
An Empirical Study of Development Visualization
for Procurement by In-Process Measurement

during Integration and Testing

 Yoshiki Mitani1,2

1
Software Engineering Center /

Information Technology Promotion
Agency (SEC/IPA), Tokyo, Japan

y-mitani@ipa.go.jp

Akito Monden2

akito-m@is.naist.jp

Hiroyuki Yoshikawa1,3
3
T&D Information System Inc.

Osaka, Japan
hiroyuki.yoshikawa@daido-life.co.jp

Mike Barker2

2
Nara Institute of Science and

Technology (NAIST)
Nara, Japan

mbarker@MIT.EDU

Seishiro Tsuruho1,4

4
Kochi University of Technology

Kochi, Japan
tsuruho@ipa.go.jp

Ken-ichi Matsumoto2

matumoto@is.naist.jp

ABSTRACT

This study describes a new method of development visualization

along with empirical evidence of its usefulness.

Typically, development activities such as program design,

programming, and unit testing are not disclosed to the

procurement organization (project owner). However, during

integration and testing, various issues require collaboration
between the procurement organization and developers. When this

occurs, it is important to make the development process visible.

Recent reports indicate the usefulness for project management of

various in-process project measurements which allow
visualization of the formerly invisible software project progress

[1]- [6].

Based on this background, the authors investigated a case study

where in-process measurement during the integration and test
phase helped to make development issues visible. In this study,

data obtained from the integration and testing phase were

compared to a development process model. This model was based

on the author's experience, and provided a vivid picture of the
development activity. By applying in-process measurements in

collaboration during the integration test phase, the development

activity was clearly visualized, and the procurement organization

understood problems.

1. INTRODUCTION
Originally the software development process is not easily visible.

Since the software development process is invisible, not only does

it make suitable decisions in project management impossible, but
especially in procurement type developments, if it is hard to share

project progress information between procurement side and

software vendors then it becomes very difficult to perform

suitable cooperation.

By visualizing the software development process using various

methods, both sides can share the visualized information, arrive at

suitable decisions according to each role, and provide smooth

formation of agreements as required. The breakthrough of
visualization and information sharing about the development

phase requires information that tends to be closely held inside a

vendor organization and tends to constitute a black box.

In this research, authors plan this breakthrough by applying the

method of the automatic in-process measurement which authors

have so far studied to integration test process and system test

process of following a development phase, and applying that
measurement result to one process model of the development

phase drawn from years of authors’ experience.

At first this paper introduces a development software process

model published by the authors. Then, it introduces a

measurement method based on a project measurement platform

tool named the Empirical Project Monitor (EPM). Next, it

describes a target project for measurement. Following that, the

article describes how development issues were visualized using
measurement data. The case study applied this process to the

development model and showed that issues with the project

became visible. Finally, the paper summarizes the usefulness of

the measurements and study on issues of project visualization, and
proposes a model process for measurement and feedback in

integration and testing.

2. A DEVELOPMNT PHASE PROCESS

MODEL

2.1 IT Project Visualization Activity:

“MIERUKA”
During the past four years, the authors have organized a software
engineering research task force composed of persons with many

years experience in the software development field, which has

developed an integrated method and tools for visualization of the

software process. This method was named "MIERUKA," which is
the Japanese word for visualize, and the research results were

distributed as a series of published books (in Japanese, now

partially translated into English) along with software tools from

the SEC/IPA organization [7]-[14]. This method defines the total
process as comprised of three phases, the requirements and

specifications phase, the developments phase, and the integration

and testing phase. This method also defines a process model for

the development phase.

2.2 Structure of the Process Model
The process model for the development phase defines 14 actions,

or micro processes, arranged in four functional blocks. This is

shown in Figure 1 [8]. Considering a time axis extending to the

right from the left margin, the development phase is located
between the requirements and specifications phase (requirements

phase) and the integration and testing phase (integration phase).

Project planning (project management), and project rule activities

pass through these three phases. Four functional blocks show
main activity of this phase. Ten arrows show interaction activity

between these activities.

The measurement target project described after was not quite

recommended along with the model shown here. Then
correspondence of the general process name used in the

measurement target project and our model is shown in figure 1.

For example, number one, Requirement Function Verification

corresponds to the System Architecture design (SA). Number six,
Software Design corresponds to the User Interface (UI), the

System Structure (SS), and the Program Structure (PS) design.

