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Abstract: All natural bilinear operators transforming pairs of couples of vector fields and 1 -forms into couples of vector
fields and 1 -forms are found. All natural bilinear operators as above satisfying the Leibniz rule are extracted. All natural
Lie algebra brackets on couples of vector fields and 1 -forms are collected.
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1. Introduction
Let Mfm be the category of m -dimensional C∞ manifolds and their embeddings.

The ”doubled” tangent bundle T ⊕ T ∗ over Mfm is of great interest because of the seminal papers,
where it is proved that it has the natural inner product, and the Courant bracket, see, e.g., [1, 4, 5].

If m ≥ 2 , we classify all Mfm -natural bilinear operators

A : (T ⊕ T ∗)× (T ⊕ T ∗)⇝ T ⊕ T ∗

transforming pairs of couples Xi⊕ωi ∈ X (M)⊕Ω1(M) (i = 1, 2) of vector fields and 1 -forms on m -manifolds
M into couples A(X1 ⊕ ω1, X2 ⊕ ω2) ∈ X (M)⊕ Ω1(M) of vector fields and 1 -forms on M .

In particular, we get that if m ≥ 2 then any Mfm -natural skew-symmetric bilinear operator A :

(T ⊕T ∗)× (T ⊕T ∗)⇝ T ⊕T ∗ coincides with the Courant bracket up to three real constants; see Corollary 3.3.
If m ≥ 2 , we find all Mfm -natural bilinear operators A : (T ⊕ T ∗)× (T ⊕ T ∗)⇝ T ⊕ T ∗ satisfying the

Leibniz rule
A(X,A(Y, Z)) = A(A(X,Y ), Z) +A(Y,A(X,Z))

for any X,Y, Z ∈ X (M)⊕ Ω1(M) and M ∈ obj(Mfm) .
If m ≥ 2 , we also find all Mfm -natural Lie algebra brackets [−,−] on X (M)⊕ Ω1(M) , i.e. all Mfm -

natural skew-symmetric bilinear operators A = [−,−] as above satisfying the Leibniz rule.

Some linear natural operators on vector fields, forms, and some other tensor fields have been studied in
many papers; see [2, 3, 7, 8], etc.
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From now on, (xi) (i = 1, ...,m) denote the usual coordinates on Rm and ∂i =
∂

∂xi are the canonical
vector fields on Rm .

All manifolds are assumed to be Hausdorff, second countable, finite dimensional, without boundary, and
smooth (of class C∞ ). Maps between manifolds are assumed to be C∞ .

2. The basic notions
The notion of natural operators is rather well known. In the present note we need the following particular
definitions of natural operators.

Definition 2.1 A bilinear Mfm -natural operator A : (T ⊕ T ∗) × (T ⊕ T ∗) ⇝ T ⊕ T ∗ is a Mfm -invariant
family of bilinear operators

A : (X (M)⊕ Ω1(M))× (X (M)⊕ Ω1(M)) → X (M)⊕ Ω1(M)

for m-dimensional manifolds M , where X (M) is the space of vector fields on M and Ω1(M) is the space of 1-
forms on M . The Mfm -invariance of A means that if (X1⊕ω1, X2⊕ω2) ∈ (X (M)⊕Ω1(M))×(X (M)⊕Ω1(M))

and (X
1⊕ω1, X

2⊕ω2) ∈ (X (M)⊕Ω1(M))×(X (M)⊕Ω1(M)) are φ-related by an Mfm -map φ :M →M (i.e.

X
i◦φ = Tφ◦Xi and ωi◦φ = T ∗φ◦ωi for i = 1, 2), then so are A(X1⊕ω1, X2⊕ω2) and A(X

1⊕ω1, X
2⊕ω2) .

Definition 2.2 A bilinear Mfm -natural operator A : (T ⊕ T ∗) × (T ⊕ T ∗) ⇝ T is a Mfm -invariant family
of bilinear operators

A : (X (M)⊕ Ω1(M))× (X (M)⊕ Ω1(M)) → X (M)

for m-manifolds M .

