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ABSTRACT

The identification of phyllosilicates by NASA’s CRISM

(Compact Reconnaissance Imaging Spectrometer for Mars)

strongly suggests the presence of water-related geologi-

cal processes. A variety of water-bearing phyllosilicate

minerals have already been identified by several research

groups utilizing spectral enrichment techniques and matching

phyllosilicate-rich regions on the Martian surface to known

spectra of minerals found on earth. However, fully auto-

mated analysis of the CRISM data remains a challenge for

two main reasons. First, there is significant variability in the

spectral signature of the same mineral obtained from different

regions on the Martian surface. Second, the list of mineral

confirmed to date constituting the set of training classes is not

exhaustive. Thus, when classifying new regions, using a clas-

sifier trained with selected minerals and chemicals, one must

consider the potential presence of unknown materials not

represented in the training library. We made an initial attempt

to study these problems in the context of our recent work on

partially-observed classification models and present results

that show the utility of such models in identifying spectra of

unknown minerals while simultaneously recognizing spectra

of known minerals.

Index Terms— semi-supervised learning, unknown class

discovery, mars, crism, mineralogy, phyllosilicates

1. INTRODUCTION

The Compact Reconnaissance Imaging Spectrometer for

Mars (CRISM) is a hyperspectral imaging spectrometer on

board the Mars Reconnaissance Orbiter (MRO), and mea-

sures the visible and infrared electromagnetic radiation from

0.4 to 4.0 μm using two detectors (S and L) that cover the

spectral region from 0.4 to 1.0 μm and 1.0 to 4.0 μm, re-

spectively. CRISM operates in two modes: multispectral

untargeted and hyperspectral targeted. When operating in the

targeted mode CRISM can collect data in 544 channels with a

spatial resolution of 15-38 m/pixel. Radiance data measured

by CRISM were converted to I/F data by computing the ratio

of the radiance to the solar irradiance at Mars [1].

CRISM images acquired by the L detector were previ-

ously analyzed to identify minerals that can be chemically al-

tered by water (iron bearing minerals or iron oxides) or those

that form in the presence of water (phyllosilicates and carbon-

ates) [2, 3]. We investigate the utility of a partially-observed

classification model in discovering new minerals on the Mar-

tian surface with the CRISM image. Simple atmospheric and

photometric corrections were applied to all data cubes using

the CRISM Analysis Toolkit developed by the CRISM sci-

ence team [4]. Only the spectral channels that cover the spec-

tral region from 1.0 to 2.6μm (248 channels) are used in ex-

periments performed in this study. The channels correspond-

ing to the remaining part of the spectrum (2.6 to 4.0μm) were

excluded because they do not offer much additional informa-

tion for classifying phyllosilicates and show low data quality

and residual artifacts.

We use images of the Nili Fossae region analyzed in [3]

to construct a labeled data set. Several subregions contain-

ing Fe/Mg smectite, zeolite, kaolinite, chlorite, carbonate, K

mica, hydrated silica, and serpentine have already been re-

ported in [3]. We expand these subregions by including new

ones, which are initially identified with the help of summary

parameters [5] and then confirmed by spectral enrichment fol-

lowed by spectral matching. In addition to several subregions

identified as belonging to the previously reported mineralogy,

we identified two subregions with almost identical spectral

signatures, but that do not match any of the eight previously

reported mineral types for these images.

There are nine different mineral types in our labeled data

set, eight of which are known and the remaining one is un-

known. The list of mineral classes along with the number of

subregions and pixels for each class are shown in Table 1. In

addition to the one unknown mineral component, available we

will treat serpentine as a known unknown and sequester sub-

regions belonging to these two types from the rest of the data.

Serpentine is chosen as a known unknown because it was re-

ported on the Martian surface for the first time in the Nili

Fossae region [3], the region from which the labeled data set

used in this study is derived. The remaining subregions cov-

ering seven different mineral types were split into two groups

for training and testing. Subregions belonging to serpentine

and to the unmatched mineral class were merged with the test

set. This way a test set that contains two additional classes

than those observed in the training data set is constructed.

The classification task involves classifying pixels of observed
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Mineral Class Number of Subregions Number of Pixels

K Mica 7 69

Fe/Mg Smectite 20 2166

Carbonate 7 599

Chlorite 5 301

Kaolinite 3 147

Silica 4 338

Zeolite 4 121

Serpentine 8 310

Unmatched 2 57

Table 1. The list of mineral classes and the number of sub-

regions and pixels available from each class. Unobserved

classes are shown in boldface font.

classes to their respective classes while discovering and mod-

eling the two classes not observed during training. The iso-

metric log-ratio transform [6] is applied to each pixel data

before using this data for classification.

The rest of this paper is organized as follows. In Sec-

tion 2 we review the partially-observed hierarchical Dirichlet

process. In Section 3 we present and discuss experimental re-

sults. In Section 4 we conclude with the strengths and limita-

tions of a partially-observed classification model and present

future directions for research.

