

Cefazolin Prophylaxis for Total Joint Arthroplasty: Obese Patients are Frequently

Underdosed and at Increased Risk for Periprosthetic Joint Infection

Running Title: Cefazolin Dosing in TJA

Alexander J. Rondon, MD, MBA¹ Michael M. Kheir, MD² Timothy L. Tan, MD¹ Noam Shohat, MD^{1,3} Max R. Greenky, MD¹ Javad Parvizi, MD, FRCS¹

¹The Rothman Institute at Thomas Jefferson University, Philadelphia, PA 19107

² Department of Orthopaedics at Indiana University, Indianapolis, IN 46202

³ Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel

Corresponding Author:

Javad Parvizi, MD, FRCS The Rothman Institute 125 S 9th St. Ste 1000 Philadelphia, PA 19107 P: 267-339-7813 F: 215-503-5651 parvj@aol.com

This is the author's manuscript of the article published in final edited form as:

Rondon, A. J., Kheir, M. M., Tan, T. L., Shohat, N., Greenky, M. R., & Parvizi, J. (2018). Cefazolin Prophylaxis for Total Joint Arthroplasty: Obese Patients are Frequently Underdosed and at Increased Risk for Periprosthetic Joint Infection. The Journal of Arthroplasty. https://doi.org/10.1016/j.arth.2018.06.037

1	Cefazolin Prophylaxis for Total Joint Arthroplasty: Obese Patients are Frequently
2	Underdosed and at Increased Risk for Periprosthetic Joint Infection
3	Running Title: Cefazolin Dosing in TJA
4	
4 5	
	1

6 ABSTRACT

7	Background: One of the most effective prophylactic strategies against periprosthetic joint
8	infection (PJI) is administration of perioperative antibiotics. Many orthopaedic surgeons
9	are unaware of the weight-based dosing protocol for cefazolin. This study aimed to
10	elucidate what proportion of patients receiving cefazolin prophylaxis are underdosed and
11	whether this increases the risk for PJI.
12	
13	Methods: A retrospective study of 17,393 primary total joint arthroplasties (TJA)
14	receiving cefazolin as perioperative prophylaxis from 2005-2017 was performed. Patients
15	were stratified into two groups (underdosed and adequately dosed) based on patient
16	weight and antibiotic dosage. Patients that developed PJI within 1-year following index
17	procedure were identified. A bivariate and multiple logistic regression analysis were
18	performed to control for potential confounders and identify risk factors for PJI.
19	
20	Results: The majority of patients weighing greater than 120 kg (95.9%, 944/984) were
21	underdosed. Underdosed patients had a higher rate of PJI at 1-year compared with
22	adequately dosed patients (1.51% vs. 0.86%, p=0.002). Patients weighing greater than
23	120 kg had higher 1-year PJI rate than patients weighing less than 120 kg (3.25% vs.
24	0.83%, p<0.001). Patients who were underdosed (odds ratio (OR) 1.665, p=0.006) with
25	greater comorbidities (OR 1.259, p<0.001) were more likely to develop PJI at 1-year.
26	
27	Conclusion: Cefazolin underdosing is common, especially for patients weighing more
28	than 120 kg. Our study reports that underdosed patients were more likely to develop PJI.

- 29 Orthopaedic surgeons should pay attention to the weight-based dosing of antibiotics in
- 30 the perioperative period to avoid increasing risk for PJI.
- 31
- 32 Keywords: Total Joint Arthroplasty; Periprosthetic Joint Infection; Perioperative
- 33 Antibiotics; Obesity; Dosing; Risk
- 34