Number 10, Programming and Unit Test correspond to

Programming (PG) and Program Test (PT). Integration Test (IT),

System Test (ST), and Operational Test (OT) from the integration

and testing phase follow this.

During the entire process, collaboration between procurement

organization and the developers is supported by process

visualization and information sharing. Each of the 14 actions is

described below.

1) Verify requirements functions

In this activity, review and verification of products from the

specification and requirements phase is conducted. This includes

products from requirements definition, system design, project
planning, and the system architecture design (SA). This activity

often identifies a lack of decision about generalized criteria for

"what," "how far," and "in what way" in the specification and

requirements phase. During this activity, we recommend checking
subjects that should be determined during specifications and

requirements such as the request for proposal (RFP), cost, quality,

customer, risk, communication and the legal issue related to the

procurement contract.

A complete review with all related persons is a practical method

for conducting this verification. To make this activity most

successful, close collaboration between the procurement

organization and the developers is important.

2) Reconfirm requirements definition

Retrace and correct the requirements definition and system design

to remove defects found in Requirements Function Verification

(1). This may be difficult work, however projects that neglect it
encounter trouble. This work may require management decisions

such as re-examination and renegotiation of contracts.

Fig.1 Development Phase Process Model [8]

SA: System Architecture, UI: User Interface Design, SS: System Structure Design,
PS: Program Structure Design, PG: Programming, PT: Program Test, IT: Integration
Test, ST: System Test, OT: Operation Test

Requirements
Phase

Development Phase
Integration

Phase

Project Planning (Project Management), Project Rule

Requirement
Definition
System
Design

Requirement
Function
Verification

Integration/System Test
Planning

Software
Design

Programming
Unit Test

Integration
Test
System
Test

SA UI/SS/PS PG/PT IT/ST
OT

External World Restriction

1
6 10

13

4
14

129

3 8

2

5

7
11

3) Re-examine requirements definition and system design

based on implementation verification
Verify results of the verification and changes described in (1) and

(2) by considering the system implementation from the viewpoint

of customer characteristics and external restrictions. These points

must be verified from the viewpoint of various experts and
responsible individuals related to the target system to develop

necessary strategies. As part of this, procurement organization

must also make positive contributions.

4) Re-examine project planning based on requirements and

design changes

Changes identified and made in (1) to (3) must be reflected in

project planning. Generally, these changes may be difficult to

perform, and require collaboration from procurement organization,
project management, and developers. Management decisions may

be required.

5) Make integration and system test scenarios

Based on the information and changes described in (1) to (4),
develop integration test (IT) and system test (ST) scenarios. This

action should be started early in the project.

6) Produce software design

Based on the results of (1) to (3), the developers should produce
the software design. This includes the user interface design (UI),

the system structure design (SS), and program structure design

(PS). Doing this work may make defects in the previous work

visible, which requires rapid escalation and resolution.

7) Re-verify requirements definition based on software

design

Whenever defects are detected during software design (6), the

requirements definition should be re-verified. The influence of
this action may be far-reaching and un-localized, so follow up

across the project is required. Additionally, as described in (9),

such changes should be reflected in the test scenario. Contribution

by the procurement organization is essential.

8) Verify feasibility based on software design

Verify and confirm the various constraint conditions described in

the abovementioned 6) the Software Design. Review various

restrictions and recode them in documents. Result of the
verification and the recoded document will be utilized in

subsequent processes.

9) Prepare integration and system test scenarios

Incorporate results of the software design (6) into the integration
test (IT) and system test (ST) scenarios. This action should be

started as early as possible.

10) Prepare programming and unit tests

Based on results of the software design (6), prepare programming
and unit tests. This activity has a tendency to be a black box

performed by each responsible person. However, providing

visibility into this activity is important, especially since defects

detected in this activity may force revision of the software design
(6).

11) Return to software design based on programming and

unit test results

Defects detected during preparation of programming and unit tests

(10) cause a return to the software design (6). This includes

maintenance and consistency of documents. It is important to

maintain conformity between programming activities and
documentation.

12) Feedback from unit test results to integration and system

test scenarios

Results from preparation of programming and unit tests (10)
should be incorporated into the integration and system test

scenarios prepared in (9).

13) Plan integration and system testing

On the basis of (1) to (12), make plans for integration and system
test scenarios. There is a tendency to leave this entirely up to the

development vendors, however, contributions by procurement

organization can help assure that application, service, and

operations viewpoints are given adequate support.

