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Abstract 

This thesis examines children's arithmetic strategies and their relation to 
the concepts of commutativity and associativity. Two complementary 
methods were used in this research: empirical studies and computational 
models. 

Empirical studies were carried out to identify the strategies children used 
for solving problems like 3 + 4, and 3 + 4 + 7, and the conceptual knowledge 
associated with them. Their understanding of subtraction problems where 
the minuend is less than the subtrahend (e.g. 6 - 8) was also considered. A 
study with 105 subjects revealed a variety of strategies and information 
about children's knowledge of commutativity and associativity. Four levels 
of performance of commutativity were also identified. A longitudinal study 
was carried out with 12 children in order to obtain details of children's 
changes in strategy, and to double check the results obtained in the main 
study. The strategies observed to be used by children over a 20 month period 
parallel those found in previous studies, which show a general transition to 
more efficient methods. However, the longitud~nal study revealed that 
development of such arithmetic strategies is a slow process. Furthermore, 
the studies indicated that knowledge of commutativity is a prerequisite for 
associativity. 

Models of the observed strategies have been implemented in the form of 
production rules in a computer program called PALM. The process of 
implementation highlighted features of children's problem solving that had 
not been 'detected during the studies. 

In addition to models that describe the space of strategies, a model of 
learning has been implemented for the transition from procedural 
knowledge of commutativity to that of associativity. The model is capable of 
generalizing its inbuilt knowledge, for instance, its ability to solve 2-term 
arithmetic expressions, to allow it to solve more complex problems, such as 
3-term arithmetic expressions. A further model has been constructed for 
learning arithmetic strategies that are more efficient than those already 
represented in the program. It learns specific rules by adding conditions 
for efficient problem solving to its previous general rules. 



D ed.1..c g, t 1..0 n 

To the memory oj my Jather who dim on 26th January, 1991. 



Acknowledgements 

I would like to thank my supervisors Mark Elsom-Cook, Tim O'Shea and Sara Hennessy 

for their support, guidance and encouragement during the course of this work. 

I am indebted to the following for their careful and thorough readings of drafts of the thesis: 

Sara Hennessy, Mark Elsom-Cook, Tim O'Shea, Rick Evertsz, Maria Yannissi, Ronnie 

Singer, Fiona Spensley, Iraklis Paraskakis and Ihsan AI-Sabri. I would also like to 

thank Diana Laurillard, Claire O'Malley and Ann Floyd for their readings, criticisms 

and ideas on the empirical chapter of the thesis. 

I would like to thank the head teacher of Saru M. G. M. school in Fiji, Mr Prasad, for 

giving me access to the children at his school, and Ms Jones of Simpson County Combined 

school (Milton Keynes) for her interest and help during the course of my longitudinal 

study. I would also like to thank the children who participated in the studies. 

I thank Rick for his help and expertise with the Xerox machine and for his advice at the 

early stages of this research. 

Thanks to everyone in CITE for providing a wonderful working environment. 

" Thanks to Rae, Laurence, Maria, Sonia, Kate, Pat, Iraklis, Jaya, Donald, Ronnie and 

Richard for their friendship; Ihsan for sharing this experience with me and for providing 

his shoulder to weep on; my parents, brother and sisters for their love and support. 

Finally, I thank Markus Lusti for being sympathetic and for being flexible on the starting 

date of my job. 

This research was supported by Rank Xerox and the Open University. 



Table of Contents 

1 INTRODUCTION 1 

1.1 Objectives 1 

1.2 Background and Motivation 2 

1.2.1 Student modelling and models of learning 2 

1.2.2 Commutativity and associativity 6 

1.3 Research methodology 8 

1.4 Outline of thesis 10 

2 RELATED RESEARCH 13 

2.1 Acquisition of arithmetic skills 13 

2.1.1 Introduction 13 

2.1.2 Preschool knowledge and counting 14 

2.1.3 Addition strategies 18 

2.1.4 Representation of number knowledge 23 

2.1.5 Summary 25 

2.2 Computational models of performance al 

2.2.1 Planning nets 'Zl 

2.2.2 HPM !j9 

2.2.3 Repair Theory 31 

2.2.5 PIXIE 32 

2.2.4 State Constraint Theory 35 

2.2.6 Automated Cognitive Modelling m 

2.2.7 Summary 43 

2.3 Conclusions 44 



3 STUDmS OF COMMUTATMTY AND ASSOCIATIVITY 45 

3.1 Introduction 45 

3.2 A Pilot Study 46 

3.2.1 Method 47 

3.2.2 Results and Discussion 52 

3.2.3 Conclusions 56 

3.3 The main study 57 

3.3.1 Method 57 

3.3.2 Results and discussion 61 

3.3.3 Conclusions 76 

3.4 Longitudinal Study 76 

3.4.1 Method 17 

3.4.2 Results 17 

3.4.3 Discussion 83 

3.5 Educational implications 85 

3.6 Summary ~ 

4 PRODUCTION·RULE MODELLING fB 

4.1 Production systems 88 

4.1.1 A brief description 88 
• 

4.1.2 Examples of production systems 00 

4.2 Implementation of PALM 93 

4.2.1 Working memory 94 

4.2.2 Productions 94 

4.2.3 Interpreter 95 

4.3 The representation 00 

4.3.1 'Used' 100 

4.3.2 Indexing 100 

4.3.3 Negation 101 



4.4 2-term problems 100 

4.4.1 Strategies 100 

4.4.2 Efficiencies 1m 

4.5 3-term problems 100 

4.5.1 Strategies 100 

4.5.2 Efficiencies 100 

4.6 Matching models to data 110 

4.6.1 Snapshot data 112 

4.6.2 Longitudinal data 115 

4.7 Discussion 116 

4.8 Summary 118 

5 MODELLING LEARNING 119 

5.1 Introduction 119 

5.2 Machine learning techniques W) 

5.2.1 Learning from examples 121 

5.2.2 Explanation-based learning 125 

5.2.3 Learning by analogy 129 

5.3 Learning mechanisms in PALM 131 

5.3.1 Outline of PALM's learning components 131 

5.3.2 Choice of learning mechanisms in PALM 133 

5.4 Computational Details 137 

5.4.1 Failure-driven learning 137 

5.4.2 Efficiency-driven learning 141 

5.5 Discussion and further work 144 

5.5.1 Psychological plausibility 144 

5.5.2 Failure-driven learning 148 

5.5.3 Efficiency-driven learning 149 

5.6 Summary 155 



6 CONCLUSIONS 157 

6.1 Summary of thesis 157 

6.2 Con tributions 159 

6.3 Implications for ITS 162 

6.3.1 Production-rule models 162 

6.3.2 Conceptual knowledge 163 

6.3.3 Models of learning 164 

6.4 Further work 167 

6.4.1 Empirical Work 167 

6.4.2 Computational modelling 168 

6.5 Summary 169 

REFERENCES 1W 

APPENDICES 183 

Appendix 1. List of problem pairs for task 1 183 

Appendix 2. A sample protocol in task 2 184 

Appendix 3. A sample of problems in the main study 187 

Appendix 4. Table showing details of subjects and results of the main study 
on commutativity stages, generalization to subtraction and 3-addend 
addition 188 

Appendix 5. The set of problems for the study of performance on 3-addend 
problems with operators other than addition-only 192 

Appendix 6. Subjects' performance on 3-addend problems with other 
operators (besides addition-only) 193 

Appendix 7. A listing of the program 194 



Chapter 1 

IN1RODUCTION 

The research reported in this thesis was undertaken in the context of 

Intelligent Tutoring Systems (ITS). The general goal of the research is to 

improve on the 'snapshot' approach to student modelling by modelling 

learning processes. This objective required two specific and related 

activities, constructing computational models and carrying out empirical 

observations of students' performance. Such computational models can 

form the student modelling component of an ITS. In order to construct 

such models, empirical studies were carried out to improve our 

understanding of children's behaviour in the particular domain. 

This chapter provides an introduction to the research presented in the 

thesis. It begins with the objectives of the research. Next the motivations for 

choosing the research problem are discussed. Then the methodology of the 

research is described in detail. This consists of empirical work, production

rule modelling and computational models of learning. The last section of 

the chapter presents an outline of the rest of the thesis. 

1.1 Objectives 

Refinement of our understanding of children's cognitive processes can 

make significant contributions to educational and ITS research. The 

objective of the research described in this thesis is to understand children's 

performance on problems related to the concepts of commutativity! and 

1 Commutativity of addition: the order in which two numbers are added does not make a 
difference to their sum (a + b = b + a for all real values of a and b). 
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associativityl through empirical studies, and computer simulations of the 

observed performance on specific tasks. 

Another research goal is to understand the developmental or learning 

process. The second objective of this thesis concerns this general goal. The 

objective is to model learning in order to predict the mechanisms for 

transition from one 'snapshot' model to another. A 'snapshot' model is one 

that describes a situation at one particular instance in time. It is static, that 

is, it does not change over time. The 'snapshot' modelling approach in an 

ITS implies that either a student's cognitive processes do not change over 

time or that if they do, then they 'magically' transform into the next 

'snapshot'. It does not attempt to explain this 'magical' transition phase. 

For similar reasons, it assumes that bugs are stable. If there is any 

instability, there is no mechanism that can take it into account. Dynamic 

modelling, with plausible learning mechanisms, has the potential for 

modelling a student as hislher cognitive processes change during the 

course of interaction with the ITS. 

1.2 Background and Motivation 

1.2.1 ~tudent modelling and models of learning 

An ITS is a computerized teaching program which normally consists of the 

following components: 

i) domain knowledge, 

ii) student model, 

iii) tutoring component and 

1 Associativity of addition: the order in which three numbers are added does not make a 
difference to their sum. 
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iv) user interface. 

The above framework, due to Hartley (1973), has highlighted the 

importance of the student modelling component. Self (1974) emphasised 

that any computer-aided instruction program must maintain a student 

model. He also proposed what such a model could look like. Despite the 

computational limitations, Self (1988) continues to argue that it is a 

fundamental component of an ITS. Student modelling forms the 

background to the research presented in this thesis. There are two main 

approaches to student modelling. The first is by representing the student's 

knowledge as a subset of an expert's. This approach is termed subset or 

overlay modelling. An example of this kind of modelling is Young and 

O'Shea's (1981) accounts of children's performance on subtraction 
I 

problems using 'rule deletions'. The second approach, referred to as 

differential or perturbation modelling, represents the student's knowledge 

as incorrect and different from an expert's knowledge. This is normally 

done using a library of bugs or malrules, where a bug or a malrule 

represents an erroneous version of a correct rule. Some systems that 

incorporate modelling of errors as modified versions of correct rules 

include LMS (Sleeman and Smith, 1981) and BUGGY (Brown and Burton, 

1978). 

It is not easy or necessarily possible to represent completely the student's 

knowledge with either approach. The subset approach does not take into 

account the student's conception/representation of the domain, which may 

not necessarily be the same as the expert's. The perturbation approach 

requires extensive domain analysis in order to create a library of bugs. It 

also has the problem of not taking into account the instability of bugs. In 

addition, neither of them takes into account how bugs are acquired. An 

incorrect response on a problem solving task may be a result of incomplete 

knowledge and/or incorrect versions of the target knowledge and/or lack of 

understanding of the basic concepts involved. It is crucial to know the 

semantics behind the malrules generated by the student and the processes 
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by which errors arise. An ideal model of a student would contain his/her 

current knowledge state, which may consist of malrules, and an 

explanation of how the student reached that particular state. 

The limitations of the subset and of the perturbation modelling approach, 

and the target of the ideal model have been widely recognized (e.g. Brown 

and Burton, 1978; Clancey, 1986; Devi, 1989, in press; Elsom-Cook, 1984; 

Evertsz and Elsom-Cook, 1990; Hennessy, 1990; Laurillard, 1990; Payne and 

Squibb, 1988; Plotzner et aI., 1990; Self and Gilmore, 1988; Spada et aI., 1989; 

Wenger, 1987). More recently, attempts have been made at generating 

models that represent buggy behaviour, which were not accounted for by 

the particular system's prestored library of malrules. Some such attempts 

include repair theory (Brown and VanLehn, 1980), PIXIE (Sleeman and 

Smith, 1981) and ACM (Langley, Ohlsson and Sage, 1984). These and other 

work on computational models of learning are reviewed in chapter 2. 

One approach towards constructing better student models is dynamic 

modelling. This involves modelling the student's learning process, which 

not only identifies hislher knowledge at anyone time, but also identifies the 

way in which that knowledge is acquired. The need for research 

concerning such dynamic modelling was established as early as 1976. 

Young. (1976) modelled children's performance on seriation tasks at 

different stages of development using production systems. He concluded 

that production systems had served as a medium in which development 

could be analysed and discussed. He emphasised that the real problem was 

to build a production system which itself develops. 

The genetic graph (Goldstein, 1982) representation of student models in 

WUSOR-III has been the only attempt at modelling evolution of knowledge 

in an ITS. The knowledge is represented using genetic graphs. The rules 

form the nodes of the graph which are interlinked by relations such as 

generalization, analogy and refinement. The links denote the 'learning' 

relationship between rules. The idea of representing different learning 
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strategies using genetic graphs is an attractive one. By tracing paths on the 

graph, it has the potential of explaining a student's development of 

knowledge in terms of the procedural rules and the learning strategies. As 

it is, the genetic graph represents a student's learning as an overlay of an 

expert's. In addition, it is static, that is, it is predetermined, and once it is 

programmed, it remains unchanged. If the genetic graph idea of 

representing knowledge and learning strategies could be dynamic, then it 

would have great potentials for an ITS. Dynamic modelling would enable 

an ITS to make more informed predictions about its teaching strategies. 

For example, the system could hold knowledge about teaching strategies 

associated with learning strategies. Once the system has the ability to 

predict the student's learning strategy, it can use this information in 

addition to hislher current knowledge state to choose its teaching strategy. 

The tutor can also reason about what skills the student is ready to acquire. 

There are a number of existing theories of procedural skill acquisition (e.g. 

Anderson, 1983, 1986, 1987; Brown and VanLehn, 1980; Ohlsson and Rees, 

1988; Rosenbloom and Newell, 1986; VanLehn, 1983). Rosenbloom and 

Newell (SOAR) focus on chunking of knowledge. Anderson's ACT* has 

knowledge compilation as one of its learning features. The objectives of both 

SOAR and ACT* are to model the increase in efficiency of a system with 

practice. VanLehn (SIERRA) concentrates on induction and knowledge 

integration from a sequence of lessons. Ohlsson and Rees (State Constraint 

Theory) model learning as a result of violations of conceptual knowledge. A 

more detailed review of these theories of skill acquisition is presented in 

chapter 2. The learning model presented in this thesis draws on previous 

models of learning and is applied to the specific domain of elementary 

addition. Two types of learning are considered here. Firstly, failure-driven 

learning, which involves the application of existing knowledge to a new 

situation. This is achieved by using a learning by generalization technique 

(Michalski, 1983). Secondly, efficiency-driven learning, which considers the 
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application of existing knowledge for learning more efficient problem

solving strategies. 

1.2.2 Commutativity and associativity 

In order to create a model of learning, a task in a real domain that could be 

studied empirically, needed to be chosen. The domain of mathematics was 

chosen since most of the computational modelling research has been 

carried out in this domain and hence is ideal for comparison. Some 

examples of such computational models are Brown and VanLehn (1980), 

Langley, Ohlsson and Sage (1984) and Young and O'Shea (1981) for the 

subtraction domain, Sleeman and Smith (1981) for algebra, Greeno, Riley 

and Gelman (1984) and Ohlsson and Rees (1988) for counting and Neches 

(1987) for addition. Details of such systems are presented in the literature 

review in chapter 2. The specific aspects of the modelling in these systems 

which can be compared are the type of the domain, the representation of 

knowledge, the proportion of a sample of subjects' performance that they 

are capable of taking into account, and the generality of the system's 

modelling approach. 

Within the domain of mathematics, a specific area needed to be chosen 

which was complex enough for a detailed model, and which involved a 

transition that could be studied empirically. The arithmetic concepts of 

commutativity and associativity were chosen for several reasons. Firstly, 

these are important basic concepts, which reduce the amount of number 

facts that children need to remember. For example, if a child knows 4 + 2 as 

a number fact, and knows the concept of commutativity, then slbe does not 

need to store 2 + 4 as another number fact. Besides this, the concepts form 

the foundation for further arithmetic development. This includes invention 

of informal algorithms, transition to more efficient strategies, and the 

application of the concepts to algebra in general. 
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The second reason is that the concepts are good examples for studying 

conceptual and procedural knowledge. Previous related research provides 

conflicting views on whether the ability to execute a procedure necessarily 

implies underlying conceptual knowledge, and whether the presence of 

conceptual knowledge necessarily means that it will be applied (e.g. 

Baroody and Gannon, 1984; Briars and Sieglar, 1984; Fuson, Secada and 

Hall, 1983; Gelman and Gallistel, 1978; Gelman and Meck, 1983, 1986; 

Greeno, Riley and Gelman, 1984). Experiments by these researchers 

leading to their arguments are described in the review chapter. Detailed 

studies could provide information to clarify the relationship between 

conceptual and procedural knowledge. Thirdly, little research exists on 

these basic concepts in arithmetic. The concepts of commutativity and 

associativity are closely related concepts but there has not been any 

investigation of the transition from commutativity to associativity. On the 

other hand, the acquisition of the concepts follows the acquisition of 

counting skills for which there exists a substantial amount of research, 

and this provides useful background information. 

The investigation of the concepts of commutativity and associativity is also 

interesting because it is debatable whether they should be taught. It has not 

been agreed by the education community whether the concepts should be 

explicitly taught, or whether they should be left for the students to discover 

themselves. Moreover, it is a domain in which children's specialization 

and generalization can be studied. For example, children generalize 

commutativity to subtraction, that is 4 - 5 = 5 - 4. Examples of children's 

specialization of the concept of commutativity include its application to 

small numbers only, or in concrete cases only. Finally, findings from the 

chosen task can be tested for generality to other related tasks, for example, 

fractions and algebra. 

