
Open Research Online
The Open University’s repository of research publications
and other research outputs

Making navigation easier in object-oriented
programming systems
Thesis
How to cite:

Li, Yibing (1992). Making navigation easier in object-oriented programming systems. PhD thesis The Open
University.

For guidance on citations see FAQs.

c© 1992 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

31 0123416 6

111111 III III

DX ,,0 4-q r
U(,{R.£.STIZ \ CT ED

Making Navigation Easier In
Object-Oriented

Programming Systems

Yibing Li (B.Eng.)

Thesis submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy
in Human-Computer Interaction

The Open University

Mil ton Keynes
U.K.

May 1992.

I\lAthar'~ numbe.r : tv\ 7 Q 394-'63

:baY! "t :,,,,'o,,,i"'5io,, , IIll, MaJ \ q~l
~ak ., a.w().r~'-: Iqtl-. JC\ne, 1'1"12

Abstract

It has been reported that non-expert users have difficulties in finding

reusable software components in large object-oriented programming systems
and there is a need for help tools. The research reported in this thesis
addresses this issue. Described in this thesis is the design of a tool called
BRRR, which aims to help non-expert users overcome such difficulties. It is
developed for Smalltalk-80, the target system of this research.

BRRR is a query tool with a browsing capacity. It allows users to find
necessary components by query. Its design is based on the 'retrieval by
reformulation' paradigm (Williams, 1984) which was originally used in the
domain of information retrieval. This paradigm allows users to
incrementally specify a query by reformulation. When users specify an initial

query, BRRR presents the users with an example component which satisfies

the query. The users can then construct further queries by using the
information presented by the system. In this way, users who are not familiar
with the system or who do not know exactly what they want can be guided
towards the appropriate information.

During this research, two versions of BRRR were developed: BRRRl

and BRRR2. BRRRl was developed initially, based on the 'retrieval by
reformulation' principle. After its implementation, a formative, empirical
evaluation was conducted on it with a group of users. Based on the findings
of the evaluation, BRRR2, an improved version of BRRR1 was developed.
BRRR2 incorporates enhanced classification methods and explanation
facilities. This new version of the tool was then evaluated empirically with a
group of ten users.

The empirical evaluation of BRRR2 showed encouraging results. It
demonstrates that the 'retrieval by reformulation' approach used in this
research could be used successfully in helping users find reusable software
components in object-oriented programming systems.

Acknowledgements

First of all, I would like to thank my internal supervisors Tim O'Shea and
Pat Fung for helpful advice and continuous encouragement throughout this
work. Without their help, this thesis would not have been possible.

Special thanks go to Tim O'Shea for introducing me into the area of object
oriented programming.

Thanks to my external supervisor Steve Cook for the encouragement and
technical advice he has given me. He has always been patient in discussions
with me during the course of this research.

Thanks to Pat Fung and Ann Jones, for helping me overcome the difficulties
of not being a native English speaker.

I am indebted to the following people who have provided input to my
research or read my thesis drafts: Alan Borning, Mike Brayshaw, Mark
Elsom-Cook, Benedict Iieal, Jeoff Mohamed, Claire O'Malley, Marian Petre,
Royston Sellman, Ronnie Singer, Randall Smith and Josie Taylor.

Thanks to Eliot Miranda at Queen Mary and Westfield College for giving me
access to his M.Sc students for my empirical study. I wish to thank the
students for participating in the study.

Thanks also to all members of CITE (past and present) for providing an
exciting working environment.

I thank my wife Meng Hua for her love and support which helped me
overcome many difficulties I encountered during my studies.

Finally, I wish to thank my parents for their love and encouragement.

This work was supported by a studentship from the Open University.

Table of Contents

Chapter 1 Introduction

1.1 An Introduction to object-oriented programming

1.1.1 Object-oriented programming

1.1.2 Several object-oriented programming systems

1.2 The problem

1.2.1 An introduction to the System Browser of Small talk

1.2.2 A limitation of the System Browser

1.3 The proposed solution

1.4 Methodology of this research

1.5 The organization of the thesis

Chapter 2 Related research

2.1 Help available for users learning Small talk

2.1.1 Short tutorials

2.1.2 Graphical trace tools

2.2 Browsers

2.2.1 Program Viewer

2.2.2 Multi-dimensional browser

2.2.3 Affinity Browser

2.2.4 Document Examiner

2.2.5 SuperBook

2.3 Approaches based on querying techniques

2.3.1 Keyword based retrieval systems

2.3.2 Prieto-Diaz's faceted classification scheme

2.3.3 The 'conceptual dependency' approach

2.3.4 Structured database systems

2.4 Retrieval by reformulation

2.4.1

2.4.2

2.4.3

Descriptive retrieval

Retrieval by instantiation

Retrieval by reformulation and the RABBIT system

2.5 Summary

Chapter 3 BRRR1 - the design and application

3.1 Introduction

3.2 Finding components in BRRRI - an example

3.2.1 The interface - an overview

3.2.2 The example

1

2

2

6

6

8

10

12

13

13

16

16

16

18

20

20

23

25

26

27

29

29

34

36

37

38

39

40

41

43

45
45

45

46

47

I

II

3.3 The retrieval by reformulation paradigm in BRRRI 53
3.3.1 Retrieval by constructed descriptions 55
3.3.2 Interactive construction of queries 55
3.3.3 Critique of example instances 57
3.3.4 The dynamic perspective 58

3.4 The component library of BRRRI 59
3.4.1 The components organization in Small talk 59
3.4.2 The component organization in BRRRI 61
3.4.3 Summary of component organization 70

3.5 The interface of BRRRI 71
3.5.1 The Main window 71

3.5.2 The Method Examination window 75
3.6 The implementation of BRRRI - an overview 81

3.6.1 The database component 82
3.6.2 The interface component 83

3.7 Summary 86

Chapter 4 An empirical evaluation of BRRR1 87
4.1 The organization of the study 87

4.1.1 The subjects 87
4.1.2 . The tasks 88
4.1.3 The procedure 89

4.2 Results and discussion 90
4.3 Summary 104

Chapter 5 BRRR2 - an improved version of BRRR1 106
5.1 Revising BRRRI 106

5.1.1 Design changes suggested by the formative evaluation 106

5.1.2 Design changes incorporated in BRRR2 107
S.2 Finding components in BRRR2 - an example query 108

5.2.1 The interface of BRRR2 outlined 108
5.2.2 The example 112
5.2.3 Summary of the example query 119

5.3 The component library of BRRR2 120

5.3.1 Class classification 120

5.3.2 The method organization 124

5.3.3 Summary of component organization 126
5.4 The interface of BRRR2 127

5.4.1 The Oass Level Query window 127

5.4.2 The Method Level Query Window 133

5.4.3 The merge of the Oass and Method queries

5.4.4 The 'Trace' window

5.5 The implementation of BRRR2 - an overview

5.5.1 The database

5.5.2 The interface component

5.6 Summary

Chapter 6 An empirical evaluation of BRRR2

6.1 The organization of the study

6.1.1 Subjects taking part

6.1.2 The tasks used in the study

6.1.3 The procedure

6.2 The analysis of data

6.3 Results and discussion

6.3.1 Misunderstanding the operations of the system

6.3.2 Misunderstanding the contents of the system

6.3.3 Users' misconceptions of the tasks

6.4 A comparison with BRRR1

6.5 Conclusion and summary

Chapter 7 Conclusions and future work

7.1 Summary of the research

7.2 Contributions

7.2.1 Hclping users learn and use the Small talk system

7.2.2 Facilitating software reuse in objcct-oricnted programming systems

7.2.3 Extending the applicability of the 'retrieval by reformulation'

paradigm into a new domain

7.2.4 Using the method of iterative design combined with formative

evaluations to dcsign interface systems

7.3 Further work

7.3.1 Short term extensions

7.3.2 Longer term research

References

Appendix A Exercises used in the evaluation of BRRR1

Appendix B The manual used in the evaluation of BRRR2

In
138

140

142

142

143

146

148

148

148

149

151

152

159

162

167

173

177

177

179

179

179

180

182

183

184

185

185

187

191

199

200

IV

List of figures and tables

Chapter one

Figure 1.1. System Browser window

Figure 1.2. Structure of a System Browser

Chapter two

Figure 2.1. A message sending diagram

Figure 2.2. The 'Program Viewer' browser

Figure 2.3. An illustration of the multi-dimensional browser

Figure 2.4. Inheritance structure of a set of classes

Figure 2.5. The Affinity Browser Display of a set of objects

Chapter three

8
9

19

22
25
26
26

Figure 3.1. All 'data structure' classes are retrieved 48

Figure 3.2. All 'ordered' classes 50
Figure 3.3. Method categories of OrderedCollection are shown in the Example pane 51

Figure 3.4. The Method Examination window 51

Figure 3.5. Alternative values 53

Figure 3.6. The method query constructed so far 54

Figure 3.7. The result of the method query 54

Figurc 3.8. The class OrderedCollection and the methods in it 60

Figure 3.9. An illustration of the inheritance hierarchy of classes in Small talk 60

Figure 3.10. An illustration of BRRRl's method organization 67

Chapter five

Figure 5.1. The five panes of a Class Level Query window

Figure 5.2. The four panes of a Method Level Query window

Figure 5.3. The start situation

Figure 5.4. The ColJection classes

Figurc 5.5. Matched classes

Figure 5.6. 'adding' methods in OrderedCollection are shown in a window

Figure 5.7. Explanation message to the method category 'adding'

Figure 5.B. 'position-relevant' methods

109

111
112

113

114

116
117

118

Figure 5.9. The result method

Figure 5.10. Oass organization in BRRR2

Figure 5.11. The Trace window

Chapter six

Figure 6.1. A sample analysis of 54's performance on task 1

Figure 6.2. The class level query window

Table 6-1. Users' performance on the task set

Table 6-2. The distribution of errors the users made in completing the tasks

Table 6-3. Percentage of each error type accounts for

Table 6-4. Distribution of errors

Table 6-5. The distribution of errors

Table 6-6. The distribution of errors

119

122
141

159

166

159
'160
161

162
167
174

v

Chapter 1 Introduction

In large object-oriented programming (OOP) systems, non-expert users have

difficulties in finding required components in their programming (Nielsen

et al., 1989, O'Shea, in press). The research described in this thesis addresses

the issue of how to help non-expert users find reusable components in

object-oriented programming systems. Literature related to helping users

with this problem of component reuse (Gibbs et aI., 1990, Ramamoorthy et

al., 1988, Fischer, 1987) has shown that there is a need for tools to provide

help in this task. This thesis describes the development of such a help tool.

This tool is based on the 'retrieval by reformulation' paradigm (Williams,

1984) which was originally used in the domain of information retrieval. An

object-oriented programming system, Smalltalk-80 (Goldberg et al., 1983,

Goldberg, 1983) is used as a vehicle to explore design ideas for this tool and to

test the implementations built upon those ideas. The term 'non-expert

users' in this thesis refers to people whose smalltalk programming

experience is approximately that of a person who has completed an

introductory Smalltalk course (usually consisting of between three to ten

days tutorials plus hands-on experience) and has a certain familiarity with

the Small talk interface. In discussions throughout this thesis, unless

specified otherwise, the terms 'user' or 'users' refers to such 'non-expert'

users.

The chapter is organized as follows: we first briefly introduce several basic

concepts of object-oriented programming. After that, we present a typical

problem that users might have when programming in object-oriented

programming systems. This is followed by an analysis of the causes of that

problem and a solution which we put forward to address that problem.

Finally, we outline the methodology used in this research and present the

1

2

overall structure of the research undertaken in the course of developing this

solution.

1.1 An Introduction to object-oriented programming

In this section, we briefly introduce the basic elements of object-oriented

programming. This is to provide a preliminary background for the work

described in this thesis. It draws on the descriptions of object-oriented

programming given by Blair et al. (1991); Lalonde et al. (1990) and Collins

(1990). More complete and technical descriptions can be found in Blair et al.

and Budd (1991). We first describe the basic concepts of object-oriented

programming and then list a number of frequently used OOP systems.

1.1.1 Object-oriented programming

Object-oriented programming is a new style of programming. In the purest

sense, it is defined as programming implemented by sending messages to

objects (Pinson et al., 1988). More specifically, object-oriented systems contain

three elements: objects, class and inheritance. In this section, we describe

these three mechanisms and two supporting mechanisms: polymorphism

and dynamic binding.

1) Objects

An object is an essential concept of object-oriented programming. It is

defined as follows:

An object is an encapsulation of a set of operations or methods which can

be invoked externally and of a state which remembers the effect of the

methods (Blair et al., 1991, p.26) .

. The methods are the set of operations which we are allowed to perform

within the context of the object. They are the only procedures by which that

object can be accessed, and are also referred to as the object's external

interface. The external interface will be made up of exactly the information

that is required to operate on the object but nothing more. The state gives the

the status of the object at any particular time. This could be defined by the

contents and values of the data structure of an object.

The operational interface to an object is restricted to only what is required by

the user, with the implementation of the methods externally invisible. In

addition, the operational interface provides the 'user view' of the behaviour

of an object, i.e. it is known that an object provides certain functionality but

beyond that no further details are known. This is important in handling

complexity in a problem as once an object is implemented, it is no longer

important to know the internal details of the algorithms and data structures.

It is only necessary to know the interface it presents.

Another aspect of the object mechanism is that in solving a problem,

programmers are expected to decompose the problem in terms of objects

rather than functions such as they do in traditional 'structured' approaches.

The real world entities can often be directly mapped into objects in

programming systems. The proponents of the object-oriented programming

approach thus believe that this kind of design for an application tends to be

easier to understand, thus easier to implement and maintain (Collins, 1990).

ii) Objects communicate via message-passing

In object-oriented systems, objects interact with each other to complete a

computation. The communication between objects is achieved by objects

sending messages to each other. When an object receives a message, it

invokes an appropriate method in that object, which then returns an object

as a result. This is similar to a procedure call in traditional languages.

3

4

iii) Classes

The motivation in supporting classes is to provide a rudimentary form of

classification. Some objects share common characteristics and thus can be

described by the same general description. A class is a description of a set of

objects with similar characteristics, attributes, and behaviours. In OOP

systems, each individual object is a member or an instance of a particular

class. All instances of a class share common characteristics. The operation

interfaces of all instances of a class are identical. However, each instance has

its own state which may be different from other instances.

iv) Inheritance

Objects may often be thought as specializations of other objects. For example,

precious metals are specializations of metals, sport cars are specializations of·

cars. Extending this notion, we can view one class of objects as a subclass of

another. A new class can thus be defined in terms of an existing class but

with modifications or extensions to meet the requirements of the new class.

The new class therefore shares (or inherits) the behaviour of the old class but

has modified or additional behaviour. A class which inherits from another

class inherits all the methods and attributes of that class. It can also add new

methods and attributes at will. The new class is said to be a subclass of the

old class, and the old class is the superc1ass of the new class. Because the new

class has only to describe how it is different from the superclass, it has the

following advantages:

logically, a brevity of expression is achieved;

physically, this permits a sharing of operation - an operation provided in

one class is also applicable to every subclass, this facilitates code reuse.

Some OOP systems support multiple inheritance, i.e. a class can inherit

behaviour and attributes from more than one class.

Oass hierarchy

As an OOP system develops, subclasses are constructed out of existing classes

until the appropriate functionality is developed. As a result, a class hierarchy

is formed. The hierarchy is normally rooted by a special class, often referred

to as Object, which contains a minimal set of behaviour common to all

classes.

v) Polymorphism

Polymorphism can be defined as the ability of behaviour to have an

interpretation over more than one class. For example, a message 'print' can

be sent to many objects and different objects would interpret the message in

their own way. An object representing a text document receiving the

message would print itself in a way which is different from that of an object

representing a graphical document. With polymorphism, the same name

can be used throughout a system to denote a commonly used and well

understood operation. This consistency in operation naming across class

boundaries helps significantly reduce the name space in large systems.

d) Dynamic binding

Dynamic binding is a technique by which the mapping of method name to

implementation is carried out on every method invocation (as opposed to

the static binding where the mapping is carried out at compile time). Each

time a method is invoked, the class hierarchy will be searched to find the

appropriate implementation. This technique supports the evolution of a

5

6

program since changes to the program can be made without requiring a re

compilation of the whole program.

1.1.2 Several object-oriented programming systems

Of all the OOP systems, Small talk is the most consistent with definitions and

properties of the object-oriented paradigm. It was originally developed at

Xerox, Palo Alto Research Center in the early seventies and is now owned

and marketed by a company named ParcPlace Systems. There have been five

versions of Smalltalk: Smalltalk-72; Smalltalk-74; Smalltalk-76; Smalltalk-78;

Smalltalk-80·. There is another dialect of of Smalltalk-80: Smalltalk/V which

is marketed by the company Digitalk, for Macintosh and IBM PC. Apart from

SmaUtalk, other OOP systems include:

C++ (Stroustrup, 1986) and Objective-C (Cox, 1986) which are object

oriented extensions of the C language;

Eiffel (Meyer, 1988) which is a strongly typed object-oriented language;

Flavor (Moon, 1986), LOOPS (Bobrow et al., 1986) and CLOS (Keene, 1989)
which are object-oriented extensions to Lisp language;

Object Pascal (Tesler, 1985) which is an extension to the Pascal language.

In this section, we have introduced several basic concepts of object-oriented

programming and listed a number of frequently used object-oriented

systems. In the next section, we will describe the problem this research

addresses.

1.2 The problem

The object-oriented programming paradigm promotes the 'programming by

reuse' approach (Meyer, 1987, Fischer, 1987, Rubin, 1990). In this thesis, only

• The Smalltalk-80 system is now marketed by ParcPlace Systems under the name Objectworks
for Smalltalk-80.

the code reuse concerns us, little attention has been placed on 'design reuse'.

With this approach, programmers do not always need to code from the

beginning, they use existing components as the basis of new programs. In

smalltalk-80, for example, there is a large library of components, i.e. classes

and methods associated with these classes, and programming is mainly

undertaken by reuse of the existing classes and associated methods. The

advantages of reusing software are evident: it would save the effort made in

repeatedly developing certain software components, hence this approach has

the potential of increasing code productivity; it is also relatively 'safer' to

reuse software components which have been used and tested in previous

applications. However, reuse is not without cost. Biggerstaff et al. (1989)

suggest that, in order to operate successfully, a reusability system must

address the following four fundamental problems: .

- Finding components suitable for reuse;

- Understanding components;

- Modifying components;

- Composing components.

Among these problems, being able to find required components efficiently is

a prerequisite to the success of the reuse approach. This is because, in order to

reuse components, users of a system must at least know what components
. .

should be used and where they can be found in the system. The problem of

finding required components in OCP systems is exacerbated by the size of

these systems, since OOP systems are typically fairly large. For example, the

class library of the Small talk system has more than 250 classes and over 3000

methods. In such large systems, it is not always an easy task for non-expert

users to find required classes or methods. It is necessary for systems to

provide users with supporting facilities to help them look for necessary

information. Otherwise, if users have a lot of difficulties in getting required

7

8

components and spend a large amount of time and effort on it, they would

rather write their own programs. Currently, the main type of help tool

provided by OOP systems is some kind of 'browser' with which users can

inspect the software components in a system to access the required

information. The System Browser of the Small talk system, for example, is

representative of this kind of tool. While such browsing tools provide users

with some help, this kind of browser is not adequate. A briefly analysis of the

Small talk's System Browser below will help to illustrate the drawbacks of

this approach.

1.2.1 An introduction to the System Browser of Small talk

ay
Graphlcs-Pa ths
Graphics-Views
Graphics-Editors
Graphics-Support
Kernel-Objects
Kemel-Classls
Kernel-Methods

Jnter.ect: aRectang_

III •••••• test g
truncation and round 0

transforming 1111 ••••••• 1
copying
printing

r-----t ------------

-Answer & Ractangle that Is the area In which the racaiver overlaps with
aRactangle. -

tnl' speclu
origin: (origin max: aRectangla origin)
cornQn (cornar min: aRQctangla cornar)

Figure 1.1. System Browser window.

The System Browser provides access to the entire Smalltalk class library. Its

,window is divided into five scroll able panes and two switch panes labelled

class and instance. The top four panes are termed list panes, while the

bottom pane is a text pane (see figure 1.1). List panes contain fixed lists of

menu selectors. Each item in the list is selectable but cannot be edited

directly. These panes are scrollable. To view all the available items within a

list pane, it may be necessary to scroll through all the contents of the list

pane. Text within a text pane may be scrolled, selected, edited and evaluated.

To help programmers move around in the library, it is indexed. Related

classes are grouped together into class categories, and related methods within

individual classes are grouped into message categories. The four list panes,

therefore, provide four levels of indexing into the class library. From left to

right, these panes are termed the class categories pane, class names pane,

message categories pane, and message selectors pane respectively (see figure

1.1).

Class
Category
List Pane

...

Class Names
List Pane

... ..

Text Pane

Message
Categories
List Pane

Figure 1.2. Structure of a System Browser.

-..
Message
Selection
List Pane

,r

To look for a class needed, a user first needs to select a class category which

contains the class in the class categories pane. All classes in that category are

then displayed in the class names pane. The user can then choose to view a

9

10

class in the class names pane. Once a class is selected, all message categories

in the class will be shown in the message categories pane. And, in order to

see individual methods, the user chooses a method category. All messages in

that category are then presented in the message selectors pane. The user can

select a message in the message selectors pane, the implementation code of

the message is then displayed in the text pane on the bottom. The

dependencies between the panes of the browser is illustrated in figure 1.2.

1.2.2 A limitation of the System Browser

The System Browser has the advantage that users can move around quickly

in the system and inspect any piece of code they want. However, in terms of

which components the users should look at in such a large system, it is not

problem-free. From the introduction in the last section, it can be seen that in

order to find a required component (a class or a method) with the System

Browser, users have to select a class category. They then need to decide

which class to choose based on their understanding of the names of the

classes. They have few other ways to specify what properties the classes they

look for should have. A similar situation applies to the method-finding

process as well. A problem with this 'retrieval by names' approach is that

non-expert users usually have only a limited knowledge of the system's

terminology and structure, therefore there is a great vocabulary barrier

(Furnas et aI., 1987). The users often misunderstand the names of the

components assigned by the system designers and consequently may select

the wrong components.

Since names of the components do not always convey enough information

to users, they experience difficulties in finding the required components.

They may have to choose a wider range of components, then study their

functions in detail, often by reading the implementation code. The

distributed nature of Small talk code makes this understanding process

fraught with difficulties (Nielsen et al., 1989, Taenzer et al., 1989). Since the

code to perform certain functions is usually distributed among many classes,

users need to gather all pieces of relevant code from different classes in order

to form a complete picture about how a function is performed. Therefore, to

understand a function, sometimes they may need to understand the

functions of many related components. In addition, the task of

understanding the execution of a given function is exacerbated by the

polymorphism and dynamic binding of Small talk, which, although are very

useful techniques in system development itself, make it hard to understand

which method is being executed during a computation. As a result of these

difficulties, users sometimes find themselves in a situation where they

either overlook the relevant components or after making considerable

efforts in studying a particular set of components, realize that those

components are in fact not relevant to their tasks.

From this analysis, we can see that the facilities provided by the System

Browser. make non-expert users' task of finding necessary components

(classes or methods) difficult and that there are enormous learning

overheads. It has been reported that the problem of finding required

components is an important factor which affects the learnability and

usability of this object-oriented programming system (Esp, 1991, O'Shea, in

press).

Although the above discussion is mainly based on Small talk, it is also

applicable to other object-oriented programming systems. Because of the ease

of adding new objects into systems, OOP systems tend to encourage large

libraries of components (Halbert, 1986). It would not be difficult to

understand that at a certain stage, users would have similar problems to

those we have discussed in relation to Small talk. It is essential therefore for

OOP systems to provide supporting tools to help users find reusable

11

12

components. Existing tools, such as the System Browser in Small talk, are

useful but not sufficient. It is necessary to develop other tools.

1.3 The proposed solution

The proposed solution to the problem we have discussed above is to

augment browsing tools like Small talk's System Browser with a query tool.

When users give a description of their target components, the tool will

search the library to provide a list of candidate components whose functions

match the users' descriptions. Users can then choose the components they

require from this list. Such a tool should reduces users' learning overheads,

since they then need only study the relevant components. In this way, users

are saved time and resources which would otherwise be wasted on studying

irrelevant components, and non-expert users should find that their overall

difficulties are significantly reduced.

Guided by this motivation, we have developed a tool to help users find

reusable components. The design of the system is based on the paradigm

known as 'retrieval by reformulation' originally used successfully in the

domain of information retrieval. We have chosen Small talk as the target

system since it has a large component library and it is known that users of

this very system have difficulties in finding required information. In

addition, Smalltalk is one of the most important COP systems. It adheres

consistently to the object-oriented programming paradigm and it is often

recommended to newcomers to the object-oriented programming

community as the best system to use in learning OOP-related concepts

(Saunders 1989). The results of the research thus have important

implications for other object-oriented systems.

One other point to note is that, although the tool discussed here is aimed

mainly at helping non-expert users, it also has the potential to help expert

users. Object-oriented programming systems are usually very large. It has

been suggested that with very large software system, there are few experts

who have complete mastery of all components (Draper, 1984). As an

example, in an empirical study on the learnability of Smalltalk, more than

30 experts associated with the design and implementation of the Smalltalk

family of languages, nevertheless identified parts of the Smalltalk-80 class

hierarchy (O'Shea, in press) with which they personally were unfamiliar.

1.4 Methodology of this research

In outline, the methodology of carrying out this research was as follows:

First of all, a prototype system named BRRRI was built, which was then

tested empirically on a group of users. From this empirical evaluation, a

number of problems with this first prototype were identified. Based on the

evaluation results, a second prototype system called BRRR2 was developed.

This system version incorporated changes addressing the problems found in

the evaluation of BRRRl. After BRRR2 was implemented, it too was

empirically evaluated with a group of Small talk users. In the light of this

second empirical study, the strengths and weaknesses of this tool were

evaluated and the implications of this work for research in this area is

discussed. In the next section, we briefly outline the organization of the

description of this work.

1.5 The organization of the thesis

The thesis consists· of seven chapters. In chapter two, we survey work

relevant to this research, setting it within the context of other research

previously carried out in this area. We outline work done in the area of

helping users learn Smalltalk, in the area of browser design and in the area

of database querying. In the final part of this chapter, we describe in detail the

'retrieval by reformulation' paradigm upon which this research is based.

13

14

In chapter three, the first prototype system we developed, BRRR1, is

described. An example of using BRRRI to retrieve required components is

used to give an overview of how the system works. After that, we describe

the underlying design principles of the system and show how the 'retrieval

by reformulation' principle is reflected in the system. We then present the

design details of the system, which is described in terms of the components

which constitute the system: the software component library and the

interface of the system. In the final part of this chapter, an overview of the

implementation of the system is given.

In chapter four, we report on an empirical evaluation of BRRRl. This was a

formative evaluation undertaken to expose possible problems in our initial

design. The organization of the study and the data analysis process is then

described. This is followed by a discussion of the problems found in the

study. This study revealed problems on both the system design and the

organization of the study itself. In concluding this chapter, we outline the

changes which it was felt would address problems identified in the

evaluation.

In chapter five, we describe the second prototype system developed: BRRR2.

This is an improved version of BRRRI and it incorporates a number of

changes, based on findings obtained in the evaluation of BRRRl. In this

chapter, again, an example is used to illustrate how this system works. We

then introduce the design details of the system with emphasis on the

differences between the two systems, explaining the benefits that are

expected to be gained from the improvements incorporated in the second

version. In the final section of this chapter, an overview of the

implementation of the system is presented.

In chapter six, we report on an empirical study conducted to evaluate

BRRR2: This study also took the form of formative evaluation. It was

conducted with a group of ten Small talk users. The organization of this

study was similar to that of BRRRl. Nonetheless, some changes were

incorporated, based on experience gained in the evaluation of BRRR1

earlier. We report the results of the study and analyse the strengths and

weaknesses of BRRR2.

Finally, in chapter seven, we summarize our research and draw conclusions

regarding the work undertaken. We outline the main contributions of this

research to the area of helping non-expert users learn and use the smalltalk

system; and at a more global level to the field of facilitating software reuse in

object-oriented programming systems; and furthermore to the area of

interface design in general. In the last part of this chapter, we suggest

directions in which this research could usefully be extended.

15

16

Chapter 2 Related research

In this chapter, the work relevant to this thesis is reviewed. The purpose of

this review is to provide a context for the research reported here and outline

the approaches to the problem discussed in the previous chapter. The

chapter is organized as follows: first of all, work done in the area of helping

people learn and reuse object-oriented systems, particularly Small talk are

described. Secondly, systems employing various browsing approaches are

discussed. Following this, systems using information retrieval techniques

are examined, and finally the approach on which this thesis is based, the

retrieval by reformulation paradigm, is described in detail.

2.1 Help available for users learning Smalltalk

In this section, we look at briefly the work in the particular area of helping

people learn Small talk. This includes short tutorials and graphical trace

tools. Their benefits and limitations are also discussed.

2.1.1 Short tutorials

Short tutorials consist of classroom teaching and usually hands-on

experience. Normally, pre-designed written materials are used to show users

basic concepts and principles of Small talk (for example, Kaehler et al., 1986,

Gray et al., 1990). Embedded in the written materials are a series of

successive, carefully designed example programs used to illustrate the

concepts and typical usage of core components of the system. The series of

programs often in the end leads to a complete, small scale application (for

example, the example and exercise series in Kaehler's book "A taste of

Small talk" results in an object-oriented style solution to the problem:

'Tower of Hanoi'). After reading the written materials, learners typically are

asked to complete some exercises based on the example program learned.

During exercise sessions, help from human tutors is usually available.

Rosson et al. (1990a, 1990b) went a step further. They designed a Small talk

tutorial which included: written instructions, on-line example programs and

a software tool. They designed several example application programs which

illustrate the basic concepts of the Small talk system (e.g. message passing;

inheritance). These examples also show users the interface construction

paradigm in Small talk: the 'Model-View-Controller' model (Krasner et al.,

1988) which is the part widely recognized as one of the most complex and

difficult parts in the system. To help learners understand how a user

interface program works, they developed a software tool called View

Matcher (Carroll et al., 1990). View Matcher consists of several coordinated

windows. One type of window incorporated in View Matcher is a modified

'System Browser' of Small talk. In this altered browser, only components

pertaining to the application examples are shown to reduce users' learning

overheads. View Matcher also has a window to show a method stack

containing some methods of the application program waiting to execute.

The selection of the methods in the stack is done by the system designers, so

that the important methods for the application example would be shown in

the stack. When an application program is run, through the method stack,

users can see at certain points which method is executed (i.e. which message
. .

is sent to which object) and see the effect of the execution immediately.

Learners can also select any method in the stack and the system would

present in its explanation window a text explanation message about the

functional role of the method in the example program. After users have

learned the examples, they are asked to make changes to the example

programs and then use the View Matcher to see the effect of their changes.

The purpose of short tutorials of this type is to provide users with a starting

point from which to explore the system. When users finish the tutorial, they

17

18

are expected to have basic ideas about the purposes of different system

components. They thus have the background to investigate more complex

and advanced features of the system.

Though these kinds of tutorials cover the basic components of Small talk,

they do not directly help users find components according to their particular

requirements; therefore, this approach does not address directly the problem

discussed in chapter one of aiding users to find reusable components.

2.1.2 Graphical trace tools

A program written in an object-oriented program language usually consists

of a set of objects. These objects send messages among each other to complete

a computation. Sometimes, the message passing thread can be too complex

for users to remember or to follow and can cause difficulties for users in

understanding the functions of certain objects. To help users understand the

functions of components and to enhance their comprehension of concepts of

the object-oriented paradigm, various graphical trace tools have been

developed. The main idea is to show users explicitly and dynamically how

different objects interact with each other by sending messages. Two such

tools are outlined below:

a) Diagram system

Cunningham et al. (1986) developed a diagram tool for the Small talk system

which generates diagrams to illustrate the message sending dialogue that

takes place between objects participating in an object-oriented computation.

In this system, objects in a diagram are represented by boxes, labelled by the

object's class and possibly its super classes. Messages are represented by

directed arcs from the sending object to the receiving object. The diagrams

·are automatically constructed from Small talk code. While an application

program is running, users are shown a diagram illustrating explicitly the

objects taking part in the computation and the messages sent between

objects. Thus, users can see how an object participates in the computation

and what messages are invoked by a particular message. For example, in

figure 2.1, an 'add: anElement' (note that the argument 'anElement' is not

shown in the figure) message is sent to an Ordered Collection. An

Ordered Collection implements an array of variable size. It responds to the

message 'add: anElement' by adding the object represented by the argument:

'anElement' at the next available location within itself. It can be seen from

figure 2.1 that the 'add:' method makes use of two more elementary

methods, 'size' (in its own class) and 'at:put:' (inherited from its superdass).

b) TRACK

Ordered
Collection

Collection at:put:

Figure 2.1. A message sending diagram.

BOcker at al. (1990) built a graphical trace system called TRACK for Small talk

based on a similar idea. TRACK is a kit to construct interactively

environments that trace the execution of methods and the flow of messages

between objects. It enables the user to set up traces by means of direct

manipulation. Users can interactively select objects represented by icons and

put obstacles between them much in the way a jumping course is set up. An

obstacle is a kind of filter, with which users are able to specify the type of

messages to be traced. As a program is running, the traced methods or

messages are graphically animated as a little ball moving among objects.

19

20

These messages are also simultaneously presented to users in a text form.

Thus, TRACK allows users to project visually the behaviour of programs.

This kind of graphical tool makes the relationships between objects more

explicit and consequently to a certain extent enhances users' comprehension

of functions of some complex components in the system. It is therefore

helpful to users in deciding whether or not to use a component in their later

programming. These tools, however, only work after users have chosen

some components and constructed an example with them. They do not

directly show users how and where to find the candidate components in the

first place. Therefore, in the context of helping users find required

components, the support provided by this kind of tools is limited.