2. PARTIALLY-OBSERVED CLASSIFICATION
MODELS

The unobserved class problem is traditionally studied within

the scope of anomaly/novelty detection problems, where sam-

ples of unobserved classes are treated as anomalies/novelties

that are usually discovered by density- or kernel-based tech-

niques. Although these techniques show some promise in

distinguishing samples of unobserved classes from observed

ones, they cannot differentiate between samples of multiple

unobserved classes and may not be readily useful for simulta-

neous discovery of multiple classes.

In this section we briefly describe partially-observed clas-

sification models [7]. In this framework each class is modeled

by a Gaussian mixture model (GMM) with an unknown num-

ber of components. A partially-observed classification model

arises when the training data set is non-exhaustively defined

in terms of the set of classes or the set of components for some

or all of the classes or both. The test data may contain samples

from classes and subclasses that are not observed in the train-

ing data. Under such settings classification with a fixed model

becomes impractical, as samples of classes and components

in the test data that are not observed during training will be

misclassified with certainty. A dynamic model that can adjust

itself by adding new classes and components as needed can

better accommodate test data.

Toward achieving this end we define a hierarchical Dirich-

let process (HDP) [8] over component distributions to dy-

namically model the number of classes and their compo-

nents. HDP extends Dirichlet process (DP) [9], which is

mainly used in clustering and density estimation problems

as a non-parametric prior defined over the number of mix-

ture components. A DP can be considered as a distribution

over distributions. HDP models each group of data in the

form of a Dirichlet process mixture (DPM) model, where

DPM models across different groups are connected together

through a higher level DP. We use the notation xji ∈ �d,

i = {1, ..., nj}, j = {1, ..., J} to identify sample i in class j,

where nj denotes the number of samples in class j, J is the

total number of classes, and θji defines the parameters of the

mixture component associated with xji. Each xji is associ-

ated with a mixture component defined by the parameter θji,
which is generated i.i.d. from a Dirichlet process as follows:

xji|θji ∼ p(·|θji) for each j, i

θji|Gj ∼ Gj for each j, i
(1)

where Gj are random probability measures distributed i.i.d.

according to a DP with base distribution G0 and precision pa-

rameter α. In this framework, unlike continous distributions,

the probability of sampling the same θji twice is not zero.

Thus Gj is considered a discrete distribution. The precision

parameter, α, controls the prior probability of assigning a new

sample to a new component and thus, plays a critical role in

the number of components generated. In the HDP model the

base distribution G0 is distributed according to a higher level

DP with a base distribution H and parameter γ. This hier-

archical model couples Gj and allows for sharing of mixture

components within and between groups. The HDP model is

completed as follows:

Gj |G0, α ∼ DP (G0, α) for each j

G0|H, γ ∼ DP (H, γ)
(2)

The sharing mechanism inherent with the HDP model

not only mitigates the curse of dimensionality problem but

also connects observed classes with unobserved ones through

sharing of their parameters. To avoid unidentifiable mixture

components, we limit sharing with covariance matrices of

components while leaving their mean vectors free. The com-

ponent membership of training samples and component and

class membership of test samples are jointly inferred by a

collapsed Gibbs sampler as described in detail in [7]. Each

sweep of the Gibbs sampler also involves sampling γ and α
values using the technique described in [10].

Component data are distributed according to a Gaussian

distribution with mean vector μ and a covariance matrix Σ.

For the base distribution H we define a conjugate prior:

H = p (μ,Σ) = N
(
μ|μ0,

Σ

κ

)
︸ ︷︷ ︸

p(μ|Σ)

×W−1 (Σ|Σ0,m)︸ ︷︷ ︸
p(Σ)

(3)



where μ0 is the prior mean and κ is a scaling constant that

controls the deviation of the mean vectors of mixture compo-

nents from the prior mean. The smaller the κ, the larger the

scattering between the components will be. The parameter Σ0

is a positive definite matrix that encodes our prior belief about

the expected Σ. The parameter m is a scalar that is negatively

correlated with the degrees of freedom. In other words, the

larger the m is the less Σ will deviate from Σ0 and vice versa.

The parameters (Σ0, μ0, κ) are estimated using training sam-

ples in the same way as described in our earlier work [11] and

m is vaguely defined as 1.5d, where d is the dimensionality

of the data.

To evaluate the collapsed Gibbs sampler we need the pre-

dictive distribution p(x|x̄, S) for each component, where x̄
and S denotes sample mean and covariance matrices, respec-

tively. Under the prior model considered above p(x|x̄, S)
turns out to be a multivariate Student-t distribution.

3. EXPERIMENTAL RESULTS

We evaluate the performance of the partially-observed HDP

(PO-HDP) for classifying test samples of mineral classes

shown in Table 1. The model is trained in a semi-supervised

fashion using samples from training and test data sets together

with the model blinded to test labels. Once the Gibbs sampler

converges to the target distribution we record the Gibbs state

that maximizes the mode and use this state for evaluation

purposes.

