
Open Research Online
The Open University’s repository of research publications
and other research outputs

Modelling arithmetic strategies
Thesis
How to cite:

Devi, Roshni (1991). Modelling arithmetic strategies. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1991 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Modelling Arithmetic Strategies

Roshni Devi

tfliesis su6mittea in partial fulfilment of

requiremtnts for tIU tieoree of tIJoctor of

Pliilosopliy in Cognitive Science

tfIit Open tzlniversity

Milton Xlynts

tzl.!lG

Marcli,1991.

Abstract

This thesis examines children's arithmetic strategies and their relation to
the concepts of commutativity and associativity. Two complementary
methods were used in this research: empirical studies and computational
models.

Empirical studies were carried out to identify the strategies children used
for solving problems like 3 + 4, and 3 + 4 + 7, and the conceptual knowledge
associated with them. Their understanding of subtraction problems where
the minuend is less than the subtrahend (e.g. 6 - 8) was also considered. A
study with 105 subjects revealed a variety of strategies and information
about children's knowledge of commutativity and associativity. Four levels
of performance of commutativity were also identified. A longitudinal study
was carried out with 12 children in order to obtain details of children's
changes in strategy, and to double check the results obtained in the main
study. The strategies observed to be used by children over a 20 month period
parallel those found in previous studies, which show a general transition to
more efficient methods. However, the longitud~nal study revealed that
development of such arithmetic strategies is a slow process. Furthermore,
the studies indicated that knowledge of commutativity is a prerequisite for
associativity.

Models of the observed strategies have been implemented in the form of
production rules in a computer program called PALM. The process of
implementation highlighted features of children's problem solving that had
not been 'detected during the studies.

In addition to models that describe the space of strategies, a model of
learning has been implemented for the transition from procedural
knowledge of commutativity to that of associativity. The model is capable of
generalizing its inbuilt knowledge, for instance, its ability to solve 2-term
arithmetic expressions, to allow it to solve more complex problems, such as
3-term arithmetic expressions. A further model has been constructed for
learning arithmetic strategies that are more efficient than those already
represented in the program. It learns specific rules by adding conditions
for efficient problem solving to its previous general rules.

D ed.1..c g, t 1..0 n

To the memory oj my Jather who dim on 26th January, 1991.

Acknowledgements

I would like to thank my supervisors Mark Elsom-Cook, Tim O'Shea and Sara Hennessy

for their support, guidance and encouragement during the course of this work.

I am indebted to the following for their careful and thorough readings of drafts of the thesis:

Sara Hennessy, Mark Elsom-Cook, Tim O'Shea, Rick Evertsz, Maria Yannissi, Ronnie

Singer, Fiona Spensley, Iraklis Paraskakis and Ihsan AI-Sabri. I would also like to

thank Diana Laurillard, Claire O'Malley and Ann Floyd for their readings, criticisms

and ideas on the empirical chapter of the thesis.

I would like to thank the head teacher of Saru M. G. M. school in Fiji, Mr Prasad, for

giving me access to the children at his school, and Ms Jones of Simpson County Combined

school (Milton Keynes) for her interest and help during the course of my longitudinal

study. I would also like to thank the children who participated in the studies.

I thank Rick for his help and expertise with the Xerox machine and for his advice at the

early stages of this research.

Thanks to everyone in CITE for providing a wonderful working environment.

" Thanks to Rae, Laurence, Maria, Sonia, Kate, Pat, Iraklis, Jaya, Donald, Ronnie and

Richard for their friendship; Ihsan for sharing this experience with me and for providing

his shoulder to weep on; my parents, brother and sisters for their love and support.

Finally, I thank Markus Lusti for being sympathetic and for being flexible on the starting

date of my job.

This research was supported by Rank Xerox and the Open University.

Table of Contents

1 INTRODUCTION 1

1.1 Objectives 1

1.2 Background and Motivation 2

1.2.1 Student modelling and models of learning 2

1.2.2 Commutativity and associativity 6

1.3 Research methodology 8

1.4 Outline of thesis 10

2 RELATED RESEARCH 13

2.1 Acquisition of arithmetic skills 13

2.1.1 Introduction 13

2.1.2 Preschool knowledge and counting 14

2.1.3 Addition strategies 18

2.1.4 Representation of number knowledge 23

2.1.5 Summary 25

2.2 Computational models of performance al

2.2.1 Planning nets 'Zl

2.2.2 HPM !j9

2.2.3 Repair Theory 31

2.2.5 PIXIE 32

2.2.4 State Constraint Theory 35

2.2.6 Automated Cognitive Modelling m

2.2.7 Summary 43

2.3 Conclusions 44

3 STUDmS OF COMMUTATMTY AND ASSOCIATIVITY 45

3.1 Introduction 45

3.2 A Pilot Study 46

3.2.1 Method 47

3.2.2 Results and Discussion 52

3.2.3 Conclusions 56

3.3 The main study 57

3.3.1 Method 57

3.3.2 Results and discussion 61

3.3.3 Conclusions 76

3.4 Longitudinal Study 76

3.4.1 Method 17

3.4.2 Results 17

3.4.3 Discussion 83

3.5 Educational implications 85

3.6 Summary ~

4 PRODUCTION·RULE MODELLING fB

4.1 Production systems 88

4.1.1 A brief description 88
•

4.1.2 Examples of production systems 00

4.2 Implementation of PALM 93

4.2.1 Working memory 94

4.2.2 Productions 94

4.2.3 Interpreter 95

4.3 The representation 00

4.3.1 'Used' 100

4.3.2 Indexing 100

4.3.3 Negation 101

4.4 2-term problems 100

4.4.1 Strategies 100

4.4.2 Efficiencies 1m

4.5 3-term problems 100

4.5.1 Strategies 100

4.5.2 Efficiencies 100

4.6 Matching models to data 110

4.6.1 Snapshot data 112

4.6.2 Longitudinal data 115

4.7 Discussion 116

4.8 Summary 118

5 MODELLING LEARNING 119

5.1 Introduction 119

5.2 Machine learning techniques W)

5.2.1 Learning from examples 121

5.2.2 Explanation-based learning 125

5.2.3 Learning by analogy 129

5.3 Learning mechanisms in PALM 131

5.3.1 Outline of PALM's learning components 131

5.3.2 Choice of learning mechanisms in PALM 133

5.4 Computational Details 137

5.4.1 Failure-driven learning 137

5.4.2 Efficiency-driven learning 141

5.5 Discussion and further work 144

5.5.1 Psychological plausibility 144

5.5.2 Failure-driven learning 148

5.5.3 Efficiency-driven learning 149

5.6 Summary 155

6 CONCLUSIONS 157

6.1 Summary of thesis 157

6.2 Con tributions 159

6.3 Implications for ITS 162

6.3.1 Production-rule models 162

6.3.2 Conceptual knowledge 163

6.3.3 Models of learning 164

6.4 Further work 167

6.4.1 Empirical Work 167

6.4.2 Computational modelling 168

6.5 Summary 169

REFERENCES 1W

APPENDICES 183

Appendix 1. List of problem pairs for task 1 183

Appendix 2. A sample protocol in task 2 184

Appendix 3. A sample of problems in the main study 187

Appendix 4. Table showing details of subjects and results of the main study
on commutativity stages, generalization to subtraction and 3-addend
addition 188

Appendix 5. The set of problems for the study of performance on 3-addend
problems with operators other than addition-only 192

Appendix 6. Subjects' performance on 3-addend problems with other
operators (besides addition-only) 193

Appendix 7. A listing of the program 194

Chapter 1

IN1RODUCTION

The research reported in this thesis was undertaken in the context of

Intelligent Tutoring Systems (ITS). The general goal of the research is to

improve on the 'snapshot' approach to student modelling by modelling

learning processes. This objective required two specific and related

activities, constructing computational models and carrying out empirical

observations of students' performance. Such computational models can

form the student modelling component of an ITS. In order to construct

such models, empirical studies were carried out to improve our

understanding of children's behaviour in the particular domain.

This chapter provides an introduction to the research presented in the

thesis. It begins with the objectives of the research. Next the motivations for

choosing the research problem are discussed. Then the methodology of the

research is described in detail. This consists of empirical work, production

rule modelling and computational models of learning. The last section of

the chapter presents an outline of the rest of the thesis.

1.1 Objectives

Refinement of our understanding of children's cognitive processes can

make significant contributions to educational and ITS research. The

objective of the research described in this thesis is to understand children's

performance on problems related to the concepts of commutativity! and

1 Commutativity of addition: the order in which two numbers are added does not make a
difference to their sum (a + b = b + a for all real values of a and b).

1

associativityl through empirical studies, and computer simulations of the

observed performance on specific tasks.

Another research goal is to understand the developmental or learning

process. The second objective of this thesis concerns this general goal. The

objective is to model learning in order to predict the mechanisms for

transition from one 'snapshot' model to another. A 'snapshot' model is one

that describes a situation at one particular instance in time. It is static, that

is, it does not change over time. The 'snapshot' modelling approach in an

ITS implies that either a student's cognitive processes do not change over

time or that if they do, then they 'magically' transform into the next

'snapshot'. It does not attempt to explain this 'magical' transition phase.

For similar reasons, it assumes that bugs are stable. If there is any

instability, there is no mechanism that can take it into account. Dynamic

modelling, with plausible learning mechanisms, has the potential for

modelling a student as hislher cognitive processes change during the

course of interaction with the ITS.

1.2 Background and Motivation

1.2.1 ~tudent modelling and models of learning

An ITS is a computerized teaching program which normally consists of the

following components:

i) domain knowledge,

ii) student model,

iii) tutoring component and

1 Associativity of addition: the order in which three numbers are added does not make a
difference to their sum.

2

iv) user interface.

The above framework, due to Hartley (1973), has highlighted the

importance of the student modelling component. Self (1974) emphasised

that any computer-aided instruction program must maintain a student

model. He also proposed what such a model could look like. Despite the

computational limitations, Self (1988) continues to argue that it is a

fundamental component of an ITS. Student modelling forms the

background to the research presented in this thesis. There are two main

approaches to student modelling. The first is by representing the student's

knowledge as a subset of an expert's. This approach is termed subset or

overlay modelling. An example of this kind of modelling is Young and

O'Shea's (1981) accounts of children's performance on subtraction
I

problems using 'rule deletions'. The second approach, referred to as

differential or perturbation modelling, represents the student's knowledge

as incorrect and different from an expert's knowledge. This is normally

done using a library of bugs or malrules, where a bug or a malrule

represents an erroneous version of a correct rule. Some systems that

incorporate modelling of errors as modified versions of correct rules

include LMS (Sleeman and Smith, 1981) and BUGGY (Brown and Burton,

1978).

It is not easy or necessarily possible to represent completely the student's

knowledge with either approach. The subset approach does not take into

account the student's conception/representation of the domain, which may

not necessarily be the same as the expert's. The perturbation approach

requires extensive domain analysis in order to create a library of bugs. It

also has the problem of not taking into account the instability of bugs. In

addition, neither of them takes into account how bugs are acquired. An

incorrect response on a problem solving task may be a result of incomplete

knowledge and/or incorrect versions of the target knowledge and/or lack of

understanding of the basic concepts involved. It is crucial to know the

semantics behind the malrules generated by the student and the processes

3

by which errors arise. An ideal model of a student would contain his/her

current knowledge state, which may consist of malrules, and an

explanation of how the student reached that particular state.

The limitations of the subset and of the perturbation modelling approach,

and the target of the ideal model have been widely recognized (e.g. Brown

and Burton, 1978; Clancey, 1986; Devi, 1989, in press; Elsom-Cook, 1984;

Evertsz and Elsom-Cook, 1990; Hennessy, 1990; Laurillard, 1990; Payne and

Squibb, 1988; Plotzner et aI., 1990; Self and Gilmore, 1988; Spada et aI., 1989;

Wenger, 1987). More recently, attempts have been made at generating

models that represent buggy behaviour, which were not accounted for by

the particular system's prestored library of malrules. Some such attempts

include repair theory (Brown and VanLehn, 1980), PIXIE (Sleeman and

Smith, 1981) and ACM (Langley, Ohlsson and Sage, 1984). These and other

work on computational models of learning are reviewed in chapter 2.

One approach towards constructing better student models is dynamic

modelling. This involves modelling the student's learning process, which

not only identifies hislher knowledge at anyone time, but also identifies the

way in which that knowledge is acquired. The need for research

concerning such dynamic modelling was established as early as 1976.

Young. (1976) modelled children's performance on seriation tasks at

different stages of development using production systems. He concluded

that production systems had served as a medium in which development

could be analysed and discussed. He emphasised that the real problem was

to build a production system which itself develops.

The genetic graph (Goldstein, 1982) representation of student models in

WUSOR-III has been the only attempt at modelling evolution of knowledge

in an ITS. The knowledge is represented using genetic graphs. The rules

form the nodes of the graph which are interlinked by relations such as

generalization, analogy and refinement. The links denote the 'learning'

relationship between rules. The idea of representing different learning

4

strategies using genetic graphs is an attractive one. By tracing paths on the

graph, it has the potential of explaining a student's development of

knowledge in terms of the procedural rules and the learning strategies. As

it is, the genetic graph represents a student's learning as an overlay of an

expert's. In addition, it is static, that is, it is predetermined, and once it is

programmed, it remains unchanged. If the genetic graph idea of

representing knowledge and learning strategies could be dynamic, then it

would have great potentials for an ITS. Dynamic modelling would enable

an ITS to make more informed predictions about its teaching strategies.

For example, the system could hold knowledge about teaching strategies

associated with learning strategies. Once the system has the ability to

predict the student's learning strategy, it can use this information in

addition to hislher current knowledge state to choose its teaching strategy.

The tutor can also reason about what skills the student is ready to acquire.

There are a number of existing theories of procedural skill acquisition (e.g.

Anderson, 1983, 1986, 1987; Brown and VanLehn, 1980; Ohlsson and Rees,

1988; Rosenbloom and Newell, 1986; VanLehn, 1983). Rosenbloom and

Newell (SOAR) focus on chunking of knowledge. Anderson's ACT* has

knowledge compilation as one of its learning features. The objectives of both

SOAR and ACT* are to model the increase in efficiency of a system with

practice. VanLehn (SIERRA) concentrates on induction and knowledge

integration from a sequence of lessons. Ohlsson and Rees (State Constraint

Theory) model learning as a result of violations of conceptual knowledge. A

more detailed review of these theories of skill acquisition is presented in

chapter 2. The learning model presented in this thesis draws on previous

models of learning and is applied to the specific domain of elementary

addition. Two types of learning are considered here. Firstly, failure-driven

learning, which involves the application of existing knowledge to a new

situation. This is achieved by using a learning by generalization technique

(Michalski, 1983). Secondly, efficiency-driven learning, which considers the

5

application of existing knowledge for learning more efficient problem

solving strategies.

1.2.2 Commutativity and associativity

In order to create a model of learning, a task in a real domain that could be

studied empirically, needed to be chosen. The domain of mathematics was

chosen since most of the computational modelling research has been

carried out in this domain and hence is ideal for comparison. Some

examples of such computational models are Brown and VanLehn (1980),

Langley, Ohlsson and Sage (1984) and Young and O'Shea (1981) for the

subtraction domain, Sleeman and Smith (1981) for algebra, Greeno, Riley

and Gelman (1984) and Ohlsson and Rees (1988) for counting and Neches

(1987) for addition. Details of such systems are presented in the literature

review in chapter 2. The specific aspects of the modelling in these systems

which can be compared are the type of the domain, the representation of

knowledge, the proportion of a sample of subjects' performance that they

are capable of taking into account, and the generality of the system's

modelling approach.

Within the domain of mathematics, a specific area needed to be chosen

which was complex enough for a detailed model, and which involved a

transition that could be studied empirically. The arithmetic concepts of

commutativity and associativity were chosen for several reasons. Firstly,

these are important basic concepts, which reduce the amount of number

facts that children need to remember. For example, if a child knows 4 + 2 as

a number fact, and knows the concept of commutativity, then slbe does not

need to store 2 + 4 as another number fact. Besides this, the concepts form

the foundation for further arithmetic development. This includes invention

of informal algorithms, transition to more efficient strategies, and the

application of the concepts to algebra in general.

6

The second reason is that the concepts are good examples for studying

conceptual and procedural knowledge. Previous related research provides

conflicting views on whether the ability to execute a procedure necessarily

implies underlying conceptual knowledge, and whether the presence of

conceptual knowledge necessarily means that it will be applied (e.g.

Baroody and Gannon, 1984; Briars and Sieglar, 1984; Fuson, Secada and

Hall, 1983; Gelman and Gallistel, 1978; Gelman and Meck, 1983, 1986;

Greeno, Riley and Gelman, 1984). Experiments by these researchers

leading to their arguments are described in the review chapter. Detailed

studies could provide information to clarify the relationship between

conceptual and procedural knowledge. Thirdly, little research exists on

these basic concepts in arithmetic. The concepts of commutativity and

associativity are closely related concepts but there has not been any

investigation of the transition from commutativity to associativity. On the

other hand, the acquisition of the concepts follows the acquisition of

counting skills for which there exists a substantial amount of research,

and this provides useful background information.

The investigation of the concepts of commutativity and associativity is also

interesting because it is debatable whether they should be taught. It has not

been agreed by the education community whether the concepts should be

explicitly taught, or whether they should be left for the students to discover

themselves. Moreover, it is a domain in which children's specialization

and generalization can be studied. For example, children generalize

commutativity to subtraction, that is 4 - 5 = 5 - 4. Examples of children's

specialization of the concept of commutativity include its application to

small numbers only, or in concrete cases only. Finally, findings from the

chosen task can be tested for generality to other related tasks, for example,

fractions and algebra.

In sum, there has not been any empirical work which indicates how the

transition from a child's concept of commutativity to that of associativity

7

takes place. Furthermore, there has not been any cognitive modelling of

this transition. This research uses empirical evidence and techniques from

machine learning and theories of skill acquisition to model a possible

mechanism for the transition.

1.3 Research methodology

The methodology employed here follows on from that used in Devi (1990b)

and Devi et al. (in press). It can be summarised as follows:

empirical studies --> models of performance --> model of learning

The models of performance are based on empirical work. The model of

learning requires a model of performance of the initial state, from which to

begin learning. It also requires empirical observations of the initial state,

the goal state and of the transition from one state to the other. The process

of empirical observations and computer models' of observed performance

can be seen as iterative. The computational models provide feedback for the

empirical analysis, which in tum provides feedback to the former. Ideally,

the results of the learning model can be used to design further empirical

tasks, which in turn could provide more 'fine-tuned' analysis to improve

the learning model.

In order to construct models of performance, some understanding of

children's learning in the particular domain is required. Three studies

(pilot, main and longitudinal) were carried out to examine children's

strategies and their understanding of the concepts of commutativity and

associativity. Children were observed solving elementary arithmetic

problems, like 5 + 8 and 6 + 5 + 3. They were interviewed and their verbal

think-aloud protocols were tape-recorded. The pilot study gave an indication

of the age range that should be studied and the tasks that could be

performed in order to draw the most out of the students. The main study

8

provided a space of strategies that children at different levels used. It also

proposed performance levels of the concept of commutativity. Furthermore,

the main study investigated the transition from commutativity to

associativity. The longitudinal study was carried out to investigate the

developmental aspect of learning. It was concerned with observing children

through a sequence of levels. This study provided more detailed analysis of

children's learning, for example, change in strategies over time. It also

confirmed the results obtained in the main study.

Following the pilot and the main studies, and in parallel with the

longitudinal study, computational models of children's observed strategies

were constructed. A production-rule modelling approach was used for

constructing models of children at different levels of development. The

models are designed to capture the child's state at a particular time. They

are equivalent to 'snapshot' models described earlier. They do not represent

a continuous picture. The models at each level represent only certain

aspects of a model of learning.

In their information-processing theory of human problem solving, Newell

and Simon (1972) propose that computer simulations can produce

behaviour that closely resembles human behaviour in the same problem

solving situations (Simon, 1985). The research described in this thesis

makes the assumption that human cognitive processes can be modelled as

production systems. Our choice of the production-rule modelling approach

has been influenced by Brown and VanLehn (1980), Klahr and Wallace

(1976), Langley, Ohlsson and Sage (1984), Ohlsson and Rees (1988) and

Young and O'Shea (1981), who have demonstrated that some aspects of

arithmetic skills can be usefully modelled using production rule systems.

Some of these modelling approaches are reviewed in the next chapter.

Furthermore, such models· can in turn be used for student modelling in

ITS like those developed by Anderson, Boyle and Yost (1985), Anderson and

Reiser (1985), Clancey (1982) and O'Shea (1979). Hence, one of the reasons

9

for choosing the production-rule formalism is its application to student

modelling. A further reason for using this formalism is the modularity and

extensibility of production systems which allow mechanisms which make

them learn to be incorporated.

Learning models which describe children's transition from one

performance level to another, and which model the transition to more

efficient strategies are presented in this thesis. Learning in the models is

initiated by one of two reasons, failure or efficiency.

A model of failure-driven learning that describes a possible mechanism for

the transition from the procedural knowledge of commutativity to that of

associativity is presented. It occurs when there are no rules that are

applicable to the current problem solving state. The model learns by

generalizing its existing rules. The second model, efficiency-driven

learning, is based on ACM-like operator applicability (Langley, Ohlsson

and Sage, 1984). The system calculates estimates of efficiencies of

strategies, and its goal is to learn strategies that are more efficient than

those it already knows. It learns more efficient strategies by adding known

facts as specific conditions to existing more general rules. In the case of

arithmetic, the known facts are number facts like 5 + 5 = 10. The efficiency·

driven model of learning learns conditions where such number facts could

be applied for solving problems in order to save the effort in computing it.

1.4 Outline of thesis

The thesis contains six chapters. It reports the development of a candidate

mechanism for the transition from commutativity to associativity. A

computer program, PALM (Production-rule Arithmetic Learning

Modeller) is used to simulate children's problem-solving strategies related

to the concepts.

10

Chapter one (this chapter) provides an introduction to the thesis. It

describes the objectives, the motivations, and the methodology employed for

the research presented in the thesis.

Chapter two is a review of the related research. Since the research

methodology is twofold: empirical investigation of commutativity and

associativity, and computational models related to the concepts, the

literature reviewed in this chapter consists of these two areas of research.

The first section of the chapter is a review of empirical investigations of

concepts and procedures concerning the arithmetic principles,

commutativity and associativity. This section relates to chapter three. The

second section, which relates to chapters four and five, reviews some of the

computational models that have been constructed for the domain of

arithmetic.

Chapter three is an account of the empirical studies that were carried out to

investigate children's acquisition of commutativity and associativity. The

studies consisted of a pilot study carried out with 22 children, a main study

carried out with 105 children, and a longitudinal study carried out with 12

children. In the studies, children's strategies and their underlying

conceptual knowledge were investigated. The chapter also discusses the

performance levels of commutativity that were identified in the studies, and

proposes some explanations for children's answers to subtraction

problems, including generalization. Observations from the studies were

used for constructing production-rule models.

Chapter four presents a production-rule account of children's strategies on

problems related to commutativity and associativity. The simulations of the

observed strategies and their efficiencies are described. The models

represent 'snapshots' of children's problem solving behaviour. As in

previous production system models, the models implemented in PALM do

not describe the processes involved in development.

f

1 1

Chapter five describes an extension of PALM to model a possible

mechanism of learning. The learning model is intended to facilitate the

construction of valid models of children's performance. The program

includes two types of learning: failure-driven learning and efficiency

driven learning. Failure-driven learning occurs when there are no

applicable rules to solve a given problem. The program learns by

generalizing its existing rules. Efficiency-driven learning is employed to

learn more efficient strategies than those that the system already knows.

Chapter six presents a summary of the thesis. It highlights the

contributions of the research and discusses the implications of the

modelling for ITS. Some directions for further research related to empirical

work and computational modelling are also proposed.

Appendices 1 to 6 give some additional information on the tasks and the

results of the empirical studies presented in chapter 3. These include

examples of the types of problems that were presented to the students, a

sample protocol of an interview, and the details of each child's performance

in the main study.

Appendix 7 is a listing of the program.

12

Chapter 2

RElATED RESEARCH

As outlined in the first chapter, the approach to this research involved

empirical studies of children learning arithmetic so as to understand their

cognitive processes. Following this, computational models of pupil

competence at different stages of development were built in order to clarify

what is being learnt and why pupil behaviour is changing.

This chapter is a review of related research on children's acquisition of

arithmetic skills. It concentrates on the two methodologies that are

employed in the research presented in this thesis: empirical studies and

computer simulations. The chapter is divided into two main sections. The

first section discusses empirical investigations of children's learning of

arithmetic skills. This includes children's competence in counting and the

development of their ability to add. The second section is a review of

computational models of children's arithmetic performance and skill

acquisition.

2.1 Acquisition of arithmetic skills

2.1.1 Introduction

There is a debate in the literature about the status of conceptual and

procedural knowledge. These terms are not that precise, but in this thesis

we will use them as defined by Hiebert and Lefevre (1986). Conceptual

knowledge consists of facts and their relationships. The term

'understanding' is used interchangeably with conceptual knowledge by

some researchers. Procedural knowledge consists of rules, algorithms and

strategies for carrying out tasks, or for solving problems. A skill is the

13

ability to execute a procedure. It may be either totally procedural or it may

have associated conceptual knowledge. The current literature provides

evidence of the view that procedural knowledge (of early arithmetic and

counting) is acquired before conceptual knowledge (Baroody and Gannon,

1984; Briars and Sieglar, 1984; Fuson, Secada and Hall, 1983), as well as the

view that conceptual knowledge is acquired first (Gelman and Gallistel,

1978, Gelman and Meck, 1983, 1986; Greeno, Riley and Gelman, 1984). In

this section we review work done by these researchers to investigate

children's knowledge of arithmetic skills and concepts. First, we review

empirical investigations of preschool arithmetic knowledge. This is

followed by a review of work on addition strategies and the principle of

commutativity. The last section is a review of research on the

representation of number knowledge.

2.1.2 Preschool knowledge and rounting

Gelman (1972, 1977, 1982), who has done much research into preschool

children's development of arithmetic reasoning principles, holds the view

that principles are acquired before skills. She maintains that concepts and

principles are used in constructing or acquiring procedures. In order to

find out how children reason about small numbers, Gelman carried out a

series of "magic" experiments. In the experiments, children were shown

two plates containing different numbers of plastic toys. One of the plates

was designated "the winner" without the children being told why. Then the

children were asked to identify the winner, and to justify the properties of

the two sets that they used to get their answers. Gelman found that the

children almost always used numerosity to distinguish the two sets, for

example, "Plate 1 wins because it has three .,.", From her experiments,

Gelman concluded that. children as young as three years possess

arithmetic reasoning principles. Some of these principles are:

14

1) Equality: Children are able to identify two sets with equal numerosity.

The equality relation is one of the several basic pieces of knowledge that is

required later on in children's understanding of the commutativity

principle.

2) Order: This relation follows from the previous one. Gelman (1977)

provides evidence that when children recognize that two sets are not equal,

they know that an ordering relation exists between them, i.e. that one set is

more than the other.

3) Addition increases numerosity and subtraction decreases numerosity.

4) Solvability principle: Addition is the reverse operation to subtraction.

5) One-one principle: Each item in the set being counted is assigned one

(and only one) tag.

6) Stable-ordering principle: The tags used in a count must be arranged in a

stable order (e.g. 1, 2, 3 and not 2, 1, 3).

7) Cardinal principle: The last tag used in the count of a set represents the

number of items in the set.

8) Abstraction principle: The counting procedure can be applied to any

collection of objects.

9) Order-irrelevance principle: While assigning tags to objects in the set, it

does not matter which tag is assigned to which object. For example, while

counting a set of two fruits (a banana and an apple), it does not matter

whether the apple or the banana is assigned the tag '1'.

Principles 5, 6 and 7 together make up the prerequisites for the ability to

count. Gelman and Gallistel (1978) provide evidence that even some two

year-olds know these three principles. More than 90% of their four- and

15

five-year-olds and 80% of the three-year-olds honoured the stable-order

principle. To test the order-irrelevance principle, they had the children

count the same set several times, each time tagging a different object as

one. The results of this task showed that most five-year-olds had explicit

knowledge of the principle. Gelman and her colleagues (Gelman and

Gallistel, 1978; Gelman and Meck, 1983) propose that preschoolers'

counting is governed by the implicit knowledge of the counting principles.

Implicit and explicit knowledge of the principles is distinguished by the

ability to verbalize or state the counting principles and the ability to

demonstrate that one's behaviour is systematically governed by the

principles. They support their conclusion by their experiments to assess a

child's ability to detect errors in a puppet's application of the one-one,

stable-order and cardinal count principles. Note that Gelman and Gallistel

infer this from children's performance. From children's performance, we

cannot conclude for certain that they have the underlying principled

knowledge. Their knowledge might be limited to the ability to execute a

procedure only. In addition, even if experimental results show the presence

of conceptual knowledge, it does not imply that conceptual knowledge is

acquired before procedural knowledge.

Briars and Siegler (1984) carried out experiments to investigate whether

children knew the principles underlying their counting procedures.

Preschoolers' knowledge of counting principles was investigated by

examining their ability to discriminate between features that are essential

for correct counting and features that are typically present but unessential.

Three to five-year-olds were asked to judge a puppet's counting as either

acceptable or not acceptable. Each child's skill at counting rows of objects

was also assessed. They found children who could count correctly but could

not consistently judge the puppet's counting errors as incorrect. This led to

Briars and Siegler's conclusion that skill in executing the standard

counting procedure was found to precede knowledge of the underlying

principle. Note that Briars and Siegler assumed that if a child could

16

identify another individual's errors, then it implied that s/he had the

principled knowledge. In addition, they did not find any child in their

experiments who consistently detected the puppet's counting errors and

failed to count correctly themselves. From these findings, Briars and

Siegler hypothesized that it is improbable that knowledge of principles

guides acquisition of counting procedures.

The debate on the interaction between conceptual and procedural

knowledge as children learn to count, remains unresolved. Gelman and

Gallistel (1978) and Gelman and Meck (1983) have proposed that

preschoolers counting is directed by the implicit knowledge of the above five

counting principles. Briars and Siegler (1984) and Fuson, Secada and Hall

(1983), on the other hand, believe that children initially display various

counting behaviours without understanding and only eventually induce

principles or components of the counting principles. More recently,

Gelman and her colleagues seem to have moderated their position in this

debate. Gelman, Meck and Merkin (1986) proposed that conceptual

competence does not provide recipes for procedures but it does set

constraints on the class of procedures that procedural competence can

generate. Referring to the case of counting, they conclude that conceptual

competence can guide the acquisition of skill. They also acknowledge that,

alternatively one could argue that there are cases where conceptual

competence (a principle) develops out of procedural competence (a practice).

They even provide an illustration of how procedural competence can lead to

the acquisition of conceptual competence. They conclude that conceptual

competence need not be entirely or even mostly preformed, but a preformed

kernel is a prerequisite for the development of both procedural competence

and further conceptual competence.

17

2.1.3 Addition strategies

Concrete understanding of addition

Gelman and Gallistel, in their "magic" experiments, showed children a set

of objects on a plate, and then showed them a plate with a different number

of objects. They found that children as young as three could distinguish

between the plates, and could even explain the transformation that had

taken place: for example, "you took one off', "you put one on". This shows

that these children have formed a notion of addition and subtraction in

terms of the concrete actions of 'adding on' and 'taking away'.

Starkey and Gelman (1982) conducted a study which provides evidence of

young children's use of counting algorithms. They conducted a study to

determine whether young preschool children were capable of solving a

variety of problems where objects were added to or subtracted from a set of

objects that were screened from the subject's view. Each of the tasks began

by having the children establish the number of pennies held in the

experimenter's open hand. The experimenter then screened the set of

pennies and placed another set in the same hand, stating the number of

pennies he was putting. The subjects were asked how many pennies the ..
experimenter had in his hand. The p~nnies were covered so that the

subjects could not count them to get the answers. The experimenters found

that preschool children (especially four- and five-year-olds) were still able to

use counting algorithms in this situation. Some children used fingers to

represent the screened objects; others counted aloud. The results of the

study indicate that some preschool children (including a few three-year

olds) can use counting algorithms even when the set of objects are screened

from view.

Hughes (1981) carried out an experiment where the task was very similar to

that used by Starkey and Gelman, except that the problem concerned bricks

18

in a box. He obtained similar results to Starkey and Gelman; he found that

young children were able to solve simple addition (and subtraction)

problems even when no visual apparatus was present.

Thus there is evidence from the above studies that many preschoolers are

able to solve simple arithmetic problems in a concrete setting. Solving

problems with concrete objects is the earliest stage in addition and

subtraction. The most common addition strategy at this stage is 'counting

all', where concrete objects are counted to represent each addend, and then

they are all counted to get the sum (Groen and Parkman, 1972; Ilg and

Ames, 1951). The next stage is the abstraction of the previous concrete

stage, where representation of the problems with concrete objects and

strategies like 'count all' are replaced by more efficient strategies like

'count on'. The details of the strategies and their transformations are

discussed in the following section.