In the following sections of this chapter, work more directly aimed at

helping users retrieve information in information systems is surveyed. This

work can be divided into two main streams: browsing methods and database

querying methods. While the emphasis here is on finding software

components, since both are relevant, techniques used in the domains of

hypertext and information retrieval are also reviewed. The discussion begins

with browsing tools.

2.2 Browsers

Smalltalk's System Browser is one of the best known browsers in practical

use in object-oriented programming systems. However, there have been

some other browsers proposed which aim to facilitate users' access to

information. Several of these are reviewed below.

2.2.1 Program Viewer

Wu (1990) argues that a main cause of difficulties encountered by beginners

in learning object-oriented programming is that they cannot visualize the

entry points of their application programs. In the traditional programming

approach, there is a main program that has a flow of control -

initialization, input, processing and output - that users can follow and

understand. There is nothing comparable in the object-oriented

programming environments. The current browsers in object-oriented

programming environments show all the system's classes, and beginners are

lost as to where to begin. In addition, with those browsers, users cannot get

the whole picture of what are and what are not parts of their program.

Wu therefore suggests using a pre-defined class that can serve as an entry

point to the program, i.e. the role of the main program in traditional

languages. He also indicates that a browser should enhance the concept of

abstract data types promoted by the object-oriented paradigm. This should be

done by showing users only the public interface of a class (i.e. the messages

which are available to other objects). Meanwhile, the implementation code

of a method of a system class should initially be hidden from users.

Based on these ideas, he proposes a new browser for object-oriented systems

named 'Program Viewer'. It is intended to help non-expert users. In

Program Viewer, classes are divided into two groups: system classes and

program classes and are shown to users in two separate panes (see figure 2.2).

The system classes are the generic classes available to all programs. The

program classes are the classes specific to the application program' a user is

working on. For a system class, only its public methods are shown to users.

In addition, for any method of a system class, only the definition of the

method is presented; its implementation code is hidden. The system classes

can only be used by users and cannot be modified by them. Furthermore, for

any class, all its methods (including the inherited ones) are shown; this

saves users having to navigate through the class hierarchy to see if a class

responds to a particular message.

21

22

In the 'Program classes' pane, a class called 'Program' is included

automatically. It serves the role of the main program in a traditional

language. This class provides with templates for methods such as 'initialize'

and 'close' to show users the start and finish points of a program. Users can

start programming from the 'initialize' method. Wu feels that as classes

shown in 'Program classes' pane are those which are specific to the program

being developed, it gives the user a sense of security because these are the

classes to which modifications can be done as desired since they are the

individual's classes. This browser also uses different colours to represent

different type of methods and instance variables.

Pane '1
System Pane '2
classes Public methods Pane '3 Pane 14

\
of system classes Program Methods and Pane #5 , classes variables of program Editing &

\ , , classes \ viewing pane , ..
f=f \ pro"atam Viewer: Untitik:d \ I
Symbol '\ ~ getLine' ~ ::::_ii~.~~rrriliE]::

I
T extColiection ~ init

, ~ I
:IfD~'[l\: moveTo init I -
TextWindow open I
ToolWindow r readLine ~ Public I

r Return the name (String object) of the receiver Employee object. I
Return an empty string if the name Is not yet assigned.·' I .
Oef getName [self]
{ Aname
}

Figure 2.2. The 'Program Viewer' browser.

This system has some advantage over the Small talk browser since it hides

the implementation details of a system component from beginners and

.provides a more complete image about the function of each class. This

reduces the users' overhead in searching for information. However, with

this browser, users still need to find components by name-based browsing, as

in the conventional Smalltalk browser.

2.2.2 Multi-dimensional browser

Traditionally, class or type based object-oriented programming systems

group methods according to one dimension: classes or types. Types are

arranged into a type hierarchy according to inheritance. In order to find a

method, users usually need to navigate through the type hierarchy with the

hierarchy browser. Ossher (1990), however, argued that it would be useful to

group methods according to two dimensions: both types and generic

functions·' because each method is an implementation of a particular

generic function for a particular object type. He suggests that organizing

methods by generic functions would be helpful for browsing in that:

i) Programmers wishing to write an implementation for a generic function

for some type can conveniently examine other implementations of the same

generic function.

ii) Programmers are able to find all types that support a generic function.

iii) Once programmers want to change the meaning of a generic function,

they can find and change all methods implementing that function.

Ossher therefore proposes a two dimensional browser for an object-oriented

extension of Pascal, embedded in a system known as RPDE3 (Harrison, 1987).

With this browser, components are displayed as a two dimensional

function/type matrix. In the matrix, each row corresponds to a generic

function, and each column corresponds to a type (see figure 2.3). Each row

has a header, shown as a shaded box in the figure, which stores information

• A generic function provides an interface to a number of methods, and the method to be
invoked is detennined by the classes of the arguments to the function.

23

24

about the associated generic function, such as its name, its parameters and its

semantics. Each column also has a header which stores information about

the associated type, such as its name, its instance variables, documentation

and a semantic specification.

When they start using the browser, users indicate types and/or generic

functions of interest, the system then presents users with a display which

includes those types and generic functions together with as much

surrounding context (i.e. other types or functions considered useful) as will

fit in the display window.

If a type implements the method for a generic function, then the

corresponding position in the matrix is marked with a asterisk. Users can

directly click on an asterisk to examine the code of the method it represents.

If a method in a type for a generic function is inherited from another type,

then the corresponding position in the matrix is marked with an upward

arrow. Users can also click on the arrow to see directly the code of the

method; they don't need to navigate through the inheritance hierarchy to

search the code as they must do with Small talk-like browsers.

This browser emphasizes the equal importance of both type and generic

functions in terms of browsing. It adds one more dimension, generic

functions, for users to browse information. Furthermore, it visually displays

the relationships between generic functions and associated types. Therefore,

it facilitates users' examinations of components to find information.

Nevertheless, it does not tell users which functions or types they should be

interested in or which they should examine; thus it is expected that users

would encounter problems similar to those experienced by users of the

Small talk browser.

Generic Function
initialize I

display-size I~~ ~:

display I~; ::;:

handle-command

I

Type
mastertype

box

*

*

*

*

procedure

I list

t *

t *

t *

* *

Figure 2.3. An illustration of the multi-dimensional browser.

2.2.3 Affinity Browser

Affinity Browser (Pintado, 1990; Gibbs et a1., 1990) is a browser designed to

help users select required objects (classes) and explore relationships among

the objects in very large object-oriented systems. It is based on the notion of

'affinity' between objects. Affinity between two objects is defined as a

relationship with an associated intensity (Le. a value specifies the 'weight' of

the relationship). An object has affinity to another object. The same group of

objects may be viewed from several different contexts, called 'views'. Each

view has associated with it an affinity function defined by system deSigners

or users, which defines the intensity of a relationship. Moreover, the affinity

between a pair of objects may be different in one view from that ih another

view. The browser displays a group of objects in a two dimensional display

according to a view selected by users. The affinity between objects is

transformed into a distance relationship so that objects with strong affinity

are displayed close together, while those with less affinity lie further apart.

Users can decide the similarities between objects based on the closeness of

these objects (see figure 2.4 and 2.5). Once users select an object to examine,

the browser also displays the objects that are within a user-defined affinity

neighbourhood (Le. those that have an affinity with the current object which

25

26

is greater than a user-defined limit). Users then can examine those

neighbour objects, whose neighbours may in turn be displayed. In addition,

users can create multiple views to see different relationships between

objects. This approach is interesting in that it attempts to use graphical

display to convey relationships between objects. However, it is not clear at

this stage how easy it would be to define comprehensible and effective

affinity functions which can meet the non-expert users' requirements.

Co

Figure 2.4. Inheritance structure of

a set of classes. Ci is a class name and

a, b, c, ... represent methods of a class.

r
Inspector

c::!:J
CE:>
c::::E::J
c:a:::J
c::::L:)

c:::s:::::>
c::a:::J
c::£C)

"---'" , ~

Figure 2.5. The Affinity Browser Display

of the objects shown in figure 2.4.

Besides the programming systems, many hypertext systems (Conklin, 1987)

also use browsers to access information stored in the systems. Described

below are two hypertext browsers: 'Document Examiner' and 'SuperBook'.

They are somewhat different from more general hypertext systems in that

they are not designed to support the more creative writing applications.

Instead, they are used to present users with online information. The

information to be presented is organized into very large documents which

are highly structured and not frequently modified.

2.2.4 Document Examiner

Document Examiner (Walker, 1987) is a hypertext system. It is a delivery

'interface which provides online access to all the documentation to

Symbolics computers (approximately 8000 printed pages). It has been a part of

the release of Symbolics software since 1985. It was designed to provide faster

and richer access to documentation initially created in paper form, and it

makes extensive use of the organization of the paper materials. It has a

window consisting of several subwindows that help users manage various

aspects of their interaction with the document. Users can directly ask the

system to present materials about a specific topic by entering the name of it.

The text presented to users has various links embedded in it, so that users

can follow these links for cross-referencing. The system also has a simple

query capability. Users can enter a group of keywords, the system then

performs a keyword or substring search (i.e. find the words which contain

the string input by users as part of the word) and shows users in a

subwindow all retrieved sections which contain those words in their titles or

keywords field. Users can select a record presented by the system and use the

'table of contents' command to see the subsections of it. The system can also

present an 'overview' on a user selected record. An overview contains

contextual information, i.e. related records, and is displayed in the form of a

graph in a temporary window. This mechanism enables the user to

determine whether or not the selected section is relevant and, if it is

relevant, whether it or something related to it is more appropriate. In

addition, the system has a 'bookmarks' window to record the history or state

of users' interaction with a document for their later reference. _This tool

allows users to access the documents in multiple ways and this to a certain

degree helps them. explore the information base to find required data.

However, as we will discuss later after section 2.2.5, this tool has some

limitations.

2.2.5 SuperBook

The SuperBook system (Remde et al., 1987) is a text browser intended to

provide improved access to existing online information by employing

27

28

several cognitive tools suggested by research on human-computer

interaction. superBook uses a version of the 'fisheye view' (Furnas, 1986)

technique. Initially, users are presented a hierarchically organized 'table of

contents' of each document in the system. Users can open up selected parts

of the hierarchy to the desired depth, leaving the coordinate and direct

ancestor nodes of the focal point visible for contextual orientation.

It also uses a rich indexing technique. All words in the documents can be

used to search for information of interest. In addition, users can specify their

own synonyms to the words appearing in any document. These synonyms

are also used by the system to perform a search. This technique to some

extent overcomes the problem that users fail to find desired information in a

textual database because they often describe what they are looking for in

terms different from those by which the material is indexed (Furnas et al.,

1983; Gomez et a1., 1984).

These techniques may be used in combination. For example, users can first

provide some words to ask the system to show all documents containing

those words. After the superBook displays a 'table of contents' which shows

all sections incorporating the words, users can use the 'fisheye viewer' to

examine some sections in more detail. They can also add their own aliases to

some of the words to facilitate their later retrievals'. The use of the 'fisheye

view' technique helps users focus on the relevant information. However it

still requires users to recognize the names of the topics they need. Its query

capacity, on the other hand, is limited as we will discuss in section 2.3.

So far, we have reviewed various browsing approaches used to help users

access information in programming systems and hypertext systems.

Although those techniques help users in various way and to a certain extent

facilitate users' information seeking process, most of them still suffer from

the same problem as that of the Small talk browser we discussed in the

previous chapter. They mainly allow users to access information according

to their names (with the exception of the Affinity Browser) and do not

provide adequate mechanisms to allow users to directly specify the

information they are interested in. The Document Examiner and SuperBook

do have some query capacities, but they are based mainly on keyword match

techniques. It will be shown in the following sections that these techniques

are not satisfactory. As suggested in the previous chapter, it is necessary to

augment the browsing approach with a query mechanism. In section 2.3, we

survey systems based mainly on database query techniques, while in section

2.4 we describe the 'retrieval by reformulation' approach on which this

research is based.

2.3 Approaches based on querying techniques

With the query approach, users input their requirements to the system in

some system-acceptable forms, the system then performs a search and

presents users with answers. The following systems illustrate this approach.

2.3.1 Keyword based retrieval systems

This approach is identical to the one used in the domain of bibliographic

information retrieval (Salton et a1., 1983). The basic idea is to index the

software components in a database with a set of keywords assigned by the

system designers or users. Users' requirements (Le. the queries) are also

represented as a set of words or phases which they think characterize their

requests. The system then searches the database to find the components

whose descriptions 'best' match against the users' queries.

a) The simplest match method of the keyword based approach is word to

word match. If the set of keywords used to index a component includes those

input by users, then the component matches the query. The query

mechanism in Document Examiner described above is such an example.

29

30

This approach is also adopted by the REUSE system (Arnold et at, 1988). In

REUSE, all software components are classified into four types: Template,

Module, Package and Program. Components within each type are assigned

keywords appropriate to that type. On retrieval, users are prompted to first

specify the type of the required component. They then provide some

keywords or phrases which characterize their requirements. The system

searches the database in the same way as was mentioned in last paragraph.

To improve retrieval, REUSE incorporates a system thesaurus, which is a

dictionary containing keywords together with their synonyms. This

increases the possibility of user-input words matching those used to index

the components.

b) Other systems use automatic indexing techniques (Salton et at, 1983) to

classify the components. In those system, instead of assigning a set of

keywords to each component manually, the indexing is done by a computer

software. The system analyses the text description for each component and

automatically extracts the important words as indices to the component. The

CAT ALOe (Frake et aI., 1987) system employs such a technique. It is an

information retrieval system for storing and retrieving C software

components. In CATALOG, each component is characterized by a set of

single-term indices that are automatically extracted from the natural

language headers of C program. In addition, the query interface of

CATALOG allows full boolean combinations of search terms. That is, search

terms can be connected by the logic operator: and; not; and or. For example,

users can enter a query such as:

«sorting and routines) or quicksort) not heapsort.

This query would retrieve components about sorting routines or quicksort,

which are not about heapsort. The system also supports partial string match

'techniques such as automatic stemming and the use of wild card characters.

A more complex automatic indexing and retrieval technique has been used

by Helm et al. (I991) in a tool developed for reusing a library of c++ user

interface classes. This tool has both querying and browsing capacities and in

it each index generated by the system has associated with it a numerical

weight. The indexing process is as follows. First of all, a document is built for

each class in the library considered important by the system designers. The

document consists of a natural language description of the class taken from

the manual of the system. This description specifies the function of the class

as well as the function of each public method of the class. An automatic

analysis is then performed for each document from all documents in the

system to extract the indices which best characterize the document. The

indexing scheme they used is to consider an index as a word or a set of words

that occurs with a significant frequency in the document. Through a

statistical analysis, a numerical weight that represents the relative

importance of the index to a document can then be generated and associated

with each index. The set of indices together with their weights for a

document forms a profile of the document. From the document profiles, an

inverted index is produced to allow storage and subsequent retrieval of

documents. To retrieve components, users specify a query in natural

language. The query is then treated as if it is just another document and

subsequently indexed using the same indexing technique use~ for the

original documents. The profile extracted from the query is then compared

to those stored in the system using a specially defined similarity measure.

Based on their similarities to the query, retrieved classes are ranked for

presentation to the users. This system also makes use of domain knowledge

of object-oriented programming systems. For example, if a class matches a

user's query, all its subclasses would also be presented . .

This tool also allows users to browse classes. To support browsing, profiles of

the documents for classes can be organized into browsing hierarchies using a

31

32

numerical clustering technique (van Rijsbergen, 1979) based on similarities

between classes. A group of classes which are similar measured against a

similarity threshold are organized into a cluster, then several clusters are

grouped again to form a higher level cluster. The newly formed clusters can

form even higher level clusters until a hierarchy is created. The hierarchy is

produced purely from the documents of classes rather than from the class

structures (e.g. the inheritance relationship). Thus its designers claim that

the browsing hierarchy built in this way provides a means to browse among

functionally rather than structurally related components.

The GURU software library system (Maarek et al. 1991) uses the same

approach.

c) A final example of the keyword based approach is the RSL system (Burton

et aI, 1987), which provides an interesting interactive scoring mechanism to

help users select components. In the RSL system, components are classified

into categories. Each component belongs to a category which is identified by a

category code. Each component also has a set of ten attributes describing its

characteristics. Some attributes are: overview (i.e. a text description about the

function of it); author (i.e. the person who wrote the component); keyword

(i.e. a set of up to five keywords used to index it); algorithm (Le. the

algorithm used to implement it); etc. For a retrieval in RSL, a user can target

his/her query on a particular attribute, for example, asking for components

written by a specific author; or asking for components belonging to a

particular category by entering the category code. Additionally, a user can

input keywords, in which case, the system would do a keyword match.

Although it is said by the designers that RSL can also handle natural

language queries, no further details are given about the techniques used.

If there are large number of components matching a query, the user can use

the scoring mechanism of RSL to help make decisions. Once invoked, the

scoring mechanism would prompt the user to specify the required

application domain of the components. Based on this information, the

system would show the user a group of attributes characterizing components

in that domain (e.g. the complexity of the components, the operation of the

components and the language used to implement them) and request the

user to specify the importance of each attribute by interactively adjusting a

group of barometers corresponding to the attributes. From the user's

selections, the scoring mechanism searches the library for candidate

components, evaluates them against the user's requirements and rates them

according to a scoring algorithm. A user can repeatedly adjust those

barometers to request the system to retrieve components according to

adjusted criteria until they are satisfied with the retrieval result.

While it is useful to let the users interactively and explicitly specify the

importance of the attributes, this scoring mechanism is only implemented

for a small set of components. The system designers also acknowledge the

difficulties of finding a rigourous evaluation method to rate components in

the library. In addition, it is not clear how the system can help users identify

in the first place the software application domain (i.e. the type of the

software) to start the scoring process.

The advantage of the keyword based retrieval approach is that it is

straightforward to implement. In particular, the automatic· indexing

technique offers a cheap way to index and retrieve components. Thus, this

technique is normally not difficult to be scaled up and extended in the sense

that new classes can be added to the library without major effort. However,

this approach is far from perfect. The studies in bibliographic information

retrieval where this approach originated indicate that it is often the case that

users retrieve much unwanted information and conversely, that they fail to

find relevant materials (Dumais, 1988). Furnas et al. (1983, 1987) showed that

there is tremendous diversity in the words that people use to describe an .

33

34

object or concept and that this places strict limits on the expected

performance of keyword-based systems. If a requester uses different words

from the author or organizer of the information, relevant materials will be

missed. Conversely, the same word can have more than one meaning which

leads to irrelevant materials. As Dumais (1988) rightly points out, since

human word use is characterized by extensive synonymy and polysemy·,

straightforward term-matching schemes are seriously deficient. The basic

problem is that people often want to access information based on conceptual

meaning, and there is not a one-to-one-relationship between word choice

and meaning.

2.3.2 Prieto-Diaz's faceted classification scheme

The REUSE and CATALOG systems described above use the hierarchical

classification scheme to classify software components. Many software

catalogues use this scheme as well. With this scheme, a universe of

knowledge is divided into successively narrower categories and categories

are arranged into a hierarchical structure. Each component to be classified is

assigned to one of the categories. Prieto-Diaz et a!. (1987, 1991) and Jones et a!.

(1988) argue that this classification scheme does not facilitate reuse: In this

scheme, it is difficult to determine a single category to assign a component

because some components can belong to more than one category. In

addition, with this scheme, maintaining and expanding the existing

hierarchy is a difficult task because the adding of new components may cause

rearrangement of the hierarchy or the generation of many cross-references

from related classes.

Prieto-Diaz et a!. proposed a software classification scheme based on the

faceted classification scheme used in library science. In the faceted scheme,

subject statements are analysed into their component elemental classes

• Polysemy: existence of many meanings (of words etc.).

called facets. Each facet contains a group of descriptors called terms. A

component is classified by selecting the most appropriate term from each

facet to best describe the component. This results in a new, synthesized class

that is tailored to the individual component. In their scheme, a software

component is classified with six facets: three related to the functionality of

the component and three related to its environment. The three functionality

facets concern the actual computation function performed, the object on

which the function would be performed, and the medium through which

the function would be applied to the object. The environmental facets have

to do with the role of the function within the system, the functional area of

the application, and the external setting in which the function will be used.

Within these facets are numerous terms describing how the system could be

classified on that facet. The search for a reusable component is accomplished

by entering a query with six terms into a relational database that contains

components, documentation and so forth. Synonyms for a term are not

allowed in a query, but a thesaurus is provided to aid users' search for the

correct term.

Within a facet, terms are structured around certain supertypes that represent

organizing concepts. The conceptual distance between two terms can be

measured as the cumulative distance between the two terms and the

supertype to which they both belong. These distances are assigned by the

user, and the conceptual graph can be used during a component search

session to find a reasonable alternative component description to search for

if the original query failed to produce a component. The development of

individually weighted conceptual graphs relies on users' willingness to

input the data needed to construct them.

This classification scheme may be successful when users are familiar with

the meaning of the terms assigned by the classifier. In this case, they can

select the terms from different facets to construct the query. However, for'

35

36

non-expert users, who are not very familiar with the domain, there may be

difficulties in understanding these terms and consequently difficulties in

using them.

2.3.3 The 'conceptual dependency' approach

Wood et a1. (1986, 1988) developed a retrieval system for software

components (mainly Unix commands) based on the approach of 'conceptual

dependency' originally developed in the domain of natural language

understanding (Schank, 1972, Waltz, 1977, 1978). Conceptual dependency is a

representational system that encodes the meaning of sentences by

decomposition into a small set of primitive actions. The core of such an

approach is a number of fundamental concepts which are sufficient to

capture the semantics of any domain of interest. The concept categories can

relate to each other in specified ways. These relations are called

dependencies. Wood et a1. suggest that software components can be described

by three fundamental types of concepts: actions, nominals and modifiers.

Actions correspond to the basic, fundamental functions that software

components perform. Nominals correspond to the objects that perform the

function (i.e. the software component itselO, objects that the function

manipulates, objects produced as a result of the function and objects that

provide a context for the action. Modifiers describe actions and nominals.

Wood et a1. analysed the software component domain and obtained a set of

basic functions for software. A set of conceptually similar verbs is then

identified for each basic function. In addition, all objects manipulated by

software components are classified into classes or 'nominals'. They then

developed for each basic function a 'component descriptor frame' to capture

the relationships between the 'action' and the 'nominals'. Such a frame is

based around the function and has slots for the objects manipulated by the

·component. All components are then classified based on the basic functions

by filling the slots of each 'component descriptor frame' with values.

During the retrieval, initially the user is prompted by the system to input

either .a verb describing the action the component performs, or. a noun

representing an object manipulated by the component. The system finds a

skeleton frame corresponding to the action (or an object) which

conceptualises the verb (or noun). It then continually prompts the user to

input words to fill the remaining slots of the frame. Based on the

information input, the system performs a search to find the relevant

components.

This approach attempts to capture more semantics of the software

component descriptions than the keywords representation scheme, and

therefore to a certain extent overcome some of the problems of the keywords

system. However, this approach has not yet been evaluated other than in the

original context. It does raise the question as how large a task it would be to

generalize this approach into other contexts.

37

2.3.4 Structured database systems

The structured database is intended to manage a large quantity of

information. Unlike the keywords based retrieval approach on which most

systems mentioned above are based, the structured database systems are used

to manage highly structured information. The information stored in these

databases is typically organized in terms of relations, but sometimes

involves data structured in trees or more general networks. The

relationships between objects or attributes need to be explicitly specified.

Users use specially designed query languages to generate queries to retrieve

information stored in these systems. However, many of the query languages

associated with the structured database systems are not easy to learn for non

expert users. Some of them like SQL (Elmasri et al., 1989) and SQUARE

(Boyce et al., 1975) require many hours of instruction to learn, and others

have a syntax which users find difficult to use and understand (Tou, 1982) ..

38

Take SQL as an example. SQL is a widely used query language for databases

based on the relational data model. In order to generate queries, SQL requires

users to know in advance which tables (relations) and attributes they will be

needing. For example, for the query "Find the names of employees in

department SO", its SQL expression is:

Select Name

From Emp

Where DeptNo=50.

For this example, users have to know from which relation (here the

relation: Emp) to choose which attributes (the attribute: Name) based on

certain criteria (the DeptNo=50). This is not always an easy task for non

expert users. They often are not familiar with the terms used to specify the

attributes, and they have difficulties in specifying the values corresponding

to those attributes (Tou, 1982). In addition, this language presumes that users

can articulate a query precisely in advance. Users, especially the non-expert

ones, however, often have only a vague idea about what they need and

consequently have difficulties in articulating the query exactly beforehand

(Fischer, 1989).

Another database approach which seems promising in terms of facilitating

non-expert users making a query is the 'retrieval by reformulation'

paradigm exemplified by the system RABBIT. We describe it in detail in the

following section.

2.4 Retrieval by reformulation

'Retrieval by reformulation' is a paradigm based on a theory of human

remembering and is used in the domain of information retrieval. The core

. of this paradigm is two techniques of human remembering: descriptive

retrieval and retrieval by instantiation, which are introduced below.

2.4.1 Descriptive retrieval

A theory of human remembering (Norman et aI., 1979) postulates that

people retrieve information from memory by iteratively constructing a

description of the target item. Norman et al. propose that the retrieval starts

with a description of the desired information as an initial specification of the

records sought from memory. This retrieval description guides the memory

search process and helps determine the suitability of retrieved records for the

purpose of the retrieval. The initial description can be modified as

intermediate information becomes available during the retrieval cycle. This

idea of accessing memory through descriptions is extended by Williams et al.

(1981) to include the notions of iteration and reconstruction. Williams et al.

suggest (1981, p. 118):

Information about the target item is used to construct a description of some

aspects of the item. This description is used to recover a fragment of information

about the item which is added to what is known. From this information, a new

description is formed to retrieve still more information, until the particular

piece of information sought can be recovered.

They also suggest that the retrieval process has three stages: find a context in

which a proper environment for conducting a search is recovere~; search in

which bits and pieces of information appropriate to the context are recovered

until an adequate description can be formed within the search context; and

verify in which the information recovered is checked against the original

query. If the information retrieved satisfies the original query, the retrieval

terminates at this point. Otherwise, the retrieved information is used to

reformulate the description and a new cycle is initiated.

In addition to being iterative, the retrieval process is also recursive (Norman

et aI., 1979, Williams et al., 1981). Each of the three stages can have within it·

39

40

one or more recursive calls to the retrieval process. The establishing of a

context, for example, may itself require a retrieval cycle, involving the

finding of a context, search and verification. Similarly, during the course of a

search, information may be found which is incomplete and thus, requires

further search before it can be understood. Finally, the verification stage may

also require its own retrieval cycles for the purpose of certifying the accuracy

of the information provided by the preceding search phase.

In summary, this theory postulates that humans retrieve information from

memory by iteratively constructing partial descriptions of the desired target

item. After a partial description has been constructed, a search is conducted

to find the information matching the description. If the retrieved

information does not satisfy the original query, then that information is

used to reformulate the description, and the retrieval cycle is repeated.

Moreover, each stage of the cycle can itself be recursive.

2.4.2 Retrieval by instantiation

The technique of descriptive retrieval described above is a general paradigm

for retrieving information from memory. However, it does not specify what

the fragments of the information retrieved on each cycle are or how they are

incorporated into the partial description to make a new description.

Williams (quoted from Tou, 1982) postulates that the information retrieved

on each retrieval cycle is in the form of an instantiation, i.e. a description of

an example item suggested by the partial description. This idea is based on

the observation that when people are trying to recall something, they

frequently are reminded of items which are similar to or related to their

target items. The instantiation serves as a template for the description of the

target item by providing a set of descriptors which can be incorporated into

the partial description.

2.4.3 Retrieval by reformulation and the RABBIT system

The 'retrieval by reformulation' paradigm (Williams, 1984) was a

combination of the two human information retrieval techniques mentioned

above and some other ideas which will be described below. It was used as a

base for the development of the RABBIT system - an interface for

information retrieval. The idea is to let a user retrieve information by

incrementally constructing a description of his/her target item using an

instantiation provided by the computer. The hypothesis of using the human

information retrieval techniques was that the methods used by people in

remembering could also be applied to the task of retrieving information

from electronic databases. In addition, an interface employing those methods

would be in some sense 'natural' to use since the interface would be relying

on techniques which people use in recalling thoughts from their own

memories.

In RABBIT, users retrieve information by iteratively reformulating their

queries. When a retrieval starts, the user inputs an initial description (a

partial query) of the desired items, and RABBIT presents him/her with a list

of items matching the initial query. One individual of the matched items is

presented to the user as an example instance. The user can then select

information incorporated in the example instance - the attributes; values;

etc. to reformulate the partial query. This new query is then used to retrieve

a set of new items and possibly a new example. This process may be repeated

until the user is satisfied with the result or it is established that the required

items are not in the database.

More specifically, the retrieval by reformulation paradigm is characterized as

follows (Williams, 1984, Tou, 1982):

41

42

--------------~

i) Retrieval by reconstructed descriptions

The user makes a query by describing the object he/she is seeking.

U) Interactive construction of queries

The query is constructed in an interaction between the computer and the

user. The user creates an initial, partial query and then gradually refines it

into a better, more complete one using the information provided by the

computer. He/she does not have to compose a precise query before using the

system. In some sense, there is no query language as is the case with the

traditional relational query languages such as SQUARE and SQL. The user

does not need to learn a formal query language. All he / she needs to master

is the set of several commands (see the following paragraph) used to critique

a portion of the example instance presented.

iii) Critique of example instances

This is the core of the retrieval by reformulation paradigm. A user employs a

set of commands to manipulate information incorporated in examples

provided by the system. This aspect of the system results in the user getting a

template for the type of object he/she wants to describe, a vocabulary he/she

can be certain that the system understands, and access to additional

information and terminology within the database. The access to additional

information in the database can be achieved by the user selecting a descriptor

in the example instance description and asking RABBIT for alternative

values or further descriptions.

iv) Dynamic perspectives

. The information presented to the user (Le. the examples) should be based on

what view users take of the information, that is, it should be based on

information in which the users have shown interest. Unnecessary attributes

and values should be filtered out. In addition, the view should change with

the users' changing queries.

Since RABBIT, there have been other systems which have used the retrieval

by reformulation approach. One is called ARGON (Patel-Schneider et aI.,

1984), which is a system used to store and retrieve personnel information.

Another system is HELGON (Fischer et aI., 1989) which is used to manage

database stored information about literature. It has been reported (Fischer et

aI., 1989) that this approach is effective in helping non-expert users

retrieving information.

In the process of the research reported in this thesis, we decided to use the

retrieval by reformulation paradigm as our base to design the query tool for

helping users find reusable components in Small talk. The main

consideration for choosing this paradigm was as follows.

The users of this tool are non-expert users. Faced with Small talk, they have

already had a considerable amount of learning overheads. It would be

inappropriate to design a formal query language that requires a lot of effort

to learn before it can be used. The query language designed based on the

retrieval by reformulation paradigm aims to help non-expert users make a

query and does not seem to impose much extra learning load on users. It

thus seems suitable to our purpose.

2.5 Summary

In this chapter, work relevant to this project has been surveyed. This

includes the particular help provided for Small talk users - short tutorials

and graphic trace tools; vario~s browsers for users to access information in

programming environments and hypertext systems; systems using

information retrieval techniques and the retrieval by reformulation

43

44

paradigm. The tutorials provide starting points for users to explore the

Smalltalk systems, but the help from this approach is very limited. The

graphic trace tools make more explicit relationships between objects and

enhance users' comprehensions to the functions of software components.

However, they do not address directly the problem of how to find reusable

components. The various proposals for the designs of browsers provide

useful techniques in terms of facilitating users' access to information.

However, most of them suffer from problems similar to that of Smalltalk's

System Browser. The majority of systems based on query approaches use

keyword based retrieval techniques. This kind of technique is easy to

implement but is not very effective for helping users to find required

information. The retrieval by reformulation paradigm exemplified by the

RABBIT system seems to be a promising solution, and was thus selected as a

base for this project. In the next chapter, its use in the design of this project is

described.

•

Chapter 3 BRRR1- the design and application

3.1 Introduction

In the last chapter, we introduced the paradigm on which this project is

based: retrieval by reformulation. Described in this chapter is the first

prototype tool we developed - BRRRl (BRowser for Retrieval by

Reformulation). The principal idea guiding the design of this prototype is to

allow the users to query the system (i.e. give the system a description) about

the components they need. The system would recommend them with a list

of candidate components according to the description. The users then

examine the candidates offered and choose the appropriate ones. A query is

constructed iteratively, using the information presented by the system.

The chapter is organized as follows: first of all, an example is shown to

illustrate how a query is carried out in BRRRl. Then discussed is how the

retrieval by reformulation paradigm is reflected in BRRRl and some general

considerations about the design of the system. Thirdly, we examine the

component library and component organization of BRRRl. What follows is

an overview of the implementation of BRRRl and finally, the interface of

BRRRl is described.

3.2 Finding components in BRRRI - an example

In this section, an example is used to show how users use BRRRl to find the

required components. To facilitate the comprehension of the example, it is

first necessary to introduce briefly the interface of BRRRl.

45

46

3.2.1 The interface - an overview

The interface of BRRRI consists of two windows, the Main window and the

Method Examination window. The Main window consists of the following

five panes (see figure 3.1):

i) Class Descriptors pane (leftmost):

Presented in the Class Descriptors pane is a group of words describing

characteristics of the classes, each word is called a class descriptor.

Ii) Class Query pane (upper to the right of the Class Descriptor pane):

The query constructed by users for retrieving classes is shown in this pane. A

class query comprises a set of class descriptors similar to those displayed in

the Class Descriptors pane.

iii) Method Query pane (right below the Class Query pane):

The query constructed by users for retrieving methods is presented in this

pane. A method query consists of a set of method descriptors which- we will

describe later.