Definition 2.3 A bilinear Mfm -natural operator A : (T ⊕ T ∗)× (T ⊕ T ∗)⇝ T ∗ is a Mfm -invariant family
of bilinear operators

A : (X (M)⊕ Ω1(M))× (X (M)⊕ Ω1(M)) → Ω1(M)

for m-manifolds M .

Remark 2.4 By the multilinear Peetre theorem, see [6], any Mfm -natural bilinear operator A (as above) is
of finite order. It means that there is a finite number r such that we have the following implication

(jrxXi = jrxXi, j
r
xωi = jrxωi, i = 1, 2) ⇒ A(X1 ⊕ ω1, X2 ⊕ ω2)|x = A(X1 ⊕ ω1, X2 ⊕ ω2)|x

Remark 2.5 We say that an operator A is regular if it transforms smoothly parametrized families of objects
into smoothly parametrized families. One can show that bilinear Mfm -natural operators are regular because of
the Peetre theorem.

Definition 2.6 A Mfm -natural operator B : T ⊕ T (0,0) ⇝ T ∗ is a Mfm -invariant family of regular (not
necessarily bilinear) operators

B : X (M)⊕ C∞(M) → Ω1(M)

for m-manifolds M , where C∞(M) is the space of smooth maps M → R .
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The most interesting example of a bilinear Mfm -natural operator A : (T ⊕ T ∗)× (T ⊕ T ∗)⇝ T ⊕ T ∗ is
the famous Courant bracket [−,−]C presented below.

Example 2.7 On the vector bundle TM ⊕T ∗M there exist canonical symmetric and skew-symmetric pairings

< X1 ⊕ ω1, X2 ⊕ ω2 >±=
1

2
(< X2, ω1 > ± < X1, ω2 >)

for any X1 ⊕ ω1, X2 ⊕ ω2 ∈ X (M) ⊕ Ω1(M) , where < −,− >: TM ×M T ∗M → R is the usual canonical
pairing. Further, a bracket (Courant bracket) is given by

[X1 ⊕ ω1, X2 ⊕ ω2]C = [X1, X2]⊕ (LX1ω2 − LX2ω1 + d < X1 ⊕ ω1, X2 ⊕ ω2 >−)

for any X1 ⊕ ω1, X2 ⊕ ω2 ∈ X (M) ⊕ Ω1(M) , where L denotes the usual Lie derivative, d denotes the usual
differentiation, and [−,−] denotes the usual bracket on vector fields.

Definition 2.8 A Mfm -natural bilinear operator A in the sense of Definition 2.1 satisfies the Leibniz rule if

A(X,A(Y, Z)) = A(A(X,Y ), Z) +A(Y,A(X,Z))

for any X,Y, Z ∈ X (M)⊕ Ω1(M) .

The Courant bracket is skew-symmetric bilinear but does not satisfy the Jacobi identity.

3. The main results
The main results of the present note are the following classification theorems.

Theorem 3.1 If m ≥ 2 , any bilinear Mfm -natural operator A : (T ⊕T ∗)× (T ⊕T ∗)⇝ T ⊕T ∗ is of the form

A(ρ1, ρ2) = a[X1, X2]⊕ (b1LX2ω1 + b2LX1ω2 + b3d < ρ1, ρ2 >+ +b4d < ρ1, ρ2 >−)

for (uniquely determined by A) real numbers a, b1, b2, b3, b4 , where ρi = Xi ⊕ ωi for i = 1, 2 and where
< −,− >+ and < −,− >− are as in Example 2.7.

Theorem 3.2 If m ≥ 2 , any bilinear Mfm -natural operator A : (T ⊕T ∗)× (T ⊕T ∗)⇝ T ⊕T ∗ satisfying the
Leibniz rule is the constant multiple of the one of the following four operators:

A1(ρ
1, ρ2) = [X1, X2]⊕ 0

A2(ρ
1, ρ2) = [X1, X2]⊕ (LX1ω2 − LX2ω1)

A3(ρ
1, ρ2)3 = [X1, X2]⊕ LX1ω2

A4(ρ
1, ρ2) = [X1, X2]⊕ (LX1ω2 − LX2ω1 + d < X2, ω1 >)

where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2 .