14) Readjust project plan

Although frequently extremely difficult, when necessary, it is

essential to execute this action. Collaboration between the

procurement side and the development vendor is necessary.

3. PROJECT MEASUREMENT

PLATFORM EPM
Empirical Project Monitor (EPM) is a software project

measurement platform designed to execute automatic project

measurement. The original model was developed in a Japanese
software engineering research project named Empirical Approach

to Software Engineering (EASE) project (2003–2008) under the

form of industry and academia collaboration. Thereafter, EPM

was strongly enhanced in function and quality to meet the
commercial software product levels by SEC/IPA, which had been

established since 2004 as a governmental research organization

for software industry promotion. The basic functions are as shown

in Figure 2. This system automatically collects software process-
and product management-related data from the configuration

management system, the bug tracking system, and the mailing

management system in the software development environment.

Further, it analyzes and visualizes these data into useful forms for
project management. After the usefulness of EPM was verified in

certain verification projects, it has been adopted in over 70 real

industrial development projects and evaluated [1][2][12]-[16].

The measurement and visualization targets in EPM include, for
example, source line of code number transition, cumulative bug

number transition, remaining bug number transition, average bug

residences time transition, and mail number transition. Further,

EPM is able to analyze and visualize administrative information
that is stored in the configuration and bug tracking systems into

useful form for project management.

Fig.2 Structure of EPM [1][2]

4. OUTLINE OF THE TARGET PROJECT

AND MEASUREMENTS

4.1 Target Project
For this case study, the target project was a midscale system

requiring relatively high reliability ordered by a user company to a

software development vendor company. The development project
was developed in cooperation by the prime contractor system

integrator company along with some partner vendor companies in

a hierarchical structure commonly used in the Japanese software

industry. The user company had been significantly involved in the
requirements definition and the operational testing phases.

However, during the development phase, their project

management role was reduced to hearing declarative style reports

from the vendor companies, a common change in participation for
Japanese user companies.

The authors had used EPM to automatically collect measurements

of this project during 16 weeks of integration testing (IT) and

system testing (ST) which composed the integration and testing
phase. The specific measurement targets were configuration

management and bug tracking data. The collected data was

analyzed after completion of the integration and testing phase.

During the test (IT/ST) phase, there was no feedback from the
data analysis to project management.

4.2 Collected Data and Visualized Items
In this case study, various data were collected from the
configuration management system and the bug tracking system.

Table 1 shows the collected data and examples of visualized items.

Transition graphs made information about the source code visible

during the integration test (IT) and the system test (ST) phase.
Analysis of the bug reports made various characteristics of the

product visible.

The meaning of “undetected bug cause” is the reason why the bag

was undetected. For example, slip out of test, slip out of test item,

so on and it was recorded into the bug report until the bug was
closed.

Table 1 Collected Data and Visualized Items

Data Source Collected Data Examples of visualized items

Check-in Timing Check-in Timing

Check-out Timing Check-out Timing

Check-out Frequency Check-out Frequency

Sourse Line of Code(SLOC)
at Check-in Timing

Transition Chart of
Accumulated SLOC

Bug Detected Date
Transition Chart of
Accumulated Bugs

Bug Status
Distribution Chart of Bug
Status

Bug Closed Date

Transition Chart of
Remaining Bugs
Transition Chart of Average
Bug Resolution Times

Bug Introduction Phase
Transition Chart of Bug
Introduction Phases

Bug Cause
Distribution Chart of Bug
Causes

Undetected Bug Causes
Distribution Chart Of
Undetected Bug Causes

Distribution Chart Of
Destination Modules For Bug
Resolution Requests

Distribution Chart Of Source
Modules For Bug Resolution
Requests

Configuration
Management

System

Bug Resolution Reports

Bug
Tracking
System

Fig.3 Daily Bug Information Transition Chart

5. MEASUREMENT RESULTS

5.1 Visualized Phenomena
1) Overall situation of the measured process

Figure 3 shows the transition chart of the daily bug information

over the 16 weeks. This transition chart corresponds to the

integration test (IT) and system test (ST) phases following the
programming and unit test (PG/PT) phase. Measurements were

terminated two weeks prior to the termination date of the ST

phase. In total, 420 bugs were detected. The transitions in the

cumulative bug numbers clearly display energetic action on tests
during this period. From the transition chart of the remaining bug

numbers, it is also clear that there are remaining quality issues.

