |:| {ninguno]}

Imagekey I:l {ninguno)

ImageList {ninguno]}

RightToLeft Mo

Text Go -

Figure 5




You can do the same with label 1 text property.

The combo box works a bit different. It is supposed to contain a list of items so the user can select
the desired one. Figure 6 shows the properties window for this control and the “Items” property
among them. Select the collection of items so you can include as many as you want; one per line.

Propiedades 01X
Mhilos System.Windows.Forms.ComboBox -
HERIES

B Datos <

(ApplicationSettings)
(DataBindings)
DataSource (ninguna)

DisplayMember (ninguna)

[ (Coleccin J.

Figure 6

We are using this control to set the number of threads to be issue. It normally makes sense to
launch as many as the number of cores in your processor. So the list would span from 1 to that
number.

In this particular case we have a few controls but, when the number of controls of the same kind
may increase it is a good practice to change their default names as well. You can always do it later
but you will probably need to change them in several places within your code.

So far, we have the user interface but, it does nothing at all. Let’s write the code then. We have
already seen how to modify certain properties from the design window. This can also be done
from the code window or by your program at run time. To switch to the code window, you just
have to right click on Form1.h in the solution explorer or type “F7”.

Apart from properties, controls have associated events. In the same properties window, you can
click on the I icon to see the events for the selected control.

But before you program the actions, some preliminary adjustments must be done.

1. Include the OpenMP header. This is done at the beginning of form1.h:

#pragma once
#include "omp.h"

2. Declare global variables. In this example we need only two of them. An integer number
that represents the number of threads to be issued, and a string pointer to a message to
be built:

private:
int nThreads;
String”® message;




/17

/// Erforderliche Designervariable.

3. Initialize them. We will launch one thread by default:

public:
Forml(void)

{

InitializeComponent();
nThreads = 1;

Now let us tackle the code issue. In this simple example only two methods need to be
programmed. The easiest of them is the response to the selection of a concrete number of threads
in the combo box by the user. Select the events for the combo box and then you will display
something like Figure 7 .

Propiedades > @ x
Nhilos System. Windows.Forms.ComboBox -

% |alF]
comboBox1_Selectedind + | ~

SelectionChangeCommittec
StyleChanged
SystemColorsChanged
TextlUpdate

B Datos

SelectedIndexChanged

Tiene lugar cuande el valor de la propiedad Selectedindex
cambia.

Figure 7

If you go to the code window, you will find the “comboBox1_SelecdindexChanged” method
preprogramed. You just have to add the code of the action to be taken, between the brackets. The
action will be to update the number of threads:

private: System::Void comboBox1l_SelectedIndexChanged(System::0bject® sender,
System: :EventArgs® e) {
nThreads = int::Parse(Nhilos->Text);

}

The second action is a bit more complex and it is the heart of the program, since it includes the
parallel part of it. Now select the “Go” button to display its events tab. Among them, the mouse
Click event. In the drop down list you can select the “Go_click” event (Figure 8).




Propiedades * 3 X
Go System. Windows.Forms,Button -
alalEd
B Accidn -
Click Go_Click ~
MouseCaptureChanged
MouseClick
El Apariencia
Paint

Click
Tiene lugar cuande se hace clic en el componente,

Figure 8

If you go to the code window, you will find the “Go_click” method preprogramed. Then again, you

just have to add your code between the brackets. The code will be this:

private: System::Void Go_Click(System::0bject™ sender, System::EventArgs® e) {

int sum=0;

#pragma omp parallel num_threads(nThreads)

message = String::Concat("Hello World from nthreads

{

#pragma omp parallel reduction(+:sum)
sum = 1;

}

, Convert::ToString(sum));

textBox1l->Text = message;

}

¢What does it mean?

Variable “sum” holds the number of threads. We already know them on nThreads ; now
we are going to calculate them again but in parallel.