From Theorem 3.1 we obtain immediately

1855



DOUPOVEC et al./Turk J Math

Corollary 3.3 If m ≥ 2 , any skew-symmetric bilinear Mfm -natural operator A : (T⊗T ∗)⊕(T⊗T ∗)⇝ T⊕T ∗

is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕ (b(LX1ω2 − LX2ω1) + cd < X1 ⊕ ω1, X2 ⊕ ω2 >−)

for (uniquely determined by A) real numbers a, b, c .

Roughly speaking, Corollary 3.3 says that any skew-symmetric bilinear Mfm -natural operator A :

(T ⊕ T ∗)× (T ⊕ T ∗)⇝ T ⊕ T ∗ coincides with the Courant bracket up to three real constants.
From Theorem 3.2 and Corollary 3.3 it follows immediately

Corollary 3.4 If dim(M) ≥ 2 , any Mfm -natural Lie algebra bracket on X (M) ⊕ Ω1(M) is the constant
multiple of the one of the following two Lie algebra brackets:

[X1 ⊕ ω1, X2 ⊕ ω2]1 = [X1, X2]⊕ 0 ,

[X1 ⊕ ω1, X2 ⊕ ω2]2 = [X1, X2]⊕ (LX1ω2 − LX2ω1) .

The rest of the paper is dedicated to proving the results mentioned above.

4. The natural operators in the sense of Definition 2.2
In this section we prove the following:

Proposition 4.1 If m ≥ 2 , any bilinear Mfm -natural operator A : (T ⊕ T ∗)× (T ⊕ T ∗)⇝ T is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]

for a (uniquely determined by A) real number a .

Proof Consider a bilinear Mfm -natural operator A : (T ⊕ T ∗) × (T ⊕ T ∗) ⇝ T . Clearly, A is determined
by the values

< A(X1 ⊕ ω1, X2 ⊕ ω2)|0 , η >∈ R

for all Xi ⊕ ωi ∈ X (Rm) ⊕ Ω1(Rm) , η ∈ T ∗
0Rm , i = 1, 2 . Moreover, by the invariance and the regularity of

A and the Frobenius theorem we may additionally assume that X1 = ∂1 and η = d0x
1 . In other words, A is

determined by the values
< A(∂1 ⊕ ω1, X ⊕ ω2)|0 , d0x

1 >∈ R

for all X ∈ X (Rm) , ωi ∈ Ω1(Rm) , i = 1, 2 . Using the invariance of A with respect to the homotheties and the
bilinearity of A we have the homogeneity condition

< A(∂1 ⊕ t(
1

t
id)∗ω

1, t(
1

t
id)∗X ⊕ t(

1

t
id)∗ω

2)|0 , d0x
1 >= t < A(∂1 ⊕ ω1, X ⊕ ω2)|0 , d0x

1 > .

Thus, by the homogeneous function theorem, since A is of finite order and regular, the value < A(∂1⊕ω1, X ⊕
ω2)|0 , d0x

1 > depends on j10X only. Then A is determined by the values

< A(∂1 ⊕ 0, (

m∑
k=1

ak∂k +

m∑
i,j=1

bjix
i∂j)⊕ 0)|0 , d0x

1 >
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for all ak, bji ∈ R , i, j, k = 1, ...,m . Then, by the invariance of A with respect to the diffeomorphisms
(t1x

1, t2x
2, ..., tmx

m) , tl ∈ R+ , l = 1, ...,m , and by the bilinearity of A , we may assume that ak = 0

for k = 1, ...,m and bji = 0 for i, j = 1, ...,m with i ̸= j , that is, A is determined by the values <

A(∂1 ⊕ 0, xi∂i ⊕ 0)|0 , d0x
1 >∈ R , i = 1, ...,m , and then A is determined by the values