These quality issues were observed in all phases as the number of

remaining bugs never reached zero, and remaining bugs from the
IT phase were carried over into the ST phase. The histograms

showed daily detected and resolved numbers of bugs. The total

number of bugs detected in the ST phase was relatively small

compared to the number of bugs detected in the IT phase,
however, the accumulation of bugs makes it difficult to close out

the ST phase on schedule.

Figure 4 presents the check-in timing (vertical line), the check-out

timing, and the frequency (histogram) during this phase.

Fig.4 Check-in Timing & Check-out Timing/Frequency

2) Integration test (IT) phase situation

Figure 5 is a pareto graph showing the number of bugs introduced

in different phases that were detected in the IT phase. The number

of bugs introduced is greatest in the programming (PG) phase and

the system structure design (SS) phase, followed by the

integration test (IT) phase itself. Characteristically, various issues

were associated with the system structure design and

programming phase, however, considerable degradation was
observed in the integration test phase.

Figure 6 aggregates bug causes from the bug reports of the

integration test phase. Characteristically, the largest number of

bugs was attributed to "specification." This suggests that there
were issues in the specification verification process, which should

have detected such bugs well before the integration test phase.

Time (Daily)

A
c
c
u
m

u
la

te
d
/R

e
m

a
in

in
g
 B

u
g
s

Bugs Resolved

Bugs Occurred

Remaining Bugs

Accumulated Bugs

Remaining Bugs

Accumulated Bugs

O
c
c
u
rr

e
d
/R

e
s
o
lv

e
d
 B

u
g
s

Integration Test (IT) System Test (ST)

Figure 7 aggregates causes for undetected bugs from the bug

reports of the integration test phase. These results suggest that
there were issues with the unit test phase.

Figure 8 aggregates bug causes using a different categorization.

Based on this analysis, serious bug cases such as "logical error,"

"interface error," and "data definition error" are the three major
types of error. This analysis also suggests that there were issues

with the design and specification verification phase, rather than in

the programming and unit test phase.

Figure 9 is a crossing analysis graph that shows the bug causes in
each phase. This analysis points out issues with the system

structure design (SS) phase.

Bugs detected in the IT phase did not occur homogenously in the

system. Figure 10 shows the bug resolution request destination
modules, while figure 11 shows the bug resolution source

modules. When the integration and the system test are done for

each module, the module by which the bug was discovered, and

the module of the fundamental target for repair are not always the
same. This first bug discovered module is called bug resolution

request module and the module for repair is called a bug

resolution destination module. This information was recorded into

the bug report until the bug was closed.

These figures clearly indicate that three or four modules (e.g. A, B,

C, D or E) had high numbers of bugs. In further analysis, the

authors analyzed bug transitions in the top three modules using

the data search function of EPM. Figure 12- figure 14 are
multiplex line graphs that present transition charts of the

accumulated numbers of bugs, remaining numbers of bugs, and

the average bug resolution times for these top three modules.

While each module clearly has energetic test and debugging
activity, the number of detected bugs was increasing rapidly prior

to termination of the test phase. Also, in the case of modules B

and C, the ST phase was started before the number of remaining

bugs detected in the IT phase reached zero.

Fig.5 Bug Introduced Phase (IT phase)

Fig.6 Bug Causes Distribution (IT phase)

Fig.7 Undetected Bug Causes (IT phase)

Fig.8 Bug Causes (IT phase)

PG SS IT UI PS PT others

B
u

g
 N

u
m

b
e
r

A
c
c
u

m
u

la
te

d
R

a
ti
oPG: Programming

SS: System Structure Design

(Detail Design)

IT: Integration Test

UI: User Interface Design

(Basic Design)

PS: Program Structure Design

(Program Design)

PT: Program Test

Bug Introduced Phase

1.Slip Out of Test

2.Slip Out of Test Item

3.Test Result Verification Miss

4.Othes

5.Environment Issue

1 2 3 4 5

B
u

g
 N

u
m

b
e
r

Undetected Bug Causes

Fig.9 Bug Causes in each Phase (IT phase)

Fig.10 Bug Resolution Request Destination Module (IT phase)

Fig.11 Bug Resolution Request Source Module (IT phase)

Fig.12 Bug Number Transition (Module A) (IT phase)

Fig.13 Bug Number Transition (Module B) (IT phase)