Commutativity and tkvelopment of strategies

One of the studies conducted by Baroody, Ginsburg and Waxman (1983)

included the use of the commutativity principle (by children aged from five

years ten months to nine years). Each child was tested individually with a

sequence of ten problems like 13 + 6, 6 + 13, 14 + 7, 7 + 14, in the context of a

game. The game was called Math Baseball. The length of time taken by the

child to solve each problem was noted. If the child was correct, then his/her

batter (a block 2cm x O.8cm x O.8cm) got a hit and could move to the first

base. The batter could move two, three or four bases, depending on how long

the child took to solve the problem. The objective of the game was to get the

children to solve the problems in the quickest way, and this was explained

to the subjects. It was found that most of the children used the

commutativity principle. This was noted by observing whether or not the

child looked at the previous problems and by noting other actions like finger

counting. About three quarters of the children used the principle on the

19

first pair of examples. Most of the second and third graders (approximately

85%) used the principle consistently. The younger ones did not use it as

consistently (59% were consistent users). The authors propose that this

might be due to the fact that younger children do not necessarily appreciate

that the principle extends to large numbers.

It is not yet clear how the principle develops. The children who were

studied by Baroody, Ginsburg and Waxman had no formal instruction

concerning the commutativity principle. Hence, they proposed that its

development is probably the result of informal experience. For example,

when dealing with concrete objects, most children do not pay any particular

attention to the order of the addends. Even while doing mental addition,

children often disregard addend order. A commonly observed strategy is

starting from the larger of the addends and counting on the other addend.

For example 4 + 7 would be solved as - start from 7 and then count on 4 - 8,

9, 10, 11. It has been assumed that this strategy is an application of the

commutativity principle. However, this may not -always be true, because it

is also possible that children use this strategy to save mental labour, I

without any knowledge of commutativity. The knowledge of principles and

the ability to solve problems that could be solved using the principles need to

be distinguished.

Baroody and Gannon (1984) provide evidence of children who use the above

strategy of disregarding addend order in solving addition problems, and yet

do not succeed in commutativity tasks. Of the fourteen subjects who used

the more advanced strategy of counting on from the larger addend, 57%

were successful on the commutativity tasks, 21% were inconsistent, and

21 % unsuccessful. From this, Baroody and Gannon correctly concluded

that a child who disregards addend order, does not necessarily appreciate

commutativity. One such child in their study said that the sum of 7 + 2 and

that of 2 + 7 were "different". Then the child was asked to compute 7 + 2.

After he counted and responded correctly, he was asked how much 2 + 7

20

was. The child was completely unaware of the similarity of the problems

and counted to give the answer. Another child, after she had computed 6 +

4, was asked if 4 + 6 would produce 10 - the same or different answer as 6 +

4. She thought for about a minute, computed the sum, and then said "the

same". From these two children's invention of 'count on from the larger

addend' (COL) strategy, one can conclude that the appreciation of

commutativity is not necessary for the invention of labour-saving addition

strategies.

Resnick and Groen (1977) conducted a study in which preschool children

were taught the 'count all' strategy of addition (count out each of the

addends, combine the two sets and then recount). After several practice

sessions (over several weeks), half the children had switched to the 'count

on from the larger addend' strategy without being taught. This result

suggests that strategies like 'count on from the larger addend' are acquired

without instruction and are invented by children. Similarly, the concept of

commutativity might be acquired without instruetion.

Children's counting strategies for addition normally develop from 'count

all' to 'count on from the first addend' to 'count on from the larger addend'

(Baroody and Gannon, 1984; Gelman, 1977; Resnick, 1980). In the 'count all'

strategy, fingers or physical objects like unifix cubes are used to count out

each of the addends, and then the two sets are combined and recounted. In

the 'count on from the first addend' strategy, the counting begins from the

first addend, and not from '1' as in the previous strategy. In the 'count on

from the larger addend' strategy, the counting begins from the larger of the

addends. This strategy is usually referred to as 'min' by other researchers

like Groen and Parkman (1972) and Resnick (1980). It is quite logical to

believe that this strategy follows from the commutativity principle, but as

discussed above, Baroody provides evidence of this not necessarily being the

case. Furthermore, Resnick and Groen's (1977) study provides reasons to

question the assumption that the use of 'count on from larger addend'

21

strategy implies some knowledge of commutativity. This is because in their

experiment, the children invented the strategy under controlled practice

conditions, in which commuted pairs of problems (e.g. 6 + 8 and 8 + 6) did

not occur. It seems likely that after practice at solving many addition

problems, children start using the 'count on from larger addend' strategy

as a result of the search (perhaps unconsciously) for a solution with

minimum effort. Resnick (1983) provides the following as a possible

explanation for children's use of the 'min' strategy:

"Since 'min' works (Le. the answer turns out to be correct when

checked by counting the whole joint set, and adults do not comment

on the result as wrong), they would retain it as a perfect procedure."

(Resnick, 1983, p. 123).

She further explains that a natural extension of the order-irrelevance

principle would allow the count on from the larger addend strategy to

emerge as part of a general search for 100~-effort solutions without

requiring that the child construct any kind of commutativity rule. This is

consistent with Baroody's conclusion that the invention of the 'count on

from the larger addend' strategy to minimize mental computational effort

does not necessarily imply that the child appreciates commutativity. It

implies or requires only protocommutativityl or perhaps just an order

indifferent2 tagging scheme. Furthermore, the heuristic procedure

modification program (Neches et al., 1987; described in section 2.2.2), which

simulates children's counting strategies, demonstrates the transition to

'counting on from the larger addend' strategy based only on the motivation

of reducing the amount of work required, and not on the principle of

commutativity. The program does not assume commutativity but does

1 Protocommutativity: the order in which addends are dealt with does not make a
difference in terms of the correctness of the sum (Baroody et al., 1984).

2 Order-indifferent tagging scheme: elements of a set may be enumerated in any order.

22

assume an order-indifferent tagging scheme for counting (Baroody and

Gannon, 1984).

Besides the use of counting strategies, children rely heavily on known

number facts in their solutions to arithmetic problems. It has been noted by

several researchers (e.g. Carpenter and Moser, 1983) that some number

facts (e.g. doubles) are known to students at an early age. For example, 8 +

9 = ? may be solved as: 8 + 8 = 16 and 1 = 17. Resnick found that children

who were using counting strategies, did not use them for "doubles"

problems like 2 + 2, 3 + 3. Instead these problems were solved very quickly -

the answers were probably already in long-term memory and were recalled

directly (Resnick, 1980).

2.1.4 Representation of number knowledge

One of the common means used by cognitive scientists for representing

knowledge is in the form of semantic networks-. Resnick and Ford (1984)

provide an analysis of number understanding based on this representation

of structuring and organizing information in the long term memory. In the

semantic network representation, concepts are represented hierarchically

with links between them and their properties. Because of the links, the

interrelationships between the pieces of knowledge can be easily

represented. In order to retrieve information, and to generate information

that can be used directly, Resnick and Ford take the information-processing

view that in addition to knowledge structures, the brain possesses a

repertoire of problem solving strategies that help to interpret problems,

locate stored knowledge and procedures, and generate new relations

among separately stored memory items.

Resnick's (1983) account' of the part-whole representation of children's

number concepts is based on the semantic network representation. She

proposes that with the application of part-whole schema to quantity,

23

children begin to think about numbers as compositions of other numbers.

The part-whole schema specifies that any quantity (the whole) can be

partitioned (into the parts) as long as the combined parts neither exceed nor

fall short of the whole. Partitioning numbers into their parts is a common

step in children's informal algorithms. However, the part-whole schema

representation of knowledge is only a possibility. There is no evidence to

show that the children who use partitioning in their invented algorithms

make use of this mental representation.

Baroody (1985) argues that mental representation and efficient recall of

number combinations may be more elaborate than simple associative

networks. Because people are flexible information processors, they may use

several means to generate number combinations - including reconstructive

processes (Baroody and Ginsburg, 1982). He proposes that rules, procedures

and principles are stored in memory and number combinations are

generated using them. In making use of these rules, principles and

procedures, one does not need to learn and store all the individual number

facts or combinations.

A more complete model of representation of knowledge would be one which

includes both the reproductive process (information is stored as facts e.g. 2

+ 2 = 4, and retrieved without the need to use any procedures), and the

reconstructive process (number combinations are generated using stored

procedures, principles or rules). Number facts like 4 + 1, 5 + 1, 1 + 3, are

more probably stored as rules, e.g. 'adding 1 to any number gives the next

higher number', than as facts like 1 +·1 = 2, 2 + 1 = 3, 3 + 1 = 4, etc. On the

other hand, number facts like 3 + 4 = 7, 2 + 8 = 10, are more probably stored

as facts, as a result of having seen and done such problems several times,

rather than as procedures that generate the sums. Very familiar

combinations with great associative strengths might always be retrieved

from a factual representation. Unfamiliar combinations would probably be

generated from the representation of the rule (Baroody, 1985).

24

2.1.5 Summary

The above review of counting and of commutativity and addition strategies

demonstrates that the development of strategies or procedural knowledge is

not necessarily dependent on the presumed conceptual knowledge.

Certainly children can learn procedures by rote without relating them to

any appropriate form of conceptual knowledge, and some invention appears

to occur strictly within the context of procedural knowledge (Brown and

Burton, 1978; Brown and VanLehn, 1982). Gelman and Meck (1986) explain

the fact that children vary in their ability to succeed on counting tasks by

both a principle-first and principle-after account of early numerical skill.

Baroody and Ginsburg (1986) and Silver (1986) argue that in many cases the

development of conceptual knowledge is neither necessary nor sufficient to

ensure the acquisition of related procedures. Baroody and Ginsburg

propose that the use of advanced strategies is as much a result of reducing

cognitive processing demands as it is of the acquisition of underlying

conceptual knowledge. In fact, one could argue 'that reduction of cognitive

effort has to be there to generate the change. The application of certain

procedures may lead to conceptual knowledge rather than vice versa, as

children note regularities in applying the procedures (Carpenter, 1986;

Baroody and Ginsburg, 1986). Gelman and Meck (1986) provide a view

consistent with Carpenter and Baroody and Ginsburg: procedural

competence can lead to the development of new principles of conceptual

competence.

The review above demonstrates the need to make a distinction between

conceptual knowledge and procedural knowledge. Work to date has not

established the relationship between the two types of knowledge. For

example, it is not known whether one of them is acquired before the other,

or whether they are acquired simultaneously. From what is known so far,

it can be concluded that the important thing is that for a better

understanding, children should possess both, and know the relationship

25

between them. In order to facilitate children's understanding of their

arithmetic procedures, instruction should focus on the link between

procedures and their conceptual knowledge. The need for such a link has

been emphasised by other researchers (Carpenter, 1986; Gelman and Meck,

1986; Hennessy, 1986; Resnick, 1980). In addition, one type of knowledge

would most probably facilitate the other. Just as procedures occasionally

generate or advance concepts in mathematics, new procedures can trigger

for individuals the development of concepts (Hiebert and Lefevre, 1986).

In summary, the review above highlights the need to consider and

distinguish between procedural and conceptual arithmetic knowledge. In

chapter 3, empirical studies carried out to investigate children's knowledge

of the concepts of commutativity and associativity further highlight the

need to make a distinction between the two types of knowledge. The review

of previous work on children's arithmetic reveals that there has been some

research done on children's concept of commutativity. However, there is

virtually no research on the concept of associativity. There is no research on

the interrelationship between the two concepts. In the research reported in

this thesis, empirical work was carried out to study the two concepts and

their interrelationship .

•
2.2 Computational models ofperfonnance

Computational modelling, like carrying out empirical studies, is a means

to investigate human performance. It is a methodology for understanding

certain aspects of children's behaviour in a given domain. Moreover, the

models can be used for student modelling in ITS. Research in cognitive

modelling in the domain of arithmetic has concentrated on modelling

children's errors as 'buggy' procedures. More recently, attempts have been

made to create models of learning and development. In the following

section, some such approaches to modelling are reviewed.

26

2.2.1 p]anning nets

Greeno, Riley and Gelman (1984) developed a model of performance in

counting tasks, called SC, for Simulation of Counting. They attempted to

integrate the understanding of counting principles and performance in

counting. As with other simulation models, in SC the principles remain

implicit. The authors state that the principles are not represented directly,

and the modei is proposed as a hypothesis about children's implicit

understanding of the principles. They use a 'planning nets'1 formalism to

make an explicit connection between hypotheses about conceptual

competence and models of performance. The connection is made by

assuming that performance is a consequence of conceptual competence.

This is precisely the assumption that Ohlsson and Rees (1988) make in their

model (discussed later). Conceptual competence is represented as a set of

action schemata. These are equivalent to a set of axioms in the domain. For

counting, the set of schemata correspond to cardinality, one-one

correspondence and order principles. Representation of a schema includes

its prerequisites (conditions of applicability), postrequisites (criteria for

success), consequences (results of the schematic action) and corequisites

(conditions during the execution of the action). The following is an example

of the representation of a schema:

COUNT(X)

Prerequisites: set of numerals, N;

order(N).

1 'planning nets' are directed graphs. The nodes of the net represent plans, and the links
represent planning inferences.

27

Postrequisites:

Consequence:

equal(X,SN);

bound(SN,n).

number(X) = n.

The schema describes the action of counting. The prerequisite for counting

is an ordered set of N numerals (1, 2, 3, ...). The action succeeds when X

equals SN, where SN denotes an initial segment of N, and the upper bound

of SN is n, which is the number of objects in the counted set. For example,

to count 5 objects (X = 5), SN is the set of numerals, 1, 2, 3, 4, 5. The upper

bound of SN is 5 (n = 5). Counting designates a numeral from SN to each

object. The numeral designated to the last object, that is the upper bound of

SN, represents the number of objects in the set.

The action schemata are used as premises for deriving planning nets for

procedures, termed procedural competence. Procedural competence refers

to knowledge of principles relating to goals, actions and the requisite .
conditions for actions. It uses heuristic planning rules, which recognize

the different goals while planning, select the action schemata whose

consequences match the recognized goals, set new goals based on the

requisite conditions of the selected schemata, and determine when a plan is

successfully completed. Connections between goals (procedural
~ -

competence) and actions (conceptual competence) in the network

correspond to relations that are explicitly stored in action schemata, such

as consequences and requisites for actions. For example, the schema

COUNT, expressed above, links COUNT(X) to NUMBER(X) because

NUMBER(X) is a consequence of the COUNT action and COUNT(X) is

connected to equal(X,SN) because equal(X,SN) is a requisite condition. This

shows that for a connection between hypotheses about competence and a

model of performance, one does not have to construct a planning net

analysis - information represented in the action schemata seems to provide

the relations.

28

Greeno, Riley and Gelman claim that the action schemata represent a

plausible set of hypotheses about children's conceptual knowledge.

However, they acknowledge that the way in which the planning nets are

derived in order to make the connections between conceptual competence

and performance, does not necessarily have any psychological plausibility.

2.2.2 HPM

Neches (1987) developed a computer program to model the development of

addition strategies. The model includes improvements in the efficiencies of

procedures. The system, called HPM (for Heuristic Procedure Modification)

uses information on its past actions and its current set of rules to learn new

rules.

Neches discusses the transition from CAF (count all starting from the first

addend) to COL (start from the larger addend and increment it the smaller

number of times) strategy using strategy transformation heuristics. For the

CAF strategy, separate sets of objects are counted out to represent each

addend and then combined into a single set, which is counted to find the

sum of the two addends. While carrying out this procedure, some of the

intermediate results include: 1) two sets of objects, with each object in each

set having a number assignment, 2) the combined set has the same objects

with their initial number assignments, but of unknown size since the

objects have not been recounted, and 3) a set of known size, which contains

the same set as in 2 above, except with their new number assignments.

Part of the last step is redundant - a set of one of the addends in step 2 gets

the same assignment in step 3. Eliminating the redundancy of recounting

the objects representing the first addend produces a new procedure. In this

procedure, while counting the combined set, the result of counting the first

addend is used to initialize the counting of the second addend. At the end of

this procedure change, it becomes possible to note that the counting of the

first addend is not needed. The result of the count is the number

29

representing this addend, which is known in advance, and hence the

number itself can be used. A more efficient procedure results by

eliminating this inefficiency. This procedure counts the second addend

only, and the count begins from the first addend (COF).

A more efficient procedure than the COF is COLIMIN. To go from COF to

COL, RPM uses a heuristic called 'Effort difference', which is motivated by

"try to use the method involving less effort".

RPM's knowledge of procedures is represented using a production-rule

formalism. The condition sides of these rules match propositions in a goal

structure and the actions add more propositions to the goal structure. The

resulting goal structures are hierarchical graphs representing the

execution of procedures. One of the nodes in the goal structures represents

the effort involved in processing a goal. The effort of a process is defined as

the size of goal structure underneath the goal node which initiates that

process.

Some of the weaknesses of HPM concerning the simulation model not being
I

psychologically valid are as follows:

i) The same procedure is applied for larger numbers as that for small
,

numbers. 'Solving problems like 4 + 5 using counting is fine, but 36 + 74

would rarely be solved by counting.

ii) For the transition from COF to COL strategy, Neches says that RPM

discovers effort differences between different trials with the same problems.

There is no mention of knowledge of commutativity. It is assumed that 6 + 4

is the same problem as 4 + 6.

30

2.2.3 Repair Theory

Brown and VanLehn (1980) have proposed a theory of procedural problem

solving, called Repair Theory. Given a procedural skill, the theory predicts

the systematic errors or bugs that will occur in the performance of students

learning that skill. The idea of children's bugs being systematic has been

questioned and argued against by several researchers (Hennessy, 1990;

Payne and Squibb, 1988). Apparent systematicity in children's performance

may not always be based on stable errors.

Repair theory is based on the assumption that when a student gets stuck

while solving a problem, that is, when s/he reaches an 'impasse', s/he

attempts a 'repair' in order to get unstuck. It is assumed that the cause of

an impasse is incomplete knowledge. Repair theory models an incomplete

procedure by applying a set of deletion principles to a production-rule

representation of the correct procedure. Filtering principles are used to

restrict the deletion of those rules that generate 'core procedures' that are

not plausible. Core procedures represent students' current, incomplete

knowledge of the skill. The deletion principle is not meant to model

children's acquisition of incomplete knowledge of procedures. It is used for

generating impasses that require repairs. The set of repairs is defined by a

set of 'repair heuristics', which propose repairs to impasses. Repair

heuristics are instances of general problem solving heuristics like 'use an

operation that worked in an analogous situation'. The repairs complete the

core procedures, hence allowing them to proceed with the problem solving.

A set of 'critics' is used to filter the set of repairs in order to avoid those that

are implausible.

Repair theory does not take adequate account of the semantics of the

procedures being executed; it does not take principled knowledge into

account. It cannot explain the cause of children's misconceptions.

Moreover, repair theory assumes that an impasse is a result of incomplete

31

knowledge - it does not take other causes into account, for example,

incorrect application of complete knowledge.

Finally, the theory only accounts for a small proportion of observed errors.

Brown and VanLehn acknowledge that due to constraints like those

mentioned above, repair theory could predict only 23% of the known

subtraction bugs. As pointed out by Evertsz (1991), due to this low coverage,

it seems likely that there will always be some bugs that repair theory will

not be able to account for.

2.2.5 PIXIE

PIXIE is an extension of a previous modelling system, called the Leeds

Modelling System (LMS, Sleeman and Smith, 1981). The system is for the

domain of algebra. PIXIE has a library of rules containing the bugs (called

malrules) and the correct rules. The student model is made up of rules

from this library. PIXIE is able to infer new malrules' to account for student

errors which were not encountered before (i.e. where there were no rules in

the library corresponding to these errors).

This was done using the student's protocols, working backwards from the

student's answer to the question. In the algebra domain, since there are

several steps involved before the answer can be reached, and at each step,

there are several alternatives that a student can take, there is a huge space

to search. While searching the paths from the answer to the problem,

PIXIE first uses its library of rules. If the path can be constructed with

correct rules (in the correct order), then the student's answer is correct. If

they can be constructed using malrules and correct rules, then the

student's errors can be explained in terms of the existing rules. The

challenge occurs when the search fails, i.e. the complete solution-problem

path cannot be explained. In this case, PIXIE hypothesizes a new malrule

32

which explains the last step in arriving at the question. The following

example shows how this is done:

A) X = 3 (student's answer)

B) X = (3-n) + n (n=8)

C)X=8 - 5

D)X+5 =8

E) X + (5-n) + (n) = 8

(Instantiate n using lhs of the question)

F)X+2+3=8

G) 2X + 3 = 8 (question)

At each step in inferring the student's path, one of the following

alternatives is applied:

i) One of the existing rules is applied, backwards. For example, step D in

the above example is derived using the (correct) rule, lhs +/- M = rhs ==>

lhs = rhs -/+ M backwards (i.e. X + 5 = 8 <== X = 8 - 5).

ii) Focussing heuristics, selected from a set of ten, are applied in order to

get the equation to have the same form as the 'target' equation (i.e. the

question). For example, at step B, the following heuristic rule is applied:

IF lhs(eqn) is not equal to lhs(target)

AND rhs(eqn) is not equal to rhs(target)

AND rhs = i

THEN replace (i, (i-n) + (n»

33

iii) If neither of the above can be applied, then a new rule is inferred. In the

step from F to G in the above example, the system makes the inference that

the student went from step G to step F. Hence, AX. + B = C ==> X + (A + B) =

C. Ignoring the symbols which are not changed, the system infers that the

malrule that the student applied was AX ==> X + A.

There are three problems with this approach:

i) It would only work if the student's error is in the first step of hislher

solution (in the above example, AX. + B = C ==> X + (A + B) = C), which

obviously is not general enough - it is equally likely that the student would

make an error at any other step in the solution.

ii) It assumes that malrules are independent of each other, and that any

error is due to a single malrule. In addition, it assumes that the errors are

logical - it finds a new malrule through a set of logical steps. If an error

was caused by two malrules, then PIXIE will attempt to derive a single new

malrule to explain the child's "buggy" behaviour. If it cannot, it concludes

that the child is exhibiting inconsistent behaviour. Such malrules may be

logically plausible, but not necessarily psychologically plausible.

iii) A large number of heuristics (like the one at step B above) need to be
• I

provided. This leads to a huge search space in order to select an applicable

heuristic.

On the one hand, PIXIE does not require a library of malrules to be

provided before a student's malrules can be identified. On the other hand, it

still needs some kind of 'domain analysis' - that is, the set of heuristics.

A further limitation of LMS and hence of PIXIE is the categorizations of the

rules and malrules as applicable to certain 'levels' only. Since there are

such a large number of rules and possible malrules in algebra, there are a

huge number of combinations of these rules from which to search a

34

student's model. To solve this combinatorial problem, Sleeman (1983)

assumed that the domain of algebra skills is hierarchical and can be 'split'

into independent subskills. He divided the total set of rules into smaller

sets, each corresponding to a 'level' in the hierarchy. Modelling proceeds by

first considering the subskills at level 1 and then level 2, etc. as the student

presumably proceeds to more complex subskills. One can understand how

this got round the combinatorial problem, but, as pointed out by Evertsz and

Elsom-Cook (1990), this approach was later found to be flawed, because

students who have mastered a given subskill on its own cannot always

apply it when it is part of a more complex problem. Sleeman (1983) himself,

in a description of one of the experiments with LMS, states "This

experiment showed that this was not a valid assumption" (Sleeman, 1984,

p.389).

2.2.4 State Constraint Theory

Ohlsson and Rees (1988) propose a theory of conceptual understanding and

its role in the learning and execution of arithmetic procedures. The theory

is called the state constraint theory of understanding. The hypotheses of the

theory are as follows:

- The type of declarative knowledge that is essential for procedural

learning is knowledge of general principles. A principle is defined as

abstract knowledge that consists of assertions that apply to every case.

For example, 'subtraction decreases numerosity' applies to every

instance of subtraction.

- Principles constrain the possible state of affairs.

- A cognitive performance is a heuristic search through a problem

space.

- Procedural knowledge consists of collections of search heuristics.

35

- Learning begins when an incorrect or incomplete procedure generates

a search state that violates one or more principles.

- A faulty procedural rule is revised on the basis of information in the

learner's principled knowledge.

Ohlsson and Rees implemented a computer model of the theory, called

Heuristic Searcher (HS). A procedure in HS consists of a collection of

production rules. The condition of a rule is matched against the current

search state. The action consists of a problem solving operator. Principles

are encoded as state constraints which are criteria that a search state has

to satisfy in order to be correct. A state constraint C is an ordered pair of

patterns, represented as <Cr * * Cs>. Cr, called the relevance pattern,

determines the class of search states to which the constraint is relevant.

The right-hand pattern Cs, called the satisfaction pattern, encodes the

criterion that a state must match in order to satisfy the constraint.

Whenever a constraint is relevant, it has to be satisfied. A heuristic search

mechanism, also represented as production rules, compares each search

state with the constraints and decides whether they are satisfied. States

that violate one or more constraints are inconsistent with the system's

knowledge, and from this the system knows that its procedure is incorrect,

and that it rieeds revisions. It is the constraint violation that triggers the

system to learn. If a state violates some constraint, HS applies its learning

mechanism to the rule that produced the constraint violation, and revises

it, replacing it with more constrained rules. After revising a rule, HS

returns to the initial state of the current problem and tries to solve it.

The authors describe the construction of a general counting procedure from

the state constraint representation of the principles of counting. An

incomplete set of rules represent the procedural knowledge for counting.

The set of rules generate incorrect behaviour, since they are incomplete.

Principled knowledge is represented by a complete set of state constraints.

36

The complete representation of principled knowledge and the incomplete

representation of procedural knowledge implies that an unsuccessful

attempt at counting is not due to a lack of any principled knowledge, but is a

result of not being able to apply that knowledge correctly. Hence, a task is

unsuccessful because the procedure is incomplete, which leads to

constraint violations. The learning mechanism completes the procedural

knowledge by adding the principled knowledge that was violated to the rule

that caused the violation.

For example, the following rule is one of six rules in HS that represents

standard counting:

((Number NI) (Current Nt) ===> (Assert NI)

where (Assert NI) asserts that the number NI is the answer. The task of

standard counting can be described as follows. To count a set of unordered

objects is to repeatedly select an object from that set, increment the current

number, and associate the new number with the selected object. When all

objects in the set have been associated with numbers, the last number to be

associated with an object is asserted to be the answer to the counting

problem. The above rule will assert that the current number is the answer,

even when there are still objects left to be counted. When this happens, the . '
constraint, (Answer NI) * * (Associate Xl NI), is violated, since the

relevance criterion, (Answer NI) is satisfied, and the satisfaction criterion,

(Associate Xl NI), which associates the number NI with the object Xl, is

not. The satisfaction criterion is added to the initial rule and HS returns to

the initial state and tries to do the counting task again.

The revised rule violates the constraint, (Answer Nl) * * (Not (Member X2

ToCountSet» (Not (Associate X2 N2», which states that a number is the

answer to a counting problem only if there are no objects which are

members of the to-be-counted set and which have not been associated with

some number. The rule does not contain the knowledge that it has to wait

37

for all the objects to be counted. It prematurely asserts that the current

number is the answer as soon as that number has been assigned to an

object. Hence in a set of 10 objects to be counted, the system would assert 1

as the answer as soon as 1 has been assigned to the first object. Ohlsson and

Rees claim that during learning, the model commits the types of counting

errors that are observed in children's performance. However, it is hard to

believe that children make errors like the one just described- the answer

for a set of 10 objects to be counted is 1. Hence, Ohlsson and Rees' claim that

the model commits the type of errors that children make can be questioned.

As a result of the above constraint violation, the learning mechanism adds

the satisfaction criterion of the constraint that was violated as a condition to

the rule. Thus, the final ru1e, with the learned conditions is:

«Number Nl) (Current Nl) (Associate Xl Nl) (Not (Member X2

ToCountSet» (Not (Associate X2 N2») ===> (Assert N1)

that is, assert a number as an answer only if there does not exist an object

which is a member of the to-be-counted set and which has not been

assigned a number.

One of the strengths of HS is that it uses principled knowledge. Given a set

of rules representing incomplete procedural knowledge for performing a ..
task, and a set of constraints representing the complete principled

knowledge, HS learns to perform the task by completing its procedural

knowledge. In addition, it is capable of explaining the cause of certain types

of errors - those that are caused by constraint (principle) violations.

However, it is not able to explain other types of errors, for example, errors

that might occur in applying or utilizing a procedure. It will also not be able

to account for those errors that are caused by children's misconceptions,

since it does not have any knowledge of misconceptions. Including

misconceptions would require substantial changes to the state constraint

theory.

38

A further limitation of HS is that it includes only one type of learning, that

is procedural learning based on principled knowledge. Any learning that

might be triggered as a result of procedures is totally ignored.

Furthermore, it is assumed that a complete set of principled knowledge is

known before carrying out a procedure that might be dependent on the

principles. It is also assumed that this set of principles can be analysed and

clearly distinguished from procedural knowledge. These are huge

assumptions. The review in section 2.1 above shows evidence of views that

are in conflict with these assumptions.

2.2.6 Automated Cognitive Modelling

The Automated Cognitive Modeller (ACM; Langley, Ohlsson and Sage,

1984) applies the machine learning technique of learning from examples to

generate student models. The modeller was developed as a general tool for

cognitive modelling, although the authors describe it mainly in the context

of the domain of subtraction. The output from the model is a description of

student behaviour like that produced by LMS.

ACM requires two basic inputs:

i) a p,roblem space, and

ii) some information about the behaviour of the student to be

modelled. This consists of a set of problem-final answer pairs.

The problem space consists of:

i) the representation of individual states (e.g. for the domain of

subtraction, the initial state is the problem, t~e final state is the

solution to the problem),

39

ii) a set of operators for moving from one state to another (e.g. add

ten, shift-column, decrement, etc.) and

iii) a set of rules that state the conditions under which the operators

may be applied. For example, the following is a condition-action rule

for the operator add-ten

add-ten

If you are processing column1,

and number1 is in column1 and row1,

and row! is above row2,

then add ten to numberl.

Given a student's answers to a set of problems and the initial set of

condition-action rules, ACM needs to determine the sequences of operators

that led to the student's answers and infer the conditions that will

reproduce these sequences on the same problems. In other words, the

student modelling task is reduced to the problem of determining whether a

given operator was used by the student, and if so, determining the

conditions under which it was used.

Using the initial set of general rules (provided as input iii) above), and the

student's answer to a problem, ACM generates a search tree consisting of

the observed (student's) answer along with many others. Figure 2-1 shows

the search tree for determining a student's path for the problem 93 - 25 = 72

(This student has the 'smaller from larger' bug). Each step along the path

leading to the student's answer is labelled '+' (a positive instance of the

operator). Those steps leading one step off the solution are labelled '.'

(negative instance of the operator). This process of searching the solution

paths is repeated for the other problems. The solution paths provide a set of

instances of operator applications. For example, examining the search tree

40

in Figure 2-1, there are two positive instances (5 • 3 and 9 • 2) and two

negative instances (3 • 5 and 2 • 9) for the find-difference operator, one

positive instance for the shift-column operator, two negative instances for

add-ten operator and one negative instance for the shift-left operator.

solution

e shift column e

shift-right

o 5-13

Figure 2·1. ACM's search tree for the problem 93 ·25 = 72 (Wenger,

p.214)

Having obtained a cumulative set of positive and negative instances for each

operator from the search trees of the set of problems, the conditions under

which the operator is applied are determined using a discrimination

learning method.

41

For determining the conditions, a set of tests have to be provided (e.g.

greater Nl N2, above Rl R2). The tests are used for discriminating positive

and negative instances of an operator. Those tests, that satisfy only positive

instances of an operator, make up the conditions of the operator

applications (such conditions-operator rules make up the production

system model of the student's behaviour).

ACM's modelling capability depends on the initial domain knowledge

provided, which in turn depends on some knowledge of malrules in the

domain. This is because the operators have to account for all possible

actions that students may take. Another limitation of ACM's modelling

technique is that it would work only for structured domains, or for domains

in which the intermediate steps that a student can take are known. In

addition, due to the huge search space, the approach would be practical

only for those domains which have a small number of ways of arriving at

the solution (i.e. a small number of operators). ACM's learning algorithm

is not incremental, that is, it needs a set of problem solutions, and hence is

not suited for tutoring.

Both PIXIE and ACM are diagnostic systems, not implemented for

tutoring. Neither of them say anything about how the student models will

be used for. tutoring. If one wishes to implement a tutoring system using

these approaches to modelling, one has to go through two phases:

i) the diagnostic phase

ii) the tutoring phase plus the diagnostic - this would be implemented

using the student models obtained in the above phase.

The second phase still includes the diagnostic phase in order to discover

any new malrules that had not been encountered in phase i). The

appropriate remediation corresponding to such new malrules would then

have to be programmed in the tutoring system. In addition, neither of the

42

modelling techniques attempt to model the learning process of the student.

Hence, they cannot explain how the malrules were first acquired. Finally,

both the approaches are general enough to be applied only to domains

which are structured and those which have a small number of possible

ways of problem solving.

2.2.7 Summary

The models in PIXIE and ACM do not aim to model human learning

processes. Their main purpose is to automate the construction of student

models.

Repair theory and HPM model procedural learning. They both fail to take

conceptual knowledge into account. To my knowledge, Greeno, Riley and

Gelman's planning net representation and Ohlsson and Rees' application

of constraints are the only models of arithmetic learning which represent

conceptual knowledge and its links with procedural- knowledge. In both

cases, the connection between these two types of knowledge is made by

assuming that performance is a consequence of conceptual competence.

The literature on empirical investigations of arithmetic knowledge reveals

that other assumptions, for example that conceptual knowledge is a

consequence of procedural knowledge, are equally valid. This leaves the

explanation of the learning of concepts from procedures for further work.