< A(∂1 ⊕ 0, x1∂1 ⊕ 0)|0 , d0x
1 >∈ R and A(∂1 ⊕ 0, X ⊕ 0)|0 ∈ T0Rm

for all X ∈ X (Rm−1) (depending on x2, ..., xm ). Further by the regularity of A we may assume that X|0 ̸= 0 ,
and then (by the invariance of A with respect to local diffeomorphisms of the form idR ×ψ(x2, ..., xm) and the
Frobenius theorem) we may assume X = ∂2 . Using the bilinearity and the invariance of A with respect to the
homotheties one can easily see that A(∂1 ⊕ 0, ∂2 ⊕ 0)|0 = 0 . Consequently, A is determined by the value

< A(∂1 ⊕ 0, x1∂1 ⊕ 0)|0 , d0x
1 >∈ R ,

i.e. the vector space of all bilinear Mfm -natural operators A : (T ⊕ T ∗) × (T ⊕ T ∗) ⇝ T is not more than
1 -dimensional. On the other hand, we have the bilinear Mfm -natural operator Ao (in question) given by
Ao(X

1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2] . The proof of Proposition 4.1 is complete. 2

5. On natural operators in the sense of Definition 2.6
In this section we prove the following:

Lemma 5.1 Let B : T ⊕ T (0,0) ⇝ T ∗ be a Mfm -natural operator satisfying

B(tX ⊕ f) = t2B(X ⊕ f) = B(X ⊕ t2f),

B(X ⊕ (f + f1)) = B(X ⊕ f) +B(X ⊕ f1) .

If m ≥ 2 , then B is of the form
B(X ⊕ f) = λd(XXf) ,

for a (uniquely determined by B ) real number λ , where d is the usual differentiation.

Proof By the classical Petree theorem (since B is linear in f ), B is of finite order in f , i.e. for any m -
manifold M , any point x ∈ M and any vector field X ∈ X (M) there is a natural number r such that for
any f, f ∈ C∞(M) from jrxf = jrxf it follows B(X, f)|x = B(X, f)|x . Clearly, B is determined by the values
< B(X ⊕ f)|0 , v >∈ R for X ∈ X (Rm) , f ∈ C∞(M) , v ∈ T0Rm . By the regularity of B and m ≥ 2 , we may
assume X|0 and v are linearly independent, and then by the invariance of B and the Frobenius theorem, we
may assume X = ∂1 , and v = ∂2|0 , i.e. B is determined by the values

< B(∂1 ⊕ f)|0 , ∂2|0 >∈ R

for f ∈ C∞(Rm) . Since B is of finite order in f , we may assume, f is polynomial. Now, by the invariance
of B with respect to the diffeomorphisms (t1x

1, ..., tmx
m) , tl ∈ R+ , l = 1, ...,m and the conditions of B , we

derive that < B(∂1 ⊕ f)|0 , ∂2|0 > is determined by < B(∂1 ⊕ (x1)2x2)|0 , ∂2|0 > . Consequently, the vector space
of all such operators B is of dimension not more than 1 . On the other hand, we have an Mfm -operator Bo

in question given by Bo(X ⊕ f) = d(XXf) . Lemma 5.1 is complete. 2
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6. The natural operators in the sense of Definition 2.3
In this section we prove the following:

Proposition 6.1 Let A : (T⊕T ∗)×(T⊕T ∗)⇝ T ∗ be a bilinear Mfm -natural operator. If m ≥ 2 , then A is the
linear combination with real coefficients of the bilinear Mfm -natural operators A<j> : (T⊕T ∗)×(T⊕T ∗)⇝ T ∗

given by

A<1>(X1 ⊕ ω1, X2 ⊕ ω2) = LX2ω1

A<2>(X1 ⊕ ω1, X2 ⊕ ω2) = LX1ω2

A<3>(X1 ⊕ ω1, X2 ⊕ ω2) = d < X1 ⊕ ω1, X2 ⊕ ω2 >+

A<4>(X1 ⊕ ω1, X2 ⊕ ω2) = d < X1 ⊕ ω1, X2 ⊕ ω2 >− .