In sum, there has not been any empirical work which indicates how the 

transition from a child's concept of commutativity to that of associativity 
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takes place. Furthermore, there has not been any cognitive modelling of 

this transition. This research uses empirical evidence and techniques from 

machine learning and theories of skill acquisition to model a possible 

mechanism for the transition. 

1.3 Research methodology 

The methodology employed here follows on from that used in Devi (1990b) 

and Devi et al. (in press). It can be summarised as follows: 

empirical studies --> models of performance --> model of learning 

The models of performance are based on empirical work. The model of 

learning requires a model of performance of the initial state, from which to 

begin learning. It also requires empirical observations of the initial state, 

the goal state and of the transition from one state to the other. The process 

of empirical observations and computer models' of observed performance 

can be seen as iterative. The computational models provide feedback for the 

empirical analysis, which in tum provides feedback to the former. Ideally, 

the results of the learning model can be used to design further empirical 

tasks, which in turn could provide more 'fine-tuned' analysis to improve 

the learning model. 

In order to construct models of performance, some understanding of 

children's learning in the particular domain is required. Three studies 

(pilot, main and longitudinal) were carried out to examine children's 

strategies and their understanding of the concepts of commutativity and 

associativity. Children were observed solving elementary arithmetic 

problems, like 5 + 8 and 6 + 5 + 3. They were interviewed and their verbal 

think-aloud protocols were tape-recorded. The pilot study gave an indication 

of the age range that should be studied and the tasks that could be 

performed in order to draw the most out of the students. The main study 
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provided a space of strategies that children at different levels used. It also 

proposed performance levels of the concept of commutativity. Furthermore, 

the main study investigated the transition from commutativity to 

associativity. The longitudinal study was carried out to investigate the 

developmental aspect of learning. It was concerned with observing children 

through a sequence of levels. This study provided more detailed analysis of 

children's learning, for example, change in strategies over time. It also 

confirmed the results obtained in the main study. 

Following the pilot and the main studies, and in parallel with the 

longitudinal study, computational models of children's observed strategies 

were constructed. A production-rule modelling approach was used for 

constructing models of children at different levels of development. The 

models are designed to capture the child's state at a particular time. They 

are equivalent to 'snapshot' models described earlier. They do not represent 

a continuous picture. The models at each level represent only certain 

aspects of a model of learning. 

In their information-processing theory of human problem solving, Newell 

and Simon (1972) propose that computer simulations can produce 

behaviour that closely resembles human behaviour in the same problem

solving situations (Simon, 1985). The research described in this thesis 

makes the assumption that human cognitive processes can be modelled as 

production systems. Our choice of the production-rule modelling approach 

has been influenced by Brown and VanLehn (1980), Klahr and Wallace 

(1976), Langley, Ohlsson and Sage (1984), Ohlsson and Rees (1988) and 

Young and O'Shea (1981), who have demonstrated that some aspects of 

arithmetic skills can be usefully modelled using production rule systems. 

Some of these modelling approaches are reviewed in the next chapter. 

Furthermore, such models· can in turn be used for student modelling in 

ITS like those developed by Anderson, Boyle and Yost (1985), Anderson and 

Reiser (1985), Clancey (1982) and O'Shea (1979). Hence, one of the reasons 
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for choosing the production-rule formalism is its application to student 

modelling. A further reason for using this formalism is the modularity and 

extensibility of production systems which allow mechanisms which make 

them learn to be incorporated. 

Learning models which describe children's transition from one 

performance level to another, and which model the transition to more 

efficient strategies are presented in this thesis. Learning in the models is 

initiated by one of two reasons, failure or efficiency. 

A model of failure-driven learning that describes a possible mechanism for 

the transition from the procedural knowledge of commutativity to that of 

associativity is presented. It occurs when there are no rules that are 

applicable to the current problem solving state. The model learns by 

generalizing its existing rules. The second model, efficiency-driven 

learning, is based on ACM-like operator applicability (Langley, Ohlsson 

and Sage, 1984). The system calculates estimates of efficiencies of 

strategies, and its goal is to learn strategies that are more efficient than 

those it already knows. It learns more efficient strategies by adding known 

facts as specific conditions to existing more general rules. In the case of 

arithmetic, the known facts are number facts like 5 + 5 = 10. The efficiency· 

driven model of learning learns conditions where such number facts could 

be applied for solving problems in order to save the effort in computing it. 

1.4 Outline of thesis 

The thesis contains six chapters. It reports the development of a candidate 

mechanism for the transition from commutativity to associativity. A 

computer program, PALM (Production-rule Arithmetic Learning 

Modeller) is used to simulate children's problem-solving strategies related 

to the concepts. 
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Chapter one (this chapter) provides an introduction to the thesis. It 

describes the objectives, the motivations, and the methodology employed for 

the research presented in the thesis. 

Chapter two is a review of the related research. Since the research 

methodology is twofold: empirical investigation of commutativity and 

associativity, and computational models related to the concepts, the 

literature reviewed in this chapter consists of these two areas of research. 

The first section of the chapter is a review of empirical investigations of 

concepts and procedures concerning the arithmetic principles, 

commutativity and associativity. This section relates to chapter three. The 

second section, which relates to chapters four and five, reviews some of the 

computational models that have been constructed for the domain of 

arithmetic. 

Chapter three is an account of the empirical studies that were carried out to 

investigate children's acquisition of commutativity and associativity. The 

studies consisted of a pilot study carried out with 22 children, a main study 

carried out with 105 children, and a longitudinal study carried out with 12 

children. In the studies, children's strategies and their underlying 

conceptual knowledge were investigated. The chapter also discusses the 

performance levels of commutativity that were identified in the studies, and 

proposes some explanations for children's answers to subtraction 

problems, including generalization. Observations from the studies were 

used for constructing production-rule models. 

Chapter four presents a production-rule account of children's strategies on 

problems related to commutativity and associativity. The simulations of the 

observed strategies and their efficiencies are described. The models 

represent 'snapshots' of children's problem solving behaviour. As in 

previous production system models, the models implemented in PALM do 

not describe the processes involved in development. 

f 
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Chapter five describes an extension of PALM to model a possible 

mechanism of learning. The learning model is intended to facilitate the 

construction of valid models of children's performance. The program 

includes two types of learning: failure-driven learning and efficiency

driven learning. Failure-driven learning occurs when there are no 

applicable rules to solve a given problem. The program learns by 

generalizing its existing rules. Efficiency-driven learning is employed to 

learn more efficient strategies than those that the system already knows. 

Chapter six presents a summary of the thesis. It highlights the 

contributions of the research and discusses the implications of the 

modelling for ITS. Some directions for further research related to empirical 

work and computational modelling are also proposed. 

Appendices 1 to 6 give some additional information on the tasks and the 

results of the empirical studies presented in chapter 3. These include 

examples of the types of problems that were presented to the students, a 

sample protocol of an interview, and the details of each child's performance 

in the main study. 

Appendix 7 is a listing of the program. 
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Chapter 2 

RElATED RESEARCH 

As outlined in the first chapter, the approach to this research involved 

empirical studies of children learning arithmetic so as to understand their 

cognitive processes. Following this, computational models of pupil 

competence at different stages of development were built in order to clarify 

what is being learnt and why pupil behaviour is changing. 

This chapter is a review of related research on children's acquisition of 

arithmetic skills. It concentrates on the two methodologies that are 

employed in the research presented in this thesis: empirical studies and 

computer simulations. The chapter is divided into two main sections. The 

first section discusses empirical investigations of children's learning of 

arithmetic skills. This includes children's competence in counting and the 

development of their ability to add. The second section is a review of 

computational models of children's arithmetic performance and skill 

acquisition. 

2.1 Acquisition of arithmetic skills 

2.1.1 Introduction 

There is a debate in the literature about the status of conceptual and 

procedural knowledge. These terms are not that precise, but in this thesis 

we will use them as defined by Hiebert and Lefevre (1986). Conceptual 

knowledge consists of facts and their relationships. The term 

'understanding' is used interchangeably with conceptual knowledge by 

some researchers. Procedural knowledge consists of rules, algorithms and 

strategies for carrying out tasks, or for solving problems. A skill is the 
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ability to execute a procedure. It may be either totally procedural or it may 

have associated conceptual knowledge. The current literature provides 

evidence of the view that procedural knowledge (of early arithmetic and 

counting) is acquired before conceptual knowledge (Baroody and Gannon, 

1984; Briars and Sieglar, 1984; Fuson, Secada and Hall, 1983), as well as the 

view that conceptual knowledge is acquired first (Gelman and Gallistel, 

1978, Gelman and Meck, 1983, 1986; Greeno, Riley and Gelman, 1984). In 

this section we review work done by these researchers to investigate 

children's knowledge of arithmetic skills and concepts. First, we review 

empirical investigations of preschool arithmetic knowledge. This is 

followed by a review of work on addition strategies and the principle of 

commutativity. The last section is a review of research on the 

representation of number knowledge. 

2.1.2 Preschool knowledge and rounting 

Gelman (1972, 1977, 1982), who has done much research into preschool 

children's development of arithmetic reasoning principles, holds the view 

that principles are acquired before skills. She maintains that concepts and 

principles are used in constructing or acquiring procedures. In order to 

find out how children reason about small numbers, Gelman carried out a 

series of "magic" experiments. In the experiments, children were shown 

two plates containing different numbers of plastic toys. One of the plates 

was designated "the winner" without the children being told why. Then the 

children were asked to identify the winner, and to justify the properties of 

the two sets that they used to get their answers. Gelman found that the 

children almost always used numerosity to distinguish the two sets, for 

example, "Plate 1 wins because it has three .,.", From her experiments, 

Gelman concluded that. children as young as three years possess 

arithmetic reasoning principles. Some of these principles are: 
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1) Equality: Children are able to identify two sets with equal numerosity. 

The equality relation is one of the several basic pieces of knowledge that is 

required later on in children's understanding of the commutativity 

principle. 

2) Order: This relation follows from the previous one. Gelman (1977) 

provides evidence that when children recognize that two sets are not equal, 

they know that an ordering relation exists between them, i.e. that one set is 

more than the other. 

3) Addition increases numerosity and subtraction decreases numerosity. 

4) Solvability principle: Addition is the reverse operation to subtraction. 

5) One-one principle: Each item in the set being counted is assigned one 

(and only one) tag. 

6) Stable-ordering principle: The tags used in a count must be arranged in a 

stable order (e.g. 1, 2, 3 and not 2, 1, 3). 

7) Cardinal principle: The last tag used in the count of a set represents the 

number of items in the set. 

8) Abstraction principle: The counting procedure can be applied to any 

collection of objects. 

9) Order-irrelevance principle: While assigning tags to objects in the set, it 

does not matter which tag is assigned to which object. For example, while 

counting a set of two fruits (a banana and an apple), it does not matter 

whether the apple or the banana is assigned the tag '1'. 

Principles 5, 6 and 7 together make up the prerequisites for the ability to 

count. Gelman and Gallistel (1978) provide evidence that even some two

year-olds know these three principles. More than 90% of their four- and 
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five-year-olds and 80% of the three-year-olds honoured the stable-order 

principle. To test the order-irrelevance principle, they had the children 

count the same set several times, each time tagging a different object as 

one. The results of this task showed that most five-year-olds had explicit 

knowledge of the principle. Gelman and her colleagues (Gelman and 

Gallistel, 1978; Gelman and Meck, 1983) propose that preschoolers' 

counting is governed by the implicit knowledge of the counting principles. 

Implicit and explicit knowledge of the principles is distinguished by the 

ability to verbalize or state the counting principles and the ability to 

demonstrate that one's behaviour is systematically governed by the 

principles. They support their conclusion by their experiments to assess a 

child's ability to detect errors in a puppet's application of the one-one, 

stable-order and cardinal count principles. Note that Gelman and Gallistel 

infer this from children's performance. From children's performance, we 

cannot conclude for certain that they have the underlying principled 

knowledge. Their knowledge might be limited to the ability to execute a 

procedure only. In addition, even if experimental results show the presence 

of conceptual knowledge, it does not imply that conceptual knowledge is 

acquired before procedural knowledge. 

Briars and Siegler (1984) carried out experiments to investigate whether 

children knew the principles underlying their counting procedures. 

Preschoolers' knowledge of counting principles was investigated by 

examining their ability to discriminate between features that are essential 

for correct counting and features that are typically present but unessential. 

Three to five-year-olds were asked to judge a puppet's counting as either 

acceptable or not acceptable. Each child's skill at counting rows of objects 

was also assessed. They found children who could count correctly but could 

not consistently judge the puppet's counting errors as incorrect. This led to 

Briars and Siegler's conclusion that skill in executing the standard 

counting procedure was found to precede knowledge of the underlying 

principle. Note that Briars and Siegler assumed that if a child could 
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identify another individual's errors, then it implied that s/he had the 

principled knowledge. In addition, they did not find any child in their 

experiments who consistently detected the puppet's counting errors and 

failed to count correctly themselves. From these findings, Briars and 

Siegler hypothesized that it is improbable that knowledge of principles 

guides acquisition of counting procedures. 

The debate on the interaction between conceptual and procedural 

knowledge as children learn to count, remains unresolved. Gelman and 

Gallistel (1978) and Gelman and Meck (1983) have proposed that 

preschoolers counting is directed by the implicit knowledge of the above five 

counting principles. Briars and Siegler (1984) and Fuson, Secada and Hall 

(1983), on the other hand, believe that children initially display various 

counting behaviours without understanding and only eventually induce 

principles or components of the counting principles. More recently, 

Gelman and her colleagues seem to have moderated their position in this 

debate. Gelman, Meck and Merkin (1986) proposed that conceptual 

competence does not provide recipes for procedures but it does set 

constraints on the class of procedures that procedural competence can 

generate. Referring to the case of counting, they conclude that conceptual 

competence can guide the acquisition of skill. They also acknowledge that, 

alternatively one could argue that there are cases where conceptual 

competence (a principle) develops out of procedural competence (a practice). 

They even provide an illustration of how procedural competence can lead to 

the acquisition of conceptual competence. They conclude that conceptual 

competence need not be entirely or even mostly preformed, but a preformed 

kernel is a prerequisite for the development of both procedural competence 

and further conceptual competence. 
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2.1.3 Addition strategies 

Concrete understanding of addition 

Gelman and Gallistel, in their "magic" experiments, showed children a set 

of objects on a plate, and then showed them a plate with a different number 

of objects. They found that children as young as three could distinguish 

between the plates, and could even explain the transformation that had 

taken place: for example, "you took one off', "you put one on". This shows 

that these children have formed a notion of addition and subtraction in 

terms of the concrete actions of 'adding on' and 'taking away'. 

Starkey and Gelman (1982) conducted a study which provides evidence of 

young children's use of counting algorithms. They conducted a study to 

determine whether young preschool children were capable of solving a 

variety of problems where objects were added to or subtracted from a set of 

objects that were screened from the subject's view. Each of the tasks began 

by having the children establish the number of pennies held in the 

experimenter's open hand. The experimenter then screened the set of 

pennies and placed another set in the same hand, stating the number of 

pennies he was putting. The subjects were asked how many pennies the .. 
experimenter had in his hand. The p~nnies were covered so that the 

subjects could not count them to get the answers. The experimenters found 

that preschool children (especially four- and five-year-olds) were still able to 

use counting algorithms in this situation. Some children used fingers to 

represent the screened objects; others counted aloud. The results of the 

study indicate that some preschool children (including a few three-year

olds) can use counting algorithms even when the set of objects are screened 

from view. 

Hughes (1981) carried out an experiment where the task was very similar to 

that used by Starkey and Gelman, except that the problem concerned bricks 
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in a box. He obtained similar results to Starkey and Gelman; he found that 

young children were able to solve simple addition (and subtraction) 

problems even when no visual apparatus was present. 

Thus there is evidence from the above studies that many preschoolers are 

able to solve simple arithmetic problems in a concrete setting. Solving 

problems with concrete objects is the earliest stage in addition and 

subtraction. The most common addition strategy at this stage is 'counting 

all', where concrete objects are counted to represent each addend, and then 

they are all counted to get the sum (Groen and Parkman, 1972; Ilg and 

Ames, 1951). The next stage is the abstraction of the previous concrete 

stage, where representation of the problems with concrete objects and 

strategies like 'count all' are replaced by more efficient strategies like 

'count on'. The details of the strategies and their transformations are 

discussed in the following section. 

Commutativity and tkvelopment of strategies 

One of the studies conducted by Baroody, Ginsburg and Waxman (1983) 

included the use of the commutativity principle (by children aged from five 

years ten months to nine years). Each child was tested individually with a 

sequence of ten problems like 13 + 6, 6 + 13, 14 + 7, 7 + 14, in the context of a 

game. The game was called Math Baseball. The length of time taken by the 

child to solve each problem was noted. If the child was correct, then his/her 

batter (a block 2cm x O.8cm x O.8cm) got a hit and could move to the first 

base. The batter could move two, three or four bases, depending on how long 

the child took to solve the problem. The objective of the game was to get the 

children to solve the problems in the quickest way, and this was explained 

to the subjects. It was found that most of the children used the 

commutativity principle. This was noted by observing whether or not the 

child looked at the previous problems and by noting other actions like finger 

counting. About three quarters of the children used the principle on the 
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first pair of examples. Most of the second and third graders (approximately 

85%) used the principle consistently. The younger ones did not use it as 

consistently (59% were consistent users). The authors propose that this 

might be due to the fact that younger children do not necessarily appreciate 

that the principle extends to large numbers. 

It is not yet clear how the principle develops. The children who were 

studied by Baroody, Ginsburg and Waxman had no formal instruction 

concerning the commutativity principle. Hence, they proposed that its 

development is probably the result of informal experience. For example, 

when dealing with concrete objects, most children do not pay any particular 

attention to the order of the addends. Even while doing mental addition, 

children often disregard addend order. A commonly observed strategy is 

starting from the larger of the addends and counting on the other addend. 