1.Data Definition Error

2.Logical Error

3.Format Error

4.Interface Error

5.Others

6.Table Definition Error

2 5

12 45

1

2

3 4

5
2 4 2 3 4

1

234

56 123
4

Others IT PG PS PT SS UI

Bug Introduced Phase

B
u

g
 N

u
m

b
e
r

B
u
g
 C

a
u
s
e
s

IT: Integration Test

PG: Programming

PS: Program Structure Design

(Program Design)

PT: Program Test

SS: System Structure Design

(Detail Design)

UI: User Interface Design

(Basic Design)

Accumulated Bugs

Remaining Bugs

Average Bug Resolution Times

A
c
c
u

m
u

la
te

d
 /

 R
e
m

a
in

in
g
 B

u
g
s

B
u

g
 R

e
s
o
lu

ti
o
n

 T
im

e
s
 (

D
a
te

)

Time (Daily)

Accumulated Bugs

Remaining Bugs

Average Bug Resolution Times

A
c
c
u

m
u

la
te

d
 /

 R
e
m

a
in

in
g
 B

u
g
s

B
u

g
 R

e
s
o
lu

ti
o
n

 T
im

e
s
 (

D
a
te

)

Time (Daily)

Fig.14 Bug Number Transition (Module C) (IT phase)

3) System test (ST) phase situation

 Figure 15 provides a transition chart showing the developed
number of source lines of code and the accumulated number of

bugs in the ST phase following the IT phase. Despite the test

phase label, it is clear that the number of source lines of code was

increasing and that energetic debugging activity was being
performed. The last data measurements are from two weeks

before the deadline of the ST phase. At this point, bug detection

was continuous and it appeared difficult to complete this phase on
schedule. Figure 16 shows the final situation of this measurement,

which includes the presence of many unsolved bugs.

Figure 17 illustrates the phase of introduction attributed to each

bug. Various bugs introduced in the system structure design (SS)
and user interface design (UI) phases were detected, and several

of these bugs were unsolved.

Fig.15 Source Line Code Number Transition

and Accumulative Bug Number (ST phase)

Fig.16 Bug Status at the End of Measurement

Fig.17 Bug Status by each Bug Introduced Phase (ST phase)

Accumulated Bugs

Remaining Bugs

Average Bug Resolution Times

A
c
c
u

m
u

la
te

d
 /

 R
e
m

a
in

in
g
 B

u
g
s

B
u

g
 R

e
s
o
lu

ti
o
n

 T
im

e
s
 (

D
a
te

)

Time (Daily)

Source Line of Code

Accumulated Bug Number

S
L

O
C

B
u

g
 N

u
m

b
e
r

Time (Daily)

1.Closed

2.Under Testing

3.Others

4.Under Investigation

5.Under Correcting

1

1

5

1

1
2

2
4

3 4 1
2 4 5

2
4

5

SA UI SS PS PG
Bug Introduced Phase

B
u

g
 N

u
m

b
e
r

SS. System Structure Design

(Detail Design)

PS. Program Structure Design

(Program Design)

PG. Programming

UI. User Interface Design

(Basic Design)

SA. System Architecture Design

(Requirement Function Verification)

Fig.18 Bug Introduced Phase (ST phase)

Fig.19 Bug Causes Detected in ST phase

Fig.20 Bug Causes by Introduced Phase (ST phase)

Figure 18 provides a pareto chart of the phase of introduction of

bugs. This indicates issues in program structure design (PS),
programming (PG), and user interface design (UI) phases.

Figure 19 analyzes the bug causes. Again, the presence of many

"specification" related bugs suggests issues with the requirements

verification phase and the design phase.

Figure 20 analyzes bug causes in terms of phase of introduction.

This analysis suggests various issues in the system structure

design phase (SS).

Figure 21 accumulates the total bug causes detected in the ST
phase. Similar to the IT phase, essential errors such as Interface

error, Logical error, and Data Definition error occur in the greatest

numbers.

Fig.21 Bug Causes (ST phase)

B
u

g
 N

u
m

b
e
r

PS PG UI SS SA

UI. User Interface Design

(Basic Design)

SS. System Structure Design

(Detail Design)

SA. System Architecture Design

(Requirement Function

Verification)

Bug Introduced Phase

PS. Program Structure Design

（Program Design)

PG. Programming

1.Others

2.Slip-up Spec.
3.Others
4.Un-checked Correction

5.Simple miss
6.Un-checked reuse

7.Lack of Spec. Understanding
8.Others
9.Lack of Spec. Verification

13
1

1013
12

15

1

2

5

6
8

9

10

11
12

13

10.Slip-up Spec.