#pragma omp parallel declares that what is within the brackets will be executed in
parallel. As many as “nThreads” threads will be launched in parallel. The code is the same
for all of them and varaibles declared outside this “Parallel region” are shared by default.
#pragma omp parallel reduction(+:sum) starts a reduction operation, this meaning
that an operation will be performed on values all threads put in the variable. The
operation is a sum and the variable has the same name. Since all the threads put a “1” in
“sum”, and all the values of sum are added, the result must be equal to the number of
threads.

To check that out a message is printed on the text box.

for the shake of clarity, we do a horrible and senseless use of the variables and threads in this

example. If you run it you will see how a hello message is displayed on behalf of all the threads the

user decided to launch.




Don’t expect to be able to write messages from the threads individually. This would be all but
easy. Not impossible but mostly meaningless. Think of the parallel regions as sections of code
where complex calculation is performed efficiently. Keep user interface single threaded.




Chapter 3: Background workers

In the previous chapter we saw how to build up a parallel application. That structure works for
most applications we may need to design but it has a problem. Parallel processing makes sense
when lots of operations must be performed. In such situation our previous solution can do the job
but, for so long as the program is calculating, the user interface will be “frozen”.

So, it works but it doesn’t make sense since we have decided to design a desktop application for a
reason, otherwise we could go back to the more common console application for heavy
computational problems.

How do we keep our user interface active while intensively processing calculation on all available
cores? This is when background workers come along. Background workers behave as independent
threads that execute in background, so they don’t interfere with the main thread: the user
interface.

The background worker is in the tool box: |7 BackgroundWorker

When you drag it on the design window, it will immediately move downwards, since it is not a
visible part of the user interface (Figure 9).

a-l Form1 E\@

Set threads ~

Go

i backgroundWorkerl

Figure 9

Now, double click on the backgroundWorkerl icon and see what the code looks like. There is a
default method called backgroundWorkerl _DoWork that allows you to state what the worker
must do. The Go_Click method becomes extremely simple. It just starts the worker:

private: System::Void Go_Click(System::0bject™ sender, System::EventArgs® e) {
backgroundWorkerl->RunWorkerAsync();

}




And all the work is done by the DoWork method:

private: System::Void backgroundWorkerl DoWork(System::0bject” sender,
System: :ComponentModel: :DoWorkEventArgs® e) {

int sum = 9;
#pragma omp parallel num_threads(nThreads)

{
#pragma omp parallel reduction(+:sum)

sum = 1;
}

message = String::Concat("Hello World from nthreads ", Convert::ToString(sum));
textBox1l->Text = message;
}

A\ But there is a problem! If you try to debug the new code, an exception will pop up. The
reason: the textBox1 control is being called from a thread other than its creator. This is
unsafe and may lead to many issues. We must implement a safe access to this control.

Let us create a new method that serves as a safe interface to textBox1. Below, we can see both
together so it is easy to see their combined work:

private: System::Void backgroundWorkerl DoWork(System::0bject™ sender,
System: :ComponentModel: :DoWorkEventArgs® e) {

int sum = 9;
#pragma omp parallel num_threads(nThreads)

#pragma omp parallel reduction(+:sum)
sum = 1;
}

message = String::Concat("Hello World from nthreads ",
Convert::ToString(sum));
SetText(message);

}

private: void SetText(String” texto){
if (this->textBox1->InvokeRequired) {
SetTextDelegate® d = gcnew SetTextDelegate(this, &Forml::SetText);
this->Invoke(d, gcnew array<Object”> {texto});
}
else{
this->textBox1->Text = texto;

}

Set text must be used to access textBox1 in a safe manner, either from the background worker or
by the main thread. It will decide when to invoke the delegate.




Chapter 4: matrix multiply

So far we have learned how to get everything ready for a parallel application but no real
parallelization has been introduced. We need a calculation intensive problem to solve and one of
the most typical is the matrix multiplication problem.