For example 4 + 7 would be solved as - start from 7 and then count on 4 - 8, 

9, 10, 11. It has been assumed that this strategy is an application of the 

commutativity principle. However, this may not -always be true, because it 

is also possible that children use this strategy to save mental labour, I 

without any knowledge of commutativity. The knowledge of principles and 

the ability to solve problems that could be solved using the principles need to 

be distinguished. 

Baroody and Gannon (1984) provide evidence of children who use the above 

strategy of disregarding addend order in solving addition problems, and yet 

do not succeed in commutativity tasks. Of the fourteen subjects who used 

the more advanced strategy of counting on from the larger addend, 57% 

were successful on the commutativity tasks, 21% were inconsistent, and 

21 % unsuccessful. From this, Baroody and Gannon correctly concluded 

that a child who disregards addend order, does not necessarily appreciate 

commutativity. One such child in their study said that the sum of 7 + 2 and 

that of 2 + 7 were "different". Then the child was asked to compute 7 + 2. 

After he counted and responded correctly, he was asked how much 2 + 7 
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was. The child was completely unaware of the similarity of the problems 

and counted to give the answer. Another child, after she had computed 6 + 

4, was asked if 4 + 6 would produce 10 - the same or different answer as 6 + 

4. She thought for about a minute, computed the sum, and then said "the 

same". From these two children's invention of 'count on from the larger 

addend' (COL) strategy, one can conclude that the appreciation of 

commutativity is not necessary for the invention of labour-saving addition 

strategies. 

Resnick and Groen (1977) conducted a study in which preschool children 

were taught the 'count all' strategy of addition (count out each of the 

addends, combine the two sets and then recount). After several practice 

sessions (over several weeks), half the children had switched to the 'count 

on from the larger addend' strategy without being taught. This result 

suggests that strategies like 'count on from the larger addend' are acquired 

without instruction and are invented by children. Similarly, the concept of 

commutativity might be acquired without instruetion. 

Children's counting strategies for addition normally develop from 'count 

all' to 'count on from the first addend' to 'count on from the larger addend' 

(Baroody and Gannon, 1984; Gelman, 1977; Resnick, 1980). In the 'count all' 

strategy, fingers or physical objects like unifix cubes are used to count out 

each of the addends, and then the two sets are combined and recounted. In 

the 'count on from the first addend' strategy, the counting begins from the 

first addend, and not from '1' as in the previous strategy. In the 'count on 

from the larger addend' strategy, the counting begins from the larger of the 

addends. This strategy is usually referred to as 'min' by other researchers 

like Groen and Parkman (1972) and Resnick (1980). It is quite logical to 

believe that this strategy follows from the commutativity principle, but as 

discussed above, Baroody provides evidence of this not necessarily being the 

case. Furthermore, Resnick and Groen's (1977) study provides reasons to 

question the assumption that the use of 'count on from larger addend' 
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strategy implies some knowledge of commutativity. This is because in their 

experiment, the children invented the strategy under controlled practice 

conditions, in which commuted pairs of problems (e.g. 6 + 8 and 8 + 6) did 

not occur. It seems likely that after practice at solving many addition 

problems, children start using the 'count on from larger addend' strategy 

as a result of the search (perhaps unconsciously) for a solution with 

minimum effort. Resnick (1983) provides the following as a possible 

explanation for children's use of the 'min' strategy: 

"Since 'min' works (Le. the answer turns out to be correct when 

checked by counting the whole joint set, and adults do not comment 

on the result as wrong), they would retain it as a perfect procedure." 

(Resnick, 1983, p. 123). 

She further explains that a natural extension of the order-irrelevance 

principle would allow the count on from the larger addend strategy to 

emerge as part of a general search for 100~-effort solutions without 

requiring that the child construct any kind of commutativity rule. This is 

consistent with Baroody's conclusion that the invention of the 'count on 

from the larger addend' strategy to minimize mental computational effort 

does not necessarily imply that the child appreciates commutativity. It 

implies or requires only protocommutativityl or perhaps just an order

indifferent2 tagging scheme. Furthermore, the heuristic procedure 

modification program (Neches et al., 1987; described in section 2.2.2), which 

simulates children's counting strategies, demonstrates the transition to 

'counting on from the larger addend' strategy based only on the motivation 

of reducing the amount of work required, and not on the principle of 

commutativity. The program does not assume commutativity but does 

1 Protocommutativity: the order in which addends are dealt with does not make a 
difference in terms of the correctness of the sum (Baroody et al., 1984). 

2 Order-indifferent tagging scheme: elements of a set may be enumerated in any order. 
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assume an order-indifferent tagging scheme for counting (Baroody and 

Gannon, 1984). 

Besides the use of counting strategies, children rely heavily on known 

number facts in their solutions to arithmetic problems. It has been noted by 

several researchers (e.g. Carpenter and Moser, 1983) that some number 

facts (e.g. doubles) are known to students at an early age. For example, 8 + 

9 = ? may be solved as: 8 + 8 = 16 and 1 = 17. Resnick found that children 

who were using counting strategies, did not use them for "doubles" 

problems like 2 + 2, 3 + 3. Instead these problems were solved very quickly -

the answers were probably already in long-term memory and were recalled 

directly (Resnick, 1980). 

2.1.4 Representation of number knowledge 

One of the common means used by cognitive scientists for representing 

knowledge is in the form of semantic networks-. Resnick and Ford (1984) 

provide an analysis of number understanding based on this representation 

of structuring and organizing information in the long term memory. In the 

semantic network representation, concepts are represented hierarchically 

with links between them and their properties. Because of the links, the 

interrelationships between the pieces of knowledge can be easily 

represented. In order to retrieve information, and to generate information 

that can be used directly, Resnick and Ford take the information-processing 

view that in addition to knowledge structures, the brain possesses a 

repertoire of problem solving strategies that help to interpret problems, 

locate stored knowledge and procedures, and generate new relations 

among separately stored memory items. 

Resnick's (1983) account' of the part-whole representation of children's 

number concepts is based on the semantic network representation. She 

proposes that with the application of part-whole schema to quantity, 
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children begin to think about numbers as compositions of other numbers. 

The part-whole schema specifies that any quantity (the whole) can be 

partitioned (into the parts) as long as the combined parts neither exceed nor 

fall short of the whole. Partitioning numbers into their parts is a common 

step in children's informal algorithms. However, the part-whole schema 

representation of knowledge is only a possibility. There is no evidence to 

show that the children who use partitioning in their invented algorithms 

make use of this mental representation. 

Baroody (1985) argues that mental representation and efficient recall of 

number combinations may be more elaborate than simple associative 

networks. Because people are flexible information processors, they may use 

several means to generate number combinations - including reconstructive 

processes (Baroody and Ginsburg, 1982). He proposes that rules, procedures 

and principles are stored in memory and number combinations are 

generated using them. In making use of these rules, principles and 

procedures, one does not need to learn and store all the individual number 

facts or combinations. 

A more complete model of representation of knowledge would be one which 

includes both the reproductive process (information is stored as facts e.g. 2 

+ 2 = 4, and retrieved without the need to use any procedures), and the 

reconstructive process (number combinations are generated using stored 

procedures, principles or rules). Number facts like 4 + 1, 5 + 1, 1 + 3, are 

more probably stored as rules, e.g. 'adding 1 to any number gives the next 

higher number', than as facts like 1 +·1 = 2, 2 + 1 = 3, 3 + 1 = 4, etc. On the 

other hand, number facts like 3 + 4 = 7, 2 + 8 = 10, are more probably stored 

as facts, as a result of having seen and done such problems several times, 

rather than as procedures that generate the sums. Very familiar 

combinations with great associative strengths might always be retrieved 

from a factual representation. Unfamiliar combinations would probably be 

generated from the representation of the rule (Baroody, 1985). 
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2.1.5 Summary 

The above review of counting and of commutativity and addition strategies 

demonstrates that the development of strategies or procedural knowledge is 

not necessarily dependent on the presumed conceptual knowledge. 

Certainly children can learn procedures by rote without relating them to 

any appropriate form of conceptual knowledge, and some invention appears 

to occur strictly within the context of procedural knowledge (Brown and 

Burton, 1978; Brown and VanLehn, 1982). Gelman and Meck (1986) explain 

the fact that children vary in their ability to succeed on counting tasks by 

both a principle-first and principle-after account of early numerical skill. 

Baroody and Ginsburg (1986) and Silver (1986) argue that in many cases the 

development of conceptual knowledge is neither necessary nor sufficient to 

ensure the acquisition of related procedures. Baroody and Ginsburg 

propose that the use of advanced strategies is as much a result of reducing 

cognitive processing demands as it is of the acquisition of underlying 

conceptual knowledge. In fact, one could argue 'that reduction of cognitive 

effort has to be there to generate the change. The application of certain 

procedures may lead to conceptual knowledge rather than vice versa, as 

children note regularities in applying the procedures (Carpenter, 1986; 

Baroody and Ginsburg, 1986). Gelman and Meck (1986) provide a view 

consistent with Carpenter and Baroody and Ginsburg: procedural 

competence can lead to the development of new principles of conceptual 

competence. 

The review above demonstrates the need to make a distinction between 

conceptual knowledge and procedural knowledge. Work to date has not 

established the relationship between the two types of knowledge. For 

example, it is not known whether one of them is acquired before the other, 

or whether they are acquired simultaneously. From what is known so far, 

it can be concluded that the important thing is that for a better 

understanding, children should possess both, and know the relationship 
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between them. In order to facilitate children's understanding of their 

arithmetic procedures, instruction should focus on the link between 

procedures and their conceptual knowledge. The need for such a link has 

been emphasised by other researchers (Carpenter, 1986; Gelman and Meck, 

1986; Hennessy, 1986; Resnick, 1980). In addition, one type of knowledge 

would most probably facilitate the other. Just as procedures occasionally 

generate or advance concepts in mathematics, new procedures can trigger 

for individuals the development of concepts (Hiebert and Lefevre, 1986). 

In summary, the review above highlights the need to consider and 

distinguish between procedural and conceptual arithmetic knowledge. In 

chapter 3, empirical studies carried out to investigate children's knowledge 

of the concepts of commutativity and associativity further highlight the 

need to make a distinction between the two types of knowledge. The review 

of previous work on children's arithmetic reveals that there has been some 

research done on children's concept of commutativity. However, there is 

virtually no research on the concept of associativity. There is no research on 

the interrelationship between the two concepts. In the research reported in 

this thesis, empirical work was carried out to study the two concepts and 

their interrelationship . 

• 
2.2 Computational models ofperfonnance 

Computational modelling, like carrying out empirical studies, is a means 

to investigate human performance. It is a methodology for understanding 

certain aspects of children's behaviour in a given domain. Moreover, the 

models can be used for student modelling in ITS. Research in cognitive 

modelling in the domain of arithmetic has concentrated on modelling 

children's errors as 'buggy' procedures. More recently, attempts have been 

made to create models of learning and development. In the following 

section, some such approaches to modelling are reviewed. 
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2.2.1 p]anning nets 

Greeno, Riley and Gelman (1984) developed a model of performance in 

counting tasks, called SC, for Simulation of Counting. They attempted to 

integrate the understanding of counting principles and performance in 

counting. As with other simulation models, in SC the principles remain 

implicit. The authors state that the principles are not represented directly, 

and the modei is proposed as a hypothesis about children's implicit 

understanding of the principles. They use a 'planning nets'1 formalism to 

make an explicit connection between hypotheses about conceptual 

competence and models of performance. The connection is made by 

assuming that performance is a consequence of conceptual competence. 

This is precisely the assumption that Ohlsson and Rees (1988) make in their 

model (discussed later). Conceptual competence is represented as a set of 

action schemata. These are equivalent to a set of axioms in the domain. For 

counting, the set of schemata correspond to cardinality, one-one 

correspondence and order principles. Representation of a schema includes 

its prerequisites (conditions of applicability), postrequisites (criteria for 

success), consequences (results of the schematic action) and corequisites 

(conditions during the execution of the action). The following is an example 

of the representation of a schema: 

COUNT(X) 

Prerequisites: set of numerals, N; 

order(N). 

1 'planning nets' are directed graphs. The nodes of the net represent plans, and the links 
represent planning inferences. 
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Postrequisites: 

Consequence: 

equal(X,SN); 

bound(SN,n). 

number(X) = n. 

The schema describes the action of counting. The prerequisite for counting 

is an ordered set of N numerals (1, 2, 3, ... ). The action succeeds when X 

equals SN, where SN denotes an initial segment of N, and the upper bound 

of SN is n, which is the number of objects in the counted set. For example, 

to count 5 objects (X = 5), SN is the set of numerals, 1, 2, 3, 4, 5. The upper 

bound of SN is 5 (n = 5). Counting designates a numeral from SN to each 

object. The numeral designated to the last object, that is the upper bound of 

SN, represents the number of objects in the set. 

The action schemata are used as premises for deriving planning nets for 

procedures, termed procedural competence. Procedural competence refers 

to knowledge of principles relating to goals, actions and the requisite . 
conditions for actions. It uses heuristic planning rules, which recognize 

the different goals while planning, select the action schemata whose 

consequences match the recognized goals, set new goals based on the 

requisite conditions of the selected schemata, and determine when a plan is 

successfully completed. Connections between goals (procedural 
~ -

competence) and actions (conceptual competence) in the network 

correspond to relations that are explicitly stored in action schemata, such 

as consequences and requisites for actions. For example, the schema 

COUNT, expressed above, links COUNT(X) to NUMBER(X) because 

NUMBER(X) is a consequence of the COUNT action and COUNT(X) is 

connected to equal(X,SN) because equal(X,SN) is a requisite condition. This 

shows that for a connection between hypotheses about competence and a 

model of performance, one does not have to construct a planning net 

analysis - information represented in the action schemata seems to provide 

the relations. 
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Greeno, Riley and Gelman claim that the action schemata represent a 

plausible set of hypotheses about children's conceptual knowledge. 

However, they acknowledge that the way in which the planning nets are 

derived in order to make the connections between conceptual competence 

and performance, does not necessarily have any psychological plausibility. 

2.2.2 HPM 

Neches (1987) developed a computer program to model the development of 

addition strategies. The model includes improvements in the efficiencies of 

procedures. The system, called HPM (for Heuristic Procedure Modification) 

uses information on its past actions and its current set of rules to learn new 

rules. 

Neches discusses the transition from CAF (count all starting from the first 

addend) to COL (start from the larger addend and increment it the smaller 

number of times) strategy using strategy transformation heuristics. For the 

CAF strategy, separate sets of objects are counted out to represent each 

addend and then combined into a single set, which is counted to find the 

sum of the two addends. While carrying out this procedure, some of the 

intermediate results include: 1) two sets of objects, with each object in each 

set having a number assignment, 2) the combined set has the same objects 

with their initial number assignments, but of unknown size since the 

objects have not been recounted, and 3) a set of known size, which contains 

the same set as in 2 above, except with their new number assignments. 

Part of the last step is redundant - a set of one of the addends in step 2 gets 

the same assignment in step 3. Eliminating the redundancy of recounting 

the objects representing the first addend produces a new procedure. In this 

procedure, while counting the combined set, the result of counting the first 

addend is used to initialize the counting of the second addend. At the end of 

this procedure change, it becomes possible to note that the counting of the 

first addend is not needed. The result of the count is the number 
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representing this addend, which is known in advance, and hence the 

number itself can be used. A more efficient procedure results by 

eliminating this inefficiency. This procedure counts the second addend 

only, and the count begins from the first addend (COF). 

A more efficient procedure than the COF is COLIMIN. To go from COF to 

COL, RPM uses a heuristic called 'Effort difference', which is motivated by 

"try to use the method involving less effort". 

RPM's knowledge of procedures is represented using a production-rule 

formalism. The condition sides of these rules match propositions in a goal 

structure and the actions add more propositions to the goal structure. The 

resulting goal structures are hierarchical graphs representing the 

execution of procedures. One of the nodes in the goal structures represents 

the effort involved in processing a goal. The effort of a process is defined as 

the size of goal structure underneath the goal node which initiates that 

process. 

Some of the weaknesses of HPM concerning the simulation model not being 
I 

psychologically valid are as follows: 

i) The same procedure is applied for larger numbers as that for small 
, 

numbers. 'Solving problems like 4 + 5 using counting is fine, but 36 + 74 

would rarely be solved by counting. 

ii) For the transition from COF to COL strategy, Neches says that RPM 

discovers effort differences between different trials with the same problems. 

There is no mention of knowledge of commutativity. It is assumed that 6 + 4 

is the same problem as 4 + 6. 
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2.2.3 Repair Theory 

Brown and VanLehn (1980) have proposed a theory of procedural problem 

solving, called Repair Theory. Given a procedural skill, the theory predicts 

the systematic errors or bugs that will occur in the performance of students 

learning that skill. The idea of children's bugs being systematic has been 

questioned and argued against by several researchers (Hennessy, 1990; 

Payne and Squibb, 1988). Apparent systematicity in children's performance 

may not always be based on stable errors. 

Repair theory is based on the assumption that when a student gets stuck 

while solving a problem, that is, when s/he reaches an 'impasse', s/he 

attempts a 'repair' in order to get unstuck. It is assumed that the cause of 

an impasse is incomplete knowledge. Repair theory models an incomplete 

procedure by applying a set of deletion principles to a production-rule 

representation of the correct procedure. Filtering principles are used to 

restrict the deletion of those rules that generate 'core procedures' that are 

not plausible. Core procedures represent students' current, incomplete 

knowledge of the skill. The deletion principle is not meant to model 

children's acquisition of incomplete knowledge of procedures. It is used for 

generating impasses that require repairs. The set of repairs is defined by a 

set of 'repair heuristics', which propose repairs to impasses. Repair 

heuristics are instances of general problem solving heuristics like 'use an 

operation that worked in an analogous situation'. The repairs complete the 

core procedures, hence allowing them to proceed with the problem solving. 