11.Lack of Programming Language Knowledge
12.Ambiguity
13.Lack of Description

14.Standard Violation
15.Descripton Error

16.Communication Error
17.Miss-much Documents

1617

1

2 7
9

11
1

2
4

5

67
9

10 11

SA UI SS PS PG

Bug Introduced Phase

B
u

g
 N

u
m

b
e
r

Requirement Ver. Basic Design Detail Design Program Design Programming

Fig.22 Bug Causes by each Introduced Phase (ST phase)

Figure 22 shows bug causes by bug introduced phase; it is clear

from this figure that there are various essential bugs introduced in

the System Structure Design (SS), the User Interface Design (UI)
and the Program Structure Design (PS) phases.

Further, in the ST phase, bugs were not detected homogeneously.

Figure 23 shows detected bugs in the ST phase by program

modules. For example, in module B, a lot of bugs were detected at
both the IT and ST phases.

Figure 24 shows the bug number transition of module B. Various

bugs were detected in the ST phase and the number of unsolved

bugs increased; this makes the termination of the phase on time
appear difficult.

Fig.23 Bug Number by each Module (Detected in ST phase)

Fig.24 Bug Number Transition of Module B

5.2 Comparison with the development phase

process model
Typically, the actual status of the development phase is largely a

black box for procurement. However, as described above, a
number of issues with development were made visible by

comparing the results of EPM measurements with the

development phase process model. Figure 25 includes figure

numbers from above that suggest the presence of various issues in
each phase. We do not know whether this target project used the

process shown in figure 1 or not. However, considering this model

as a logical model, each of the actions or micro processes must be

accomplished. Based on measurement results from the IT and ST
phases, the actions or micro processes in the development phase

were not effectively performed.

The results of this analysis indicate that bugs detected in the

integration and testing phase were introduced in the programming
and unit test phases, but also in the software design phases.

Additionally, various bugs were introduced due to insufficient

verification of the requirements definition. These results suggest

1.Interface Error

2.Others

3.Table Definition Error

4.Logical Error

5.Data Definition Error

6.Format Error

1

1

1

2

4

6
1 2

4

1

2

4

5 6

5

6B
u

g
 N

u
m

b
e
r

SA UI SS PS PG
Bug Introduced Phase

UI. User Interface Design

(Basic Design)
SS. System Structure Design

(Detail Design)

PS. Program Structure Design
(Program Design)

PG. Programming

SA. System Architecture Design

(Requirement Function Verification)

5

Accumulated Bugs

Remaining Bugs

Average Bug Resolution Times

A
c
c
u

m
u

la
te

d
 /

 R
e
m

a
in

in
g
 B

u
g
s

B
u

g
 R

e
s
o
lu

ti
o
n

 T
im

e
s
 (

D
a
te

)

Time (Daily)

Fig.25 Issue Suggested Micro-process in the Development Phase

 (Corresponded Figure Numbers)

that feedback between the activities or micro processes during the

development phase was insufficient.

6. STUDY ON THE USEFULNESS OF

MEASUREMENTS
Figure 26 presents the model for measurement and feedback used

in this case study along with the V-model suited the view of ISO

12207.

1) Execute in process measurements during the integration and
testing phase and analyze the results.

2) These measurements make visible issues with the

development phase and the integration and testing phase.

3) Issues associated with the development phase can be used as
part of the transition decision between a development project

and subsequent operations, which is an important part of

project management.

4) Also, visibility of these issues can help make operation and

maintenance decisions.

5) Finally, visibility of these issues may be used to make

decisions about later projects and process improvement.

Fig.26 Measurement and Feedback Model suited to the V-model view

Development Phase
Integration
Phase

Requirement
Function
Verification

Integration/System Test
Planning

Software
Design

Programming/
Unit Test

Integration
Test/
System
Test

SA UI/SS/PS
PG/PT IT/ST

OT

8,19

6 6,19,21

8,22

17,18

5,9

9,17,18,20

5,18 7 5 15,16

1

Operation
Phase

V-model
Procurement Side

Vendor Side
Collaboration

2

3

4

5
Vender Side

Leadership

Requirements
Phase

Development
Phase

Integration
Phase

As the issues uncovered in this case study showed, insufficient

verification of requirements for some modules during
development, additional design reviews, and similar problems

may require readjustment of project planning. However, to

execute these actions, aggressive collaboration with procurement

is essential. Such changes cannot be effectively enforced while
maintaining the black box status of the development process.

