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Electronic portal imaging device (EPID) plays an important role in radiation therapy 
portal imaging, geometric and dosimetric verification. Consistent image quality and 
stable radiation response is necessary for proper utilization that requires routine 
quality assurance (QA). A commercial ‘EPID QC’ phantom weighing 3.8 kg with a 
dimension of 25 × 25 × 4.8 cm3 is used for EPID QA. This device has five essential 
tools to measure the geometric accuracy, signal-to-noise ratio (SNR), dose linearity, 
and the low- and the high-contrast resolutions. It is aligned with beam divergence 
to measure the imaging and geometric parameters in both X and Y directions, and 
can be used as a baseline check for routine QA. The low-contrast tool consists of a 
series of holes with various diameters and depths in an aluminum slab, very similar 
to the Las Vegas phantom. The high-resolution contrast tool provides the modulation 
transfer function (MTF) in both the x- and y-dimensions to measure the focal spot 
of linear accelerator that is important for imaging and small field dosimetry. The 
device is tested in different institutions with various amorphous silicon  imagers 
including Elekta, Siemens and Varian units. Images of the QA phantom were 
acquired at 95.2 cm source-skin-distance (SSD) in the range 1–15 MU for a 26 × 
26 cm2 field and phantom surface is set normal to the beam direction when gantry 
is at 0° and 90°. The epidSoft is a software program provided with the EPID QA 
phantom for analysis of the data. The preliminary results using the phantom on the 
tested EPID showed very good low-contrast resolution and high resolution, and 
an MTF (0.5) in the range of 0.3–0.4 lp/mm. All imagers also exhibit satisfactory 
geometric accuracy, dose linearity and SNR, and are independent of MU and spa-
tial orientations. The epidSoft maintains an image analysis record and provides a 
graph of the temporal variations in imaging parameters. In conclusion, this device 
is simple to use and provides testing on basic and advanced imaging parameters 
for daily QA on any imager used in clinical practices.
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I. IntroductIon

Advances in imaging have revolutionized the delineation of target volume and organs at risk for 
treatment planning in radiation oncology. To verify patient positioning, digitally reconstructed 
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radiographs (DRR)(1-3) from a treatment plan are usually compared with portal images either in an-
alog forms (radiographs) or in digital format with an electronic portal imaging device (EPID).(4-6)  
Changes in EPID technology are providing unsurpassed image quality for patient setup and 
verification. The reviews of EPID technology have been presented by several investigators for 
older and outdated systems.(4-7) Modern linear accelerators are equipped with advanced EPID 
designs which utilize amorphous silicon technology (also known as flat panels) and have superior 
image quality compared to the older devices based on video camera or ion chamber technology. 
EPID has become an essential component in high-precision radiation therapy providing digital 
images that can be enhanced to aid visualization and interpretation. Image verification is subject 
to accuracy of the data acquired and, to some extent, on the post-processing algorithms. Modern 
radiation therapy has become image-based, where the role of EPID has expanded from patient 
setup and portal verification(8-10) to more comprehensive uses such as MLC QA,(11) localization 
of implantable markers in IGRT,(12) IMRT QA(13-16) and absolute dosimetry.(17-19) 

Each machine vendor provides their own proprietary post-processing software with the EPID 
to help visualize the treatment field manually or automatically. To successfully perform these 
tasks, routine QA of an EPID has been recommended.(4,7,20-22) Unfortunately, most of these 
reports discuss the necessity of the QA and use of an in-house phantom for the individual institu-
tional use, but is lacking in widespread availability and intercomparison data. Lack of a suitable 
phantom for EPID QA could compromise the goal of precision therapy in IGRT or IMRT. Early 
approaches of visual evaluation of portal images are subjective and qualitative. However, the 
accuracy required in imaging and dosimetry in modern radiation therapy demands consistent 
image quality and quantitative tests that are robust, precise, accurate and automatic. 

A preliminary evaluation of the QC phantom has been reported by Das et al.(23) A similar 
study by Pesznyák et al.(24) has reported multiple difficulties in the image processing of the 
associated imaging software, mainly gray scale reversal (black to white and vice versa), after 
exporting images from some portal imagers. When gray scale reversal took place, the signal-
to-noise ratio (SNR) was incorrectly recorded with increasing absorption, which may pose 
a problem in routine QA. The revised software version 2.2 has eliminated all of the image 
processing difficulties.  In this study, an evaluation of the updated PTW EPID phantom and 
QC software (PTW-Freiburg, Freiburg, Germany) is investigated for Elekta iView, Siemens 
BeamView Plus and Varian aSi1000 EPID systems from three different institutions under 
various clinical conditions. The goal of this study is not to quantify the absolute performance 
parameters, but rather the QA of imaging devices across several platforms in a clinical setting, 
and also to provide a baseline data and temporal patterns very similar to the one from a daily 
QA device for machine output.