A set of 'critics' is used to filter the set of repairs in order to avoid those that 

are implausible. 

Repair theory does not take adequate account of the semantics of the 

procedures being executed; it does not take principled knowledge into 

account. It cannot explain the cause of children's misconceptions. 

Moreover, repair theory assumes that an impasse is a result of incomplete 
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knowledge - it does not take other causes into account, for example, 

incorrect application of complete knowledge. 

Finally, the theory only accounts for a small proportion of observed errors. 

Brown and VanLehn acknowledge that due to constraints like those 

mentioned above, repair theory could predict only 23% of the known 

subtraction bugs. As pointed out by Evertsz (1991), due to this low coverage, 

it seems likely that there will always be some bugs that repair theory will 

not be able to account for. 

2.2.5 PIXIE 

PIXIE is an extension of a previous modelling system, called the Leeds 

Modelling System (LMS, Sleeman and Smith, 1981). The system is for the 

domain of algebra. PIXIE has a library of rules containing the bugs (called 

malrules) and the correct rules. The student model is made up of rules 

from this library. PIXIE is able to infer new malrules' to account for student 

errors which were not encountered before (i.e. where there were no rules in 

the library corresponding to these errors). 

This was done using the student's protocols, working backwards from the 

student's answer to the question. In the algebra domain, since there are 

several steps involved before the answer can be reached, and at each step, 

there are several alternatives that a student can take, there is a huge space 

to search. While searching the paths from the answer to the problem, 

PIXIE first uses its library of rules. If the path can be constructed with 

correct rules (in the correct order), then the student's answer is correct. If 

they can be constructed using malrules and correct rules, then the 

student's errors can be explained in terms of the existing rules. The 

challenge occurs when the search fails, i.e. the complete solution-problem 

path cannot be explained. In this case, PIXIE hypothesizes a new malrule 
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which explains the last step in arriving at the question. The following 

example shows how this is done: 

A) X = 3 (student's answer) 

B) X = (3-n) + n (n=8) 

C)X=8 - 5 

D)X+5 =8 

E) X + (5-n) + (n) = 8 

(Instantiate n using lhs of the question) 

F)X+2+3=8 

G) 2X + 3 = 8 (question) 

At each step in inferring the student's path, one of the following 

alternatives is applied: 

i) One of the existing rules is applied, backwards. For example, step D in 

the above example is derived using the (correct) rule, lhs +/- M = rhs ==> 

lhs = rhs -/+ M backwards (i.e. X + 5 = 8 <== X = 8 - 5). 

ii) Focussing heuristics, selected from a set of ten, are applied in order to 

get the equation to have the same form as the 'target' equation (i.e. the 

question). For example, at step B, the following heuristic rule is applied: 

IF lhs(eqn) is not equal to lhs(target) 

AND rhs(eqn) is not equal to rhs(target) 

AND rhs = i 

THEN replace (i, (i-n) + (n» 
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iii) If neither of the above can be applied, then a new rule is inferred. In the 

step from F to G in the above example, the system makes the inference that 

the student went from step G to step F. Hence, AX. + B = C ==> X + (A + B) = 

C. Ignoring the symbols which are not changed, the system infers that the 

malrule that the student applied was AX ==> X + A. 

There are three problems with this approach: 

i) It would only work if the student's error is in the first step of hislher 

solution (in the above example, AX. + B = C ==> X + (A + B) = C), which 

obviously is not general enough - it is equally likely that the student would 

make an error at any other step in the solution. 

ii) It assumes that malrules are independent of each other, and that any 

error is due to a single malrule. In addition, it assumes that the errors are 

logical - it finds a new malrule through a set of logical steps. If an error 

was caused by two malrules, then PIXIE will attempt to derive a single new 

malrule to explain the child's "buggy" behaviour. If it cannot, it concludes 

that the child is exhibiting inconsistent behaviour. Such malrules may be 

logically plausible, but not necessarily psychologically plausible. 

iii) A large number of heuristics (like the one at step B above) need to be 
• I 

provided. This leads to a huge search space in order to select an applicable 

heuristic. 

On the one hand, PIXIE does not require a library of malrules to be 

provided before a student's malrules can be identified. On the other hand, it 

still needs some kind of 'domain analysis' - that is, the set of heuristics. 

A further limitation of LMS and hence of PIXIE is the categorizations of the 

rules and malrules as applicable to certain 'levels' only. Since there are 

such a large number of rules and possible malrules in algebra, there are a 

huge number of combinations of these rules from which to search a 
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student's model. To solve this combinatorial problem, Sleeman (1983) 

assumed that the domain of algebra skills is hierarchical and can be 'split' 

into independent subskills. He divided the total set of rules into smaller 

sets, each corresponding to a 'level' in the hierarchy. Modelling proceeds by 

first considering the subskills at level 1 and then level 2, etc. as the student 

presumably proceeds to more complex subskills. One can understand how 

this got round the combinatorial problem, but, as pointed out by Evertsz and 

Elsom-Cook (1990), this approach was later found to be flawed, because 

students who have mastered a given subskill on its own cannot always 

apply it when it is part of a more complex problem. Sleeman (1983) himself, 

in a description of one of the experiments with LMS, states "This 

experiment showed that this was not a valid assumption" (Sleeman, 1984, 

p.389). 

2.2.4 State Constraint Theory 

Ohlsson and Rees (1988) propose a theory of conceptual understanding and 

its role in the learning and execution of arithmetic procedures. The theory 

is called the state constraint theory of understanding. The hypotheses of the 

theory are as follows: 

- The type of declarative knowledge that is essential for procedural 

learning is knowledge of general principles. A principle is defined as 

abstract knowledge that consists of assertions that apply to every case. 

For example, 'subtraction decreases numerosity' applies to every 

instance of subtraction. 

- Principles constrain the possible state of affairs. 

- A cognitive performance is a heuristic search through a problem 

space. 

- Procedural knowledge consists of collections of search heuristics. 
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- Learning begins when an incorrect or incomplete procedure generates 

a search state that violates one or more principles. 

- A faulty procedural rule is revised on the basis of information in the 

learner's principled knowledge. 

Ohlsson and Rees implemented a computer model of the theory, called 

Heuristic Searcher (HS). A procedure in HS consists of a collection of 

production rules. The condition of a rule is matched against the current 

search state. The action consists of a problem solving operator. Principles 

are encoded as state constraints which are criteria that a search state has 

to satisfy in order to be correct. A state constraint C is an ordered pair of 

patterns, represented as <Cr * * Cs>. Cr, called the relevance pattern, 

determines the class of search states to which the constraint is relevant. 

The right-hand pattern Cs, called the satisfaction pattern, encodes the 

criterion that a state must match in order to satisfy the constraint. 

Whenever a constraint is relevant, it has to be satisfied. A heuristic search 

mechanism, also represented as production rules, compares each search 

state with the constraints and decides whether they are satisfied. States 

that violate one or more constraints are inconsistent with the system's 

knowledge, and from this the system knows that its procedure is incorrect, 

and that it rieeds revisions. It is the constraint violation that triggers the 

system to learn. If a state violates some constraint, HS applies its learning 

mechanism to the rule that produced the constraint violation, and revises 

it, replacing it with more constrained rules. After revising a rule, HS 

returns to the initial state of the current problem and tries to solve it. 

The authors describe the construction of a general counting procedure from 

the state constraint representation of the principles of counting. An 

incomplete set of rules represent the procedural knowledge for counting. 

The set of rules generate incorrect behaviour, since they are incomplete. 

Principled knowledge is represented by a complete set of state constraints. 
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The complete representation of principled knowledge and the incomplete 

representation of procedural knowledge implies that an unsuccessful 

attempt at counting is not due to a lack of any principled knowledge, but is a 

result of not being able to apply that knowledge correctly. Hence, a task is 

unsuccessful because the procedure is incomplete, which leads to 

constraint violations. The learning mechanism completes the procedural 

knowledge by adding the principled knowledge that was violated to the rule 

that caused the violation. 

For example, the following rule is one of six rules in HS that represents 

standard counting: 

((Number NI) (Current Nt) ===> (Assert NI) 

where (Assert NI) asserts that the number NI is the answer. The task of 

standard counting can be described as follows. To count a set of unordered 

objects is to repeatedly select an object from that set, increment the current 

number, and associate the new number with the selected object. When all 

objects in the set have been associated with numbers, the last number to be 

associated with an object is asserted to be the answer to the counting 

problem. The above rule will assert that the current number is the answer, 

even when there are still objects left to be counted. When this happens, the . ' 
constraint, (Answer NI) * * (Associate Xl NI), is violated, since the 

relevance criterion, (Answer NI) is satisfied, and the satisfaction criterion, 

(Associate Xl NI), which associates the number NI with the object Xl, is 

not. The satisfaction criterion is added to the initial rule and HS returns to 

the initial state and tries to do the counting task again. 

The revised rule violates the constraint, (Answer Nl) * * (Not (Member X2 

ToCountSet» (Not (Associate X2 N2», which states that a number is the 

answer to a counting problem only if there are no objects which are 

members of the to-be-counted set and which have not been associated with 

some number. The rule does not contain the knowledge that it has to wait 
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for all the objects to be counted. It prematurely asserts that the current 

number is the answer as soon as that number has been assigned to an 

object. Hence in a set of 10 objects to be counted, the system would assert 1 

as the answer as soon as 1 has been assigned to the first object. Ohlsson and 

Rees claim that during learning, the model commits the types of counting 

errors that are observed in children's performance. However, it is hard to 

believe that children make errors like the one just described- the answer 

for a set of 10 objects to be counted is 1. Hence, Ohlsson and Rees' claim that 

the model commits the type of errors that children make can be questioned. 

As a result of the above constraint violation, the learning mechanism adds 

the satisfaction criterion of the constraint that was violated as a condition to 

the rule. Thus, the final ru1e, with the learned conditions is: 

«Number Nl) (Current Nl) (Associate Xl Nl) (Not (Member X2 

ToCountSet» (Not (Associate X2 N2») ===> (Assert N1) 

that is, assert a number as an answer only if there does not exist an object 

which is a member of the to-be-counted set and which has not been 

assigned a number. 

One of the strengths of HS is that it uses principled knowledge. Given a set 

of rules representing incomplete procedural knowledge for performing a .. 
task, and a set of constraints representing the complete principled 

knowledge, HS learns to perform the task by completing its procedural 

knowledge. In addition, it is capable of explaining the cause of certain types 

of errors - those that are caused by constraint (principle) violations. 

However, it is not able to explain other types of errors, for example, errors 

that might occur in applying or utilizing a procedure. It will also not be able 

to account for those errors that are caused by children's misconceptions, 

since it does not have any knowledge of misconceptions. Including 

misconceptions would require substantial changes to the state constraint 

theory. 
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A further limitation of HS is that it includes only one type of learning, that 

is procedural learning based on principled knowledge. Any learning that 

might be triggered as a result of procedures is totally ignored. 

Furthermore, it is assumed that a complete set of principled knowledge is 

known before carrying out a procedure that might be dependent on the 

principles. It is also assumed that this set of principles can be analysed and 

clearly distinguished from procedural knowledge. These are huge 

assumptions. The review in section 2.1 above shows evidence of views that 

are in conflict with these assumptions. 

2.2.6 Automated Cognitive Modelling 

The Automated Cognitive Modeller (ACM; Langley, Ohlsson and Sage, 

1984) applies the machine learning technique of learning from examples to 

generate student models. The modeller was developed as a general tool for 

cognitive modelling, although the authors describe it mainly in the context 

of the domain of subtraction. The output from the model is a description of 

student behaviour like that produced by LMS. 

ACM requires two basic inputs: 

i) a p,roblem space, and 

ii) some information about the behaviour of the student to be 

modelled. This consists of a set of problem-final answer pairs. 

The problem space consists of: 

i) the representation of individual states (e.g. for the domain of 

subtraction, the initial state is the problem, t~e final state is the 

solution to the problem), 
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ii) a set of operators for moving from one state to another (e.g. add

ten, shift-column, decrement, etc.) and 

iii) a set of rules that state the conditions under which the operators 

may be applied. For example, the following is a condition-action rule 

for the operator add-ten 

add-ten 

If you are processing column1, 

and number1 is in column1 and row1, 

and row! is above row2, 

then add ten to numberl. 

Given a student's answers to a set of problems and the initial set of 

condition-action rules, ACM needs to determine the sequences of operators 

that led to the student's answers and infer the conditions that will 

reproduce these sequences on the same problems. In other words, the 

student modelling task is reduced to the problem of determining whether a 

given operator was used by the student, and if so, determining the 

conditions under which it was used. 

Using the initial set of general rules (provided as input iii) above), and the 

student's answer to a problem, ACM generates a search tree consisting of 

the observed (student's) answer along with many others. Figure 2-1 shows 

the search tree for determining a student's path for the problem 93 - 25 = 72 

(This student has the 'smaller from larger' bug). Each step along the path 

leading to the student's answer is labelled '+' (a positive instance of the 

operator). Those steps leading one step off the solution are labelled '.' 

(negative instance of the operator). This process of searching the solution 

paths is repeated for the other problems. The solution paths provide a set of 

instances of operator applications. For example, examining the search tree 
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in Figure 2-1, there are two positive instances (5 • 3 and 9 • 2) and two 

negative instances (3 • 5 and 2 • 9) for the find-difference operator, one 

positive instance for the shift-column operator, two negative instances for 

add-ten operator and one negative instance for the shift-left operator. 

solution 

e shift column e 

shift-right 

o 5-13 

Figure 2·1. ACM's search tree for the problem 93 ·25 = 72 (Wenger, 

p.214) 

Having obtained a cumulative set of positive and negative instances for each 

operator from the search trees of the set of problems, the conditions under 

which the operator is applied are determined using a discrimination 

learning method. 
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For determining the conditions, a set of tests have to be provided (e.g. 

greater Nl N2, above Rl R2). The tests are used for discriminating positive 

and negative instances of an operator. Those tests, that satisfy only positive 

instances of an operator, make up the conditions of the operator 

applications (such conditions-operator rules make up the production

system model of the student's behaviour). 

ACM's modelling capability depends on the initial domain knowledge 

provided, which in turn depends on some knowledge of malrules in the 

domain. This is because the operators have to account for all possible 

actions that students may take. Another limitation of ACM's modelling 

technique is that it would work only for structured domains, or for domains 

in which the intermediate steps that a student can take are known. In 

addition, due to the huge search space, the approach would be practical 

only for those domains which have a small number of ways of arriving at 

the solution (i.e. a small number of operators). ACM's learning algorithm 

is not incremental, that is, it needs a set of problem solutions, and hence is 

not suited for tutoring. 

Both PIXIE and ACM are diagnostic systems, not implemented for 

tutoring. Neither of them say anything about how the student models will 

be used for. tutoring. If one wishes to implement a tutoring system using 

these approaches to modelling, one has to go through two phases: 

i) the diagnostic phase 

ii) the tutoring phase plus the diagnostic - this would be implemented 

using the student models obtained in the above phase. 

The second phase still includes the diagnostic phase in order to discover 

any new malrules that had not been encountered in phase i). The 

appropriate remediation corresponding to such new malrules would then 

have to be programmed in the tutoring system. In addition, neither of the 
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modelling techniques attempt to model the learning process of the student. 

Hence, they cannot explain how the malrules were first acquired. Finally, 

both the approaches are general enough to be applied only to domains 

which are structured and those which have a small number of possible 

ways of problem solving. 

2.2.7 Summary 

The models in PIXIE and ACM do not aim to model human learning 

processes. Their main purpose is to automate the construction of student 

models. 

Repair theory and HPM model procedural learning. They both fail to take 

conceptual knowledge into account. To my knowledge, Greeno, Riley and 

Gelman's planning net representation and Ohlsson and Rees' application 

of constraints are the only models of arithmetic learning which represent 

conceptual knowledge and its links with procedural- knowledge. In both 

cases, the connection between these two types of knowledge is made by 

assuming that performance is a consequence of conceptual competence. 

The literature on empirical investigations of arithmetic knowledge reveals 

that other assumptions, for example that conceptual knowledge is a 

consequence of procedural knowledge, are equally valid. This leaves the 

explanation of the learning of concepts from procedures for further work. 

Ohlsson and Rees' state constraint theory focusses on procedural learning 

based on principled knowledge. Their computer model learns procedures 

assuming that a complete set of principled knowledge is known. A more 

complete model would be one which integrates a model that explains 

learning of the appropriate principled knowledge as well. Of the systems 

described above, Greeno, Riley and Gelman's action schemata theory is the 

only possibility for such an integration, since neither Repair theory, ~~M, 

ACM nor PIXIE use principled knowledge or explain the acquisition of 
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procedural knowledge. However, the action schemata theory has not been 

implemented. Hence, computational models of conceptual learning remain 

for further work. 

2.3 Conclusions 

More complete and general models of learning are needed in order to 

explain children's learning. The computational models reviewed above 

each focus on some subset of the issue of learning. For example, Ohlsson 

and Rees model only one, very specific, type of learning. With further 

research on models of learning, and their applications to different tasks, 

the present models of cognition can be improved. 

None of the above computational models of learning cover the application of 

what is known to new situations. For example, the transition from 

counting (1 set of objects) to addition (counting 2 sets). The research 

presented in this thesis explores this particular type of learning and applies 

it to the transition from the ability to solve 2-term addition problems (e.g. 4 + 

5) to that of 3-term problems (e.g. 4 + 5 + 2). Before being able to model a 

mechanism of the learning process, some 'static' models were needed. 

These have been constructed using production rules, and are based on 

empirical work. The following chapter describes empirical studies that 

were carried out to investigate children's performance on tasks related to 

the concepts of commutativity and associativity. 
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Chapter 3 

STUDIES OF COMMUTATMTY AND ASSOCIATMTY 

3.1 Introduction 

The development of many arithmetical skills depends on an understanding 

of basic principles like commutativity, associativity and distributivityl. 