35 INTRODUCTION

36	One of the most effective strategies for prevention of periprosthetic joint infection
37	(PJI) has been the administration of perioperative antibiotics. The presence of antibiotics
38	in the serum can eliminate the bacteria that gain access to the surgical site during total
39	joint arthroplasty (TJA) and in turn reduce the incidence of surgical site infection [1].
40	Current practice is to administer first or second generation cephalosporin to all patients
41	undergoing TJA, unless contraindicated [2]. Despite the widespread use of cefazolin as a
42	perioperative antibiotic for TJA patients, many surgeons are unaware of cefazolin's
43	weight-based dosing. Thus, the goals of the present study are (1) to ascertain what
44	proportion of TJA patients receiving cefazolin are adequately dosed and (2) if under-
45	dosing was associated with increased risk of subsequent PJI.
46	At our institution, the recommended dose of cefazolin has traditionally been 2
47	grams intravenously. Current guidelines for antimicrobial prophylaxis recommend
48	weight-based dosing protocols starting the cefazolin dose at 1 gram (g) if a patient weighs
49	less than 60 kilograms (kg), 2 grams if patient weights between 60 kg and 120 kg, and 3
50	grams if patient weight over 120 kg [2,3]. A previous study at our institution found the
51	majority of patients receiving vancomycin as perioperative prophylaxis were underdosed
52	according to weight-based dosage recommendations (15 milligrams/kg) [4].
53	Given the increasing prevalence of obesity [5,6] in the TJA population, many
54	patients may be inadequately dosed for antibiotics. Thus, the effective drug concentration
55	may not be met to provide bactericidal effects and subsequently may predispose patients
56	to an increased risk for PJI. We hypothesis patients who are underdosed are at increased
57	risk of adverse events and infection.

58

59

9 MATERIALS AND METHODS

60 After Institutional Review Board approval, a retrospective review of 24,439 61 patients undergoing primary TJA at a single institution was performed from 2005-2017. 62 All patients with primary TJA, with record of the perioperative antibiotic and dosage 63 administrated were included in this study. Patients with aseptic revision TJA were 64 excluded. The perioperative antibiotic and dosage were then obtained for the patient 65 population, resulting in a cohort of 17,393 of patients receiving cefazolin as perioperative 66 prophylactic antibiotic. Patients who received other types of perioperative prophylactic 67 antibiotics (i.e. Vancomycin) other than Cefazolin were excluded from the study. Patients 68 with a history of prior infection in the same joint or unavailable antibiotic information 69 were excluded from the study. An electronic query and chart review was then performed 70 to identify demographic information, height, weight, body mass index (BMI), joint, 71 laterality, length of stay, operative time, time to incision from administration of cefazolin, 72 and Charlson comorbidities. Demographic information of the cohort is presented in Table 73 1.

Using the generalized dosing protocol of 1 g for patients weighing below 60 kg, 2 g for patients weighing between 60 kg and 120 kg, and 3 g for patients weighing 120 kg or greater for cefazolin, proper dosage was calculated for each patient. These values were then compared to the actual dose given to the patients at time of surgery. Patients were assessed as either underdosed (< 1 g, if patient weighed between 60 kg-120 kg and was given <2g, or if patient weighed 120 kg or more and was given < 3 g) or adequately

80	dosed (if appropriately dosed based on weight). Cefazolin was administered within 60
81	minutes of incision in all cases.
82	The cohort was then cross-referenced with an institutional PJI database to identify
83	patients with PJI. We defined PJI in patients based on the International Consensus
84	Meeting criteria[7]. A subsequent manual chart review was undertaken to verify PJI
85	outcomes and ensure the correct joint and laterality.
86	The primary endpoint was to assess the incidence of 1-year PJI following TJA in
87	patients who were underdosed versus adequately dosed.
88	Statistical Analysis
89	All statistical analyses were performed with PJI rate analyzed among the two
90	dosing groups and by weight class. Bivariate analyses were performed to compare
91	demographics, perioperative variables between the two dosing groups and weight class.
92	A multivariate logistic regression model was utilized to determine risk factors for PJI
93	based on the following: antibiotic dosing, dosing status, age, patient weight, BMI, gender,
94	joint, length of stay, and Charlson Comorbidity index. All statistical analyses were
95	performed using R 2.15.1 (R Foundation for Statistical Computing, Vienna, Austria) and
96	an alpha level of 0.05 was used to evaluate significance. All analyses were conducted
97	with Generalized estimating equations (GEE) to account for the clustering within patients
98	who had multiple admissions. The GEE specified a binary distribution with a logit link
99	for analyzing the dichotomous outcomes.
100	