 
II. MAtErIALS And MEtHodS

A short description of the EPID system used in this study has been provided in various refer-
ences(5,6,25,26) and are highlighted here. An Elekta iView amorphous silicon EPID (Elekta Ltd, 
Crawley, UK) with a detector panel from Perkin-Elmer (Fremont, CA, USA) is used. The active 
area of detector is 41 × 41 cm2 consisting of a copper plate and a 133 mg/cm-2 terbium-doped 
gadoliniumoxysulfide (Gd2O2S:Tb) screen. The distance from the source to the sensitive layer 
of the detector is 160 cm. The maximum area that could be imaged at the isocenter is 25.6 × 
25.6 cm2. There are 1024 × 1024 pixels in the image. (Additional details of the Elekta EPID 
system are provided in the references.(6,25)) Siemens BeamView Plus EPID system (Siemens AG, 
Munich, Germany) uses Perkin Elmer flat panel with a 0.6 mm aluminum plate and Gd2O2S:Tb 
phosphor screen. The pixel format is 1024 × 1024 with a pixel pitch of 400 μm. The array 
dimension is 41 × 41 cm2 and with a source-to-detector distance of 140 cm, resulting in a field 
of view at isocenter of just 29 × 29 cm2. (Additional information of this system can be found 
in the references(5,26).) The Varian aSi1000 amorphous silicon EPID system (Varian Medical 
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Systems, Palo Alto, CA) is a flat-panel indirect detector based on Gd2O2S:Tb detector with 
dimensions of 30 × 40 cm2 with an array of 768 × 1024 photodiodes giving an effective pixel 
size of 390 μm at a source to detector distance of 150 cm.(6,18,19,27,28) Based on the manufac-
turer’s specification, Elekta, Siemens and Varian EPIDs have 2.0, 2.5, 2.56 pixel/mm giving a 
Nyquist frequency (fn) of 1.0, 1.25, 1.28 lp/mm, respectively.

A. EPId Qc Phantom
The EPID QC phantom marketed by PTW-Freiburg (Germany) was developed specifically 
for checking the consistency of the image quality of EPID for high-energy X-rays in radia-
tion therapy. The associated software epidSoft (version 2.2) provided with the QC phantom 
allows automatic image analysis of the QC phantom images, documentation of the QC results, 
and data storage and retrieval for long-term assessment of the performance of the EPID. The 
outer dimensions of the QC phantom are 25 × 25 × 4.8 cm3 and weighs 3.8 kg. The device 
provides analysis of 26 × 26 cm2 field size at 95.2 cm SSD that is covered by most imagers at 
their source to imager distances. The unique feature of this device is the collection of imaging 
tools for EPID QA including basic aspects such as: 1) geometric evaluation including scaling 
and rotation tests, 2) linearity test of absorption through a pair of copper step wedges (5% for 
6 MV), 3) local dependence of linearity, 4) signal-to-noise ratio (SNR), 5) low-contrast resolu-
tion through various holes in aluminum slab, and 6) high-contrast spatial resolutions through 
MTF determination in both the in-plane and cross-plane directions since resolution depends 
on the focal spot which varies in both directions. The arrangement of the test elements in the 
QC phantom is shown in Fig. 1. A brief description of each test element and its calculation 
method is given below. 

B. geometric test
When an EPID image of the QC phantom is first loaded into epidSoft, the position of the QC 
phantom is calibrated by defining four corner points of the image. It is done by clicking the 
center of the four individual elements at the corners, which are used to test signal linearity  
(Fig. 1) by means of the magnifying glass tool. When the corner points are defined, all test 
elements will be automatically identified and marked with blue frames. Any rotation of the QA 
phantom position will be calculated and displayed.  

Fig. 1. Arrangement of test elements in PTW EPID QC phantom: (1) signal linearity and signal-to-noise ratio; (2) isotropy 
of signal linearity; (3) geometric isotropy (distortion); (4) low-contrast resolution; (5) high-contrast resolution. Also shown 
are sample analyses in the epidSoft user interface.
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c. Linearity test of absorption through cu steps 
The two copper step wedges are used for linearity determination. Each wedge consists of five 
steps and together they cover the range of 0% to 50% absorption (0%, 5%, 10%, 15%, 20%, 
25%, 30%, 35%, 40% and 50%) for a 6 MV beam. The linearity curve is calculated from the 
mean gray values of the 10 steps. For the display, an additional 45% value is calculated from the 
40% and 50% values by linear interpolation, which gives a total of 11 data points. A regression 
line is then calculated from these 11 points. The maximum deviation between the measured 
and the regressed values is then calculated based on the goodness of the fit. 