Components containing at least one training sample from

an observed class are considered observed and are readily as-

sociated with that class. Components containing only test

samples are considered unobserved. These may point to un-

observed components of observed classes but may also point

to components of unobserved classes. To associate these com-

ponents with observed and unobserved classes we use class

labels of test samples and associate each component with the

class that has the most number of samples in that component.

After all components are associated with classes the classifi-

cation performance on the test data is evaluated by F1 scores

computed separately for each of the nine classes.

The performance of the PO-HDP model is compared

against a support vector machine (SVM) classifier as well

as an anomaly detection technique based on support vector

domain description (SVDD). For the SVM classifier a one-

against-all multi-class classification approach is adopted. The

parameters of the SVM are tuned to maximize the average F1

score on the validation data set, which is produced from the

training data set by randomly sequestering 35% of the subre-

gions available in that set. Once the parameters are tuned, the

final classifier is trained using all subregions in the original

training data. This classifier is evaluated on the test data and

F1 scores are recorded.

The SVDD approach fits a tight hypersphere on to each

class training data. During the testing phase the distances

F1 Scores

Mineral Class PO-HDP SVM SVDD

K Mica 0.64 0.42 0.54

Fe/Mg Smectite 0.84 0.68 0.61

Carbonate 0.88 0.72 0.68

Chlorite 0.91 0.79 0.00

Kaolinite 1.00 0.90 0.00

Silica 1.00 0.71 0.91

Zeolite 1.00 0.90 0.00

Serpentine 0.85 0.00 0.00

Unmatched 0.88 0.00 0.00

Table 2. F1 scores obtained on the test data set for the

nine mineral classes using PO-HDP, SVM, and SVDD. Un-

observed classes are shown in boldface font.

from test samples to the center of each hypersphere are com-

puted. Samples whose distances to the center of a hyper-

sphere are less than a pre-optimized threshold, i.e., some mul-

tiples of the radius of that hypersphere, are assigned to the

class associated with that hypersphere. Samples that are not

assigned to any of the classes are identified as samples of un-

known classes. The parameters are optimized similar to the

tuning process described above for SVM.

The results of the classification for all three techniques are

shown in Table 2. PO-HDP shows great promise not only in

classifying samples of observed classes by more accurately

modeling their underlying class densities but also in discov-

ering and recovering components of unobserved classes with

fairly good accuracy. SVM performs slightly worse than PO-

HDP on observed classes. Since SVM cannot discover new

classes, samples of the two unobserved classes are misclassi-

fied into one of the observed classes noticeably reducing F1

scores for some of these classes. SVDD is included in this

analysis to serve as a benchmark for detecting samples of un-

observed classes. Despite extensive tuning, SVDD fails to

identify any samples from these two classes. Its performance

on the observed classes is not very promising either.

The number of observed and unobserved components

generated by the PO-HDP model for each of the nine classes

are shown in Table 3. A total 47 components are generated,

of which 36 are observed and 11 are unobserved. Three

of the unobserved components are associated with observed

classes, possibly indicating that the test data set contains spec-

tral variants of these classes different from those included in

the training data set.

4. CONCLUSIONS

Automated analysis of images acquired by planetary orbital

spectrometers is a challenge not only because of the many

natural and instrumental limitations we face but also owing to

our inability to define beforehand what we should be looking

at in these images. Partially-observed classification models

can be used for more effective analysis of these images for



Number of Components

Mineral Class Observed Unobserved

K Mica 4 0

Fe/Mg Smectite 17 2

Carbonate 5 0

Chlorite 3 0

Kaolinite 2 1

Silica 1 0

Zeolite 4 0

Serpentine 0 7

Unmatched 0 1

Table 3. Number of components generated by PO-HDP. Un-

observed classes are shown in boldface font.

discovery of unknown rock/mineral types while classifying

regions with matching spectra into their respective classes.

Experimental results on a small mineral data set acquired by

the CRISM spectrometer suggest that there is promise in such

endeavors.

Although convergence of the Gibbs sampler was not an

issue for the small data set considered in this study, scal-

ing the PO-HDP model to larger images will require devel-

oping more efficient sampling schemes. This is a very gen-

eral problem that afflicts most Markov Chain Monte Carlo

(MCMC) techniques. Particle filters, sequential Monte Carlo

samplers, and variational Bayes techniques can be explored

toward this end with some success. In most practical settings

finding out whether an unobserved component belongs to an

observed or unobserved class will be a challenge. However, if

a training library with most common spectral variants of ob-

served classes can be constructed, new compositional compo-

nents can be more confidently assigned to unobserved classes,

which can then be identified by comparing their image spectra

with laboratory-measured spectra of minerals found on earth.

The proposed framework facilitates such a verification task by

on-the-fly clustering of samples not fitting into one of the ob-

served classes and allows for verification at the cluster level,

as opposed to the sample level as would otherwise be done

with most anomaly/novelty detection algorithms.
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