Iv) Matched Items pane (top to the right of the Class Query pane):

Shown in this pane is a list of classes or methods matching a user's query on

class or method.

v) Example pane (right below the Matched Items pane):

This pane contains a description of a class or a method included in the

matching list in the Matched Items pane mentioned above. Shown here is

either the description of a class or a method depending on whether the user

is retrieving classes or retrieving methods. This will be explained fully later

in section 3.5.1.

The 'Method Examination' window is not shown in figure 3.1. A Method

Examination window would be open when a user starts examining the

methods in a class. It is from this window that an initial method query is

created. This can be seen in the next section where an example of using

BRRR1 is presented. In each individual pane except the Matched Items pane,

there is a pop up menu which shows a set of commands applicable to that

pane and with which users interact with the system. Generally, we tried to

design BRRR1's interface similar to that of Small talk, so that users can feel

more familiar with it. This is to reduce their learning overload, since they

should not be distracted too much by learning the operations in BRRRl.

3.2.2 The example

Suppose a user has a group of numbers and needs to sort them in either

ascending or descending order and she wants to find a class in Small talk to

do this. In other words, she wants to find a class whose instances should be

able to store this group of numbers, and the numbers put in should be

ordered automatically according to their values.

To present the example clearly, we divide the description into subsections as

can be seen below.

a) Creating an initial class query

47

As the class capable of sorting numbers should provide a data structure, so

the user inputs the words: 'Data structures'. This input is displayed in the

Class Query pane. She then requests the system to do a retrieval to find all

classes which provide data structures. This is done with the command:

'Retrieve classes' which appears in a pop up menu in this pane. BRRRl .

48

performs a search and presents in the Matched Items pane all classes which

provide some kind of data structures, which are in fact all the Collection

classes of Small talk. The first class in this pane is highlighted automatically.

Meanwhile, a description of the class highlighted in the Matched Items pane

is displayed as an example instance in the Example pane (see figure 3.1). The

description of the class consists of a text message which explains the function

of the highlighted class - the class OrderedCollection, and several class

descriptors (the boldfaced text) which are under the heading: 'descriptors'.

These descriptors specify the properties of the example class and can be used

by users to construct a further query for class.

.tlements-ordered
~ccesslble -by -~
key

Da ta -structure\

order-determined Qt
-extemally t--------t-..lctlonary

~-~~--TBa9
order-determined IdQntltyDlctionary
-Inter~lIy IdentltySet
cl~ •• -of-element Ma edColiectlon
."-Link Method Query Example
c~lIlI-of-element I--------..... C-o-m-m-e-n-t-: ------------1
11-111 -Number • Class Orde.redCol/ectlon represents a
ckss-ot-eiement col/ectlon of elements explicitly
..... -Anocia don ordered by the sequence In which
elements -are -unl objects are added and removed.
que OrderadColiactlons can act as stacks
ab.tract -class or queues.

descriptors:

Data-structures
elements-ordered
order-determined-externally

Figure 3.1. All 'data structure' classes are retrieved.

b) Refonnulating the class query and retrieving classes

Now, the user examines the class descriptors in the Example pane. She

thinks that the instances of the class for which she is looking should be able

to keep its elements in some order. She thus selects the descriptor: elements

ordered and then chooses the command: 'Require' which appeared in the

pop up menu of this pane. After the menu command is executed, this class

descriptor is added to the Class Query pane. At this stage, she is not sure

which other class descriptors to choose to specify her requirements further.

She therefore requests BRRRl to do a class retrieval. BRRRl now presents

her with all such classes whose instances provide some kind of data

structure and can keep their elements in certain order. Note that the

Matched Items pane is updated again (see figure 3.2).

c) Examining methods in matched classes

After two cycles of class retrievals, the user now has a group of matched

classes. She wants to narrow down the search space further in order to

choose the best ones. She thus decides to examine the methods of the

matched classes to investigate their functions as the function of a class is

specified more completely by the functions of the methods associated with it.

She selects the command: 'View method categories' from the m~nu of this

pane. The pane is updated and the method categories of the example class:

Ordered Collection is shown below the class descriptors (see figure 3.3). Each

category represents a group of methods associated with this class. Among all

method categories, the category 'adding' seems more interesting to her

because all numbers need to be put into a collection and ordered

automatically. She thus wants to see more details about the 'adding'

methods. She chooses the ,category and uses the menu command:

'Specialize'. Once this command is executed, a new window - the Method

Examination window is open (see figure 3.4). This window has two panes,

49

50

the top one contains all methods associated with the class OrderedCollection

and which are used to add new objects into a collection. The bottom pane

contains the description of the method highlighted in the top pane - the

method: 'addAll:'. The description comprises two parts: the first part (plain

text) is a text message explaining the function of the method; the second part

(the boldfaced text) is called method descriptors. Each method descriptor is

also named: an attribute-value pair with the part before the ':' an attribute

and the part after it the corresponding value of the attribute. The method

descri ptors specify the function of the method and are used by the user to

construct a query for methods.

Class Oescrlptors

.rlernent.-ordered
acce.slble-by-a
key
order-deternYned
-externally
order-deternYned
-Internally
class-ot-element
s-l.-Llnk
class-ot-elernent
s-l.-Number
class-of'-elernent
s-l.-A.eoclatlon
elements -are -un.
que
abstract-class

Class Query

Oa ta -structurQS
elemen ts-ordereq.,

MQthod Query

..

B class(es) matched your query.

Array
SortedCollectlon
LlnkedList
Interval
MappedCollectlon
ArrayedCollectlon
SequQnceableCollQctlon

Example

Comment:
Class OrderedCollectlon represents a
collection of elements explicitly
ordered by the sequence In which
objects arQ -added and removed.
OrderedCollections can act as stacks
or queues.

descriptors:
Require

Prohibit
Data -etructures
elemenu-ordere View method categories

order-determlned Specialize
acce •• lble-by -a

Figure 3.2. All 'ordered' classes.

Class Descriptors

~nt.-ordered

Accellllible -by -A -
key
order -determined
-extemAUy
order-determined
-internally
c -of-element

Class Query

Da ta -structures
eleMents-orderec:J..

B class(es) Matched your query.

Array
SorUdColiectlon
LinkedList
Interval
MappedColIQctlon
A rraYII dColillctlon
SequenceableCollectlon

.-.-Link Method QUQry ExaMple
c -of-element ~------------~----~-----------------------i descriptors:
• -Is -Number A

c -of-element
• -Is -As.ocIA don
element.-Are-unl
que
AbstrAct -class

DatA _tructure •
element._dered
order-determined-externAlly
Acce •• lble -bY-A -key

!!'tIbITffii
Acce.slng
removing
enumerAting
copying

Figure 3.3. Method categories of Ordered Collection are shown in the Example pane .

. :0 oj oj .':::'. II:
add:before:
addAIIFlrst:
add:after:
addAIiLast:
add:beforelndex:
add:

addAII: anOrdQredColIQctlnn
"Add each QIQmant of anOrdaradColiactlon to the end of the recalver.

Answer anOrdQrQdColiectlon."

Operation:
ObJQcts-addQd:
Po sit Ion -I n - t h Q - re C Q 1 v Q r:
Object-returned:

Add
A-collectlon-of-element,,: anOrderedColillctlon
end
AnOrderedColleCtlo~

Require

Prohibit

Alternatives

Figure 3.4. The Method Examination window.

51

52

d) Creating a method query

Now, the user thinks that this example method is not quite what she needs

because though it adds a group of elements into a collection, all elements

added are not ordered according to their values. However, the method she

needs should at least be able to add new numbers into a collection. She thus

highlights the descriptor: 'Operation: add' and uses the command: 'Require'

in this pane's menu. The selected method descriptor is shown in the Method

Query pane of the Main window. She then 'Requires' the method descriptor:

'Object-added: a-collection-of-elements' since she needs to add more than

one number. However she is not satisfied with the descriptor 'Position-in

the-receiver: end' which specifies that the objects added in would be put at

the end of the collection. As she needs to sort numbers, therefore the

numbers added in should be put in positions based on their values. She

therefore selects the descriptor and chooses the command 'Alternatives'

from the menu of this pane to request other values for this attribute. BRRRl

shows her a new pop up menu with a list of values it knows for this

attribute (see figure 3.5). Among those, the value: 'postion-determined-by

the-receiver's-sorting-rule' seems satisfying her requirement. She therefore

selects it and 'Requires' it. Now, all those required descriptors have been sent

to the Main window's Method Query pane (see figUre 3.6).

e) Retrieving methods

She goes back to the Main window and requests BRRRl to find all methods

satisfying her query with the menu command: 'Retrieve methods' in the

Method Query pane. BRRRI shows her in the Matched Items pane the

methods which match her query. This time, only one method: 'addAll:

(SortedCollection)' matches the query (see figure 3.7). The text in the bracket:

. SortedCollection is the name of the class with which the method is

associated. Note that, after the retrieval, the Example pane is updated again,

the description of the method 'addAll: (SortedCollection), is now displayed

in this pane. After reading the description, the user thinks this method will

perform the function she needs. As the class with which this method is

associated is SortedCollection, she decides to use that class for her task.

This example shows how BRRRl is used to find required classes or methods.

In the following sections, we describe its design principle in more detail.

3.3 The retrieval by reformulation paradigm in BRRRl

In the previous chapter, we explained that the retrieval by reformulation

paradigm uses the following main techniques: retrieval by constructed

descriptions; interactive construction of queries; critique of example

instances and dynamic perspectives. In this section, we show how these are

reflected in the design of BRRR1.

add:before:
addAIiFirst:
add:aftQr:
addAIlLast:
add:beforelndex:
add:

addAII: anOrdenildCollection
"Add each element of anOrdQredColiection to thQ and of tha racaiver.
Answer anOrderedColiectlon.-

0pQratlon: ~dd

Objects-addQd: ~-collection-of-elements: anOrderedColiection
Position-in-the-receiver: m
ObJQct - rQturnQd: anOrderedCollection

ng
before-indexed-posltlon

a ftar-tha-posltion-of-oldObJact
bafore-the- osition-of-oldObject

sltion-determlned- he-receiver's-sort

Figure 3.5. Alternative values to the value: 'end' of the attribute: 'Position-in-the
receiver' are shown in a pop up menu.

53

54

.. -- -----~-~--~--~--~~~~~--

........... ~.-ordered
&cc~-b~-&~.

y
order -de~ermined
.x~ernaly

order-cle~ermlned -I
n~ernaly.

cI&n-of-element.-I
.-LInk
cI&n-of-elemenU-l
.-Number
cl& •• -of-elemenu-l
.-AMoclAtion
........... U-.,.-unIqu

•
&M~r&C~-cI& ••

add
a -collectlon-ot-ele
menu
position-determined
-by-the-reeelver's
sortlng-ru'\.

------~

IT&Y
SortedColleetlon
UnkedUst
Interva'
MappedColiectlon
AlTayedOolleetlon
Sequenceab'eColiectlon

descriptors:

D&~a-.truc~
.I....-.t.-orderecl
order-cletermlned-externaly
acc •• ~-b~-a~ey

Method categories:

Retrieve methods ------i addJna
acc ••• lng
removing
enumerating
copying

Figure 3.6. The method query constructed so far.

Class Descriptors

~t.-ordered
acc .. ~-by-a~e
y
order-de~ennlned-e

xterndy
order-detennlned-ln
ternaRy
cI&a-ot-elernent.-I
.-LInk
~.-of~nt.-I

.-Number
~-ot-~t.-I

.-AsHClation
elemenu-are-unlqu

•
&bnract-cla ••

C'ass Query

Da ta-structures
elemenu-ordere<i,

Method Query

add
a -collectlon-ot-elem
ents
posltlon-determlned
by-the-recelver's-s
orting-rule..

1 method(s) matched your query.

Example

.addAII: aCollection
-Add each element of aCollectlon as
element of the receiver. Put them in the
positions which are determined by a sorting
rul. which Is the value of the
Instance variable: sortBlock. Answer
aCollectlon. -

Operation: add
Objects-added: a -coIIecdon-of
..a.nent.: aCollectlon
Posltion-in-the-recelver: po_don-deter
mlned-by-~he ecelver·.-.ortlng-rule
Object-returned: aColiection

Figure 3.7. The result of the method query.

3.3.1 Retrieval by reconstructed descriptions

In BRRRl, users make a retrieval by constructing a description of the desired

components (classes or methods). The components in BRRRI are the basic

reusable components of Small talk, i.e. classes. Each class has associated with

it a group of methods. Therefore, in BRRRl, the descriptions are of classes

and methods. Users describe the required classes with the class descriptors

and the required methods with the attribute-value pairs. Each descriptor

represen ts an· aspect of the function of a class or a method, users can

therefore retrieve a class or a method based on several functional aspects of

it. The descriptors provide more information about the function of the

component than just the name of the component. This should be more

helpful for users in finding the required components than the primarily

name-oriented scheme used in the original Smalltalk browser.

3.3.2 Interactive construction of queries

Retrieval in BRRRI is a process of reformulation of the original query. Users

do not have to compose an exact query beforehand, rather the query is

created gradually using information presented by the system. They can

initially construct a partial query and then refine it to a more accurate one

using the information fed back by the system. In BRRRl, in effect, the

retrieval of components is completed in two stages. First of aU, users create a

query for classes which specifies what characteristics the required classes

should have. The class query is composed by using the class descriptors

(select them from either the Class Descriptors pane or the Example pane).

After several cycles of class retrievals, a number of classes may be found.

However, the users may still need to decide which one of the matched

classes to choose. At this point, they may examine the methods in each

matched class, or if there are many matched classes, they can create a method

query to retrieve required methods. After finding the required methods, they .

55

56

would be able to know with which classes those methods are associated and

then choose the most suitable ones.

The reason for finding methods of classes is that the methods of a class

specify the function of the class in more detail. Therefore, it is necessary for

the users to investigate the methods of a class to understand its function

better. An important concept supported by object-oriented programming

systems is data encapsulation (Pinson et al., 1988; Blair et al., 1991). An object

encapsulates both data and a set of operations (i.e. the methods) which are

allowable on the object. The representation of the data is protected and users

can only access the object through the set of operations which is referred to as

the interface of the object. Therefore, from an external point of view, it is the

set of operations or methods of an object which collectively defines the

function of the object. In Smalltalk, a class represents a group of similar

objects - its instances, the methods of a class specify the interface of all its

instances. To understand fully the function of a class, it is thus necessary to

inspect and understand the methods of the class. Furthermore, for users, to

determine if a class is required, an important criterion should be that the

class has the kind of methods which they need. This process is equivalent to

asking the system to find the class which satisfies the conditions specified by

the class descriptors; and which should have such methods that they satisfy

the conditions specified by the method descriptors. To find the required

methods from the matched classes, users can construct a method query -

this is the second stage of the query process in BRRRl. It is through the

method query that the users further specify the requirements to the class

they need.

From the example described in the last section, it can be seen that again, a

method query is created gradually. The users first select one of the BRRRl

'method categories which represents the methods in which the users are

interested. They can then use the example method provided by the system to

create a method query. If the methods given by the system do not satisfy their

requirements, the users can reformulate the query still further. This should

be particularly helpful in the situation where users cannot form a complete

image about the components they want, and have difficulties in creating a

complete query in advance. Furthermore, users do not need to learn a

formal query language, which reduces their learning overheads.

3.3.3 Critique of example instances

In BRRR1, users reformulate the partial query with the information which is

generated by the system on receipt of the users' initial query. The

information is in the form of a description of a component (a class or a

method) which matches the users' partial query. The description consists of a

comment which describes the function of the component (class or method)

and a set of descriptors (class descriptors in the case that the example instance

presented is a class; attribute-value pairs in the case of a method). The

example component is a concrete example of the components satisfying the

users' query. It is an instantiation of the abstract specification of the 'query

description. It serves as a template for users to describe their target

components. The descriptors embedded in the description of the example

component can be used to reformulate the previous query. In the case of the

method query, the, description of an example method provides a. pattern to

construct a method query. The values of the attributes used in describing the

example method facilitate users' understanding of the meaning of the

attributes. In addition, the text comment about the function of the

component provides a context in which the descriptors are used. This should

also help in resolving the possible ambiguities of the descriptors. Moreover,

as users only need to select the descriptors presented by the system, they are

supplied with a vocabulary ~hich is guaranteed to be recognizable by the

system.

57

58

Another aspect of the example is that it provides users access to additional

information within the system (this happens during the method retrieval

through the uses of the 'alternative' command). It is likely that the example

method presented to users is not quite what they need. The example is

however related to the target ones since it satisfies the initial query. By

choosing some attributes and exploring the alternative values from the

description of the example, users may find other descriptors which suitably

describe their requirements.

3.3.4 The dynamic perspective

This technique is used in the RABBIT system mainly to filter out the

unnecessary attributes for a data item in a conventional database because a

data item there may have large amount of attributes. For example, a

restaurant may have attributes: name, location, cuisine, reservation

requirements, manager, turnover etc. Not all of them are interesting and

necessary for all users. Some users may only be interested in the cuisine and

reservation requirements while other people may be interested in its

business aspects (for example, its manager, its income). Thus for different

user requirements, only the relevant information (attributes) should be

presented while the irrelevant ones should be hidden. Furthermore, the

attributes presented to users need to be changed dynamically when users

select different categories of data to examine. This is useful when the data

stored in the system is heterogeneous. In BRRRl, however, a class or a

method has relatively limited amount of attributes, thus in this first version

of BRRR1, this technique is not implemented.

So far, we have showed an example of how BRRRI is used to help users find

components and described in general how retrieval by reformulation is

reflected in BRRRI. In the following sections, we describe the design of the

system. The system consists of two main parts: the component library and

the interface. The component library provides a mechanism to organize (i.e.

store and index) reusable components for retrieval. The interface aids users

to query and examine components to find the required ones. We look at each

of them in tum and the library is described first below.

3.4 The component library of BRRR1

In BRRRl's component library are components (classes) taken from

Smalltalk. They are reorganized to suit our retrieval paradigm. Before we

describe components organization in BRRRl, first we briefly introduce what

basic reusable components are in Small talk and how they are organized

there.

3.4.1 The components organization in Smalltalk

In Smalltalk, the basic reusable components are classes. Each class has a set of

methods associated with it. For convenience, the methods associated with a

class will be referred to as 'methods of the class' or 'methods in the class'. For

a single class, the number of methods in the class may be large, therefore all

methods of the class are classified into several method categories. Each

method category contains a group of functionally similar methods. An

example of this structure: the class OrderedCollection and methods

associated with it are illustrated in figure 3.8.

All classes in Smalltalk are arranged into a inheritance hierarchy in which

each class, except the class Object, has a superclass and may have several

subclasses. The class Object is at the top of the hierarchy. All methods in a

class are inherited by its subclasses. A simplified illustration of the class

hierarchy of Smalltalk is shown in figure 3.9.

59

60

Another layer of organization to the classes are class categories. All classes

are classified into class categories and a class category represents several

functionally relevant classes. There is, however, no further structure

imposed on individual class categories, all class categories being at the same

level.

OrderedCollection

at:

replaceFrom:to:with: removeAUSuchThat:
remove:ifAbsent:

Figure 3.S. The class Ordered Collection and the methods in it. The nodes in the

middle of the tree represent method categories. The leaf nodes represent methods.

SortedCollection

Figure 3.9. An illustration of the inheritance hierarchy of classes in Smalltalk.

3.4.2 .The component organization in BRRRl

BRRRI is a prototype system to demonstrate our approach, thus only a

subset of the components in the original Small talk system is stored in its

library. The classes we chose to store are the 'Collection' classes in

smalltalk's class hierarchy. The Collection classes are a cluster of classes

which serve as containers to other objects and are often used as bases to

construct various data structures. The inheritance hierarchy for some of the

Collection classes can be found in figure 3.9 (Le. all classes in the hierarchy

under the node: 'Collection').

The Collection classes have similarities in that all of them are used to store

other objects. However, there are also differences among them, for example,

some classes are ordered, (Le. their instances can maintain an order on

elements stored in them, the class Ordered Collection and SortedCollection

are such examples) while others are not (for example, the class: Set). Some of

the classes are accessible by external keys (i.e. objects stored in instances of

these classes can be directly accessed through indices, for example, the class

Array and Dictionary). To find an appropriate class among those Collection

classes to complete a task, users need to distinguish the functions of different

classes. Finding the required classes in this group of classes therefore seems

to represent a sufficiently complex and typical situation where non-expert

users try to get access to required information. In addition, the Collection

classes are so frequently used in Small talk programming that for non-expert

users, help should be provided for practical use. It is for these reasons that

the Collection classes were chosen as the test bed and used in BRRRl's

component library.

In BRRRl, both classes and m~thods are classified. The classification scheme

for classes is different from that for methods. The classes are classified

61

62

according to class descriptors and the methods are classified into method

categories. We explain them further in the following sections.

a) The class classification

In BRRR1, in contrast to the class organization in the original Smalltalk

system, each class in the library is indexed by one or several phrases named

'class descriptors'. Each class descriptor represents a property and is associated

with one or several classes which have the property. For example, the

descriptor: 'elements-ordered' specifies the property that instances of a class

are able to keep their elements in some order. Therefore, all Collection

classes which are ordered are indexed by this descriptor. The selection of

indices (Le. the class descriptors) for all Collection classes relies on the

properties used to distinguish the functions of the individual classes. After

analysing the functions of all Collection classes, several criteria were chosen

to classify them. These criteria together with the descriptors used to represent

them are listed below:

i) Is the class ordered (i.e. do instances of a class maintain an order on their

elements)? The corresponding descriptor for this property is: 'elements

ordered'.

ii) Is the order determined by the order in which the elements are put in or

removed? The corresponding descriptor for this property is: 'order

determined-extern all y'.

iii) Is the order determined by the class' own criteria? The corresponding

descriptor for this property is: 'order-determined-intemally'.

Iv) Is the class accessible by a key (i.e. can elements of instances of a class be

accessed by external indices)? The corresponding descriptor for this property

is: 'accessible-by-a-key'.

v) Can elements stored in instances of the class only be numbers? The

corresponding descriptor for this property is: 'class-of-elements-is-Number'.

vi) Can elements stored in instances of the class only be instances of the class

Association? The corresponding descriptor for this property is: 'class-of

elemen ts-is-Associa tion'.

vii) Can elements stored in instances of the class only be instances of the

class Link? The corresponding descriptor for this property is: 'class-of

elemen ts-is-Link' .

viii) Are elements in instances of the class unique (i.e. any element appears

in the collection only once)? The corresponding descriptor for this property

is: 'elements-are-unique'.

ix) Is the class an abstract class? The corresponding descriptor for this

property is: 'abstract-class'.

The first three descriptors (i, ii, iii) deal with the order of a collection. The

fourth specifies the way in which elements in a collection are accessed. The

three following descriptors (v, vi, vii) deal with type restrictions on objects a

collection can store. The meanings of the last two descriptors (viii, ix) are

self-explana tory.

b) The method organization

In Smalltalk, each class has associated with it a group of methods. The

methods in each class are classified into several method categories. Each

method category represents several functionally similar methods in the

class. In BRRR1, this class-method relationship is still maintained, in other

words, each class knows what method categories it has and what methods

63

64

are in each method category. For example, in Smalltalk, the class

Ordered Collection has the following method categories:

adding: representing methods used to put new objects into the collection.

accessing: representing methods used to access elements in the collection.

removing: representing methods used to delete existing elements in the

collection.

copying: representing methods used to make copies of the collection.

enumerating: representing methods used to sequence through all elements

in the collection to perform a computation.

In BRRR1, the class OrderedCollection still has the same set of method

categories and for each method category, the same set of methods. This

ensures that when users select a class, they are able to find the same set of

methods as would appear in the original Smalltalk's System Browser.

However, to support method queries in BRRRl, it is necessary to impose a

new layer of structure on methods to give the system a capacity to retrieve

methods across different classes. A classification method used in BRRRI is to

categorize methods. All methods in all Collection classes are classified into

several method categories referred to as 'BRRRl method categories'. Each

BRRRI method category represents the methods in all Collection classes

which have similar functions. The BRRRl method categories have the same

names as those in original Smalltalk but have a wider scope. They are listed

below:

adding;

accessing;

copying;

removing;

enumerating.

The 'adding' represents methods in all Collection classes used to put new

objects into Collections·. An example method of this category is the method:

'add:' of the class: Set. This method, when used, adds a new object into an

instance of the class Set. Another example of such method is the method

'addLast:' of the class: OrderedCollection, which adds a new object to the end

of an Ordered Collection.

The 'accessing' represents methods in all Collection classes used to retrieve

or replace elements; access various parameters of Collections. The method:

'at:put:' of the Class 'Array' is such an example. This method uses a new

object to replace an existing elements of an Array which is at a particular

position.

The 'copying' represents methods in all Collection classes used to make

copies of Collections. For example, the method: 'copyFrom:to:' 'of an

OrderedCollection which copies all elements of an OrderedCollection which

are between two indices.

The 'removing' represents methods in all Collection classes used to delete

existing elements in Collections. An example of this type of method is the

method: 'remove:' of the class Bag, which removes an existing element in a

Bag. The method 'removeAllSuchThat:' of the class SortedCollection

removes all elements of a SortedCollection which satisfy certain user

specified condition.

The 'enumerating' represents methods in all Collection classes used to

sequence through all elements in Collections to carry out certain

• 'Collections' means instances of Collection classes.

65

66

computations. For example, the method: 'do:' is supported in all Collection

classes, which is used to do looping. The method: 'findFirst:' in an

Ordered Collection is used to find the index of the first element in the

collection which satisfies a user-specified condition.

In Small talk, methods in each class are also classified into method categories.

A class has several method categories, and each method category represents a

group of functionally similar methods in the class. In effect, BRRRl method

categories are directly derived from the method categories in Small talk but

with an important difference. For each BRRRl method category, we

examined each Collection class and classified into the BRRRl method

category all methods in the class, which belong to the method category

whose name is identical to the name of the BRRRl method category. An

example should make this clearer. In Small talk, the class OrderedCollection

has a method category 'adding', which represents all methods in an

Ordered Collection which are used to add new objects. The class Set also has a

method category 'adding', which represents all methods in a Set which are

used to add new objects. Similarly, some other Collection classes such as

'SortedCollection', 'Bag' also have the method category: 'adding' and all

represent the methods in these classes which are used to add new objects. In

BRRR1, all these 'adding' methods in different Collection classes thus are

classified into the BRRRl method category: 'adding'. Although the 'adding'

methods in different classes have different ways of doing the addition, they

do have the common function: 'add new objects into a collection'. It is

therefore appropriate to classify them into a 'global' category representing

the same meaning - 'adding', and in which methods from different classes

are gathered together. (see figure 3.10 for an illustration).

Array

II c:
• • •

" (accessing)

Bag ,," :
II ::: • -- adding

BRRRI method category: 'adding'

Figure 3.10. An illustration of BRRRl's method organization. Included in each circle are the

methods in a class. The methods in individual classes are grouped together into a 'BRRRl

method category' which has the same name as the method category in individual classes.

In BRRR1, methods in other categories are also classified in the same way,

i.e. all methods in 'accessing' ('copying'; 'removing' and 'enumerating')

category in different Collection classes are put into the corresponding BRRR1

method category: 'accessing' ('copying'; 'removing'; enumerating'). This

classification method provides a basis for users to find information across

different classes through a method query. For example, if a user wants to find

a method which performs a special 'add' operation, as it will be shown later,

he/she can go to the BRRR1 method category: 'adding' and find the method

through a method retrieval, which retrieves the method from all methods

in different classes which perform the 'add' operation. This would save

him/her from going to each class's 'adding' category and browse methods in

each class. In addition, the names of the BRRR1 method categories are the

67

68

same as those of the method categories in Smalltalk. It therefore should be

easier for users to understand their meanings as there is a consistency

between Small talk and our tool.

In addition to classifying methods into BRRRI method categories, each

BRRRI method category has associated with it a set of attributes named

method attributes. The functions of the methods in the method category is

characterized by the set of method attributes. Each attribute specifies a

property which a method in the BRRRI method category must have. Each

method in a category has a corresponding value to an attribute according to

the function of the method. For a specific attribute, different methods may

have different values. An attribute together with the corresponding value is

named an attrib.ute-value pair. All methods in a method category must

possess all attributes attached to that category.

To describe the function of a method, two basic aspects to consider are: the

operation that the method performs; and the objects manipulated by the

method (for the objects manipulated, factors to consider are: the number of

objects involved; constrains to the objects and the objects returned, etc.). We

therefore used the following criteria to determine the attribute set for each

BRRRI method category:

i) The operation a method performs;

ii) The objects a method manipulates;

iii) The positions in which the objects are manipulated in a Collection;

iv) The possible constraints to the objects manipulated by the method;

v) The objects returned as a result of the operation.

For example, for the category: 'adding' which represents all methods used to

put new objeCts into a collection, the attributes are:

Operation: (represents the 'add' operation);

Objects-added: (represents the number of the objects added);

Position-in-the-receiver: (represents the position in which the new
objects should be put);

Object-returned: (represents the object returned as the result of the
operation).

The method 'add:' of the class OrderedCollection is an 'adding' method. Its

function is to add an new object into the end of the collection. It is described

as:

Operation: add;

Objects-added: one-object;

Posi tion-in-the-recei ver: end;

Object-returned: newObject. (note that, here, the newObject is the
argument of the method 'add:' and represents the object to be added).

Another method 'addAllFirst:' of the same collection, whose function is to

add a group of objects into the end of the collection, can be described as:

Operation: add;

Objects-added: a-collection -of-objects;

Posi tion-in-the-recei ver: beginning;

Object-returned: anOrderedCollection.

Taking the method· category 'accessing' as another example, the attributes

are:

Operation: (represents the accessing operation);

Objects/Parameters-accessed: (represents the objects to be accessed);

69

70

Position-in-the-receiver: (represents the position of the objects to be
accessed);

Object-returned: (represents the object returned as the result of the
operation).

The method 'at:put:' of the class Array is a method of this category, whose

function is to replace the element of an Array which is at the position

specified by an integer with a new object. Its description is:

Operation: replace;

Objects/Parameters-accessed: one-element;

Posi tion-in-the-receiver: posi tion-indexed-by-an-in teger;

Object-returned: newObject (note: the 'newObject' is the argument of the
method).

3.4.3 Summary of (omponent organization

In this section, we have described the component organization in BRRRl's

library. Components are principally organized into two levels: the class level

and the method level. At the class level, classes are indexed by one or several

class descriptors. Each class also knows the method .categories it contains and

what methods are in each method category. At the method level, methods

from all Collection classes are classified into different BRRRI method

categories. The BRRRI method categories use the same names as those in

individual classes. Each BRRRI method category has associated with it a set

of attributes which characterize the functions of the methods in the category.

For each method, it possesses the attributes of the category and has

corresponding values to the attributes according to the function of the

method. In the following section, the interface of BRRRI will be described.

3.S ' The interface of BRRRI

The interface of BRRRI consists of two windows: the Main window and the

Method Examination window. We first introduce the Main window.

3.S.1 The Main window

The following five panes constitute the Main window, we describe them in

turn:

a) Class Descriptors pane;

b) Class Query pane;

c) Method Query pane;

d) Matched Items pane;

e) Example pane.

a) The' Class Descriptor pane contains all class descriptors used to index the

Collection classes stored in BRRRl's library. Users start their initial query for

classes from this pane. They can select any of the descriptors in this pane and

manipulate it with the menu commands in this pane to construct a class

query. There are two menu commands in this pane: Require and Prohibit.

Require: sends the selected class descriptor to the Class Query pane. This

specifies that the classes sought must have the property characterized by the

selected class descriptor.

Prohibit: sends the negated form of the selected class descriptor to the Class

Query pane (i.e. prefix the deScriptor with: 'not-I). It specifies that the classes

sought must not have the property characterized by the selected class

deScriptor.

71

72

b) The Class Query pane holds users' query for retrieving classes. A class

query consists of a set of class descriptors. Some of the descriptors may be in

negated form. The descriptors are sent to this pane either from the Class

Descriptors pane or from the Example pane which we will explain later. All

class descriptors are connected implicitly by the logic operator: 'and'. It

specifies that, for a class to match the query, all conditions expressed by the

class descriptors must be satisfied. Take as an example the following query in

this pane:

elements-ordered;

accessible-by-a-keYi

not-abstract-class.

This query specifies that the classes sought must be ordered, [and] elements

in the instances of the classes must be accessible by an index, [and] must not

be abstract classes.

Currently, BRRRI can only process the queries connected by the operator

'and', it cannot process the queries connected by another logic operat~r 'or'.

There are two menu commands in this pane: Reset and Retrieve classes.

Reset: resets the whole system. This includes clearing all descriptors in both

the Class Query and the Method Query pane.

Retrieve classes: retrieves all classes which match the query in this pane and

presents the result in the Matched Items pane. The Example pane is also

updated to show an example. For a class to match a query, the class must

satisfy all conditions expressed by the class descriptors which are 'required';

meanwhile, it must not satisfy any of the . conditions represented by the class

descriptors which are 'prohibited'.

The description of the Method Query pane is delayed until we have

described how users examine methods after the initial class query.

c) The Matched Items pane displays a list of classes or methods which match

users' query for classes or methods. The number of matched items is

displayed in the label of this pane. H users are doing a class retrieval, i.e. they

use the menu command: 'Retrieve classes' in the Class Query pane, then

displayed in the Matched Items pane is a list of classes which match the class

query shown in the Class Query pane. Otherwise, if users are carrying out a

method retrieval, i.e. they use the menu command: 'Retrieve methods' in

the Method Query pane, then shown in this pane is a list of methods which

match the method query displayed in the Matched Query pane.

In the case that matched methods are shown in this pane, for each method

presented in this pane, the text in the bracket following the name of a

method tells the class to which this method is associated. For example, if a

method is shown as: 'at:put: (Array)', then the name (selector) of the method

itself is: 'at:put:' and it is in the class: Array. In this way, when users get a

group of matched methods, they can recognize the class of each method.