C.1 Local dependence of linearity
The local dependence of linearity is determined by the brass steps in the corners and two ad-
ditional ones in the third quadrant of the phantom (Fig. 1). Each of the brass steps consists of 
four steps which cover approximately 10%, 20%, 30% and 40% absorption for 6 MV X-rays. 
A linearity curve is calculated for each block from the mean gray values of the steps. A regres-
sion line is generated from the mean values of the four steps and the output value is calculated 
as the maximum deviation between the measured value and the regressed one. 

C.2 Signal-to-noise ratio (SNR)
The signal-to-noise ratio (SNR) is also determined by means of the copper steps. The SNR is 
calculated for each absorption level of the copper step by the following formulas: 

    
  (1)
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 F = 4xy; x ε {-X,X}; y ε {-Y,Y} (3)

where σ2 is the variance of the gray values, ),( yxN  is the arithmetic mean gray value of an 
area F (the region of interest), N(x, y) is the gray value at position (x, y) and X and Y are the 
specific coordinate values. The output mean value is then calculated as the average of SNR 
values of the ten copper steps. 

C.3 Low-contrast resolution through various holes
The low-contrast resolution is determined by the test element with 27 holes of different diameters 
(range from 1.1–15 mm) and depths (0.5–4.8 mm).These holes are arranged in a 6 by 5 array (six 
columns and five rows), with holes in each row having the same diameter, while holes in each 
column have the same depth. For each hole, the contrast difference of the hole and a specified 
area around the hole is calculated and displayed in tabular and graphic forms. 

C.4 High-contrast and spatial resolutions
The line pattern in the first and second quadrants of the phantom are used for the determination 
of the modulation transfer function (MTF) and the high-contrast resolution in the in-plane and 
cross-plane directions. There are 14 lamella blocks with 18 resolutions in a range of 0.167 lp/
mm to 3.5 lp/mm. Four blocks are arranged diagonally for simultaneous determination of the 
in-plane and cross-plane MTF. The remaining ten blocks are divided into two groups of five, 
each arranged in in-plane and cross-plane directions respectively. The outer block of each group 
contains two different resolutions. The mean gray values of the lamellae (maxima) and the mean 
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gray values of the gaps (minima) are determined for each lamella block. The luminance density 
distribution g(x) at a location x of an ideal image can be described in a sinusoidal form: 

 )2sin(1)( xkxg   (4)

where x is the spatial location, υ is the spatial frequency of the grid, 1/υ is the distance between 
two neighboring maxima, k is the amplitude (0 ≤ k ≤ 1). Each line of the grid contributes to 
the same image. The image b(x′) of the object g(x) is represented in terms of the line spread 
function (LSF) as:  

    
  (5)
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and can be displaced by converting and introducing a phase shift by phase angle ϕ as: 

     
 )'2sin(1)'( xkxb  (6)
 

The difference between object g(x) and image b(x′) is a change of amplitude from η to 
kη and a phase shift ϕ between image and object grid, respectively. The function η(υ) then 
becomes MTF(υ) as: 

 )(MTF  (7)

The MTF is calculated as the ratio of contrast k, of the object grid g(x) to image grid b(x′):

  (8)
 ))(min())(max(

))(min())(max(
xgxg
xgxg

k

  (9)
 

  (10)
 

The MTF(υ) is calculated based on image contrast, gray values of lamella (maximum) and 
intermediate space (minimum) and object using Eq. 10. The details of this method is given by 
Coleman.(29) The calculated MTF values are then normalized to the smallest available spatial 
frequency to generate a relative MTF. 