Proof Clearly, A is determined by the values

< A(X1 ⊕ ω1, X2 ⊕ ω2)|0 , v >∈ R

for all X1, X2 ∈ X (Rm) , ω1, ω2 ∈ Ω1(Rm) , v ∈ T0Rm . Consequently, using the bilinearity of A , A is
determined by the values

< A(0⊕ ω1, 0⊕ ω2)|0 , v > , < A(0⊕ ω1, X2 ⊕ 0)|0 , v > ,

< A(X1 ⊕ 0, 0⊕ ω2)|0 , v > , < A(X1 ⊕ 0, X2 ⊕ 0)|0 , v >

for all X1, X2 ∈ X (Rm) , ω1, ω2 ∈ Ω1(Rm) , v ∈ T0Rm . Using the invariance of A with respect to the
homotheties and the bilinearity of A and then applying the homogeneous function theorem, we easily deduce
that

< A(0⊕ ω1, 0⊕ ω2)|0 , v >= 0.

By the same argument, < A(0 ⊕ ω1, X2 ⊕ 0)|0 , v > depends on j10ω
1 and j10X

2 only, and (symmetrically)
< A(X1⊕0, 0⊕ω2)|0 , v > depends on j10ω

2 and j10X
1 only, and (similarly) < A(X1⊕0, X2⊕0)|0 , v > depends

on j30X
1 and j30X

2 only. Next, by the regularity of A we may assume X1
|0 and v are linearly independent,

and then by the Frobenius theorem we may assume that X1 = ∂1 and v = ∂2|0 . Then, using the invariance
of A with respect to (t1x

1, ..., tmx
m) for tl ∈ R+ , l = 1, ...,m , we may assume < A(X1 ⊕ 0, 0 ⊕ ω2)|0 , v > is

determined by

c1 :=< A(∂1 ⊕ 0, 0⊕ x1dx2)|0 , ∂2|0 > and c3 :=< A(∂1 ⊕ 0, 0⊕ x2dx1)|0 , ∂2|0 > .

By similar arguments, we may assume < A(0⊕ ω1, X2 ⊕ 0)|0 , v > is determined by

c2 :=< A(0⊕ x1dx2, ∂1 ⊕ 0)|0 , ∂2|0 > and c4 :=< A(0⊕ x2dx1, ∂1 ⊕ 0)|0 , ∂2|0 > ,

and (similarly) we may assume < A(X1 ⊕ 0, X2 ⊕ 0)|0 , v > is determined by

dk :=< A(∂1 ⊕ 0, x1x2xk∂k ⊕ 0)|0 , ∂2|0 > , k = 1, ...,m .
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The above facts imply that A is determined by the real numbers dk and

b1 := c2, b2 := c1, b3 := c3 + c4, b4 := c4 − c3 .

We prove that A =
∑4

j=1 bjA
<j> .

Replacing A by A −
∑4

j=1 bjA
<j> , we may assume b1 = b2 = b3 = b4 = 0 , i.e. we may assume that A is

determined by the values dk , i.e. we may assume that A is determined by the value

< A(∂1 ⊕ 0, (x1)2x2∂1 ⊕ 0)|0 , ∂2|0 >∈ R

together with the values

A(∂1 ⊕ 0, x1Y ⊕ 0)|0 ∈ T ∗
0Rm

for all vector fields Y ∈ X (Rm−1) (depending on x2, , ..., xm ). Next, by the regularity of A , we may assume
Y|0 ̸= 0 , and then, by the invariance of A with respect to local diffeomorphisms of the form idR ×ψ(x2, ..., xm)

and the Frobenius theorem, we may assume Y = ∂2 . However,

A(∂1 ⊕ 0, x1∂2 ⊕ 0)|0 = 0

because of the invariance of A with respect to the homotheties. Consequently, A is determined by the Mfm -
natural operator B : T ⊕ T (0,0) ⇝ T ∗ given by