RESULTS

102	All patients included in the study received cefazolin preoperatively within 60
103	minutes as the main antibiotic prophylaxis. Of the 984 patients weighing 120 kg or
104	greater, the majority were underdosed (95.9%, 944/984). For patients weighing less than
105	120 kg, most were adequately dosed (88.3%, 14,497/16,409). Overall, 83.6%
106	(14,537/17,393) of patients were adequately dosed for cefazolin prophylaxis. Of note,
107	0.10% (18/17,393) patients were overdosed, however, none developed PJI at 1-year and
108	all weighed between 60 and 120 kg.
109	Among primary TJAs, underdosed patients had a higher rate of 1-year PJI
110	compared with adequately dosed patients (1.51% vs. 0.86%, p=0.002). When stratified by
111	weight, patients weighing greater than or equal to 120 kg had higher 1-year PJI rate than
112	patients weighing less than 120 kg (3.25% vs. 0.83%, p<0.001) (Table 1).
113	Bivariate analysis demonstrated that patients who were underdosed (adjusted odds
114	ratio (OR) 1.762, p=0.002), male (OR 1.517, p=0.014), those with greater comorbidities
115	(OR 1.251, p<0.001), and higher weight (OR 1.025, p<0.001) were more likely to
116	develop PJI within 1-year (Table 2). Following multivariate regression analyses, these
117	trends remained significant with underdosed (OR 1.665, p=0.006) and patients with
118	greater comorbidities (OR 1,259, p<0.001) having a higher rate of PJI at 1-year (Table 3).
119	
120	DISCUSSION

121 The efficacy and value of perioperative antibiotics for surgical prophylaxis has 122 been proven in the literature [8]. Recent studies have supported current universal 123 antibiotic prophylaxis versus providing treatment based on individual comorbidities[9]. 124 The most appropriate antibiotic therapy recommended for patients undergoing TJA is a

125	first or second generation cephalosporin due to its broad spectrum of action, cost
126	effectiveness, and ability to cover both gram positive and gram negative organisms
127	[3,10,11]. Furthermore, cephalosporins are bactericidal and have excellent distribution
128	profiles in synovium, muscle, hematomas, and bone [12]. The current American
129	Academy of Orthopaedic Surgeons (AAOS) guidelines recommend patients receive
130	prophylactic antibiotics within one hour prior to surgical incisions and be discontinued
131	within 24 hours following the end of surgery [13].
132	The literature has previously reported on the necessity for weight-based dosing of
133	perioperative antibiotics. While the current guidelines from the Center for Disease
134	Control and Prevention, World Health Organization, and National Institute for Healthcare
135	and Excellence do not provide dosing recommendation, the Society for Healthcare
136	Epidemiology of America and the International Consensus Meeting (ICM) on PJI
137	strongly agreed that preoperative antibiotics weight-based dosing is valid and warranted
138	[2,14,15,3,16]. However, for adult patients, standard antibiotic dosing remains a common
139	practice as it is safe, effective, and conveniently avoids the need for calculations, thus
140	reducing the potential for medication errors[17]. Different ranges for perioperative
141	cefazolin dosing protocols has been reported from standard adult dose of 2 g [18] to
142	weight-based dosing of 1 g for patients weighing less than 80 kg or 2 g for patients
143	weighing greater than 80 kg [19]. The American Society of Health-System Pharmacists
144	(ASHP) recommends a weight-based protocol of 1 g from patients weighing less than 60
145	kg, 2 g for patients weighing 60-120 kg, and 3 g for patients weighing 120 kg or more
146	[3]. Our institution follows these weight-based guidelines utilizing both 60 kg and 120 kg
147	cutoffs, however, as illustrated by the results of the present study, the majority of patient