Everyone knows how matrices are multiplied (we will multiply square matrices for simplicity). This
is a good start but, apart from that this is a problem that presents fantastic scalability, it is easy to
program and can be applied in many more complex applications.

What do we need to multiply matrices? First, the matrices. These matrices are two-dimensional
arrays of float numbers (could be any other type but float is a good choice). Let’s declare the new
variables to be used in this program:

private:
int nThreads;
String”® message;
int rows;
float** matrixA;
float** matrixB;
float** matrixR;

Along with the three matrices R = (A x B), we have also declared an integer variable representing
the number of rows (also columns) for each one. We have to give it a default value:

public:
Forml(void)

{

InitializeComponent();
nThreads = 1;
rows = 4;

}

Matrices of this size (4x4) are tiny for our purposes but we will give the user the opportunity to
change that. To do so we need a second label and a second combo box. Set the label text to
something like “Size” and provide a collection of values to the combo box ranging from 5 to 8000
with the intermediate values you wish.

private: System::Void comboBoxl_SelectedIndexChanged_1(System::0bject”® sender,
System: :EventArgs® e) {
rows = int::Parse(comboBoxl->Text);

}

If we want to visualize the contents of the matrices, we will need some text boxes where the
program can show their contents. We will attach their correspondent labels too. Text boxes are
single lined by default but we can switch their “multiline” property to “true” and make them as
long and high as we want (Figure 10).




Propiedades * I X
Amatrix System.Windows.Forms. TextBox -
222 2] |

HideSelection True o

ImeMode MoControl

MaxLength 32767

Vuiiine [ o

PasswordChar

ReadOnly False -

Figure 10

Once we have the text box and a label, we can copy paste them twice to make room for the two
remaining matrices.

We are going to add a new button called “Initialize”. A click on it will trigger two actions:

1. Allocate memory space for the three matrices.

2.

Fill the space with numbers.

This is what it should look like:

private: System::Void Initialize_Click(System::0bject”

e) {

sender, System::EventArgs”

matrixA = new float*[rows];

matrixB = new float*[rows];

matrixR = new float*[rows];

for (int i = @; i < rows; i++)
matrixA[i] = new float[rows];

for (int i = @; i < rows; i++)
matrixB[i] = new float[rows];

for (int i = @; i < rows; i++)
matrixR[i] = new float[rows];

for (int i = @; i < rows; i++)
for (int j = 0; j < rows; j++) {
matrixA[i][]] matrixB[i][j] = 1 + j;
matrixR[i][]] 9;

}

Amatrix->ResetText();
Bmatrix->ResetText();
Rmatrix->ResetText();
if (rows<20) {
for (int i = 0; i < rows; i++) {
for (int j = 0; j < rows; j++) {

Amatrix->AppendText(String:
Bmatrix->AppendText(String:
Rmatrix->AppendText(String:

}

:Concat(Convert::ToString(matrixA[i][j]), " ™))
:Concat(Convert::ToString(matrixB[i][j]), " "))
:Concat(Convert::ToString(matrixR[i][j]), " "))

Amatrix->AppendText("\n");
Bmatrix->AppendText("\n");




Rmatrix->AppendText("\n");

The user interface so far should look similar to Figure 11.

o Formi = e
Matrix A Matrix B
Set threads
Size
| |

Go

Matrix R
Initialize
Figure 11

We have added the condition for the matrices to be smaller than 20 rows to print then for
otherwise we will see nothing clear on the boxes. The numerical contents of the matrices A and B
are determined according to the coordinates of each element within the matrix. It is just a simple
way to fill the matrices and then check that the calculations are correct.