d. Image quality check 
The EPID QC phantom was used for commercially available EPID devices on Elekta, Siemens 
and Varian linear accelerators in this study. These EPID devices are of the latest design with 
superior image quality based on amorphous silicon technology. To perform the quality tests 
of each imager, the QC phantom was placed on the treatment couch at a location free of any 
material absorption by placing it on the tennis racket of the treatment couch with the front plate 
facing the beam. The gantry angle was set to be precisely perpendicular to the phantom. The 
source-to-imager distance was set in such a way that all test elements can be seen completely 
in the EPID image. The field size was set to 26 cm × 26 cm at the isocenter so that it covers 
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all test elements of the phantom completely. Due to the focus geometry of the phantom, it is 
placed at 95.2 cm source-to-surface distance to provide the base at isocenter. This can be simply 
achieved by aligning the recessed lines on the side of the phantom (horizontal and vertical di-
rection) with the laser. This device was tested with 6 MV beams on an Elekta iView, a Siemens 
BeamView Plus and a Varian aSi1000 EPID system, respectively. Images were acquired with 
1–15 MU exposures and phantom surface set to be normal to the beam direction and gantry set 
to 0° and 90°, respectively. The dose or dose rate was chosen depending on the EPID (100 MU/
min on the Varian Linac, 100 MU/min for Elekta, and 50 MU/min on the Siemens), so that no 
overexposure or underexposure is visible in the EPID images and all copper levels should be 
visible and the resolution should be optimal. Images were analyzed with epidSoft and a report is 
generated at completion of the analysis. The epidSoft also allows preset values to be compared 
with periodic evaluation of these parameters and plots the summary and trend over time.

 
III. rESuLtS 

An image of the phantom with the Varian aSi1000 EPID imager displayed in the epidSoft user 
interface is shown in Fig. 1. It shows a complete pattern of all test tools in one unit and the 
analyzed results of one exposure. The robustness of the phantom and epidSoft is obvious, as 
all relevant imager performance characteristics are displayed in one screen for easy evaluation.  
For example, in addition to the linearity and MTF, the low-contrast resolution is shown as a 3D 
histogram (Fig. 1) in the format of six columns and five rows, which corresponds to the spatial 
arrangement of all test boreholes in the phantom. The histogram can be expanded and rotated 
to evaluate the relative contrast difference of each specific borehole. 

As shown in Fig. 2, the Varian aSi1000 exhibits linearity over the range 1–15 MU, for the 
AP and LAT beams. The mean SNR increased slightly with MUs, as shown in Fig. 3. It was 
observed that imaging orientation (AP and Lat) was not a factor in the QA outcome. Usually 
MTF is difficult to determine for therapy imaging devices, as noted in the literature for DRR.(1,30)  
However, the PTW QC phantom provides a seamless MTF analysis in both the in-plane and 
cross-plane directions. The goal of this study is not to determine the absolute MTF or the ac-
curacy of MTF, but rather to provide a baseline and temporal shift in the EPID performance. 
Figure 4 shows the MTF in the in-plane direction of a Varian aSi1000 imager acquired with 
different MUs. As expected, the MTF measurement is also independent of MU used. A better 

Fig. 2. Linearity of step wedge measured with 1–15 MU and different orientation (AP vs. LAT) for a Siemens imager. 
Note that MU and orientation cannot be differentiated and, hence, any orientation or MU could be used.
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representation of the MTF for such data is to plot on a logarithmic scale and include data only 
up to the Nyquist frequency of the EPID. A request has been made to the vendor for modifica-
tion in the software upgrade. 

Comparing different commercially available EPID devices, most of them provide similar 
data of linearity and spatial resolution. Figure 5 shows measurements of linearity of the step 
wedges for the three different EPID devices used in this study. The three devices provide very 
close measurement at each grey level and there is no significant difference in the overall lin-
earity. The MTF curves in the in-plane direction measured from these EPID devices are also 
compared in Figure 6. The MTFs of Siemens and Varian imagers are very similar, while the 
MTF of the Elekta device shows slightly higher values at high frequency region. Overall, these 
three devices provide similar values of MTF (0.5) in the range of 0.3–0.4lp/mm, which agree 
with those reported earlier by various investigators.(4,7)  

An important feature of the epidSoft is that it allows preset values of QA parameters to be 
set as baselines for periodic evaluation of the imaging device. Figure 7 shows the user inter-
face where the values of all QA parameters can be set as baselines. The software maintains an 

Fig. 3. Normalized mean SNR values at different MUs for three imagers. It indicates that low MU could be used for the 
QA for all imagers.

Fig. 4. MTF of a Varian imager in in-plane direction measured by different MUs.
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individual database for each EPID device for analysis of the pattern of variation on a weekly, 
monthly and yearly basis. Figure 8 shows the temporal QA analysis of a Varian imager over 
one month. It was observed that no significant change has occurred during this period of time. 
Such observations are important for the other two imagers (Elekta iView and Siemens Beam-
View Plus); however, the temporal data for these imagers is not available since the device was 
loaned to us for a limited period of time.

 

Fig. 6. MTF in in-plane direction measured from Elekta iView, Siemens BeamView Plus and Varian aSi1000 imagers. Based 
on specifications, the Nyquist frequency of Elekta, Siemens and Varian imagers are 1.0, 1.25, 1.28 lp/mm, respectively.