However, little research exists on the acquisition of these concepts, their 

applications and how they are related to other skills in arithmetic. . 

This chapter is an account of three studies2 that were carried out to 

investigate the development of the concepts of commutativity and 

associativity in children aged four to twelve years. The three studies 

consisted of a pilot, a main study and a longitudinal study. The aims of the 

studies were: 

i) To identify the stages that children go through in acquiring the 

concept of commutativity for addition of integers. 

ii) To find out if commutativity can be taught. 

iii) To achieve some understanding of why children generalize 

commutativity to subtraction. 

1 Distributivity: a(b + c) = ab + ac; a(b - c) = ab - ac; a(b * c) = ab * ac 
for all real values of a, b and c. 

2 Note that these were exploratory exercises aimed at investigating surface level behaviour 
of children, as opposed to standard psychological experiments. 
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iv) To gain insight into children's progression from commutativity to 

associativity. Logically, commutativity is a prerequisite of 

associativity. However, children might not progress in this way. 

There might be an overlap in the acquisition of the two concepts (i.e. 

stages where both are being learnt at the same time, as opposed to the 

requirement of a complete understanding of commutativity before 

going on to the early stages of acquiring associativity). 

v) To study the connections between children's conceptual knowledge 

and their problem-solving strategies. 

vi) To study the development of strategies over time. 

In the next section of this chapter, the pilot study is reported. Section 3.3 is 

an account of the main study, and the longitudinal study is described in 

section 3.4. 

The term grouping will be used to mean a combination of commutativity 

and associativity. This is so that strategies like 3 + 4 + 7 = 3 + 7 + 4 and 3 + 4 

+ 7 = 7 + 4 + 3, i.e. those which do not necessarily operate on the numbers 

from left to right (but in any order), can all be described by one term . 

• ! 

3.2 A Pilot Study 

One of the aims of the study was to establish the age range in which 

children's concept of commutativity develops. The study examined the use 

of commutativity by children between the ages of six and ten. Two sets of 

tasks were administered to find out whether children knew the concept of 

commutativity or not. 
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3.2.1 Method 

SuJqects 

22 children, aged between six and ten, from a state primary school in 

Milton Keynes were interviewed and observed while carrying out some 

arithmetic tasks involving commutativity. The sample consisted of 9 girls 

and 13 boys. 7 of them were in the age range six to seven, 8 in the range 

seven to eight, 3 in the range eight to nine and 4 in the range nine to ten 

years. The mathematical abilities of the subjects were decided by the 

teacher and noted as either high, medium or low. 

Task 1 

The first task was derived from a study in the form of a "Quick Look" game 

carried out by Baroody and Gannon (1984). In thIs task, pairs of addition 

problems were written on cards (3" by 5"). The second of the pair of 

problems was written next to the first one. The pairs were of one of the 

following three types: 

i) 10 commutative pairs (e.g. 3 + 4 and 4 + 3), 
• 

ii) 2 identical pairs (e.g. 3 + 4 and 3 + 4) and 

iii) 10 pairs of problems with different sums (e.g. 3 + 4 and 5 + 1). 

The identical pairs were included for deciding the success of any 

ambiguous students, i.e. those students who might say "the same" only for 

such problems. These problems provided obvious cases of being the same. 

The problems of the third type provided obvious cases of being different. 

Appendix 1 lists the problems in the order they were presented. 
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The children were given the following instructions, and practice on a 

couple of problems to put emphasis on the sums of the problems: "You 

won't have enough time to work out the answers - you'll just have a quick 

look and tell me if the adding problems would give the same answer. Now 

let's try some problems, shall we? 2 + 5 and 3 + 6 - Do you think they will 

add up to the same or different answers?". They were then shown each card 

one at a time, for a short time - for a quick look only, and were asked 

whether the two problems would give the same answer or different. 

A child was scored as successful if s/he was correct on 9 or 10 of the 10 

commutative problems and if s/he was correct on 19 or more of the 22 

problems overall (to make sure that they were correct on different-total and 

identical problems as well). Otherwise, s/he was scored as unsuccessful. 

Task 2 

This task involved testing different ways of finding out children's levels of 

understanding of the concept of commutativity. Children were given 

several addition problems (most of them being commutative pairs, i.e. x + y 

followed by y + x). To begin with, all individuals were given 3 + 4. 

Depending on their performance on this problem (and on other problems), 

the numbers in the following problems were chosen. They were not all 

given the same set of problems for several reasons. Firstly, since the 

subjects were from a wide range of abilities (different ages), some problems 

that were too easy for some children were difficult for others and vice-versa. 

It was found that some children gave answers to simple problems 

immediately (memory recall). More difficult problems had to be given to 

them to find out more about the way they computed the answers. Secondly, 

some children exhibited the behaviour that the experimenter was interested 

in, in fewer problems than others. Thirdly, some children needed more 

practice with addition problems than others. 
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The problems were written on paper (using abstract symbols like 4 + 5), one 

at a time. They were read out with "plus" and repeated using "add" and 

"and" if needed. The experimenter used the individual children's 

terminology whenever it was revealed. The children were told that they 

could use whatever they liked, and could solve the problems whatever way 

they liked. Some children had to be given concrete or real world analogies to 

the abstract problems. For example "4 plus 3. Say you had 4 apples and I 

gave you another 3. How many apples will you have?", and shown this with 

counters (unifix cubes). The strategies used by the children were noted. 

Questions like "How did you get that?" helped to reveal their strategies. 

To find out about their knowledge of commutativity, they were interrogated 

as follows: 

a) 'Which is more: 3 + 4 or 4 + 3?", "Why?". 

b) After they had written down the answer for the first of a commutative 

pair of problems, they were asked "Now, can you tell me if this will add up 

to x (where x is the child's answer) - the same as or different ... ", "Why do 

you think it will be the same (or different, depending on their response)?". 

This subtask is similar to task 2 conducted by Baroody and Gannon (1984). 

In addition, a pair of wrongly-answered, large-numbered problems (like 

1023 + 4970 = 5985 for older children, and 130 + 485 = 550 for the younger 

ones) were written down, read and then the children were asked "what do 

you think 4970 + 1023 (or 485 + 130) will be?". Furthermore, it was noted 

whether the subjects computed the sums for the second of the commutative 

pairs of problems, or whether they copied the answers from the previous 

problems. 

c) Those who showed knowledge of the concept were tested to see if they 

generalized it to all numbers: "If I swapped the two numbers around, will 

the answer always be the same?", "Even for very large numbers?", "Do you 

know why that is?" . 

• 
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d) Children who showed signs of understanding the concept were given a 

pair of subtraction problems to find out if they generalized it to this 

operation. 

The subjects were classed as successful, marginally successful or 

unsuccessful. At least two of the following criteria needed to be satisfied for 

a child to be judged successful: 

i) The response to question a) above included "same" or its equivalent 

(e.g. "they are both more"). 

ii) The response to question b) was "same" or the same answer as 

that in the previous problem. 

iii) The child generalized the concept of commutativity to all 

numbers. 

iv) S/he generalized the concept to subtraction. 

v) S/he consistently used the answer from the previous problem for 

answering the second of a pair of commutative problems. 

vi)' His/her explanations included statements which referred to the 

sums of two problems being the same, e.g. "They are the same, but 

you have swapped them around and it equals the same number". 

A child was classed as marginally successful if at least two of the following 

criteria were satisfied: 

i) S/he did not think the answers to the two problems in question b) 

above were the same or if s/he gave the correct answers, but with 

hesitation. 

ii) S/he was not sure of his/her answer to question c). 
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iii) Slhe applied the concept to small numbers only or to concrete 

examples only. 

iv) Hislher explanations included statements that referred to the two 

addends and not to the sum; for example "because 2 was there and 7 

was there". 

v) Hislher performance showed no evidence of copying the answer 

from the previous problem or s/he copied sometimes and worked it 

out sometimes. 

A child was classified as unsuccessful if one of the following conditions was 

satisfied: 

. i) The response to question b) was "different" or any other answer 

apart from the answer to the previous problem, or if slhe counted or 

started working out the answer. 

ii) S/he was not classed as "successful" or "marginal". 

Table 3-1 below shows the evaluation criteria for overall success based on 

the scores in tasks 1 and 2. 

'. \ 
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Table 3-1. Evaluation criteria for overall success 

Ta6k 1 Ta6k2 Q~erall 61.u:~e66 

success success success 

success marginal marginal 

success unsuccess unsuccess 

unsuccess success marginal 

unsuccess marginal marginal 

unsuccess unsuccess unsuccess 

3.2.2 Results and Discussion 

For the question "which is more, 4 + 3 or 3 + 4?", responses other than "the 

same" or its equivalent were ignored in the analysis. This was because it 

was found that some children were confused. They said that one of the pair 

of problems was more than the other because they thought they had to pick , 

out one of the two. Perhaps "Is one of these more, 4 + 3 or 3 + 4?" would have 

been a better question. Some of the children who thought they had to pick 

out one of the problems as "more", chose the problem with the larger 

addend first and gave explanations like 

"because 4 is more" 

"because that's got 4 + 3 and 4 is before 3". 

Hence, for such children, this question did not provide any certain 

information. However, it did reveal some of those children who definitely 

knew the concept; for example, KF (Table 3-2) exclaimed: 
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"They are the same. Its just the other way around". 

Twelve out of the 22 subjects were successful on both the tasks, seven were 

marginally successful overall and three were unsuccessful (as shown in 

Table 3-2). In Task 1, despite the experimenter's emphasis on the 

sums/results of the problems, there were some children who might have 

responded to the similarity of the addends and not to the sum. This problem 

was encountered by Baroody and Gannon (1984). An example is JV (Table 3-

2) who was completely unsuccessful on Task 2. When asked why she had 

said 4 + 5 was the same as 5 + 4, she replied: 

"Because that and that (pointing to the two 5s) are the 
same and that and that (pointing to the 4s) ... ". 

JV's response might be interpreted as ambiguous. It could mean that the 

problems are the same because they have the same addends, or that the 

sums are the same because the problems have the same addends. However, 

the latter is unlikely because of her performance on Task 2. 

SE (Table 3-2), who did not have any knowledge of commutativity, referred 

to something other than the sum of the addends: 

"They are different because they are the other way 
around" (SE's protocol can be seen in Appendix 2). 

These examples show that Task 1 alone would not be a good measure for 

assessing children's knowledge of commutativity. The data (Table 3-2) 

indicates that Task 1 produced a higher success rating than Task 2 about 

1/3 of the time (Task 1 overestimated performance relative to Task 2 seven 

out of twenty-two times) unlike Baroody and Gannon (1984) who found that 

Task 1 did not systematically underestimate success relative to their Task 2 

(Task 2b of the present study). 
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Table 3-2. Summary of performance on commutativity 

mm AGE n T2 QY OBSERVATIONS 
J 

KF 9.1 8 M M COL; used comm. for small numbers only; "because its the same 
as that, but its the other way round" 

NC 9.0 S 8 S COL; "its the same, but the other way around" 

MC 9.3 S S 8 COL; "they are the same but you have swapped them around 
and it equals the same number" 

KT 9.3 8 8 S COL when not using blocks for counting; CAF when using 
blocks (for problems with sums> 10) 

MT 8.0 S S S COL 

DM 8.1 8 S 8 

TW 8.0 S M M CAF 

ML 7.6 S 8 8 COL; "they are just the same but opposite ways around" 

8tD 7.0 8 8 8 COL; "because I remember it was the same. the numbers were 
just the other way around" 

WA 7.0 8 M M COL; calculates again for larger numbers 

D8 7.0 S S 8 COL; uses blocks; "its the same as that one" 

t 1 

FJ 7.0 8 M M CAF 

DA 7.5 8 8 8 COL 

ZD 7.0 8 8 S COL; "just copied because its the same problem but in a 
different way" 

DC 7.0 U M M COL; did not use comm. for the first 2 pairs of problems, but did 
for the rest 

DG 6.9 S 8 S COL; "because they are the same numbers" 

8D 6.0 8 8 8 COF 

PM 6.0 S M M COL; uses comm. for small numbers only 
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GL 6.0 S M M CAF; could not add without blocks 

JV 6.5 S U U COL; worked out the answers for each problem in Task 2 

SE 6.0 U U U CAL sometimes and CAF sometimes; did not use comm. at all 

CF 6.0 U U U CAF; used blocks 

OV stands for overall performance. 
S, U and M refer to success, unsuccess and marginal success respectively. 
CAF - count all from the first addend; CAL - count all from the larger addend; 
COF - count on from the first addend; COL - count on from the larger addend. 

The results show that some children apply the concept to small numbers 

only. This is probably due to the fact that they are experienced with using 

fingers (numbers up to 10) and concrete objects which normally represents 

small numbers. The analogy of fingers, is often revealed by children, even 

when they are not using them overtly. One child, for example, revealed "I 

imagined my fingers in my mind". 

One child, DC did not succeed on Task 1, but showed marginal success on 

Task 2. On Task 2, he did not apply commutativity to the first two pairs of 

problems (recomputed the sums to the second of the pairs of problems), but 

did on the third pair: "copied it off there because 9 was there and 7 was 

there". It is possible that DC learnt the concept during the second task. This 
t \ 

finding is consistent with Baroody and Gannon's (1984) results. 

SE (Appendix 2), sometimes disregarded addend order and started from the 

larger addend. This is consistent with previous findings (e.g. Carpenter 

and Moser, 1983). It is interesting that SE did not think that 6 + 4 was the 

same as 4 + 6, and yet sometimes ignored addend order. JV provides 

further evidence of using the 'count on from the larger addend' (COL) 

strategy without a complete understanding of commutativity. This is 

consistent with Baroody and Gannon's (1984) finding of children who used 

or discovered COL or 'count all from the larger addend' (CAL) strategy but 

did not appreciate commutativity. 
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On the other hand, there were children who understood commutativity but 

did not apply it (or only applied it occasionally). Examples of such subjects 

are KT, SD, TW, FJ and GL. Fuson, Secada and Hall (1983) also found this 

in an analysis of the transition from counting all to counting on. From their 

study, they found 9 out of 45 children who used count all, and demonstrated 

all the subskills required for the transition from count all to count on, but 

did not use count on. The issue of procedure first versus conceptual 

knowledge before procedure is further discussed in section 3.3.2. 

The results in Table 3-2 show that 68% of the children used the COL 

strategy. This is because most of the subjects were quite old and hence more 

experienced at such problem solving. 

The results also show that children who were not successful were less than 

seven years old. This revealed the need to study the development of the 

concept with children younger than seven. This study also pointed out that 

there are some children as old as nine who are not completely successful 

(e.g. they apply the concept to small numbers only). This led to the inclusion 

of children up to the age of twelve in the second study. 

3.2.3 ,Conclusions 

From Task 1, it was found that students' answers "same" or "different" 

could be interpreted ambiguously. In addition, the tests in the second task 

were enough to judge a child's level of success. In fact, as can be seen from 

Table 3-1, the overall score is the same as the score on Task 2, except for one 

case, where unsuccess on Task 1 and success on Task 2 leads to an overall 

marginal success. Besides, this exceptional case was not encountered 

(Table 3-2). Hence Task 1 was abandoned in the next study. 
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The study showed that once children knew the COL strategy, they preferred 

it to the other strategies. It also showed a trend in the development of 

strategies and of the concept of commutativity with age. 

3.3 The main study 

A more comprehensive study into the development of the concept of 

commutativity was carried out. This was done in a rural school in Fiji (note 

that the location is conceptually irrelevant in the study). 

The aims of the study were to: 

i) gain insight into the stages that children go through in the 

acquisition of the concept of commutativity, 

ii) find out if the concept can be taught, 

iii) investigate why some children overgeneralize the concept to 

subtraction and 

iv) examine the extension of knowledge of the concept to 3-addend 

• problems. 

3.3.1 Method 

SuiQects 

The subjects comprised 105 children (49 boys and 56 girls) between the ages 

of five and twelve. They were from 14 classes. The classes are divided 

according to the children's ages; for example, children between six and 

seven years old are in class 1, between seven and eight-years-old are in 

class 2, between eight and nine are in class 3, etc. There are two classes in 
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each age range. The five-to-six-year-olds are kindergarten students. The 

sample consisted of 4 five-to-six-year-olds (originally, 15 five-to-six-year-olds 

were interviewed, but it was found that they were not competent enough for 

the study - most of them could not add; some could not even count up to 10), 

31 six-to-seven-year-olds, 33 seven-to-eight-year-olds, 22 eight-to-nine-year

olds, 8 nine-to-ten-year-olds, 5 ten-to-eleven-year-olds and 2 eleven-to-twelve

year-olds. 

The kind of activities carried out in the classrooms in Fiji during 

mathematics lessons are similar to those in England; the contents of 

mathematics textbooks are similar; there is no evidence of student-teacher 

relationships in the two schools being significantly different. The amount of 

concern from parents towards their children's mathematics education 

might be slightly higher in the English school ("my mum taught me"), 

whereas in this particular rural school in Fiji, parents tend to leave 

mathematics education for the teachers at school. A major difference in the 

two schools is the age at which children start formal schooling (hence the 

transition from informal experiences to the formal system). For the Fijian 
I 

school, the earliest age is five years, when they start kindergarten. There 

were some children in class 1 who did not even attend kindergarten. In 

England, much younger children attend nursery or kindergarten. As a 
• I 

result of this, children from the Fijian school might achieve a certain 

knowledge/performance level at a slightly higher age than children from 

the English school. A second difference between mathematics education in 

this rural school in Fiji and that in England is the medium of 

communication. The language used in the study school in Fiji is Hindi, 

which is the mother tongue of all the subjects. At the time of the study, 

class 1 children were involved in learning to count and writing down 

numbers; class 2 children were practising addition; class 3 was being 

taught subtraction concepts, place value and partitioning (formal 

algorithm); classes 4 and 5 were onto multiplication and division and class 

6 students were on more advanced topics like area. 
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Materials 

The children were given a set of pairs of addition problems like 4 + 5 and 5 + 

4. The numbers in the problems were randomly selected. Appendix 3 

contains a list of a typical set of problems. The children were not all given 

the same set of problems. The problems were written on paper, one at a 

time, and read out. The difficulty level (the size of the numbers) of the 

problems depended on their performance on the previous problems. If a 

child found the problems difficult, then the sizes of the addends were 

decreased. If the child applied commutativity, then larger addend problems 

were given in order to find out whether slhe applied the concept to larger 

numbers. After doing the set of addition problems, a pair of subtraction 

problems were given, where the order of the two numbers in the second 

problem were reversed. 