Ohlsson and Rees' state constraint theory focusses on procedural learning

based on principled knowledge. Their computer model learns procedures

assuming that a complete set of principled knowledge is known. A more

complete model would be one which integrates a model that explains

learning of the appropriate principled knowledge as well. Of the systems

described above, Greeno, Riley and Gelman's action schemata theory is the

only possibility for such an integration, since neither Repair theory, ~~M,

ACM nor PIXIE use principled knowledge or explain the acquisition of

43

procedural knowledge. However, the action schemata theory has not been

implemented. Hence, computational models of conceptual learning remain

for further work.

2.3 Conclusions

More complete and general models of learning are needed in order to

explain children's learning. The computational models reviewed above

each focus on some subset of the issue of learning. For example, Ohlsson

and Rees model only one, very specific, type of learning. With further

research on models of learning, and their applications to different tasks,

the present models of cognition can be improved.

None of the above computational models of learning cover the application of

what is known to new situations. For example, the transition from

counting (1 set of objects) to addition (counting 2 sets). The research

presented in this thesis explores this particular type of learning and applies

it to the transition from the ability to solve 2-term addition problems (e.g. 4 +

5) to that of 3-term problems (e.g. 4 + 5 + 2). Before being able to model a

mechanism of the learning process, some 'static' models were needed.

These have been constructed using production rules, and are based on

empirical work. The following chapter describes empirical studies that

were carried out to investigate children's performance on tasks related to

the concepts of commutativity and associativity.

44

Chapter 3

STUDIES OF COMMUTATMTY AND ASSOCIATMTY

3.1 Introduction

The development of many arithmetical skills depends on an understanding

of basic principles like commutativity, associativity and distributivityl.

However, little research exists on the acquisition of these concepts, their

applications and how they are related to other skills in arithmetic. .

This chapter is an account of three studies2 that were carried out to

investigate the development of the concepts of commutativity and

associativity in children aged four to twelve years. The three studies

consisted of a pilot, a main study and a longitudinal study. The aims of the

studies were:

i) To identify the stages that children go through in acquiring the

concept of commutativity for addition of integers.

ii) To find out if commutativity can be taught.

iii) To achieve some understanding of why children generalize

commutativity to subtraction.

1 Distributivity: a(b + c) = ab + ac; a(b - c) = ab - ac; a(b * c) = ab * ac
for all real values of a, b and c.

2 Note that these were exploratory exercises aimed at investigating surface level behaviour
of children, as opposed to standard psychological experiments.

45

iv) To gain insight into children's progression from commutativity to

associativity. Logically, commutativity is a prerequisite of

associativity. However, children might not progress in this way.

There might be an overlap in the acquisition of the two concepts (i.e.

stages where both are being learnt at the same time, as opposed to the

requirement of a complete understanding of commutativity before

going on to the early stages of acquiring associativity).

v) To study the connections between children's conceptual knowledge

and their problem-solving strategies.

vi) To study the development of strategies over time.

In the next section of this chapter, the pilot study is reported. Section 3.3 is

an account of the main study, and the longitudinal study is described in

section 3.4.

The term grouping will be used to mean a combination of commutativity

and associativity. This is so that strategies like 3 + 4 + 7 = 3 + 7 + 4 and 3 + 4

+ 7 = 7 + 4 + 3, i.e. those which do not necessarily operate on the numbers

from left to right (but in any order), can all be described by one term .

• !

3.2 A Pilot Study

One of the aims of the study was to establish the age range in which

children's concept of commutativity develops. The study examined the use

of commutativity by children between the ages of six and ten. Two sets of

tasks were administered to find out whether children knew the concept of

commutativity or not.

46

3.2.1 Method

SuJqects

22 children, aged between six and ten, from a state primary school in

Milton Keynes were interviewed and observed while carrying out some

arithmetic tasks involving commutativity. The sample consisted of 9 girls

and 13 boys. 7 of them were in the age range six to seven, 8 in the range

seven to eight, 3 in the range eight to nine and 4 in the range nine to ten

years. The mathematical abilities of the subjects were decided by the

teacher and noted as either high, medium or low.

Task 1

The first task was derived from a study in the form of a "Quick Look" game

carried out by Baroody and Gannon (1984). In thIs task, pairs of addition

problems were written on cards (3" by 5"). The second of the pair of

problems was written next to the first one. The pairs were of one of the

following three types:

i) 10 commutative pairs (e.g. 3 + 4 and 4 + 3),
•

ii) 2 identical pairs (e.g. 3 + 4 and 3 + 4) and

iii) 10 pairs of problems with different sums (e.g. 3 + 4 and 5 + 1).

The identical pairs were included for deciding the success of any

ambiguous students, i.e. those students who might say "the same" only for

such problems. These problems provided obvious cases of being the same.

The problems of the third type provided obvious cases of being different.

Appendix 1 lists the problems in the order they were presented.

47

The children were given the following instructions, and practice on a

couple of problems to put emphasis on the sums of the problems: "You

won't have enough time to work out the answers - you'll just have a quick

look and tell me if the adding problems would give the same answer. Now

let's try some problems, shall we? 2 + 5 and 3 + 6 - Do you think they will

add up to the same or different answers?". They were then shown each card

one at a time, for a short time - for a quick look only, and were asked

whether the two problems would give the same answer or different.

A child was scored as successful if s/he was correct on 9 or 10 of the 10

commutative problems and if s/he was correct on 19 or more of the 22

problems overall (to make sure that they were correct on different-total and

identical problems as well). Otherwise, s/he was scored as unsuccessful.

Task 2

This task involved testing different ways of finding out children's levels of

understanding of the concept of commutativity. Children were given

several addition problems (most of them being commutative pairs, i.e. x + y

followed by y + x). To begin with, all individuals were given 3 + 4.

Depending on their performance on this problem (and on other problems),

the numbers in the following problems were chosen. They were not all

given the same set of problems for several reasons. Firstly, since the

subjects were from a wide range of abilities (different ages), some problems

that were too easy for some children were difficult for others and vice-versa.

It was found that some children gave answers to simple problems

immediately (memory recall). More difficult problems had to be given to

them to find out more about the way they computed the answers. Secondly,

some children exhibited the behaviour that the experimenter was interested

in, in fewer problems than others. Thirdly, some children needed more

practice with addition problems than others.

48

The problems were written on paper (using abstract symbols like 4 + 5), one

at a time. They were read out with "plus" and repeated using "add" and

"and" if needed. The experimenter used the individual children's

terminology whenever it was revealed. The children were told that they

could use whatever they liked, and could solve the problems whatever way

they liked. Some children had to be given concrete or real world analogies to

the abstract problems. For example "4 plus 3. Say you had 4 apples and I

gave you another 3. How many apples will you have?", and shown this with

counters (unifix cubes). The strategies used by the children were noted.

Questions like "How did you get that?" helped to reveal their strategies.

To find out about their knowledge of commutativity, they were interrogated

as follows:

a) 'Which is more: 3 + 4 or 4 + 3?", "Why?".

b) After they had written down the answer for the first of a commutative

pair of problems, they were asked "Now, can you tell me if this will add up

to x (where x is the child's answer) - the same as or different ... ", "Why do

you think it will be the same (or different, depending on their response)?".

This subtask is similar to task 2 conducted by Baroody and Gannon (1984).

In addition, a pair of wrongly-answered, large-numbered problems (like

1023 + 4970 = 5985 for older children, and 130 + 485 = 550 for the younger

ones) were written down, read and then the children were asked "what do

you think 4970 + 1023 (or 485 + 130) will be?". Furthermore, it was noted

whether the subjects computed the sums for the second of the commutative

pairs of problems, or whether they copied the answers from the previous

problems.

c) Those who showed knowledge of the concept were tested to see if they

generalized it to all numbers: "If I swapped the two numbers around, will

the answer always be the same?", "Even for very large numbers?", "Do you

know why that is?" .

•
49

d) Children who showed signs of understanding the concept were given a

pair of subtraction problems to find out if they generalized it to this

operation.

The subjects were classed as successful, marginally successful or

unsuccessful. At least two of the following criteria needed to be satisfied for

a child to be judged successful:

i) The response to question a) above included "same" or its equivalent

(e.g. "they are both more").

ii) The response to question b) was "same" or the same answer as

that in the previous problem.

iii) The child generalized the concept of commutativity to all

numbers.

iv) S/he generalized the concept to subtraction.

v) S/he consistently used the answer from the previous problem for

answering the second of a pair of commutative problems.

vi)' His/her explanations included statements which referred to the

sums of two problems being the same, e.g. "They are the same, but

you have swapped them around and it equals the same number".

A child was classed as marginally successful if at least two of the following

criteria were satisfied:

i) S/he did not think the answers to the two problems in question b)

above were the same or if s/he gave the correct answers, but with

hesitation.

ii) S/he was not sure of his/her answer to question c).

50

iii) Slhe applied the concept to small numbers only or to concrete

examples only.

iv) Hislher explanations included statements that referred to the two

addends and not to the sum; for example "because 2 was there and 7

was there".

v) Hislher performance showed no evidence of copying the answer

from the previous problem or s/he copied sometimes and worked it

out sometimes.

A child was classified as unsuccessful if one of the following conditions was

satisfied:

. i) The response to question b) was "different" or any other answer

apart from the answer to the previous problem, or if slhe counted or

started working out the answer.

ii) S/he was not classed as "successful" or "marginal".

Table 3-1 below shows the evaluation criteria for overall success based on

the scores in tasks 1 and 2.

'. \

51

Table 3-1. Evaluation criteria for overall success

Ta6k 1 Ta6k2 Q~erall 61.u:~e66

success success success

success marginal marginal

success unsuccess unsuccess

unsuccess success marginal

unsuccess marginal marginal

unsuccess unsuccess unsuccess

3.2.2 Results and Discussion

For the question "which is more, 4 + 3 or 3 + 4?", responses other than "the

same" or its equivalent were ignored in the analysis. This was because it

was found that some children were confused. They said that one of the pair

of problems was more than the other because they thought they had to pick ,

out one of the two. Perhaps "Is one of these more, 4 + 3 or 3 + 4?" would have

been a better question. Some of the children who thought they had to pick

out one of the problems as "more", chose the problem with the larger

addend first and gave explanations like

"because 4 is more"

"because that's got 4 + 3 and 4 is before 3".

Hence, for such children, this question did not provide any certain

information. However, it did reveal some of those children who definitely

knew the concept; for example, KF (Table 3-2) exclaimed:

52

"They are the same. Its just the other way around".

Twelve out of the 22 subjects were successful on both the tasks, seven were

marginally successful overall and three were unsuccessful (as shown in

Table 3-2). In Task 1, despite the experimenter's emphasis on the

sums/results of the problems, there were some children who might have

responded to the similarity of the addends and not to the sum. This problem

was encountered by Baroody and Gannon (1984). An example is JV (Table 3-

2) who was completely unsuccessful on Task 2. When asked why she had

said 4 + 5 was the same as 5 + 4, she replied:

"Because that and that (pointing to the two 5s) are the
same and that and that (pointing to the 4s) ... ".

JV's response might be interpreted as ambiguous. It could mean that the

problems are the same because they have the same addends, or that the

sums are the same because the problems have the same addends. However,

the latter is unlikely because of her performance on Task 2.

SE (Table 3-2), who did not have any knowledge of commutativity, referred

to something other than the sum of the addends:

"They are different because they are the other way
around" (SE's protocol can be seen in Appendix 2).

These examples show that Task 1 alone would not be a good measure for

assessing children's knowledge of commutativity. The data (Table 3-2)

indicates that Task 1 produced a higher success rating than Task 2 about

1/3 of the time (Task 1 overestimated performance relative to Task 2 seven

out of twenty-two times) unlike Baroody and Gannon (1984) who found that

Task 1 did not systematically underestimate success relative to their Task 2

(Task 2b of the present study).

53

Table 3-2. Summary of performance on commutativity

mm AGE n T2 QY OBSERVATIONS
J

KF 9.1 8 M M COL; used comm. for small numbers only; "because its the same
as that, but its the other way round"

NC 9.0 S 8 S COL; "its the same, but the other way around"

MC 9.3 S S 8 COL; "they are the same but you have swapped them around
and it equals the same number"

KT 9.3 8 8 S COL when not using blocks for counting; CAF when using
blocks (for problems with sums> 10)

MT 8.0 S S S COL

DM 8.1 8 S 8

TW 8.0 S M M CAF

ML 7.6 S 8 8 COL; "they are just the same but opposite ways around"

8tD 7.0 8 8 8 COL; "because I remember it was the same. the numbers were
just the other way around"

WA 7.0 8 M M COL; calculates again for larger numbers

D8 7.0 S S 8 COL; uses blocks; "its the same as that one"

t 1

FJ 7.0 8 M M CAF

DA 7.5 8 8 8 COL

ZD 7.0 8 8 S COL; "just copied because its the same problem but in a
different way"

DC 7.0 U M M COL; did not use comm. for the first 2 pairs of problems, but did
for the rest

DG 6.9 S 8 S COL; "because they are the same numbers"

8D 6.0 8 8 8 COF

PM 6.0 S M M COL; uses comm. for small numbers only

54

GL 6.0 S M M CAF; could not add without blocks

JV 6.5 S U U COL; worked out the answers for each problem in Task 2

SE 6.0 U U U CAL sometimes and CAF sometimes; did not use comm. at all

CF 6.0 U U U CAF; used blocks

OV stands for overall performance.
S, U and M refer to success, unsuccess and marginal success respectively.
CAF - count all from the first addend; CAL - count all from the larger addend;
COF - count on from the first addend; COL - count on from the larger addend.

The results show that some children apply the concept to small numbers

only. This is probably due to the fact that they are experienced with using

fingers (numbers up to 10) and concrete objects which normally represents

small numbers. The analogy of fingers, is often revealed by children, even

when they are not using them overtly. One child, for example, revealed "I

imagined my fingers in my mind".

One child, DC did not succeed on Task 1, but showed marginal success on

Task 2. On Task 2, he did not apply commutativity to the first two pairs of

problems (recomputed the sums to the second of the pairs of problems), but

did on the third pair: "copied it off there because 9 was there and 7 was

there". It is possible that DC learnt the concept during the second task. This
t \

finding is consistent with Baroody and Gannon's (1984) results.

SE (Appendix 2), sometimes disregarded addend order and started from the

larger addend. This is consistent with previous findings (e.g. Carpenter

and Moser, 1983). It is interesting that SE did not think that 6 + 4 was the

same as 4 + 6, and yet sometimes ignored addend order. JV provides

further evidence of using the 'count on from the larger addend' (COL)

strategy without a complete understanding of commutativity. This is

consistent with Baroody and Gannon's (1984) finding of children who used

or discovered COL or 'count all from the larger addend' (CAL) strategy but

did not appreciate commutativity.

55

On the other hand, there were children who understood commutativity but

did not apply it (or only applied it occasionally). Examples of such subjects

are KT, SD, TW, FJ and GL. Fuson, Secada and Hall (1983) also found this

in an analysis of the transition from counting all to counting on. From their

study, they found 9 out of 45 children who used count all, and demonstrated

all the subskills required for the transition from count all to count on, but

did not use count on. The issue of procedure first versus conceptual

knowledge before procedure is further discussed in section 3.3.2.

The results in Table 3-2 show that 68% of the children used the COL

strategy. This is because most of the subjects were quite old and hence more

experienced at such problem solving.

The results also show that children who were not successful were less than

seven years old. This revealed the need to study the development of the

concept with children younger than seven. This study also pointed out that

there are some children as old as nine who are not completely successful

(e.g. they apply the concept to small numbers only). This led to the inclusion

of children up to the age of twelve in the second study.

3.2.3 ,Conclusions

From Task 1, it was found that students' answers "same" or "different"

could be interpreted ambiguously. In addition, the tests in the second task

were enough to judge a child's level of success. In fact, as can be seen from

Table 3-1, the overall score is the same as the score on Task 2, except for one

case, where unsuccess on Task 1 and success on Task 2 leads to an overall

marginal success. Besides, this exceptional case was not encountered

(Table 3-2). Hence Task 1 was abandoned in the next study.

56

The study showed that once children knew the COL strategy, they preferred

it to the other strategies. It also showed a trend in the development of

strategies and of the concept of commutativity with age.

3.3 The main study

A more comprehensive study into the development of the concept of

commutativity was carried out. This was done in a rural school in Fiji (note

that the location is conceptually irrelevant in the study).

The aims of the study were to:

i) gain insight into the stages that children go through in the

acquisition of the concept of commutativity,

ii) find out if the concept can be taught,

iii) investigate why some children overgeneralize the concept to

subtraction and

iv) examine the extension of knowledge of the concept to 3-addend

• problems.

3.3.1 Method

SuiQects

The subjects comprised 105 children (49 boys and 56 girls) between the ages

of five and twelve. They were from 14 classes. The classes are divided

according to the children's ages; for example, children between six and

seven years old are in class 1, between seven and eight-years-old are in

class 2, between eight and nine are in class 3, etc. There are two classes in

57

each age range. The five-to-six-year-olds are kindergarten students. The

sample consisted of 4 five-to-six-year-olds (originally, 15 five-to-six-year-olds

were interviewed, but it was found that they were not competent enough for

the study - most of them could not add; some could not even count up to 10),

31 six-to-seven-year-olds, 33 seven-to-eight-year-olds, 22 eight-to-nine-year

olds, 8 nine-to-ten-year-olds, 5 ten-to-eleven-year-olds and 2 eleven-to-twelve

year-olds.

The kind of activities carried out in the classrooms in Fiji during

mathematics lessons are similar to those in England; the contents of

mathematics textbooks are similar; there is no evidence of student-teacher

relationships in the two schools being significantly different. The amount of

concern from parents towards their children's mathematics education

might be slightly higher in the English school ("my mum taught me"),

whereas in this particular rural school in Fiji, parents tend to leave

mathematics education for the teachers at school. A major difference in the

two schools is the age at which children start formal schooling (hence the

transition from informal experiences to the formal system). For the Fijian
I

school, the earliest age is five years, when they start kindergarten. There

were some children in class 1 who did not even attend kindergarten. In

England, much younger children attend nursery or kindergarten. As a
• I

result of this, children from the Fijian school might achieve a certain

knowledge/performance level at a slightly higher age than children from

the English school. A second difference between mathematics education in

this rural school in Fiji and that in England is the medium of

communication. The language used in the study school in Fiji is Hindi,

which is the mother tongue of all the subjects. At the time of the study,

class 1 children were involved in learning to count and writing down

numbers; class 2 children were practising addition; class 3 was being

taught subtraction concepts, place value and partitioning (formal

algorithm); classes 4 and 5 were onto multiplication and division and class

6 students were on more advanced topics like area.

58

Materials

The children were given a set of pairs of addition problems like 4 + 5 and 5 +

4. The numbers in the problems were randomly selected. Appendix 3

contains a list of a typical set of problems. The children were not all given

the same set of problems. The problems were written on paper, one at a

time, and read out. The difficulty level (the size of the numbers) of the

problems depended on their performance on the previous problems. If a

child found the problems difficult, then the sizes of the addends were

decreased. If the child applied commutativity, then larger addend problems

were given in order to find out whether slhe applied the concept to larger

numbers. After doing the set of addition problems, a pair of subtraction

problems were given, where the order of the two numbers in the second

problem were reversed.

The 3-term problems fell in one of the following six categories:

i) addition only (e.g. 5 + 8 + 5),

ii) subtraction only (e.g. 16 - 10 - 5),

~iii) multiplication only (e.g. 7 * 2 * 4),

iv) division only (e.g. 12/6/2),

v) combination of addition and subtraction (e.g. 3 + 5 - 3) and

vi) combination of multiplication and division (e.g. 5 * 3 /3).

These problems are normally written with parentheses, for example, (8 + 5)

+ 5; The problems were written without the brackets because the aim of the

study was to see if the students used grouping. To avoid the representation

of the problems being another variable, the children were given a word

59

problem first (e.g. "suppose you bought apples worth 20c, lollies worth 15c

and a packet of crisps worth 14c. How would you write a sum to find out

how much you needed to give to the shopkeeper?") to find out how they

represented such problems. None of the subjects used brackets, hence their

representation was consistent with mine.

The children used fingers for counting. Some of them used rulers. Some

icelolly sticks were also provided. A tape recorder was used to record the

interviews.

Procedure

Children were given arithmetic problems (of the type in Appendix 3) and

were observed solving them. They were interviewed, as in Task 2 of Study 1

(with the deletion of the question "which is more?"), to get details of the

skills and strategies they were employing. The work was carried out in two

stages:

i) a study of commutativity and

ii) a study of transfer of knowledge of commutativity to solving 3-

t I addend problems.

To identify the different levels of understanding of the concept of

commutativity, children at different stages/levels (that is, some in

kindergarten, some in class 1, some in class 2, etc.) were studied. In
,

addition to the commutative pairs of problems, 63 of the children were also

given a pair of subtraction problems like 6 - 5 and 5 - 6, in order to find out if

they would apply commutativity to these as well, and if they did, then why.

The subjects who were definitely identified as unsuccessful on the

commutativity problems were not given the subtraction problems (since if

they did not have any knowledge of commutativity, there is no question of

generalization to subtraction).
t

60

Seventy-seven of the students who were studied for the stages of

development of commutativity, were also studied for their performance on

3-addend problems. The sample size of seventy-seven students was a result

of ignoring those students who were not competent enough for the study (for

example, those who did not know what to do or how to proceed on the 3-

addend problems. Some of these students had explicitly stated that they did

not know how to do these problems). Eleven of the older children from the

sample of seventy-seven, who had knowledge of multiplication and division

were given problems in categories ii, iii, iv, v, vi (see the section on

materials above) as well. This procedure was carried out to establish if

there is a relationship between children's performance on 2-addend

problems and that on 3-addend problems.

3.3.2 Results and discussion

Perfonnance levels of commutativity

The study revealed several levels of performance of the concept of

commutativity. There are the basic levels where children use the COL

strategy for addition, because it is a faster means of arriving at the answer,

without showing any evidence of conceptual knowledge of commutativity.

There are the fully-developed stages where knowledge of the concept is

applied to more complex situations (e.g. application to 3-addend problems

and invention of informal procedures for solving problems). The following

levels in the development of commutativity (of addition of integers) are

proposed as a result of the performances of the subjects in the study:

i) Order-irrelevance principle (Gelman, 1977) - while assigning tags

to objects in a set, it does not matter which tag is assigned to which

object.

61

ii) Implicit knowledge - a level at which children might possess

knowledge of the concept, but it is implicit (they cannot articulate it -

some do not have the language/vocabulary to describe it, and yet

some of them are able to apply it). For some children, their

knowledge might be at a level which does not allow them to make

use of it completely. Hence, children at this level compute the

answer to x + y after having done y + x, instead of copying the

previous answer.

iii) Commutativity - the realization/explicitness that a + b is

equivalent to b + a (for all values of a and b), and the use of the

concept. This may proceed in steps (not necessarily in this order):

a) concrete examples only,

b) small numbers only,

c) abstraction and

d) generalization to all numbers.

The progression here is quite complex. The four steps can all be

interrelated, and hence, a child can be at one or more of them at any

.one time. There are several possibilities of progression:

concrete small --> concrete large

concrete small --> abstract small

abstract small --> abstract large

concrete large --> abstract large

iv) The extension of the application of commutativity. At this level,

children extended their application of the concept, for example to 3-

term problems. There are several levels of application:

a) to concrete examples only,

62

b) to small numbers only,

c) generalizing to large numbers and to abstract examples,

d) inventing informal procedures based on the concept for

solving more complex problems and

e) 3-addend problems (use of grouping).

At this level, like level iii), the different sub-levels of application may

be interrelated.

Note that the above levels do not necessarily have a psychological or

developmental status. They are just descriptions of performance. A child

need not necessarily go from performance level i) to iv) in that order, nor

does s/he necessarily go through each one of them. An attempt was made at

categorising the subjects in the study into one of the four performance

levels. This was done using the tape recorded protocols, the written

problems and their answers and notes on the observations made during the

interviews. The result for each subject is listed in Appendix 4. The details

of the observations and measures used for deciding the levels are described

below:

i) While counting out a set, children often recounted (for various reasons:

e.g. to make sure or because they made a mistake or they lost track of their

count or because the experimenter asked them to do so). When counting

again, they did not necessarily assign the counting sticks the same tags as

they did the previous time. One child, for example, picked up the sticks and

put them in her hand as she counted them "1, 2, 3, 4, 5". When she

recounted (she put them on the desk this time), she assigned the tag "1" to

the stick to which she had assigned "5" previously. Although some

children's behaviour revealed knowledge and use of this principle, this

observation was not necessarily the criterion that was used in deciding a

level i) child. Instead, a subject who was not categorised into the other 3

63

levels, was automatically classed as having performance level i). (Note that

this level was identified more as a logical prerequisite for commutativity

than as a result of performance behaviour). Note that the assumptions here

are that all the children who didn't get to levels ii) and above did have the

order-irrelevance principle and that this assumption is not important for

the analysis in the rest of the thesis.

ii) This was the most difficult stage to identify. This level could have been

split further into implicit or explicit knowledge and its applicability. This

was not done because of the fuzziness of children's performance. In the

case of a child who was put in this category, there was not a clear cut

distinction between whether s/he had implicit knowledge and could use it

or s/he had explicit knowledge but could not use it. The performance (use of

the concept) on the commutativity problems only revealed that the subject

had not reached stage iii) (the difficulty was to identify whether s/he had

knowledge of the concept or not). Children who might have had the concept,

but could not put it into words were categorised into this level. Note that no

distinction has been made between commutativity and Baroody and

Gannon's (1984) concept of protocommutativity (the order in which addends

are dealt with does not make a difference in terms of the correctness of the

sum). Hence, children who might have had knowledge of
t '

protocommutativityonly, have been included in this category. Children who

only have a concept of proto commutativity, do not realize that the result of 3

+ 5 is the same as that of 5 + 3. They know that they get the answer in either

case - whether they start from the first addend or from the second. This

behaviour was noticed in children's performance on concrete tasks as well

as on abstract examples. On concrete tasks, children at this stage, were

observed not paying particular attention to the order of the addends, hence

counting out either of the addends first. On abstract problems, there were

several children whose level of understanding of commutativity was at this

stage and were using the COL strategy while adding. When asked why they

had started from the larger addend, and not from the first addend, their

64

replies did not reveal knowledge of commutativity: for example, "because it

is easier", "because it is faster", "because x is larger than y". When

subjects at level ii) were asked if the sums/results of a pair of commutative

problems would be the same or not, they did not immediately say "same"

(some started computing the answers). Even if they said "same", their

explanations referred to the two addends, which did not necessarily extend

to their sums. In addition, children at this stage succeeded on the large

numbered, incorrectly-answered problem (e.g. "If I told you that 130 + 485 =

550; now if I swap these two numbers around, 485 + 130, can you tell me

what the answer will be?").

iii) It was common to find children at stage a) and at stage b) of this level.

Due to the interrelationships between a), b), c) and d), it is difficult (if not

impossible) to be precise about which one of these stages a child is at.

Hence, a child was classified as being at level iii) if s/he was analysed as

being at anyone of these stages. A child was classified as being at this level

if at least two of the following criteria were satisfied:

i) For the large-numbered, incorrectly-answered problem, s/he

responded with the same answer.

• ! ii) S/he generalized to subtraction.

iii) S/he used the answer from the previous problem for answering

the second of a pair of commutative problems.

iv) His/her explanations included statements which referred to the

sums of two problems being the same, e.g. "They are the same, but

you have swapped them around and it equals the same number",

iv) A child was classed as being at level iv if s/he used grouping (did not

necessarily carry out the sum from left to right) for solving the 3-addend

problems.

65

Generalization

A total of 63 students' (see Appendix 4 for subject details) performance on

pairs of subtraction problems, like 4 - 2 and 2 - 4 (after being tested on

commutativity of addition), was examined (The results of the individual

children's answers are listed in Appendix 4). Their responses fell into one

of the following categories:

i) "cannot be done" or "not possible",

ii) "zero",

iii) applied commutativity to the second of the pair of problems

(generalization). This was revealed by their responses, e.g. "it's the

same" and

iv) subtracted the smaller number from the larger one. Children in

this category gave explanations like "you take 2 from 4".

The number of students' responses in each category is listed in Table 3-3.

i !

Table 3-3. Numbers of students' responses to problems like 2 . 4

not
possible

24

o generalize

15

smaller
from
larger

4

Note that this data is not based on a large set of problems, and so caution is

needed on relying too heavily on this data. Having made this point, the

66

results shown in Table 3-3 are quite surprising. A higher proportion of

students were expected to generalize. Eight of the students in the categories

"0", "generalization" and "smaller from the larger" originally thought that

it "cannot be done", but thought that this was like giving up on a problem,

and hence attempted to arrive at solutions.

One of the reasons for children generalizing could be that they have been

led to do so. They think that because the experimenter has given the

example alongside the commutativity examples (Le. her aim is to teach

commutativity), this must be an example of commutativity as well. In

addition, generalization is a way of learning. With the positive examples of

commutativity that they have seen so far, there is no reason for them not to

believe that everything is commutative. From this, one can say that

students' interpretation of the situation, that is, how they think about it

(Donaldson, 1978), and the type of examples are two possible variables

responsible for their performance.

Another possible reason for generalization is that the children do not have a

concept of negative numbers, which is the prerequisite knowledge for

solving problems like 4 - 7, so they attempt a repair. One of these repairs

happens to be applying commutativity. Baroody and Ginsburg (1986)

explai~ children's responses to such problems in a similar way:

" ... They can choose not to respond, but this is a sure sign of low

intelligence. Children are not trained to respond: "An answer is not

possible". Indeed because children are usually trained to believe that

there must be a correct answer, they may override their intuition

that an answer is impossible and manufacture an answer."

(Baroody and Ginsburg, 1986, p. 103).

Ashlock (1982) also provides such a reason for why children generalize and

learn patterns of error:

67

" ... Yet all too often, especially when taught in groups, children do

not have prerequisite understandings and skills they need when

introduced to new ideas and procedures. When this happens, they

want to please the teacher (or at least survive in the situation); so they

tend to 'grab at straws"'. (Ashlock, 1982, p. 6).

Why do children say '2 ·4= 0''/

The children who give "0" or "nothing" as answers to problems like 2 - 4 do

not all have the same reason for their answers. In reply to "Can you show

me how you would subtract 4 from 2?", some of them revealed that there is

nothing left to subtract from after subtracting 2 (of the 4) from 2; some

explained that there is nothing left after subtracting 2 (of the 4) from 2 and

hence the answer is O. Most of these children reason like Su:

Su: (Pause) I took 4, I take away. No! I took 2 (showing 2 fingers),
from that I (pause). I have to minus (pause). I took 2, from that I
took 2 away; there's 0 left.

Another child who reasoned like Su exclaimed "None left" while trying to

work out 2 - 4 on her fingers. These children's answers are quite

reasonable, since they realise that they cannot go beyond zero.

For some of the other children who say "nothing" or "0", it is another way of

saying "I don't know" or "I don't know what's happening here". Yet other

children mean to say "It cannot be done".

Given that these children do not have a concept of negative numbers, the

above responses are all reasonable.

68

Can commutativity be taught?

There is not enough empirical evidence to give a definite answer to this

question (in the interviews, only one possible method of teaching was used).

As a result of the studies, it can be concluded that it is very difficult for

children to learn the concept from abstract examples only. Note that in the

studies, children were not being given any guidance or feedback. They used

icelolly sticks for counting if they wished. With over 40 of the subjects in the

two studies not having a complete understanding of the concept, only 5

subjects started applying the concept as a result of solving a sequence of

examples (ignoring those who had forgotten the concept, and remembered

it after 2 or 3 examples).

We know that children learn the concept of commutativity. We also know

that the concept develops gradually over a long period of time (Denvir and

Brown, 1986; Hennessy, 1986). There is evidence of children without any

formal teaching knowing the concept (Baroody et aI., 1983). Following from

this, I believe that children, left on their own, without any teaching of the

concept of commutativity, with their everyday experiences with concrete

examples, will come to a stage where they recognize the concept. I propose

that this recognition process can be accelerated by teaching. In addition, ,

~ teaching can facilitate the abstraction of the concept. Teaching should be in

a non-abstract, non-mathematical way and should build on childrenfs

concrete experiences. Children can be led into a discussion about their

experiences. For example, "if you ate 3 smarties first and then 2; and if you

ate 2 smarties and then 3, Would you eat the same number of smarties

in both cases?". The job of the teacher is to stimulate them to think about the

concept, and to facilitate the understanding of the concept by relating the

non-abstract, non-mathematical experiences to abstraction.

The empirical results presented above have implications for teaching

commutativity of addition and non-commutativity of subtraction .. For each

69

type of problem there are a limited number of different answers and a

limited number of different strategies. For example, for subtracting a

larger number from a smaller one, there were four different answers, as

shown in Table 3-3; for the second of a commutative pair of problems,

children's strategies could be broadly classified into two: either copying the

answer to the first problem or calculating the sum (calculating the sum

can of course be analysed further in terms of the counting strategies used,

etc.). Using knowledge of the different answers and different strategies and

the knowledge of the implications of these for a student's state of

knowledge, a teacher (or a tutoring system) can diagnose the student's

current knowledge state. Teaching then depends on this diagnosis -

designed to help the student progress from hislher current performance

level to the desired level.

Associativity

The subjects used one of the following two strategies in solving 3-addend

problems (like 4 + 8 + 4):

i) They performed the operations in any order. They grouped any 2 of

the 3 numbers, and carried out the appropriate operation on them
" '

first. Hence, in a problem like a + b + c, they did either a + b, or a + c

or b + c first (whichever was easier). For example, for 3 + 5 + 5,

children using this strategy, did 5 + 5 first because most children

knew doubles, or it is easier to add on a small number at the end or

10 is easier to work with than 3 or 5.

ii) They performed the operations from left to right (linear strategy).