Fig. 5. Comparison of linearity measurement of step wedge from three different EPID: Elekta iView, Siemens BeamView 
Plus and Varian aSi1000 imager.
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Fig. 7. Analysis pattern of one of the data for an imager, showing all QA parameters and their preset values, as well as 
tolerances. A user can use the preset values to compare the data on a periodic basis.
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Fig. 8. Critical QA parameters (a) local linearity, (b) linearity, (c) SNR and (d) MTF are automatically plotted in the 
statistical mode of the epidSoft for temporal analysis graphically.
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IV. dIScuSSIon

Since its introduction in radiation therapy in the early 1980s, electronic portal imaging has 
played a very important role in treatment verification and other clinical applications. Successful 
implementation of an EPID in clinical radiation oncology requires careful and regular qual-
ity assurance and maintenance of the performance of EPID devices. However, according to a 
survey conducted by AAPM Task Group 58 (TG58),(4) only 20% of the institutions with EPID 
have developed a comprehensive QA program, and fewer than half of them perform the QA 
program regularly. About 35% of the institutions with EPID do not have any QA program. A 
possible reason is the lack of appropriate QA device and appropriate software for data analysis. 
A common QA phantom called Las Vegas phantom has been developed and used in acceptance 
testing and routine QA for EPID image quality evaluation.(4) It is composed of holes with 
different depths and diameters, and is embedded in an aluminum block which can be used to 
check spatial and contrast resolution of EPID device. However, the evaluation process is based 
on visual inspection of the phantom image which is relatively subjective and time-consuming. 
Compared with Las Vegas phantom, the analysis process of the QA phantom used in this paper 
is highly automated and quantitative. If the device is lined up perpendicular to the central axis 
of the beam, the image of the four corner points could be defined by the user using a magnifica-
tion tool. The software (epidSoft) automatically calculates all imaging parameters, providing an 
objective evaluation very efficiently. Another advantage of this QC phantom is that it contains 
a set of comprehensive test components. Thus in one exposure, it allows simultaneous evalu-
ation of all imaging parameters as recommended by AAPM TG-58,(4) such as SNR, resolution 
and linearity. The whole process only takes 3–5 minutes. The AAPM TG-58 recommended a 
daily check of imaging functionality and a monthly check of image quality. Our QA results 
acquired over a one-month period did not show any significant change of the image quality 
parameters. Thus it is not unreasonable to imbed the image quality check as part of the monthly 
linac QA. On the other hand, since the entire QA procedure using this EPID QA phantom is 
highly automated and only takes a few minutes, it might be a good practice to perform the 
QA tests and analysis using the EPID QA phantom on a daily basis. The QA image acquired 
not only serves as image functionality check, but also can be quickly compared with baseline 
values to prevent sudden change in the imager performance due to unexpected mechanical or 
electronic malfunction. Another important test recommended by AAPM TG-58, which is not 
included in the design of this EPID phantom, is the geometric localization accuracy. However, 
the center of the four corner elements on the phantom can be used as reference points for geo-
metric measurement accuracy test since the distance between the four elements are known and 
can be used to compare with measured distance. 

The concept of automatic recognition of test components and calculation of QA parameters 
used in this EPID QA system provided a solid base for the development of QA phantoms and 
software for other imaging systems that are widely used in radiation therapy, such as kV based 
imager and cone-beam CT. The calculation algorithm in epidSoft may be simply adapted to kV 
imager and cone-beam CT systems with some modifications so that automatic image quality 
QA and analysis can be performed. This will definitely improve the efficiency and accuracy of 
current QA procedures for these imaging systems. 

The system, however, has a few limitations as described below.

1. The software currently supports all popular image format (DICOM, BMP, TIFF), but im-
ages still need to be manually imported into epidSoft. An automatic connection to vendor 
imaging acquisition system will streamline the procedure.

2. The phantom size is too big for the Varian image detector. The detector has to be moved up 
very close to isocenter, which is not a common clinical position. 

3. The baseline QA parameters are left to the therapy physicists to decide. A simple guideline 
based on expert opinion should be provided as a default.
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V. concLuSIonS

The PTW EPID QC phantom with associated image analysis software provides a convenient, 
automated and easy process for periodic verification of performance of an EPID with regard to 
baseline values. This device is independent of EPID system and provides tools for  continuous 
monitoring of the various parameters, such as geometrical accuracy, exposure linearity, SNR, 
and low-contrast resolution and high-contrast resolution (MTF). Such a device is ideal for 
 image evaluation and for QA when EPID is used for dosimetry.
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