148	weighing above 120 kg were underdosed by recieving 2 g of antibiotics. Similar to our
149	5.7% rate of patients weighing greater than 120 kg, the prevalence of extreme obesity
150	(BMI > 40) in the United States has been reported at 7.7% [5,20]. When assuming
151	estimates of 1,000,000 TJA performed annually and an underdosing rate of greater than
152	90% for the extreme obese population, fifty thousand TJA patients are likely underdosed
153	each year [21]. Given the significant rise in obesity and morbid obesity, increased
154	scrutiny with respect to perioperative antibiotic prophylaxis is warranted to ensure that
155	this population is not underdosed [5,6].
156	The literature has previously reported on factors affecting the dosing of
157	perioperative antibiotics, specifically patient weight. One study demonstrated that 2 g of
158	cefazolin provided 5 hours of adequate levels of prophylactic protection for patients
159	regardless of their BMI [18]. Edminston et al. reported on cefazolin serum concentrations
160	in morbidly obese undergoing gastric bypass, concluding that 2 g of cefazolin may not be
161	sufficient for patients with a BMI of 50 Kg/m ² or greater [22]. A prospective randomized
162	controlled trial (RCT) of morbidly obese patients undergoing gastroplasty reported
163	decreased wound infection rate from 16.5% to 5.6% when cefazolin dosed was increased
164	from 1 g to 2 g [23]. In contrast to our study, Kheir et al. found a comparable PJI rate
165	among stratified vancomycin dosage groups (underdosed 2%, adequately dosed 2%,
166	overdosed 2%, p=0.995), however reported that 64% of patients receiving vancomycin as
167	prophylaxis were underdosed and overall patients receiving vancomycin prophylaxis
168	were at an increased risk of PJI (OR 1.587, p=0.048) compared to patients receiving
169	cefazolin prophylaxis [4]. Sharareh et al. found no difference in cefazolin concentration
170	in trabecular bone with respect to patient weight [24]. Additionally, Manrique et al.

reported that patients undergoing total knee arthroplasty (TKA) who were underweight
had a higher likelihood of surgical site infection compared to other weight groups [25].
However, we do recognize that the majority of these studies report results by BMI as
opposed to weight, which may create confusion as dosing is based on weight not BMI.
The present study reports data by weight category as opposed to BMI.

176 The present study has several limitations. First, the retrospective nature of the 177 study is subject to the inherent bias of retrospective work. Second, underdosed patients 178 weighing greater than 120 kg may have been predisposed to adverse conditions due to 179 morbidity associated with obesity rather than inadequate dosing of cefazolin. Third, 180 despite having more than 17,000 patients, we may still be underpowered given the low 181 rate of PJI. Fourth, the present study encompasses a large time-period and there may be protocol changes over this time-period that may not be accounted for. Fifth, while our 182 183 study primarily focuses on weight, other factors that influence antibiotic dosing such as 184 liver and kidney function, gender, and fat distribution were not considered. However, despite the aforementioned limitations, the present study does bring to light important 185 dosing considerations when treating patients weighing 120 kg or more. 186

Perioperative antibiotics remain an important strategy in protection against PJI, one of the most devastating complications following TJA. While the majority of patients remain adequately dosed, underdosing of cefazolin in the obese patient is common. We suggest orthopaedic surgeons incorporate proper weight based antibiotic dosing in their preoperative planning. Orthopaedic surgeons must be vigilant when treating patients weighing 120 kg or greater as failure to adequately dose their perioperative antibiotics can unnecessarily predispose this population to PJI.