That is, they always did the operation on the first 2 numbers to begin

with, and then performed the next operation on the result and the

last term. Thus, 4 + 8 + 4 would be solved as:

4+8 = 12

70

12+4 = 16

Table 3-4 shows a comparison of the above strategies used by children who

used commutativity (stages iii and iv) and those who did not (stages i and

ii). It shows that knowledge of commutativity and use of grouping are

strongly related. Not knowing commutativity implies not using grouping.

In addition, the table reveals that knowing commutativity is a necessary but

not sufficient condition for using grouping.

Table 3-4. Relationships between strategies for 3-addend addition and

knowledge of commutativity

Knew commutativity

Did not know
commutativity

. \

strategy i
(grouping)

strategy ii
(linear)

11

15

The results of Table 3-4 show that of the 61 students who knew

commutativity, 82% of them used grouping on the 3-addend problems.

These students also gave descriptions that showed explicit knowledge of

associativity. For example,

"You have just changed the order of the sum"

''It doesn't matter what you do first, it's the same thing".

1 Details of this child's performance is discussed later in this section.

71

Children seem to progress through several stages in the transition from

commutativity to associativity. Figure 3·1 displays the proportions of

children who knew commutativity, at different stages of performance on 3·

term problems.

%

children

75

50

25

categories:

1

1 - Children who use grouping.

-
n n
2 3 4 categories

~
2 - Children who showed explicit knowledge of grouping, but did not use it.

3 - Children who applied commutativity. to the first 2 numbers of the 3-addend
problems.

4 - Those who did not reveal any knowledge of commutativity in their performance
on 3-addend problems.

(note: 2,3,4 represents children who used the linear strategy and fell in one or more
of the categories 2, 3 and 4)

Figure 3-1. Application of commutativity to 3-addend problems

There were 3 children who did not use the grouping strategy, but showed

explicit knowledge of the concept:

72

PKP revealed this by not computing the answer to the second of these

problems again:

6 + 8 + 2 = 16 (8 + 6 = 14, + 2 = 16)

2+8+6= 16

When asked how he had done this, he replied "You repeated the

question".

MSN: 3 + 2 + 3 = 8 (3 + 2 = 5, + 3 = 8)

When asked for any other way of doing this problem, she replied

"Can also do 3 + 3 first and then add 2".

Empirical evidence of children who appeared to lack understanding of a

concept on one task and showed performance consistent with the concept on

another task has been provided by Gelman and Gallistel (1978). This

implies that children do not always use their conceptual knowledge. Some

possible reasons for this are:

i) they do not think of the concept at the time. For example, in case of

commutativity, children made comments like:
~ ,

"I knew it but I calculated it again because I didn't think of it".

"How stupid of me; I didn't think of it".

ii) even if they are aware that a particular concept is applicable, they

know that after all they will get the same answer whether they use it

or not. For example, there were a number of children in the

commutativity experiments who knew the concept and were

computing the answers to the second of the commutative pairs of

problems. They were doing this so that they could check their

73

answers to the first problem. In general, children do not always use

the most efficient strategy in their problem solving (Luchins, 1942).

iii) they have not reached the stage in the development of the concept

where it can be applied.

Luchins (1942), in one of his experiments, gave 11 of his subjects (aged nine

to fourteen years) a series of problems to solve. All the problems could be

solved by the same strategy, but the seventh and eighth ones could be solved

using a more direct (simpler and faster) method. However, not one subject

used this more direct method. Having become habituated to the method of

solution that worked for the first six problems, they used it in the

succeeding similar problems. Later when they were shown the more direct

method, the subjects spontaneously made comments like:

"How dumb I was"

"How blind I was".

Luchins ,also found that children sometimes wanted to repeat a method

throughout. Some of the comments made by his subjects are:

"why should I bother seeking new methods"
~ ,

"I did the best I could do and, after all, my answer was correct"

"It's senseless to do the same thing many different ways".

This shows that some children consciously decide not to search for

alternative methods once they have one that works.

There were 3 children who knew the concept of commutativity, but did not

extend it to 3-addend problems. Their inability to transfer the knowledge of

commutativity implies that there is a stage between knowledge of a concept

and its application. If it was not for this stage (revealed by these 3 children),

commutativity would be a necessary and sufficient condition for grouping.

74

Eleven of the older subjects, who used grouping on 3-addend addition, and

who were familiar with the four operations, were given 3-addend problems

with different operators besides those of addition. (Appendix 4 marks these

subjects). All the subjects were given the same set of problems (listed in

Appendix 5).

The results are listed in Appendix 6. None of the subjects used grouping on

the problems with a combination of operators. Four of the subjects used

grouping on the addition-only and on the multiplication-only problems, and

the linear strategy on the subtraction-only, division-only and combinations

of-operators problems. One subject generalized her grouping strategy to all

problems with 1 type of operator only; hence, 12/6/2 = 121 3 = 4, 16 - 10 - 5 =
16 - 5 = 11. The rest of them used grouping on the addition-only problems

and the linear strategy on the other problems.

An interview with the child (PD) who did not know commutativity, and yet

seemed to apply associativity (see Table 3-4), revealed that she did not have

any knowledge of the latter concept either. She was using the labour saving

strategy, COL, while doing the commutativity problems. For the problem, 7

+ 13, she started counting on from 13. Then, for 13 + 7, she repeated the

counting. When asked explicitly if she was aware that the order in which 2
,

~

numbers are added does not make a difference to their sum, she replied

"No". On the 3-addend problems, she began from the largest addend. For

example, 3 + 3 + 12 - she started from 12 "because 12 is the largest number".

This strategy seems to be an extension of the COL strategy that she used on

the 2-term problems. This child is an example of one whose algorithms

could be said to embody the concepts, but she does not explicitly possess that

knowledge. PD's behaviour highlights the need to distinguish between the

knowledge of a concept and the use of algorithms that presuppose the

concept. This type of distinction has also been discussed by other

researchers (Baroody, 1984; Hennessy, 1986; Resnick, 1983).

75

3.3.3 Conclusions

Different levels of performance of the concept of commutativity have been

identified. However the complex interrelationships between the sub-levels

need to be studied in more detail.

In the studies reported in this chapter, commutativity of one operation only

(addition) has been considered. One would expect variations in the results

had the other operations been considered as well. Another dimension of

variation would be the type of number system (integers, fractions, decimals,

etc.).

The studies suggest that the acquisition of associativity and that of

commutativity are interrelated. There was evidence of children who were at

stage iii), for example using commutativity for small numbers only, and

were using grouping on 3-addend problems. ~here were also children who

were noted for applying commutativity to 3-addend problems (partially -

only to the first 2 addends). There was not a single child who was noted
;

using grouping (commutativity or associativity) on 3-addend problems and

not using commutativity on 2-addend problems. This shows that

comm~tativity is a necessary prerequisite for the acquisition of

associativity.

The evidence of use of procedures independent of their conceptual

knowledge, and that of existence of conceptual knowledge independent of

their applications, highlights that there is an important stage of linking

conceptual and procedural knowledge.

3.4 Longitudinal Study

The aims of the study were as follows:

76

i) to study the development of children's understanding of commutativity

and associativity and of their addition strategies at a more detailed level and

ii) to double check the results obtained in the earlier study.

3.4.1 Method

Twelve children (7 boys and 5 girls) aged between four and eleven were

interviewed seven times over a period of 1 year and 8 months. The time

intervals at which the interviews were carried out are shown in Table 3-5.

The subjects were from the same local school as that in the pilot study. Six

of them were from the pilot group. The subjects were at different levels of

understanding of commutativity and associativity - they had different

lengths of school experience. Originally, the study included 15 children - of

the 3 of them who were dropped, 2 were absent quite often and 1 had left

school during the course of the study. The materials and the procedure for

the interviews were exactly the same as those in the main study above.

3.4.2 Results

The results of each child's interview are presented below. The ages are
•

given in brackets and are as they were at the first interview. Table 3-5

summarises the results.

1. Samuel (6 years)

At his first interview, Samuel showed no signs of knowledge of

commutativity. He used the 'count all from the first addend' (CAF) strategy

for solving the addition problems. For the second of a pair of commuted

problems, he swapped the set of counters and recounted. For example, for

the problem 4 + 7, he put 4 counters on the table to his left, and 7 counters to

his right and counted them all to get 11 as the solution. For 7 + 4, he

77

dragged the set of counters on the left to the right and the set on the right to

the left and recounted. When asked if 8 + 3 would give the same answer as 3

+ 8 or not, he replied: "Different, because they are the other way around."

At his second interview, Samuel sometimes used the 'count on from the

larger addend' (COL) strategy for addition. He still used counters, but did

not pay particular attention to addend order. He copied the answer to the

first of a commuted pair of problems. Furthermore, he made an explicit

statement of commutativity: " ... because it's the same numbers ... ", For 3-

term problems, he applied the grouping strategy, and for subtraction

problems (like 2 - 5), he explained (logically, reasonably and with

understanding of subtraction) why they could not be solved.

From his third session onwards, Samuel used COL and grouping

strategies consistently. He also showed understanding of commutativity

and associativity.

2. Freda (6years, 7months)

For the first two sessions, Freda used CAF and 'count on from the first

addend' (COF) strategies. She did not indicate any knowledge of
"t 1

commutativity. All throughout the study, she applied 'smaller from larger'

strategy to subtraction problems. From her third session onwards, she used

COL strategy for 2-term problems and showed explicit knowledge of

commutativity. She also used grouping.

3. Grenville (8 years, 8 months)

Grenville used CAF for all the addition problems and showed no knowledge

of commutativity in the first session. In his third session, he used COF and

showed some knowledge of commutativity (e.g. when asked whether the

answer would be the same or different ... , he replied 'same'), but did not

78

use it in his solutions. In his fifth session, he copied the answer to the

previous problem, but not always; he generalized commutativity to

subtraction and carried on using COF. In the last two sessions, he used

'count all from the larger addend' (CAL) and COF and generalized to

subtraction. In the last session, he used the same strategies except counted

on fingers instead of using counters. For 3-term problems, he always used

the linear strategy.

4. Craig (6 years, 4 months)

In the first two sessions, he did not use commutativity but treated every

problem in the same way. He did not know how to solve 3-term problems

until the fifth session, when he used the grouping strategy. In the third and

fourth sessions, he used CAF. In his fifth session, he used commutativity,

CAL, grouping, and 'smaller from larger' strategy. In the sixth session, he

showed explicit knowledge of the concepts. In the last session, Craig still

used 'smaller from larger' strategy and used COL.

5. Steven (7 years, 9 months)

From the beginning of the study, Steven used commutativity, i.e. he copied

the answer to the previous problem. He also showed knowledge of the

concept: "this is the same as that", and used the grouping strategy. In his

first two sessions, he used CAL and 'smaller from larger' strategy. After

that, he used COL and informal strategies embodying commutativity,

recognized the similarity between two associative problems and said

"cannot be done" for subtraction problems.

79

6. Susan (5 years, 11 months)

Susan knew the concepts and used COL and grouping throughout the

study. She was not ready for subtraction, so tried generalization and

'smaller from larger' strategy to reach an answer.

7. Jaimy (5 years)

J ainiy used CAF and linear strategy at all the five interviews. She did not

copy the previous answers in the cases of commuted pairs of problems, and

did not show any signs of knowledge of the concepts. For subtraction, she

replied "can't do them" or "none".

8. Daniel (5 years, 9 months)

All throughout, Daniel used CAF strategy. He did not know how to do 3-

term addition and said "none" to the subtraction problems. He did not show

any improvement over the period of the study.

9. Sundip (5 years, 6 months) .
Throughout the study, Sundip's only strategy transition was from CAF to

COF. In the first five sessions, he used CAF. In the sixth session, he used

CAF and COF. He did not reveal any knowledge of commutativity, nor any

sign of improvement on the concept. For 3-term problems, he used the

linear strategy throughout. For subtraction, he either said "zero" or

"none".

80

10. KeUy (3 years, 11 months)

Kelly showed knowledge of commutativity, copied the answer to the

previous problem, but still used CAF for the first four interviews. For 3-

term problems, she used the linear strategy. On the last three sessions, in

addition to CAF, she used COL. On the final session, she used COL and

grouping. For the subtraction problems, she said "can't do it" or "don't

know".

11. Karina (5 years, 4 months)

Karina used COL and grouping throughout. She showed explicit knowledge

of commutativity and used it in all the sessions. For subtraction, she said

"none left".

12. Lisa (5 years, 5 months)

For the first four sessions, she used CAL and CAF, and linear strategy. She

copied the previous answer. From the fifth session, she used grouping and

COL. For subtraction, she either said "none" or did 'smaller from larger'.
~ !

Table 3-5 is a summary of the subjects' development of 2-term and 3-term

strategies during the course of the longitudinal study. Cells marked '.'

indicate that the child was not interviewed on that particular day.

Table 3-5. Summary of strategy development

Time
(weeks) 0 10 47 48 51 63 85

Samuel CAF COL COL COL COL COL COL
copies grouping grouping grouping grouping grouping
grouping

81

Freda - CAF COF - COL COL COL
COF not copy grouping grouping grouping

Grenvill CAF CAF COF COF COF CAL CAL
linear copies copies COF COF
(knows answer answer linear linear
assoc.) but not linear

always
linear

Craig CAF CAF CAF CAF CAL CAL COL
not copy does not does not grouping grouping grouping

know 3- know 3-
term term

Steven CAL CAL dis- COL COL COL COL
copies regards informal informal grouping grouping
linear addend methods methods

order - grouping grouping
uses facts
of 10
grouping

Susan COL COL COL - COL COL COL
grouping grouping grouping grouping grouping grouping

Jaimy CAF - CAF CAF CAF CAF -
linear linear not copy linear not copy

linear linear
,

Daniel CAF CAF CAF CAF does CAF CAF
not copy not copy not copy not know does not does not

3-term know 3- know 3-
term term . \

Sundip CAF not CAF - CAF CAF CAF CAF
copy not copy linear COF COF

linear linear

Kelly CAF - - CAF CAF CAF COL
copies copies COL COL grouping
ans ans linear linear

Karina COL - COL COL COL COL COL
grouping grouping grouping grouping grouping grouping

Lisa CAF - - CAL CAL CAL COL
copies linear copies copies grouping

linear

82

3.4.3 Discussion

The results confirmed the following observations reported in the main

study:

i) Children do not always use the knowledge they possess. They do not

always use their knowledge to shortcut their computational effort. This is

demonstrated by Kelly, for example, who knew commutativity but was not

using the COL strategy. This finding has also been reported by Baroody,

Ginsburg and Waxman (1983), Carpenter (1986) and Hennessy (1986).

ii) Children do not always use the most efficient strategy that they can. For

example, Samuel did not use COL all the time. The study also supports

Fuson's (1982) finding that children use a variety of strategies.

iii) All the strategies observed in this study are contained in the 'space' of

observed strategies in the main study, i.e. no new strategy was discovered

in this, study.

iv) The same stages of development of the concept of commutativity were

evident. Each child in the study, who showed any sign of knowledge of the . '
concept, could be categorised into one of stage ii), iii) or iv) in the levels of

development of commutativity discussed in section 3.3.2 above.

v) The subtraction results were similar to those obtained in the main study.

Children gave similar answers to subtraction problems as those in the

main study. In the analysis of those results, one of the explanations

proposed for children's generalization of commutativity to subtraction was

that they have been led to do so by the sequence in which the problems were

presented. The longitudinal study gave support to this explanation. There

were children who did not generalize on subtraction problems when they

were presented at the beginning of the interview session but did so when

they were presented after a sequence of commutative addition problems.

83

Note that the problems were commutative pairs (e.g. 4 - 2, followed by 2 - 4).

This might have led them to generalize more than if they were presented

with a single subtraction problem (e.g. 2 - 4). This can be explored as

further work, which could involve an investigation of children's responses

to a single subtraction problem, and a detailed study of the effect of priming

on children's responses.

vi) As can be seen from Table 3-5, each occurrence of 'grouping' is

accompanied by strategies that either start counting from the larger

addend (Le. COL and CAL) or disregard addend order (e.g. Steven). This

result confirms the conclusion reached from the main study that

knowledge (at least procedural) of commutativity is a prerequisite for the

knowledge of associativity. The table also shows evidence of children who

used strategies that start counting from the larger addend (e.g. Kelly), but

still use the linear strategy. Once again, this confirms the hypothesis from

the main study that there is a transition phase from 2-term 'counting from

larger addend' strategies to grouping strategy on 3-term problems.

The above results support previous work on the general trend of transition

of strategies towards more efficient ones (e.g. Fuson, Secada and Hall, 1983;

Resnick and Groen, 1977). Resnick and Groen's (1977) study suggested that
•

such transitions take place without instruction; children invent them for

themselves. The substantial literature on informal methods supports this

too (Carpenter and Moser, 1983; Resnick and Ford, 1984; Starkey and

Gelman, 1982). From this study, one can conclude the following possibilities

for transitions of strategies:

i) Agreement with Resnick and Groen's suggestion that children invent

efficient strategies for themselves.

ii) Children who were interviewed could have had discussions with each

other, which could have influenced their performance.

84

iii) The transitions are influenced by children's practice at solving such

problems at school (partial disagreement with Resnick and Groen).

Furthermore, the study revealed that children may use a particular

strategy for a long time before a transition to another strategy takes place.

For example, Sundip used CAF for a year before he started to use COF.

To conclude, the longitudinal study showed that there is some effect of time

on the development of strategies for addition. Over the 20 month period,

there was no significant effect on their subtraction strategies.

Furthermore, transitions to more efficient strategies were observed. The

study also showed that once a child knew and used the concept of

commutativity and associativity, s/he subsequently used it over the duration

of the longitudinal study. Finally, knowledge of the concepts of

commutativity and associativity are interrelated, and there is a

developmental trend: complete knowledge and application of associativity is

followed by knowledge of commutativity.

3.5 Educational implications

The levels of performance of commutativity identified in the studies above
•

could be used to design tasks to facilitate the learning of the concepts of

commutativity and associativity. The tasks can be designed to proceed

structurally through the performance levels. Children's textbooks suggest

that standard classroom teaching does not guide children clearly towards

the learning of the concepts.

Existing literature and evidence from the studies reported in this chapter

show that children's conception of commutativity and of subtraction leads

to generalization errors on problems where the minuend is less than the

subtrahend. Even children who are old enough to know negative numbers

may generalize commutativity on such problems. This suggests that at an

85

earlier age, some explanation of such problems in relation to commutativity

should be given to students. At the stage when children apply the concept of

commutativity to addition, problems like 4 - 2 and 2 - 4 ought to be

introduced to show that the concept does not apply to subtraction. Such an

introduction does not need to be an introduction to negative numbers.

Subtraction problems can be introduced with addition for teaching the

concept of commutativity. For example, after going through a sequence of

positive examples of the concept, i.e. addition problems, when a problem

like 2 - 4 is introduced, the child is puzzled. Such a 'puzzled' state could

provide an inquisitive mind with a good environment for learning. Those

children who generalize commutativity to subtraction and are given

feedback on their responses, need to 're-think' which could lead to an

improvement on their understanding of the concept. Such situations could

be created to teach commutativity. Furthermore, when they know

commutativity for addition, such subtraction examples may help to avoid

future generalizations of commutativity to subtraction.

i

On subtraction problems like 3 - 7, those children who respond reasonably,

such as "how can you take away... 3 is smaller than 7 ... " have already

made the distinction that subtraction is not commutative. Those who do not
t \

make the distinction could be provided with further guidance.

3.6 Summary

This chapter reported three studies that were carried out to investigate

children's acquisition of the concepts of commutativity and associativity.

The main conclusions of the study are as follows:

. i) The studies provide evidence of the need to make a distinction

between conceptual and procedural knowledge of commutativity and

associativity.

86

ii) A space of strategies for solving subtraction problems, 2-term and

3-term addition problems has been identified.

iii) The studies indicated that knowledge of associativity follows from

that of commutativity.

From the results of the studies reported above, production-rule models of

children's strategies for solving arithmetic problems like 5 + 6 and 8 + 5 + 9

have been implemented. The goals of the modelling were as follows:

i) to understand and clarify the details of children's performance and

ii) to explore the potential application of the models in an ITS.

The following chapter is an account of the program, which simulates

children's strategies at different stages of development using production

rules.

87

Chapter 4

PRODUCTION-RULE MODEIJJNG

Based on the results of the study reported in the previous chapter, models of

children's strategies for solving 2- and 3-term addition problems have been

implemented. There are two main reasons for the modelling. Firstly, the

models can be used in an ITS. Secondly, it allows a detailed analysis of

children's performance. This chapter describes the program, PALM,

which simulates the strategies using production rules. PALM stands for

"Production-rule Arithmetic Learning Modeller". There are two major

parts to PALM: one for production-rule modelling and the other for

modelling learning. The first part is discussed in this chapter, and the

second in the next chapter. This chapter begins with an introduction to

production systems, followed by a review of three examples of production

systems. Then the development of PALM is discussed, concentrating on its

components, and on the features of the representation and their functions.
I

Simulations of strategies and the procedure for calculating estimates of

their efficiencies are described. Finally, the production-rule models are

discussed in relation to the data . . '

4.1 Production systems

In this section, the basic components of a production system are outlined.

This is followed by brief descriptions of three production systems.

4.1.1 A brief description

Production systems consist of three basic components:

88

i) Working memory - a set of elements which represent the results of rule

firings and the current status of the system.

ii) A set of production rules - these constitute the operational knowledge

representation component of a production system. Production rules have a

left-hand side, which represents the conditions under which a rule may be

applied, and a right hand side which states the actions to be performed

when the left-hand side conditions are satisfied.

iii) Interpreter - the driving engine of the production system. It matches the

rules with the working memory items, selects a rule, fires it and updates

the working memory.

A rule is of the form

condition(s) ---> perform action(s)

where 'conditions' represent a specific state in the problem-solving process

and 'perform action' represents the step in the solution that is carried out

at that particular state. The results of the actions are stored in working

memory; the working memory is updated after each action. The updated

working memory shows the stage in the problem solving process that has

been reached. The state of the memory is matched against the condition

sides of the production rules in order to select the next rule to 'fire'. At this

stage, more than one rule could match the memory items. Production

systems have strategies called conflict resolution strategies to select one of

the possible rules. Some of these include:

Refraction - once executed, an instantiation of a given rule may not be

executed again, i.e. a rule which matches to the same working memory

items as it did previously is eliminated.

89

Recency in working memory - rules which match with those items in the

working memory that have been asserted more recently are selected over

those matching older working memory items.

Recency in rule memory - select the most recently created rule(s). This

strategy is only applicable in systems that are able to learn new rules.

Rule ordering - select the first of the list of possible rules.

Specificity - select a rule which is more specific than other rules. Specificity

can be measured in a number of ways. One of these ways is to measure the

complexity of the condition side of the rule, and the preferred rule is the one

that is maximally complex. Another measure of specificity is to delete from

the conflict set instantiations of those rules whose condition sides are

proper subsets of the condition sides of other instantiated rules. A third way

compares the sets of working memory elements that match the conditions

of the rules in the conflict set. If the matching working elements of one rule

are a subset of the matching elements of another, then the first rule is ruled

out.

Random selection - choose a rule at random.
t !

The cycle of matching rules against working memory items, performing

the conflict resolution, 'firing' the selected rule and updating the working

memory continues until either there are no more matching rules or a

stopping condition is satisfied.

4.1.2 Examples of production systems

Described below are three production systems that are used for cognitive

modelling. They are described with respect to the three components,

working memory, production memory and the interpreter.

90

GRAPES

GRAPES, as discussed by Brownston, et a!. (1985), was constructed for goal

directed problem solving. It has two distinct memories, working memory

and goal memory. The working memory is similar to those of other

production systems. It contains facts that are used by rules to make

inferences. The goal memory contains goals or tasks, and is stored as an

'and/or' tree of subgoals. An 'and' branch requires all the subgoals to be

satisfied, and an 'or' branch requires only one of them to be satisfied. At a

general level, the system's processing is directed by the goals in the goal

memory. At a more detailed level, the goals or tasks are fulfilled by

executing rules which depend on the working memory elements. Each rule

in GRAPES has a group of goal parameters and a group of tests. The

system first matches the goal parameters of its rules against the current

goal, and then matches their tests. The condition sides of the rules can have

one or more of three types of tests: goal tests, working memory tests and

function tests. Goal tests can test against goals other than the current goal.

Working memory tests are similar to those in other production systems.

Function tests are LISP predicates that return a true value if the predicate

succeeds. The conflict resolution strategies, in the order in which they are

performed are refraction, recency, specificity, and arbitrary choice.

PRISM

PRISM (Langley, 1983) stands for Program for Research Into Self

Modifying systems. It has a long-term memory and a working memory.

The elements in the working memory have an associated activation. The

activation is a measure used for representing forgetting. At every cycle,

PRISM examines each working memory element to see if its activation has

fallen below a user-specified threshold. When this occurs, the element is

removed from working memory a.nd is forgotten. The long-term memory

contains these forgotten elements. They have associated trace strengths,
t

91

which are used in directing spreading activation, the process for retrieving

elements from long-term memory and adding them to working memory.

Rules in PRISM may contain negated conditions. Each rule has an

associated strength, which is used during conflict resolution. The conflict

resolution strategies are rule ordering and refraction. The order of rules in

the conflict set is determined by options like rule strength and the recency of

the productions. The refraction strategy eliminates all instantiations that

applied on the previous cycle.

OPS5

OPS5 (Brownston et aI., 1985) is one of a family of OPS production systems.

In OPS5, working memory elements are represented as attribute-value

elements. Each item has its class, followed by the name of the class, and

then pairs of attribute names and values. A prefix operator (! in the

example below) is used to distinguish attributes from values. The following

is an example of an attribute-value element:

(Person !name Kate !mother Helen !father Jim !Age 7)

Each working memory element also has a time tag or a recency value . \
which indicates when the item was entered, or last modified. Rules in OPS5

are of the form: production name followed by a set of condition elements, an

arrow and then a set of actions. The conditions specify patterns that are to

be matched against working memory elements. When dealing with

numbers, OPS5 conditions can have operators like =, <, >, <=, >=. In

addition, conditions can have disjunctions and negations. The right-hand

sides of the rules consist of one or more of twelve predefined action types, for

example, 'make', 'modify', 'remove', 'halt', 'write'. The actions can also

contain functions, e.g. 'compute'. The conflict resolution strategies, in the

order of their application, are refraction, recency, specificity and random

selection.

92

The main application of GRAPES and PRISM is in cognitive modelling.

OPS5 was not intended as a serious model of the human cognitive

architecture (Neches, Langley and Klahr, 1987). The special feature of

GRAPES is the separate goal memory. PRISM and OPS5, on the other

hand, do not make a distinction between facts and goals and store them

together. OPS5 is more efficient than GRAPES and PRISM. All three

architectures also have learning components.

In the next section, PALM, a production system implemented for the

specific purpose of modelling children's arithmetic strategies, is described.

4.2 Implementation of PALM

An existing production system, like one of those described above, could have

been used instead of implementing an interpreter. Instead, information

from such systems was used and an interpreter was implemented to serve

the specific purpose of this research. Some of the reasons for implementing

a specific one are as follows. Firstly, using an existing interpreter means

that one is restricted to the representation language of that interpreter. As

ideas develop, it is easier to extend one's own interpreter accordingly.

Secondly, PALM includes a learning component, and it is easier to build a ,

'simple' interpreter rather than adapt a more complicated existing one to

incorporate the type of learning that is modelled in P ALM. PALM learns by

generalization and by condition learning. PRISM includes learning by

generalization, but its mechanism for generalization is significantly

different from the learning mechanism in PALM. OPS5 does not contain

any mechanism for learning by generalization. A discussion on learning

issues is postponed until chapter 5.

PALM was first implemented in Interlisp-D on a Xerox machine. It was

subsequently transferred to a Macintosh SE/30 and the code translated into

Common Lisp.

93

4.2.1 Working memory

The working memory is represented by a global variable, and is initialized

to 'nil' before the program is run. The program takes an example problem

as input. The problem is added to the working memory to initiate the

'firing' of rules. As the interpreter performs the actions of the rules, items

are added to the working memory. The working memory is a list containing

its elements in embedded lists. The following is an example of the structure

of the working memory:

(... (col 2 5 14) (number 14) (number 25))

The last two items represent the problem, 4 + 5, which have been added to

the working memory before any rule 'fired'. The first item is a result of a

rule that fired for solving the input problem using the COL strategy. The

working memory is updated by adding items at the front, i.e. the left-hand

end of the list.

4.2.2 Productions

In ;PALM, a rule is in the form of a list consisting of three elements.

i) A list containing one or more patterns, where each pattern is a condition.

ii) An arrow that separates the condition from the action.

iii) A list containing one or more patterns to be added to the working

memory, where each pattern is an action.

The following is an example of a production rule in PALM:

((number =11 =X) (number =12 =Y) (not (used =12 =Y)) (not (used :=11 =X)))

---> ((col =11 =X =12 =y))

94

which represents the problem x + y and the COL strategy. The rules

represent problem-solving strategies. Conditions can have negated items,

prefixed by 'not', as demonstrated in the above example. Apart from

negated clauses, the conditions are in such a form that testing against

working memory items involves simple pattern matching. The actions

contain clauses which are like those in the conditions (except for

negations). These clauses are added to the working memory directly, with

the variables instantiated. Actions can also be functions, which are

evaluated and their results are added to the working memory.

4.2.3 Interpreter

The three main functions of the interpreter are matching, conflict

resolution and rule execution. In the process of solving a given problem, the

interpreter performs the cycle of matching rules against working memory

items, selecting a rule and 'firing' it, until either an answer is reached, or

there are no more rules to 'fire'.

matching

The'matching process applies the production set to the working memory

and returns a list of the instantiated 'action' parts of the rules. We shall

describe the matching process for one rule using the following simplified

example:

conditions: ((number =X) (number =Y))

working memory: ((number 7) (number 15) (number 6))

Each condition item is matched against the working memory items to get a

list of bindings for the variables in the condition. For the first condition

item, for example, the result of the match is as follows:

95

((3 (=X 7)) (2 (=X 15)) (1 (=X 6)))

There are three bindings for the first condition, i.e. the condition matches

all three items in the working memory. The integer in front of each list of

variable bindings shows the position of the element in the working memory

to which the condition is matched. It indicates the recency, relative to other

bindings, of the matching working memory element. The larger the

integer, the more recent the element. This information is used in conflict

resolution (described below). For the second condition, the match is as

follows:

((3 (=Y 7)) (2 (=Y 15)) (1 (=Y 6)))

At this stage, the two sets of bindings of the conditions are merged, to get a

list of consistent bindings. This process returns nine possible matches for

the condition side of the rule:

[(33 (=X 7) (=Y 7)) (32 (..) (..)) (3 1 (=X 7) (=Y 6)) (23(..) (..)) (22 (=X 15)

(=Y 15)) (2 1 (=X 15) (=Y 6)) (1 3 (=X 6) (=Y 7)) (12 (=X 6) (=Y 15)) (11 (=X 6)

(=Y6)) 1

PALM's next step in the matching process is to eliminate those matches

where more than one variable in the conditions is bound to one constant in

the working memory, e.g. '6' is bound to 'x' as well as to 'y'. Note that in

problems like 6 + 6, the two 6's are treated as two constants. This is detailed

in section 4.3.2. The recency values in the above list reveal whether the

same constant has been bound to more than one variable or not. (11 (=X 6)

(=Y 6)), for example, implies that 'x' is bound to the first item in the

working memory (6) and 'y' is bound to the same item as well. Eliminating

such redundancies, the list of matches is as follows:

[(32 (=X 7) (=Y 15)) (3 1 (=X 7) (=Y 6)) (23 (=X 15) (=Y 7)) (2 1 (=X 15) (=Y 6))

(1 3 (=X 6) (=Y 7)) (1 2 (=X 6) (=Y 15)) 1

96

The handling of negated conditions is discussed in section 4.3.3. The

matching process described above is repeated for every rule in the

production set. The list of successful matches for all the rules is then

passed through the conflict resolution strategies in order to choose one rule

to 'fire'.

Conflict resolution

The interpreter applies the following conflict resolution strategies:

i) Recency - select the rule instantiation which matches to the most recent

item in working memory.

ii) Rule ordering - if there is more than one applicable rule instantiation

after applying the first resolution strategy, then select the first of these.

If we assume that the rule in the above example is the only one that is

instantiated, then the conflict set is the list of instantiations of that rule:

[(32 (=X 7) (=Y 15)) (3 1 (=X 7) (=Y 6)) (23 (=X 15) (=Y 7))

(2 1 (=X 15) (=Y 6)) (1 3 (=X 6) (=Y 7)) (1 2 (=X 6) (=Y 15)) 1

Applying the recency strategy, the conflict set reduces to:

[(32 (=X7) (=Y 15)) (23 (=X 15) (=Y7)) 1

Applying the rule ordering strategy, the first instantiation is chosen. Hence

the appropriate action corresponding to the condition, (number 7) (number

15), is carried out.

Note that the conflict set is already reduced by not including those

instantiations of rules whose actions result in elements that are already

present in the working memory. Hence, a sort of refraction is applied at the
•

97

matching phase. The main purpose of this was to avoid the continuous

instantiation of a rule to the same set of working memory items.