Users can select any item in this pane to examine. Once selected, the

corresponding description of the selected item would be presented in the

Example Item pane to be described next. This gives BRRRI a browsing

capacity, users can query and then browse to examine the matched items.

d) The Example Item pane is used to display a description of an item which

matches a query (either a class or a method query). Users may use the

information shown in this pane to reformulate the initial query.

Corresponding to the situations we mentioned in the last paragraph, if

users are doing a class retrieval, then shown here is the description of an

example class. If a method retrieval is being performed, then displayed here

73

74

would be the description of an example method. The description of an

example class comprises a text message and a set of class descriptors used to

index it. The class descriptors shown in the description of the example class

are those which index the class. For example, the descriptors used to index

the class OrderedCollection are:

elements-ordered

order-determined-extemall y

accessible-by-a-~ey .

Thus, all of them would be displayed as a part of the description of this class.

Users can directly select any of the class descriptors to construct a class query

(with the menu commands: 'Require' and 'Prohibit', which are similar as

those in the Class Descriptors pane).

In BRRR1, users create a class query by selecting class descriptors either from

the Class Descriptors pane or from the Example pane. A possible problem

with selecting descriptors from the Class Descriptors pane is that the users

may not fully understand the meaning of the descriptors there.

Consequently they may encounter difficulties in deciding which one to

choose. In the Example pane, with the set of class descriptors appears a

comment which explains the function of the example class. This comment

serves as a context to the use of the descriptors. It thus should help users

comprehend better the meaning of the descriptors since the descriptors

essentially express the meaning of the comment, i.e. they all describe the

function of the component. This should facilitate users' selection of the

descriptors to reformulate the initial query.

The menu commands are different when an example class is presented in

the pane from those when an example method is presented. When an

example method is displayed in this pane, the menu commands displayed

would be fully described after we have introduced the Method Examination

window. When a class is shown, the menu commands are:

Require: the same as that in the Class Descriptors pane.

Prohibit: the same as that in the Class Descriptors pane.

View method categories: updates the Example pane and attaches the method

category of the example class to the original display contents. We said in

section 3.3 that after several class retrievals, users may want to examine

methods in the example class to further inspect its function. They use this

command to find all method categories of the example class.

After the users see the method categories, if they want to investigate the

methods in a particular method category further, they can select the category

and use the command Specialize described below.

Specialize: opens a new window - the Method Examination window. Once

that window is open, users can then examine in that window the methods

in the selected method category of the example class; or they may start a

method query from that window. We will describe the Method Examination

window in the next section.

3.5.2 The Method Examination window

This window is open when users have selected a method category of an

example class and used the Specialize command. Shown in the top pane of

this window are methods of the example class that are in the selected

method category. The bottom pane contains the description of the method

selected by the users in the top pane (see figure 3.4 which appeared in section

3.2.2). The selected method is used here as an example method. The

description of an example method consists of a comment (the plain text part)

75

76

- -----~--~----------~~

which explains the function of the method, and a set of method descriptors

(or the attribute-value pairs). The users view this window to inspect

methods which are in the class in the Example pane; and which belong to

the selected method category. They can select any method shown in the top

pane and its description is presented in the bottom pane.

a) Inherited methods are also shown in this window

One point to note is that the methods presented to the users include not only

those which are explicitly defined in the example class, but also the methods

which are inherited from some of its superclasses; and which are in the same

named method category in those superclasses. The superc1asses from which

the example class inherits methods are such classes that they are in the

Collection class hierarchy and that they lie between the top class of the

Collection classes hierarchy, i.e. the 'Collection' class and the example class

along the inheritance path. An example should make this clearer. If the

example class presented to a user is the class 'Ordered Collection' and the

user has selected the method category 'adding' to examine the methods, then

in the corresponding Method Examination window, the methods shown

include the following parts:

i) The 'adding' methods explicitly defined in the 'OrderedCollection'.

ii) The 'adding' methods inherited from its superclasses which are between

the 'Collection' class and the example class, i.e. the 'OrderedCollection'. The

superclasses of 'OrderedCollection' which are between 'Collection' and

'Ordered Collection' along the inheritance path are classes: 'Collection' and

'SequenceableCollection', thus the 'adding' methods of 'Collection' as well

as the 'adding' methods of 'SequenceableCollection' are also shown in the

Method Examination window (see figure .3.9 in section 3.4.2 for a part of the

hierarchy of the Collection classes).

The reason for showing users the inherited methods of a class is that those

methods are part of the interface of the instances of the class. An instance of

a class can not only perform computations with the methods defined

explicitly in the class, but also it uses the methods inherited from its

superclasses. The function of an object therefore is determined not only by

the methods defined in its class, but also by the methods it inherited from its

superclasses. The methods inherited from its superclasses thus form an

integral part of an object's interface. Therefore, for users who are examining

the function of a class, it is necessary to show them all the methods which

the class has to give the users an entire image of the class. The methods

inherited from its superclasses can however be numerous. In particular, the

superc1ass of the class 'Collection' is the class 'Object' which holds methods

common to all classes in Smalltalk. If all methods inherited from all

superclasses are presented to users, they might be overwhelmed by the

amount of information. It is therefore necessary to show only those methods

which are most relevant. A design decision we made was to include the

methods inherited from such classes that are in the class hierarchy of the

Collection classes, but all methods in the class 'Object' are excluded. This is

because the class 'Collection' is an abstract class, which is at the top of the

inheritance hierarchy of all Collection classes. It holds the message protocols

which are specific to all Collection classes. Therefore, methods from the

'Collection' class and the classes below it are more relevant to a collection

class and should be presented to users. The protocols in the class 'Object' are

for all classes in Smalltalk, it is not particular for Collection classes, therefore

methods inherited from 'Object' are not shown to users.

b) Starting a method query in this window

It is likely that the methods satisfying users' requirements cannot be found

in the Method Examination window. This is because the class the user is·

77

78

-- --------.--.---------------------~~--------~----~-~-

examining may not contain the required methods. After several cycles of

class retrieval, there are usually a group of classes matching the class query.

The methods required may be in other classes which match the class query.

More particularly, they may be in the classes where the method category

con taining them has the same name as the one the user selected in the

example class. In this situation, the user need not, as they have to in the

original Small talk system, go to each class to search the methods in that class.

In BRRR1, they can construct a method query to retrieve methods across all

matched classes. A method query allows them to retrieve the methods

which are in those matched classes, and which are represented there by the

method category whose name is the same as that which the user is

examining. In section 3.4.2, we showed that in BRRR1, methods from

different classes are classified into BRRRI method categories. Each BRRRI

method category represents a group of similar methods which are from

different classes. This provides the base for querying methods across different

classes. The users may initially be interested in the methods represented by a

method category (this is reflected by the fact that they are inspecting the

methods in this category), and which are only in one class. They may need

however, to find the methods which are of the same kind, but are in other

classes so they can query all methods of this kind to get the necessary ones.

As the methods in the Method Examination window are part of all methods

of this kind, therefore, the properties of these methods can be selected and

used to construct an initial method query from this window. Thus, in effect,

the method shown in the bottom pane of the Method Examination window

serves as an example method.

A method query is created in the similar way as that in which a class query is

created. The users select the method descriptors (the attribute-value pairs)

and use the menu commands in this pane to send them or the negated form

of them to the Method Query pane in the Main window. The menu

commands for this pane are:

Require: sends the selected method descriptor to the Method Query pane in

the Main window. It specifies that the methods sought must have the

attribute and the value to the attribute must be the same as the selected one.

Prohibit: sends the negated form of the selected descriptor (i.e. prefix it with

'not-') to the Method Query pane in the Main window. It specifies that the

methods sought must not have the same value as the selected one.

Alternative: shows in a pop up menu all values BRRRl knows for the

selected attribute. During a method retrieval, the value of an attribute given

in the description of the example method may not satisfy the user's

requirement. The user may want to find a more appropriate value to specify

the property of the required methods and this is where the 'alternative'

command is useful. BRRRl will search to find other values for the selected

attribute among methods which satisfying the following conditions:

- they are in the method category to which the example method belongs;

- the classes of the methods match the current class query constructed in
the Class Query pane.

When the alternative values are shown in the menu, users can select any

one and 'require' or 'prohibit' it. This value or its negated form would be

sent to the Method Query pane in the Main window.

After users have constructed an initial method query from the Method

Examination window, they can go back to the Method Query pane in the

Main window and start a retrieval for methods from there. Next, we go back

to the Main window and introduce the Method Query pane.

79

80

-- ----~--------------~~~~ ~---~--=--=--- ---- =~ ====--=--"'"-

The Method Query pane holds the users' method query. Similar to the class

query, all method descriptors in this pane are implicitly connected by the

operator 'and'. The only menu command for this pane is 'Retrieve

methods'. This would retrieve all methods which satisfy the query. In order

to match a query, a method must satisfy the following conditions:

i) The method must belong to the selected method category .

. H) For all 'required' attribute-value pairs in the query, the method must

have those attributes and corresponding values must be the same as those in

the query.

iii) For all 'prohibited' attribute-value pairs in the query, the values of the

attributes must not be the same as those in the query.

In addition, the methods to be retrieved are constrained by the class query

the users created before the method query is composed. A method query

should be regarded as an extension of the current class query. In BRRRl,

users start a query from the class level. They first create a class query by using

the class descriptors. After several cycles of class retrieval, they examine the

methods in matched class and then, if necessary, create a method query to

find needed methods. Therefore, the methods to be retrieved should also

satisfy the conditions the users have specified in the class query so far, i.e. the

classes with which the methods associated must match the current class

query. For this reason, in response to a method query, only those methods

whose classes satisfy the class query shown in the Class Query pane, and the

methods themselves satisfy the method query are returned as the result.

When a method retrieval is carried out by BRRRl, the Matched Items pane

is updated and methods matching the method query are displayed there.

Meanwhile, the Example pane changes and a description of the method

highlighted in the Matched Items pane is shown there. This method is used

as an example instance which matches the method query. The description of

the example method is similar to that in the Method Examination window

we mentioned earlier. It comprises a comment explaining the function of

the method and a set of method descriptors. If a user is not satisfied with the

retrieval result, he/she can manipulate the method descriptors with menu

commands in this pane to reformulate the partial method query and

perform further retrievals. The menu commands of this pane are:
I

Require;

Prohibit;

Alternative.

These are the same as those in the Method Examination window. This

ensures that users can continue method queries from this pane.

Another command associated with this pane is: 'View classes'. This replaces

the matched methods shown in the Matched Items pane with the original

classes which matched the class query. When users are querying the

methods, they sometimes want to see what the classes they retrieved

originally are. With this command, they can see the matched class list. If they

want to come back to view the method, they can use the 'retrie~e methods'

command in the Method Query pane.

So far, we have described the design of BRRR1, in the next section, its

implementation is introduced briefly.

3.6 The implementation of BRRRl - an overview

BRRRI is implemented in Smalltalk-8D on a Macintosh Hex, with about 8Dk

source code. The system has two types of components: a database component

and an interface component corresponding to BRRRl's software component"

81

82

library and interface respectively. These components are described in turn

below.

3.6.1 The database component

The database component contains information about classes and methods, it

also contains a number of search methods used to access the information.

This component is implemented as an instance of a class: BrrrlOrganization

which is a subclass of the existing class: Model. The reason for choosing it as

a subclass of Model is that this class is also used as a 'model' for several

interface classes which need to access it to get the necessary information and

display it in the corresponding panes. The interface classes and their

interactions with the database will be described later in this section.

There are a number of tables in BrrrlOrganization, the two most important

of which are: ClasslnformationTable and MethodlnformationTable.

The ClasslnformationTable contains the information about each class, the

main items of which are:

class names;

class descriptors which index each class;

class comments which describes the function of each class;

method categories contained by each class;

method names associated with each class.

The MethodlnformationTable contains the information about the methods,

the main items are as follows:

method names;

the method category to which each method belongs;

the class with which each method is associated;

method comments which describe the function of each method;

the method descriptors with which each method is indexed.

These tables are implemented as instances of the class Dictionary to facilitate

the search process. There is also a group of search methods for accessing the

information stored in those tables.

3.6.2 The interface component

The interface of BRRRl is implemented based on the 'Model-View

Controller' (MVC) paradigm of Small talk. Before we introduce the

components themselves, we briefly introduce the paradigm first. The

'Model-View-Controller' paradigm is used in Small talk to implement user

interfaces. Any window on the Small talk screen has three essential

components associated with it, the model, view, and controller which are

defined as follows:

A model is an object which represents the data to be displayed.

A view is an object which displays aspects of the model; it deals with

everything graphical; it requests data from its model and displays the data.

A controller is an object which is used to send messages to the model, and

provide the interface between the model with its associated views and the

interactive user interface devices (e.g. keyboard, mouse).

Each view may be thought of as being closely associated with a controller,

each having exactly one model, but a model may have many

view / controller pairs. In the Small talk system, numerous classes exist which

can be used to build a graphical interface. BRRR1's interface is implemented

based on those classes.

83

84

As mentioned earlier in this chapter, BRRRl's interface has two main

windows: the Main window and the Method Examination window. We

describe the implementation of the Main window first. This window has

five panes, and each of them is implemented with a 'model', a 'view' and a

'controller' which are instances of appropriate model, view and controller

classes. We summarize the components used to implement each pane

below.

a) Class Descriptor pane:

The 'model' of this pane is an instance of the class: ClassDescriptors, which is

designed as a subclass of an existing class: TextHolder. This new class

provides a method to get the class descriptors from the database component.

The 'view' object of this pane then gets the descriptors from the model and

displays them on the screen. The 'view' object is an instance of an existing

class: TextCollectorView which provides a method to display text. The

'controller' of this pane is an instance of a newly added class:

ClassDescriptorsController, which is a subclass of an existing class:

CodeController. In ClassDescriptorsController, a new set of menu messages

is defined to generate the menu for this pane.

b) Class Query pane:

A new class: Query is designed to create the 'model' of this pane. It is a

subclass of an existing class: TextCollector. Query provides functions to store

and for 'view' object to display the class descriptors selected by users in either

the Class Descriptors pane or the Example pane. The 'view' of this pane is an

instance of an existing class: TextCollectorView. The controller is an instance

of a newly defined class: QueryController which is a subclass of an existing

,class: TextCollectorController. QueryController provides a new set of menu

messages to generate the menu of this pane. It also has methods to parse and

validate the descriptors selected by users.

c) Method Query pane:

This pane is similar to the Class Query pane, thus its 'model' and 'view' are

instances of the classes: Query and TextCollectorView. However, a new class

MethodQueryController is defined to implement the 'controller' of this

pane. MethodQueryController is a subclass of the class: QueryController

mentioned above and in this class a set of menu messages is defined to

generate the menu for this pane.

d) Matched Items pane:

The 'model' of this pane is the database component of BRRRl. Its 'view' is

an instance of the existing class: SelectionlnListView and its 'controller' an

instance of an existing class: SelectionlnListViewController. The methods

necessary for generating the list for displaying and the methods for s~nding

changes are defined in the class of the 'model' object, i.e. the class

Brrrl Organiza tion.

e) Example pane:

The 'model' of this pane is the database component of BRRRl. Its 'view' is

an instance of the existing class: CodeView. A special controller class:

ExampleWindowController is implemented for creating a 'controller' of this

pane. This new class is a subclass of an existing class: CodeController and

defined in it is a set of menu messages. Again, the methods necessary for

getting the appropriate text information to display are implemented in its

'model' class - BrrrlOrganization.

85

86

The other window of BRRRl's interface: the Method Examination window,

has two panes: a list pane which shows a number of methods and an

example pane which shows text. It's implementation is similar to the Main

window, thus we will not describe it further here.

3.7 Summary

In this chapter, we described BRRRl- the first version of a prototype system

designed to help non-expert users find reusable components in Small talk.

The design principle of this tool is based on the 'retrieval by reformulation'

paradigm. BRRRI consists of two parts: the component library and the

interface. In BRRRl, classes are indexed by a group of class descriptors, and

methods are classified into BRRRI method categories. In addition, methods

in each BRRRI method category are characterized by a set of attribute-value

pairs. BRRRl's interface consists of two windows: a Main window and a

Method Examination window. Users use menu commands in panes of the

windows to create a query. A search of the required component in BRRRI is

completed by reformulating a query. Users first create an initial class query by

using the class descriptors provided by the system. They may then use the

information presented by the system in responding to the initial query to

reformulate the initial class query. After certain cycles of class retrieval, the

users may examine the methods in matched classes to choose the required

classes. If necessary, the users can further extend the search process by

creating a method query. In a method query process, the users again use the

information provided by BRRRI to reformulate an initial method query and

retrieve wanted methods. The whole retrieval process may be repeated until

the users get satisfactory results. BRRRI is implemented in Smalltalk-80 and

the MVC paradigm is used in the implementation of its interface. In the next

chapter, we report an empirical study conducted on BRRRI to test its

effectiveness in helping users find reusable components.

Chapter 4 An empirical evaluation of BRRRI

In this chapter, we describe an empirical evaluation of the implementation

of our system BRRR1. The purpose of this evaluation was to test its

effectiveness and more importantly to find out the possible problems users

might have in using it. The chapter is structured as follows: We first outline

the organisation of the study, then present and discuss its findings.

4.1 The organisation of the study

The intention of this study was to use the findings of the evaluation as a

basis for another iteration in the development of the system. In this

formative evaluation, we used four subjects with varying levels of Small talk

experience.

4.1.1 The subjects

Of the four subjects, one was an expert Smalltalk programmer; one was an

experienced Lisp programmer and an intermediate Small talk user; the

remaining two were not very familiar with Smalltalk though they had a

considerable amount of experience in other programming languages and

understood the basic concepts of object-oriented programming. None of the

subjects had any experience of using BRRR1. The purpose of this study was

to increase the level of feedback which would serve to improve the design of

the system. It was with this in mind that one expert user was used as a
. I

subject of this study although BRRRl is intended to help non-expert

Small talk users. As this subject was experienced in designing systems in

Small talk, it was felt that his opinion and suggestions about the design of

BRRRl would be helpful for future improvement.

87

88

4.1.2 The tasks

There were a total of six tasks which the users were requested to complete.

The tasks were designed to represent the typical situations where a user is

looking for some collection classes (or methods in these collections) to

complete some programming tasks. The tasks are of the pattern: 'find a class

with certain properties and which has a particular method that can perform

certain functions'. The tasks were as follows:

1) A collection has 6 numbers (3 7 5 8 9 100) as elements. One of the

collection's methods will enable you to replace the 2nd, 4th and 6th element

with the number 20. Find this method.

2) A collection has 20 numbers as its elements. One of the collection's

methods can be used to delete all numbers whose values are less than 10 in

the collection. Find this method.

3) There is a group of ten numbers stored in a collection. A method of this

collection, when used, will give you the index of the first element which is

greater than 5. Find this method.

4) A method of a collection can be used to append a list to another list.

For example, with this method, list1=(1 10 'john') can be appended to

list2=(2 'you' 'parents' 5 'children') and the result is a new list:

(2 'you' 'parents' 5 'children' 1 10 'john'). Find this method.

5) A collection - collectionl is as follows: (1 3 5 'john' 'simon' $p 10),

one of its methods can be used to produce another new collection -

collection2 which is similar to the collectionl, but its elements are:

, (5 'john' 'simon' $p). Find this method.

6) Find a method such that it can be used to put numbers into the collection

to which this method belongs and all these numbers put in will be ordered

automatically according to their values.

4.1.3 The procedure

The study consisted of two sessions: a training session and a test session. The

training session started with a demonstration provided by the experimenter.

In the demonstration, the experimenter briefly introduced the user the

purpose and design principles of BRRRl and showed the user how the

system works, i.e. how components (classes and methods) are retrieved and

how a query should be constructed. The demonstration lasted about fifteen

minutes. After the demonstration, the user was presented a set of six exercise

tasks to familiarise themselves with the system. The exercise tasks can be

found in Appendix A of this thesis. These preparatory exercise tasks were

designed to have a similar format to the tasks to be completed by the user in

the test session. During the exercise session, the user could ask the

experimenter questions about the system and request help from him, if

necessary, to complete the exercises. This session took about twenty five

minutes to complete. The actual test session started after the user had

finished the training session. At this point the user was presented with the
. .

tasks to complete using BRRRl. After each task was finished, the user was

asked to write his result on an answer sheet provided. While each user was

completing tasks, his interaction with BRRRl was videotaped. Meanwhile,

the user was asked to talk aloud about his actions and his verbal protocol was

recorded. After a user had completed all tasks, the experimenter asked him

for comments on the system design and for suggestions for improvements.

The training and test sessions together took about one and an half hours per

user.

89

90

4.2 Results and discussion

The data collected from users was analysed in the following way: based on

the video tape, the steps a user carried out in completing each task were

identified. A step was defined as each instance when a user used a menu

command of BRRRI or selected an item (i.e. class or method) to examine.

Additionally, the hypothesis behind the adoption of each step were

approximately identified based on the user's verbal protocol collected while

he was completing that task. An example of the analysis of data collected

from user B during his completion of task three is listed below. The protocol

shown here is a typical one, and the user is unfamiliar with Small talk but is

experienced in other programming languages. In this analysis, the plain style

text after the word 'Trans:' (abbreviation for 'Transcript') is the user's

transcript. The boldfaced text after 'Hyp:' (abbreviation for 'Hypothesis')

shows the hypothesis behind the user's step. The italic text in square brackets

preceded by the word: 'note:' is the analyser's note about the user's activity

between the steps. Two asterisks mark places where errors occurred, i.e the

user hypothesizes wrongly. The underlined words are the BRRRI menu

commands which the user selected in his interaction with the system.

<User B's protocol for completing task three>

Steps

1. Require 'elements
ordered'.

Transcript and hypothesis

Trans: (What in the task is) a group of numbers,

well, 1 suppose (I can choose) 'elements

ordered'.

Hyp: As elements are numbers, so they are

ordered. --[note: wrong, He thinks the order is

according to the values of the elements, while

the real meaning is that the order is on the
positions };

2. Retrieve classes.

[note: got the class:
'OrderedCollection'

presented by the system

as the example class.]

3. View met hod

categories.

4. Specialize the method

category: 'accessing'.

"[note: he selected the

wrong method category,

but 1 am not sure why.]

Trans: I wonder if I ... En, yes, I don't know

anything else to start (a retrieval), I am not

really sure I can start from these class

descriptors or I can start in some other way

So I am going to retrieve a class.

Hyp: Retrieves classes.

Trans: What's the question again? I need to

find first element satisfying some predicates.

Let's have a look at the OrderedCollection.

[note: he looks at the OrderedCollection].

Hyp: Wants to find the first element satisfying

some predicates. First looks at the class

'Ordered Collection'.

[note: looks at all method categories].

91

92

5. Selects the method:

'indexOfSubcollection:

startingAt:ifAbsent:'.

6. Selects the method:

'indexOf:ifAbsent:' .

[note: browses all methods]

Trans: Well, I saw there is an

'indexOfSubcollection:startingAt:'. Is that the

subcollection I want or is that a particular

one ... ? [note: reads the task againl. The first that

greater than 5. Right, not an index of a

subcollection I wanted. Oh, it could be if I

scroll here (i.e. scroll the screen).

[note: browses methods]

It will be more helpful to me if it tells me

something about what the types of the

parameters (of the methods) were.

[note: browses methodsl.

Well, 'indexOf:ifAbsent'. That is a possibility

too.

Hyp: Checks the method 'indexOf:ifAbsenl:'.

[note: reads the method comment]

Trans: It is not really a helpful description. I

don't understand that. [note: keeps reading] ...

Oh, I see (the meaning of it). No, that (method)

is looking (at) a particular element.

[note: keeps browsing methodsl.

7. Selects the method:

'indexOfSubcollection:

startingAt:ifAbsent:' .

8. Selects the method:

'atAll:put:'.

9. Selects the method

'first'.

None of them (i.e. the methods browsed) seems

the correct answer. . ..

Oh, 'indexOf:', no, that will be given an

element. I want something (that) takes

predicates. ... Let's try that (i.e. the method:

'indexOfSubcollection: startingAt:ifAbsent:').

Hyp: Wants something which takes a predicate.

[note: reads the method comment]

Trans: 'Answer the index of the receiver's first

element such that that element equals the first

element of subcollection'. En, I can do it like

that way. I could have No, I could not,

because they need (the element> greater than 5.

If it is integers, I suppose you can, see No, I

got to find something that takes boolean

predicates.

Hyp: Needs to find something which takes

boolean predicates.

[note: browses methods]

Trans: Let's go back here.

Oh, (the method) 'first', that might be.

93

94

10. Selects the class:
SortedCollection.

11. View met hod

cat~ories.

[note: reads the method comment]

Trans: No, I want 'first such that'.

Hyp: Wants a method like: 'firstSuchThat:'.

[note: goes back to the Main window and
browses classes].

[note: looks at the method category 'accessing']

Trans: Again, we are talking about the

'accessing'. Is there anything interesting down

there? (i.e. the class descriptors of

Sorted Collection).

[note: looks at 'accessing']

I want to access elements ... Do I want to access?

Is 'accessing' the same as finding? ... Suppose

that is 'accessing'.

Hyp: Want to access elements to find the

required one.

rtrt[note: here, he wanted to access elements and

find the index. However,. no methods in this
category can find the index satisfying a boolean
predicate.]

12 Specialize the method

category: 'accessing'.

13. Selects the class:

'Interval' .

14. Select the class:

'Ordered Collection '.

15. Retrieve classes.

[note: browses methods]

Trans: (I am looking at the) 'accessing' methods

in SortedCollection

'indexOfSubcollection .. .' (That would) turn

back before. I couldn't be convinced. The index

could not guarantee equals the first element.

No En, ... Interval.

[note: goes back to the Main window to look at

classes.]

Trans: 'Interval' are numbers, (it is) no good.

(nofe: goes back to the main window's class

descriptors pane and read class descriptorsJ.

Trans: I've got 'elements-ordered'. (Should I

choose the class descriptor) 'accessible-by-a

key'? No.

[note: looks at the descriptors: 'order

determined-internally' and 'order-determined

externally'].

I don't know what 'externally', 'internally'

mean.

ItItI note: difficulties in understanding these two

class descriptors].

95

96

16. Selects the class:

'OrderedCollection'

17. Specialize the

method

'accessing' .

category

[note: browses classes]

Trans: It must be one of these (classes), because

these are only ones with ordered elements... I

am thinking of any sensible class which could

have something which says 'finds something

that satisfies some boolean predicates'.

Hyp: Tries to find a dass which could have

something which says 'finds something that

satisfies some boolean predicates'.

[note: as he had spent a long time on the wrong

category, the experimenter had to prompt him

to look at other method categories].

[note: then closes the Method Examination

window for the 'accessing' methods].

Trans: I am muddled about whether (I should

choose the) 'accessing' things. Things about

'accessing' (is), whether it always gives you the

elements or just gives you the positions of

them.

[note: checks other method categories]

... Enumerating,.. it might be the case,

enumerate a subcollection. Oh.

Hyp: Not sure U the 'accessing' methods would

give elements or just the index of the elements.

It might be in 'enumerating' category, since one

can enumerate a subcollection.

18. Specialize the

method category

'enumera ting'.

19. Selects the method:

'detect:'.

20. Require the method

descriptor 'Operation:

select'.

21. Retrieve methods.

22. Selects the method:

'detect:ifAbsent:' .

[note: browses methods]

Trans: (The method) 'detect:', that looks

plausible.

Hyp: It seems the method 'detect:' plausible.

[note: reads the comment]

Trans: Ah, got it. Yes, so, that's the answer. So I

suppose I can just choose that and do a proper

query.

Hyp: Should be the method 'detect:', so query

similar methods.

[note: browses matched methods]

97

98

23. Selects the method:

'findFirst:'.

24. Require descriptors

and retrieve methods.

Trans: So, basically, (in the matched method

list) you got 'detect:'. Detects a block and

exception block. And they all detect. (There are

(4) matched methods.

[note: browses methods again and finds the
method 'findFirst:' to inspectJ.

En, 'findFirst:', rather then 'detect:'.

Hyp: Should be the method 'findFirst:' rather

than the method 'detect'.

Trans: It's 'findFirst:' we want. En, so, I ought

to be able to type up the query. Right.

Finished

[note: He made a comment on his performance
on the task: 'Why did 1 do it so slowly? 1 think

it's the notion of 'en.umerating'. The difference

between the 'enumerating' and 'accessing' I

don't think has been clear to me'J

From this user's protocol, the following problems could be identified:

First of all, he misunderstood the meaning of the class descriptor 'elements

ordered' as: elements are ordered according to their values rather than their

positions. This can be found from the protocol before step 1. In effect, this

descriptor is intended to represent: 'elements in a collection should be

ordered as a sequence'.

-----------~--------~,.------ -"

Secondly, he selected the method category 'accessing' (in step 12) to look for

methods which can find an index satisfying a boolean predicate. He thought

that he needed to access the elements of a collection to find the index.

Actually, the required method 'findFirst:' is classified into the category:

'enumerating', since this method uses the algorithm: enumerate all

elements of a collection to select a specific index. This problem seems to

represent a misunderstanding of the scope of the method category.

Finally, he was not sure the meaning of the class descriptors: 'order

determined-internally' and 'order-determined-extemally'. This can be seen

from the protocol before step 15.

Problems similar to those we have just presented were also encountered by

other users in completing the tasks. These problems could be approximately

classified into the following categories, which will be discussed in the

following paragraphs:

a) Problems in understanding some class descriptors.

Three users either misunderstood the meaning of several class descriptors

and created wrong queries by using them, or they explicitly stated that they

were not sure about the meaning of those descriptors so that they did not use

the descriptors in a query. For example, the class descriptor 'elements

ordered' was intended to mean that all elements in a collection are arranged

into a sequence so that it is possible to refer to the ith or nth element of the

collection. From the protocol we just showed above, it can be seen that User

B misunderstood this as 'elements in a collection are ordered according to

their values'.

The class descriptors were intended to be used to specify the functional

features of the Collection classes and all of them are displayed in the Class

99

100

Descriptors pane. Additionally, one part of the description of each class is the

descriptors which index the class. The other part of the class description: the

comment which explains the function of the class, should provide a context

about the usage of the descriptors. The design intention here was that if users

understand them, then they select them directly from the Class Descriptors

pane. When they have difficulty in understanding a descriptor, they can

refer to an example class which has the descriptor embedded in the

description to see how it is used. This did not work well in practice. The

Class Descriptors pane provides no context or explanatory information about

the exact meaning of the descriptors and additionally, the users normally

start to create a class query by selecting items from this pane. Therefore, this

might have caused some difficulties in comprehending the exact meaning of

some descriptors. On the other hand, the context provided by class

comments about how a class descriptor is used is not clear for several

descriptors. Take as an example the descriptor 'elements-ordered', the

comments of the classes which are indexed by this descriptor do not explain

it very clearly. For example, the class OrderedCollection has the descriptor as

an index. The comment of this class is:

'Class OrderedCollection represents a collection of elements explicitly ordered by

the sequence in which objects are added and removed. OrderedCollection can act

as stacks or queues.'

Though this comment mentions the sequence, it does not state explicitly if

the order of the collection is on the values of the elements or just on the

positions of the elements. Therefore it may be hard for the users to infer the

precise meaning of the descriptor from this comment.

In summary, some class descriptors were ambiguous and the comments of

the classes did not provide sufficient information to serve as a satisfactory

context to facilitate the users' comprehension to the descriptors. The users

101

thus had difficulties in understanding correctly the meaning of the class

descriptors. It therefore seems necessary to have an explanation mechanism,

which on the request of the users, explicitly tells them about the meaning of

the descriptors.

b) Misunderstanding of method categories.

This type of error happened when users started creating method queries. To

create a method query, it was necessary for a user to first select a method

category. Then from the example method provided by the system, the user

may select attribute-value pairs to create a complete method query. However,

every user made some mistakes in identifying the correct method category

for creating the method query. They sometimes selected a wrong method

category and then tried to create a method query without success. A typical

example happened in task three. This task needs the users to find a method

which would return the index of the first element in the collection whose

value is greater than 5. The answer to this task is the method: 'findFirst:'

which is in the method category: 'enumerating'. This is because, in

Small talk, this kind of selection is completed by evaluating each element in

the collection and examining it to see if it satisfies the condition set up by

users, and then returning the result which fulfils the condition. However,

all users initially selected the method category 'accessing' in the" belief that

they needed to access elements to find the index of the element satisfying the

condition (i.e. value is greater than 5). They didn't realize that though the

method: 'findFirst:' in essence has to 'access' the elements of the collection

to select the index of a suitable element, it uses the algorithm: 'enumerate

each element of the collection and examine if it satisfies the user-defined

condition'. Therefore, this method is classified into the category

'enumerating' rather than the category 'accessing'. As BRRRI was designed

in such a way that if a method category was not selected correctly, it is .

impossible to get the right methods, the users could not find the required

102

methods. Sometimes, the users kept examining a wrong method category

several times and could not think of any other category to look at, until

eventually, the experimenter had to provide hints to help them choose

other categories.

This problem reflects a mismatch between the designer's intention and the

users' understanding. In this respect, the classification of the system design

was not well matched to the users' expectations. Thus it appears necessary to

let users understand the scope of the method categories, and additionally to

adapt some of the users' expectations about the method classification into

the classification scheme so that they can find the required information

more easily.

Here, it is necessary to add to our explanation of the way in which the

experiment was conducted. We mentioned earlier that if users were really

stuck on a method category, they received hints from the experimenter. In

certain contexts intervention such as this from the experimenter might seem

to compromise the precision of the data and should be avoided as much as

possible. In our case, it seemed to be necessary to keep the test session going,

since some users were 'hung up' as it were on one point for too long and

could not make any progress. On the other hand, the difficulties of the users

did show that there were some problems in certain parts of the system design

and from this perspective, the result is informative and still valid for the

purpose of this study, i.e. to use the findings for future improvements.

c) Problems arising from the lack of a 'history' mechanism.