B(X ⊕ f) := A(X ⊕ 0, fX ⊕ 0) ,

M ∈ obj(Mfm) , X ∈ X (M) , f ∈ C∞(M) . Clearly, B satisfies the assumptions of Lemma 5.1. Then we have
λ ∈ R such that

B(X ⊕ f) = λd(XXf)

for any M ∈ obj(Mfm) , X ∈ X (M) and f ∈ C∞(M) . In particular,

A(x1∂1 ⊕ 0, ∂1 ⊕ 0) = B(x1∂1 ⊕
1

x1
) = λd[(x1∂1) ◦ (x1∂1)(

1

x1
)] = λ

1

x1
dx1

over Rm \ {0} . Then λ = 0 because A(x1∂1 ⊕ 0, ∂1 ⊕ 0) is a smooth form on all Rm and 1
x1 dx

1 is not
extendable to a smooth form on Rm . Then B = 0 , and then A = 0 (under the additional assumption). It
means A =

∑4
j=1 bjA

<j> , where the numbers bj are defined above. The proof of Proposition 6.1 is complete.
2

7. Proof of Theorem 3.1

Proof Theorem 3.1 is an immediate consequence of Propositions 4.1 and 6.1. 2

8. Proof of Theorem 3.2
In this section we prove Theorem 3.2 as follows:
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Proof Let A : (T ⊕ T ∗) × (T ⊕ T ∗) ⇝ T ⊕ T ∗ be a bilinear Mfm -natural operator satisfying the Leibniz
rule. By Theorem 3.1, A is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕ (b1LX2ω1 + b2LX1ω2 + c1d < X2, ω1 > +c2d < X1, ω2 >)

for (uniquely determined by A) real numbers a, b1, b2, c1, c2 , where < −,− > is as in Example 2.7. Then for
any X1, X2, X3 ∈ X (M) and ω1, ω2, ω3 ∈ Ω1(M) we have

A(X1 ⊕ ω1, A(X2 ⊕ ω2, X3 ⊕ ω3)) = a2[X1, [X2, X3]]⊕ Ω ,

A(A(X1 ⊕ ω1, X2 ⊕ ω2), X3 ⊕ ω3) = a2[[X1, X2], X3]⊕Θ ,

A(X2 ⊕ ω2, A(X1 ⊕ ω1, X3 ⊕ ω3)) = a2[X2, [X1, X3]]⊕ T ,

where

Ω = b1La[X2,X3]ω
1 + c1d < a[X2, X3], ω1 >

+b2LX1(b1LX3ω2 + b2LX2ω3 + c1d < X3, ω2 > +c2d < X2, ω3 >)

+c2d < X1, b1LX3ω2 + b2LX2ω3 + c1d < X3, ω2 > +c2d < X2, ω3 >> ,

Θ = b2La[X1,X2]ω
3 + c2d < a[X1, X2], ω3 >

+b1LX3(b1LX2ω1 + b2LX1ω2 + c1d < X2, ω1 > +c2d < X1, ω2 >)

+c1d < X3, b1LX2ω1 + b2LX1ω2 + c1d < X2, ω1 > +c2d < X1, ω2 >> ,

T = b1La[X1,X3]ω
2 + c1d < a[X1, X3], ω2 >

+b2LX2(b1LX3ω1 + b2LX1ω3 + c1d < X3, ω1 > +c2d < X1, ω3 >)

+c2d < X2, b1LX3ω1 + b2LX1ω3 + c1d < X3, ω1 > +c2d < X1, ω3 >> .

The Leibniz rule of A is equivalent to
Ω = Θ+ T .

Applying the differentiation d to both sides of the last equality and using the well-known formula d◦LX = LX◦d
we get

b1aL[X2,X3]dω
1 + b2b1LX1LX3dω2 + b22LX1LX2dω3

= (b2aL[X1,X2]dω
3 + b21LX3LX2dω1 + b1b2LX3LX1dω2)

+(b1aL[X1,X3]dω
2 + b2b1LX2LX3dω1 + b22LX2LX1dω3) .