If we try a 5x5 matrix initialization, we can check whether it is correct. If so we should be watching
Figure 12 on our computer.

a5l Form1

- O >
Matrix A Matrix B
Set threads --2 v

01234 D1234

Si 12345 12345
1Ze 23456 23456
14567 14567

| | 45678 45678

Go

Matrix R

00000

00000

00000

00000

Figure 12




Now we only must program the calculations. They must be performed by the background worker
and start when the “Go” button is clicked. A matrix multiplication process consists of three nested
for loops. We will parallelize in this case the outermost of them:

#pragma omp parallel num_threads(nThreads)

{

#pragma omp for
for (int i = @; i < rows; i++)
for (int j = @; j < rows; j++)
for (int k = 0; k < rows; k++) {
matrixR[i][j] += matrixA[i][k] * matrixB[k][j];
}

}

The number of iterations (rows) will split up among the “nThreads” launched so each one of them
will execute only a fraction of the calculations.

It would be good to see the results. For this purpose, we can add some extra code to Go_Click
method:

if (rows < 20) {
Rmatrix->ResetText();
for (int i = @; i < rows; i++) {
for (int j = 0; j < rows; j++) {
Rmatrix->AppendText(String::Concat(Convert::ToString(matrixR[i][j]1), " "));

Rmatrix->AppendText("\n");

Then, for small matrices we can check the results as depicted in Figure 13.

a5 Formi — O x
Matrix A Matrix B
Set threads -2 v
- 01234 01234
Si 12345 12345
1ze 23456 23456
34567 34567
[ | 45678 45678
Go
Matrix R
Initialize 30 40 50 60 70
40 55 70 85 100
507090 110 130
6085110 135 160
70 100 130 160 150
Figure 13

A& You may find that, in some cases, the first elements of Matrix R are set to “0”. This is not a
calculation mistake. They are cero because the main thread keeps going while the




calculations are still in progress. Therefore, the results are not available yet. We could try
to synchronize the two but it is not particularly important at this moment since the results
are only meant to check that calculations are correct and are not displayed in real
operations.




Chapter 5: timers and counters

Now it works but, how fine? We need some extra information to determine whether these
programming techniques really improve performance or not. First thing we need to do it measure
time taken to resolve the calculations. To do so we just need a small modification in
backgroundWorkerl DoWork method:

double stime = omp_get_wtime();
#pragma omp parallel num_threads(nThreads)
{
#pragma omp for
for (int i = @; i < rows; i++)
for (int j = @; j < rows; j++)
for (int k = 0; k < rows; k++) {
matrixR[i][j] += matrixA[i][k] * matrixB[k][j];
}

}

stime = omp_get_wtime() - stime;

message = String::Concat("Elapsed time: ", Convert::ToString(stime), "
seconds");

SetText(message);

We start a timer before the calculations begin, take time when they finish and display de elapsed
time. What you should obtained is depicted in Figure 14.

a5 Form1 — | »
Matrix A Matrix B
Set threads --2 v
01234 01234
Si 33456 J3ase
1Ze 23456 23456
34567 14567
|Elapsed time: 3,76335810869932E-05 seconds | 45678 45678
Matrix R
Initialize 30 40 50 60 70
40 55 70 85 100
50 70 50 110 130
60 85 110 135 160
70 100 130 160 190
Figure 14

The elapsed time gives you a good idea on how your parallelization is doing. Nevertheless, you
may be interested in some more data about system performance. This is when performance
counters come into play. But, what are performance counters in the first place?

Performance counters.
According to Microsoft Web Site:

“Counters are used to provide information as to how well the operating system or an application,
service, or driver is performing. The counter data can help determine system bottlenecks and fine-



https://msdn.microsoft.com/es-es/library/windows/desktop/aa373083(v=vs.85).aspx

tune system and application performance. The operating system, network, and devices provide

counter data that an application can consume to provide users with a graphical view of how well

the system is performing.”

The .NET Framework we are using
includes the System.Diagnostics
namespace that provides access to the
counters available in the system. The
Server Explorer, usually on the left side of
the screen, gives you a list of the counters
available to your system (Figure 16).