While users were searching for a class or method, they sometimes were

reminded of a class or a method they had met earlier and wanted to examine

it again. However, they often couldn't remember exactly which one it was

and did not know how to get it again. Another situation was that users often

could not remember that they had examined a particular item (a class or

method or method category). Consequently, sometimes they repeatedly

inspected a method or method category and only after several repetitions

they realized that they had visited it before. This suggests that it would be

helpful if a 'history' mechanism were provided by the system which records

the items at which a user has looked before. With this mechanism,

whenever the user feels it necessary, he/she can see an item which has been

examined previously. In addition, the user can see the history of his/her

interaction with the system and thus is able to reason more effectively about

his/her actions. This 'history' mechanism should reduce users' overload in

using the system.

d) The tendency to browse rather than use a query (re)formulation method

From the users' interactions with BRRR1, it could be seen that on several

occasions, when users were searching for a method, they deployed the

browsing strategy instead of forming or reformulating a method query. They

browsed the methods and then examined them to select the required ones.

Although in BRRR1, methods from different classes are classified into

BRRRI method categories, users need only to browse methods in each

method category and did not need to select each class and then browse

methods there. Therefore, even just by browsing, it is easier for a user to find

a method since he/she does not have to first select a class then explore the

methods. However, BRRRI was intended to provide the users with a query

mechanism so that· they could retrieve required components from large

numbers of components by querying. The data collected shows that the users

did not exploit the advantages of the system. This seems to indicate that the

users were not very familiar with how to use the system. It might be due to

that the training the users received in the training session was insufficient

and so they could not make the best use of the facilities of the system. In the

discussions with the users after the test, when users were asked why they did

103

104

not reformulate a query, the three non-expert users admitted that they were

not very familiar with the system, and sometimes forgot to do a query

reformulation. In addition, as no written manual was provided, the users

had nothing to which they could refer during the test, and so they used the

browsing strategy to try and find the methods directly. Moreover, two of

those users said that it was after they had finished all the tasks, that they

really understood how to use the system. In the training session, each user

was requested to complete a group of exercises whose format is similar to the

test tasks. However, the difficulty level of the exercises is not as high as the

test tasks, therefore, it did not achieve the expected effect.

In short, an important reason why the subjects did not use BRRRI effectively

seems to have been that the initial training provided was not adequate. In

addition, it might have been more helpful to supply users with a written

manual about how to use the system so that they could refer to it when they

have questions.

4.3 Summary

In this chapter, we have reported on an empirical evaluation of BRRRI. This

evaluation was formative, the intention being .that the findings would

provide the basis for further improvement. There were four types of

problems identified in evaluating BRRRl:

Users had difficulties in understanding some class descriptors;

Users had problems in identifying an appropriate method category to

create a method query;

It was found necessary to provide users some 'history' mechanism;

Finally, in terms of the study itself, sufficient training should be provided

to users.

In the next chapter, we describe the design and implementation of BRRR2,

an improved version of BRRRl which was developed based on the findings

in this evaluation.

105

106

Chapter 5 BRRR2 - an improved version of BRRRI

In this chapter, we describe the design and implementation of BRRR2. The

changes and revisions in this version of the system are mainly based on the

results of the empirical evaluation of BRRRI discussed in chapter four. We

first outline the changes suggested by the results of our formative evaluation

as necessary to BRRRI and summarise how these were addressed. We then

take the example task which was chosen in chapter three to illustrate the use

of BRRRI and use it again to illustrate the use of BRRR2 in finding required

components. Following that, we describe the design changes of BRRR2 more

fully, emphasising the differences between it and the BRRRl prototype .

. Finally, we present an overview of the implementation.

5.1 Revising BRRR1

In this section, we overview the problems of BRRRI identified from the

empirical study described in chapter four and outline the main design

changes which this entailed and which are incorporated in this second

version of the system, BRRR2.

5.1.1 Design changes suggested by the formative evaluation

In the empirical study of BRRRl described in the previous chapter, the

following problems with the design of BRRRl were identified:

a) Users misunderstood some class descriptors, this suggested that we

need to change the way in which the class descriptors are presented to make

their meaning easier to understand. Additionally, we need to provide users

with a help facility to explain the meaning of the class descriptors.

b) Users misunderstood some method categories, this suggested that we

need to provide a help facility to explain the meaning of the method

categories. It also suggested that we need to adjust the method classification

approach based on users' understanding of the method categories.

c) Users showed that they needed a 'history' mechanism to help them

remember the interaction history with the system as well as to examine the

items they have seen before which might remind them about the necessary

informa tion.

To overcome these problems in the revised system, BRRR2, the following

basic design changes were made.

5.1.2 Design changes incorporated in BRRR2

a) In order to address the first problem, as well as from the consideration

that it will be necessary to incorporate all Small talk classes into the tool in

the future, the indexing scheme to the classes has been changed. Instead of

using class descriptors to index each class, all classes are now classified into

class categories and the class categories are organized into a hierarchical

structure. Corresponding to this change, a new pane - the Class Categories

Hierarchy pane has been added in BRRR2's interface to illustrate graphically

the structure of class categories. In addition, to further help users understand

the meaning of a class category (Le. what kind of classes the cla~s category

represents), an explanation mechanism has also been added.

b) To tackle the second problem, a cross-reference technique has been

used in method classification. Instead of classifying a method into only one

method category as in BRRR1, a method now may belong to more than one

method category. In addition, some method categories are refined to contain

several sub method categories. Moreover, an explanation facility is added to

explain the meaning of method categories. As part of the revised interface, a

special pane is now used to illustrate the structure of the method categories.

107

108

c) In response to the third type of problem, a 'Trace' window has been

designed which records the most recent items a user has examined for later

use.

In the following section, we show how to use the revised system, BRRR2, to

find required components. This is done using the example used in chapter

three as an illustration. We hope this will demonstrate in a practical way, the

design differences between BRRR2 and BRRR1, before we describe these in

more detail in section 5.3.

5.2 Finding components in BRRR2 - an example query

To facilitate the step by step description of an example query process, we first

give a brief overview of the interface of BRRR2.

S.2.1 The interface of BRRRl outlined

The interface of BRRR2 consists of three types of windows:

the Class Level Query window

the Method Level Query window

the Trace window

The Class Level Query window

It is mainly in this window that a query for retrieving classes is created. The

window consists of five panes (see figure 5.1). This is similar to the Main

window of BRRRl except that unlike BRRR1, it does not incorporate the

Method Query pane.

Class Category Hierarchy

I Fixed-size

Class Query

Collection-classes
Keyed
IntQger-kQYQd
not--Abstrac~

,Pollect:ion -classes
Keyed
Integer-keyed
Arbitrary-size

I Arbitrary-size

&tegorles

",II!JB!I!IIIIIIIIIIIIII ••• 1 a cc til s sl n 9
Array adding
Interval copying
L1nkQdLlst anumera tlng
SortadColiactlon ramovlng

Class name: OrdQn:ldColiactlon

Comment:
This class reprQsQnts a cOllection of elements which are ordered
explicitly by the sequence In which they are added or reMoved.
EIQmQnts of it are accessible by external keys tha t arQ IndicQs.

Figure 5.1. The five panes of a Class Level Query window.

The function of each of these panes can be outlined as follows:

i) Class Category Hierarchy pane (the pane at the top): illustrated in this

pane is the hierarchical structure of the class categories. This pane takes over

the duty of the Class Descriptor pane of BRRR1.

ii) Class Query pane (the leftmost pane below the Class Category

Hierarchy pane): contained in this pane is a query constructed by a user for

retrieving classes. This pane has a similar function to the Class Query pane

in BRRR1.

iii) Matched Classes pane (the pane at the right of the Class Query pane):

displayed in this pane are names of the classes which match a class query. It

is similar to the Matched Items pane in BRRR1, but in this version, only

classes are shown (note that in BRRR1, the Matched Items pane is used to

show matched classes as well as methods).

109

110

iv) Method Categories pane (the pane at the right of the Matched classes

pane): shown in this pane are method categories of the class which is

highlighted in the Matched Classes pane. There is no such a pane in BRRR1,

where method categories in a class could only be seen in the Example pane

after the menu command 'View method categories' is used. Now, the

method categories are directly visible to users.

v) Example Class pane (the pane at the bottom of the window): presented

in this pane is a description of a class which is highlighted in the Matched

Classes pane and used as an example. This pane is similar to the Example

pane of BRRRl. Again, the difference between this pane and the Example

pane of BRRRl is that only the description of a class was shown, while in

BRRR1, when appropriate, the description of a method can also be displayed

in the Example pane.

The Method Level Query window

A Method Level Query window is opened only when a user starts to create a

method query to retrieve methods. It is in this window that a method query

is created. In essence, this window takes the whol~ duty of the Method Query

pane of the Main window and the main duty of the Method Examination

window of BRRRl. The window comprises four panes (see figure 5.2) whose

functions are summarised below.

i) Method Category Hierarchy pane (at the top): displayed in this pane is

the hierarchical structure of method categories.

ii) Method Query pane (leftmost pane below the Method Category

Hierarchy pane): contained in this pane is the method query created by a user

to retrieve methods. This is similar to the Method Query pane in BRRR1's

Main window.

iii) Matched method pane (to the right of the Method Query pane):

displayed in this pane is a list of names of the methods which match the

current method query in the Method Query pane. This is similar to the

Matched Items pane of BRRRI when shown there are methods.

iv) Example Method pane (the bottom pane of the window): shown in

this pane is the description of a method highlighted in the Matched Methods

pane. This is similar to the Example pane of BRRRI when displayed there is

the description of an example method .

. ':'.lJo:!r .. ·· •• ... · ... ind.)·· ... · ... for' r·· ... l~tt"IO:od '::.:oto:!qo:or:.o': .:-ddinq l- :..... ., :. '.:.
• ... - f).. ~ ... • .. ,

Method C~te90ry Hier~rchy

Method Query Ma tched Methodsl 20

adding add:a tter: (OrderedColiect on)
position-relevant add:bafora: (OrdaradCollactlon)

add:beforelndex: (OrderedColiectlon)
0pQration: add-alQmQnt addAllynk.edLl~)
Object-a dded: multlple-ele 11 •• I!!I"=-I!!@!._"!lmDl@.~!!!.~m".'II!MIIi;~ ••••••••
ments-in-aColiectio~ add All: (SortadCollection)

addAIiFirst: (OrderadColiaction)
addAIiLast: (OrderadColiaction)
addFlrst: (LinkedList)

Example Method

addAII: anOrdQredCoIIQctlon (In class: OrderQdColiectlon)

comment~

Add each element of anOrderedCollectlon at my end. Answer
anOrdQredCollQction.

Method ca tegorias :
Adding
po sidon -releVAnt

Descriptors:
Operation: Add-element
Ob lect -added: multiple-elemenu-ln-aCoUection

Figure 5.2. The four panes of a Method Level Query window.

111

112

The Trace window

The function of this window is not directly relevant to the illustration of the

example query which follows, so details of its design will be postponed and it

will be described more fully in section 5.4.4.

5.2.2 The example

The task is the same as that in chapter three which for convenience we re

present here:

'Suppose a user has a group of numbers and needs to sort them in either

ascending or descending order and she wants to find a class in Small talk to

do this. In other words, she wants to find a class whose instances should be

able to store this group of numbers, and the numbers put in should be

ordered automatically according to their values.'

a) The start situation

thhh .
I ~Uon-oI&n.1 I

I MIt,&Otl [Keyed) l u.-.,edJ

"'t_-keyed I ArtMt,&,y- keyed

I fbe"'-II.. I I Al'1>It, &l'y-III. I
C;;IUI <l\IW)I~ M&I~~&nUIU ~"&~.I

------------... ------------

.... a Call

...

Figure S.3. The start situation.

At this stage the BRRR2 interface is as shown in figure 5.3 above. The user

sees the Class Level Query window described in section 5.2.1 above.

b) Beginning the querying process

The user needs a component to store numbers, so she thinks that she

requires a collection class. She selects the class category: 'Collection-classes'

from the Class Category Hierarchy pane and then chooses the option

'require' from a pop up menu in this pane. After the operation, the category

name appears in the Class Query pane.

The user now asks the system to do a retrieval by selecting the option

'retrieve class' from the menu in the Class Query pane. After the operation,

all panes except the Class Category Hierarchy pane are updated (see figure 5.4

below).

E:F.F;F, r
(,~, v '" ,~ v, ~

IS 9 Y Y

COIIQctlon-claSSIIS"

Ex&~" I&IS

.follection -cl~s.es
Keyed
Integer-keyed
Arbitrary-size

uegones

IBe ••• III ••• accessing
Array adding
ArrayedColiectlon copying
Bag Qnumera ting
Collection removing
Dictionary

Class namQ: OrderedColiection

Comment:
This ClASS rQprQsents a collection of elements which are ordered
explicitly by the sequence In which they are added or removed.

Figure 5.4. The Collection classes.

113

114

Note that all the collection classes found by BRRR2 are shown in the

Matched Class pane, and the first item in the list - the class

'OrderedCollection' is highlighted. Its method categories appear in the

Method Categories pane. The description of the class 'OrderedCollection' is

presented in the Example Class pane.

not--Unordered
Keyed
Integer-keye~

pollec~lon-cla •• e.
Keyed
Integer-keyed
ArbI~rary -!lize

Ay
ArrayedOoliectlon
Interval
L1nkedList
SequanceAbleOoliectl
SortedColiectlon

Olass name: OrderedOoliectlon

Oomment:

accessing
adding
copying
enumera tlng
removing

This clASS represents a collection of elements which are ordered
explicitly by the sequence In which they are added or removed.
Elements of It are accessible by external keys that are Indices.

Figure 5.5. Matched classes.

c) Reformulating the class query

As all numbers should eventually be ordered, the collection the user needs

should not be in the category 'Unordered'. Therefore, she selects the category

'Unordered' and uses the menu command: 'prohibit'.

In addition, all numbers in the collection are ordered, therefore, she thinks

that they are accessible by integer indexes. Thus she 'requires' the category:

'Integer-keyed', this category together with its parent category 'Keyed'

. appears in the Class Query pane.

Now, she wants to retrieve all classes satisfying the conditions she has

specified so far, so she requests a retrieval again (see figure 5.5 in the last

page). This time, BRRR2 shows all classes in the Matched Class pane which

are:

Collection classes [and]

not Unordered [and]

Keyed [and]

Integer-keyed.

With the option of several matched classes offered as a result of the most

recent retrieval, the user is still not very sure which one she should choose.

d) Inspecting associated methods

She thus decides to examine the methods of the matched classes in order to

see which class has, associated with it, a method to perform the function she

needs, i.e. the method which can put the numbers into the collection and

order them. She first wants to see the methods in the example class

'OrderedCollection'. It seems the 'adding' methods might be interesting

since she needs to put numbers into a collection. She selects the 'adding'

category in the Method Categories pane and uses the menu command: 'show

methods in this category'. As a result, a window is opened and listed in it

are all the 'adding' methods in 'OrderedCollection' (see figure 5.6 in the next

page).

After browsing through them and finding nothing to match her

requirements, she decides to see if there is an 'adding' method in any other

matched classes.

115

116

.-".11 .;. ddirl'-I rIl8trl':"j;~ ir. ' :-rd.~r.~d ' ::o:oII8': tj.:.r. - , .

, .:0 ::.8 ' 1J8r.(8,:0 bI8'::o Il8c tiorl
add:
add:aftar:
add:before:
add:beforelndQx:
add All:
addAIIFlrst:

AlaSaquanceableCollection (In class: OrderedCollection)

Comment:
Answer a copy of the racalvQr conca tana tad with tha
argumrant,
a SequencablaColiaction.

Method ca tagorlas:
adding
position -relevant

DQScrlptors:
Operation: add-element
Object -added: multiple -elementll-in -aeouection
Position-in-the-receiver: end

Figure 5.6. 'adding' methods in Ordered Collection are shown in a window.

e) Using the Method Level Query window

To do this she selects the menu option 'construct method query' in the

Method Categories pane. After this option is executed, a Method Level Query

window is opened (see figure 5.7 in the next page). In its Method Category

Hierarchy pane, it can be seen that the method category 'adding' is further

divided into two sub-categories: 'position-relevant' and 'position

irrelevant'. The user, though, is not sure about what kind of methods the

'position-relevant' represents, so she clicks on the category 'adding' and

chooses the menu option: 'explain'. This causes a pop-up menu to appear

which shows a text message (see the box "Explanation to 'adding' ... " in

figure S.7).

Mettlod Category H,er.rctly

~ adding;

~olition-irr ... v_

Explanation to 'adding'. Click to continue.

'Methods in this category are used to add some objects into
collections and put the added objects into specific positions in
the collections. e.g. addFlJ'St: and add:beforeIndex:'.

E)(ample ettlod

Figure 5.7. Explanation message to the method category: 'adding'.

f) Query reformulation in the Method Level Query window

The user needs to sort the numbers, so she needs to put numbers into

different positions in the collection. She clicks on 'position-relevant' and

uses the menu option: 'require'. She then asks for a method retrieval with

the menu option: 'retrieve methods' in the Method Query pane .. After the

retrieval, BRRR2 presents her with all methods which can add elements into

a collection and put them into specific positions, The first one in the list -

',aSequenceableCollection' is highlighted and the description of this method

is displayed in the Example Method pane (see figure 5.8).

Examining the method descriptors in the Example Method. pane, she decides

that she needs both the descriptors: 'Operation: add-element' and 'Objects

added: multiple-elements-in-aCollection', so she selects them and uses the

menu option: 'require-this-value'. She is not satisfied with the descriptor

'Position-in-the-receiver: end', so she searches for alternatives with the

117

118

' . 'U(:f." ":'''' Ir"j,;t\ .. f (' I r.l(: ttl (lIj 1 ... : :.t"':: 9':l r .~: :-.Jdlrp:f
, . . .

,aSequeneeableColleetlon (OrderedOolle
,aSequeneeableColleetlon (SortedCollee
add: (OrderedCollectlon)
add: (SortedColleetlon)
add: (LlnkedLlst)
add:atter: (OrderedOolleetlon)
add:betore: (OrderedColleetlon)
add:betorelndex: (OrderedColilletlon)

Answer a cop>, of the receiver concatenated with the argument,
a SequeneableOolleetlon.

Method ea tegorles :
adding
po"tlon-relev~t

Oeserlptors:

Object-added: mult!pfe-etements-in-aColiection
Po"tlon-ln-the-recefver: end
Object-returned: __ w-collection-!ike-the-recelver

Figure 5.8. 'position-relevant' methods.

menu option: 'alternative-values'. She examines the alternative values

presented by the system in a pop up menu and then from the menu

'requires' the alternative descriptor 'position-determined-by-the-receiver's

sorting-rule'. Now, she requests a method retrieval again and gets one

matched method: 'addAll: (SortedCollection)' (see figure 5.9).

She therefore decides it would be most appropriate to use the class

'SortedCollection' in her programming, thus bringing to an end her query

session.

' . 'uo;,· • 'o':".'ir • .:J,-,··: .. · F.:.,' r·. l~ft •• · .. :J ':: ~'';'I:a'-II '''': .~ ,j .J l rlq . . g y y

ry

adding
position- rel.vant
Op.ra tlon: add-element
Object-added: multlple-el.
m.nts-ln-aColI.ction
posltlon- In- the- recelv.r:
posltlon-d.termlned-by-th

Comment :
Include each element of aCoII.ctlon as one or the recelver's
elements , put theu elements Into the positions which are
determined by the receiver's sorting rule: sortBlock. Answer
the r.c.i r.

Method caugorles:
adcMg
~Itlon-r"'vant

Descriptors :

Figure 5.9. The result method.

5.2.3 Summary of the example query

From this example, it can be seen that the general principle and the

operational procedure of BRRR2 is similar to that of BRRR1. Users start

querying by creating a class query. This can be done initially by using the

menu command: 'require' ('prohibit') to class categories which are

illustrated in the Class Category Hierarchy pane in the Class Level Query

window. If they want to refine the class query further, they can 'require'

('prohibit') more class categories from either the Class Category Hierarchy

pane or the Example Class pane. After some cycles of classes retrieval are

done, the users can examine the methods in matched classes and, if

necessary, start a method query to find the necessary methods by opening a

Method Level Query window. A method query is created by initially using

'require' ('prohibit') to select a method category which is displayed in the

Method Category Hierarchy pane. The users may then use the method

descriptors incorporated in the description of an example method provided

119

120

by BRRR2 to refine the previous method query. The method retrieval

process may also be repeated until the users get a satisfactory result.

In the following sections, the design of the tool is examined in more detail.

BRRR2, like BRRRl, consists of two main parts: a component library and an

interface. We start by looking at the design of the component library.

5.3 The component library of BRRR2

As in BRRRl, the library of BRRR2 contains the Collection classes of

Small talk. The organisation of classes in BRRR2, are, as in BRRR1, different

from that of methods.

5.3.1 Oass classification

While the organization of methods is similar in BRRRl and BRRR2, the

organization of classes, however, differs in the two systems. This is more

fully explained below.

a) Organization of classes in BRRR2

In BRRR2, all classes are classified into class categories and each class category

represents a group of functionally similar classes. The classes represented by

a category are said to belong to the category. In addition, all class categories

are organized into a hierarchy called class category hierarchy.

A class category in the hierarchy may have a super category and several

subcategories. A subcategory represents a special case of its super category,

therefore any class which belongs to a subcategory also belongs to its super

category. In other words, if a class a belongs to a class category Band B is a

subcategory of the category C, then the class a also belongs to the category C .

. In addition, a subcategory may in turn have its own subcategories. The

classification of the Collection classes in BRRR2 is illustrated in figure 5.10.

It can be seen that all Collection classes are represented by the class category:

'Collection-classes'. This category has the following subcategories:

Abstract

Keyed

Unordered

The subcategory 'Keyed' in turn has two subcategories:

Integer-keyed

Arbitrary-keyed

Again, the category 'Integer-keyed' has subcategorie~

Fixed-size

Arbitrary-size

121

As each subcategory represents a specialization of its super category, we can

see, for example that the classes belonging to 'Keyed' are special kind of

'Collection -classes'.

Each class in BRRR2 belongs to at least one class category, some classes,

however, may belong to more than one class category. This is to reflect the

fact that some classes have the properties represented by more than one

category. For example (see figure 5.10), an instance of the class 'Dictionary'

can be accessed by arbitrary type of keys, meanwhile, it can also be regarded as

an unordered collection because the elements in a Dictionary are not

maintained in any order. Therefore, the class 'Dictionary' belongs to both the

category 'Arbitrary-keyed' and the category 'Unordered'. Having a class in

more than one category increases the opportunity for users to locate it during

a retrieval since they can find it in more than one place.

122

SequenceableCollection

Linked List Sorted Collection Ordered Collection

Figure 5.10. Class organization in BRRR2.

b) Design consideration underlying class classification

In BRRR1, all classes were indexed by a set of class descriptors. Each class

descriptor indexes one or several classes which have the property specified by

the descriptor. The descriptors are shown to users and are used to create class

queries. One problem with this classification approach arises from the

concern over the ability to scale up the system to include all classes of

Smalltalk. BRRR1 only contains the Collection classes, if all Small talk classes

are put in and indexed in this way, then a vast amount of class descriptors

would be needed. Obviously, it is unnecessary and impossible to display at

the same time all descriptors in the Class Descriptors pane. The descriptors

therefore would need to be further organized. One possible way is to

organize them into groups: The descriptors applicable to a particular set of

classes (for example, Collection classes) are put into a group, while other

descriptors suitable for other sets of ct'asses also put into corresponding

groups. In this way, we would have categories of class descriptor: descriptors

for the Collection classes; descriptors for the graphics classes; for the interface

classes; etc. In the query stage, it would be necessary to provide users a

mechanism to ask them first specify which kind of classes they are interested

and then present them in the Class Descriptors pane the descriptors

corresponding to that group of classes. The users then can create a class query

in the usual way as we introduced before. However, this kind of

classification is virtually equivalent to classifying all classes into class

categories - a scheme which is almost the one we have used in BRRR2.

The second problem with BRRR1 's classification approach is that all class

descriptors for a group of classes (in BRRR1's case, the Collection classes) are

at the same level, the relationships existed between some class descriptors

are difficult to be explicitly expressed and shown to users. For example, the

descriptor 'elements-ordered' has relationships with both the descriptors:

'order-determined-externall y' and 'order-determined -in ternall y'. The

deSCriptor 'elements-ordered' is a pre-condition for the latter two descriptors

since only under the condition: 'elements-ordered', does it make sense to

specify how the order is determined. We felt that it is important to express

and show users this kind of relationship since it would to a certain extent

help them understand the meaning of the descriptors. It seems necessary

therefore to have a group of descriptors which can be used to both index the

classes and to show users the relationships between the descriptors.

It was the two problems above which led us to adopt BRRR2's classification

scheme. This scheme seems to fulfil the requirements we just mentioned. It

is possible to classify all classes in Smalltalk into class categories. The class

categories index the classes. The hierarchical structure of the class categories

reveals their contextual relationship, i.e. a class category represents a group

of classes which are special cases of its supercategory. In addition, in BRRR2's

interface, we explicitly show the structure of the class organization to users

(in the Class Categories Hierarchy pane). This should be helpful for them to

123

- - ------ .. - .. _----- ---_._-_._----"~---'-~'-'--~-----'--'-----~----------------------

124

understand the organization of the components and to locate the required

information.

Once all classes in Small talk are put into BRRR2, the 'fisheye view' (Furnas,

1986) technique could be used in the interface. At the beginning of a query,

only those class categories representing large group of classes are displayed in

the system. Users can click on a category and all subcategories can then be

displayed while irrelevant ones are hidden. This mechanism however has

not yet been implemented in BRRR2.

To help users who still have difficulties in understanding some class

categories, in BRRR2, an explanation facility is supplied which presents users

with a text message about the type of classes a category represents. This can be

seen later in section 5.4 where BRRR2's interface will be presented.

In summary, BRRR2's classification scheme of classes differs from that of

BRRR1 mainly because of considerations of the ability to adapt the system to

include all classes of Small talk and of helping users understand the class

descriptors. In the next section, the method organization of BRRR2 will be

discussed.

5.3.2 The method organization

a) Methods are classified into method categories

The method organization in BRRR2 is similar to that in BRRR1, i.e.

methods from different classes are classified into method categories named

BRRR2 method categories. BRRR2 method categories are virtually the same

as BRRRl method categories and the methods in each category are the same

as its counterpart in BRRR1. Unlike BRRR1, however, some BRRR2 method

categories which contain a large number of methods are further divided to

contain several sub-method categories.

For example, the category 'adding' represents all methods in all Collection

classes which are used to put new objects into a collection. This category itself

contains two subcategories: 'position-relevant' and 'position-irrelevant'.

The category 'position-relevant' represents all methods which add new

objects into a collection and put them into some specific positions in the

collection e.g. 'addFirst: (OrderedCollection)'; 'addAll: (SortedCollection)'.

Another feature of BRRR2 which is different from BRRR1 is that a method

in BRRR2 may belong to more than one method category. For example, the

method 'findFirst:' belongs to the category 'accessing' since it accesses the

elements to find the index; it also belongs to the category 'enumerating'

since elements of a collection are enumerated to find the index. This cross

reference mechanism increases the users' opportunities to identify correctly

a required method category. To a certain extent this overcomes the problems

users had with BRRR1 when they were selecting method categories, because

unlike in BRRR2, in that system, where cross-referencing was not available,

their selection options at anyone point were more limited.

b) Methods in a category are described by method attributes

This is the same as in BRRRl. However, if a method belongs to more than

one method category, the method has the sum of all the attributes that it

possesses in each category.

Let us look for example at the method:

I, aSequenceableCollection'

The function of this method is to make a copy of the collection receiving the

message and to append another collection to the copy of the collection. The

concatenated collection is returned as the result.

125

126

This method belongs to the method category 'position-relevant' (a

subcategory of 'adding') since it adds a collection of objects to the end of

another collection. Its attribute-value pairs for being in 'position-relevant'

are:

Operation: add

Objects-added: multiple-elements-in-aCollection

Posi tion-in-the-recei ver: end

Object-returned: a-new-collection-like-the-recei ver.

It also belongs to the method category 'copy-with-changes' (a subcategory of

the method category 'copying') because it copies the original collection and

changes the contents of the copy collection. Its attribute-value pairs in this

category are:

Operation: copy-and-append-another-collection

Object-returned: a-new-collection-like-the-receiver

Thus this method has two sets of attributes. During a method retrieval,

which set should be presented to a user as the d~scription of the method is

determined by the context in which the user is. If a user is looking at the

'adding' methods, then the first set of attributes is shown, if he/she is

looking at the 'copying' methods, then the second set is shown.

5.3.3 Summary of component organization

So far, we have described the component organization in BRRR2's

component library. The classes are organized into class categories and the

categories are organized into a hierarchy. A class may belong to more than

one class category. The methods are also arranged into method categories,

. and the categories are organized into a method category hierarchy, and

-- -.. ~ .-.... -- .

likewise a method may belong to more than one method category. In the

following section, we describe the user interface of BRRR2.

127

5.4 The interface of BRRRl

We have mentioned in section 5.3.1 that BRRR2's interface comprises three

types of windows: the Class Level Query window, the Method Level Query

window and the Trace window. We describe them in more detail below.

First we look at the functions of the Class Level Query window, then those of

the Method Level Query window. Following this we explain certain types of

queries which need combining queries from both the Class Level Query

window and the Method Level Query window and conclude this section by

describing the Trace window.

5.4.1 The Class Level Query window

The Class Level Query Window (previously shown in figure 5.1) is used to

retrieve classes. It comprises the following five panes, each of which will be

subsequently described in more detail:

a) Class Category Hierarchy pane;

b) Class Query pane;.

c) Matched Classes pane;

d) Method Categories pane;

e) Example Class pane.

a) Class Category Hierarchy pane

Displayed in this pane is the class category hierarchy. Currently only the

Collection classes are in BRRR2's library, thus presented in this pane is just·

128

the hierarchy for the Collection classes. The root node of the hierarchy is the

category: 'Collection-classes'.

The purpose of this pane is twofold. Firstly, it explicitly shows users how the

components are organized. This should help users understand the overall

structure of the component organization. It also helps the users understand

the meaning of individual categories and thus facilitates the construction of

a query. Secondly, users can directly use the categories displayed in the pane

to construct class queries. They can click on a category which interests them,

then use the menu options to add it (or the negation of it) into the query (in

the Class Query pane).

The menu options in this pane are:

require; prohibit; explain and show classes.

The first two are used to construct queries and the last two are used to help

users understand the meaning of individual categories. The options are

explained in more detail below:

require: adds the selected category into the query~ It specifies that the classes

sought must be in the category.

Each class category in the system except the one at the root of the hierarchy

has a super category and a category represents a special case of its super

category. If a non-root category is required, it implies that all its super

categories (i.e. all categories along the path from the category to the root node

of the hierarchy - 'Collection-classes') should also be required. Therefore,

once 'require' is used, together with the category itself, all its super categories

are automatically added into the query. For example, if a user 'requires' the

category 'Integer-keyed', its super categories (see figure S.10): 'Keyed' and

'Collection-classes' are also automatically put into the query.

prohibit: adds the negated form of the selected category into the query (i.e.

prefix the category with the symbol: 'not--'). It specifies that the classes

selected must not be in the category.

explain: presents in a menu a text message to explain the properties that the

classes in the chosen category have.

show classes: lists in a menu the names of the classes contained in the

category. Showing users the class names in a category should enhance their

comprehension of the meaning of the category since mention of class names

may remind them what kind of classes they are.

b) Oass Query pane

This pane contains a query constructed by users for retrieving classes. As in

BRRR1, descriptors in this pane are implicitly connected by the logical

operator 'and'. BRRR2 still cannot process queries connected by the operator:

'or'.

The menu options for this pane are:

remove descriptors: deletes the selected descriptors from this pane. If a class

category is removed, all its subcategories (if it has subcategories and those

subcategories are part of the query in this pane) would also be automatically

removed.

reset: resets the whole system so that users can start a new query. It clears

away all class descriptors in this pane and if there is any method level query

window left open, users would be prompted to close it. To avoid the

situation where users select this option by mistake and cause the loss of their

queries, the system asks users to confirm this selection.

129

130

retrieve classes: retrieves all classes which match the query in this pane and

displays the results in the Matched Classes pane (see below).

For a class to match a query, the class must be in all 'required' class

categories, meanwhile, it must not be in any of the 'prohibited' class

categories.

Besides various forms of class categories, the class query usually also includes

method attributes sent from a Method Level Query window. This type of

query specifies that the classes sought should have a set of methods which

satisfy the given method attributes. This will be discussed in more detail in

section 5.4.2 where the Method Level Query window is descri~d.

c) Matched Oasses pane

This pane displays a list of names of the classes which are found as a result of

processing a query in the Class Query pane.

d) Example Oass pane

As in BRRR1, the description of the selected class is shown here as an

example (again, see figure 5.1). The description comprises two parts: the

categories to which the class belongs (the boldface word) and the comment

(the plain text below the 'Comment:').

Showing the class categories to which the class belongs helps users

understand what properties the class has. It can be seen, for example, from

figure 5.1 that the selected class 'OrderedCollection' belongs to all the

following categories:

'Collection-classes'

'Keyed'

'In teger-keyed'

'Arbitrary-size' .

e) Method Categories pane

Listed in this pane are the method categories of the class highlighted in the

Matched Classes pane. It shows users what kinds of methods the selected

class has. Users can use the following menu options to search for the needed

informa tion:

show methods in this category: opens an extra window, which shows the

methods belonging to the selected method category of the currently

highlighted class in the Matched Class pane. With this extra window, users

can examine the methods in the selected method category (see figure 5.6).