4.3 The representation

The models are intended for representing students' problem-solving

strategies in an ITS so that it can then offer better alternative strategies.

One of the reasons for choosing a production-rule formalism is this

application of the models. In an ITS, the tutorial goals can be represented

as production rules as well, where the left hand sides of the rules would be

the models representing students' strategies and the right hand sides

would be the appropriate tutoring actions. The student's input is compared

with the left hand sides of the rules. In addition, production systems can be

'run' in order to make predictions of a student's possible outcomes. In our

case, for example, if the system is 'run' on the problem, 3 + 4 + 5, the

system returns the solution using either the grouping strategy or the linear

strategy. Such outputs can be used to predict students' solutions and

strategies.

Furthermore, this formalism was chosen because of the ability of

production systems to learn new rules. The structure of production systems

allows additional code for learning to be incorporated with the existing

system without affecting its previous behaviour. The modularity of rules in

production systems makes it easy for the system to continue to work if rules

are added to or deleted from the existing set of rules. The collection of

papers in the book edited by Klahr, Langley and Neches (1987) demonstrates

this capability of production systems. PALM's attempt at modelling

transition from one knowledge state to another is discussed in Chapter 5.

Since PALM includes a learning component as well, this needed to be taken

into consideration when choosing the description language. We needed a

representation language that describes the example problems, and has the

98

potential of describing generalizations of examples. The descriptors chosen

to describe problem states are (number A X), (adjacent X Y) and (used A X),

where (number A X) represents a number X, whose position in a given

problem is represented by A; (adjacent X Y) refers to X and Y being next to

each other, that is the difference between their positions, A and B, is 1; and

(used A X) marks the numbers that have been added. For example, the

problem 4 + 5 would be represented as:

(number 14) (number 25) (adjacent 4 5)

A rule for adding two numbers is represented as follows:

(number =A =X) (number =B =Y) (adjacent =X =Y) (not (used =A =X))

(not (used =B =Y)) ---> (do addition)

that is, add two numbers that are adjacent to each other, and that have not

already been added. The 'do addition' part of each rule consists of a detailed

addition strategy.

The above representation was chosen, especially the predicate 'adjacent', so

that the models of problem-solving behaviour are restricted to solving 2-

term problems only. They are not general enough to solve problems with

more than two addends. In order to solve such problems, the program

learns to construct new rules. To do this, it needs a representation that

captures all the information required for solving 2-term problems, so that it

can handle new problems with little restructuring of its existing

knowledge.

In the following subsections, we discuss each component of the rules, and

the aspects of students' performance that they simulate.

99

4.3.1 'Used'

When children count with concrete objects, they normally put to one side

the set of numbers that they have finished counting, in order to distinguish

it from the set(s) that remain to be counted, so that they do not count the

items in a set more than once. In production-rule modelling, we need a way

to keep a record of this as well, in order to avoid the problem of the rules

matching the same numbers. Hence, when numbers are added, one of the

actions of the rules is to mark the numbers as they are used. This is done by

adding to the working memory the facts that the numbers that have just

been added, are now used. For example,

(number =A =X) (number =B =Y) ... (not (used =A =X)) (not (used =B =Y))

---> ... (used =A =X) (used =B =Y)

On the condition side, the rule states: "if there are two numbers that have
not been used" and on the action side: "do the addition and add to the
working memory the facts that these numbers have been used".

Furthermore, the 'used' clauses provide a means for deciding the state at

which a problem has been solved. The rule interpreter, at each cycle of rule

firing, checks whether the solution state has been reached. The addends in

the given problem are compared with the addends that have been used.

When all the addends have been used, and there is an additional (resulting)

number, then the problem has been solved.

4.3.2 Indexing

Related to the problem of distinguishing between the used and unused

numbers, we also have to distinguish between two or more addends that

have the same value (e.g. 3 + 3). This, again, is a distinction that children

(perhaps unconsciously) take into account. When counting 3 + 3, with

concrete objects or using fingers, they count out two sets, one to represent
•

100

each 3. When using the 'counting on' strategy, one 3 is used as the number

from which to start counting; the other 3 represents the number that is

counted on. The two 3's are somehow different. For making this type of

distinction explicit in the modelling, each number in a problem is given a

unique index (a place holder). Hence, 4 + 7 + 4 is represented as (number 1

4) (number 2 7) (number 3 4). If the numbers are not given a unique index,

then after doing 4 + 7, in 4 + 7 + 4, the first 4 is used, and the remaining 4

will never get matched, since the conditions in the rules specify that a

number matches only if it is not used, and the two 4's are not distinguished.

Indexing marks the 4's as two different ones.

4.3.3 Negation

The condition part of the rules may contain negated items. Negated items

are those that are preceded by 'not's. Negation is used in rules to provide

constraints on the items in working memory that can be matched. A

negated condition succeeds if there are no working memory elements that

satisfy the condition. It is handled by matching the non-negated condition
,

and adding the result of the match to a global variable (referred to from

here-on as nots) and comparing it to the matches from the other condition

clauses (referred to as previous_bindings) of the rule. Nots contains a list of

instantiations of items in working memory on which a rule is restricted to

fire. Previous_bindings is the list of successful bindings to which the rule

can fire. After matching each clause, any item that exists in both nots and

in previous_bindings is removed from previous_bindings, since it is not

consistent with all the condition clauses.

This is illustrated further with the following example, where the left-hand

side of a rule has one negated condition and the working memory contains

four elements:

conditions: (number =11 =X) (not (used =11 =X))

101

working memory: (number 1 7) (number 2 7) (used 2 7) (used 3 14)

The first condition instantiates previous_bindings to:

«=I11) (=X 7» and «=I1 2) (=X 7»

The second condition instantiates nots to:

«=I1 2) (=X 7» and «=I1 3) (=X 14»,

that is, we wish to exclude numbers '7' (with index '2') and '14' as

successful bindings of X since they have already been used. Comparing

nots and previous_bindings, «=11 2) (=X 7» is common and is removed

from the previous_bindings list. Hence, at this stage the set of bindings that

is consistent with the two condition clauses is «=11 1) (=X 7». (The

conditions required a number that is not used. There is one item in the

working memory, (number 1 7), that satisfies these conditions).

4.4 2·term problems

In this section, we describe simulations of children's strategies for solving

problems like 4 + 5, that were observed in the empirical studies .
. ~ !

4.4.1 Strategies

The following is the basic rule template for all the strategies for 2-term

addition:

(number =A =X) (number =B =Y) (adjacent =X =Y) (not (used =A =X))

(not (used =B =Y)) ---> (do addition)

where 'do addition' solves a given problem using one of the observed

strategies.

102

For each strategy, the condition sides of the rules are the same. The 'do

addition' part models the different strategies. These are CAF, CAL, COF

and COL (discussed in chapters 2 and 3). Note that all strategies are equally

applicable - there is no attempt to model choice of strategy at this stage.

Each of these strategies also has the alternative, 'copy the answer to the

previous problem' (for the case of commuted pairs of problems). This is to

model the strategies of those pupils who recognize the similarity of the

sums in such pairs of problems and do not compute the answers to the

second of the problems.

The following set of rules model the COL strategy:

(number =11 =X) (number =12 =Y) (adjacent =X =Y) (not (used =11

=X)) (not (used =12 =Y)) ---> (col =11 =X =12 =Y)

(col =11 =X =12 =Y) ---> (fn coladd =11 =X =12 =Y)

(addd =11 =X =12 =Y) ---> (fn addd =X =Y) (used =11 =X)

(used =12 =Y)

where function names are preceded by fn. Function col add takes the two

addends as arguments and returns addd 11 X 12 Y, where X is the larger of

the addends. This is because the aim of the COL strategy is to start from the

larger addend. Fn addd computes the sum of the two addends. For

example, for the problem, 7 + 9, the first rule fires, and colI 7 2 9 is added to

the working memory. This result matches the left-hand-side of the second

rule, whose action evaluates fn coladd to addd 2 9 1 7. At this stage, the

third rule fires, evaluating fn addd which adds the 7 to the 9 and also

outputs the efficiency of the coladd strategy. The computations for

efficiencies of the different strategies is discussed in the next section (4.4.2).

The internal details, that is the one by one counting of each addend, in each

strategy has not been modelled using rules. This is because it is not

103

important for the purpose pursued here, which is to study the transition

from ability to solve 2-term problems to that of solving 3-term problems.

Furthermore, the strategies are modelled at a level where they can be

differentiated from the other strategies, and this has been done by focussing

on which addend is considered first, and then noting whether the counting

begins at '1' or at one of the addends. The counting details of 2-term

strategies are assumed to remain the same for 3-term problems. The

strategies for solving 2-term problems are the same as those used for

adding two numbers in 3-term problems.

The rules for modelling CAF, CAL and COF strategies are similar to that of

COL above, except for the respective functions that carry out the addition.

The functions for CAF and CAL addition are the same, except for their

efficiency outputs. They iterate from 1 to the sum of the two addends. The

function for COF addition iterates from the first addend to the sum of the

two addends, the second addend times.

The following rules model the 'copy the answer to the previous problem'
i

strategy:

(number =11 =X) (number =12 =Y) (col =11 =Y =12 =X)

---> (copy-answer =11 =Y =12 =X)

(copy-answer =11 =Y =12 =X) (old-number 0 =ANS)

---> (answer =ANS)

Given a problem, X + Y, and having solved Y + X, the model copies the

answer to Y + X, which is represented as 'old-number' in the working

memory. Hence, if 3 + 8 has already been solved, then solving 8 + 3 using

this model, produces the following output:

copy-answer 1 3 2 8

104

answer 11

4.4.2 Efficiencies

Of the observed strategies, some are more efficient than others. One of the

aims of an ITS is to help children make choices between the more and less

efficient strategies. To be able to do this, the system needs to know which

strategy is more efficient for a given problem. Thus, the production-system

modelling includes estimates of the efficiencies of the different strategies.

For calculating the efficiencies, it is assumed that for counting, children

have a mental representation, for example, they visualize the addends with

that number of fingers. The efficiencies are based on the amount of work

involved in each strategy, and the demand on a child's memory. The

amount of work depends on the number of counts, which depends on the

size of the addends. The demand on memory is the effort required to keep a

record of the numbers that have been counted and that are left to be

counted. The lower the efficiency value, the more efficient the strategy. For

the problem, A + B, the amount of work involved in solving it using CAF

strategy is A + B (since all the numbers are counted, starting from 1). The

demand on memory is a fraction (for example 1/10) of B. It is a fraction

because it is assumed that more work is involved in representing the

addend and counting it than remembering the number of counts. It is a

fraction of B because B is the addend that is counted second and as the

counting proceeds, one needs to keep a record of how many of Bare

counted. Hence, for CAF, the efficiency value is A + B + a fraction of B. For

CAL, the amount of work is the same as that of CAF, and the memory

demand is a fraction (same as that for CAF) of the smaller one of the two

numbers, A or B. For COF, the efficiency is the sum of the second addend,

which is the number of counts and a fraction of it. For the COL strategy, it

is the smaller one of A and B + a fraction of it.

105

The 'copy the answer to the previous problem' strategy is the most efficient

(but can only be applied in special cases). The efficiency values are meant

only for comparing which strategy is more efficient than which, and not by

how much. The 'copy the answer to the previous problem' strategy is given

'0', the minimum possible, as its efficiency value. Using these criteria for

determining efficiencies, the following table shows the relative efficiencies

for the example problem, 7 + 12.

Table 4-1. Efficiencies for 7 + 12

copy answer o

COL 7.7

COF 13.2

CAL 19.7

CAF 20.2

4.5 3-term problems

4.5.1 Strategies

From the empirical work, children's strategies for solving 3-term

problems, based on the order in which the additions were carried out, can

be categorised into either a grouping or a linear strategy (described in the

previous chapter). Each of these two general strategies includes other more

specific strategies. For example, the linear strategy includes 'counting all'

as well as 'counting on'. With the grouping strategy, once the two numbers

106

to be added first are selected, the sum of these two numbers is recalled from

memory if it is known as a number fact. The simulation of this part of the

strategy is done by looking up a table which represents children's number

facts. If the sum is known as a number fact, then this sum has to be added

on to the third addend. This is done by using one of the 2-term strategies

described in section 4.4 above. If the sum of these two addends is not known,

then the problem is two 2-term additions. For our purposes, we only note

whether a child solves the problem in the order in which it is written (Le.

linear strategy), or s/he ignores the order and uses the grouping strategy.

The following rule template models the linear strategy, where 'do addition'

is one of the 2-term strategies:

(number =A =X) (number =B =Y) (not (used =A =X))

(not (used =B =YJ) ---> (do addition)

The rule instantiates to the first two numbers in the given problem, and the

action part adds the two numbers giving another number as the result. The

above rule fires again, this time instantiating to the resulting number and

the third number in the problem, resulting in the solution to the problem.

For example, for the problem 3 + 4 + 7, the rule fires on number 1 3 and

number 24. The action of carrying out the addition is done by one of the 2-

term strategies. Most of the children who used the linear strategy used

either the CAF or the COF strategy. Some used the CAL or the COL

strategy. After performing the 2-term addition, the result, 7 is added to the

working memory, with an arbitrary index, 0 attached to it. The state of the

working memory at this stage is:

((number 3 7) (number 0 7) (used 2 4) (used 1 3) (number 2 4) (number 1 3))

The above rule fires again, on number 0 7 and number 3 7. The addition is

performed using the same 2-term strategy as that used on the first two

107

addends, resulting in number 14 as the solution to the problem. This leaves

the state of the working memory as follows:

((number 0 14) (used 3 7) (used 0 7) (number 3 7)

(number 0 7) (used 2 4) (used 1 3) (number 24) (number 1 3))

For the grouping strategy, the left-hand side of the above rule requires three

numbers, and the 'do addition' part involves trying out the different

combinations of two numbers to find out if their sum is already known. The

trace in Figure 4-1 shows the actions of a sequence of rules that 'fire' for

solving the problem 9 + 6 + 4, using the grouping strategy. To decide which

two of the three numbers to add first, the model tries all the three

combinations (9 + 6, 6 + 4 and 9 + 4), looking up a working memory of

known facts each time to find out if it knows the sum of the two numbers,

until it succeeds. The second line of the trace, 'lookup unsuccess 9 6' means

that the program does not have 9 + 6 as a prestored known fact. The result

of a successful 'lookup' is 'part-answer' of the two addends and the 'left

over' addend. At step 4, 6 + 4 = 10 is known as a number fact. At this step,
;

the interpreter records that 6 and 4 have been used. Step 5 tells us that there

is a number left over (not used). Step 6 is the result of a rule which

combines a 'part-answer' and a 'left-over' addend to make a 2-term
i '

problem. The two numbers are then added using the 'count-on from the

larger addend' strategy to get the final answer. The 9 is used at this step. At

step 7, the program halts, since the three addends have been used and there

is a resulting number (19).

1) Group-first 9 6 4

2) Lookup unsuccess 9 6

3) Group-second 9 6 4

4) Lookup success 9 10

5) Left-over 9, Part-answer 10

108

6) Count-on-from-Iarger 10 9

7) Answer 19

Figure 4-1. Trace of 'actions' for grouping strategy on 9 + 6 + 4

4.5.2 Efficiencies

Determining efficiencies of the strategies for solving 3-term problems is

dependent on the problems. One strategy might be more efficient than

another for a particular problem, whereas the opposite might be true for

another problem. For example, for problems like 1 + 1 + 1 and 2 + 1 + 1, the

linear strategy might be more efficient, depending on the 2-term strategy

used. For most problems, the grouping strategy is more efficient than the

linear strategy. For the linear strategy, the efficiencies are calculated in a

similar way to that for 2-term strategies. The grouping strategy requires

grouping two of the three addends, for which the sum is either known (as a

number fact), or is easier/faster to calculate. The amount of effort needed to

group two numbers, and to lookup the known sum, is a fraction of that

required to calculate the sum. Ignoring problems with more than one '1',

for which the linear strategy might be more efficient, each grouping is

given an arbitrary efficiency value such that it is always lower than that for

computing the sum. The assumption is that 'looking up' to find out if the

sum of two of the addends is known as a number fact is more efficient than

computing their sum. Each grouping in our case is given the efficiency

value 0.5. The efficiencies of the two strategies for the problem, 1 + 4 + 6, is

illustrated below:

linear strategy

grouping strategy

6.6 (1.1 + 5.5)

1.6 (1.1 + 0.5)

Note that in both strategies, we assume that the strategy for adding two

numbers is COL, the most efficient ofCAF, CAL, COF, COL.

109

4.6 Matching models to data

The models of children's strategies in PALM were constructed from the

empirical data. They can be related to the data for all the subjects since the

rules are general enough to include every child's strategy. The focus in this

thesis has been on strategies related to commutativity and associativity, and

hence the strategies are modelled at the level of the addend order. Detailed

variations of the general strategies have not been implemented.

For three term problems, there are two general models (grouping and

linear strategy, Table 4-2) that account for every subject's strategy. A larger

set of varied strategies exist for performing the additions, for example

partitioning, rounding up and use of number facts such as doubles. In the

empirical studies, for those children who used other, more specific

strategies that PALM has not modelled, it was noted whether they ignored

addend order or considered the addends from left to right. PALM's model

for the general grouping strategy accounts for those strategies that ignore

addend order. Similar specific strategies that consider the addends from

left to right are accounted for by the linear strategy.

The, models for 2-term strategies include CAL, COL, CAF, COF and 'copy

answer'. Since approximately as many students used 'counting on'

strategies (COF, COL) as those who used 'counting all' strategies (CAF,

CAL), the empirical studies recorded this detail as well. Informal methods

were noted for the addend that was considered first. The children who used

informal methods and started from the first addend were classed as using

COF. Those who started from the larger addend were classed as using

COL. Hence, the models of the two counting on strategies can be further

divided into counting strategies and informal methods.

110

Table 4·2. Summary of models

Strategy Models

CAF (number il x) (number i2 y) (adjacent x y) (not (used il x»
(not (used i2 y» ---> (cafil x i2 y)
(cafil x i2 y» ---> (fn cafadd il x i2 y) (used il x) (used i2 y)

CAL (number il x) (number i2 y) (adjacent x y) (not (used il x»
(not (used i2 y» ---> (cal il x i2 y)
(cal i1 x i2 y» ---> (fn caladd il x i2 y) (used il x) (used i2 y)

COF (number il x) (number i2 y) (adjacent x y) (not (used il x»
(not (used i2 y» ---> (cofil x i2 y)
(cofil x i2 y» ---> (fn cofadd il x i2 y) (used i1 x) (used i2 y)

COL (number i1 x) (number i2 y) (adjacent x y) (not (used il x»
(not (used i2 y» ---> (col i1 x i2 y)
(col i1 x i2 y» ---> (fn coladd i1 x i2 y) (used i1 x) (used i2 y)

Linear (number il x) (number i2 y) (not (used i1 x» (not (used i2
y» ---> (add il x i2 y) ...
(applied twice to solve a 3-term problem; add can be anyone
of the above 2-term strategies)

,

Grouping (answer z) ._>. (stop)
(a + b + c) --> (group-first a b c)
(group-first a b c) --> (fn lookup-first a b c)
(lookup success x y) --> (part-answer x) (left-over y)
(part-answer x) (left-over y) --> (fn col add x y)
(lookup-first unsuccess a b c) --> (group-second a b c)
(group-second a b c) --> (fn lookup-second a b c)
(lookup-second unsuccess a b c) --> (group-third a b c)
(group-third a b c) --> (fn lookup-third a b c)
(addd a b) --> (fn addd a b)
(lookup-third unsuccess a b c) --> (do-it-anyway a b c)
(do-it-anyway a b c) --> (fn do-it a b c)

111

In the following sections, we relate the production-rule models

summarised in Table 4-2 to the data.

4.6.1 Snapshot data

Table 4-3 shows the number of children in the pilot study (n = 21) whose

strategies could be matched by the 2-term models in Table 4-2.

Table 4-3. Number of children in the pilot study described by each model

model no. of children

CAF 4

COF 1

COL 14

CAL &CAF 1

COL & CAF 1
~ ,

The model for the COL strategy would account for two-thirds of the data.

The proportion of children who are accounted for by each model depends on

the subjects. In the pilot study, all the children were over six years of age,

and most of them were using advanced and efficient strategies. If the

sample consisted of children younger than five, then the dominant model

would be CAF. If the sample consisted of children who were all at

approximately the same performance level, then it is possible that fewer

sets of models would be required to model their strategies.

112

The last 2 children's performance (Table 4-3) would be accounted for by two

models. The model that describes hislher performance depends on the

strategy slhe uses on a given problem. This would be fine for a system that

models a child's strategy on every problem. An ITS in this domain will

have to model on every problem in order to achieve a detailed description

like "This child is using COL sometimes and CAF at other times".

Table 4-4 presents a summary of the detailed analysis of the 3-term

strategies that were observed in the main study (n = 77) and the number of

children in each category. It also shows the models in PALM that represent

the categories. The categories are as follows:

1 - grouping

2 - explicit knowledge of grouping but did not use it

3 - applied commutativity to first 2 terms

4 - no evidence of transfer of commutativity

I 5 - did not know commutativity but used the COL strategy

6 - linear strategy and did not know commutativity

. \
The table is derived from the results in Appendix 4 (see also Figure 3-1,

chapter 3).

113

Table 4-4. 3-term strategies in the main study

category no. of children model

1 50 grouping

2 2 linear

3 7 linear

4 3 linear

5 1 linear

6 14 linear

The model for the grouping strategy (Table 4-2) would account for all the

children (n = 50) who used that strategy (category 1, Table 4-4). The other

children (n = 27) would be best described by the linear model. As can be seen

from Table 4-2, the production-rule models in PALM do not make a

distinction between categories 2, 3, 4, 5 and 6. With the current

implementation, PALM could have a separate model for category 3 that

would distinguish students who applied commutativity to the first two

terms of a 3-term problem from those who used the grouping or the linear

strategy. However, PALM would not be able to model categories 2 and 5,

since it does not have a means for representing conceptual knowledge. This

remains a challenging extension to PALM (For an ITS, it is possible to

diagnose categories 2 and 5 by interrogating the child). Categories 4 and 6

would be distinguished by incorporating descriptions of children's

performance on 2-term problems. Categories 2, 4 and 6 (70% of those
t

114

children modelled as linear) would be described by the linear strategy,

ignoring distinctions between their conceptual knowledge.

In sum, the models in PALM match 'procedural data' well. Its limitation

is distinguishing the conceptual knowledge associated with the procedures.

4.6.2 Longitudinal data

Referring to the results of the development of strategy (Table 3-5) for solving

2-term problems, there is a definite trend in transition to more efficient

strategies. The transitions observed in the 12 subjects over the 20-month

period can be summarised as follows:

CAF --> COL

CAF --> CAF & COL --> COL

CAF & COF --> COF --> COL

CAF --> COF --> CAL & COF

CAF --> CAL --> COL (2 children)

CAF --> CAF & COF

CAL --> COL

The other 4 students had used the same strategy throughout, i.e. there was

no observed strategy transition. Note that the time period between the

strategy transitions varied from one individual to the next. Details of time

intervals at which the transitions took place is presented in Table 3-5. To

summarise the data for the development of strategies, the transition is from

CAF as the most basic and inefficient strategy to COL as the most efficient

one. Intermediate between these are CAL and COF. It seems that every

child would get to the most efficient strategy, but it is not certain whether

115

everyone goes through all the intermediate steps. For example, the child

who went through the following sequence of strategies

CAF --> CAF & COL --> COL

does not seem to have gone through CAL and COF. There is a possibility

though, that she did go through them, but did not use them at the

interview. The detailed sequence in which each child's strategy transition

took place varies from another. There is only one sequence which was the

same for two children. Even for them, the time intervals after which the

transitions were observed were different.

The models in Table 4-2 would be able to describe each child's strategy on

any given problem. As in the case of the data for the pilot study, when

modelled over a set of problems, there would be more than one model that

describes the performance of those children who used more than one

strategy at a particular interview session.

PALM's production-rule models are not capable of modelling the transition

of strategies over time. The objective of the learning mechanism described

in the next chapter is to model the transition from one performance level to

another.

4.7 Discussion

With respect to the order in which a given 2- or 3-term problem is solved,

the models are capable of accounting for any individual's strategy.

However, more distinctions can be made between their strategies if details

like conceptual knowledge and the use of number facts are also modelled.

The models can be used for diagnosing a child's strategy at a particular

time. Although there are definite trends in the development of strategy, for

116

example from CAF to COL, PALM's production-rule modelling component

cannot model them. Models of learning are needed to explain such trends.

The efficiency estimates work very well for ordering the strategies that are

modelled, in terms of their relative efficiencies. However, this method of

estimating efficiencies may need revising when the other strategies are

modelled as well. It would certainly need revision in the strategies for

solving problems with operators like multiplication.

The internal details of the strategies, such as the one by one counting of an

addend, have not been implemented using rules. If this were done, then the

efficiencies of the strategies could be modelled using rule firings. This

would provide better justifications for arriving at efficiency values.

Furthermore, the simulation of efficiencies of strategies using traces of

rule firings would be able to take into account other strategies, for instance

informal methods, that have not been implemented in PALM. Such an

assessment of efficiencies could also be used for problem solving strategies

involving the other arithmetic operators.

Note that the production-rule models represent procedural knowledge only;

if there is any conceptual knowledge, it is assumed in the procedural

knowledge. Evidence from the empirical work reported in chapter 3 and

from other research (Hennessy, 1986; Resnick, 1983) strongly suggests the

need to make a distinction between these two types of knowledge. Self (1988)

highlights the need for student models to include descriptions of conceptual

knowledge in addition to purely procedural knowledge. For example, the

production-rule models of performance on 2-term problems tell us whether

a child copies an answer to a previous commuted problem or not. This

indicates that such children know and use the concept of commutativity,

but for those who do not use the concept, it does not tell us whether they

know it or not. This is one example where diagnosing a child's conceptual

. knowledge is important. One possible way to diagnose conceptual

knowl~dge is by modelling tasks that were presented to the students in the

117

empirical work, and the measures that were used to categorise the different

levels of the concept of commutativity (chapter 3). One such task was a pair

of subtraction problems, e.g. 5 - 3 and 3 - 5. If a child generalizes the concept

of commutativity to this problem, then it shows that s/he has some

understanding of the concept.

4.8 Summary

This chapter described some possible architectures for production systems.

Examples of existing production systems have been presented. The

components of PALM were introduced. Its interpreter, the process of

matching and conflict resolution strategies were described. The description

language for representing the input problems, the rules and items in the

working memory of the production system have been outlined. The

empirically identified strategies for solving addition problems have been

simulated using production rules. This also includes estimates

representing efficiencies of the strategies. The models are descriptions of

children's strategies at different levels of development. This does not

explain where the strategies in such models come from and how they got

there.

In the following chapter, an attempt to model the transition process from

one performance level to another, is discussed. The model begins with rules

representing the ability to solve 2-term problems (e.g. 3 + 4) as prerequisite

knowledge for learning. When presented with a 3-term problem like 3 + 4 +

5, which is of a type that has not been encountered before, PALM's current

rules are not adequate to solve it. As a result of this kind of failure, PALM

learns to solve the new type of problem.

118

Chapter 5

MODELLING LEARNING

5.1 Introduction

The last chapter was an account of the development of production-rule

models that describe children's strategies for solving arithmetic problems

related to the concepts of commutativity and associativity. The models

describe 'snapshots' of children's performance, that is performance at one

particular time only; they do not explain change in performance over time.

A model of learning or a model for transition from one snapshot to the next,

in addition to the production-rule models of the snapshots, would provide a

more complete model of children's behaviour. This chapter describes the

design and implementation of a model of learning for the transition from

one of the performance levels of arithmetic problem solving to another. The

computational model of the acquisition of procedural knowledge of

associativity uses knowledge of commutativity (procedural, at least) as

prerequisite knowledge. The model begins with rules representing the

ability to solve 2-term problems. When presented with a 3-term problem,

which is of a type that has not been encountered before, none of the current

rules are applicable. In this situation, PALM learns as a result of failure.

This is done by generalizing its existing rules. Once it has learnt to solve 3-

term problems, it is driven by the goal of learning more efficient strategies.

The learning part of PALM consists of 2 components:

i) Failure-driven learning, which occurs when there are no applicable

rules to solve a given problem. The program learns by generalization. For

example, it solves 3-term problems like 4 + 5 + 3 by generalizing its rules

for solving 2-term problems like 3 + 4.

119

ii) Efficiency-driven learning, an ACM-like (Langley, Ohlsson and Sage,

1984) learning component. It learns features of problems as conditions for

which two of the three numbers to add first, in order to solve the problem

most efficiently.

Failure-driven learning is based on the assumptions that experience and

previous knowledge facilitate learning and that learning takes place when

one is 'stuck'. Efficiency-driven learning assumes that learning is driven

by a search for a low effort solution.

The chapter is organized as follows. The first section of the chapter provides

an introduction to some of the types of machine learning techniques. This is

followed by an outline of the learning components of PALM and a

discussion on the motivation for the particular learning methods it

employs. The next section presents the computational details of the

learning mechanisms. The final section is a discussion of the learning

mechanisms and also includes suggestions for extensions of the

implementation.

5.2 Machine learning techniques

As outlined above, PALM includes learning by generalization (failure

driven learning) and by specialization (ACM-like operator applicability).

This section introduces three main types of learning that have been

addressed in the machine learning literature· learning from examples,

learning by analogy and explanation-based learning. These three types of

learning do not, by any means, cover all approaches to machine learning,

but do illustrate a representative sample. In previous machine learning

systems, the types of learning mechanisms that are in PALM are normally

incorporated within the method of learning from examples. Hence, it is this

type of learning that the discussion below covers in more detail.

120

5.2.1 Learning from examples

Learning from examples is the method of arriving at a rule, hypothesis or

description of a concept from a set of positive and negative examples.

Despite its apparent simplicity, the approaches to learning from examples

are nearly as numerous as the people who have worked on it (Langley and

Carbonell, 1984). Regarding the examples, some of the ways in which

systems that learn from examples differ are the type of examples, the way

they are presented and the number of examples. There are two

classifications according to the types of examples:

- systems that learn from positive examples only

- systems that learn from a set of positive and negative examples.

Along the dimension of the way the examples are presented, learning from

examples can be:

- one-trial

- incremental

In the one-trial method, learning is based on all the examples considered at·

onc~. Some learning from examples systems that employ the one-trial

method are Michalski's Star methodology (Michalski, 1983), ID3 (Quinlan,

1983) and ACM (Langley, Ohlsson and Sage, 1984). The incremental

method is where the examples are considered one at a time, and at each

stage, the previous learned rule or hypothesis is refined accordingly.

Examples of systems that employ this method are Winston's ARCH

program (Winston, 1975), SPROUTER (Hayes-Roth and McDermott, 1977),

Thoth (Vere, 1977) and the version spaces (Mitchell, 1977, 1978, 1982).

Incremental learning methods provide much more plausible accounts of

the human learning process (Langley and Carbonell, 1984; Langley,

Ohlsson and Sage, 1984).

121

The third, minor distinction regarding examples is the number of

examples. This varies along several dimensions; for example, the objective

of the learning system, its application, the precision of the learning

outcome, the availability of examples and the task domain. A special case of

learning from examples is explanation-based learning (described in section

5.2.2 below), which requires only a single example.

Furthermore, within the learning from examples approach, systems can

differ in their detailed mechanisms for learning. There are two main

mechanisms for learning: discrimination and generalization.

Discrimination

Discrimination (or specialization) is a mechanism for learning that

involves the creation of a new rule, or modification of an existing one, so

that it is less general than an existing rule, while still retaining the same

actions. When using a set of positive and negative instances to arrive at a

description that covers the positive instances, learning by specialization is
,

usually used to make the description specific so that it does not include the

negative examples. Discrimination-based learning programs normally use

discrimination networks for representing knowledge. Some examples of
•

such systems are ID3 (Quinlan, 1983), which is a descendant of CLS (Hunt

et al., 1966) and ACM (Langley, Ohlsson and Sage, 1984). Figure 5·1 shows

a discrimination network representing the concept black or (not black and

circle). '+' means that all the instances at that node are positive and '.'

means all the instances are negative.

122

-Circle

o 0

Figure 5·1. A sample discrimination network

The discrimination network representation is used to arrive at a hypothesis

that discriminates the positive instances from the negative ones in a given

set of instances. Discrimination begins at the top node of a network, and

proceeds with one branch at a time. In the example above, the system

would begin with the black or not black branch. Next, it would create a

branch coming from one of the new nodes, if necessary. The tree grows

downward until terminal nodes are reached which have either all positive

or all negative instances. The path(s) leading to the 'all positive' nodes form

the description of the concept.

Generalization

\

Generalization is a mechanism of learning which involves creating a new

rule, or modifying an existing one, so that it is more general than an

existing one, while the actions remain the same. The term generalization

is also used for the process of arriving at a rule or hypothesis that describes

a set of instances of a concept. Positive and negative instances are used in a

different manner from the way they are used in discrimination-based

learning. Rather than looking for differences between positive and negative

instances, generalization-based learning looks for features held in common

by all positive instances. Examples of learning from examples systems that

learn by generalization include SPROUTER (Hayes-Roth and McDermott,

1977), Thoth (Vere, 1977) and Winston's program for learning structural

concepts such as 'arch' (Winston, 1975).
«

123

There are several ways of implementing generalization. Some of these are:

i) Dropping condition rule - to generalize a conjunction, drop any of its

conjunctive conditions. For example, given the current description of a

class of objects, black, large and circle and a new instance, white, large and

circle, the description can be revised by dropping the condition for the

colour of the objects. Hence, the generalized description, large and circle

covers the new instance.

ii) Turning constants to variables. In the above example, the concept

description could be generalized by turning the constant black to a variable:

?colour, large and circle

iii) Adding disjunction rule - to generalize a conjunction, change it to a

disjunction. To include the new instance in the above concept description, it

could be generalized by adding a disjunction:

(black, large and circle) OR (white, large and circle).

iv) Climbing generalization tree rule. For example, using the

generalization tree in Figure 5-2, an instance including triangle and
•

another including rectangle in their descriptions can be generalized to

polygons.