To use any of them you will need to drag
the Performance Counter control from
the toolbox:

PerformanceCounter

Most of the counters are platform
dependant so make sure that the
counters to be used are available for your
platform. In our case we will to monitor
the overall percentage of CPU used:

4[] Procesador
- [ % detiempo de DPC
I [ % detiempo de interrupcidn
4 [l % detiempo de procesador
M _Total
=] O
= 1
m 2
= 3

_Fi-g.u.re 15

E‘J HelloWerld - Microsoft Visual Studio

Archive  Editar  Ver  Proyecte  Compilar  Depu

-O|B-a @D - - Debug

Explorador de servidores * b X
VERSRCRC N B =

L. Volver a escribir las credenciales *

- gﬁ Azure (checam@ubu.es - 0 suscripciones)

I
5
B
I
I
5
B
I
I

g¥ Almacenamiento

& App Service

M Base de datos 5QL

& Cloud Services

[#] Data Lake Analytics

# HDInsight

Flb Méquinas virtuales

&I Motification Hubs

£} Trabajos de Stream Analytics

@¥ Conexiones de datos
I [@® Conexiones de SharePoint
= Servidores

F]

B Admin-PC

- A Colas de mensajes

4[] Contadores de rendimiento
[ MET Memory Cache 4.0
B [ Adaptador de red

B Aplicaciones ASP.NET
[ Archive de paginacién

b [ ASP.NET

b & ASP.NET Apps v4.0.30319
[ ASP.MET w4.0.30319

t- [ Base de datos

B

[E| Base de datos ==> Clases de tak
Figure 16

We will display the CPU usage on a text box so we will add a label and a box to do so.




Matrix B

%CPU

Figure 17

Performance counters provide information when they are told to do so. We could do it manually
by clicking a button but this is too tedious for the user so we will do it on a timer tick.

The APl is available to developers so application programs can make use of this information.

https://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters

https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-
Counters-in-NET.htm

Timers.
Timers are clocks that tick at a preconfigured pace. We can use one of them to trigger counter
updates. We can find them on the tool box: ® Tme |

On the properties window we can set the interval. Set this parameter to 500 for 0,5s. Then double
click the timer icon to switch to the timerl_Tick method:

private: System::Void timerl_Tick(System::0bject”® sender, System::EventArgs® e) {

this->textBox5->Text = Convert::ToString(performanceCounterl->NextValue());

}

It is as simple as moving the value returned by the counter to the text box.

The final interface could be:

o Formi - O *
Matrix A Matrix B
4435065
Size 600 w
Initialize
S
| Elapsed time: 4,42582320185103 seconds
Exit

We have just added but not explained the “exit” button. It is always nice to have one but we rely
on the student’s abilities to program it.



https://www.codeproject.com/Articles/8590/An-Introduction-To-Performance-Counters
https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-Counters-in-NET.htm
https://www.developer.com/net/net/article.php/3356561/Reading-and-Publishing-Performance-Counters-in-NET.htm

Chapter 6: student’s work

At this this point we hopefully have our matrix multiply up and running. What to do next?
The student is meant to try some changes on the application in order to optimize its performance.

In chapter 4 we saw how to parallelize the for loop using the default distribution of the overall
number of iterations among the available number of threads. It is done by the system before
execution and we have no control over it.

We can explicitly split the number of iterations into chunks of a certain size and assign them to
threads either statically or dynamically.

Static scheduling (chunks of 10 iterations) Dynamic scheduling (chunks of 10 iterations)
#pragma omp parallel num_threads (N) #pragma omp parallel num_ threads (N)
{ {

#pragma omp for schedule(static,10) #pragma omp for

schedule (dynamic,10)
for (i=0;i<n;i++) {
Operations to be for (i=0;i<n;i++) {
performed on variable j Operations to
} be performed on variable j

} }
}

The omp_get wtime() function will provide useful data to compare the performance of the
different options. The % CPU counter may provide an explanation to the results.

The student will try to find and document the best possible settings along with a reasonable
explanation for the results obtained.