This option replaces the 'Specialize' option in BRRR1 and consequently the

window opened is similar to the Method Examination window in BRRRI

except that there is no menu options in this window for creating a method

query. In BRRR2, that function is shifted into the Method Level Query

window.

explain: presents users in a pop up menu a text message to explain the

properties of the methods in a method category. Its purpose is to help users

understand what kind of methods the category represents.

construct method query: opens a Method Level Query window to allow users

to query all methods which are in a selected method category and which are

contained in matched classes. It is from here that a method query is started.

Users can select from this p~me a method category which they believe

represents the methods they need and use this option.

131

132

other method categories: shows in a pop up menu method categories which

are not in the currently selected class but are in other classes which also

match the current query. Sometimes the class currently selected by users has

only a subset of the method categories possessed by all matched classes.

Therefore the appropriate method category may not be available in the class

which users are examining but in other matched classes. It is in this situation

that this option is of use in finding the required category.

An example should make this clearer. Suppose a class query created by a user

is:

'Collection-classes'

'Keyed'

'In teger-keyed'.

There are several classes matching the query and among them is the class

'Array'. Suppose the user selects the class 'Array' and is checking its method

categories. The method categories in 'Array' appears in the 'Matched method

categories' pane. They are as follows:

accessing;

enumerating;

copying.

Let us assume that the user now wants to find some methods which would

add elements into a collection and put the added elements into a given

position. Hence, she needs to find the method category 'adding' to construct

a method query to find the required methods. More specifically, she needs to

find a class which has the method category: 'adding' to query methods.

As she is now examining the class 'Array' and it does not have any 'adding'

methods, therefore, the category 'adding' is not available to her. However,

she guesses that the category 'adding' might be in other matched classes

which she isn't examining so she selects the option 'other method categories

in matched classes'. BRRR2 will present her all method categories which are

not in the class she is inspecting, i.e. 'Array', but are in other classes which

also match the current class query.

In this case, the method categories: 'adding' and 'removing' will be

presented to her in a pop up menu. These two categories are not contained

by 'Array' but by for example, both the classes 'OrderedCollection' and

'SortedCollection'. Now she can click on 'adding' and a Method Level Query

window will open. She can then start to query all 'adding' methods

according to the method query procedure to be described in the following

section.

5.4.2 The Method Level Query Window

The Method Level Query window is used to query methods and is similar in

structure to the Class Level Query Window (see figure 5.2). It has the

following four panes, which will be described in detail below:

a) Method Category Hierarchy.

b) Method Query.

c) Matched Method.

d) Example Method.

a) Method Category Hierarchy pane

Shown in this pane is a metho~ category hierarchy. The root node represents

the method category selected by the user from the Method Category pane in

133

134

the Class Level Query Window. The non-root nodes are sub-categories of the

root category. For example, if a user selects the category 'adding' from the

Method Category pane, then this category and its two subcategories:

'position-relevant' and 'position-irrelevant' would be presented in this

pane.

The function of this pane is similar to the Class Category Hierarchy pane, i.e.

to show users about how the components are organized and to let users

manipulate those categories with a set of menu options to construct method

queries.

Sometimes, constraints specified by a class query would lead to the situation

where no methods in a particular method category are accessible, because the

classes with which the methods in the method category are associated do not

match the class query. In such a case, the colour of the node in the hierarchy

representing that method category would be grey. This indicates that no

methods in that category can be queried in subsequent method queries. To

make this point clearer, let us look at an example.

Suppose a user in her initial class query has specified that the collection she

needs should be 'integer-keyed', i.e. elements should be ordered as a

sequence.

Next, she wants to query the 'adding' methods, so she opens a Method Level

Query window. The method category 'adding' has two subcategories:

'position-relevant' and 'position-irrelevant'. Only the 'position-relevant'

methods satisfy the user's requirements and only these can be further

queried by the user.

The 'position-irrelevant' methods are not available for the subsequent

. querying. This is because the user has required that all collections should be

'integer-keyed'. Only 'position-relevant' methods satisfy this constraint. It

therefore makes little sense to let user query methods in 'position

irrelevant' since they do not meet the requirement. Consequently, in the

opened Method Level Query window, the node representing 'position

irrelevant' in the Method Category Hierarchy is greyed to notify the user of

this.

There are four menu options for this pane:

require; prohibit; explain; show methods.

Their functions are similar to those of the Class Category Hierarchy pane. As

the 'grey' node represents the non-accessible methods, if those options are

used on a 'grey' node, an error message will be shown.

b) Method Query pane

As in the Class Query pane, this contains the method query constructed by

users for retrieving methods. The descriptors in the Method Query pane are

also implicitly connected with the logical operator: 'and'. Its menu options

are:

retrieve methods: retrieves all methods satisfying the current method query

and displays the results in the Matched Method pane (see below). To satisfy a

method query, a method must satisfy the following constraints:

i) The method must belong to all of the 'required' method categories.

ii) The method must not belong to any of the 'prohibited' method categories.

iii) For all 'required' attribute-value pairs in the query, the attribute-values

must be the same as those in the query.

iv) For all 'prohibited' attribute-value pairs in the query, the values must

not be the same as those in the query.

135

136

remove descriptors: deletes the selected method descriptors (categories or

attribute-value pairs).

dear: resets the Method Level Query Window. All method descriptors in

this pane would be removed and the contents of the Matched methods pane

and the Example method pane would be cleared.

get the current method: this is used in the following situation: a user may

browse the methods retrieved after helshe has done some initial retrievals

to examine their functions. During the browsing, he/she may find a method

which satisfies his/her requirements. In such a situation, if he/she only

wants that specific method, then helshe can directly use it. However,

sometimes, the user may want to get all methods which have the same

properties (Le. method descriptors) as the one he/she is examining. Without

this option, the user would have to construct a query to get all such methods

(remember that one can only get one method each time by browsing). With

this option in use, BRRR2 will automatically construct a default query

(shown in this pane) and then retrieve all methods (including the one

selected by the user in the Matched Method pane) which match the default

query in the system.

merge into dass query: sends the method query, prefixed with the phrase

' With method attributes:' into the Class Query pane of the Class Level

Query Window. The purpose of this operation is discussed below in section

5.4.3.

c) Matched Method pane

As in the Matched Class pane, it contains the methods which match the

method query.

d) Example Method pane

As in the Example Class pane, displayed in this pane is a description of the

method highlighted in the Matched Method pane. The description of a

method consists of the following parts:

the method categories to which the method belongs (the boldface text under

the 'Method categories:' in figure 5.2).

the comment to the method which describes the function of the method (the

text under the 'Comment:' in figure 5.2).

the attribute-value pairs which characterize the fun.ction of the method (the

boldface text under the 'Descriptors:' in figure 5.2).

There are six menu options for this pane. The first three of these:

require-this-category

prohibit-this-category

explain-this-category

have the same meaning as 'require'; 'prohibit' and 'explain' in the Method
. -

Category Hierarchy pane respectively. With the provision of this set of

options, users can manipulate the method categories from either the Method

Category Hierarchy pane or this pane.

The other three menu options are used to manipulate the attribute-value

pairs to construct a method query and are:

require-this-value: adds the selected attribute-value pair into the Method

Query pane. It is equivalent to the command 'require' in BRRR1 's Examplf:

pane.

137

138

prohibit-this-value: adds the negated form of the selected attribute-value pair

(Le. prefix the value with: 'not--') into the Method Query pane. It is

equivalent to the command 'prohibit' in BRRR1's Example pane.

alternative-values: shows in a pop up menu all values the system knows of

the selected attribute. Users can select a value from the menu and then

'require' or 'prohibit' it.

5.4.3 The merge of the Oass and Method queries

Now that we have outlined the functions of the Class Level Query window

and the Method Level Query window, we shall explain the operation of the
-

menu option: 'merge into class query' in the Method Query pane. As we said

in chapter three, the method query should be regarded as an extension of the

class query. After several cycles of class retrievals, users usually get a number

of matched classes. They then need to examine the methods in these classes

to find the ones which have the methods satisfying their requirements.

However, the conditions the methods should satisfy usually cannot be

adequately specified by class level queries (comprising the class categories)

alone. Therefore, they need to open a Method Level Query window to start a

method retrieval. A method query is equivalent to requesting the system to

find out all methods in the matched classes which satisfy certain criteria.

Given that a method query is an extension of a class query, it makes sense to

integrate them together and treat them as a whole new class query. This new

class query then finds classes which satisfy the following conditions:

they satisfy the requirements represented by the original class query;

the methods they have satisfy the requir~ments represented by the original

. method query.

This is to increase the system's query capacities, as we show in the example

below:

If, for example, a class query is:

'Collection-classes'

'Keyed'

'Integer-keyed' .

Suppose that after the class retrieval, the user has already created a method

query and retrieved several methods. The current method query (in a

Method Level Query window) is:

'adding'

'posi tion-relevan t'

'Operation: add'

'Objects-added: one'

'Position-in-the-receiver: first'

'Object-returned: add-element'.

The user can merge this method query from the Method Level Query

window to the Class Query pane of the Class Level Query window with the

menu option 'merge into class query'. Now, the contents of the Class Query

pane becomes:

'Collection-classes'

'Keyed'

'In teger-keyed'

"·With method attributes:

'adding'

139

140

'posi tion-relevan t'

'Operation: add'

'Objects-added: one'

'Position-in-the-receiver: first'

'Object-returned: add-element'

This new query asks the system to retrieve all classes which are collection

classes; which are 'keyed' and have integer keys, in addition, the classes to be

retrieved should have such methods that they are able to add one object into

the first place of the collection and return the element just added as the

result.

After such a retrieval, the system will show all classes matching the

conditions specified in the query in the Matched Class pane. From now on,

users may start another method retrieval (for example, to retrieve methods

in another method category: 'accessing') in another Method Level Query

window and then merge the new method query back to the class query again.

In this way, BRRR2 can now retrieve classes which, in addition to matching

the previous merged query, contain the methods which match the newly

created method query about 'accessing' methods.

It is therefore possible in BRRR2 to retrieve classes which contain methods

from more than one method category, while in BRRRI it was only possible

to retrieve classes which contained the methods from one method category.

5.4.4 The 'Trace' window

The Trace window (see figure 5.11) serves as a 'history' facility. It records the

last 15 classes and methods users examined during the retrieval. It is to meet

the users' need for a facility to help them remember the components they

141

have investigated before and to allow them to refer to these components at a

later stage. During a retrieval, users might examine many classes (or

methods). At a later stage, users might want to refer to the earlier ones to

remind themselves of something (e.g. a method they looked before may

have similar features to a method they are looking for; they may want to see

if they have examined a method before to make sure they don't always go

back to a same position; etc.). The 'Trace' window also reminds users about

how they reached a class (or method) they are examining during the search

process.

The 'Trace' window is automatically updated whenever users select a class

(or a method) from the Class Level Query (or Method Level Query) window.

By selecting the 'ClassTrace' or 'MethodTrace' option, the class or method

history is displayed respectively. Users can select any item in the top pane of

the window, the description of the selected item is shown in the bottom

pane. The description of an item is the same as that in the Example Class

(method) pane of the query windows. Therefore, users are reminded about

the characteristics of the classes or methods they saw before.

T,·.~.:.;, · .. ··· .. · ir •• :j.:.· · L_ .. ~I~~'~.~,~II .. " '.:~. ,>-.~ .. ~_ .. , "

·: · t · d~t-~d'::.-.II~I: t:.ion
MappedColiectlon
Interval
ArrayedCollec1:lon
Array
OrderedColIQc1:lon
Bag
OrderedColiectlon
In1:erval
Array
OrderedCollectlon
Sor1:adCollac1:lon

"pollee
Keyed
Integer-keyed
Arbltrary-.lz ..

Class name; OrderedCollec1:lon

Commen1:;
This class represen1:s a collection of elemen1:s
""'hlch are ordered
expllcl1:ly by 1:he sequence In ""'hlch 1:hey are
added or removed .
Elements of 11: are accessible by ex1:ernal keys
1:ha1: ara Indices.

Figure 5.11. The Trace window.

· -_._-------

142

5.5 The implementation of BRRR2 - an overview

BRRR2 is implemented with 18 new classes and the size of the program's

source code is around 180k. It has two main components: a database which

stores the information about individual classes and methods; and an

interface component which implements the system's interface. We describe

them in turn below.

5.5.1 The database

The class for implementing BRRR2's database is a newly designed class

Brrr20rganization which is a subclass of the existing class Model. Defined in

this class are a number of tables which store information about classes and

methods. A group of methods are also provided in this class to access

information in those tables. The most important tables are:

classCategoryTable; classOrganizationTable; methodCategoryTable and

methodOrganizationTable.

The classCategoryTable stores information about class categories, it has the

following items:

class category names;

the super category of a category;

the explanation message for each category;

the classes each category contains.

The classOrganizationTable contains descriptions of each class, the main

items in this table are:

class names;

class comments which describe function of each class;

class categories to which each class belongs;

method categories belonging to each class.

superclass of each class.

The methodCategoryTable stores information about method categories; it

holds items similar to those of the classCategoryTable.

The methodOrganization contains information about the methods in the

system, it has the following items:

method names;

comment of each method;

method categories to which each method belongs;

class with which a method is associated;

method descriptors (attribute-value pairs).

All tables are implemented as instances of the class Dictionary and those

instances are represented by instance variables in Brrr20rganization.

5.5.2 The interface component

The interface component implements BRRR2's interface, i.e. the windows

with panes. BRRR2 has three types of windows: Class Level Query window;

Method Level Query window and Trace window. Each window consists of

several panes and each pane is implemented with three components: a

model; a view and a controller. The implementation of each kind of window

is introduced below. We list the classes involved in creating the panes and

briefly describe their functions. We start with the Class Level Query window.

a. Oass Level Query window

This window has five panes which are described in tum below.

143

144

1) Oass Category Hierarchy pane

The class for the 'model' of this pane is Brrr2Browser, which is a subclass of

an existing class Model. It includes methods to access the database to obtain

the information about class categories. The 'view' object of this pane then

displays the categories graphically based on the information from the

'model'. The 'view' class is CategoryView which is a subclass of the existing

class View. Defined in CategoryView are methods to display each category.

Each node representing a class category is implemented as an instance of the

class Form on which a string is displayed to show the category name it

represents. The 'controller' class is CategoryViewController which is a

subclass of the existing class ScrolIControlIer. A main function of the

'controller' is to track the cursor's position to see if a node is selected by

users. Additionally, in this class, a set of menu messages is also defined to

produce the menu of this pane.

Ii) Oass Query pane

The 'model' class of this pane is Query which is designed as a subclass of the

existing class TextCollector. The 'view' class is QueryView, a subclass of the

existing class TextCollector. The new class provides a new 'update:' method

to display the query descriptors in a clear format. The 'controller' class is

QueryController which is a subclass of the existing TextCollectorController.

Provided in this class is a new set of menu messages for the menu of this

pane.

iii) Matched Oass pane

The 'model' class is Brrr2Browser, which supplies methods to the 'view'

object of this pane in order to display a list of classes which matched the

query. The 'view' class is the existing class SelectionInListView and the

'controller' class is the existing class SelectionlnListViewController.

iv) Method Categories pane

This pane is very similar to the Matched Class pane in that both of them

display a list of items. Therefore, the classes of 'model', 'view' and

'controller' of this pane are the same as those of Matched Class pane.

However, in the 'model' class, Brrr2Browser, several methods are defined to

provide the appropriate method categories for the 'view' object of this pane

to display.

v) Example Cass pane

The 'model' class is still Brrr2Browser, in which several methods are defined

to obtain the appropriate text message from the database for the 'view' object

to display. The 'view' class is the existing class CodeView. The 'controller'

class is a new class ExampleClassController which is a subclass of the existing

class CodeViewController. In the new class, a set of new menu messages is

defined for the menu of this pane.

b. Method Level Query window

This window's implementation is very similar to the Class Level Query

window, each pane is implemented in the same way as that in the Class

Level Query window. Therefore, it is not described here further.

c. Trace window

The Trace window has four panes: the top pane shows a list of classes or

methods, the two panes marked: 'classTrace' and 'methodTrace' serve as

switches for users to examine Classes or methods. The bottom pane shows a

description of the selected class or method. All these panes share a 'model'

145

146

class TraceModel which is a subclass of Model. TraceModel provides

methods to record users' selections of classes or methods. The 'view' class of

the top pane is SelectionInListView, and of the bottom pane is CodeView.

The top and bottom pane use an instance of the existing class Controller

respectively as their 'controller'. In the 'controller' objects of these two

panes, no menu messages are defined. The 'view' class for both the switches

is the existing class Switch View.

5.6 Summary

In this chapter we have described BRRR2 - a revised version of BRRRl.

BRRR2 incorporates several changes to deal with the problems identified

through the formative evaluation of BRRRl.

The class classification method is different from that used in BRRRl.

Currently, classes are organized into class categories with these categories

further arranged into a hierarchy. A class now may be in more than one class

category. In BRRR2's interface, a new pane is added to illustrate explicitly the

structure of the class organization. This change is in consideration of the

prospect of scaling the system up to incorporate all classes in Small talk in the

future. It also aims to help users understand the class descriptors and

facilitate creation of class queries.

In BRRR2, the way in which methods are organized is similar to that of

BRRRl with the exception that some method categories are divided into

smaller categories and the categories are also organized into hierarchical

structures. In addition, a method may belong to several method categories so

that users' opportunities of identifying a correct method category are

increased. An explanation facility for method categories is also provided in

BRRR2.

Besides these two main changes, another new facility in BRRR2 is the trace

window. This window records the most recent items examined by users so

that they can inspect them at any stage. This also serves to remind users of

their interacting histories with the system. Finally, in BRRR2, query capacity

has been enhanced over that of BRRRI.

In the next chapter we report an empirical evaluation of BRRR2, which was

designed to study the effectiveness of these changes in helping users retrieve

required components.

147

148

Chapter 6 An empirical evaluation of BRRR2

In this chapter, we describe an empirical evaluation of BRRR2, the revised

version discussed in the previous chapter, of the query tool BRRRl.

The purpose of the study, as with the evaluation of BRRR1 was to assess its

strengths and weaknesses in practical use. In the following sections, we

outline the organization of the experiment, present the results obtained and

discuss their relevance for the design of BRRR2.

6.1 The organization of the study

As with the evaluation of BRRR1, a group of Small talk users, ~ach of whom

volunteered to take part, was used for this empirical study. Each subject

spent in total approximately two to two and half hours completing the study.

6.1.1 Subjects taking part

A total of 10 subjects participated in the study. Nine of these were M.Sc.

postgraduate students in computer science at Queen Mary and Westfield

College in London. These subjects all had similar backgrounds. They all had

a first degree in computer science and had taken a Smalltalk course which is

a part of the M.5c. syllabus. This course, spread over 20 weeks, comprises two

hours of lectures and two hours of laboratory work a week. However, in this

course, the Collection classes, (the components contained in BRRR2's library

and the target search items of the study) were not studied in depth. Although

these subjects had taken a Smalltalk course, considered in the larger context

of the Small talk system, they were still regarded as non-expert users. The

tenth subject was a member of staff in the Institute of Educational

Technology at the Open University and who has a reasonably good

. knowledge of smalltalk. Again it was hoped that this would provide an

opportunity for eliciting useful feedback on the overall design of the system.

None of the subjects had prior experience of using BRRR2.

6.1.2 The tasks used in the study

In the study, each user was requested to complete a set of five tasks. Each task

required the user to find a component in the system to complete a

programming task. The tasks were considered to represent typical situations

where Smalltalk users would be looking for components while

programming. The tasks were similar to those used in the evaluation study

of BRRRl and had the following pattern: find collection classes that have

certain properties and additionally have a method which can perform a

specific function. The tasks given are listed below: -

1) You are looking for a collection to store ten numbers. The collection

should allow its elements to be accessible through external indices. In

addition, the collection should have a method which would give you the

index of the last element in the collection whose value is greater than five.

Find all candidate classes and methods.

2) You are looking for a collection to store a sequence of objects:·

(1 3 5 'john' 'simon' $p rectangle1 10).

The collection should have a method which would return you anew

collection with the following properties:

- The elements of the new collection are the same as those in the original

collection except that the 4th and 5th elements of the original collection are

replaced by 7 and 9 respectively.

i.e. the new collection is: (1 3579 $p rectanglel10).

149

150

- After the method is executed, the original collection:

(1 3 5 'john' 'simon' $p rectangle1 10) remains unchanged.

Find all candidate classes and methods.

3) You are looking for a collection to store a group of 20 numbers. The

collection should have a method which can be used to delete at once all

numbers in the collection whose values are less than 10.

Find all candidate classes and methods.

4) You are looking for a collection to store a group of objects. You are not

concerned about the order in which the objects are arranged in the collection.

This collection should have a method which allows you to put an object into

the collection each time it is used. However, if the object to be put in is

already in the collection, this method will do nothing.

Find all candidate classes and methods.

5) Suppose you have a sequence of objects:

51=(1 10 'john')

and you are looking for a collection to store them in the given order. At a

later stage, you will want to use a method of this collection to append to it

another sequence of objects:

52=(2 'you' 'parent' 5 'children'),

The resulting collection would be:

(1 10 'john' 2 'you' 'parent' 5 'children').

However, you want the original collection 51 to remain unchanged.

Find all candidate classes and methods.

6.1.3 The procedure

As in the previous evaluation described in chapter three, the study here

consisted of two sessions: a training session at the beginning followed by an

actual test session. A major difference, however, between these two

evaluations was that in the training session for BRRR2, instead of being

given a demonstration about how to use the system, each user was given a

manual to read which gives instructions on how to use BRRR2. At the

beginning of the manual, the 'retrieval by reformulation' principle is briefly

introduced. The operation processes of the system are then described in

detail coupled with examples and graphical illustrations. The manual is

enclosed as Appendix B of this thesis.

151

After reading the manual, each user was asked to complete two exercises.

The exercises have similar forms and similar difficulty levels to the tasks

which the users would complete after the training session. The purpose of

these exercises was to let users acquaint themselves with the system

operation through practice. In the manual, some hints about how to find the

answer to the first exercise were given but none were provided for the

second. While users were completing the exercises, they were free .to ask the

experimenter questions about how to use the system. The whole training

session, including both reading the manual and completing the exercises,

took about one hour.

The test session followed directly on from the training session. In the test

session, the user was presented with the set of five tasks to complete. Once a

user had completed a task, he/she was prompted by the experimenter to

check his/her result against the requirements stated in the task to make sure

that, based on his/her unders~anding, the result satisfies the requirements.

The user was then asked to write the result on an answer sheet provided.

152

The users' interactions with the system in the test session were videotaped.

While they were completing the tasks, they were asked to 'think aloud' and

their verbal protocols were also recorded.

6.2 The analysis of data

As in the evaluation of BRRR1, the user's performance on each task was

analysed. The steps a user took to complete a task were listed, based on the

videotapes. The user's hypothesis for taking those actions were identified

based as closely as possible on his/her verbal protocols. Figure 6.1 shows such

an analysis on a subject's (54) performance on task 1. In this analysis, the

plain style text after the word 'Trans:' (abbreviation for 'Transcript') is the

user's transcript. The boldfaced text after 'Hyp:' (abbreviation for

'Hypothesis') shows the hypothesis behind the user's step which was

inferred by the analyser from his protocol. The italic text in square brackets

preceded by the word 'note:' is the analyser's note about the user's activity

between the steps. Two asterisks mark places where errors occurred, i.e the

user hypothesizes wrongly. The underlined words are BRRR2's menu

commands which the user selected in his interactiot:t with the system.

The users' errors identified from the analysis were then classified into error

categories which will be discussed in next section.

Task 1

Steps taken by the user

. 1. Require the class category:

'Collection-classes' .

The user's protocol and hypothesis

Trans: I'm looking for collection classes.

Hyp: Look for collection classes •

2 Require 'Keyed'

3. ReQu ire .the class category:

'Arbitrary-keyed'.

4. Retrieve classes.

[note: got the class 'Dictionary' as

the example classl.

153

Trans: We need fixed size collections,

ok, but for the moment, we deal with

the indices. They are keyed.

Hyp: They should be keyed.

Trans: But (they are) not integer keyed,

en ... , [note: reads the task again]

'external indices', I suppose 'external

indices' is non-integer, right?

Hyp: Suppose 'external indices' is non

integer indices.

"'[note: here, he misunderstood the

requirements of the task, the task

doesn't indicate the type of 'external

indices', so he should not have

assumed it as 'non-integer'.}.

154

5. Selects the method category:

'accessing' and uses the command

'construct method query'.

6. Require the method category:

'accessing'.

7. Require the method category:

'finding-index' .

8. Retrieye methods.

[note: gets the method:
'keyAt Value:' as the example
method]

T ran s: ... I'm going to examine

'accessing' method category to find out

more information.

Hyp: Examine the method category

'accessing' to find more information.

[note: browses matched methods]

Trans: Ok, ... no, we need an index, the

index of the last element in the

collection whose value is greater than 5.

Let's go down here and have a look.

[note: reads the method descriptors.]

'find-index'; 'exception-action', ... let's

look at this.

Hyp: Need to find an index, so check

the attribute 'exception action'.

9. Selects the descriptor:

'Exception-action: none' and uses

the command 'alternative

values'.

155

Trans: No, not interesting.

[note: read the descriptor 'Operation:

find-index'1.

Operation: find-index, en ...

I seem to have come to a dead end. I

can't find any methods which suggest

we have some condition as well, where

we can find some index, under the

condition that the value is greater than

5. So I'll backtrack a bit. I'll go back to

the class (level query window) and

browse.

Hyp: Want to find a method which has

some condition and can give the index

which satisfies the condition that the

value is greater than 5. Cannot find it

here. So backtrack to the class level.

156

10. Remoye the class category:

'Arbitrary-keyed' and require the

class category: 'Integer-keyed'.

[note: goes back to the Class Level Query

window. Reads the task again about the

requirement to the methods].

Trans: ... so the 'accessing' seems to be

the right way, it wouldn't be

'enumerating' Ok, I'm going to look

around.... It seems to me that 'arbitrary

keyed' classes don't support the feature

we need which is to find a key subject to

a condition. These (i.e. the methods

retrieved last time) just tell you keys at

certain places. So I'll go back, close this

window and go along this (I.e. the

'integer-keyed' branch of the class

category hierarchy). I'll remove this

'arbitrary-keyed' and go to 'integer

keyed' to see what is there.

Hyp: Look for a method which should

give a key subject to a condition. It

seems that 'arbitrary-keyed' classes do

not support this property, so look at the

'integer-keyed' classes.

11. Require the class category:

'Fixed-size'.

12. Retrieve classes.

13. Selects the method category:

'accessing' and uses the command

'construct method query'.

14. Require the method category:

'accessing' .

15. Require the method category:

'finding-index' .

157

Trans: I've got ten numbers (in the

collection), so I require (the class

category) 'Fixed-size'.

Hyp: They should be fixed size, as there

are 10 numbers in the collection.

Trans: (The method category) 'accessing'

is what we require, so construct a

method query.

Hyp: Need 'accessing' methods, so

construct a method query.

158

16. Retrieve methods.

(note: gets the method: 'findFirst:'

as the example method}.

17. Selects the descriptor: 'Object

indexed: the-first-element

matching-aBlock' and uses the

command: 'alternative-values'.

18. From the alternative value list

require the value: 'the-last

element-matching-aBlock'.

19. Retrieye methods .

.I note: gets methods: 'findLast: '}.

[note: browses methods}

Trans: 'findFirst:', yeah, that seems

more like it. [note: reads one 0/ the

des cript ors} 'the-first-element

matching-a-block', all right, let's change

that to ~ .. the 'last element'.

Hyp: The method 'findFirst:' seems

more like it. Change the value: 'the

first-element-matching-aBlock' of the

attribute: 'Object-indexed'. to the value

'last-element-... '.

Trans: En, I want the integer index, ... ,

that's ok.

20. Merges the method query into

the class query pane and retrieve

classes.
Finished.

Figure 6.1. A sample analysis of the subject 54's performance on task 1.

6.3 Results and discussion

Apart from one user (52) who failed to complete task 4, all other users

completed their tasks. Overall, eighty-six percent of the total number of tasks

were completed successfully. Forty percent of the total number of tasks were

completed without errors. On average, users made 0.98 errors per task and

the number of errors made on each task ranges froI? 0 to 4. Users mastered

the principles of BRRR2 and quickly learned how to use the query tool. As

we shall discuss later, the results of the study were encouraging in showing

that the tool is helpful in assisting users to find required components for

their programming. The performance of the users in terms of completing

the tasks correctly is illustrated in table 6-1 below.

c= task completed correctly;
F= task incorrectly completed.

Subjects Task 1 Task 2 Task 3 Task 4 TaskS
S1 C C C C C
S2 C C C F C
53 C C F C F
54 C C C C C
55 C C C C C
56 C C F C C
S7 F F C F C
58 C C C C C
S9 C C C C C

S10 C C C C C

Table 6-1. Users' performance on the task set

159

160

From observation of the subjects, we have seen that the design revisions of

BRRR2 have successfully overcome the following problems we found in

BRRRl. Firstly, because of the cross-reference technique we adopted in

classifying components, the users had much less difficulty in identifying an

appropriate method category to start a method query, a problem experienced

by every user in using BRRRl. Secondly, every user used a method of query

(re)formulation to find components rather than solely using the browsing

approach.

Though the users still encountered some difficulties in using BRRR2, as we

discuss below, the problems do not indicate the need for fundamental

changes to the system. In the following sections, we look a little more closely

at the errors generated by the users. While the object of the evaluation was

primarily to test the effectiveness of BRRR2 as a query tool, the results

brought to light other interesting findings. The study highlighted some of

the problems relatively inexperienced users encounter in the task of learning

Smalltalk. The overall distribution of errors which the users made in

completing the tasks is shown in table 6-2 below.

Number of errors made in each task
Subjects Task 1 Task 2 Task 3 Task 4 TaskS Sub-total

(peruser)
51 1 1 0 1 0 3
S2 1 1 2 2 4 10
53 1 0 3 2 1 7
54 1 1 2 2 0 6
55 0 2 1 0 0 3
56 0 3 2 0 2 7
57 3 2 1 1 0 7
58 2 0 1 0 1 4
59 0 0 0 0 0 0

510 1 0 1 0 0 2
Sub-total
(per task) 10 10 13 8 8

Table 6-2. The distribution of errors the users made in completing the tasks.

While this table shows how many errors users made, the types of errors are

discussed below. We have classified users' errors into the following three

categories:

- Misunderstanding the operations of the system;

- Misunderstanding the contents of the system;

- Misconceptions of the programming tasks.

Table 6-3 below shows the percentage accounted for by each of these

categories.

50

45

40

35

30

25

20
15

10

5

o
system

operation
system
contents

31%

task
misconception

• system operation

~ system contents

m task misconception

Table 6-3. Percentage that each error type accounts for.

While this classification is necessarily to a certain extent an arbitrary one, it

satisfactorily indicates the differences, which we wish to discuss, in the types

of errors which we encountered in the subjects' responses. A number of

these errors are of most direct relevance to our evaluation study, since they

are of interest in relation to the design and use of the query tool. Others,

161

162

while meriting some attention, are more indicative of the difficulties non

expert users have in learning to program.

In the following sections, we describe each type in more detail, first

presenting examples of errors, then putting forward likely causes for their

occurrence. We also, where appropriate, suggest ways of reducing the

likelihood of users making these errors.

6.3.1 Misunderstanding the operations of the system

This type of error accounted for twenty-two percent of all errors. Those errors

can be further divided into the following two subcategories:

- misuse of menu commands

- misunderstanding of the super-subcategory relationships.

In the next paragraphs, we will analyse this type of error. Table 6-4 below

shows the distribution of these errors across the tasks given.

MCo= misuse of menu commands;
SCa= misunderstanding of the super-subcategory relationships.

Subjects Task 1 Task 2 Task 3 Task 4 TaskS Sub-total
(per user)

MCo sea MCo sea MCo sea MCo sea MCo sea
51 1 1 2

52 0

53 1 1 2

54 0

55 0

56 3 1 1 5
57 1 1

58 1 1
59 0
510 - 0

Sub-toW
(per task) 2 1 3 1 1 1 1 0 1 0

Table 6-4. Distribution of errors.

(The figure in each cell indicates the number of errors a user made during
. completing the corresponding task. Blank cells show that users did not make any
mistake of tlult type.)

a) Misuse of menu commands

Errors of this kind were mainly made while users were constructing method

queries in a Method Level Query window. Some users manipulated the

attribute-value pairs with the menu commands designed for manipulating

method categories, as we explain below. In BRRR2, the contents in the

'Example method' pane of a Method Level Query window is a description of

one of the retrieved methods. It consists of three parts:

the comment which is a text description of the method's function;

the method categories to which the method belongs;

the attribute-value pairs which characterize the function of the method.

In the 'Example method' pane, the menu commands used to construct

method queries are:

require-this-category;

prohibit-this-category;

explain-this-category;

require-this-val ue;

prohibit-this-value;

alternative-values.

Among them, the first three commands are designed to manipulate the

method categories. The remaining three are used to manipulate the

attribute-value pairs. Several users were not aware of the difference between

these two groups of commands, and so during the creation of a method

query, used the commands for category to manipulate attribute-value pairs.

The users in many cases knew that they needed to 'require' an attribute

value pair, but mistakenly selected the 'require-this-category' command.

163

164

After the system gave an error message, they realized that they had made a

mistake and then chose the correct command.

This type of error may well occur because the names of those two groups of

commands are very similar and the _ difference between them are not

indicated explicitly in the manual.

One possible solution to this problem is to re-assign names to the menu

commands, i.e., do not differentiate the commands for categories from those

for the attribute-value pairs, instead, assign the same name to both the

command for category and its counterpart for attribute-value pairs and allow

the system to deal with the different cases. If this were done, the comm~nd

set in this pane would become:

require; prohibit; explain-this-category.