197 **REFERENCES**

198 Alijanipour P, Heller S, Parvizi J. Prevention of periprosthetic joint infection: [1] 199 what are the effective strategies? J Knee Surg 2014;27:251-8. doi:10.1055/s-0034-1376332. 200 201 [2] Hansen E, Belden K, Silibovsky R, Vogt M, Arnold WV, Bicanic G, et al. 202 Perioperative antibiotics. J Arthroplasty 2014;29:29-48. doi:10.1016/j.arth.2013.09.030. 203 [3] Bratzler DW, Dellinger EP, Olsen KM, Perl TM, Auwaerter PG, Bolon MK, et al. 204 Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg Infect 2013;14:73-156. doi:10.1089/sur.2013.9999. 205 Kheir MM, Tan TL, Azboy I, Tan DD, Parvizi J. Vancomycin Prophylaxis for 206 [4] 207 Total Joint Arthroplasty: Incorrectly Dosed and Has a Higher Rate of Periprosthetic 208 Infection Than Cefazolin. Clin Orthop 2017;475:1767-74. doi:10.1007/s11999-017-5302-0. 209 210 [5] Flegal KM. Epidemiologic aspects of overweight and obesity in the United States. 211 Physiol Behav 2005;86:599-602. doi:10.1016/j.physbeh.2005.08.050. Pai MP, Bearden DT. Antimicrobial Dosing Considerations in Obese Adult 212 [6] Patients. Pharmacother J Hum Pharmacol Drug Ther 2007;27:1081–91. 213 214 doi:10.1592/phco.27.8.1081. 215 [7] Zmistowski B, Della Valle C, Bauer TW, Malizos KN, Alavi A, Bedair H, et al. 216 Diagnosis of periprosthetic joint infection. J Arthroplasty 2014;29:77-83. 217 doi:10.1016/j.arth.2013.09.040. 218 AlBuhairan B, Hind D, Hutchinson A. Antibiotic prophylaxis for wound [8] 219 infections in total joint arthroplasty: a systematic review. J Bone Joint Surg Br 220 2008;90:915-9. doi:10.1302/0301-620X.90B7.20498. 221 Tan TL, Gomez MM, Kheir MM, Maltenfort MG, Chen AF. Should Preoperative [9] 222 Antibiotics Be Tailored According to Patient's Comorbidities and Susceptibility to 223 Organisms? J Arthroplasty 2017;32:1089-1094.e3. doi:10.1016/j.arth.2016.11.021. Hansen E, Belden K, Silibovsky R, Vogt M, Arnold W, Bicanic G, et al. 224 [10] 225 Perioperative antibiotics. J Orthop Res Off Publ Orthop Res Soc 2014;32 Suppl 1:S31-226 59. doi:10.1002/jor.22549. 227 [11] Bratzler DW, Houck PM, Surgical Infection Prevention Guideline Writers 228 Workgroup. Antimicrobial prophylaxis for surgery: an advisory statement from the 229 National Surgical Infection Prevention Project. Am J Surg 2005;189:395-404. 230 doi:10.1016/j.amjsurg.2005.01.015. 231 Neu HC. Cephalosporin antibiotics as applied in surgery of bones and joints. Clin [12] 232 Orthop 1984:50-64. 233 American Academy of Orthopaedic Surgeons; Information statement: [13] 234 recommendations for the use of intravenous antibiotic prophylaxis in primary total joint 235 arthroplasty. AAOS n.d. 236 WHO | Global guidelines on the prevention of surgical site infection. WHO n.d. [14] 237 http://www.who.int/gpsc/ssi-prevention-guidelines/en/ (accessed November 19, 2017). 238 Leaper D, Burman-Roy S, Palanca A, Cullen K, Worster D, Gautam-Aitken E, et [15] 239 al. Prevention and treatment of surgical site infection: summary of NICE guidance. BMJ 240 2008;337:a1924.