124

polygons

/ \
triangle rectangle

square

Figure 5-2. A generalization tree

Further and more detailed rules of generalization are described in

Dietterich and Michalski (1983) and Michalski (1983).

5.2.2 Explanation-based learning

Explanation-based learning (EBL) is a technique for obtaining generalized

concept definitions based on an analysis of one example only, using a set of
i

facts about the domain. The facts include abstract rules of inference about

the domain. A high level description of the target concept (goal concept) and

a definition of what an acceptable concept definition (ope rationality
't!

criterion) would be is also provided. EBL works by constructing

explanations of why the training example satisfies the goal concept. This is

done by expanding the terms in the high level description until all the

terms in the description meet the operationality criterion. Then the

explanation is generalized to form a rule which is capable of matching

instances of the goal concept. In brief, the goal of EBL is to redefine a given

concept in operational (usable) terms.

Table 5-1 presents an example for learning the concept cup, borrowed from

Mitchell, Keller and Kedar-Cabelli (1986).

125

Table 5-1. An example of the EBL approach

Giyen:

- Goal concept: The concept of a cup:

open-vessel(o) & stable(o) & liftable(o) --> cup(o)

- Training example:

part-oft:obj1, concavity-1)

isa(concavity-1, concavity)

is(concavity-1, pointing-up)

part-oft:obj 1, bottom-1)

is(obj 1, light)

- Domain theory:
i

is(x, light) & part-oft:x, y) & isa(y, handle) --> liftable(x)

part-oft:x, y) & isa(y, bottom) & is(y, flat) --> stable(x)

part-oft:x, y) & isa(y, concavity) & is(y, pointing-up) --> open-vessel(x)

- Operationality criterion: The concept must be defined in terms of predicates used in the

example.

Determine: An operational description of the goal concept that covers the training

example.

126

Note that the domain theory contains at least one rule with 'cup' in the

right-hand-side, and that it contains rules which mention features from

the training example in the left-hand-side. Both are necessary in order to

generate an operational definition of the concept.

The basic approach to generalization involves two steps:

i) Explanation - the domain theory is used to construct an explanation that

proves that the training example is a positive instance of the goal concept.

Figure 5-3 presents an explanation for the training example of the concept

'cup' given in Table 5-1. Note that the top node in the explanation tree refers

to 'cup', and each of the terminal nodes refer to propositions in the training

example. If a proposition was missing in the training example, then the

explanation of the concept would not be complete. For example, if part-of(x,

y), was missing, then the description stable(objl) would not have been

achieved, and hence the goal concept would not be able to be explained.

open-vessel(objl)

part-of(objI. concavity-I)
isa(concavity-I, concavity)
is(concavity-I. pointing-up)

cup(objl)

stable(obj I)

part-of(objl. bottom-I)
isa(bottom-I. bottom)
is(bottom-l, flat)

liftable(obj 1)

is(obj 1. light)
part-of(objl. handle-I)
isa(handle-I. handle)

Figure 5-3. Explanation for an instance of 'cup'

127

ii) Generalization - the terminal nodes are transformed into a set of

conditions under which the explanation will hold. The most general

version of the explanation in step i) which is consistent with the domain

theory is achieved using generalization rules like replacing constants with

variables.

The operational definition of the concept in Table 5-1 from the explanation

in Figure 5-3 is as follows:

part-oft x, xc) & isa(xc, concavity) & is(xc, pointing-up)

& part-of(x, xb) & isa(xb, bottom) & is(xb, flat)

& part-oftx, xh) & isa(xh, handle) & is(x, light) ---> CUP(x).

The EBL approach has several advantages. Firstly, it requires only one

example; negative examples are not required at all. Secondly, a justification

is provided for the concept description that is generated. Finally, it is

capable of handling noisy data, since these will be identified in the

explanation process. Provided the domain knowledge is complete, if an
,

explanation cannot be constructed, it would imply that the data (example) is

noisy. The approach also has some disadvantages. Firstly, it requires

significant domain knowledge, which restricts its application to domains
~ ,

where such knowledge is available. Secondly, as pointed out by DeJong and

Mooney (1986), the generalization obtained from one example only can be

biased or specific to that particular training example.

"It often does not generalize the new concept far enough from the

particular training example. The result is undergeneralizations that

reflect many unimportant details of the example problem." (DeJong

and Mooney, p. 146).

Current development of research on learning from examples incorporates

EBL in order to benefit from both approaches. Some of the limitations of the

128

explanation-based approach can be counteracted by the learning from

examples approach and vice-versa. Some of the approaches that have been

used for combining EBL with learning from examples are:

i) Applying learning from examples to obtain· a set of possible

generalizations. This set is then pruned and refined using EBL, to obtain

an explained/justified (in terms of domain theory) generalization. An

example of a system utilizing this approach is UNIMEM (Lebowitz, 1986a,

1986b).

ii) Applying EBL to each example and learning from examples to the

resulting generalized examples. Such an approach is employed in the WYL

program (Flann and Dietterich, 1986).

5.2.3 Learning by analogy

Learning by analogy is the process of applying existing knowledge to a new

domain by recognizing similarities between the two domains, and then

finding the transformation that when applied to information in the

previous domain, will yield new information that works in the new domain.

There are two main ways in which analogy has been applied to problem
~ \

solving. Figure 5·4 illustrates the first one, called transformational

analogy, in which the solution to an existing problem is transformed onto

an analogical one. The method matches an old problem similar to the new

one and transforms the final solution to the old problem to the new one. The

match between the two problems is used to guide the transformation

process. The procedure for reaching the solution to the old problem, that is,

the mapping between the old problem and its solution is ignored; it is a

solution to solution mapping. Problem solving using this type of analogy

has been explored by Carbonell (1983).

129

new problem

solution to old problem

old problem

analogIcal mappIng A

--------I.~ solution to new problem

transformatIon of analogIcal
mappIng A

Figure 5-4. The process of transformational analogy

The second method is called derivational analogy. The basic idea is

illustrated in Figure 5-5. Unlike the previous method which transforms the

solution to the existing problem onto the new problem, this method

considers two things: an analogy between the two problems, and a

derivation of the solution of the old problem. It then replays the derivation to

solve the new problem. This type of analogy has been examined by

Carbonell (1986).

~ I

old problem

analogical
mapping

new problem

solution to old problem

derIvation 0

solution to new problem

replay of derIvation 0

Figure 5-5. The process of derivational analogy

130

5.3 Learning mechanisms in PALM

In this section, the choice of the learning mechanisms in PALM and the

motivation for the choices, based on the empirical work are discussed. An

introduction to the learning components of PALM is provided first.

5.3.1 Outline of PALM's learning components

As mentioned in the previous chapter, PALM has two major components.

The learning component is an extension of its production-rule modelling

component, discussed in chapter 4. PALM's cycle of matching rules to

working memory items, conflict resolution strategies, etc. remain the same

with or without the learning component being active. The motivations for

learning are failure and minimizing the amount of work required, i.e.

efficiency. Failure-driven learning occurs when PALM has rules for

solving 2-term problems, like 4 + 5, but does not have rules for solving 3-

term problems, like 5 + 7 + 6. After learning to solve 3-term problems,

PALM learns more efficient strategies, like grouping. Figure 5-6 is an
i

outline of the learning components of PALM. It shows efficiency-driven

learning being applied to 3-term problems. Note that it could be applied to 2-

term problems as well . . \

131

Failure-driven
learning

Efficiency-driven
learning

Figure 5-6. The learning components of PALM

Failure-driven learning

Learning in PALM is driven by failure when there are no rules that are

applicable to its current problem-solving state. The program tries to adjust

its existing knowledge to apply to the new situation. After solving 2-term

problems, when faced with a 3-term problem, like 3 + 4 + 5, none of its

current rules are applicable. The existing knowledge in this case is the set . \
of rules for solving 2-term problems. An example of such a rule is:

(number a x) (number by) (adjacent x y) (not (used a x))

(not (used by)) ---> (do addition)

The above rule adds two numbers that are adjacent to each other. It applies

to 3-term problems to get only a partial solution. For example, for the

problem 5 + 4 + 5 (represented as (number 1 5) (number 2 4) (number 3 5)),

the rule applies to 5 + 4. The next step is to add the resulting 9 and the

remaining 5. PALM is not able to do this because the two numbers are not

132

adjacent to each other. As a result of this failure, PALM learns to complete

the solution to such 3-term problems by generalizing its existing rules.

Efficiency-driven learning

As a result of the failure-driven learning, PALM is able to add numbers

that are not necessarily adjacent to each other. For example, for the

problem above, it can now add the two 5's together first. The program

learns strategies that are more efficient than those it already knows. To do

this, it draws on children's number facts. The goal is to apply number facts

to select which two of the numbers in a 3-term problem to group and add

first. The system begins with general rules representing basic strategies for

solving 3-term addition problems, and a set of operators, like (equal x y),

representing children's number facts. It tests whether an operator is

applicable to a given problem. If it is, then that operator becomes an

additional condition of the initial rule which adds two numbers. Hence the

learning problem is one of finding conditions where the number facts are

applicable. This is discussed in more detail in section 5.4 under

computational details.

5.3.2, Choice of learning mechanisms in PALM
<

The learning mechanisms in PALM are closest to learning from examples.

More specifically, they could be seen as an incremental method of learning .
from examples, and concentrate on the first example only. In the

discussion that follows, some of the reasons for not using analogy and

explanation-based learning are highlighted.

The transition being studied here is that from the ability to solve 2-term

problems to that of 3-term problems. To solve 3-term problems, children

'split' them into two 2-term problems. This process does not appear to be

analogy. It seems more likely that it is generalization. Furthermore, for

133

analogy to be applied, the problems must be fairly close to each other. All

current analogy systems involve a one-to-one correspondence such that

each element maps to another. Referring to a similar kind of problem with

analogy that is addressed here (matching two problems with different

numbers of addends), Keane (1988), argues that most current analogy

theories face the difficulty of not being able to match two relations with

different numbers of arguments, even though they may be very similar. For

example, for the problems, 3 + 5 and 2 + 7 + 4, analogy would require

mappings between 3 and 2, 5 and 7, and similarly an item that would

correspond with the 4. Since there is no corresponding element that could

represent a mapping for 4, computational analogy could not be applied

between 2-term and 3-term problems.

The learning mechanisms in PALM share two features in common with

explanation-based learning. First, they both use only one positive example.

Second, both EBL and the mechanisms in PALM use domain knowledge.

Note that domain knowledge in PALM serves a slightly different purpose to

its role in EBL. In failure-driven learning, domain knowledge is knowledge

of ability to solve 2-term problems, which is used to solve 3-term problems.

In efficiency-driven learning, domain knowledge is existing knowledge

which is used to learn more efficient strategies. Explanation-based

learning proper is not used here because our aim is to solve a new type of

problem, and not to generalize the description of the example problem.

Failure-driven learning: generalization

Children who use the linear strategy for solving 3-term problems

generalize from their previous knowledge of solving 2-term problems to add

the first two numbers. Then they write the sum of the first two addends and

the third addend as another 2-term problem. For example,

134

4+7+5=

4+ 7 = 11

11+5 = 16

4 + 7 = 11 is a generalization of 2-term addition. The transition from the

'count on from larger addend' (COL) strategy on 2-term problems to the

grouping strategy on 3-term problems provides more evidence of

generalization. Ignoring addend order on 2-term problems leads to

ignoring addend order on 3-term problems. For example,

3 + 8: 9, 10, 11

5 + 7 + 5: 5 + 5 = 10: 10 + 7 = 17

Further evidence for generalization from the empirical work reported in

chapter 3 is provided by subtraction problems where the minuend is

smaller than the subtrahend (e.g. 3 - 5). Performance on such problems

revealed children's generalization of their existing problem solving

knowledge to solve a new type of problem. This is strong evidence for the

possibility of generalization from 2-term to 3-term problem solving.
:

Furthermore, there is ample evidence from previous research of children

using generalization in their problem solving. For example, in subtraction, . '
there is evidence of students who always borrow after having consistently

seen examples requiring borrowing (VanLehn, 1987). Matz (1982) and

Sleeman (1984) provide evidence of generalization in the domain of algebra.

PALM's generalization mechanism considers learning from a single

example. This choice has been influenced by previous research which

suggests the validity of generalization from a single example (Ahn,

Mooney, Brewer and DeJong, 1987; Anderson, 1989; Elio and Anderson,

1981).

135

Finally, generalization has been chosen, as opposed to discrimination,

because only a positive example is considered. Negative examples are not

considered and hence there is no need to discriminate between positive and

negative examples.

Efficrency-driven learning: condition learning

The choice of the condition learning mechanism in PALM has been

influenced by condition learning in ACM (reviewed in chapter 2), and by

Langley's (1987) theory of discrimination learning. Both ACM and

Langley's theory use the production-system formalism, where learning is

modelled by creating new rules. A set of general rules representing an

initial problem solving state and a set of conditions for generating a new

state are provided. The learning problem is then one of finding the

conditions, and to which problem state they should be applied. Conditions

are learnt in order to form new rules which are more discriminant than

the initial set. A rule is a discriminant version of another when the first

rule has conditions that are special cases of the second, and the action sides

of the two rules are the same.

The second motivation for choosing the learning mechanism in efficiency

driven learning is the use of existing knowledge (Le. number facts) to reach

a more advanced stage in problem solving. This existing knowledge is

represented as the set of conditions that is provided to the learning system.

As children gain more experience in solving arithmetic problems, their

strategies become more efficient. Furthermore, as the strategies become

. more efficient, they include more number facts. In the empirical studies

reported in chapter 3, there was substantial evidence of children using

strategies based on number facts. For example, for the problem, 4 + 5 + 4,

performing 4 + 4 first was a common strategy. When asked why they had

chosen to do the 4 + 4 first, a common reply was "because I know 4 and 4".

136

On a problem like 3 + 6 + 4, children who chose to do 6 + 4 first explained

"because I know that 6 + 4 = 10" or "because that makes 10" or "because it is

easier to deal with a 10", and so on. Further empirical evidence of children

using number facts in their strategies will be quoted in the following

sections.

5.4 Computational Details

The basic outline of the learning mechanisms in PALM was presented in

section 5.3.1 above. This section provides details of the two learning

mechanisms.

5.4.1 Failure-driven learning

The implementation of sets of production rules that represent strategies for

solving problems like 3 + 5 and 6 + 4 + 7 in PALM was described in chapter

4. Such problems are given as input to the production system, and the

interpreter selects and executes the appropriate rules for solving them. It is

able to solve those types of problems for which it has explicit problem

solving rules. However, when a different type of problem is encountered, it

is not able to solve it because it does not have rules for solving this . '
particular type of problem. The way PALM solves such closely related, new

types of problems is discussed in this section.

Failure-driven learning in PALM takes place when PALM does not

complete solving a given problem. Completion of the problem solving is

determined by reaching the ends tate, that is arriving at an answer to the

problem. When PALM has not successfully completed solving a problem,

and it does not have any more rules that match the current problem solving

state, it learns by restructuring its existing rules. It generalizes its rules to

apply to the current problem. We shall assume that PALM is capable of

solving 2-term problems only, and not 3-term problems. Hence, PALM does

137

,II

not contain rules for solving 3-term problems. The following set of rules is a

model for one of the strategies for solving 2-term problems:

(number il x) (number i2 y) (adjacent x y) (not (used il x)) (not (used i2 y))

---> (col il x i2 y)

(col il x i2 y) •.. > (rn coladd il x i2 y)

(addd il x i2 y) ---> (rn addd x y) (used il x) (used i2 y)

Given a 3-term problem, PALM applies its 2-term rules in an attempt to

solve it. The following is a trace of the actions after the above rules are

executed for solving 7 + 15 + 6. The function SSTART starts the execution of

the program.

(SSTART '((number 1 7) (number 2 15) (number 36»)

1) (adjacent 7 15)

2) (coIl 7 2 15)

3) (addd 2 15 1 7)

4) (number 0 22) (used 2 15) (used 1 7)

t I

The first step is a result of the knowledge of adjacency:

(number 1 x) (number 2 y) ••• > (adjacent x y)

The program stops after the 2-term rules solve 7 + 15. As discussed in the

last chapter, there are two reasons for the interpreter coming to a 'halt'.

Firstly, if the problem has been solved, and secondly if there are no more

applicable rules. In the example above, the program stops because of the

latter. The working memory at this state is as follows:

138

((number 022) (used 2 15) (used 1 7) (addd 2 15 1 7) (coIl 72 15)

(adjacent 7 15) (number 1 7) (number 2 15) (number 3 6))

In order to complete solving the problem, (number 3 6) and (number 0 22)

need to be added. The first rule above should match with these two

numbers, but it cannot since 22 and 6 are not adjacent to each other. PALM

generalizes its rules by dropping a condition from one of its rules. The

dropping condition generalization rule has been chosen because of its

simplicity, and because of its applicability to the particular transition that is

studied here.

In order to choose a condition to drop, PALM assesses the conditions of its

rules to find those that probably caused the premature halt of the system.

This is done by evaluating whether the conditions of rules match the

current state or not. The preferred conditions to drop are those that do not

match, since it is likely that if these conditions had matched, then the rule

containing the conditions could have fired. In the current implementation,

only one such condition in a rule can be dropped. A condition can only be

dropped if it is the only one in the selected rule that does not match. This is

because when there are several possible conditions to drop, there is no

principled way of choosing which one(s) to drop. Furthermore, in such a

case, all the conditions that do not match will need to be dropped for the rule

to be able to 'fire'.

Another reason for dropping only one condition is that the aim of the

program is to create as little change in the original rule as possible, so that

it applies to the problems it could solve previously as well as to the new type

of problem that it is trying to solve. Since it is learning by generalization,

and since the new problem is quite similar to the previous problems,

minimum change to the original rule is desired.

If there is more than one rule whose condition can be dropped, then PALM

chooses the first rule. The first rule is chosen because the rules in the

139

ruleset are ordered. Rule ordering is one of the conflict resolution strategies

in PALM (see chapter 4). The firing of the later rules usually depend on the

earlier ones. Hence, if the earlier ones do not fire, then it is probable that

this is the reason for the later rules not having items in the working

memory to match to.

Once a condition is dropped and the rule is amended, the interpreter

continues its cycle of matching, selecting and executing its rules. If the.

changed rule becomes applicable then the problem solving continues from

the point where the program had 'halted'. If it is not applicable, then the

changed rule is replaced by the original one, and the next rule to generalize

. is chosen until an amendment of a rule leads to all its conditions being

satisfied. If this does not succeed, then PALM is not able to complete solving

the given problem.

In the above example, the process of finding out whether the conditions of

the current set of rules have matching working memory items or not

returns:

((yes yes no yes yes) (no) (no))

The three lists correspond to the three rules representing a 2-term strategy:
t \

(number il x) (number i2 y) (adjacent x y) (not (used il x)) (not (used i2 y))

---> (col il x i2 y)

(col il x i2 y) ---> (rn coladd il x i2 y)

(addd il x i2 y) ---> (rn addd x y) (used il x) (used i2 y)

The lists show that the third condition in the first rule, and the only

conditions in the other two rules do not match. The first rule that has a 'no'

is the rule that is selected to be amended. The 'no-condition' of this rule is

deleted and the interpreter then checks if it is applicable. By dropping the

140

third condition in the first rule (i.e. the adjacency condition), the rule

becomes applicable. The set of rules is reset with the first ru1e amended to

(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y))

---> (col il x i2 y).

The interpreter continues with the cycle of matching, selecting and 'firing'

rules, producing the following output:

(colO 22 3 6)

(addd 0 22 3 6)

(number 028) (used 0 22) (used 36)

The interpreter at this stage works out that the problem has been solved,

and hence comes to a halt. The final number, 28, is the solution to the

problem.

5.4.2 Efficiency-driven learning

After the failure-driven learning, the system is able to solve 3-term

problems. Since the numbers do not have to be adjacent to each other, the

three numbers can be added in any order. In order to use an efficient

strategy, PALM learns specific conditions to choose which two of the three

numbers to add first. To begin with, there is a set of initial problem-solving

rules which represent the linear strategy, a set of operators that represent

children's known facts and a given 3-term problem. The set of operators are

derived from the empirical studies of children's arithmetic problem

solving. The goal of the efficiency-driven learning is to combine the initial

problem solving knowledge and the known facts to achieve a strategy that is
.

more efficient than the initial ones. The following is an example of a rule

representing an initial strategy:

141

(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y))

---> (fn col il x i2 y).

The condition sides for all the initial problem solving strategies are the

same. The action sides include the 2-term addition strategies, COL (rule

above), COF, CAL, CAF and 'lookup answer'. Two such 2-term strategies

are applied to solve a 3-term problem using the linear strategy.

Presented below are some examples of operators representing number facts

that children use for 'shortcut' in their strategies. They are derived from

children's grouping strategy for solving 3-term problems.

1. (equal x y) - two of the three numbers are the same. For example, for a

problem like 6 + 9 + 6, children were often observed to do 6 + 6 first. Their

explanations for finding the sum of two equal numbers first were of the type

"because I know that 6 and 6 are 12" and "because I already know that one,

I do not have to count".

2. (equal (x + y) 10) - two of the numbers add to 10. For example, a problem

like 3 + 4 + 6 using grouping strategy was often solved by doing 4 + 6 first.

Explanations of this choice included "because I know that it makes 10",

"because it is easier to add to 10" and "because it makes 10 and it is easier to . '
deal with 10".

3. (equal (x or y) 1) - one (or more) of the numbers is '1'. For example, some

children solved 4 + 7 + 1 by doing 7 + 1 first. When asked why they had

chosen to do that first, the replies included "because it is easier to do that

first" and "because it is just 1 number more than that (referring to 7)".

4. (equal x (y + 1» - one of the numbers is 1 more than another. For

example, Freda solved 7 + 4 + 5 by solving 4 + 5 first:

"I pretend that the 4 was 5

142

5+5 = 10

10 -1 = 9"

5. (equal (x + y) z) - the sum of two of the numbers equals the third. For

example, some children who solved 2 + 4 + 6 as 6 + 6, that is by solving 2 + 4

first, gave explanations like "I know that 6 and 6 are 12, ... and that

(referring to 2 + 4) gives 6".

PALM learns to apply these operators as conditions for efficient problem

solving. Given an input problem, the efficiency-driven learning algorithm

works as follows. The operators are tested against the problem to select

those that are applicable. The selected operators are added as additional

conditions to the left hand sides of the rules for each strategy. The problem

is then solved using each strategy, and their efficiencies are compared. The

efficiencies are computed in the same way as in chapter 4. The rules

representing the most efficient strategy are added to the list of rules, and

the inefficient ones are eliminated. If there is more than one equally

efficient rule, then all of them are added to the ruleset, and when the

problem is solved, one of these rules is chosen. Note that the initial, more

general rule is not replaced, since the newly learned rule only applies in

specific cases. The operators that have been used are deleted from the list of

operators, since rules containing them as conditions are already in the

ruleset. When the next problem is presented, PALM repeats the process of

finding applicable operators, adding the new rule(s), if any, to the ruleset,

deleting the used operator from the list of operators and then solving the

problem.

For example, initially, the problem 5 + 7 + 3 would be solved using the

linear strategy, that is by adding the 5 and the 7 first. After testing each of

the operators, (equal (x + y) 10) is the only one that is applicable. It is added

as a condition to each of the strategies. The new rule for the 'lookup

answer' strategy, for example, is

143

(number il x) (number i2 y) (not (used il x)) (not (used i2 y))

(equal (x+ y) 10) ---> (fn lookup il x i2 y).

The input problem is then solved using all possible combinations of 2-term

strategies. Some of the combinations for solving 5 + 7 + 3 are:

i) lookup 7 + 3 followed by lookup 10 + 5

ii) lookup 7 + 3 followed by COL 10 + 5

iii) lookup 7 + 3 followed by CAL 10 + 5

iv) COL 7 + 3 followed by COL 10 + 5

After trying out all combinations, 'lookup 7 + 3 followed by COL 10 + 5' is the

most efficient combination of strategies. This follows from the assumption

that 10 + 5 is not known as a number fact. If it was known, then' lookup 7 +

3 followed by lookup 10 + 5' would have been the most efficient combination.

The two 2-term rules representing the most efficient combination for this

problem are

(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y))

(equal (x + y) 10) ---> (fn lookup i1 x i2 y)

(number i3 x) (number i4 y) (not (used i3 x)) (not (used i4 y))

---> (fn col i3x i4 y).

5.5 Discussion and further work

5.5.1 Psychological plausibility

Ideally, a model of learning of the mechanisms for transition from one

snapshot of human behaviour to the next should be psychologically valid.

144

There is no claim that the models described in this chapter satisfy this

criterion. However, an attempt has been made to make them as plausible as

possible. The empirical work was used to guide the algorithms and to

match outputs of the models. The prerequisite or domain knowledge, for

example the operators for efficiency-driven learning, was compiled from

children's protocols. The end-products of the learning models are

simulations of children's performance.

The failure-driven learning models a mechanism for the transition from

ability to solve 2-term problems to that of 3-term problems. No explanation of

this type of transition has been provided in the past. The generalization

mechanism described above is one hypothesis for such a transition. In the

empirical work, children showed evidence of the use of knowledge of 2-term

problems for solving 3-term problems. The transition from 2-term

strate~es to the 3-term linear strategy was discussed in section 5.3.2 above.

The dropping adjacency condition rule for generalization was supported by

some children's performance, for example, Craig's protocols from the

longitudinal study (chapter 3). The first time that children were observed

solving a 3-term problem, most of them used the linear strategy. However,

there were also a few children who were observed to use the grouping

strategy. Craig's protocols suggest a possibility that the first time children

encounter a 3-term problem, they do not necessarily apply the linear

strategy. The first two interview sessions during the longitudinal study that

Craig was given a 3-term problem, he could not solve it.

E:4+6+4=

Craig: I don't know.

E: I know you know it. Have you ever seen this kind of problem
before?

C:No

145

On the next session, less than three weeks later, he used the grouping

strategy. It is improbable that Craig encountered a 3-term problem between

the interview sessions. It is also improbable that he used the linear strategy

during that time, and then changed strategy to grouping.

E: 3+4+3 =

Craig: 10

E: How did you do it, Craig?

Craig: I knew that 3 and 3 are 6, I left the 4 out until the end.

Furthermore, at the interview sessions when Craig did not know how to

solve 3-term problems, he used the 'count all starting from the first addend'

strategy (CAF) for solving 2-term problems. On the following session, he

used grouping and the 'count all from the larger addend' strategy (CAL).

There are two possible explanations for his transition from not being able to

solve 3-term problems to solving them using the grouping strategy. Firstly,

it could be that he learnt that the order in which the problem was written

did not matter, and hence they could be solved in any order. For 3-term
!

problems, 'the problem could be solved in any order' is represented in

PALM as 'dropping the adjacency condition' since by dropping this

condition, PALM is able to add the three numbers in any order. Secondly,
•

he could have had some sort of 'adjacency' representation of the problem

which did not allow him to solve 3-term problems before, and now,

'dropping the adjacency' representation allowed him to solve the problem.

With either possible explanation of his cognitive processes, the dropping

adjacency condition rule models the transition. Further empirical work

might be able to support the validity of the transition modelled in PALM.

Such empirical work would pay particular attention to those children who

are able to solve 2-term problems but are not able to solve 3-term problems,

and would be aimed at finding the 'gap' between the two states.

146

For the efficiency-driven case, the end-products are consistent with the

behaviour observed in children. After learning the conditions, PALM's

strategies for solving 3-term problems are the grouping strategies that

children were observed using. Moreover, the conditions in the learnt rules

account for the reasons that children gave for the particular order in which

they solved the problem. Even when children gave explanations like

"because it is easier to do that first" (and the experimenter did not succeed

in persuading the child to make an explicit statement on why that

particular choice was easier), their choices of the numbers they added first

could be explained by the use of operators such as those used for learning in

PALM.

In sum, the models of learning in PALM may not necessarily be the only

ones that could explain children's cognitive processes in the specific

domain of 3-term problem solving. Detailed investigations of other learning

mechanisms such as analogy and explanation-based learning, and their

applicability to this domain might lead to using them as alternatives for

modelling. For example, as a test for the plausibility of learning by analogy,

empirical work can be carried out to study whether children use analogy

with previous problems. This could be investigated through a sequence of

problems; for example,

3+5=8

6+3+5=

Another specific type of problem where analogy could be applied is on

commutative problems like 4 + 7 and 7 + 4. The 'copy answer' strategy for

the second of such pairs of problems could be interpreted as the use of

analogy. The statements made by children who used this strategy, like "it's

the same as that one" suggest the use of analogy.

147

5.5.2 Failure-driven learning

Rules in PALM are generalized by deleting conditions. Deleting conditions

does not necessarily generate rules that produce correct behaviour, but only

a rule that is applicable. However, this is not a limitation of the system

since generalizations that do not result in correct behaviour may account

for children's generalization errors. For example, on 2-term commutative

problems, dropping the addition (+) operator accounts for children's

generalization of the concept to subtraction. This kind of generalization

technique can be used in an ITS for generating possible generalizations

that children can make. The correct generalization, from the point of view

of the ITS would be the one that matches its student's generalization. The

implications of such generalizations for ITS is discussed further in the next

chapter.

The empirical investigation in chapter 3 did not resolve how the transition

from 2-term to 3-term strategies takes place. Furthermore, it is difficult to

investigate this transition empirically since children either know 3-term

addition or they do not know it. There isn't anything like 'they know 2 and a

1/2 term .. .'. The computational model of learning by generalization is one

hypothesis for a mechanism for the observed transition. This mechanism
t '

and the results of the empirical work can be used as a pilot for designing

further empirical work to investigate the transition in more detail and to

provide feedback on the model.

There are some similarities between the failure-driven learning in PALM

and the impassse-driven learning proposed by VanLehn (1988). Firstly, both

methods assume that learning occurs at 'impasses'. Learning occurs

when the current knowledge base is insufficient to solve a given problem.

VanLehn argues further that it is not just any incompleteness that causes

learning. For learning to take place, problem solving must require a piece

of knowledge that the problem solver does not possess. In PALM, failure-

148

driven learning occurs when there are no explicit rules for solving certain

types of problems. Secondly, after learning, both in PALM and in the case of

impasse-driven learning, the problem solving procedure continues from

where it was stuck.

5.5.3 Efficiency-driven learning

Condition learning

As a result of learning the conditions for efficient problem solving, the

position of the learned rules in the set of rules is important. The learned,

specific rules need to be executed in preference to the more general ones

from which they were derived. In PALM, as new rules are learnt, they are

added at the the beginning of the list of rules. This is because one of the

conflict resolution strategies in PALM is rule ordering. Mter applying the

other resolution strategies, rule ordering selects the first rule, which, as a

result of the order of the rules in the ruleset, is one of the most specific rules

in the conflict set. If PALM's conflict resolution strategies included rule

specificity, then there would not be any restriction on where in the list of

rules the new rules that it learns are placed. Rule specificity would select

specific rules over more general ones. An immediate improvement on the

implementation of PALM would be to include rule specificity as an

additional conflict resolution strategy. In PALM, a simple measure of

specificity could be the number of conditions in a rule. A rule with more

conditions would be more specific than another with fewer conditions. For

example, the first rule below is more specific than the second one.

(number i1 x) (number i2 y) (not (used i1 x)) (not (used i2 y))

(equal (x + y) 10) ---> (rn lookup i1 x i2 y)

(number i1 x) (number i2 y) (not (used i1 x)) (not (used i2 y))

---> (rn col i1 x i2 y).

149

In the method for finding conditions for grouping two of the numbers in a 3-

term problem, only 1 condition has been considered at a time. An obvious

extension to this method is to allow the addition of more than one condition.

For example, 6 + 4 + 4, satisfies two of the conditions, (equal 4 4) and (equal

(6 + 4) 10). In this case, learning more than one condition provides a more

specific description of this particular type of problems. The choice of which

two numbers to add first in such problems can be represented in the action

part of the rules.

The idea of finding specific conditions is similar to that of ACM. However,

ACM learns by discrimination because it has negative instances as well. In

PALM's condition finding process, there are only positive instances, since

its focus is on different strategies, and not incorrect ones. Furthermore,

ACM learns by discriminating positive instances of an operator from its

negative instances over a set of examples. PALM, on the other hand

considers only one example and one that is a positive instance.

Strategy Composition

Composition is the process of combining multiple steps into one. Strategy

composition is the learning process where two rules are combined to make
t '

a new one. The composition algorithm in ACT* (Anderson, 1983) can be

described as follows. New rules are generated by combining old ones. The

conditions of the old rules are combined to form the conditions of the new

rule. The actions of the old rules are combined into a sequence of actions in

the new rule. The resulting composition is a single new rule that

accomplishes the combined effects of the old rules. Anderson (1983) and

Neves and Anderson (1981) provide evidence of the psychological plausibility

of composition. For example, composition accounts for speedup of a skill

with practice. In this section, the application of composition to 3-term

strategies as an extension of PALM's efficiency-driven learning is

discussed.