The 3-term problems fell in one of the following six categories: 

i) addition only (e.g. 5 + 8 + 5), 

ii) subtraction only (e.g. 16 - 10 - 5), 

~iii) multiplication only (e.g. 7 * 2 * 4), 

iv) division only (e.g. 12/6/2), 

v) combination of addition and subtraction (e.g. 3 + 5 - 3) and 

vi) combination of multiplication and division (e.g. 5 * 3 /3). 

These problems are normally written with parentheses, for example, (8 + 5) 

+ 5; The problems were written without the brackets because the aim of the 

study was to see if the students used grouping. To avoid the representation 

of the problems being another variable, the children were given a word 
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problem first (e.g. "suppose you bought apples worth 20c, lollies worth 15c 

and a packet of crisps worth 14c. How would you write a sum to find out 

how much you needed to give to the shopkeeper?") to find out how they 

represented such problems. None of the subjects used brackets, hence their 

representation was consistent with mine. 

The children used fingers for counting. Some of them used rulers. Some 

icelolly sticks were also provided. A tape recorder was used to record the 

interviews. 

Procedure 

Children were given arithmetic problems (of the type in Appendix 3) and 

were observed solving them. They were interviewed, as in Task 2 of Study 1 

(with the deletion of the question "which is more?"), to get details of the 

skills and strategies they were employing. The work was carried out in two 

stages: 

i) a study of commutativity and 

ii) a study of transfer of knowledge of commutativity to solving 3-

t I addend problems. 

To identify the different levels of understanding of the concept of 

commutativity, children at different stages/levels (that is, some in 

kindergarten, some in class 1, some in class 2, etc.) were studied. In 
, 

addition to the commutative pairs of problems, 63 of the children were also 

given a pair of subtraction problems like 6 - 5 and 5 - 6, in order to find out if 

they would apply commutativity to these as well, and if they did, then why. 

The subjects who were definitely identified as unsuccessful on the 

commutativity problems were not given the subtraction problems (since if 

they did not have any knowledge of commutativity, there is no question of 

generalization to subtraction). 
t 
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Seventy-seven of the students who were studied for the stages of 

development of commutativity, were also studied for their performance on 

3-addend problems. The sample size of seventy-seven students was a result 

of ignoring those students who were not competent enough for the study (for 

example, those who did not know what to do or how to proceed on the 3-

addend problems. Some of these students had explicitly stated that they did 

not know how to do these problems). Eleven of the older children from the 

sample of seventy-seven, who had knowledge of multiplication and division 

were given problems in categories ii, iii, iv, v, vi (see the section on 

materials above) as well. This procedure was carried out to establish if 

there is a relationship between children's performance on 2-addend 

problems and that on 3-addend problems. 

3.3.2 Results and discussion 

Perfonnance levels of commutativity 

The study revealed several levels of performance of the concept of 

commutativity. There are the basic levels where children use the COL 

strategy for addition, because it is a faster means of arriving at the answer, 

without showing any evidence of conceptual knowledge of commutativity. 

There are the fully-developed stages where knowledge of the concept is 

applied to more complex situations (e.g. application to 3-addend problems 

and invention of informal procedures for solving problems). The following 

levels in the development of commutativity (of addition of integers) are 

proposed as a result of the performances of the subjects in the study: 

i) Order-irrelevance principle (Gelman, 1977) - while assigning tags 

to objects in a set, it does not matter which tag is assigned to which 

object. 
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ii) Implicit knowledge - a level at which children might possess 

knowledge of the concept, but it is implicit (they cannot articulate it -

some do not have the language/vocabulary to describe it, and yet 

some of them are able to apply it). For some children, their 

knowledge might be at a level which does not allow them to make 

use of it completely. Hence, children at this level compute the 

answer to x + y after having done y + x, instead of copying the 

previous answer. 

iii) Commutativity - the realization/explicitness that a + b is 

equivalent to b + a (for all values of a and b), and the use of the 

concept. This may proceed in steps (not necessarily in this order): 

a) concrete examples only, 

b) small numbers only, 

c) abstraction and 

d) generalization to all numbers. 

The progression here is quite complex. The four steps can all be 

interrelated, and hence, a child can be at one or more of them at any 

.one time. There are several possibilities of progression: 

concrete small --> concrete large 

concrete small --> abstract small 

abstract small --> abstract large 

concrete large --> abstract large 

iv) The extension of the application of commutativity. At this level, 

children extended their application of the concept, for example to 3-

term problems. There are several levels of application: 

a) to concrete examples only, 
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b) to small numbers only, 

c) generalizing to large numbers and to abstract examples, 

d) inventing informal procedures based on the concept for 

solving more complex problems and 

e) 3-addend problems (use of grouping). 

At this level, like level iii), the different sub-levels of application may 

be interrelated. 

Note that the above levels do not necessarily have a psychological or 

developmental status. They are just descriptions of performance. A child 

need not necessarily go from performance level i) to iv) in that order, nor 

does s/he necessarily go through each one of them. An attempt was made at 

categorising the subjects in the study into one of the four performance 

levels. This was done using the tape recorded protocols, the written 

problems and their answers and notes on the observations made during the 

interviews. The result for each subject is listed in Appendix 4. The details 

of the observations and measures used for deciding the levels are described 

below: 

i) While counting out a set, children often recounted (for various reasons: 

e.g. to make sure or because they made a mistake or they lost track of their 

count or because the experimenter asked them to do so). When counting 

again, they did not necessarily assign the counting sticks the same tags as 

they did the previous time. One child, for example, picked up the sticks and 

put them in her hand as she counted them "1, 2, 3, 4, 5". When she 

recounted (she put them on the desk this time), she assigned the tag "1" to 

the stick to which she had assigned "5" previously. Although some 

children's behaviour revealed knowledge and use of this principle, this 

observation was not necessarily the criterion that was used in deciding a 

level i) child. Instead, a subject who was not categorised into the other 3 
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levels, was automatically classed as having performance level i). (Note that 

this level was identified more as a logical prerequisite for commutativity 

than as a result of performance behaviour). Note that the assumptions here 

are that all the children who didn't get to levels ii) and above did have the 

order-irrelevance principle and that this assumption is not important for 

the analysis in the rest of the thesis. 

ii) This was the most difficult stage to identify. This level could have been 

split further into implicit or explicit knowledge and its applicability. This 

was not done because of the fuzziness of children's performance. In the 

case of a child who was put in this category, there was not a clear cut 

distinction between whether s/he had implicit knowledge and could use it 

or s/he had explicit knowledge but could not use it. The performance (use of 

the concept) on the commutativity problems only revealed that the subject 

had not reached stage iii) (the difficulty was to identify whether s/he had 

knowledge of the concept or not). Children who might have had the concept, 

but could not put it into words were categorised into this level. Note that no 

distinction has been made between commutativity and Baroody and 

Gannon's (1984) concept of protocommutativity (the order in which addends 

are dealt with does not make a difference in terms of the correctness of the 

sum). Hence, children who might have had knowledge of 
t ' 

protocommutativityonly, have been included in this category. Children who 

only have a concept of proto commutativity, do not realize that the result of 3 

+ 5 is the same as that of 5 + 3. They know that they get the answer in either 

case - whether they start from the first addend or from the second. This 

behaviour was noticed in children's performance on concrete tasks as well 

as on abstract examples. On concrete tasks, children at this stage, were 

observed not paying particular attention to the order of the addends, hence 

counting out either of the addends first. On abstract problems, there were 

several children whose level of understanding of commutativity was at this 

stage and were using the COL strategy while adding. When asked why they 

had started from the larger addend, and not from the first addend, their 
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replies did not reveal knowledge of commutativity: for example, "because it 

is easier", "because it is faster", "because x is larger than y". When 

subjects at level ii) were asked if the sums/results of a pair of commutative 

problems would be the same or not, they did not immediately say "same" 

(some started computing the answers). Even if they said "same", their 

explanations referred to the two addends, which did not necessarily extend 

to their sums. In addition, children at this stage succeeded on the large

numbered, incorrectly-answered problem (e.g. "If I told you that 130 + 485 = 

550; now if I swap these two numbers around, 485 + 130, can you tell me 

what the answer will be?"). 

iii) It was common to find children at stage a) and at stage b) of this level. 

Due to the interrelationships between a), b), c) and d), it is difficult (if not 

impossible) to be precise about which one of these stages a child is at. 

Hence, a child was classified as being at level iii) if s/he was analysed as 

being at anyone of these stages. A child was classified as being at this level 

if at least two of the following criteria were satisfied: 

i) For the large-numbered, incorrectly-answered problem, s/he 

responded with the same answer. 

• ! ii) S/he generalized to subtraction. 

iii) S/he used the answer from the previous problem for answering 

the second of a pair of commutative problems. 

iv) His/her explanations included statements which referred to the 

sums of two problems being the same, e.g. "They are the same, but 

you have swapped them around and it equals the same number", 

iv) A child was classed as being at level iv if s/he used grouping (did not 

necessarily carry out the sum from left to right) for solving the 3-addend 

problems. 
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Generalization 

A total of 63 students' (see Appendix 4 for subject details) performance on 

pairs of subtraction problems, like 4 - 2 and 2 - 4 (after being tested on 

commutativity of addition), was examined (The results of the individual 

children's answers are listed in Appendix 4). Their responses fell into one 

of the following categories: 

i) "cannot be done" or "not possible", 

ii) "zero", 

iii) applied commutativity to the second of the pair of problems 

(generalization). This was revealed by their responses, e.g. "it's the 

same" and 

iv) subtracted the smaller number from the larger one. Children in 

this category gave explanations like "you take 2 from 4". 

The number of students' responses in each category is listed in Table 3-3. 

i ! 

Table 3-3. Numbers of students' responses to problems like 2 . 4 

not 
possible 

24 

o generalize 

15 

smaller 
from 
larger 

4 

Note that this data is not based on a large set of problems, and so caution is 

needed on relying too heavily on this data. Having made this point, the 
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results shown in Table 3-3 are quite surprising. A higher proportion of 

students were expected to generalize. Eight of the students in the categories 

"0", "generalization" and "smaller from the larger" originally thought that 

it "cannot be done", but thought that this was like giving up on a problem, 

and hence attempted to arrive at solutions. 

One of the reasons for children generalizing could be that they have been 

led to do so. They think that because the experimenter has given the 

example alongside the commutativity examples (Le. her aim is to teach 

commutativity), this must be an example of commutativity as well. In 

addition, generalization is a way of learning. With the positive examples of 

commutativity that they have seen so far, there is no reason for them not to 

believe that everything is commutative. From this, one can say that 

students' interpretation of the situation, that is, how they think about it 

(Donaldson, 1978), and the type of examples are two possible variables 

responsible for their performance. 

Another possible reason for generalization is that the children do not have a 

concept of negative numbers, which is the prerequisite knowledge for 

solving problems like 4 - 7, so they attempt a repair. One of these repairs 

happens to be applying commutativity. Baroody and Ginsburg (1986) 

explai~ children's responses to such problems in a similar way: 

" ... They can choose not to respond, but this is a sure sign of low 

intelligence. Children are not trained to respond: "An answer is not 

possible". Indeed because children are usually trained to believe that 

there must be a correct answer, they may override their intuition 

that an answer is impossible and manufacture an answer." 

(Baroody and Ginsburg, 1986, p. 103). 

Ashlock (1982) also provides such a reason for why children generalize and 

learn patterns of error: 
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" ... Yet all too often, especially when taught in groups, children do 

not have prerequisite understandings and skills they need when 

introduced to new ideas and procedures. When this happens, they 

want to please the teacher (or at least survive in the situation); so they 

tend to 'grab at straws"'. (Ashlock, 1982, p. 6). 

Why do children say '2 ·4= 0''/ 

The children who give "0" or "nothing" as answers to problems like 2 - 4 do 

not all have the same reason for their answers. In reply to "Can you show 

me how you would subtract 4 from 2?", some of them revealed that there is 

nothing left to subtract from after subtracting 2 (of the 4) from 2; some 

explained that there is nothing left after subtracting 2 (of the 4) from 2 and 

hence the answer is O. Most of these children reason like Su: 

Su: (Pause) I took 4, I take away. No! I took 2 (showing 2 fingers), 
from that I (pause). I have to minus (pause). I took 2, from that I 
took 2 away; there's 0 left. 

Another child who reasoned like Su exclaimed "None left" while trying to 

work out 2 - 4 on her fingers. These children's answers are quite 

reasonable, since they realise that they cannot go beyond zero. 

For some of the other children who say "nothing" or "0", it is another way of 

saying "I don't know" or "I don't know what's happening here". Yet other 

children mean to say "It cannot be done". 

Given that these children do not have a concept of negative numbers, the 

above responses are all reasonable. 
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Can commutativity be taught? 

There is not enough empirical evidence to give a definite answer to this 

question (in the interviews, only one possible method of teaching was used). 

As a result of the studies, it can be concluded that it is very difficult for 

children to learn the concept from abstract examples only. Note that in the 

studies, children were not being given any guidance or feedback. They used 

icelolly sticks for counting if they wished. With over 40 of the subjects in the 

two studies not having a complete understanding of the concept, only 5 

subjects started applying the concept as a result of solving a sequence of 

examples (ignoring those who had forgotten the concept, and remembered 

it after 2 or 3 examples). 

We know that children learn the concept of commutativity. We also know 

that the concept develops gradually over a long period of time (Denvir and 

Brown, 1986; Hennessy, 1986). There is evidence of children without any 

formal teaching knowing the concept (Baroody et aI., 1983). Following from 

this, I believe that children, left on their own, without any teaching of the 

concept of commutativity, with their everyday experiences with concrete 

examples, will come to a stage where they recognize the concept. I propose 

that this recognition process can be accelerated by teaching. In addition, , 

~ teaching can facilitate the abstraction of the concept. Teaching should be in 

a non-abstract, non-mathematical way and should build on childrenfs 

concrete experiences. Children can be led into a discussion about their 

experiences. For example, "if you ate 3 smarties first and then 2; and if you 

ate 2 smarties and then 3, .... Would you eat the same number of smarties 

in both cases?". The job of the teacher is to stimulate them to think about the 

concept, and to facilitate the understanding of the concept by relating the 

non-abstract, non-mathematical experiences to abstraction. 

The empirical results presented above have implications for teaching 

commutativity of addition and non-commutativity of subtraction .. For each 
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type of problem there are a limited number of different answers and a 

limited number of different strategies. For example, for subtracting a 

larger number from a smaller one, there were four different answers, as 

shown in Table 3-3; for the second of a commutative pair of problems, 

children's strategies could be broadly classified into two: either copying the 

answer to the first problem or calculating the sum (calculating the sum 

can of course be analysed further in terms of the counting strategies used, 

etc.). Using knowledge of the different answers and different strategies and 

the knowledge of the implications of these for a student's state of 

knowledge, a teacher (or a tutoring system) can diagnose the student's 

current knowledge state. Teaching then depends on this diagnosis -

designed to help the student progress from hislher current performance 

level to the desired level. 

Associativity 

The subjects used one of the following two strategies in solving 3-addend 

problems (like 4 + 8 + 4): 

i) They performed the operations in any order. They grouped any 2 of 

the 3 numbers, and carried out the appropriate operation on them 
" ' 

first. Hence, in a problem like a + b + c, they did either a + b, or a + c 

or b + c first (whichever was easier). For example, for 3 + 5 + 5, 

children using this strategy, did 5 + 5 first because most children 

knew doubles, or it is easier to add on a small number at the end or 

10 is easier to work with than 3 or 5. 

ii) They performed the operations from left to right (linear strategy). 

That is, they always did the operation on the first 2 numbers to begin 

with, and then performed the next operation on the result and the 

last term. Thus, 4 + 8 + 4 would be solved as: 

4+8 = 12 
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12+4 = 16 

Table 3-4 shows a comparison of the above strategies used by children who 

used commutativity (stages iii and iv) and those who did not (stages i and 

ii). It shows that knowledge of commutativity and use of grouping are 

strongly related. Not knowing commutativity implies not using grouping. 

In addition, the table reveals that knowing commutativity is a necessary but 

not sufficient condition for using grouping. 

Table 3-4. Relationships between strategies for 3-addend addition and 

knowledge of commutativity 

Knew commutativity 

Did not know 
commutativity 

. \ 

strategy i 
(grouping) 

strategy ii 
(linear) 

11 

15 

The results of Table 3-4 show that of the 61 students who knew 

commutativity, 82% of them used grouping on the 3-addend problems. 

These students also gave descriptions that showed explicit knowledge of 

associativity. For example, 

"You have just changed the order of the sum" 

''It doesn't matter what you do first, it's the same thing". 

1 Details of this child's performance is discussed later in this section. 
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Children seem to progress through several stages in the transition from 

commutativity to associativity. Figure 3·1 displays the proportions of 

children who knew commutativity, at different stages of performance on 3· 

term problems. 

% 

children 

75 

50 

25 

categories: 

1 

1 - Children who use grouping. 

-
n n 
2 3 4 categories 

~ 
2 - Children who showed explicit knowledge of grouping, but did not use it. 

3 - Children who applied commutativity. to the first 2 numbers of the 3-addend 
problems. 