- 241 [16] Guidelines Library | Infection Control | CDC n.d.
- https://www.cdc.gov/infectioncontrol/guidelines/index.html (accessed November 19, 2017).
- 244 [17] Pan S-D, Zhu L-L, Chen M, Xia P, Zhou Q. Weight-based dosing in medication
- use: what should we know? Patient Prefer Adherence 2016;10:549–60.
- 246 doi:10.2147/PPA.S103156.
- 247 [18] Ho VP, Nicolau DP, Dakin GF, Pomp A, Rich BS, Towe CW, et al. Cefazolin
- dosing for surgical prophylaxis in morbidly obese patients. Surg Infect 2012;13:33–7.
 doi:10.1089/sur.2010.097.
- 250 [19] Meehan J, Jamali AA, Nguyen H. Prophylactic antibiotics in hip and knee
- 251 arthroplasty. J Bone Joint Surg Am 2009;91:2480–90. doi:10.2106/JBJS.H.01219.
- 252 [20] Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in
- Obesity Among Adults in the United States, 2005 to 2014. JAMA 2016;315:2284–91.
 doi:10.1001/jama.2016.6458.
- [21] Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision
 hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am
 2007;89:780–5. doi:10.2106/JBJS.F.00222.
- 258 [22] Edmiston CE, Krepel C, Kelly H, Larson J, Andris D, Hennen C, et al.
- 259 Perioperative antibiotic prophylaxis in the gastric bypass patient: do we achieve
- 260 therapeutic levels? Surgery 2004;136:738–47. doi:10.1016/j.surg.2004.06.022.
- 261 [23] Forse RA, Karam B, MacLean LD, Christou NV. Antibiotic prophylaxis for
- surgery in morbidly obese patients. Surgery 1989;106:750–6; discussion 756-757.
- 263 [24] Sharareh B, Sutherland C, Pourmand D, Molina N, Nicolau DP, Schwarzkopf R.
- Effect of Body Weight on Cefazolin and Vancomycin Trabecular Bone Concentrations in
 Patients Undergoing Total Joint Arthroplasty. Surg Infect 2016;17:71–7.
- 266 doi:10.1089/sur.2015.067.
- 267 [25] Manrique J, Chen AF, Gomez MM, Maltenfort MG, Hozack WJ. Surgical site 268 infection and transfusion rates are higher in underweight total knee arthroplasty patients.
- 269 Arthroplasty Today 2017;3:57–60. doi:10.1016/j.artd.2016.03.005.
- 270

Cohort (n= 17,393)			
	Adequately Dosed (n=14,537)	Underdosed (n=2,856)	P value
Age (year)	63.5 (0.09)	63.5 (0.22)	0.849
Gender (male)	6417 (44.1%)	1736 (60.8%)	< 0.001
BMI	29.55 (0.04)	32.11 (0.13)	< 0.001
Weight (kg)	84.41 (0.14)	97.17 (0.49)	< 0.001
CCI	0.391 (0.01)	0.386 (0.02)	< 0.001
Joint (knee)	6895 (47.4%)	1320 (46.2%)	0.235
LOS	2.67 (0.02)	3.05 (0.05)	< 0.001
90 day Readmission	555 (3.8%)	128 (4.5%)	0.113
1-year PJI	125 (0.86%)	43 (1.51%)	0.002
	Stratified by We	eight	
	< 120 kg (n=16,409)	≥120 kg (n=984)	P value
Age (year)	63.9 (0.09)	57.8 (0.29)	0.039
CCI	0.387 (0.01)	0.441 (0.03)	0.100
Joint (knee)	8047 (46.6%)	567 (57.8%)	< 0.001
LOS	2.71 (0.02)	3.11 (0.08)	0.618
90 day Readmission	614 (3.7%)	69 (7.0%)	< 0.001
Underdosed	1912 (11.7%)	944 (95.9%)	< 0.001
1-year PJI	136 (0.83%)	32 (3.25%)	< 0.001

Table 1: Demographic information and dosing information

Data presented in table as mean (standard error) or number (percentage)

Abbreviations: BMI, Body Mass Index; kg, kilogram; CCI, Charlson Comorbidity index; LOS, Length of Stay; PJI, Periprosthetic Joint Infection

	Adjusted Odds Ratio	P Value
Underdosed	1.762	0.002
Gender (male)	1.517	0.014
Joint (knee)	0.900	0.512
Younger Age (year)	1.010	0.174
Weight (kg)	1.025	< 0.001
BMI	1.080	< 0.001
CCI	1.251	< 0.001

Table 2: Bivariate analysis of Cefazolin and 1-year PJI

Abbreviations: PJI, Periprosthetic Joint Infection; kg, kilogram; BMI, Body Mass Index; CCI, Charlson Comorbidity index

Regression		
	Adjusted Odds Ratio	P Value
Underdosed	1.665	0.006
Gender (male)	1.372	0.067
Younger Age (year)	1.011	0.130
CCI	1.259	< 0.001

Table 3: Multivariate analysis for weight-based dosing of Cefazolin and likelihood of PJI

Abbreviations: PJI, Periprosthetic Joint Infection; kg, kilogram; CCI, Charlson Comorbidity index