If we put X1 = ∂1 , X
2 = x1∂1 , X

3 = 0 and ω1 = 0 , ω2 = 0 , ω3 = (x1)2dx2 , we get

4b22dx
1 ∧ dx2 = 2b2adx

1 ∧ dx2 + 2b22dx
1 ∧ dx2 .
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If we put X1 = 0 , X2 = ∂1 , X
3 = x1∂1 and ω1 = (x1)2dx2 , ω2 = 0 , ω3 = 0 , we get

2b1adx
1 ∧ dx2 = 2b21dx

1 ∧ dx2 + 4b2b1dx
1 ∧ dx2 .

If we put X1 = ∂1 , X
2 = 0 , X3 = x1∂1 and ω1 = 0 , ω2 = (x1)2dx2 , ω3 = 0 , we get

4b2b1dx
1 ∧ dx2 = 2b1b2dx

1 ∧ dx2 + 2b1adx
1 ∧ dx2 .

Thus,
b2a = b22 , b1a = b21 + 2b1b2 , b1b2 = b1a .

From the first equality we get b2 = 0 or b2 = a . From the third one we get b1 = 0 or b2 = a . Adding the first
two equalities we get (b2 + b1)a = (b2 + b1)

2 , i.e. b2 + b1 = 0 or b2 + b1 = a . Consequently,

(b1, b2) = (0, 0) or (b1, b2) = (0, a) or (b1, b2) = (−a, a) . (1)

Then, using the formula LXLY ω − LY LXω = L[X,Y ]ω and (1), we get

b1aL[X2,X3]ω
1 + b2b1LX1LX3ω2 + b22LX1LX2ω3

= (b2aL[X1,X2]ω
3 + b21LX3LX2ω1 + b1b2LX3LX1ω2)

+(b1aL[X1,X3]ω
2 + b2b1LX2LX3ω1 + b22LX2LX1ω3) .

Consequently, the Leibniz rule of A is equivalent to the system of (1) and

c1ad < [X2, X3], ω1 > +b2LX1(c1d < X3, ω2 > +c2d < X2, ω3 >)

+c2d < X1, b1LX3ω2 + b2LX2ω3 + c1d < X3, ω2 > +c2d < X2, ω3 >>

= c2ad < [X1, X2], ω3 > +b1LX3(c1d < X2, ω1 > +c2d < X1, ω2 >)

+c1d < X3, b1LX2ω1 + b2LX1ω2 + c1d < X2, ω1 > +c2d < X1, ω2 >>

+c1ad < [X1, X3], ω2 > +b2LX2(c1d < X3, ω1 > +c2d < X1, ω3 >)

+c2d < X2, b1LX3ω1 + b2LX1ω3 + c1d < X3, ω1 > +c2d < X1, ω3 >> .

(2)

If we put X1 = ∂1 , X
2 = ∂2 , X

3 = 0 and ω1 = 0 , ω2 = 0 , ω3 = (x2)2dx1 , we get

2c2b2dx
2 = 2c2b2dx

2 + 2c22dx
2 .

Then c2 = 0 .
If we put X1 = 0 , X2 = ∂1 , X

3 = ∂2 and ω1 = (x2)2dx1 , ω2 = 0 , ω3 = 0 we get

0 = 2b1c1dx
2 + 2c21dx

2 + 2c2b1dx
2.

Then (as c2 = 0) we get c1 = 0 or c1 = −b1 .
Consequently, we get (b1, b2, c1, c2) = (0, 0, 0, 0) or (b1, b2, c1, c2) = (0, a, 0, 0) or (b1, b2, c1, c2) =

(−a, a, 0, 0) or (b1, b2, c1, c2) = (−a, a, a, 0) . On the other hand one can directly verify that the operators
A1, . . . , A4 from Theorem 3.2 satisfy the Leibniz rule. Theorem 3.2 is complete. 2
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