4 - Those who did not reveal any knowledge of commutativity in their performance 
on 3-addend problems. 

(note: 2,3,4 represents children who used the linear strategy and fell in one or more 
of the categories 2, 3 and 4) 

Figure 3-1. Application of commutativity to 3-addend problems 

There were 3 children who did not use the grouping strategy, but showed 

explicit knowledge of the concept: 
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PKP revealed this by not computing the answer to the second of these 

problems again: 

6 + 8 + 2 = 16 (8 + 6 = 14, + 2 = 16) 

2+8+6= 16 

When asked how he had done this, he replied "You repeated the 

question". 

MSN: 3 + 2 + 3 = 8 (3 + 2 = 5, + 3 = 8) 

When asked for any other way of doing this problem, she replied 

"Can also do 3 + 3 first and then add 2". 

Empirical evidence of children who appeared to lack understanding of a 

concept on one task and showed performance consistent with the concept on 

another task has been provided by Gelman and Gallistel (1978). This 

implies that children do not always use their conceptual knowledge. Some 

possible reasons for this are: 

i) they do not think of the concept at the time. For example, in case of 

commutativity, children made comments like: 
~ , 

"I knew it but I calculated it again because I didn't think of it". 

"How stupid of me; I didn't think of it". 

ii) even if they are aware that a particular concept is applicable, they 

know that after all they will get the same answer whether they use it 

or not. For example, there were a number of children in the 

commutativity experiments who knew the concept and were 

computing the answers to the second of the commutative pairs of 

problems. They were doing this so that they could check their 
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answers to the first problem. In general, children do not always use 

the most efficient strategy in their problem solving (Luchins, 1942). 

iii) they have not reached the stage in the development of the concept 

where it can be applied. 

Luchins (1942), in one of his experiments, gave 11 of his subjects (aged nine 

to fourteen years) a series of problems to solve. All the problems could be 

solved by the same strategy, but the seventh and eighth ones could be solved 

using a more direct (simpler and faster) method. However, not one subject 

used this more direct method. Having become habituated to the method of 

solution that worked for the first six problems, they used it in the 

succeeding similar problems. Later when they were shown the more direct 

method, the subjects spontaneously made comments like: 

"How dumb I was" 

"How blind I was". 

Luchins ,also found that children sometimes wanted to repeat a method 

throughout. Some of the comments made by his subjects are: 

"why should I bother seeking new methods" 
~ , 

"I did the best I could do and, after all, my answer was correct" 

"It's senseless to do the same thing many different ways". 

This shows that some children consciously decide not to search for 

alternative methods once they have one that works. 

There were 3 children who knew the concept of commutativity, but did not 

extend it to 3-addend problems. Their inability to transfer the knowledge of 

commutativity implies that there is a stage between knowledge of a concept 

and its application. If it was not for this stage (revealed by these 3 children), 

commutativity would be a necessary and sufficient condition for grouping. 
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Eleven of the older subjects, who used grouping on 3-addend addition, and 

who were familiar with the four operations, were given 3-addend problems 

with different operators besides those of addition. (Appendix 4 marks these 

subjects). All the subjects were given the same set of problems (listed in 

Appendix 5). 

The results are listed in Appendix 6. None of the subjects used grouping on 

the problems with a combination of operators. Four of the subjects used 

grouping on the addition-only and on the multiplication-only problems, and 

the linear strategy on the subtraction-only, division-only and combinations

of-operators problems. One subject generalized her grouping strategy to all 

problems with 1 type of operator only; hence, 12/6/2 = 121 3 = 4, 16 - 10 - 5 = 
16 - 5 = 11. The rest of them used grouping on the addition-only problems 

and the linear strategy on the other problems. 

An interview with the child (PD) who did not know commutativity, and yet 

seemed to apply associativity (see Table 3-4), revealed that she did not have 

any knowledge of the latter concept either. She was using the labour saving 

strategy, COL, while doing the commutativity problems. For the problem, 7 

+ 13, she started counting on from 13. Then, for 13 + 7, she repeated the 

counting. When asked explicitly if she was aware that the order in which 2 
, 

~ 

numbers are added does not make a difference to their sum, she replied 

"No". On the 3-addend problems, she began from the largest addend. For 

example, 3 + 3 + 12 - she started from 12 "because 12 is the largest number". 

This strategy seems to be an extension of the COL strategy that she used on 

the 2-term problems. This child is an example of one whose algorithms 

could be said to embody the concepts, but she does not explicitly possess that 

knowledge. PD's behaviour highlights the need to distinguish between the 

knowledge of a concept and the use of algorithms that presuppose the 

concept. This type of distinction has also been discussed by other 

researchers (Baroody, 1984; Hennessy, 1986; Resnick, 1983). 
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3.3.3 Conclusions 

Different levels of performance of the concept of commutativity have been 

identified. However the complex interrelationships between the sub-levels 

need to be studied in more detail. 

In the studies reported in this chapter, commutativity of one operation only 

(addition) has been considered. One would expect variations in the results 

had the other operations been considered as well. Another dimension of 

variation would be the type of number system (integers, fractions, decimals, 

etc.). 

The studies suggest that the acquisition of associativity and that of 

commutativity are interrelated. There was evidence of children who were at 

stage iii), for example using commutativity for small numbers only, and 

were using grouping on 3-addend problems. ~here were also children who 

were noted for applying commutativity to 3-addend problems (partially -

only to the first 2 addends). There was not a single child who was noted 
; 

using grouping (commutativity or associativity) on 3-addend problems and 

not using commutativity on 2-addend problems. This shows that 

comm~tativity is a necessary prerequisite for the acquisition of 

associativity. 

The evidence of use of procedures independent of their conceptual 

knowledge, and that of existence of conceptual knowledge independent of 

their applications, highlights that there is an important stage of linking 

conceptual and procedural knowledge. 

3.4 Longitudinal Study 

The aims of the study were as follows: 
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i) to study the development of children's understanding of commutativity 

and associativity and of their addition strategies at a more detailed level and 

ii) to double check the results obtained in the earlier study. 

3.4.1 Method 

Twelve children (7 boys and 5 girls) aged between four and eleven were 

interviewed seven times over a period of 1 year and 8 months. The time 

intervals at which the interviews were carried out are shown in Table 3-5. 

The subjects were from the same local school as that in the pilot study. Six 

of them were from the pilot group. The subjects were at different levels of 

understanding of commutativity and associativity - they had different 

lengths of school experience. Originally, the study included 15 children - of 

the 3 of them who were dropped, 2 were absent quite often and 1 had left 

school during the course of the study. The materials and the procedure for 

the interviews were exactly the same as those in the main study above. 

3.4.2 Results 

The results of each child's interview are presented below. The ages are 
• 

given in brackets and are as they were at the first interview. Table 3-5 

summarises the results. 

1. Samuel (6 years) 

At his first interview, Samuel showed no signs of knowledge of 

commutativity. He used the 'count all from the first addend' (CAF) strategy 

for solving the addition problems. For the second of a pair of commuted 

problems, he swapped the set of counters and recounted. For example, for 

the problem 4 + 7, he put 4 counters on the table to his left, and 7 counters to 

his right and counted them all to get 11 as the solution. For 7 + 4, he 
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dragged the set of counters on the left to the right and the set on the right to 

the left and recounted. When asked if 8 + 3 would give the same answer as 3 

+ 8 or not, he replied: "Different, because they are the other way around." 

At his second interview, Samuel sometimes used the 'count on from the 

larger addend' (COL) strategy for addition. He still used counters, but did 

not pay particular attention to addend order. He copied the answer to the 

first of a commuted pair of problems. Furthermore, he made an explicit 

statement of commutativity: " ... because it's the same numbers ... ", For 3-

term problems, he applied the grouping strategy, and for subtraction 

problems (like 2 - 5), he explained (logically, reasonably and with 

understanding of subtraction) why they could not be solved. 

From his third session onwards, Samuel used COL and grouping 

strategies consistently. He also showed understanding of commutativity 

and associativity. 

2. Freda (6years, 7months) 

For the first two sessions, Freda used CAF and 'count on from the first 

addend' (COF) strategies. She did not indicate any knowledge of 
"t 1 

commutativity. All throughout the study, she applied 'smaller from larger' 

strategy to subtraction problems. From her third session onwards, she used 

COL strategy for 2-term problems and showed explicit knowledge of 

commutativity. She also used grouping. 

3. Grenville (8 years, 8 months) 

Grenville used CAF for all the addition problems and showed no knowledge 

of commutativity in the first session. In his third session, he used COF and 

showed some knowledge of commutativity (e.g. when asked whether the 

answer would be the same or different ... , he replied 'same'), but did not 
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use it in his solutions. In his fifth session, he copied the answer to the 

previous problem, but not always; he generalized commutativity to 

subtraction and carried on using COF. In the last two sessions, he used 

'count all from the larger addend' (CAL) and COF and generalized to 

subtraction. In the last session, he used the same strategies except counted 

on fingers instead of using counters. For 3-term problems, he always used 

the linear strategy. 

4. Craig (6 years, 4 months) 

In the first two sessions, he did not use commutativity but treated every 

problem in the same way. He did not know how to solve 3-term problems 

until the fifth session, when he used the grouping strategy. In the third and 

fourth sessions, he used CAF. In his fifth session, he used commutativity, 

CAL, grouping, and 'smaller from larger' strategy. In the sixth session, he 

showed explicit knowledge of the concepts. In the last session, Craig still 

used 'smaller from larger' strategy and used COL. 

5. Steven (7 years, 9 months) 

From the beginning of the study, Steven used commutativity, i.e. he copied 

the answer to the previous problem. He also showed knowledge of the 

concept: "this is the same as that", and used the grouping strategy. In his 

first two sessions, he used CAL and 'smaller from larger' strategy. After 

that, he used COL and informal strategies embodying commutativity, 

recognized the similarity between two associative problems and said 

"cannot be done" for subtraction problems. 
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6. Susan (5 years, 11 months) 

Susan knew the concepts and used COL and grouping throughout the 

study. She was not ready for subtraction, so tried generalization and 

'smaller from larger' strategy to reach an answer. 

7. Jaimy (5 years) 

J ainiy used CAF and linear strategy at all the five interviews. She did not 

copy the previous answers in the cases of commuted pairs of problems, and 

did not show any signs of knowledge of the concepts. For subtraction, she 

replied "can't do them" or "none". 

8. Daniel (5 years, 9 months) 

All throughout, Daniel used CAF strategy. He did not know how to do 3-

term addition and said "none" to the subtraction problems. He did not show 

any improvement over the period of the study. 

9. Sundip (5 years, 6 months) . 
Throughout the study, Sundip's only strategy transition was from CAF to 

COF. In the first five sessions, he used CAF. In the sixth session, he used 

CAF and COF. He did not reveal any knowledge of commutativity, nor any 

sign of improvement on the concept. For 3-term problems, he used the 

linear strategy throughout. For subtraction, he either said "zero" or 

"none". 
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10. KeUy (3 years, 11 months) 

Kelly showed knowledge of commutativity, copied the answer to the 

previous problem, but still used CAF for the first four interviews. For 3-

term problems, she used the linear strategy. On the last three sessions, in 

addition to CAF, she used COL. On the final session, she used COL and 

grouping. For the subtraction problems, she said "can't do it" or "don't 

know". 

11. Karina (5 years, 4 months) 

Karina used COL and grouping throughout. She showed explicit knowledge 

of commutativity and used it in all the sessions. For subtraction, she said 

"none left". 

12. Lisa (5 years, 5 months) 

For the first four sessions, she used CAL and CAF, and linear strategy. She 

copied the previous answer. From the fifth session, she used grouping and 

COL. For subtraction, she either said "none" or did 'smaller from larger'. 
~ ! 

Table 3-5 is a summary of the subjects' development of 2-term and 3-term 

strategies during the course of the longitudinal study. Cells marked '.' 

indicate that the child was not interviewed on that particular day. 

Table 3-5. Summary of strategy development 

Time 
(weeks) 0 10 47 48 51 63 85 

Samuel CAF COL COL COL COL COL COL 
copies grouping grouping grouping grouping grouping 
grouping 
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Freda - CAF COF - COL COL COL 
COF not copy grouping grouping grouping 

Grenvill CAF CAF COF COF COF CAL CAL 
linear copies copies COF COF 
(knows answer answer linear linear 
assoc.) but not linear 

always 
linear 

Craig CAF CAF CAF CAF CAL CAL COL 
not copy does not does not grouping grouping grouping 

know 3- know 3-
term term 

Steven CAL CAL dis- COL COL COL COL 
copies regards informal informal grouping grouping 
linear addend methods methods 

order - grouping grouping 
uses facts 
of 10 
grouping 

Susan COL COL COL - COL COL COL 
grouping grouping grouping grouping grouping grouping 

Jaimy CAF - CAF CAF CAF CAF -
linear linear not copy linear not copy 

linear linear 
, 

Daniel CAF CAF CAF CAF does CAF CAF 
not copy not copy not copy not know does not does not 

3-term know 3- know 3-
term term . \ 

Sundip CAF not CAF - CAF CAF CAF CAF 
copy not copy linear COF COF 

linear linear 

Kelly CAF - - CAF CAF CAF COL 
copies copies COL COL grouping 
ans ans linear linear 

Karina COL - COL COL COL COL COL 
grouping grouping grouping grouping grouping grouping 

Lisa CAF - - CAL CAL CAL COL 
copies linear copies copies grouping 

linear 
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3.4.3 Discussion 

The results confirmed the following observations reported in the main 

study: 

i) Children do not always use the knowledge they possess. They do not 

always use their knowledge to shortcut their computational effort. This is 

demonstrated by Kelly, for example, who knew commutativity but was not 

using the COL strategy. This finding has also been reported by Baroody, 

Ginsburg and Waxman (1983), Carpenter (1986) and Hennessy (1986). 

ii) Children do not always use the most efficient strategy that they can. For 

example, Samuel did not use COL all the time. The study also supports 

Fuson's (1982) finding that children use a variety of strategies. 

iii) All the strategies observed in this study are contained in the 'space' of 

observed strategies in the main study, i.e. no new strategy was discovered 

in this, study. 

iv) The same stages of development of the concept of commutativity were 

evident. Each child in the study, who showed any sign of knowledge of the . ' 
concept, could be categorised into one of stage ii), iii) or iv) in the levels of 

development of commutativity discussed in section 3.3.2 above. 

v) The subtraction results were similar to those obtained in the main study. 

Children gave similar answers to subtraction problems as those in the 

main study. In the analysis of those results, one of the explanations 

proposed for children's generalization of commutativity to subtraction was 

that they have been led to do so by the sequence in which the problems were 

presented. The longitudinal study gave support to this explanation. There 

were children who did not generalize on subtraction problems when they 

were presented at the beginning of the interview session but did so when 

they were presented after a sequence of commutative addition problems. 
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Note that the problems were commutative pairs (e.g. 4 - 2, followed by 2 - 4). 

This might have led them to generalize more than if they were presented 

with a single subtraction problem (e.g. 2 - 4). This can be explored as 

further work, which could involve an investigation of children's responses 

to a single subtraction problem, and a detailed study of the effect of priming 

on children's responses. 

vi) As can be seen from Table 3-5, each occurrence of 'grouping' is 

accompanied by strategies that either start counting from the larger 

addend (Le. COL and CAL) or disregard addend order (e.g. Steven). This 

result confirms the conclusion reached from the main study that 

knowledge (at least procedural) of commutativity is a prerequisite for the 

knowledge of associativity. The table also shows evidence of children who 

used strategies that start counting from the larger addend (e.g. Kelly), but 

still use the linear strategy. Once again, this confirms the hypothesis from 

the main study that there is a transition phase from 2-term 'counting from 

larger addend' strategies to grouping strategy on 3-term problems. 

The above results support previous work on the general trend of transition 

of strategies towards more efficient ones (e.g. Fuson, Secada and Hall, 1983; 

Resnick and Groen, 1977). Resnick and Groen's (1977) study suggested that 
• 

such transitions take place without instruction; children invent them for 

themselves. The substantial literature on informal methods supports this 

too (Carpenter and Moser, 1983; Resnick and Ford, 1984; Starkey and 

Gelman, 1982). From this study, one can conclude the following possibilities 

for transitions of strategies: 

i) Agreement with Resnick and Groen's suggestion that children invent 

efficient strategies for themselves. 

ii) Children who were interviewed could have had discussions with each 

other, which could have influenced their performance. 
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iii) The transitions are influenced by children's practice at solving such 

problems at school (partial disagreement with Resnick and Groen). 

Furthermore, the study revealed that children may use a particular 

strategy for a long time before a transition to another strategy takes place. 

For example, Sundip used CAF for a year before he started to use COF. 

To conclude, the longitudinal study showed that there is some effect of time 

on the development of strategies for addition. Over the 20 month period, 

there was no significant effect on their subtraction strategies. 

Furthermore, transitions to more efficient strategies were observed. The 

study also showed that once a child knew and used the concept of 

commutativity and associativity, s/he subsequently used it over the duration 

of the longitudinal study. Finally, knowledge of the concepts of 

commutativity and associativity are interrelated, and there is a 

developmental trend: complete knowledge and application of associativity is 

followed by knowledge of commutativity. 

3.5 Educational implications 

The levels of performance of commutativity identified in the studies above 
• 

could be used to design tasks to facilitate the learning of the concepts of 

commutativity and associativity. The tasks can be designed to proceed 

structurally through the performance levels. Children's textbooks suggest 

that standard classroom teaching does not guide children clearly towards 

the learning of the concepts. 

Existing literature and evidence from the studies reported in this chapter 

show that children's conception of commutativity and of subtraction leads 

to generalization errors on problems where the minuend is less than the 

subtrahend. Even children who are old enough to know negative numbers 

may generalize commutativity on such problems. This suggests that at an 
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earlier age, some explanation of such problems in relation to commutativity 

should be given to students. At the stage when children apply the concept of 

commutativity to addition, problems like 4 - 2 and 2 - 4 ought to be 

introduced to show that the concept does not apply to subtraction. Such an 

introduction does not need to be an introduction to negative numbers. 