The 'require-this-category' and 'require-this-value' both mean that the

needed method must have the property represented by the selected

descriptor (a method category or an attribute-value pair). Therefore, it seems .

that the 'require' would be sufficient for both cases, the system, inste~d of the

users, would take the load. This method can also be applied to the

commands: 'prohibit-this-category' and 'prohibit-this-value', they would be

replaced by the command 'prohibit'. In this way, the users' confusions might

be reduced.

b) The super-subcategory relationships

In BRRR2, classes and methods are organized into class categories and

method categories respectively. Categories are further arranged into

hierarchical structures (see figure 6.2). Each category except the one at the

root of the hierarchy has a parent category called its super category. A non

root category represents a special case of its super-categories. If a non-root

category is required (with the command 'require-this-category') by a user, it

implies that all its super categories are also needed by the user. Therefore

BRRR2 would automatically put all super categories of the category into the

query. Similarly, if a category is removed (with the command 'remove-this

category'), all its sub-categories would be automatically removed as well.

However, a number of users failed to realize the super-subcategory

relationships in the system. Consequently, they didn't fully understand the

way in which the commands: 'require-this-category' and 'remove-this

category' work, therefore they constructed contradictory queries. For

example, whilst completing task 1, a subject (58) first required the category

'Arbitrary-keyed', then he thought that the collections he was looking for

should have fixed size, so he also required 'Fixed-si~e' without realizing that

this category is only applicable to 'Integer-keyed' classes. It can be seen from

figure 6.2 that classes with fixed size in BRRR2 are also: 'Collection-classes'

and 'Keyed' and 'Integer-keyed', so after he required 'Fixed-size', the super

categories of the 'Fixed-size': 'Collection-classes', 'Keyed' and 'Integer-keyed'

were also added into the query. The query therefore became as follows:

'Collection-classes' {and}

'Keyed' {and}

'Arbitrary-keyed' {and}

'Integer-keyed' {and}

'Fixed-size'.

As no collection classes in BRRR2 are both 'Arbitrary-keyed' and 'Integer

keyed', nothing was retrieved.

165

166

I f 1,1. .
-C: ' "C: ' -- ' - ,

I C t_au •• I
I " •• , I IK·y"'1 I~-"'I

I IIIt..-r-tlayatl I I -,ary-trav-~ I

1'''''''-'· -".')1-111. c:lU __ Y
.... ,_. l,;IUIaI' IJ -_ ... ,.,.,..-
------------.. ------------ II

~."""CI&D ..

, .

Figure 6.2. The class level query window.

Again, such a kind of error may well have its origin in the lack of training.

In the system manual, the relationship between super and sub-categories is

not particularly emphasized. In addition, nothing is said about the fact that

the command 'require-this-category' and the command 'remove-this

category' would add (or remove) all super (or sub) categories of a category as

well. In the examples given in the manual, users were shown that categories

are 'required' (or 'prohibited') step by step, i.e. each supercategory of a

category is required before the category itself is required. That particular way

of showing users how to use the commands was chosen to ensure that users

would first learn the basic way of using the commands, leaving more skilful

ways till a later stage. Therefore we didn't present the full information to

users in the manual. Viewed in this light, it is not hard to see that users

made such mistakes. This result indicates the need for some revision of the

manual given to users. We may need to explain to users explicitly the

relationships between super-subcategories, state the full functions of these

menu commands and show the complete effect of the commands in the

. examples used in the manual.

6.3.2 Misunderstanding the contents of the system

This type of error accounts for 47% of the whole erro~ set. The majority of

these errors occurred while the users were doing method retrievals (as each

test task requires the users to find a method, the users spent considerable

amount of time in method retrievals, thus there were more errors generated

by the users during that part of the process). These errors can be more easily

described in three sub-categories:

- misunderstanding values of attributes;

- misunderstanding functions of the retrieved items;

- misunderstanding method categories.

The distribution of these errors across the tasks given can be found in table 6-

5. This is followed by a discussion in which each category of problems will be

anal ysed in turn.

V A= misunderstanding values of attributes;
MF= misunderstanding functions of methods;
Me= misunderstanding method categories.

Subjects Task 1 Task 2 Task 3 Task 4 Task 5 Sub-total
(per user)

VA MF M: VA MF M: VA MF M: VA MF M: VA MF M:

51 1 1

52 1 1 1 1 1 1 2 8

53 1 1 2

54 1 2 3

55 1 1 1 3
56 1 1
57 1 2 3
58 1 1
59 0

510 1 1
Sub-total ,

(per task) 1 0 3 4 2 0 2 0 1 2 0 3 3 0 2

Table 6-5. The distribution of errors.

(Figures in cells indicate the number of errors users made while completing the
corresponding tasks. Blank cells show that users did not make any mistakes of that
kind.)

167

168

a) Misunderstanding values of attributes

Several users misunderstood the values of certain attributes used in

describing individual methods and had difficulties in using them to

construct method queries. In BRRR2, apart from the method categories, each

method is characterized by a group of attributes and their corresponding

values, the attribute-value pairs.

For example, the attribute-value pairs for the method

'copyReplaceFrom:to:with:', in the OrderedCollection class, are:

Operation: copy-and-replace-a-subCollection;

Object-returned: a -collection -like-the-recei ver

In the above, 'Operation' is an attribute and the part after the ':' is the value

of the attribute, similarly with 'Object-returned'. Users may use attributes

values to construct method queries. However, users were sometimes not

sure about, or misunderstood the meanings, of certain values, and so they

selected a wrong value or did not select a value appropriate to their queries.

The problem appears to be mainly caused by the somewhat inappropriate

selection of descriptors in BRRR2. For example, methods in the method

category: 'removing' are characterized by the following attributes:

Operation;

Exception-action (i.e. the action to take if the object to be removed cannot
be found in the collection);

N umber-of-objects-removed;

Constraint-to-removed-objects;

Object-returned.

For all 'removing' methods, the value for the attribute: 'Operation' is:

'remove-elemen t'.

Take as an example the method 'removeAll:' in class 'OrderedCollection',

whose function is to remove a group of given elements from the collection.

Its descriptors are:

Operation:

Exception -action:

Number-of-objects-removed:

Constr ain t-to-removed -objects:

Object-returned:

remove-element;

none;

multiple;

rna tch-e lemen ts-in-a-gi ven
-collection;

a-collection-of-removed-elements.

For another method 'remove:' in the same class, which removes only one

element, the descriptors are:

Operation: remove-element;

Exception-action: none;

Number-of-objects-removed: one;

Constrain t-to-removed-objects: match-the-gi ven-elemen t;

Object-returned: removed-element.

Note that for both methods, the value for the attribute 'Operation' is

'remove-element'. In other words, this value applies to both the situation

where one element is removed and the situation where multiple elements

are removed.

The attribute used to specify the amount of the removed elements is

'Number-of-objects-removed' rather than the 'Operation'. However, a few

users misunderstood the value 'remove-element' to mean 'remove only

169

170

one element'. Consequently, when asked to find a method which should

remove several elements, they thought the value 'remove-element' was not

appropriate, hence looked for alternative values before they checked the

attribute: 'Number-of-objects-removed'. The values of this attribute are

identical for all 'removing' methods in the system, thus they couldn't find

any alternative values.

This kind of problem could be overcome by adjusting the values which

cause confusions. For example, if we change the value of the attribute

'Operation' from 'remove-element' to 'remove-element(s)' or even to

'remove', this kind of error might be avoided.

b) The function of retrieved methods

This type of error manifested itself in method retrievals, where the users

might simply ignore the required methods provided by the system. After

several method retrievals, the users were usually presented with a method

by the system. Although the method shown by the system was in fact the

required method, as the users couldn't fully comprehend its function, they

didn't realize that the method was what they needed and continued their

search. For example, during the course of completing task 2, a subject (54)

had found the method 'copyReplaceFrom:to:with:', which was in fact the

correct method for the task. However, he misunderstood its function, so

continued the search process.

The cause for these errors appears to be that the functions of the methods are

complex and not straightforward to understand, and the comments for the

methods are not clear enough to provide a sufficient explanation about their

functions. The comments for all methods in BRRR2 came directly from

5malltalk and unfortunately some of them are not very comprehensible .

. BRRR2 is only a prototype system and is not yet integrated with the original

Small talk, and so users cannot run a component directly and discover its

function through such an experiment or find how a component is used in

the real programming situation.

One possible solution is to provide users with examples about how a

complex component is used in real programming. The examples together

with the comment for a component should improve users' understanding

of the functions of the components and therefore help them in retrieving

the required information. Of course, when BRRR2 is integrated with

Small talk, users would be able to understand the function of a component

better by directly running it or by seeing which other existing programs use

this component and how they use it. This may also be helpful in easing this

kind of difficulties.

c) Misunderstanding method categories

This type of error refers to those made by users who had difficulties in

identifying the correct method categories in a method category hierarchy

while they were creating a method query. They sometimes searched a wrong

branch of a method hierarchy or used two categories which are mutually

exclusive.

One such an example occurred while a subject (510) was completing task 1.

He was trying to find a method which would give the index of the last

element (of a collection which contains a group of given numbers) whose

value is greater than 5. He searched in the method category hierarchy whose

root category is 'accessing'. There are four subcategories of 'accessing':

measurement: represents methods used to query various properties of

collections.

171

172

inspecting-elements: represents methods used to retrieve values of elements

in a collection.

finding-index: represents methods used to return indices of some elements

which satisfy certain user-specified criteria.

replacing-elements: represents methods used to replace some existing

elements in a collection.

The subject thought that he should first measure the elements in a collection

and then find the required index. He therefore required both the categories

'measuring' and 'finding-index'. He didn't realize that methods in

'measuring' category only return values of some parameters about the

collection (for example, size, sorting rule) and do not 'measure' the elements

at all in the sense of examining elements based on certain criteria as he

expected. As no method can both return a value of a parameter and

an index at the same time, those two categories are mutually exclusive,

therefore nothing was retrieved. This error was caused by the fact that the

subject had misunderstood the meaning of. the method category

'measuremen t'.

In BRRR2, methods are classified into method categories and the categories

are organized into hierarchical structures. In order to find a method, users

need to first identify a root category ('adding'; 'accessing'; 'copying'; etc.) as a

start and then select a specific subcategory of the root category ('position

relevant'; 'position-irrelevant' etc.) to which the method belongs. They may

then use the attributes in a category to further refine a method query. In

BRRRl, users also had problems in identifying a correct method category. To

overcome this problem, in BRRR2, a cross-reference technique is employed

. and the method category hierarchy is displayed visually. In BRRR2, the users'

did not have much difficulty in selecting the root category of a method

category hierarchy. For example, they did not get stu~ by selecting 'accessing'

rather than 'enumerating' as happened in BRRRl. This suggests that the

revision was at least partly successful.

Nonetheless, the users now have difficulties in identifying an appropriate

subcategory of a root category. In BRRR2, a help facility is provided which on

request presents users with an explanation message about what kind of

methods a method category represents. However, we noticed that in many

situations, the explanation facility was not exploited to its full by the users.

They did not look at the explanation messages first, rather they used the

'trial and error' strategy until they found or did not find, the methods they

required. In discussion with users after their test sessions, some users
.

admitted that they had been very used to just browsing everything in

Smalltalk with the System Browser. This strategy had been recommended by

their instructor in their tutorials and had been practised all the time when

they were using Small talk. From a pedagogical point of view it would surely

be more beneficial to users to find a way of helping them to understand the

meaning of a method category more easily.

6.3.3 Users' misconceptions of the tasks

This type of error accounts for thirty-one percent of the total errors. These

errors could be classified into the following categories:

- false assumptions;

- misconception of operations;

- 'plausible' solutions.

In the next paragraphs, each category of error will be analysed. Table 6-6

below shows the distribution of these errors across the tasks given.

173

174

FA= false assumptions;
P A= 'plausible' algorithms;
MO= misconceptions of operations.

Subjects Task 1 Task 2 Task 3 Task 4 TaskS Sub-total
(per user)

FA PA W FA PA W FA PA W FA PA W FA PA W

S1 0
S2 1 1 2
53 1 1 1 3

54 1 1 1 3
55 0

56 1 1
S7 1 1 1 3

S8 1 1 2
S9 0

510 1 I' 1
Sub-total
(per task) 0 1 2 0 0 0 4 1 3 1 1 0 0 2 0

Table 6-6. The distribution of errors.

a) False assumptions

A number of users misunderstood the nature of the tasks and made

assumptions which were not originally stated in the tasks and this led to

errors.

An example of such an error was made by a user (52) in completing task 3.

This task requires the user to find all classes which have a method that is

able to remove in one operation all elements whose values are less than 10.

In the task, nothing is stated about the order of the elements in the target

collection. The subject thought that as the index of the elements in the

collection was not specified in . the task, the collections should be unordered

and hence selected the class category 'Unordered'. Such errors mainly

happened in the tasks that gave few clues about certain properties which the

users wanted to know in order to select a class category in the 'Class Category

Hierarchy' pane. The intention of such tasks was to let users find required

. components through a method query. In BRRR2, the class categories are

used to create a class query so that the retrieval range of the subsequent

method retrieval would be narrowed down quickly. If users are not sure

about whether the classes sought should belong to a class category, they can

just leave it there (i.e. do not need to either 'require' or 'prohibit' it) and

continue with a method retrieval. However, several users tended to make

an (unnecessary) definite decision as to whether or not they needed a class

category. When they could not get needed information from the tasks, they

made their own assumptions and these were sometimes wrong.

This could be remedied by stating explicitly in the manual that if users don't

have enough information to decide whether they need a class category, they

should simply leave it rather than select one which may be wrong and may

seriously affect their subsequent method retrievals .

•
b) Misconception of operations

Several users had misconceptions of basic concepts of the operations in the

collection components of Small talk. For example, task 3 requires users to

find a method to remove in one operation from the original collection of ten

numbers all numbers whose values are less than 10. A number of subjects

thought that as the collection only contains 10 elements, it should be fixed

size. They didn't realize that as the collection should support the 'remove'

operation which would reduce the size of the collection, it should be of an

arbitrary size. This mistake seems to be caused by users' misunderstanding of

the characteristics of the 'remove' operation in Small talk components.

c) 'Plausible' solutions

Several users didn't adhere to the requirements of the tasks given, they

picked up some components which were not the required ones but would be

plausible in a real programming situation. They thought that they could use

these components to complete 'the task, i.e. they could write a program with

additional parts, hence retrieved them as the result. For example, subject 7,

175

176

whilst doing task 3 (i.e. find a method which can remove all elements which

are less than 10 in one operation), found the method 'collect:' as the answer.

The function of this method is to create a new collection which has the same

class as the original collection and elements of it are selected from the

original collection based on some user-specified criteria. This subject thought

that he could use this method to 'collect' all elements which are equal or

greater than 10 and use the result collection as the answer. He therefore

retrieved all 'collect:' methods as his result.

The problem with his solution is that the method he found wouldn't

actually remove all elements from the original collection. His algorithm

could generate a new collection which would contains the same set of

elements as that would result from using a correct method:

'removeAllSuchThat:'. However the original object would not be changed,

so his solution would fail to fulfil the requirement of the task.

The problem with this kind of error is that the results found are not the

correct or optimal answers, though they may be plausible in real

programming situations, if some modifications are _ made to them. In this

study, the answers considered acceptable for the tasks set are regarded

optimal and all tasks should be completed by one method. In real

programming situations, users can achieve a goal in many ways, and they

are not restricted by using only one method. They can use several methods

to perform an operation which can be done with one optimal method, if

they know that method. Therefore, though the components they found may

not be optimal and do not satisfy the requirements we set up here, in a real

programming situation, users could have worked out a way to complete the

task. This affected the retrieval result since the users believed the

components they found were the right ones as they thought they could make

-them work. Ideally one would welcome a way to inform users that the

components they have chosen are not optimal, and that still 'better'

components exist in the system and that they should continue their search.

6.4 A comparison with BRRRl

From what was observed in the evaluation study, we have seen that BRRR2

has to a certain extent overcome the following problems we found in

BRRRl.

In BRRR1, users had difficulties in identifying an appropriate method

category to start a method query. To overcome this difficulty, a cross

reference technique is adopted in BRRR2. Users now have much less

difficulty in identifying a correct method category to ~tart a method query.

177

In the evaluation of BRRR1, users had nothing to refer to during the study,

and they could not exploit the advantages of the system. In the evaluation of

BRRR2, a manual was provided to users. This was welcomed by users and

proved to be very valuable in helping users to accustom themselves to the

system.

In BRRR1, users often found components by browsing rather than by doing

query reformulations. In BRRR2, better training was provided (e.g. using a

manual for users' reference; using exercises which have a similar difficult

level to that of the tasks); and difficulties in creating a query were reduced

(e.g. using the cross-reference technique to help them start a method query,

using graphical illustrations to help them understand class descriptors). As a

result, in BRRR2, every user was seen using a form of query (re)formulation

to find components rather than by just browsing.

178

6.S Conclusion and summary

In this chapter, the evaluation study we conducted on BRRR2 has been

presented and the results discussed. In summary, BRRR2 seems to have

succeeded in helping users finding required components. This is evident

from the facts that most tasks were completed successfully (86%) and the

subjects quickly learned to use it. It also shows that BRRR2 has to a certain

extent successfully overcome the problems users had with BRRRl. Though

the users still experienced some difficulties in using the system, our analysis

of those problems in previous sections shows that to a large extent the

problems can be solved by providing better training to users, by adju,sting

some aspects of component classification and by improving some parts of the

interface design. The results did not indicate any need to make major

changes in the design of the system. In the next chapter, we summarize the

research done in this project, suggest relatively minor adjustments which

could be made to the present prototype BRRR2 and outline work needed to

be done in future research in this direction.

179

Chapter 7 Conclusions and future work

In this final chapter, we summarize the research work reported in this thesis,

outline its contributions to research in this area, discuss the limitations of

the work, suggest a number of short term extensions to the system and

finally indicate some directions for further longer term research.

7.1 Summary of the research

The overall goal of this research has been to investigate ways of helping

users find reusable components in object-oriented programming systems.

The Small talk system was chosen as the target system to explore our ideas.

The 'retrieval by reformulation' approach was used as the basis of the

research. Adapting this paradigm to the domain of object-oriented

programming, we developed two prototype systems for a subset of Small talk.

After the first prototype tool - BRRR1 was implemented, an empirical,

formative evaluation was conducted to identify problems the users

encountered. Based on this evaluation, an improved version of BRRRl,

called BRRR2 was developed which aimed to overcome the problems found

in BRRRl. A second empirical evaluation was then conducted on BAAR2 to

test its effectiveness. The formative evaluation of BRRR2 showed

encouraging results. It appears that the tool is helpful for non-expert users

finding reusable components in Smalltalk. Our research also demonstrates

the feasibility of employing the 'retrieval by reformulation' paradigm in the

domain of facilitating non-expert users finding required information in

object-oriented programming systems.

7.2 Contributions

The contributions of this research are listed below and each of these will be

explained in turn:

180

- Helping users learn and use the Smalltalk system;

- Facilitating software reuse in object-oriented programming systems;

- Extending the applicability of the 'retrieval by reformulation' paradigm
into a new domain;

- Using a method of iterative design combined with formative
evaluations to design interface systems.

7.2.1 Helping users learn and use the Smalltalk system

The contribution of this research to the area of helping users learn and use

Small talk can be seen in the following two aspects:

It provides a new type of tool to facilitate users finding required
components in their programming;

It provides more data on the learnability of the Small talk system.

a) A new type of tool

During this research, a new type of tool, BRRR2, has been developed to help

users overcome their difficulties in finding reusable components in

smalltalk. Small talk is a large and complex system, and reusing existing

components in its component library is a recommended programming style

in smalltalk. However, as we discussed at the beginning of this thesis, users

have difficulties in finding what they need. The existing System Browser of

this system does not provide users with satisfactory help. It only allows users

to access components by names and users often have a vocabulary barrier.

This problem makes programming in smalltalk difficult since users may

have to spend large amount of time and effort to look for required

·components in the large Smalltalk hierarchy. Because of such difficulties in

finding necessary components in the system, users sometimes give up the

181

search and write their own code whose function actually can be performed by

existing components in Small talk, if only they could be found (O'Shea, in

press). This problem has seriously affected the leamability and usability of

this system. The research reported here illustrates a novel way to tackle this

problem: users are allowed to query the system to find what they require.

This approach reduces users' search space since they only need to study the

relevant components, and thus reduce the difficulties they have. With the

query mechanism supplied by BRRR2, users look for necessary components

by specifying the properties which the required components have (e.g. What

kind of classes should they be: ordered? keyed? etc. What kind of methods

should the classes contain? What properties should the methods have?). In

this way, users can retrieve the required infor!llation based on their

properties rather than just based on their names. Additionally, in BRRR2,

users create a query by reformulation. They can construct a query iteratively

and incrementally, using the information provided by the system. They can

first create a class query by reformulation, and then further refine it with a

method query. Furthermore, the method query itself can also be created by

reformulation. From the results of the empirical evaluation of BRRR2, it can

be seen that with the help of BRRR2, the users successfully completed the

majority of tasks. This seems to show that BRRR2 is helpful to non-expert

users in overcoming their difficulties in finding reusable components in the

large component library of Smalltalk.

b) More data on Smalltalk's leamability

The evaluation of BRRR2 revealed some problems which users have in

learning Small talk components. For example, the functions of certain

components are not easy to understand and examples on how they are used

in programming may be necessary to help users understand these

components; users have misconceptions on certain operations of Smalltalk

182

components. This has provided more information on the learnability of this

system.

7.2.2 Facilitating software reuse in object-oriented programming systems

In a wider context, this research facilitates the software reuse approach in

object-oriented programming systems. The object-oriented programming

paradigm has been said to promote the software reuse approach. One of the

reasons is because object-oriented programming systems tend to encourage

the use of large reusable component libraries. At a certain stage, therefore,

these systems need facilities to help users, particularly non-expert users, find

reusable components in these large libraries. As discussed in the first chapter

of this thesis, the existing tools, however, do not provide satisfactory

solutions. Browsing tools like the Smalltalk Browser have the problem we

mentioned in the last section. Query tools based on the keyword matching

techniques often retrieve components which users don't need or they fail to

find the ones users really require. Tools based on structured database query

techniques require users to construct a precise query beforehand, which

could be a difficult task for non-expert users.

This research illustrates a novel approach, i.e. developing a query tool based

on the 'retrieval by reformulation' paradigm, to help non-expert users find

reusable components in object-oriented programming systems. As we have

discussed in the last section, BRRR2 appears to a certain extent to have

overcome the problem facing the browsing tools, since, by using it, users can

search for required components within a smaller range. Furthermore, in

BRRR2, a query is formed incrementally with the information provided by

the system and users do not have to create a precise query in advance. This

should reduce users' difficulties in forming a query. The research result

seems to indicate that the approach we used could ease users' difficulties in

reusing software components. Moreover, although this approach aims to

help non-expert users, it also has the potential of helping more experienced

users when they need to explore unfamiliar areas of large object-oriented

programming systems.

Although the research reported here used Small talk as the target system, the

design of BRRR2 utilized only such properties of this system as: class;

method and inheritance. This approach thus seems to be generalizable across

other object-oriented programming systems which have similar properties,

such as: C++; Objective-C; Eiffel and Flavor. To build a tool like BRRR2 for

these systems, the classes in those systems should be classified into class

categories. Then methods in groups of class could be classified into method

categories and methods in a particular method category are characterized by a

set of attributes-value pairs. The interface of the tool would take a form

similar to that of BRRR2, though some extensions of it would be necessary as

we will suggest in section 7.3 of this chapter.

7.2.3 Extending the applicability of the 'retrieval by reformulation'

paradigm into a new domain

This research extends applicability of the 'retrieval by reform~lation'

approach into the domain of finding software components in object-oriented

programming systems.

'Retrieval by reformulation' (Williams, 1984) is a paradigm of designing

interfaces of large information systems. It suggests that the information in a

system should be retrieved by iterative, incremental descriptions of the

required items. It also proposes using examples to help users construct a

description. It has been used successfully in retrieving information in

domains with which users are familiar (e.g. literature and personnel

information). In this research, based on this paradigm, two prototype

systems, BRRR1 and BRRR2 have been developed for an object-oriented

183

184

programming system: Smalltalk. The empirical evaluation of BRRR2

showed positive results. This demonstrates the feasibility of using this

paradigm in the domain of helping users retrieve software components in

object-oriented programming systems. Thus an important contribution of

this research is that it extends the applicability of this paradigm into a new

domain.

7.2.4 Using the method of iterative design combined with formative

evaluations to design interface systems

The development of software in this research used the method which

combined iterative design with formative evaluations. First of all, a

prototype query tool, BRRR1 was developed based on the 'retrieval by

reformulation' paradigm. After that, an empirical, formative evaluation was

conducted to test the effectiveness of this first prototype. Problems of the

system were identified and this information was then used to the

development of the second prototype system: BRRR2. This approach appears

to have worked to good effect. It is very difficult to design a user interface

right the first time, since it is hard for the designers to foresee all problems

users would have with the system (Nielson, 1992). It is thus necessary to

design such interfaces iteratively, with the assistance of empirical tests. The

formative evaluation method chosen in this research (e.g. video tape, think

aloud, test tasks) seems to have achieved satisfactory results. In the

formative evaluation of BRRR1, problems which were not realized during

its design were found. These ranged from the problems on the design of the

system itself to that on the organization of the evaluation study. Our

experience showed that this had provided invaluable information to both

the design of BRRR2 and the subsequent evaluation of this system. This

experience thus provides positive evidence of the advantages of using the

-approach of iterative design combined with formative evaluations to

develop interfaces of BRRR2's type.

7.3 Further work

Though our research has shown some promising results, it has some

limitations. In this section, we outline the limitations of this research work

and indicate directions for future work. We describe the further work in

terms of short term work and long term work and present them in tum

below.

7.3.1 Short term extensions

a) The immediate steps which need to be taken are:

i. Several menu commands caused users confusion, they need to be changed

as we discussed in section 6.3.1 of chapter 6.

ii. Several method descriptors also need to be adjusted for the same reason.

iii. As we discussed in chapter 6, some components are complex and difficult

to understand, we should include examples of how these components are

used in real programming situations into the system to facilitate users'

understanding of their functions. Before this can be done, it may be necessary

to first investigate more fully which components are most likely to cause

users difficulties in comprehension.

b) Presently, the system cannot process disjunctive queries, i.e. descriptors

connected by the logical operator 'or', This restricts the expressiveness of the

queries which can be processeq by the system. In a further implementation,

this facility should be incorporated so as to increase the types of query which

can be expressed by users.

c) The system currently contains only a subset of the classes in Small talk, i.e.

the Collection classes, and users can only query the Collection classes. In

185

186

further implementations, the system should be extended to include all

classes in Small talk. To deal with that situation, it would be necessary to

extend the current interface of the system. This may be done with some form

of the 'fisheye' technique as we discussed in section 5.3.1 of chapter 5. So, for

example, users can first specify which kind of class (for example, graphical

classes; interface classes) they are interested in and consequently want to

further investigate their functions by queries. They can then query to find

the components they need in a similar way to that currently used in BRRR2.

In practical terms, the classification of all Small talk components, however,

would be a time-consuming task; extending the interface may require a

Small talk programmer about two to three month to complete.

d) The system as it stands cannot accommodate user-defined components. It

can only let users retrieve existing Small talk components in its library. To be

more helpful for users' programming, the system must be able to deal with

user-defined components. To do so, the system should incorporate an 'edit'

facility, so that the component can be added in the way of 'editing by

reformulation'. To add a new class into the system library, users need to

select a class category (or several class categories) to which they believe the

class should belong, and then use a menu command to add the class to the

class category (or categories). Similarly, to add to the system library a new

method in the class which they have just added to the system, users may

retrieve a method which has some similarities to the new method they want

to put in and use the retrieved method as a template. They can use the

method category (or categories) obtained from the description of the

retrieved method and add the new method into the category (or categories)

with a menu command. They can then fill the method attributes with

values. The values may be taken from the retrieved method or from other

existing values in the system (by using the alternative value list as they do in

a querying process) or may be some values of the users' own, if none of the

existing ones in the system are satisfactory. In this way, user-defined

components can be put into the system and then be treated in the same way

as built-in system components. In practical terms, this could be completed by

a Smalltalk programmer in three or four weeks time.

e) The system should be integrated with the original Smalltalk system so that

users can program directly with the components they have found. They

would be able to take advantage of the original Small talk's System Browser

(for example, inspect the code of components directly). In addition, they

should be able to investigate the functions of some components by directly

running or experimenting with them to see the results, as they would do in

the original Smalltalk environment.

So far, we have discussed the limitations of the implementation of the

system. There are also some limitations of the empirical study we conducted

on BRRR2. The study was carried out with relatively few subjects and in the

study, users were asked to complete tasks which were designed by the

experimenter rather than defined by the users themselves. To evaluate the

effectiveness of our approach better, further empirical studies should be

done. As a comprehensive empirical study which would evalu'ate the

effectiveness of the next BRRR prototype may itself be a large project, this

will be described in the next section.

In this section, we have outlined the limitations of our research and

suggested the work needed to be carried out in an immediate future. In the

next section, we indicate several possible directions for further research.

7.3.2 Longer term. research

In this section, we suggest further research work in the following areas:

approximate matches;

187

188

empirical studies;

applying our approach to other object-oriented systems.

a) Approximate matches

An aspect of the system which needs further investigation is that of the

degree of exactness necessary in the retrieval process. BRRR2 currently can

only retrieve components which match exactly the descriptors specified in

users' query. It would be more helpful if the system could show users the

components which match the query within approximate bounds and rank

the retrieved components according to the similarities between the

components and the query. This is because sometimes users may not be quite

satisfied with a value of a particular attribute but may want something

which is close or similar to that value. Therefore, it would be beneficial to

users if the system could deal with approximate queries specified by them

and show them all the relevant components. Some work done in the area of

approximate matching may be used as a starting point. For example, for the

structured database, Motro (1988) has extended relational database systems to

include a 'similar-to' comparator so that users can retrieve data w~ich are

similar to a specified one. For unstructured databases, Jones (1986) developed

a system to retrieve files in a file system which is based on the approach of

spreading activation. This approach has also been adopted by Croft et al.

(1989), Cohen et al. (1987) and Rau (1987). These may be fruitful paths to

explore. In addition, in Small talk, there are some classes which are related to

each other and they cooperate to complete certain tasks. One such example is

the 'model-view-controller' mechanism of Small talk in which three types of

classes 'Model', 'View' and 'Controller' cooperate to form and manipulate a

window. These kinds of relationships should also be expressed in some way

in the query and retrieval to facilitate users finding required components. In

order to to combine these factors to perform effective retrieval, more

fundamental research needs to be carried out.

b) Further empirical studies

189

We mentioned in the last section that further empirical evaluations need to

be done to guide further development of our approach. One study would re

examine the existing data obtained from the evaluation of BRRR2 to

examine the process by which users completed the tasks. The study would

focus on the possible differences between users who found the answers to

the tasks by using the browsing approach and users who found the answers

by using the query reformulation approach. This could be done by looking at

the paths each user taken to find the answer to each-task (i.e. what classes or

methods had a user browsed before an answer was found? Did a user find

the answer completely by query reformulation?). The results of such a study

may provide further information to the development of the next version of

BRRR.

One other empirical study may be to test the next implementation of BRRR

with a larger number of subjects comparing users' performance with the

BRRR system to that of users allowed access only to Small talk's System

Browser. The users would be divided into two groups: an experimental

group and a control group. Each group of users would be asked to complete

the same set of tasks. The experimental group would complete the tasks with

the help of BRRR and the control group with only the original Small talk's

System Browser. The performance results can then be used for comparison.

However, before these evaluations are carried out, it would be necessary to

extend the software itself as we have suggested in section 7.3.1 of this chapter

to reflect a more realistic programming situation. This will be more effective

when the system contains more classes than at present.

190

To evaluate the effectiveness of our approach more rigourously, a large scale

empirical study may be necessary. This study would examine how expert

smalltalk programmers use a well-developed version of BRRR in a real

programming situation to establish how far this tool might promote code

reuse.

c) Use our approach in other OOP systems

Finally, this research has been carried out with Small talk as a target system. It

does not however rely on the special features of Small talk other than those

shared by other class-based object-oriented programming systems such as:

Objective-C, C++, Eiffel, Flavor. It is thus reasonable to be~ieve that the

approach which we have used is readily generalizable across these object

oriented programming systems. Further research should investigate this

belief and test the applicability of the paradigm to these object-oriented

programming systems.

References

(Papers marked with an asterisk (It) have been produced in the course of
this research. All others are referenced in the text of this thesis.)

Arnold, S. P. and Stepoway, S. L. (1988). The REUSE system: Cataloging and
retrieval of reusable software. Tutorial: Software reuse: emerging technology.
IEEE Computer Society, EH0278-2, pp. 138-141.

Biggerstaff, T. and Charles, R. (1989). Reusability framework, assessment,
and directions. In Biggerstaff, T. and Perlis, A. (eds). Software Reusability,
001.1: concepts and models. Addison-Wesley, Reading, MA, pp. 1-17.

Blair, G., Gallagher, J., Hutchison, D. and Shepherd, D. (eds) (1991). Object
oriented languages, systems and applications. Pitman Publishing, London.

Bobrow, D. G., Kahn, K., Kiczales, G., Masinter, L., Stefik, M. and Zdybel, F.
(1986). CommonLoops: Merging Lisp and object-oriented programming.
Proceedings of OOPSLA '86. Portland, Oregon, pp. 17-29.

Bocker, Heinz-Dieter and Herczdg, J. (1990). TRACK - A trace construction
kit. CHI'90 Conference Proceedings. Seattle, Washington, pp. 415-422.

Boyce, R. F., Chamberlin, D. D., King, W. F. and Hammer, M. M. ·(1975).
Specifying queries as relational expressions: The SQUARE data sublanguage.
Communication of ACM. Vol. 18, No. 11, pp. 621-628.