150

In PALM, 3-term problems are solved by applying two 2-term strategies, (or

one 2-term strategy twice). PALM could employ an ACT*-like knowledge

composition algorithm (Anderson, 1983, 1986) to combine two 2-term

strategies that solve 3-term problems. The composition algorithm could be

applied in order to make an explicit 3-term strategy. The whole condition

side of the combined rule would become a 2-term strategy and the action

side would represent the remaining 2-term strategy. This would make

PALM's problem solving process more efficient, since it would not have to

apply its cycle of rule matching, conflict resolution and executing the

selected rule twice. It is also consistent with children's strategies for

solving 3-term problems. Although they solve the problem using two 2-term

strategies, they do not perform an addition on two terms and then decide to

do another 2-term addition. Instead, before they perform any addition, they

know how they are going to solve the problem. They know in advance that

they are going to perform two 2-term additions.

Furthermore, in the condition-learning mechanism described above, 3-

term problems are solved using two separate rules. The strategy used for

solving a given problem may not necessarily be the most efficient one, since

the overall strategy is not known until the problem is solved. The efficiency

of only the first 2-term addition is known. The overall efficiency then
•

depends on the remaining 2-term strategy. However, if the two 2-term

strategies were combined as one strategy, then the overall efficiency of the

3-term strategy can be computed. The possible combinations of 2-term

strategies would lead to 3-term strategies with different efficiencies. Hence,

in choosing the most efficient strategy, the overall efficiencies of the

different 3-term strategies can be compared.

In the process' of solving a given problem, a pair of rules which are

executed one after the other and where the execution of one depends on the

results of the other can be composed into one as follows:

• R1: C1 ---> A1

151

R2: . C2 ---> A2

Rl&R2: Cl Al C2 ---> A2

It is A2, the action of the second rule, which is the solution to the given

problem. Al is an intermediate step in the problem solving, the result (or

one of the results) of which is used by one (or more) of C2, the conditions of

the second rule. In other words, the problem is solved by A2 which depends

on the results of Al. The action side of the composed rule contains the

actions of the second rule, A2. The condition side consists of all the

conditions and actions of the first rule and the conditions of the second rule.

The actions of the first rule are needed because combination can only be

used when all conditions of both rules are satisfied, and the conditions of

the second rules cannot be satisfied without AI. Ideally, instead of

containing all the conditions from rule 2, it should contain only the

conditions that do not match the actions of the first rule. This is because the

conditions in rule 2 that match the actions of rule 1 are redundant.

However, they are included in the new rule because the variables in the

actions of the second rule (and of the resulting rule) depend on these

conditions for their bindings.

The' following is an example of two rules that could be composed into one

that accomplishes the combined result:

Rl: (number il nol) (number i2 no2) (not (used il nol)) (not (used i2

no2)) (equal (nol + no2) 10) ---> (fn lookup il nol i2 no2)

R2: (number i3 no3) (number i4 partial-ans) (not (used i3 no3))

(not (used i4 partial-ans)) ---> (fn col i3 no3 i4 partial-ans).

Rl &R2: (number il nol) (number i2 no2) (not (used il nol)) (not (used

i2 no2)) (equal (nol + no2) 10) (fn lookup il nol i2 no2)

(number i3 no3) (number i4 partial-ans) (not (used i3 no3))

152

(not (used i4 partial-ans))

ans).

---> (fn col i3 no3 i4 partial-

The order of the conditions in the new rule is important, since the

conditions from rule 2 depend on the actions of the first rule. In the above

example, in the combined rule, (number i4 partial-ans) is the result of the

action (fn lookup il nol i2 no2). Hence, to solve 3 + 6 + 4 using the combined

rule, nol would bind to 6, no2 to 4, lookup would return 10, partial-ans

would bind to 10, no3 would bind to 3 and the action would evaluate 10 + 3

using the col strategy.

When the action part of the first rule becomes the condition part of the

combined rule, it plays the role of a condition as well as an action. The role

of an action would be to plan ahead and decide if a certain grouping of

addends would leave a more efficient addition for completing the problem

solving. For example, for a problem like 5 + 1 + 6, if 6 + 6 is known as a

number fact, then, 'planning ahead' could lead to performing 5 + 1 first,

since it leaves 6 + 6 as a lookup.

Note that Anderson's (1983) mechanism for composition will not work for

the task of arithmetic addition. Both the task of arithmetic strategies and of

those described by Anderson are sequential. Two rules that represent a

sequential task are reduced to one rule that achieves the same task. In

Anderson's tasks, the subtask represented by the second rule follows the

subtask represented by the first rule, but does not depend on the results of

the first subtask. In the rules representing the arithmetic problem solving

described here, the result of the first step determines the following step.

Rule composition in ACT* can be described as follows:

R1: C1 ---> A1

R2: C2 ---> A2

153

Rl &R2: 01 (02 - 02Al) ---> Al A2

where C2Al represents the conditions of rule 2 that match AI, and (02 -

C2Al) represents the conditions of rule 2 that do not match AI. Note that

the conditions of rule 2 that match Al are not included in the condition side

of the new rule, which reveals that the actions of rule 2 do not depend on the

actions of rule 1. An example of a task where this kind of composition is

applicable is dialing a telephone number. This requires dialing a sequence

of numbers. The following two rules illustrate part of the process of dialing

the number 65310

IF the goal is to dial 65310 and 6 is the first number THEN dial 6.

IF the goal is to dial 65310 and 6 has just been dialed and 5 is after 6

THEN dial 5.

Composition of these two rules would create

IF the goal is to dial 65310 and 6 is the first number and 5 is after 6

THEN dial 6 and then 5.

Note that the action of dialing 6 does not generate an output or a result that

is used for the second action (dialing 5). In contrast, in the task of 3-term .
addition, the result of the first action (sum of two addends) is used as an

input for the second action (sum of the 3rd addend and the result of the first

action). The proposed mechanism for rule composition in PALM would

result in

01 Al 02 ---> A2

Al is performed as a condition of the new rule; A2 depends on the results of

AI.

154

For simplicity, the mechanism above only describes the composition of two

rules into one, but the same procedure is easily extendable to composing

multiple rules. As learning continues, composed rules can be composed

with other rules, until there is a single rule for solving the problem. For

example, a rule for solving 4-term problems can be created by composing a

3-term rule with a 2-term rule. ACT* is capable of composing multiple

rules - when a goal is completed successfully, all the executed rules are

composed together, yielding a single rule that accomplishes the goal

(Anderson, 1983).

5.6 Summary

This chapter introduced some of the techniques of learning that have been

studied by researchers in machine learning - learning from examples,

learning by analogy and explanation-based learning. The choice of the

learning methods in PALM was discussed. The implementation of

learning models based on existing ones (Michalski's learning by

generalization and ACM's condition learning) have been discussed. The

chapter described the models applied to children's strategies for solving

elementary addition problems. A model of failure-driven learning has been

implemented as a candidate mechanism for children's transition from

ability to solve 2-term problems to that of 3-term problems. Furthermore,

the implementation of an efficiency-driven model of learning that learns to

apply children's number facts to problems in order to save work in

computing a sum was described. The last section of the chapter discussed

strategy composition as an extension of PALM's efficiency-driven learning.

The model of failure-driven learning can be extended to other operators like

multiplication and subtraction, and to other domains like fractions and

algebra. The efficiency-driven learning can be extended to other domains

which involve alternate strategies for problem solving.

155

The relation of such models of learning to ITS and some directions for

further work are discussed in the next chapter.

156

Chapter 6

CONCLUSIONS

The final chapter presents an overview of the thesis. The contributions of

the research are highlighted. The research is discussed in the context of

ITS. Finally, some directions for further research are proposed.

6.1 Summary of thesis

The overall intention of this research has been to model the transition from

procedural knowledge of commutativity to that of associativity. In order to

do this, models of children's strategies for solving problems associated with

the two concepts which describe 'snapshots' of their performance at

different stages of development were constructed first. Then, learning

models were constructed as a candidate mechanism for the transition from

one performance level to another. A model of learning by generalization

has been constructed for transition from performance on 2-term problems

(e.g. 4 + 5) to that on 3-term problems (e.g. 4 + 6 + 3). This model is one

hypothesis for the mechanism underlying the observed transition .
•

Furthermore, a computational model has been constructed for learning the

most efficient strategy for solving a given problem. To learn more efficient

strategies, PALM learns features of problems to which number facts could

be applied. For 3-term problems, specific conditions, that is number facts,

are applied to the input problem to select which two of the three numbers to

add first. The system begins with general rules representing basic

strategies for solving 3-term addition problems, and a set of operators, like

(equal x y), representing children's number facts. It learns specific rules by

adding operators to the general rules in order to define conditions for

efficient problem solving. An ACT*-like (Anderson, 1983) knowledge

composition algorithm to combine a sequence of actions into a single task

157

has also been suggested as further work. Knowledge composition would

combine two 2-term strategies to form one 3-term strategy (3-term problems

are solved by applying two 2-term strategies).

The production-rule formalism was used for modelling children's

strategies on problems related to commutativity and associativity. The

models represent 'snapshots' of children's problem solving behaviour. The

construction of the models showed features of children's problem solving

that were not noticed initially in the studies. For example, while

performing an addition, children do not normally count a set of objects

more than once. For problems in which two addends are the same, the two

addends serve slightly different purposes. Such features needed to be

considered in the implementation in order to simulate children's

performance. The simulations are in the form of sets of rules, where a set

represents problem solving using one of the observed strategies. As in

previous production system models, these models do not describe the

processes involved in development. However, as described above, the

learning component of PALM moves towards modelling the learning

process.

The models are based on empirical investigations of children's
•

performance on problems related to the two concepts commutativity and

associativity. The thesis reports three studies that were carried out to

examine children's strategies for solving problems like 3 + 6 and 3 + 4 + 5,

and to study the transition from 2-term to 3-term problems. It discusses the

performance levels of commutativity that were identified in the studies. It

also discusses children's responses to subtraction problems where the

subtrahend is smaller than the minuend.

The pilot study gave indications of the age range in which children should

be studied for the concepts and of what tasks could be performed in order to

get the most out of the students. The main study provided a space of

strategies that children at different levels used. It also proposed .
158

performance levels of the concept of commutativity. Furthermore, the main

study investigated the transition from commutativity to associativity. The

longitudinal study provided more detailed analysis of children's behaviour,

for example, change in strategies over time. It also supported the

conclusions obtained in the main study.

To conclude, this research has demonstrated the strength of the

combination of the two methodologies of understanding a task: empirical

work and computational modelling. Significant steps have been taken

towards the goal of modelling learning processes. Although the

mechanisms of transition are not necessarily psychologically valid, they

are plausible. The algorithms are based on empirical data. The inputs and

outputs at different stages in the algorithm are consistent with empirical

evidence.

6.2 Contributions

... Performanoo levels of commutativity

... Estimates of efficiencies of strategies

~ A candidate mechanism of transition from 2-term to 3-term problem solving

... A model of efficiency-driven learning

... Generalization errors can be modelled using the model for transition

... PALM can be used for modelling in other domains

... PALM's learning mechanisms can be used for generating student models

Performance levels of commutativity

The thesis reported empirical investigations of children's acquisition of

commutativity and associativity. Four levels of performance of the concept

of commutativity are proposed. Such a detailed investigation of the concept

has riot been carried out before.

159

Estimates of efficiencies of strategies

Efficiencies of strategies are estimated based on the amount of work

involved and the demand on the child's memory. Although it is a very basic

measure, it serves the purpose of distinguishing a more efficient strategy

from a less efficient one. The procedure for the efficiency estimates works

for 2~term as well as for 3~term problems.

A candidate mechanism of transition from 2-term to 3-term problems

The transition from commutativity to associativity has not been considered

at all in previous research. Furthermore, cognitive modelling of the

transition from the ability to solve 2-term problems to that of 3-term addition

problems has not been undertaken before. The research in this thesis used

empirical evidence as well as techniques from machine learning and

theories of skill acquisition in order to model a possible mechanism for this

transition.

A model of efficiency-driven learning

A model of efficiency-driven learning has been constructed. PALM learns

efficient strategies by applying previous knowledge of number facts to given

problems. It tests the applicability of the known facts to features of the

problem and learns those features that are applicable. PALM applies this

mechanism to 3-term addition problems to select two of the three numbers

whose sum it already knows as a number fact. Hence it does not have to

compute the sum of these two numbers. Furthermore, the model of

efficiency-driven learning can be generalized to the acquisition of strategic

knowledge in other related domains, for example, algebra.

Generalization errors can be modelled using the model for transition

Children's subtraction errors such as 'smaller from larger' and

generalization have not been modelled in the current implementation, but

could be included by adding production rules representing such errors.

160

Generalization of commutativity can also be modelled using the learning by

generalization algorithm that has been applied to the transition from 2-

term to 3-term problem solving.

PALM can be used for modelling in other domains

The production system used for modelling addition problems can be used

for modelling in other similar, closed domains, for example, fractions,

algebra and problems with other operators, like multiplication. For

example, a rule for finding the common denominator in the fraction

domain could be represented in PALM as follows:

(Fraction 1 =NlI=Dl) (Fraction 2 =N2I=D2) ---> (fn MULTIPLY =D1 =D2)

The algebra malrule N + X = P => X = P + N could be represented as follows:

(lhs Number =N Variable =X) (rhs Number =P) ---> (lhs Variable =X)

(rhs Number =P Number =N)

,

To include operations other than addition, the description language could

be revised to include the operator as well. Hence, a multiplication problem

could be described as follows: ,

(Number 1 =X) (Number 2 =Y) (Operator *) ---> (fn * =X =y)

PALM's learning mechanisms can be used for generating student models

Previous research has used machine learning techniques for automating

the construction of student models. Examples of such systems are ACM

(Langley, Ohlsson and Sage, 1984) and PIXIE (Sleeman, 1983). The main

aim of this type of application has been to avoid extensive libraries of 'bugs'

by providing some data and getting the machine to generate students'

'bugs'. The resulting student models are static models like those of LMS

(Sleeman and Smith, 1981) and DEBUGGY (Brown and Burton, 1978). The

efficiency-driven learning component of PALM learns conditions for the

161

applicability of its previous knowledge, which achieves a similar end result

to that of ACM. Hence, the efficiency-driven learning model can be used for

constructing student models. PALM has demonstrated this possibility for 2-

term and 3-term addition problems. Note that ACM and PIXIE model

'bugs' whereas PALM models a variety of strategies. With domains in

which 'bugs' are commonly observed, PALM's efficiency-driven learning

mechanism would be able to model 'bugs' once a set of 'buggy' operators

such as the 'smaller from larger' operator in ACM is available.

6.3 Implications for ITS

6.3.1 Production-rule models

The production-rule models in PALM can be used for student modelling in

an ITS, like those previous tutoring systems that have been implemented in

production systems: for example, for teaching medicine (Clancey, 1982),

programming skills (Anderson and Reiser, 1985), for geometry (Anderson,

Boyle' and Yost, 1985), and for quadratic equations (O'Shea, 1979). In order

to diagnose the students' strategies, an interface, like the Graphical

Arithmetic Description Language (Evertsz, Hennessy and Devi, 1988) will

be ri~eded for the students to simulate their arithmetic problem solving and

to communicate it to the ITS. The Graphical Arithmetic Description

Language (GADL) interface was designed for children to explain their

informal arithmetic strategies to a student modelling system and similarly

for the system to communicate example solutions to its users. The

information gathered from such an interface could be compared to the

production-rule models, which could then be used as a basis for tutoring.

For example, the tutor could use the knowledge of the estimated efficiencies

of strategies to guide its students to use more efficient ones.

Similarly, an interface like GADL could be used for subtraction problems.

The interface could be used for distinguishing between generalization of
t

162

commutativity and using the 'smaller from larger bug'. Note that the final

solution to a subtraction problem using these two strategies is the same.

With such an interface, children can display their methods for arriving at

their solutions to subtraction problems. Hence, it would also be appropriate

for modelling the different reasons for children offering '0' or 'don't know'

as their response to problems like 2 - 5.

6.3.2 Conceptual knowledge

As discussed in chapter 4, production-rule models represent knowledge of

procedures but do not take adequate account of conceptual knowledge. For

example, in solving 5 + 8, a child's strategy of starting from 8 and counting

on 5 is a display of his/her procedural knowledge. The related conceptual

knowledge would be the concept of commutativity, i.e. 'it does not matter

whether one starts counting from the first addend or from the second, the

sum is the same'. An ITS that has a production-rule representation for

procedural knowledge must have separate machinery to represent the

conceptual knowledge. This machinery could involve modelling of tasks

that were presented to the students in the empirical work, and the

measures that were used to categorise the different levels of the concept of

commutativity (Devi, 1990a). For example, a child who generalizes

commutativity to subtraction, indicates that s/he possesses some knowledge

of the concept. Furthermore, whether a child copies the previous answer on

a task like

47 +58= 104

58+47 =?

provides an indication of whether s/he possesses the knowledge of

commutativity or not. Further details of such tasks are presented in

chapter 3.

163

There is evidence from literature concerning domains in which procedural

knowledge is acquired before conceptual knowledge (Baroody and Gannon,

1984; Briars and Sieglar, 1984; Fuson, Sec ada and Hall, 1983), and domains

where the reverse is true (Gelman and Gallistel, 1978, Gelman and Meck,

1983, 1987; Greeno, Riley and Gelman, 1984). From our experience of the

empirical work, in the domain of arithmetic, it is difficult to establish

which comes first. Perhaps further research in the field, including studies

aimed at interrogating students to elicit their conceptual knowledge, will

help us to improve our understanding of this dilemma. From what is

known so far, we conclude that the important thing is that children should

possess both, and know the relationship between the two. Hence, the

separate diagnosis of conceptual and procedual knowledge could be used by

a tutor to help students to link the two types of knowledge, and to facilitate

their understanding of their procedures.

6.3.3 Models ofleaming

Previous student models have not embodied explanations of how a student

arrives at a particular knowledge state. This limitation has been noted by

other researchers (Brown and Burton, 1978; Hennessy, 1990; Laurillard,

1990; Wenger, 1987). A tutoring system that has the potential of explaining

how a student reaches a certain knowledge state, can focus its tutoring on

the student's underlying learning. The modelling of learning is a step

towards predicting how a student arrives at an answer. For example, in the

case of efficiency-driven learning, an ITS would be able to predict not only

what two numbers a child added first, but also why s/he chose them. For

the problem, 4 + 7 + 4, the learning model would employ the number fact

(equal x y) for transition from linear to grouping strategy. Using this

information, if a student did not use the grouping strategy on such a

problem, to facilitate transition to this strategy, the tutor could focus its

tutoring on the number fact.

164

With access to models of transition such as that for the transition from 2-

term problems to 3-term problems, the tutor, in addition to predicting the

student's solution, can also predict how that student got to that stage. With

such additional information about the student's learning strategy, the tutor

can predict the learning outcome before a task is presented to the student.

This would provide the tutor with further information on which to base its

teaching actions. Furthermore, once the tutor has information about the

student's learning outcome in addition to how that outcome was achieved,

it has more information for its further tutoring.

The tutoring knowledge could be represented in the system as static

knowledge. This could take the form of production rules with the left-hand

side representing a learning strategy and the right-hand side representing

a corresponding tutoring strategy; Examples of such tutorial rules are:

IF learning by dropping condition generalization rule achieves the

desired state, THEN present a sequence of examples to facilitate this

generaliza tion.

IF learning by generalization, THEN present a counter-example.

If m~re than one such tutorial rule could be applied at a particular time,

then conflict resolution strategies, which could be based on information

from the student's past history, could be employed.

The bounded user modelling technique (Elsom-Cook, 1987) is an example of

dynamic modelling. Since it is very difficult to construct a model of the

student's exact knowledge state, Elsom-Cook proposed that the upper and

lower bounds of the student's possible knowledge state could be constructed,

such that the exact model lies somewhere in between. He proposed that the

technique can lead towards making predictions of the student's learning

process. The bounded user modelling technique can be used in an ITS for

representing children's specialization and generalization of the concept of
•

165

commutativity. An example of specialization of commutativity is its

application to small numbers only; there are children for whom 10 + 7 is

obviously the same as 7 + 10, but they do not recognize the concept for 70 +

100 and 100 + 70. Given operators like « 10 (x + y)) to model specialization,

the learning model can add such conditions to the rules representing the

student's application of the concept. Such conditions can eventually be

dropped to model generalization of the concept to all numbers. Similarly,

children's generalization of the concept to subtraction can be modelled.

Furthermore, the specialization algorithm for learning to apply number

facts to problem solving, as well as the generalization algorithm for
,

modelling transition from 2-term problem solving to 3-term problem solving

(detailed in chapter 5) can be applied in the bounded user modelling

technique to define the 'space' of models within which a student's strategy

lies.

Finally, there is little research concerning teaching strategies in ITS. Two

systems that have used teaching strategies are PROTO-TEG (Dillenbourg,

1988) and DOMINIE (Elsom-Cook and Spensley, 1987; Elsom-Cook, 1989).

They represent only the student's current knowledge state. They do not take

into account how that state was arrived at. Further work on teaching

strategies is dependent on dynamic student modelling. More specifically, it

is dependent on leamer-based models like PALM. PALM demonstrates the

simplest type of student model that can be used with respect to teaching

strategies. Dynamic modelling would enable a tutoring system to make

more informed predictions about teaching strategies it should use. For

example, the system could have knowledge about teaching strategies

associated with learning strategies. Once the system has a mechanism for

transition from the current state to a desired state, it can choose the

teaching strategy accordingly.

166

6.4 Further work

The immediate next steps in relation to the present research should be to

improve on the psychological validity of the learning mechanisms by

carrying out further and more detailed empirical studies related to the

models. This section outlines some proposals for further research

. concerning empirical work and computational modelling.

6.4.1 Empirical Work

In the empirical studies reported in this thesis, commutativity and

associativity of addition only were investigated. Related empirical research

could include the extensions of the concepts to the other operators of

arithmetic, and to other domains like fractions and algebra.

Furthermore, it is generally believed that children's invention of informal

algorithms is based on principles like commutativity. The empirical studies

in the current research showed evidence of children using algorithms and

not possessing the underlying conceptual knowledge. It will be interesting

to investigate if informal algorithms are invented as a result of their

underlying conceptual knowledge or not. '

A major issue that remains to be answered regarding the concept of

commutativity is how children come to learn it and how they learn to apply

it. Baroody and Gannon (1984) propose that it is learnt by discovery. Other

possible means of learning this concept are from abstract examples, and

from experience with real situations, for example, calculations using

sweets (like Smarties). There is scope for investigating whether the concept

can be taught or not, and if so, then how.

The models of learning in PALM produce human-like behaviour that is

compatible with the empirical studies. In order to improve the validity of

the inechanisms of learning, empirical tasks could be defined to study

167

specific parts of the mechanisms in detail. This could include evaluation of

specific parts of the learning mechanisms. For example, detailed studies

could be carried out to study the transition from commutativity to

associativity. The empirical tasks on which the models are based were

general - they included 2-term problems, 3-term problems, subtraction,

levels of development of commutativity, and so on. As a result of the

implementation, more specific tasks can be designed for further

investigation. The description language, for example, the concept of

'adjacency' can be tested for its validity. Tasks can be designed to

investigate whether children apply analogy, generalization, etc. in specific

cases. Such evaluation, and comparison of human learning and the

program's performance can lead to improvements in the cognitive models.

6.4.2 Computational modelling

As outlined above, the psychological validity of the learning mechanisms

can be improved through empirical testing. Psychologically valid and more

detailed models of learning need to be developed. One of the limitations of

the models is that they do not take conceptual knowledge into account. An

obvious suggestion for further work involves incorporating this type of
• !

knowledge.

The model of transition from 2-term problems to 3-term problems is only

one possible hypothesis for the transition. Other types of learning, for

example, learning by analogy, explanation-based learning, and learning

from examples should also be considered.

The techniques of learning by generalization and by discrimination have

been employed for cognitive modelling by other researchers; for example, in

ACT* (Anderson, 1983) and in SOAR (Rosenbloom and Newell, 1986).

Further evaluation of the models in PALM can be carried out by comparing

the performance of the program with that of such systems.
*

168

6.5 Summary

This chapter presented a summary of the thesis. It highlighted the

contributions of the research reported in the thesis. The importance of the

work in relation to ITS was discussed. The thesis concluded by outlining

some areas for further work.

In sum, the research reported in this thesis demonstrates the feasibility of

implementing computer models of certain aspects of mechanisms of

transition from one stage to another. The iteration of empirical work and

computational modelling provides a promising approach towards

psychological models of learning.

169

Ahn, W., Mooney, R., Brewer, W. F. & DeJong, G. F. (1987). Schema

acquisition from one example: Psychological evidence for explanation

based learning. Proceedings of the 11th International Joint Conference

on Artificial Intelligence (lJCAI), 50 - 57.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:

Harvard University Press.

Anderson, J. R. (1986). Knowledge compilation: the general learning

mechanism. In R. S. Michalski, J. B. Carbonell & T. M. Mitchell (Eds.),

Machine Learning: An artificial intelligence approach, Vol 2. Los Alto,

CA: Morgan Kaufmann.

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method

problem solutions. Psychological Review, 94 (2), 192 - 210.

Anderson, J. R. (1989). A theory of the origins of human knowledge.

Artificial Intelligence, 40, 313 - 351.

Anderson, J. R., Boyle, C. F. & Yost, G. (1985). The geometry tutor.

Proceedings of the International Joint Conference on Artificial

Intelligence, Los Angeles, 1 - 7.

Anderson, J. R. & Reiser, B. J. (1985). The LISP tutor. Byte, 10 (4), 159 - 175.

Ashlock, R. B. (1982). Error patterns in computation: a semi-programmed

approach, third edition. Columbus, Ohio 43216: Charles E. Merrill

Publishing Co.

Baroody, A. J. (1984). The case of Felicia: A young child's strategies for

reducing memory demands during mental addition. Cognition and

Instruction, 1 (1), 109 - 116.

170

Baroody, A. J. (1985). Mastery of basic number combinations:

internalization of relationships or facts? Journal for Research in

Mathematics Education, 16 (2), 83 - 98.

Baroody, A. J. & Gannon, K. E. (1984). The development of the

commutativity principle and economical addition strategies. Cognition

and Instruction, 1 (3), 321 - 339.

Baroody, A. J. & Ginsburg, H. P. (1982). Generating number combinations:

rote process or problem solving? Problem Solving, 4(12), 3 - 4.

Baroody, A. J. & Ginsburg, H. P. (1986). The relationship between initial

meaningful and mechanical knowledge of arithmetic. In Hiebert, J.

(Ed.), Conceptual and procedural knowledge: the case of mathematics.

London: Erlbaum.

Baroody, A. J., Ginsburg, H. P. & Waxman, B. (1983). Children's use of

mathematical structure. Journal for Research in Mathematics

Education, 14 (3), 156 - 168.

Briars, D. & Siegler, R. (1984). A featural analysis of preschoolers' counting

knowledge. Developmental Psychology, 20, 607 - 618.

Brown J. S. & Burton, R. R. (1978). Diagnostic models for procedural bugs

in basic mathematical skills. Cognitive Science, 2, 153 - 192.

Brown, J. S. & VanLehn, K. (1980). Repair theory: A generative theory of

bugs in procedural skills. Cognitive Science, 4, 379 - 426.

Brown, J. S. & VanLehn, K. (1982). Toward a generative theory of bugs. In

Carpenter, Moser and Romberg (Eds.), Addition and subtraction: a

cognitive perspective. Hillsdale, NJ: Erlbaum.

Brownston, L. Farrell, R. Kant, E. & Martin, N. (1985). Programming

expert systems in OPS5: an introduction to rule-based programming.

Massachusetts: Addison-Wesley.

171

Carbonell, J. G. (1983). Learning by analogy: formulating and generalizing

plans from past experience. In R. S. Michalski, J. B. Carbonell & T. M.

Mitchell (Eds.), Machine Learning: An artificial intelligence approach,

Vol 1. Los Alto, CA: Morgan Kaufmann.

Carbonell, J. G. (1986). Derivational analogy: a theory of reconstructive

problem solving and expertise acquisition. In R. S. Michalski, J.B.

Carbonell & T.M. Mitchell (Eds.), Machine Learning: An artificial

intelligence approach, Vol. 2. Los Alto, CA: Morgan Kaufmann.

Carpenter, T. P. (1986). Conceptual knowledge as a foundation for

procedural knowledge. In Hiebert, J. (Ed.), Conceptual and procedural

knowledge: the case of mathematics. London: Erlbaum.

Carpenter, T. P. & Moser, J. M. (1983). The acquisition of addition and

subtraction concepts. In R. Lesh & M. Landau (Eds.), Acquisition of

mathematics concepts and processes. New York: Academic Press.

Clancey, W. J. (1982). Tutoring rules for guiding a case method dialogue.

In Sleeman, D. H. & Brown, J. S. (Eds.), Intelligent Tutoring Systems.

London: Academic Press.

Clancey, W. J. (1986). Qualitative student models. In Traub, J. F. (Ed.),

A~nual Reviews of Computer Science, 1, 381 - 450.

DeJong, G. & Mooney, R. (1986). Explanation-based learning: an alternative

view. Machine Learning, 1 (2), 145 - 176.

Denvir, B. & Brown, M. (1986). Understanding of number concepts in low

attaining 7 - 9 year olds: part 1, Development of descriptive framework

and diagnostic instrument. Educational Studies in Mathematics, 17, 15 -

36.

Devi, R. (1989). Machine Learning and Tutoring Systems, Technical Report

No. 61, Center for Information Technology In Education, The Open

University .
•

172

Devi, R. (1990a). Acquisition of commutativity and associativity.

Proceedings of the weekend conference, British Society for Research into

Learning Mathematics (BSRLM), Thames Polytechnic, London, 37 - 43.

Devi, R. (1990b). Modelling acquisition of commutativity and associativity.

The 7th International Conference on Technology and Education (lCTE),

Brussels, Belgium, 438 - 440.

Devi, R. (in press). Modelling children's arithmetic strategies. In Elsom

Cook & Moyse, R. (Eds.), Knowledge Negotiation. London: Paul

Chapman.

Devi, R., O'Shea, T., Hennessy, S. & Singer, R. (in press). Modelling

informal arithmetic strategies. To appear in Laborde, J. M. (Ed.),

Student modelling: the case of Geometry, Grenoble, France.

Dietterich, T. G. & Michalski, R. S. (1983). A comparative review of selected

methods for learning from examples. In R. S. Michalski, J. B. Carbonell

& T. M. Mitchell (Eds.), Machine Learning: An artificial intelligence

approach, Volt. Los Alto, CA: Morgan Kaufmann.

Dillenbourg, P. (1988). A pragmatic approach to student modelling:

Principles and architecture of Proto-Teg. Proceedings of Intelligent

Thtoring Systems, LeMans.

Donaldson, M. (1978). Children's minds. Glasgow: Fontana.

Elio, R. & Anderson, J. R. (1981). Effects of category generalizations and

instance similarity on schema abstraction. Journal of Experimental

Psychology: Human Learning and Memory, 7,397 - 417.

Elsom-Cook, M. (1984). Design considerations of an intelligent tutoring

system for Lisp. Unpublished PhD thesis, Department of Psychology,

University of Warwick.

173

Elsom-Cook, M. (1987). Guided discovery tutoring and bounded user

modelling in Intelligent Computer Aided Instruction. Technical report

no. 13, Center for Information Technology In Education, Institute of

Educational Technology, Open University.

Elsom-Cook, M. & Spensley, F. (1987). Using multiple teaching strategies in

an ITS. In Proceedings of ITS-88, Montreal.

Elsom-Cook, M. (1989). Dialogue and teaching styles. Technical report no.

62, Center for Information Technology In Education, Institute of

Educational Technology, Open University.

Evertsz, R. (1991). The role of the crucial experiment in student modelling.

Unpublished PhD thesis, Institute of Educational Technology, Open

U ni versi ty.

Evertsz, R. & Elsom-Cook, M. (1990). Generating critical problems in

student modelling. In Elsom-Cook, M. (Ed.), Guided Discovery tutoring:

A framework for ICAl research. London: Paul Chapman.

Evertsz, R., Hennessy, S. & Devi, R. (1988). GADL: A graphical interface for

mental arithmetic algorithms. Technical Report No. 49, Center for

Information Technology In Education, The Open University . . \
Flann, N. & Dietterich, T. (1986). Selecting appropriate representations for

learning from examples. Proceedings of the National Conference on

Artificial Intelligence. American Association for Artificial Intelligence.

Fuson, K. C. (1982). An analysis of the counting-on solution procedure in

addition. In T. P. Carpenter et al. (Eds.), Addition and Subtraction: A

cognitive perspective. Hillsdale, NJ: Erlbaum.

Fuson, K. C., Secada, W. G. & Hall, J. W. (1983): The -transition from

counting all to count on in addition. Journal for Research in

Mathematics Education, 14,47 - 57.

174

Gelman, R. (1972). Logical capacity of very young children: Number

invariance rules. Child Development, 43, 75 - 90.

Gelman, R. (1977). How young children reason about small numbers. In N.

J. Castellan et al. (Eds.), 9Rgnipve-theory, Vol. 2. Hillsdale, NJ:

Erlbaum. U

Gelman, R. (1982). Basic numerical abilities. In R. J. Sternberg (Ed.),

Advances in the psychology of intelligence, Vol. 1, 181 - 205. Hillsdale,

NJ: Erlbaum.