This case study verified that project visibility based on in-process

measurement data collected by platforms such as EPM allows

information sharing between procurement organization and
developers, to support proactive project management. This case

study presents an approach to satisfying the empirical information

needs to allow such collaboration.

Finally, the use of project measurements and visualization of
analysis results indirectly warns against poor development

activities. When the development phase is removed from the black

box, transparency of the process and product allows compliance

with standardized process models, which can be expected to yield
high reliability and productivity.

7. CONCLUSIONS
For both waterfall and procurement software projects, although it

is generally agreed that collaboration between procurement
organization and developers provides the best environment for

development, there is a tendency for the development process to

become a black box to procurement organization. This empirical

case study verified that in-process measurements during the
integration and testing phase helps make various issues from the

development phase more visible and provides useful information

for project management and process improvement. The case study

used the in-process measurement platform called EPM along with

a development phase process model called "MIERUKA" that was

defined by the research task force, made up of professionals with

several years experience in this field.

The case study provides evidence of the effectiveness of in-
process measurement. It also provides evidence for the

effectiveness of using in-process measurement of one phase to

help make visible problems in earlier phases. The case study also

demonstrated the usefulness for project management of combining
the results of in-process measurement with a process model.

Finally, the case study demonstrates one way to use a

development phase process model based on accumulated

experience.

This case study, along with previous studies, highlights the

usefulness of in-process measurements for various stakeholder

groups involved in software development. For example, such

measurements provide visibility into the development process for
the procurement organization and project management. Such

measurements also provide visibility and communications for

prime contractors and subcontractors, which is an approach

commonly used in Japan that is growing increasingly complicated
with offshore development.

Combining information from software project repositories,

process models and standardized descriptions such as UML

diagrams, and in-process measurements can provide procurement,
project management, and developers with unprecedented visibility

into the software process from specifications and requirements

through development and into integration and test. Combining this
with the software tag approach being developed in the StagE

project will extend the availability of this information even further,

allowing maintainers and users to benefit from this increased
visibility into the former black-box of development [17]-[19].

Further, the use of automated support systems such as EPM to

perform the in-process measurements minimizes the impact on

developers by extracting the necessary information from existing
tools such as source code version control systems, defect tracking

systems, and project email lists.

Although this is only a single case study, the evidence points

toward the usefulness and effectiveness of performing such in-
process measurements using an automated system such as EPM,

combined with process models and other descriptions of the

software development project drawn from professional experience.

Especially when compared with similar information extracted
from a repository of data about software projects, this provides a

strong basis of information for making decisions that are

empirically based.

8. ACKNOWLEDGEMENT
This work is supported by SEC/IPA, METI, and MEXT of Japan.

We thank researchers in the SEC, “MIERUKA” task force, and

StagE project who kindly supported this project. We thank both

software procurement and development companies who kindly

supported project measurement. We thank EPM development

companies and related individuals, CATS Co., Ltd., EASE

Research Institute LLC., Hitachi Systems & Services, Ltd, and

SRA Key Technology Laboratory, Inc., who supported this
measurement.

9. REFERENCES
[1] Masao Ohira, Reishi Yokomori, Makoto Sakai, Ken-ichi

Matsumoto, Katsuro Inoue, Koji Torii: Empirical Project
Monitor: A Tool for Mining Multiple Project Data:

International Workshop on Mining Software Repositories

(MSR2004), pp.42-46, 2004

[2] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,
Naoki Ohsugi, Akito Monden, Yoshiki Higo, Katsuro Inoue,

Mike Barker, Ken-ichi Matsumoto: A Proposal for Analysis

and Prediction for Software Projects Using In-Process

Measurements and Collaborative Filtering of a Benchmarks
Database, Journal of Software Measurement, Vol.1-1, pp.1-

11, 2007

[3] Philip M Johnson: Requirement and Design Trade-offs in

Hackystat: An In-Process Software Engineering
Measurement and Analysis System. International

Symposium on Empirical Software Engineering and

Measurement (ESEM2007), Madrid, Spain, pp.81-90, 2007

[4] M. Ciolkowski, J. Heidrich, J. Münch, F. Simon, and M.
Radicke: Evaluating Software Project Control Centers in