Budd, T. (1991). An introduction to object-oriented programming. Addison
Wesley, Reading, MA.

Burton, B. A., Aragon, R. W., Bailey, S. A., Koehler, K. D. and Mayes, L. A.
(1987). The Reusable Software Library. IEEE Software. July, pp. 25-33.

Carroll, J. M., Singer, J. A., Bellamy, R. K. E. and Alpert, S. R. (1990). A View
Matcher for learning Small talk. CHl'90 Conference Proceedings. Seattle,
Washington, pp. 431-438.

191

192

Cohen, P. R. and Kjeldsen, R. (1987). Information retrieval by constrained
spreading activation in semantic networks. Information processing &

Management. Vol. 23, No.4, pp. 255-268.

Collins, D. (1990). What is an object-oriented user interface? Proceedings of
the symposium on object-oriented programming, emphasizing practical
applications. Poughkeepsie, NY, September. pp. 269-306.

Conklin, J. (1987). Hypertext: An introduction and survey. IEEE Computer,
September, pp. 17-41.

Cox, B. J. (1986). Object-oriented programming: An evaluation approach.
Addison-Wesley, Reading, MA.

Croft, W. B., Lucia, T. J., Cringean, J. and Willett, P. (1989). Retrieving
documents by plausible inference: An experimental study .. Information
Processing & Management. Vol. 25, No.6, pp. 599-614.

Cunningham, W. and Beck, K. (1986). A diagram for object-oriented
programs. Proceedings of OOPSLA '86. Portland, Oregon, pp. 361-367.

Draper, S. w. (1984). The nature of expertise in UNIX. Proceedings of
INTERACT'84. Amsterdam, September, pp. 182-186.

Dumais, S. T. (1988). Textual information retrieval. In Helander, M. (ed.)
Handbook of human-computer interaction. Elsevier Science Publishers B.
V. (North-Holland).

Elmasri, R. and Navathe, S. B. (1989). Fundamentals of database systems.
The Benjamin/Cummings Publishing Company, Inc.

Esp, D. G. (1991). A beginner's experience of Smalltalk-80 for the
evolutionary prototyping of an expert system. Proceedings of the
Colloquium on 'Applications and Experience of Object-Oriented Design'. lEE.

Digest No: 1991/018, pp.2/1-2/6.

Fischer, G. (1987). Cognitive view of reuse and redesign. IEEE Software, July,
pp.60-72.

Fischer, G. and Nieper-Lemke, H. (1989). HELGON: Extending the retrieval
by reformulation paradigm. CHI'89 Conference Proceedings. Austin, TX, pp.
357-362.

Frake, W. B. and Nejmeh, B. A. (1987). Software reuse through information
retrieval. Proceedings of the 21 annual Hawaii international conference on
system sciences. Hawaii, pp. 530-535.

Furnas, G.W., Landauer, T. K., Gomez, L. M., and Dumais, S. T. (1983).
Statistical semantics: Analysis of the potential performance of key-word
information systems. Bell System Technology Journal. 62, 6, pp. 1753-1806.

193

Furnas, G. w. (1986). Generalized fisheye views. CHI'86 Conference
Proceedings, human factors in computing systems. San Francisco, Calif., pp.
16-23.

-
Furnas, G. W., Landuaer, T. K., Gomez, L. M. and Dumais, S. T. (1987). The
vocabulary problem in human system communication. Communication of
ACM, Vol. 30, No. 11, pp. 964-971.

Gibbs,S., Tsichritzis, D., Casais, E., Nierstrszand, O. and Pintado, X. (1990).
Class management for software communities. Communications of the ACM,
Vol. 33, No.9, pp. 90-103.

Goldberg, A. and Robson, D. (1983). Smalltalk-80: The Language I:Znd its
Implementation. Addison-Wesley, Reading, MA.

Goldberg, A. (1983). Smalltalk-80: Interactive programming environment.
Addison-Wesley, Reading, MA.

Gomez, L. M., and Lochbaum, C. C. (1984). People can retrieve more objects
with enriched key-word vocabularies. But is there a human performance
cost? Human-computer interaction - Interact'84. Shackel, B. (Ed.), North
Holland, Amsterdam, pp. 257-261.

Gray, P. D. and Mohamed, R. (1990). A Practical Introduction to Sma llta Ik-80.
Pitmans.

Halbert, D. (1986). The learnability of object-oriented programming systems.
Proceedings of OOPSLA '86, Portland, Oregon, pp. 503-504.

194

Harrison, W. (1987). RPDE3: A framework for integrating tool fragments.
IEEE Software, November, pp. 46-56.

Helm, R. and Maarek, Y. S. (1991). Integrating information retrieval and
domain specific approaches for browsing and retrieval in object-oriented
class libraries. Proceedings of OOPSLA '91. Phoenix, Arizona, pp.47-61.

Jones, G. and Prieto-D(az, R. (1988). Building and managing software
libraries. Proceedings of the 12th annual international computer software
and application conference. IEEE Computer Society Press, pp. 228-236.

Jones, W. P. (1986). On the applied use of human memory models: the
memory extender personal filing system. International Journal of Man
Machine studies. 25, pp. 191-228.

Kaehler, T. and Patterson, D. (1986). A taste of Smalltalk. Hay~en Book Co,
U.S.A ..

Keene, S. E. (1989). Object-oriented programming in Common Lisp.
Addison-Wesley, Reading, MA.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80. Journal of object-oriented
programming. August/September, pp. 26-49.

Lalonde, W. R. and Pugh, J. P. (1990). Inside Smalltalk, Vol I. Prentice-Hall.
Inc.

-Li, Y. and O'Shea, T. (1990). BRRR: A tool for facilitating users' navigation
in SmaUtalk-80. Proceedings of the people and computer interaction systems
students' workshop. Computing Department, The Open University, Milton

Keynes, pp. 35-58.

-Li, Y. and O'Shea, T. (1990). BRRR: A tool for facilitating users' navigation
in Smalltalk-80. Proceedings of the symposium on object-oriented
programming, emphasizing practical applications. Poughkeepsie, NY. pp.
175-189.

·Li, Y. (1991). Helping users find reusable components in Smalltalk-80.
Proceedings of PEG 91, Knowledge Based Environments for Teaching and
Learning, Rapallo (Genova), Italy, May 31-June 2.

·Li, Y. (Forthcoming). Finding reusable components in Smalltalk-80.
Computers & Education.

Maarek, Y. S., Berry, D. M. and Kaiser, G. E. (1991). An information retrieval
approach for automatically constructing software libraries. IEEE Transactions
on Software Engineering. Vol. 17, No.8, pp. 800-813.

Meyer, B. (1987). Reusability: The case for object-oriented design. IEEE
Software, March, pp. 50-64.

Meyer, B. (1988). Object-oriented software construction. Prentice-Hall Inc.

Moon, D. A. (1986). Object-oriented programming with Flavors. Proceedings
of OOPSLA '86, Portland, Oregon, pp. 1-8.

Motro, A. (1988). VAGUE: A user interface to relational databases that

permits vague queries. ACM Transactions on Office Information Systems.
Vol. 6, No.3, pp. 187-214.

Nielsen, J. and Richards, J.T. (1989). The experience of learning and using
Smalltalk. IEEE Software, May, pp. 73-77.

Nielson, J. (1992). The usability engineering life cycle. IEEE Computer, March,
pp.12-22.

Norman, D. A. and Bobrow, D. G. (1979). Descriptions: An intemediate stage

in memory retrieval. Cognitive Psychology. 11, pp. 107-123.

O'Shea, T. (in press). Why object-oriented programming is hard to learn.
Human computer interaction.

Ossher, H. (1990). Multi-dimensional organization and browsing of object

oriented systems. Proceedings of 1990 International Conference on Computer
Languages. New Orleans, Louisiana, March 12-15, pp. 128-135.

195

196

Patel-Schneider, P. F., Brachrnan, R J. and Levesque, H. J. (1984). ARGON:
knowledge representation meets information retrieval. Fairchild technical
report 654, Schlumberger Palo Alto Research, September.

Pinson, L. J. and Wiener, R S. (1988). An introduction to object-oriented
programming and Smalltalk. Addison-Wesley, Reading, MA.

Pintado, X. (1990). Selection and exploration in an object-oriented
environment: the affinity browser. In Tsichritzis, D., (ed.) Object
management. Centre Universitaire d'Informatique, Universite de Geneve,
pp.79-88.

Prieto-Dfaz, R and Freeman, P. (1987). Classifying software for reusability.
IEEE Software, January, pp. 6-16.

Prieto-D£az, R (1991). Implementing faceted classification for software reuse.
Communication of ACM. Vol. 34, No.5, pp. 89-97.

Ramamoorthy, C. V. and Sheu, P. C. (1988). Object-oriented systems. IEEE
Expert, Fall, pp. 9-15.

Rau, L. F. (1987). Knowledge organization and access in a conceptual
information system. Information Processing & Management. Vol. 23, No.4,
pp. 269-283.

Remde, J. R, Gomez, L. M. and Landauer, T. K. (1987). SuperBook: An
automatic tool for information exploration - hypertext? Proceedings of
Hypertext'S7. University of North Carolina, Chapel Hill, North Carolina.
November 13-15, pp. 175-188.

Rosson, M.B. and Carroll, J. M. (1990a). Climbing the Small talk mountain.
5lGCHl Bulletin, Vol. 21, No.3, pp. 76-79.

Rosson, M.B., Carroll, J. M. and Bellamy, R. K. E. C1990b). Smalltalk
scaffolding: A case study of minimalist instruction. CH1'90 Conference
Proceedings. Seattle, Washington, pp.423-429.

Rubin, K. S. (1990). Reuse in software engineering: An object-oriented
-perspective. Digest of papers. COMPCON90. 31 IEEE Computer Society
International Conference. San Francisco, February 26-March 2.

Salton, G and McGill, M. J. (1983). Introduction to modern information
retrieval. Computer series, McGraw-Hill, New York.

Saunders, J. (1989). A survey of object-oriented programming languages.
Journal of Object-Oriented Programming. MarchI April, pp. 5-11.

Schank, R. C. (1972). Conceptual Dependency: A theory of natural language
understanding. Cognitive Psychology. 3, pp. 552-631.

Stroustrup, B. (1986). The C++ programming language. Addison-Wesley,
Reading, MA.

Taenzer, D., Ganti, M. and Podar, S. (1989). Problems in object-oriented
software reuse. Proceedings of ECOOP'89. Nottingham, U.K. July 10-14, pp.
25-38.

Tesler, L. (1985). Object Pascal report. Apple Computer, Santa Clara, CA.

Tou, F. (1982). RABBIT: a novel approach to information retrieval. M.S.

Thesis, Massachusetts Institute of Technology. MA.

van Rijsbergen, C. J. (1979). Information retrieval. 2nd edition, Butterworths.

Walker, J. H. (1987). Document Examiner: Delivery interface for hypertext
documents. Proceedings of Hypertext'87. University of North Carolina,
Chapel Hill, North Carolina. November 13-15, pp.307-324.

Waltz, D. L. and Goodman, B.A. (1977). Writing a natural language data base
system. Proceedings of 5th International Joint Conference on Artificial
Intelligence. pp. 144-150.

Waltz, D. L. (1978). An English language question answering system for a
large relational database. Communications of ACM. Vol. 21, No.7, pp. 526-
539.

Williams, M. D. and Hollan, J. D. (1981). The process of retrieval from very
long term memory. Cognitive Science 5, pp. 87-119.

197

198

Williams, M. D. (1984). What makes RABBIT run? International Journal of
Man-Machine Studies. 21, pp. 333-352.

Wood, M. and Sommerville, I. (1986). A software components catalogue. In
Davies, R. (ed.) Intelligent information systems: Progress and prospects. Ellis
Horwood Limited. pp. 13-32.

Wood, M. and Sommerville, I. (1988). An information retrieval system for
software components. SIGIR FORUM, Spring/Summer, Vol. 22, Issue 3, 4,
pp.11-25.

Wu, C. T. (1990). A better browser for object-oriented programming. Journal
of object-oriented programming, November/December, pp. 22-29.

Appendix A Exercises used in the evaluation of BRRRt

1) Find all the collections which can keep its elements in some order.

2) Find all the collections in which any element does not occur more than

once.

3) In some collections, elements can not be accessed according to their index.

Find all these collections.

4) Suppose there are five objects. Find all candidate collection into which

these objects can be stored, and with a method of the collections you can

access the third object you stored (You should find these methods first).

5) Find all methods that can be used to insert more than one element into

ordered collections.

199

6) Some collections have methods with which you can access individual·

elements according to the positions of these elements. Find all· these

methods.

200

AppendixB The manual used in the evaluation of BRRR2

BRRR Reference Booklet

Contents

1 Introduction
2 The Cass level Query Window
3 How to query Classes
4 The Method level Query Window
5 How to rebieve Methods
6 The Trace Window
7 Additional example tasks

Section 1. Introduction

This system is called BRRR (BrowseR for Retrieval by Reformulation). It is a tool
used to help users find classes and methods they require in their progra~ing in
Smalltalk-80.

BRRR is a browsing tool with a query capability. When you need to find classes (or
methods) in Smalltalk, you can use BRRR to construct a query, BRRR will provide
you with a list of candidate components (classes or methods) which match the
query, you then examine the list to find the required components. If the number of
the components is large, you can use the information provided by BRRR to refine
(reformulate) your previous query, then request BRRR to do a further retrieval.
This process may be repeated until you find the satisfactory components. In BRRR,
the information needed to construct a query is provided by the system, you just
manipulate the information with a set of options presented in pop up menus.
There is no need for you to type in anything.

BRRR has two types of query windows: the Class Level Query window and the
Method Level Query Window. These are used to retrieve classes and methods
respectively. In the coming sections we describe each of these two windows in detail
and show how they may be used.

Collection-classes
Keyed
not--Abstrac\..

CoIIecdon -cIa._.
Keyed
Integer-keyed
ArbItral"y-.&ze

rray
Dictionary
IdentltyDlctlonary
Interval
UnkedUst
MappedColiectlon
SortedColiectlon

Class name: OrderedColiectlon

Comment:

accessing
adding
copying
enumera tlng
removing

This class represents a collection 0' elements which are ordered
explicitly by the sequence In which they are adeled or removed.
Elements of It are accessible by external keys that are Indices.

figure 1 The Class Level Query window
This window consists of the following five panes, each of which we will
subsequently describe in more detail

Class Category Hierarchy (the pane at the top)
ii Class Query (the leftmost pane below the Class Category Hierarchy pane)
iii Matched Classes (the pane at the right of the Class Query pane)
i v Method Categories (the pane at the right of the Matched Classes pane)
v Example class (the pane at the bottom of the window).

i Class Category Hierarchy pane
Displayed in this pane is a tree, each of its nodes represents a class category. A class
category is similar to that in the original Smalltalk. Each contains several classes
having some common properties, e.g. the classes in the category 'Collection-classes'
can all be used as containers for other objects.

Class categories in BRRR are organized. into a hierarchical structure: a category may
have sub-categories which contain classes having more specific properties (this
structure is somewhat different from that of the original Smalltalk). For example,
the category 'Keyed', which is a sub-category of 'Collection-classes', contains classes
which are collection classes and 'Keyed.' i.e. their elements are accessible by external
indices.

Class categories are used to construct queries to retrieve classes. They can be
manipulated with options presented in a yellow button menu. You first click the
node of the category you wish to highlight, then manipulate it with menu options.
The menu options are:

require: sends the name of a selected. category to the Class Query pane. You use this
option when you think that the classes you need to retrieve should have the
properties characterized. by the category name.

prohibit: prefixes 'not--' to the name of a selected. category and sends it to the Class
Query pane. This is the opposite case to the 'require' option.

201

202

explain: explains the properties that the classes in that category have.
show classes: lists, in another menu, the names of the classes in that category.

Suggested Activity:
Select the node: 'Keyed' in the Class Category Hierarchy pane and try the four
options we have just discussed to see what happens.

ii Class Query pane
This pane contains the query you constructed for retrieving classes. All descriptors
in this pane are implicitly connected by the logical operator 'and'. For example, the
query in figure 1 means that the classes which are to be retrieved are:
collection classes which are keyed, i.e. their elements are accessible by external keys,
and which are not abstract classes. The yellow button menu options for this pane
are:

retrieve class: retrieves all classes which match the query.
remove descriptors: deletes the selected descriptors (categories).
reset: resets the whole system. A menu will appear asking you to confirm this.

111 Matched Oasses
This pane displays a list of names of the classes which match the query in the Class
Query pane. The number in this pane's label is the number of matched classes.

111 Method Categories
This pane presents the method categories of the class which is highlighted in the
Matched Classes pane. After you have selected a method category, the options in the
yellow button menu for this pane are :
show methods in this category: this opens an extra window, which shows the

methods belonging to the selected method category of the currently selected
class, i.e. the class highlighted in the Matched Class pane. This is illustrated
in figure 2 below.

-. 11 .~ oJ.jir,,~ r,,,~HI(ld f. in .: I d"~1 ~d'::I)II~(~io:'rl ~ __ .~",," _ " •• _ _ _ ____ _

. :" :'~ I IJ~rl •. ~ .=, Ltl~' :: ,_.I1~,_ t klr.
add:
add:after:
add:before:
add:beforelndu:
add ... II:
addAIIFlrst:

.. a Sequence able Collection (In class: OrderedCollectlon)

Comment:
Answer a copy of the receiver conca tena ted with the
argument,
a SequencableColiectlon.

Method categories:
adding
po .. tJon elevant

Oescrlptors:
Operation: add-element
Object-added: multlple-element.-In-aColection
PolltJon-in-the-recelver: end

figure 2. All 'adding' methods in the class: OrderedCollection

other method categories: this option shows method categories which are not in the
currently selected class but are in other classes which also match the current
query. This option also allows you to open a Method Level Query window
to query these other methods (we shall discuss the Method Level Query
window in sec. 4).

explain: this option explains the properties of the methods in a method category.
constructing method query: this option allows you to open a Method Level Query

window for querying all methods which are in a selected method category
and which are contained in matched classes (again, this will be discussed in
sec. 4).

v Example class
The text in this pane describes the function of the selected class in the Matched
Classes pane. The boldface parts are the class categories to which the selected class
belongs. For example, if we look back to figure 1, the selected class
'OrderedCollection' belongs to all the following categories: 'Collection-classes';
'Keyed'; 'Integer-keyed' and 'Arbitrary-size'.
The text after the 'Comment:' specifies the function of the selected class.

Section 3. The procedure of querying classes:_

E·F,F.f. ;. _
;; .

U II II

I C"'ot_us •• I
Abstra01 jKoy~ L~_NJ

In.o_-icey.d I brt'ary-icey.d J
I Fb< d.. I I _"&,y-.II. I

Cu. Query ~._a~ , g ~ ~ ..
------------.. ------------

............ ", .. ,.
..

figure 3. The start situation

i Starting with the Class Category Hierarchy pane, 'require' the categories to which
you think the class you need should belong, 'prohibit' those to which you think it
does not. Use the BRRR help facilities 'show classes' or 'explain' if you are not
certain about what kind of classes a category may contain.

ii After selecting some class categories, retrieve classes (using the 'retrieve class' in
the Class Query pane).

111 Examine the candidate classes to find the one you need. During this process, if
you find a new class category which is not in the current query but in which the
class should be, always 'require' it to refine your current query, and then do a new
retrieval.

203

204

On the following page there is an example task to illustrate using BRRR to find
classes.

Example Task 1: Suppose you are looking for a collection to store a group of
numbers. You want to arrange the numbers in the collection as a sequence so
that you can access them through integer indices e.g. access the 'first' or
'second' or 'nth' element. Find all candidate classes.

Search process:

i At the beginning, the system is as shown in figure 3. You need a collection,
so the class you require should be one of the collection classes. You select the
category 'Collection-classes', and then select the 'require' option from its
yellow button menu. After the operation, the category name appears in the
Class Query pane. You then ask the system to do a retrieval by selecting the
option 'retrieve dass' from the menu in the Class Query pane. After the
operation, all panes except the Class Category Hierarchy are updated, as
shown in figure 4 below.

• •• l1li.II1II •• accessing
adding
copying
enumerating
removing

AlTayedColIClctlon
eag
Conectlon
Dictionary

Class name: OrderedColleetlon

Comment:
This class represents & collection ot elements which are ordered
explicitly by the sequence In which they are added or removed.

figure 4. All 'collection' classes

All the collection classes BRRR has found are shown in the Matched Class
pane, and the first one-'OrderedCollection' is highlighted. Its method
categories appear in the Method Categories pane. The text describing the
function of this class is shown in the Example Class pane.

ii The collection you need should maintain its elements as a sequence,
therefore it should not be in the category 'Unordered'. So you select the
category 'Unordered' and 'prohibit' it. In addition, the elements in the
collection should be accessible by integer indices, so you 'require' the category
'Keyed' and then 'require' the category 'Integer-keyed'. These two categories
appear in the Qass Query pane. You use the 'retrieve dass' again, then
BRRR presents you with all classes which are: collection classes [and] not--

Unordered [and] Keyed [and] Integer-keyed (see figure 5). The matched classes
shown are the candidates.

not--Unordered
Keyed
Integer-keye'1

Keyed
Integer-keyed
ArbItrary -.be

ArrayedColI.ctlon
Interval
UnkedUst
SequenceableColiectlo
SortedColiec tlon

Class nama: OrderedColiactlon

Comment:

accessing
adding
copying
enumerating
removing

This class rGpresents .. cOIIGctlon of elements which .. re ordGred
explicitly by the sequence In which they are added or removed.
Elements of It are accessible by external keys that are Indices.

figure 5. matched classes

[End of Example task 1]

Section 4. The Method Level Query Window

This window is used to query methods. After you have retrieved a number of
classes in the Class Level Query window, you may have selected a particular class
and wish to examine the methods belonging to it in order to see if it has the
function you need. You can get methods in a method category for the seleCted class
by using the menu option 'show method'. These methods will be displayed in a
window as shown in figure 2. However, often the method you need is not in the
class you are examining.

In this case you don't have to select another class to check its method as you have to
do in the original Smalltalk.

Staying in the currently seleded class, select a method category in which you think
the method you need should be and choose the 'constructing method query' from
the menu to open the Method Level Query Window.

The Method Level Query Window (see figure 6 below) is similar in structure to the
Class Level Query window. It has four panes, which we will subsequently describe
in detail.

i Method Category Hierarchy (top pane)
ii Method Query (below and left of previous pane)
iii Matched Method (to the right of 'Method Query' pane)
i v Example Method (bottom pane)

205

206

position-relevant
Operation: add-element

Object-added: mUltlple-el II!~~~~~!!!!~~~!I~ •• I
emenu-ln-aOoliectlo~ raddAI

Oomm.nt:

addAliLast: CO,""ere4iICo,nec:tlc)n
addFirst: (OrderedOoliection)
addFirst: (UnkedUst)

class : OrderedOoliect n)

Add .aeh .Iement of anOrderedOoileetlon at my end. Answer
anOrderedOoliection.

Method categories:
adding
~tlon-r"'vant

Descriptors:
Operation: add-element
ObJect-added: multlple_lement.-In-aColectlon

figure 6. A Method level Query window

i Method Category Hierarchy pane:
Displayed in this pane is the method category tree. Each node of it is a method
category. A method category may have sub-categories which represent more specific
categories of methods (note that in the original Smalltalk system, a method category
has no sub-categories). Its yellow button menu is similar to that of the Class
Category Hierarchy pane and similarly its options are:
require; prohibit; explain; show methods.

ii Method Query pane:
Similar to the Class Query pane. Its menu options are:

retrieve methods;
remove descriptors;
get the current method: retrieves the currently selected method in the Matched

Method pane.
clear: removes all descriptors in this pane.
merge into class query: merges the method query you constructed into the Class

Query pane so that you can ask the system to retrieve the classes which
contain certain kinds of methods.

iii Matched Method pane:
Similar to the Matched Class pane, it shows the methods which match the method
query.

i v Example Method pane .
Similar to the Example Class pane. Text in this pane describes the function of the
selected method.

The text under the 'Method categories:' shows the method categories to which the
method belongs.
The boldface text under the 'Descriptors:' gives the method descriptors. A descriptor
has two parts, the part before the colon, ':' is an attribute and the part after the
colon is the value of the attribute. Method descriptors specify what attributes a
method has and for that method, what the values of those attributes are. They are
used to construct method queries and can be manipulated with the following
options in this pane's yellow button menu:

require-this-value sends a selected descriptor to the Method Query pane, this is used
when you think that the method required should have such an attribute and
corresponding value.

prohibit-this-value sends a selected descriptor to the Method Query pane, however,
it prefixes the value with: 'not-'. This is used when you think that the
method required should have such an attribute but not the present value.

alternative-values presents for users' selection a list of values of the selected
attribute, the selected value is then sent to the Method Query pane in the
'require' or 'prohibit' form.

Section 5. How to retrieve methods
.

i Use the 'constructing method query' option from the yellow button menu of
the 'Method Categories' pane in the Class Query window. This opens a Method
Level Query window which you can use to query all methods across all matched
classes in a specific method category.

ii In the Method Level Query window, use a procedure similar to that used in
the Class Query pane. However, not only should you manipulate the method
categories, but you should also manipulate the method descriptors presented in the
Example Method pane with the following options described previously in section 4,
i.e.
'require-this-value' (you need the selected descriptor [attribute and value])
'prohibit-this-value' (the value of an attribute is not appropriate).
Especially, do not forget to use:
'alternative-values' (asks the system to provide other values for your selected
attribute.>

In summary, make as much use as possible of the information BRRR provides to
gradually refine your query until you have the information you require.

Next, we step through an example to show you the method query process.

Example Task 2

Suppose, extending the Example task 1 given earlier, you wish to find all the
candidate classes which have a method that will allow you to put all the
numbers you want into the collection at once, ordered automatically
according to their values.

Search process:
By using the searching process for task 1, you arrived at 7 candidate classes.
(figure 5). Now you want to know which one has the method you required,
i.e. the method which can put elements into the collection and order them.
You examine the method categories of the 'OrderedCollection' in the

207

208

Method Categories pane, and decide that the method should be in the
'adding' category. To see if this class contains such a method, you select the
category and from the yellow button menu choose the option 'show
methods in this category'.
A window is opened and all the 'adding' methods in 'OrderedCollection' are
listed in it (figure 2). After examining them and finding nothing to match
your requirements, you decide to see if there is an 'adding' method in any
other matched classes.

To do this, select the 'constructing method query' option from the menu. A
method query window is opened. In its Method Category Hierarchy pane
you see that the category 'adding' is further divided into two sub-categories:
'position-relevant' and 'position-irrelevant'.

Since you need a method which can sort numbers, you 'require' the category
'position-relevant' and then ask for a retrieval. BRRR presents you with all
methods which can add elements into a collection and put them into specific
positions. The first one in the list- " aSequenceableCollection' is highlighted
(see figure 7).

"J~::! ... · ... irpj .:.· .. f ,:" r.l ~ fr-I.:"j <.:- f~ .~ ' :.r .': :O.j.jir'9
" ~ ' . et t-slory er.r y

comment:

,aSequence&bleColiectlon (Ordered Colle
,aSequence&bleColiectlon (SortedColiec
add: (OrdafadColiactlon)
add: (SortedColiectlon)
add: (Linke dUst)
add:afur: (OrderedColiectlon)
add:before: (Ordered Collection)
add:beforelndex: (OrderedColiectlon)

Answer a copy of the receiver concatenated with the argument,
• SequencableColiectlon.

Method categories:
adding
pMldon-f'elev&nt

Oescrlptors:

iJ"g"Ui'iM"H§5'Pii'§'"
Object-added: multIpIe-.....-.b~-&Cohctlon

Po.ldon -t:he-f'ecelv .. : end
Object-returned: a -new-colectlon".-ttae_celver

figure 7. querying methods

Examine the method deSCriptors in the Example Method pane. You want to
put elements into a collection, therefore the operation of the method should
be: 'add-element'. To do this you select the descriptor 'Operation: add
element' and then use the menu option 'require-this-value'. You also want
to put in several numbers, so you do the same to the descriptor: 'Object
added: multiple-elements-in-aCollection'. However, the method you need
should not always put an element at the end of the collection, therefore you
need to find a more appropriate value for the attribute: 'Position-in-the
receiver:'. To do this, you choose the menu option: 'alternative-values',
which presents a menu with all alternative values for this attribute (see
figure 8).

f&Mritl
wIE,1iiiii E~\Ian.

adding
position-relevant
Operation: add-elamant
ObJlct-added: lIIultlpll-111
ments-ln-aColilction

Comment:

qUlncl
,aSlqulncl&bllColilctlon
add: (OrdaredColilction)
add: (SortldColilctlon)
add: (UnkedUst)
add:attlr. (OrdlrldColilctlon)
add:blforl: tlon

Answer a copy of the recIIYar concatlnated with thl argumlnt,
a SlqulncabllColilction.

Mathod catlgories:

.. ~
pnltIon-nieVUlt

Descriptors:
Operation: add-tllernalt
Object-added:

figure 8. ahernative values
Among them, you think the 'position-determined-by-the-receiver's-sorting
rule' is the appropriate one, so you select it and 'require' it and this value ·
along with the attribute is sent to the Method Query pane. As this seems the
most promising descriptor, you ask for a retrieval.

·:" Jt"jl . •· ... "· Ir.d •.• ,', f.) t r l t4 rtl' ... J .: :,t ~ q'.I' ". ... ,jdl r '.

~

i.",,,fijij'-iPoJlti ... =.,,anW

adding
posltlon-rllevant
Opera tlon: add-alament
ObJlct-addld: multlpll-III
ments-ln-aColllction
Posltlon-In-thl-rlcllver:
posltlon-data,.."lnad-by-th

.. .j.j - II t:.· " ,,:;,. J . ', .II ~· ' II .r. I

addAII: aCollectlon (In class: SortldColllctlon)

Commlnt:
Includl lach Illmlnt of aColilctlon as onl of thl rlcllYIr's
Illmlnu, put thesl IIIminU Into thl positions which ara
dltermlned by the rlcelver's sorting rule: sortBlock. Answer
thl rlcllvlr.

Mlthod catlgortu:
adding
po.ttlon vant

Dlscriptors:

figure 9. matched method

After this, the matched method addAl1: in class SortedCollection is shown in
the Matched Method pane. The comment indicates that this is what you
want (see figure 9 above).

209

210

Now, you have found the method and its class. At this point you are going
to merge the infonnation about methods with the information in the Class
Level Query window. To do this, use the option 'merge into class query'.
Now you can select 'retrieve class' from the menu in the 'Oass Query' pane
and the system will retrieve all the classes which contain the methods you
have retrieved. In our case the final screen is as in figure 10 below.

KlYld
Intlglr-kAlyed
"With mlthod attrlbut.,:
adding
position-relevant
Operation: add- alamlnt

Cia" naml: SortadColllctlon

Oommlnt:

acclsslng
adding
copying
Inurnra tlng
removing

A SortldCollectlon I, an ordered collection of Ilemlnts, sorted via a function of
two arguments-thl sortBloclt.
It Is a kind of OrdlredColllctlon whosl Illmlnts arl Internally ordlred

figure 10. matched class

[End of Example Task 2]

Section 6 The Trace Window

The Trace window records the 15 items (class or method) you have most recently
selected from the Matched Class pane or the Matched Method pane.

Using this window during the search process, you can check a class or method you
have looked at previously. This window has two buttons, ClassTrace button and
MethodTrace button.

Selecting the Class button enables you to see the classes you have previously
selected.

Selecting the Method button allows you to see the methods you have previously
selected (see example screen below, figure 11).

T, ' .:-, ,:~ ·· · .. · ind, .• ···.·
· :· t · ."j.4 t ·~ .J· :; I:,I' .. ~ .- ,i.:.r.
Mo.ppedOollee
Int.rvo.l
Arro.yedOolleetlon
Array
OrderedOolleetlon
Bag
OrderedOolleetlon
Int.rvo.l
Array
OrderedOollQetlon
SortadOollQctlon

I . :. 1.;. --. -' T " .:;. .: '" I
- -- -- ---

.,poUecdon-cla_e.
Keyed
Integer -keyed
Arblt:rary -elze

010.$$ nama: OrderedOollectlon

Oomment:
Thl$ cla$$ represents a colleetlon of elements
which ara ordered
explicitlY by the sequence In which they are
addad or removed.
Elements of' It are accessible by external keys
that are IndlcQs .

figure 11. The Trace window

Section 7. Additional Example Tasks
The Example Tasks which follow are designed to help you become more familiar
with the system. Working through them, the first of which includes some helpful
hints, should make you feel at home with BRRR.
Example Task 3.
You are looking for a collection to store ten objects. The collection should have a
method such that after you have stored the ten objects into the collection, this
method enables you to replace at once the 2nd, 4th and 6th elements of the
collection with the string: 'hello'. For example, if the ten objects are stored as:
(3 'john' 'fred' 4 6 8 0 rectangle1 string1 10) in the collection, then the result after
using this method would be: (3 'hello' 'fred' 'hello' 6 'hello' 0 rectangle1 string1 10).
Find all candidate classes and methods.
(Hints:
1. You should first find some classes through class retrieval. As the task stated, you
should be able to replace the elements at different positions. Does this imply that
you can access elements through external indices? If yes, make use of this fact to
construct your query.
2. After you have retrieved some classes, you should examine the methods in these
classes. From what is stated in the task, which method categories should you select
to inspect?
3. Remember to find all candidate classes and methods, not just one method in a
class,)

Example Task 4
You are looking for a collection to store a group of objects induding: numbers,
strings, rectangles, etc., the collection should have the following properties:
The elements in the collection should be accessible by their indices (e.g. you can
access the first element, the 2nd element, ...). The collection should have a method
which you can use to delete the element at the end of the collection (note: after you
delete the element at the end of the collection, the length of the collection should be
1 less than before).
Find all candidate classes and methods.

[End of the manual]

211