Gelman, R. & Gallistel, C. R. (1978). The child's understanding of number.

Cambridge, MA.: Harvard University Press.

Gelman, R. & Meek, E. (1983). Preschoolers' counting: principle before

skill. Cognition, 13, 343 - 359.

Gelman, R. & Meek, E. (1986). The notion of principle: the case of counting.

In J. Hiebert (Ed.), Conceptual and procedural knowledge: the case of

mathematics. Hillsdale, NJ: Erlbaum. ,

Gelman, R., Meek, E. & Merkin, S. (1986). Young children's numerical

competence. Cognitive Development, 1 (1), 1 - 29.
\

Goldstein, I. P. (1982). The genetic graph: a representation for the evolution

of procedural knowledge. In Sleeman, D. H. & Brown, J. S. (Eds.),

Intelligent Tutoring Systems. London: Academic Press.

Greeno, J. G., Riley, M. S., & Gelman, R. (1984). Conceptual competence

and children's counting. Cognitive Psychology, 16, 94 - 153.

Groen, G. J. & Parkman, J. M. (1972). A chronometric analysis of simple

addition. Psychological Review, 79 (4),329 - 343.

Hartley, J. (1973). The design and evaluation of an adaptive teaching

system. International Journal of Man-Machine Studies, 5 (2), 421 - 436.

175

Hayes-Roth, F. & McDermott, J. (1977). Knowledge acquisition from

structural descriptions. Proceedings of the 5th International Joint

Conference on Artificial Intelligence (lJCAl) , Cambridge, MA., 356 -

362.

Hennessy, S. (1986). The role of conceptual knowledge in the acquisition of

arithmetic algorithms. Unpublished PhD thesis, University of London.

Hennessy, S. (1990). Why bugs are not enough. In Elsom-Cook, M. (Ed.),

Guided discovery tutoring: A framework for ICAI research. London:

Paul Chapman.

Hiebert, J. & Lefevre, P. (1986). Conceptual and procedural knowledge in

mathematics: an introductory analysis. In Hiebert, J. (Ed.), Conceptual

and procedural knowledge: the case of mathematics. London: Erlbaum.

Hughes, M. (1981). Can preschool children add and subtract? Educational

Psychology, 1 (3), 207 - 219.

Hunt, E. B., Marin, J. & Stone, P. J. (1966). Experiments in induction. New ,

York: Academic Press.

Ilg, F. & Ames, L. B. (1951). Developmental trends in arithmetic. Journal of

Genetic Psychology, 79, 3 - 28.

Keane, M. (1988). Analogical methods in concept learning from examples.

Technical report no. 39, Human Cognition Research Laboratory, The

Open University.

Klahr, D., P. Langley & R. Neches (Eds.), (1987). Production system models

of learning and development. Cambridge, MA: The MIT Press.

Klahr, D. & Wallace, J. G. (1976). Cognitive development: an information

processing view. New Jersey: Erlbaum.

176

Langley, P. (1983). Exploring the space of cognitive architectures.

Behaviour Research Methods and Instrumentation, 15 (2), 289 - 299.

Langley, P. (1987). A general theory of discrimination learning. In D.

Klahr, P. Langley and R. Neches (Eds.), Production system models of

learning and development. Cambridge, MA: The MIT Press.

Langley, P. & Carbonell, J. G. (1984). Approaches to machine learning.

Journal of the American Society for Information Science, 35 (5), 306 -

316.

Langley, P., Ohlsson, S. & Sage, S. (1984). Machine learning approach to

student modelling. Technical report CMU-RI-TR-84-7. Robotics

Institute, Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Laurillard, D. (1990). The pedagogical limitations of generative student

models. In M. Elsom-Cook (Ed.), Guided discovery tutoring: a

framework for ICAI research. London: Paul Chapman.

Lebowitz, M. (1986a). Concept learning in a rich input domain:

generalization based memory. In R. S. Michalski, J.B. Carbonell & T.M.

Mitchell (Eds.), Machine Learning: An artificial intelligence approach,

Vol. 2. Los Alto, CA: Morgan Kaufmann.
, '

Lebowitz, M. (1986b). UNIMEM, a general learning system: an overview.

Proceedings of the 7th European Conference on Artificial Intelligence, 1,

32 - 42.

Luchins, A. S. (1942). Mechanizing problem solving. Psychological

Monographs, 54 (248).

Matz, M. (1982). Towards a process model for high school algebra. In

Sleeman, D. H. & Brown, J. S. (Eds.), Intelligent Tutoring Systems.

London: Academic Press.

177

Michalski, R. S (1983). A theory and methodology of inductive learning. In

R. S. Michalski, J. B. Carbonell & T. M. Mitchell (Eds.), Machine

Learning: An artificial intelligence approach, Vol 1. Los Alto, CA:

Morgan Kaufmann.

Mitchell, T. M. (1977). Version spaces: A candidate elimination approach to

rule-learning. Proceedings of the 5th International Joint Conference on

Artificial Intelligence (lJCAI), Cambridge, MA., 305 - 310.

Mitchell, T. M. (1978). Version spaces: an approach to concept learning.

Unpublished PhD thesis, Stanford University.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18,

203 - 226.

Mitchell, T. M., Keller, R. M. & Kedar-Cabelli, S. T. (1986). Explanation

based generalization: a unifying view. Machine Learning, 1 (1),47 - 80.

Neches, R. (1987). Learning through incremental refinement of

procedures. In D. Klahr, P. Langley and R. Neches (Eds.), Production ,

system models of learning and development. Cambridge, MA: The MIT

Press.

Neclies, R., Langley, P. & Klahr, D. (1987). Learning, development and

production systems. In D. Klahr, P. Langley and R. Neches (Eds.),

Production system models of learning and development. Cambridge,

MA: The MIT Press.

Neves, D. M. & Anderson, J. R. (1981). Knowledge compilation:

mechanisms for the automatization of cognitive skills. In Anderson, J.

R. (Ed.), Cognitive skills and their acquisition. Hillsdale, New Jersey:

Erlbaum.

Newell, A. & Simon, H. A. (1972). Human problem solving. NJ: Prentice

Hall.

178

Ohlsson, S. & Rees, E. (1988). An information processing analysis of the

function of conceptual understanding in the learning of arithmetic

procedures. Tech. report no. KUL-88-03, Pittsburgh.

O'Shea, T. (1979). Self-Improving Teaching Systems, Basel, Birkhauser.

Payne, S. J. & Squibb, H. R. (1988). Understanding algebra errors: the

psychological status of mal-rules. CERCLE technical report no. 43,

University of Lancaster.

Plotzner, R, Spada, H., Stumpf, M. & Opwis, K. (1990). Learning qualitative

and quantitative reasoning in a microworld for elastic impacts.

Research report no. 59. Psychological Institute, University of Freiburg,

West Germany.

Quinlan, R. (1983). Learning efficient classification procedures and their

application to chess end games. In R. S. Michalski, J. B. Carbonell & T.

M. Mitchell (Eds.), Machine Learning: An artificial intelligence

approach, Vol 1. Los Alto, CA: Morgan Kaufmann.

Resnick, L. B. (1980). The role of invention in the development of

mathematical competence. In R. H. Kluwe & H. Spada (Eds.),

Developmental models of thinking. New York: Academic Press.
t \

Resnick, L. B. (1983). A developmental theory of number understanding. In

H. P. Ginsburg (Ed.), The development of mathematical thinking.

London: Academic Press.

Resnick, L. B. & Ford, W. W. (1984). The psychology of mathematics for

instruction. London: Erlbaum.

Resnick, L. B. & Groen, G. J. (1977). Can preschool children invent addition

algorithms? Journal of Educational Psychology, 69, 645 - 652.

179

Rosenbloom, P. S. & Newell, A. (1986). The chunking of goal hierarchies: A

generalized model of practice. In R. S. Michalski, J. B. Carbonell & T.

M. Mitchell (Eds.), Machine Learning: An artificial intelligence

approach, Vol 2. Los Alto, CA: Morgan Kaufmann.

Self, J. (1974). Student models in computer-aided instruction. International

Journal of Man-Machine Studies, 6, 261 - 276.

Self, J. (1988). Bypassing the intractable problem of student modelling.

Proceedings of ITS-88, Montreal.

Self, J. & Gilmore, D. J. (1988). The application of machine learning to

intelligent tutoring systems. In Self, J. (Ed.), Artificial Intelligence and

Human Learning, London: Chapman and Hall.

Silver, E. A. (1986). Using conceptual and procedural knowledge: A focus

on relationships. In Hiebert, J. (Ed.), Conceptual and procedural

knowledge: the case of mathematics. London: Erlbaum.

Simon, H. A. (1985). Information-processing theory of human problem

solving. In Aitkenhead, A. M. & Slack, J. M. (Eds.), Issues in cognitive

modelling. Hillsdale, New Jersey: Erlbaum.

Sleen;.an, D. H. (1983). Inferring student models for intelligent computer

aided instruction. In R. S. Michalski, J. B. Carbonell & T. M. Mitchell

(Eds.), Machine Learning: An artificial intelligence approach, Volt.

Los Alto, CA: Morgan Kaufmann.

Sleeman, D. H. (1984). An attempt to understand students' understanding

of basic algebra. Cognitive Science, 8, 387 - 412.

Sleeman, D. H. & Smith, M. J. (1981). Modelling students' problem solving.

Artificial Intelligence, 16, 171 - 187.

180

Spada, H., Stumpf, M., & Opwis, K. (1989). The constructive process of

knowledge acquisition: student modelling. In H. Maurer (Ed.),

Proceedings of the 2nd International Conference on Computer-Assisted

Learning, 486 - 499. Berlin: Springer.

Starkey, P. & Gelman, R. (1982). The development of addition and

subtraction abilities prior to formal schooling in arithmetic. In T. P.

Carpenter et al. (Eds.), Addition and subtraction: A cognitive

perspective. Hillsdale, NJ: Erlbaum.

VanLehn, K. (1983). Felicity conditions for human skill acquisition:

Validating an AI-based theory. (Tech. report CIS-21). Xerox Palo Alto

Research Center.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial

Intelligence, 31 (1), 1 - 40.

VanLehn. K. (1988). Towards a theory of impasse-driven learning. In H.

Mandl & A. Lesgold (Eds.), Learning issues for intelligent tutoring

systems. N. Y.: Springer.

Vere, S. A. (1977). Induction of relational productions in the presence of

background information. Proceedings of the 5th International Joint . '
Conference on Artificial Intelligence (lJCAI) , Cambridge, MA., 349 -

355.

Wenger, E. (1987). Artificial intelligence and tutoring systems,

computational and cognitive approaches to the communication of

knowledge. Inc., CA: Morgan Kaufmann.

Winston, P. H. (1975). Learning structural descriptions from examples. In

Winston, P. H. (Ed.), The psychology of computer vision. New York:

McGraw Hill.

Young, R. M. (1976). Seriation by children: An artificial intelligence

analysis of a piagetian task. Basel, Birkhauser.
t

181

Young, R. & O'Shea, T. (1981). Errors in children's subtraction, Cognitive

Science, 5, 153 - 177.

182

APPENDICES

Appendix 1. List of problem pairs for task 1

1+2 1+4

1+3 3+1

3+4 4+3

2+5 5+2

6+1 6+1

5+2 2+3

5+4 4+5

3+1 0+1

4+3 1+3

2+3 1+1

3+2 2+3

7+2 3+2

2+1 2+8

2+2 2+2
t'

3+6 6+3

6+2 2+6

2+5 2+10

2+7 10+7

6+4 4+6

3+6 6+4

3+7 7+3

8+2 2+8

183

Appendix 2. A sample protocol in task 2

(Ex refers to the experimenter)

Ex: (writes the problem and reads it out) 4 + 6 =

SE: (slides out 4 blocks from the pile, counting as he does this) 1,2,3,4. (slides them

all together on to the left hand side, in front of the pile, does the same for 6, slides

them together to the right hand side of the set of 4 (note the sets are not in linear
arrays and also the 2 sets are kept separate), then counts them all from the left) I, 2,

3,4, ... ,10.

(7 + 2 = 9)

Ex: 9 + 6 = ...

SE: (slides the resulting set (9) from the previous problem), this is 9 already, I don't
have to pick them up. (takes 6 from the pile and counts the whole set) 1, 2, 3, ... , 15.

Ex: 6 + 9 ...

SE: 6 + 9. 1,2,3,4,5,6,7,8,9. (pause) Oops! (looks at the problem) 6. (counts out 6

from the counted 9; counts 1, 2, 3 for the remaining 3, and 6 from the pile, puts the

sets side by side) 1,2, 15.

Ex: "I'll give you some hard ones now. 7 + 13

SE: Oh! 1, 2, 3, 4, is 5 that how you do your 7? I thought it was something different.

Ex: How do you do your 7?

SE: I do them like that (pointing to one of my previous 7s)

Ex: okay

SE: 1. 2, 3. 4, 5, 6, 7, I'm gonna use these, pick this up (picks up one of the rods, i.e.

one with 10 units, starts sliding units from the pile, next to the rod) 11, 12, 13, 14, 15.

(ex asks if SE can do the problems without the counters; he says he cannot; back to
the problem)

SE: (counts out 1, 2, 22).

184

Ex: You sure its the right problem? 7 + 13? Check that you've got the right problem.

SE: 1,2,3, ... ,13 (realized that he had 15 instead of7; Note that he checks 13 before 7,
paying no attention to the order). 1,2,3, ... , 20.

Ex: good, can you do 13 plus 7?

SE: Have I just done 13 + 7?

Ex: You've just done 7 + 13

SE: ok (gets the 13 set to the front, and the 7 set to the right, counts them all out again)

Ex: can you do 7 plus 14? (writing out 7 + 14)

SE: (counts out 7, counts out 14, then counts them all) 1,2, ... , 21.

Ex: 21, good. Can you do 14 + 7? You just did 7 + 14.

SE: (Swaps the two sets of counters around and then counts out the whole set) 1, 2, 3, 4,
5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (pause) 15, 16, 17, 18, 19, 20 (misses out 1 in between)

Ex: what is it?

SE:20!

Ex: I don't think that's right.

SE: 1,2,3, ... ,21.

Ex: So what is the right answer, 20 or 21?

SE:20

Ex: why?

SE: because it is (not aware of the similarity of this problem to the previous one)

Ex: 14 + 7?

SE:21

Ex: ok Can you do 6 + 9?

SE: 1, ... , 6. 1, ... , 9. 1, .. " 15,

(7 + 9 = 16; 9 + 7 swaps the counters around and counts all again)

185

t 1

Ex:4+6

SE: 1, 2, 3, 4. 1, 2, 3, 4, 5, 6. 1, 2, ... , 10.

Ex: Now I'll give you the problem 6 + 4. Can you tell me whether this will be the
same or different? will be 10 or not? You just did 4 add 6. Can you tell me if6 add 4
whether it will be the same (pointing to the 10 above, answer to previous problem) or
different?

SE: different

Ex: why will it be different?

SE: Umm ... (pause - 30 sec) Because they are the other way around.

Ex: So it will be different?

SE: yeah!

Ex: Can you work out 6 + 4 and see if it will be different or not?

SE: ok 1, 2, 3, 4, 5, 6. 1, 2, 3, 4. 1, 2, ... , 10! (a little surprised, looks at the ex for
response). So it is the same.

Ex: yes

SE: Doh!

Ex: So what do you think? It's the same or different?

SE: different (laughs)

Ex: why do you think it's different? Can you tell me why you think 4 + 6 is different
from 6 + 4?

SE: because they are the other way around.

Ex: ok, last problem: Do you think the sum of 8 and 2 (writes down 8 + 2) and the
sum of 2 and 8 (writes down 2 + 8) are different?

SE: different

Ex: why are they different?

SE: because they are the other way around.

186

Appendix 3. A sample of problems in the main study

4+5

5+4

7+9

9+7

B+7

7+B

6+10

10+6

7+13

13+7

11+14

14+11

4-2

2-4

Word problem: Suppose you bought lollies worth He, 7e and Be. How would you find out how
much money you needed to give to the shopkeeper? Can you write down the problem?

2+5+5

2+6+4

6+3+7

3+B+B

10+ 16+ 10

187

Appendix 4. Table showing details of subjects and results of the main study

on commutativity stages, generalization to subtraction and 3-addend

addition

ability is one of high, medium or low (determined by the teacher).

subtraction column: G for generalization, SFL - smaller from larger, 0 - zero, NP - not
possible, - for those not tested.

grouping: 1 - grouping, 2 - explicit knowledge of grouping but did not use it, 3 - applied
comm. to first 2 terms, 4 - no evidence of transfer, 5 - did not know comm. but used COL, 6-
left to right strategy (did not know comm.).

other operator: marks the subjects tested for their performance on other operators.

subject age ability comm. stage subtraction grouping other operator

1.AAK 6.6 H i G 6

2. DR 6.4 H iii NP 4

3. STM 6.3 H i G 6

4. JMS 6.8 H NP 6

5.AAN 6.9 H i NP 6

6. KD 6.8 H i

7. Me 6.11 H i Iii 0

8. YPR 6.3 H iv 1

9'. 'AS 6.10 H iii NP 4

10. AS 6.10 H iv NP 1

11. AK 6.8 H iv 0 1

12.AN 6.7 H iii G 2

13.MSN 6.11 M iii 0 2

14.VS 6.6 H iv G 1

15.RDP 6.5 H iv 0 1

16.AAN 6.10 M iv NP 1

17.RDD 6.5 M 6

18.AS 6.3 M iv 0 1

188

19.PR 6.9 M 6

20.MS 6.6 L

21.PS 6.7 L

22.PA 6.4 L

23.AD 6.9 M

24.JS 6.11 H Iv 1

25.SP 6.8 M iv 0 1

26.RM 6.6 M iv G 1

27.AK 6.8 M iiliii G

28.AS 5.8 H

29.M 5.7 M

30.S 6.6 L i

31.AK 5.9 L

32.K 6.8 L i

33.WA 6.9 H i 0

34.PA 6.3 H i 0

35.S8 5.9 M
i

36.APS 7.6 H iv G 1

37.AS 7.6 H Iv SFL 1

38.NV 7.8 M iii NP 4
•

39.PKP 7.5 L iii G 2,3

40.RD 7.8 L iii G

41.SR 7.8 H ilii np 6

42.NPS 7.10 H iv NP 1

43.HN 7.6 L iv 1

44.PP 7.5 M 0 6

45.SL 7.1 H i NP 6

46.RL 7.2 M iv G 1

47.AS 7.3 H iv NP 1

189

48.MS 7.1 H iv NP 1

49.AC 7.2 H iv NP 1

50.TAG 7.3 M iii NP 3

51.APL 7.0 M iv NP 1

52.SL 7.10 H iv SFL 1

53.SS 7.5 H iv G 1

54.SH 7.6 H iv SFL 1

55.RK 7.9 L iv 1

56.NR 7.2 M 6

57.AA 7.9 H iv 1

58.SR 7.9 L iv G 1

59.RP 7.8 L iv 1

60.SR 7.8 L iii NP 3

61.VK 7.1 L

62.KL 7.2 L

63.M 7.6 M iv 0 1

64.RK 7.3 M

65.JR 7.0 M i

66.AK 7.0 L

67,R 7.7 H iv 1 ,

68.ML 7.5 H i 0

69.NNK 8.3 M iii G 1

70.AS 8.0 M i 0

71.NTR 8.1 M i

72.RP 8.6 H iii NP 3

73.RP 8.6 H iii NP 3

74.AK 8.0 H iv NP 1

75.IRL 8.5 L Vii 0 6

76.S0 8.3 M Vii 0 6

190

77.AS 8.6 H iv NP 1

78.PD 8.4 M i 5

79.SK 8.7 M i G 1

80.M 8.8 H i 0 6

81.KN 8.7 H iii 1

82.NS 8.4 H 6

83.AS 8.0 H iv 0 1

84.RK 8.2 M iv G 1

85.GC 8.0 L iv 1

86.SKL 8.2 M iv 1

87.JN 8.4 H iv SFL 1

88.RP 8.0 H iv NP 1 *

89.AB 8.6 M iv NP 1

90.ST 8.6 H iii 0

91.AC 9.2 L i

92.RP 9.5 M Vii 6

93.SSD 9.3 M i NP

94.LD 9.0 M i 0 3

95.R 9.11 H iv 1 *

96.SM 9.10 H iii 0 3 *

97.N 9.9 H iv SFL 1 *

98.NC 9.0 M iv 0 1

99.SP 10.7 H iv 1 *

100.F 10.2 H iv 1 *

101.RK 10.10 H iv 1 *

102.M 10.11 H iv 1 *

103.JH 10.2 H iv NP 1 *

104.AD 11.0 H iv 1 *

105.N 11.4 H iv 1 *

191

Appendix 5. The set of problems for the study of performance on 3-addend

problems with operators other than addition-only

16 -10-5

19-7 -6

15 -9-4

5+2-5

12-6+4

5-3+5

7*2*4

3*5*5

2 * 10*6

12/6/2

32/4/2

5 *3/3

10/2 *2

. \

192

Appendix 6. Subjects' performance on a-addend problems with other
operators (besides addition-only)

subject age used grouping on

SP 10.7 * only

F 10.2 * only

R 9.11 * only

AD 11.0 * only

N 11.4 *, -, I only problems, but not on
problems with combinations of
operators.

The other 6 subjects did not use grouping for any of the problems.

~ \

193

Appendix 7. A listing of the program.

;;; -*- Mode:Common-Lisp;Package:(RD (LISP»;Base:10 -*
(in-package 'RD :use '(lisp»

(defvar *world*)

(defvar *nots*)

(defvar *abstractions*)

(defvar *known-facts*)

(defun sstart (instance)
(setq *world*

(append instance
(subst 'old-number 'number (subst 'old-used 'used *world*»»

(rule-interpreter (reverse (apply-prods instance» instance»

(defun rule-interpreter (cset instance)
(cond
«problem-solved) 'done)
«null cset) '(no rules apply - learning here»
(t (perform-action (conflict-resolution cset) instance)

(rule-interpreter (remove-repeat cset (reverse (apply-prods instance»)
instance»»

I!

(defun problem-solved 0
(or (equal (length (remove-if-not #'(lambda (i) (equal (car i) 'number»

world»
(1+ (length (remove-if-not #'(lambda (i) (equal (car i) 'used»

world»» (equal (caar *world*)

(defun remove-repeat (lisl lis2)
(cond

'answer»)

«equal (car lis1) (car lis2» (cdr lis2»
(t lis2»)

(defun conflict-resolution (cset)

194

(let (recent-value recent-value-clauses)
(setq recent-value (apply #'max (apply 'append (mapcar #'caar cset))
(setq recent-value-clauses (remove-if-not #'(lambda (i) (member recent

value
(caar i»)

cset»
(cond «equal (length recent-value-clauses) 1)

(car recent-value-clauses»
(t (setq recent-value (apply #'max (delete 'nil (map car 'cadr

(mapcar 'nsort (mapcar 'caar recent-value-clauses»»))
(setq recent-value-clauses (remove-if-not #'(lambda (i)

(equal recent-value (cadr (nsort
(caar i»))

recent-value-clauses)
(car recent-value-clauses»))))

(defun nsort (li)
(sort li '»)

(defun perform-action (actions instance)
(declare (ignore instance»
(map nil #'{lambda (i)

(print (cdr i)) (setq *world* (append (list (cdr i») *world*)))
actions))

(defun apply-prods (instance)
(do «plist *abstractions* (cdr plist))

(result nil
I'

(append result
(match-prod (car plist)

(new-match (get-test (car plist») instance»»
«null plist) result»))

(defun new-member (element list)
(cond
«null list) nil)
«atom (car list»)
(cond
«equal element (car list)) list)
(t (new-member element (cdr list»»))

(t

(cond

195

«new-member element (car list»)
(t (new-member element (cdr list»»»)

(defun match-prod (prod bindings instance)
(cond
«null bindings) nil)
(t

(append (match-prod prod (cdr bindings) instance)
(remove nil

(list
(multiple-actions (act-pattern prod) (car bindings)

instance»»»)

(defun get-test (prod)
(car prod»

(defun act-pattern (prod)
(caddr prod»

(defun multiple-actions (actions bindings instance)
(cond
«null actions) nil)
(t

(append (multiple-actions (cdr actions) bindings instance)
(build-clause (car actions) bindings »»)

(defun build-clause (clause bindings)
(dQ «old-clause clause (cdr old-clause»

(new-clause nil
(append new-clause

(list
(or (associate (assoc (car old-clause)

(delete-nos bindings)
:test #'equal»

(car old-clause»»»
«null old-clause)
(edit-old
(cond

«equal (car new-clause) 'fn) (eval (cdr new-clause»)
(t new-clause»
(car bindings»»)

196

(defun edit-old (clause recency-value)
(cond ((some #'(1ambda (i) (or (member clause i) (equal clause i))

*world *) nil)

(t (list (cons recency-value clause»»)

(defun associate (lis)
(cadr lis»

(defun new-match (pattern)
(new-matchl pattern '(nil»)

(defun new-matchl (parts answers)
(cond
((null parts) (fdups answers nil»
((null answers) nil)

(t

(new-matchl (cdr parts)
(rd-merge
(cond
((equal (car (car parts» 'not)
(cons 'not (matchl (cadr (car parts»»)

((equal (car (car parts» 'fn) (test-function
(cdr (car parts»
answers»

(t (matchl (car parts»»
answers»»)

(de fun test-function (test-fn bindings)
(cond ((equal (car test-fn) 'equal) (fequals bindings nil»

(t (print '(test fn. not defined»»)

(defun fequals (lis result)
(cond
((null lis) result)
(t

(fequals (cdr lis)
(cond
((eqtest (cdar lis) nil) (cons (car lis) result»
(t result»»»

(defun eqtest (lis res)
(cond

197

«null lis) nil)

«member (next-value lis) res) t)
(t (eqtest (cdr lis) (cons (next-value lis) res»»)

(defun fdups (lis result)
(cond
«null lis) result)
(t

(fdups (cdr lis)
(cond
«duptest (car lis» result)
(t (cons (car lis) result»»»))

(defun duptest (lis)
(cond
«null lis) nil)

«numberp (caar lis»
(cond
((and (member (caar lis) (cdar lis) :test #'equal)

(equal (length (delete (caar lis) (car lis») 0» t)

(t (duptest (cdr lis»))))
(t (duptest (cdr lis»»)

(defun next-value (lis)
(cadar lis»

(defun nos-first (lis)
(mapcar #'check-number lis))

(defun check-number (lis)
(append (list (copy-seq (remove-if-not #'numberp lis»)

(delete-nos lis»)

(defun delete-nos (lis)
(remove-if #'numberp lis»

(defun merge-old (ins previous)
(apply #' append

(mapcar #'(lambda (y) (merge-pair ins y» previous»)

(defun merge-pair (ins! ins2)
(cond

198

«or (null ins1) (null ins2» (list (or ins1 ins2»)
(t

(do «chores ins! (cdr chores»
(result ins2 (merge-ins result (car chores»»

«null chores)
(cond
(result (list result»
(t niD»

(cond
«null result) (return nil»»»)

(defun merge-ins (ins pair)
(cond «numberp (car pair» (append (list (cons (car pair) (car ins»)

(cdr ins»)
«and (equal (length ins) 1) (numberp (caar ins») nil)
«numberp (caar ins» (cond «null (merge-ins (cdr ins) pair» nil)

(t (append (list (car ins» (merge-ins
(cdr ins) pair»»)

«assoc (car pair) ins :test #'equal)
(cond

«equal (cadr pair) (cadr (as soc (car pair) ins :test #'equal))
ins)
(t nil))

(t (cons pair ins»»

(defun elem-match (pattern data)
(cond
«variablep pattern) (list pattern data»
«equal pattern data) t)
(t niD»

(defmacro nthchar (x n)
'(intern (subseq (princ-to-string ,x) (1- ,n) ,n) 'rd»

(defun variablep (term)
(equal (nthchar term 1) '=»

(defun attach-recency (lis dat &optional (world (reverse *world*» (index 1»
(when world
(if (equal (car world) dat)

(cons (cons index lis)
(attach-recency lis dat (cdr world) (1+ index»)

199

(attach-recency lis dat (cdr world) (1+ index»»)

(defun delete-ts (lis)
(remove 't lis»

(defun matchl (pattern &optional (world (reverse *world*» (index 1»
(when world

(append (match-clause pattern (car world) index)
(match1 pattern (cdr world) (1+ index»»)

(defun match-clause (pat dat position)
(cond
«equal (length pat) (length dat»
(filter (mapcar 'elem-match pat dat) position»

«and (listp (car dat» (equal (length pat) (length (car dat»»
(filter (mapcar 'elem-match pat (car dat» position»

(t nil))

(defun filter (lis position)
(cond
«member nil lis :test #'equal) nil)
(t (list (cons (list position) (delete-ts lis»»»

(defun rd-merge (new previous)
(cond
«equal (car new) 'not) (setq *nots* (append (cdr new) *nots*»
(merge-nots *nots* previous»

«null new) nil)
«equal previous '(nil» new)
(t (apply #'append

(mapcar #'(lambda (x) (merge-old x previous» new»»)

(defun merge-nots (*nots* previous)
(let «merged-list

(car
(last
(remove 'nil

(mapcar
#'(lambda (j)

(when (some #'{lambda (i) (each-not (cdr i) j» *nots*)
(setq previous (remove j previous»»

previous»»»

200

(cond
«null merged-list) previous)
(t merged-list»»

(defun each-not (not-item previous-item)
(not (member nil (mapcar #'(lambda (i) (member i previous-item :test

#'equal)
not-item) :test #'equal))

(defun col add (it a i2 b)
(cond
«> a b) (list 'addd it a i2 b»
(t (list 'addd i2 b it a»»

(defun addd (addend1 addend2)
(do «total addend1 (+ total 1» (counter 0 (+ counter 1»)

«= counter addend2) (list 'number 0 total))

(defun cal add (il a i2 b)
(cond
«> a b) (list 'addcal il a i2 b»
(t (list 'addcal i2 b i1 a»»

(defun addcal (addend1 addend2)
(do «total 0 (+ totall) (counter 0 (+ counter 1»)

«= counter (+ addend1 addend2» (list 'number 0 total»»

(defun cafadd (addend1 addend2)
(setq fract (* .1 addend2»
(do «total 0 (+ total 1» (counter 0 (+ counter 1»)

«= counter (+ addend1 addend2» (list 'number 0 total (+ fract total)))

(defun lookup-first (a b c)
(cond
«lookup a b) (list 'lookup 'success (+ a b) c»
(t (list 'lookup-first 'unsuccess a b c»»

(defun lookup-second (a b c)
(cond
«(lookup a c) (list 'lookup 'success (+ a c) b»
(t (list 'lookup-second 'unsuccess a b c»»

201

(defun lookup-third (a b c)
(cond
«lookup b c) (list 'lookup 'success (+ b c) a»
(t (list 'lookup-third 'unsuccess abc»»

(defun lookup (x y)
(car (nth (1+ y) (car (nth (1+ x) *known-facts*»»)

(defun doit (a be)
(addd (addd a b) c»

(setf *known-facts*
'«0 1 2 3 4 5 6 7 8 9) (12 3 4 5 6 7 8 9 10) (2 345 67 8 9 10 11)

(34 nil 6 nil nil nil nil nil nil) (4 5 nil nil 8 nil nil nil nil nil)
(5 6 nil nil nil 10 nil nil nil nil)
(67 nil nil nil nil 12 nil nil nil nil)
(7 8 nil nil nil nil nil 14 nil nil) (8 9 nil nil nil nil nil nil 16 nil)
(9 10 nil nil nil nil nil nil nil 18»)

(defun match-all-conds (rules)
(cond «null rules) nil)

(t (append (list (match-yes-or-no (get-test (car rules»»
(match-all-conds (cdr rules» »»

(defun match-yes-or-no (conds)
(cond « null conds) nil)

(t (append (match2 (car conds» (match-yes-or-no (cdr conds» »»
• !

(defun match2 (lcond)
(cond «equal (car 1cond) 'not) (cond ((match1 (cadr 1cond» '(no»

(t '(yes»»
(t (cond «match11cond) '(yes»

(t '(no»»»

(defun remove-cond (*abstractions*)
(setq *abstractions* (cons (cons (delete (nth (position

'no (car (match-all-conds
abstraetions»)

(caar *abstractions*»
(caar *abstraetions*) :test 'equal)

(edar *abstractions*» (cdr *abstractions*»»

202

(defun check-operator (operator a be)
(cond «equal operator '(equal x y» (or (equal a b) (equal b c) (equal a c»)

«equal operator '(equal (+ x y) z» (or (equal (+ a b) c) (equal (+ be)
a) (equal (+ a c) b»)

«equal operator '(equal (+ x y) 10» (or (equal (+ a b) 10) (equal (+ b
c) 10)

(equal (+ a c) 10»)
«equal operator '(equal x 1» (or (equal a 1) (equal b 1) (equal c 1»)
«equal operator '(equal (+ 1 x) y» (or (equal (+ 1 a) b) (equal

(+ 1 b) c)

(equal (+ 1 a) c) (equal
(+ 1 b) a)

(equal (+ 1 c) a) (equal
(+ 1 c) b»»)

(defun learn-cond (operators a b c)
(cond «null operators) *abstractions*)

• !

«check-operator (car operators) a b c) (setq *abstractions* (append
(list (append (list (cons (car operators) (caar *abstractions*»)

(cdar *abstractions*») (cdr *abstractions*»»
(t Oeam-cond (cdr operators) a be»»

203