Industrial Environments. International Symposium on

Empirical Software Engineering and Measurement

(ESEM2007), Madrid, Spain, pp.314-323, 2007

[5] Alberto Colombo, Ernesto Damiani, Fulvio Frati, Sergio

Oltolina, Karl Reed, Gabriele Ruffatti : The Use of a Meta-

Model to Support Multi-Project Process Measurement, Asia

Pacific Software Engineering Conference (APSEC2008),
Beijing, China, pp.503-510, 2008

[6] Robert Neumann, Fritz Zbrog, Reiner Dumke: Cockpit Based

Management Architecture, IWSM/Mensura2009, Amsterdam,
Netherlands, pp.87-100, 2009

[7] SEC/IPA: “MIERUKA”, Visualization of IT Project, The

Upper Development Phase version, (In Japanese partially

under translating into English). Nikkei-BP, P.208, 2007

[8] SEC/IPA: “MIERUKA”, Visualization of IT Project, The

Middle Development Phase version (In Japanese, partially

under translating into English). Nikkei-BP, P.167, 2008

[9] SEC/IPA: “MIERUKA”, Visualization of IT Project, The
Lower Development Phase version (In Japanese partially

under translating into English). Nikkei-BP, P.211, 2006

[10] SEC/IPA: “MIERUKA”, Visualization of IT Project, The

Summary version (In Japanese partially under translating into
English). Nikkei-BP, P.135, 2008

[11] Hiroshi Ohtaka, Ryzo Nagaoka, Visualization of IT Project –

MIERUKA –, The 4th International Project Management

Conference (ProMAC2008), Anchorage, USA, 2008

[12] Yoshiki Mitani, Hiroshi Ohtaka, Ryozo Nagaoka, Hiroyuki

Yoshikawa, Seishiro Tsuruho: A Proposal for Integration of

In-process Project Visualization and Keeping Post-process

Traceability, "MIERUKA" Method and 'Software Tag"
Framework. Workshop on Accountability and Traceability in

Global Software Engineering (ATGSE2008), Beijing, China,

2008-12, pp.11-12, 2008

[13] Hiroshi Ohtaka, Yoshiki Mitani, Yoshiaki Fukazawa:
Proposal for Applying the MIERUKA of IT Project to Non

Japanese Asian Countries: ProMac Symposium 2009,

Bangkok, Thailand, 2009-10

[14] Yoshiki Mitani, Hiroshi Ohtaka, Noboru Higuchi, Ken-ichi

Matsumoto: A Proposal for an Integrated Measurement

and Feedback Environment for Software Projects

Based on the Empirical Study of Three Measurement

Domains – Industrial Track paper; IWSM/Mensura2009,

pp.29-32, 2009-11, Amsterdam, Netherland, 2009

[15] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,

Satoshi Iwamura, Mike Barker, Ken-ichi Matsumoto: An

empirical trial of multi dimensional in process measurement
and feedback on a governmental multi-vendor software

project: International Symposium on Empirical Software

Engineering (ISESE2005) vol.2 pp5-8; Noosa Heads,

Australia, 2005

[16] Yoshiki Mitani, Nahomi Kikuchi, Tomoko Matsumura,

Satoshi Iwamura, Yoshiki Higo, Kasturo Inoue, Mike Barker,

Ken-ichi Matsumoto: Effect of Software Industry Structure

on a Research Framework for Empirical Software
Engineering: International Conference on Software

Engineering (ICSE2006), Far East Experience Track, Poster

Session; pp.616-619, Shanghai, China, 2006

[17] Katsuro Inoue: Software Tag Standard 1.0 -Background and
Definition- 2nd Workshop on Accountability and

Traceability in Global Software Engineering (ATGSE2008),

pp.31-32, Beijing, China, 2008

[18] Michael Barker, Ken-ichi Matsumoto, Katsuro Inoue: Putting
a TAG on Software: Purchaser-Centered Software

Engineering. In Handbook of Research on Software

Engineering and Productivity Technologies: Implications of

Globalization, Ramachandran, M., and Carvalho R. A., Eds.

InformationScience Reference, Hershey, PA, pp.38-48, 2009

[19] Kasturo Inoue, Software Tag for Traceability and

Transparency of Maintenance. 24th IEEE International

Conference on Software Maintenance (Beijing, China, Sep.

28 - Oct. 4, 2008). ICSM 2008, pp.476-477, 2008