Subtraction problems can be introduced with addition for teaching the 

concept of commutativity. For example, after going through a sequence of 

positive examples of the concept, i.e. addition problems, when a problem 

like 2 - 4 is introduced, the child is puzzled. Such a 'puzzled' state could 

provide an inquisitive mind with a good environment for learning. Those 

children who generalize commutativity to subtraction and are given 

feedback on their responses, need to 're-think' which could lead to an 

improvement on their understanding of the concept. Such situations could 

be created to teach commutativity. Furthermore, when they know 

commutativity for addition, such subtraction examples may help to avoid 

future generalizations of commutativity to subtraction. 

i 

On subtraction problems like 3 - 7, those children who respond reasonably, 

such as "how can you take away... 3 is smaller than 7 ... " have already 

made the distinction that subtraction is not commutative. Those who do not 
t \ 

make the distinction could be provided with further guidance. 

3.6 Summary 

This chapter reported three studies that were carried out to investigate 

children's acquisition of the concepts of commutativity and associativity. 

The main conclusions of the study are as follows: 

. i) The studies provide evidence of the need to make a distinction 

between conceptual and procedural knowledge of commutativity and 

associativity. 
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ii) A space of strategies for solving subtraction problems, 2-term and 

3-term addition problems has been identified. 

iii) The studies indicated that knowledge of associativity follows from 

that of commutativity. 

From the results of the studies reported above, production-rule models of 

children's strategies for solving arithmetic problems like 5 + 6 and 8 + 5 + 9 

have been implemented. The goals of the modelling were as follows: 

i) to understand and clarify the details of children's performance and 

ii) to explore the potential application of the models in an ITS. 

The following chapter is an account of the program, which simulates 

children's strategies at different stages of development using production 

rules. 
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Chapter 4 

PRODUCTION-RULE MODEIJJNG 

Based on the results of the study reported in the previous chapter, models of 

children's strategies for solving 2- and 3-term addition problems have been 

implemented. There are two main reasons for the modelling. Firstly, the 

models can be used in an ITS. Secondly, it allows a detailed analysis of 

children's performance. This chapter describes the program, PALM, 

which simulates the strategies using production rules. PALM stands for 

"Production-rule Arithmetic Learning Modeller". There are two major 

parts to PALM: one for production-rule modelling and the other for 

modelling learning. The first part is discussed in this chapter, and the 

second in the next chapter. This chapter begins with an introduction to 

production systems, followed by a review of three examples of production 

systems. Then the development of PALM is discussed, concentrating on its 

components, and on the features of the representation and their functions. 
I 

Simulations of strategies and the procedure for calculating estimates of 

their efficiencies are described. Finally, the production-rule models are 

discussed in relation to the data . . ' 

4.1 Production systems 

In this section, the basic components of a production system are outlined. 

This is followed by brief descriptions of three production systems. 

4.1.1 A brief description 

Production systems consist of three basic components: 
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i) Working memory - a set of elements which represent the results of rule 

firings and the current status of the system. 

ii) A set of production rules - these constitute the operational knowledge 

representation component of a production system. Production rules have a 

left-hand side, which represents the conditions under which a rule may be 

applied, and a right hand side which states the actions to be performed 

when the left-hand side conditions are satisfied. 

iii) Interpreter - the driving engine of the production system. It matches the 

rules with the working memory items, selects a rule, fires it and updates 

the working memory. 

A rule is of the form 

condition(s) ---> perform action(s) 

where 'conditions' represent a specific state in the problem-solving process 

and 'perform action' represents the step in the solution that is carried out 

at that particular state. The results of the actions are stored in working 

memory; the working memory is updated after each action. The updated 

working memory shows the stage in the problem solving process that has 

been reached. The state of the memory is matched against the condition 

sides of the production rules in order to select the next rule to 'fire'. At this 

stage, more than one rule could match the memory items. Production 

systems have strategies called conflict resolution strategies to select one of 

the possible rules. Some of these include: 

Refraction - once executed, an instantiation of a given rule may not be 

executed again, i.e. a rule which matches to the same working memory 

items as it did previously is eliminated. 
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Recency in working memory - rules which match with those items in the 

working memory that have been asserted more recently are selected over 

those matching older working memory items. 

Recency in rule memory - select the most recently created rule(s). This 

strategy is only applicable in systems that are able to learn new rules. 

Rule ordering - select the first of the list of possible rules. 

Specificity - select a rule which is more specific than other rules. Specificity 

can be measured in a number of ways. One of these ways is to measure the 

complexity of the condition side of the rule, and the preferred rule is the one 

that is maximally complex. Another measure of specificity is to delete from 

the conflict set instantiations of those rules whose condition sides are 

proper subsets of the condition sides of other instantiated rules. A third way 

compares the sets of working memory elements that match the conditions 

of the rules in the conflict set. If the matching working elements of one rule 

are a subset of the matching elements of another, then the first rule is ruled 

out. 

Random selection - choose a rule at random. 
t ! 

The cycle of matching rules against working memory items, performing 

the conflict resolution, 'firing' the selected rule and updating the working 

memory continues until either there are no more matching rules or a 

stopping condition is satisfied. 

4.1.2 Examples of production systems 

Described below are three production systems that are used for cognitive 

modelling. They are described with respect to the three components, 

working memory, production memory and the interpreter. 
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GRAPES 

GRAPES, as discussed by Brownston, et a!. (1985), was constructed for goal

directed problem solving. It has two distinct memories, working memory 

and goal memory. The working memory is similar to those of other 

production systems. It contains facts that are used by rules to make 

inferences. The goal memory contains goals or tasks, and is stored as an 

'and/or' tree of subgoals. An 'and' branch requires all the subgoals to be 

satisfied, and an 'or' branch requires only one of them to be satisfied. At a 

general level, the system's processing is directed by the goals in the goal 

memory. At a more detailed level, the goals or tasks are fulfilled by 

executing rules which depend on the working memory elements. Each rule 

in GRAPES has a group of goal parameters and a group of tests. The 

system first matches the goal parameters of its rules against the current 

goal, and then matches their tests. The condition sides of the rules can have 

one or more of three types of tests: goal tests, working memory tests and 

function tests. Goal tests can test against goals other than the current goal. 

Working memory tests are similar to those in other production systems. 

Function tests are LISP predicates that return a true value if the predicate 

succeeds. The conflict resolution strategies, in the order in which they are 

performed are refraction, recency, specificity, and arbitrary choice. 

PRISM 

PRISM (Langley, 1983) stands for Program for Research Into Self

Modifying systems. It has a long-term memory and a working memory. 

The elements in the working memory have an associated activation. The 

activation is a measure used for representing forgetting. At every cycle, 

PRISM examines each working memory element to see if its activation has 

fallen below a user-specified threshold. When this occurs, the element is 

removed from working memory a.nd is forgotten. The long-term memory 

contains these forgotten elements. They have associated trace strengths, 
t 

91 



which are used in directing spreading activation, the process for retrieving 

elements from long-term memory and adding them to working memory. 

Rules in PRISM may contain negated conditions. Each rule has an 

associated strength, which is used during conflict resolution. The conflict 

resolution strategies are rule ordering and refraction. The order of rules in 

the conflict set is determined by options like rule strength and the recency of 

the productions. The refraction strategy eliminates all instantiations that 

applied on the previous cycle. 

OPS5 

OPS5 (Brownston et aI., 1985) is one of a family of OPS production systems. 

In OPS5, working memory elements are represented as attribute-value 

elements. Each item has its class, followed by the name of the class, and 

then pairs of attribute names and values. A prefix operator (! in the 

example below) is used to distinguish attributes from values. The following 

is an example of an attribute-value element: 

(Person !name Kate !mother Helen !father Jim !Age 7) 

Each working memory element also has a time tag or a recency value . \ 
which indicates when the item was entered, or last modified. Rules in OPS5 

are of the form: production name followed by a set of condition elements, an 

arrow and then a set of actions. The conditions specify patterns that are to 

be matched against working memory elements. When dealing with 

numbers, OPS5 conditions can have operators like =, <, >, <=, >=. In 

addition, conditions can have disjunctions and negations. The right-hand 

sides of the rules consist of one or more of twelve predefined action types, for 

example, 'make', 'modify', 'remove', 'halt', 'write'. The actions can also 

contain functions, e.g. 'compute'. The conflict resolution strategies, in the 

order of their application, are refraction, recency, specificity and random 

selection. 
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The main application of GRAPES and PRISM is in cognitive modelling. 

OPS5 was not intended as a serious model of the human cognitive 

architecture (Neches, Langley and Klahr, 1987). The special feature of 

GRAPES is the separate goal memory. PRISM and OPS5, on the other 

hand, do not make a distinction between facts and goals and store them 

together. OPS5 is more efficient than GRAPES and PRISM. All three 

architectures also have learning components. 

In the next section, PALM, a production system implemented for the 

specific purpose of modelling children's arithmetic strategies, is described. 

4.2 Implementation of PALM 

An existing production system, like one of those described above, could have 

been used instead of implementing an interpreter. Instead, information 

from such systems was used and an interpreter was implemented to serve 

the specific purpose of this research. Some of the reasons for implementing 

a specific one are as follows. Firstly, using an existing interpreter means 

that one is restricted to the representation language of that interpreter. As 

ideas develop, it is easier to extend one's own interpreter accordingly. 

Secondly, PALM includes a learning component, and it is easier to build a , 

'simple' interpreter rather than adapt a more complicated existing one to 

incorporate the type of learning that is modelled in P ALM. PALM learns by 

generalization and by condition learning. PRISM includes learning by 

generalization, but its mechanism for generalization is significantly 

different from the learning mechanism in PALM. OPS5 does not contain 

any mechanism for learning by generalization. A discussion on learning 

issues is postponed until chapter 5. 

PALM was first implemented in Interlisp-D on a Xerox machine. It was 

subsequently transferred to a Macintosh SE/30 and the code translated into 

Common Lisp. 
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4.2.1 Working memory 

The working memory is represented by a global variable, and is initialized 

to 'nil' before the program is run. The program takes an example problem 

as input. The problem is added to the working memory to initiate the 

'firing' of rules. As the interpreter performs the actions of the rules, items 

are added to the working memory. The working memory is a list containing 

its elements in embedded lists. The following is an example of the structure 

of the working memory: 

( ... (col 2 5 14) (number 14) (number 25)) 

The last two items represent the problem, 4 + 5, which have been added to 

the working memory before any rule 'fired'. The first item is a result of a 

rule that fired for solving the input problem using the COL strategy. The 

working memory is updated by adding items at the front, i.e. the left-hand 

end of the list. 

4.2.2 Productions 

In ;PALM, a rule is in the form of a list consisting of three elements. 

i) A list containing one or more patterns, where each pattern is a condition. 

ii) An arrow that separates the condition from the action. 

iii) A list containing one or more patterns to be added to the working 

memory, where each pattern is an action. 

The following is an example of a production rule in PALM: 

((number =11 =X) (number =12 =Y) (not (used =12 =Y)) (not (used :=11 =X))) 

---> ((col =11 =X =12 =y) ) 
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which represents the problem x + y and the COL strategy. The rules 

represent problem-solving strategies. Conditions can have negated items, 

prefixed by 'not', as demonstrated in the above example. Apart from 

negated clauses, the conditions are in such a form that testing against 

working memory items involves simple pattern matching. The actions 

contain clauses which are like those in the conditions (except for 

negations). These clauses are added to the working memory directly, with 

the variables instantiated. Actions can also be functions, which are 

evaluated and their results are added to the working memory. 

4.2.3 Interpreter 

The three main functions of the interpreter are matching, conflict 

resolution and rule execution. In the process of solving a given problem, the 

interpreter performs the cycle of matching rules against working memory 

items, selecting a rule and 'firing' it, until either an answer is reached, or 

there are no more rules to 'fire'. 

matching 

The'matching process applies the production set to the working memory 

and returns a list of the instantiated 'action' parts of the rules. We shall 

describe the matching process for one rule using the following simplified 

example: 

conditions: ((number =X) (number =Y)) 

working memory: ((number 7) (number 15) (number 6) ) 

Each condition item is matched against the working memory items to get a 

list of bindings for the variables in the condition. For the first condition 

item, for example, the result of the match is as follows: 
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( (3 (=X 7)) (2 (=X 15)) (1 (=X 6)) ) 

There are three bindings for the first condition, i.e. the condition matches 

all three items in the working memory. The integer in front of each list of 

variable bindings shows the position of the element in the working memory 

to which the condition is matched. It indicates the recency, relative to other 

bindings, of the matching working memory element. The larger the 

integer, the more recent the element. This information is used in conflict 

resolution (described below). For the second condition, the match is as 

follows: 

((3 (=Y 7)) (2 (=Y 15)) (1 (=Y 6))) 

At this stage, the two sets of bindings of the conditions are merged, to get a 

list of consistent bindings. This process returns nine possible matches for 

the condition side of the rule: 

[ (33 (=X 7) (=Y 7)) (32 ( .. ) ( .. )) (3 1 (=X 7) (=Y 6)) (23( .. ) ( .. )) (22 (=X 15) 

(=Y 15)) (2 1 (=X 15) (=Y 6)) (1 3 (=X 6) (=Y 7)) (12 (=X 6) (=Y 15)) (11 (=X 6) 

(=Y6)) 1 

PALM's next step in the matching process is to eliminate those matches 

where more than one variable in the conditions is bound to one constant in 

the working memory, e.g. '6' is bound to 'x' as well as to 'y'. Note that in 

problems like 6 + 6, the two 6's are treated as two constants. This is detailed 

in section 4.3.2. The recency values in the above list reveal whether the 

same constant has been bound to more than one variable or not. (11 (=X 6) 

(=Y 6)), for example, implies that 'x' is bound to the first item in the 

working memory (6) and 'y' is bound to the same item as well. Eliminating 

such redundancies, the list of matches is as follows: 

[ (32 (=X 7) (=Y 15)) (3 1 (=X 7) (=Y 6)) (23 (=X 15) (=Y 7)) (2 1 (=X 15) (=Y 6)) 

(1 3 (=X 6) (=Y 7)) (1 2 (=X 6) (=Y 15)) 1 
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The handling of negated conditions is discussed in section 4.3.3. The 

matching process described above is repeated for every rule in the 

production set. The list of successful matches for all the rules is then 

passed through the conflict resolution strategies in order to choose one rule 

to 'fire'. 

Conflict resolution 

The interpreter applies the following conflict resolution strategies: 

i) Recency - select the rule instantiation which matches to the most recent 

item in working memory. 

ii) Rule ordering - if there is more than one applicable rule instantiation 

after applying the first resolution strategy, then select the first of these. 

If we assume that the rule in the above example is the only one that is 

instantiated, then the conflict set is the list of instantiations of that rule: 

[ (32 (=X 7) (=Y 15)) (3 1 (=X 7) (=Y 6)) (23 (=X 15) (=Y 7)) 

(2 1 (=X 15) (=Y 6)) (1 3 (=X 6) (=Y 7)) (1 2 (=X 6) (=Y 15)) 1 

Applying the recency strategy, the conflict set reduces to: 

[ (32 (=X7) (=Y 15)) (23 (=X 15) (=Y7)) 1 

Applying the rule ordering strategy, the first instantiation is chosen. Hence 

the appropriate action corresponding to the condition, (number 7) (number 

15), is carried out. 

Note that the conflict set is already reduced by not including those 

instantiations of rules whose actions result in elements that are already 

present in the working memory. Hence, a sort of refraction is applied at the 
• 
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matching phase. The main purpose of this was to avoid the continuous 

instantiation of a rule to the same set of working memory items. 

4.3 The representation 

The models are intended for representing students' problem-solving 

strategies in an ITS so that it can then offer better alternative strategies. 

One of the reasons for choosing a production-rule formalism is this 

application of the models. In an ITS, the tutorial goals can be represented 

as production rules as well, where the left hand sides of the rules would be 

the models representing students' strategies and the right hand sides 

would be the appropriate tutoring actions. The student's input is compared 

with the left hand sides of the rules. In addition, production systems can be 

'run' in order to make predictions of a student's possible outcomes. In our 

case, for example, if the system is 'run' on the problem, 3 + 4 + 5, the 

system returns the solution using either the grouping strategy or the linear 

strategy. Such outputs can be used to predict students' solutions and 

strategies. 

Furthermore, this formalism was chosen because of the ability of 

production systems to learn new rules. The structure of production systems 

allows additional code for learning to be incorporated with the existing 

system without affecting its previous behaviour. The modularity of rules in 

production systems makes it easy for the system to continue to work if rules 

are added to or deleted from the existing set of rules. The collection of 

papers in the book edited by Klahr, Langley and Neches (1987) demonstrates 

this capability of production systems. PALM's attempt at modelling 

transition from one knowledge state to another is discussed in Chapter 5. 

Since PALM includes a learning component as well, this needed to be taken 

into consideration when choosing the description language. We needed a 

representation language that describes the example problems, and has the 
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potential of describing generalizations of examples. The descriptors chosen 

to describe problem states are (number A X), (adjacent X Y) and (used A X), 

where (number A X) represents a number X, whose position in a given 

problem is represented by A; (adjacent X Y) refers to X and Y being next to 

each other, that is the difference between their positions, A and B, is 1; and 

(used A X) marks the numbers that have been added. For example, the 

problem 4 + 5 would be represented as: 

(number 14) (number 25) (adjacent 4 5) 

A rule for adding two numbers is represented as follows: 

(number =A =X) (number =B =Y) (adjacent =X =Y) (not (used =A =X)) 

(not (used =B =Y)) ---> (do addition) 

that is, add two numbers that are adjacent to each other, and that have not 

already been added. The 'do addition' part of each rule consists of a detailed 

addition strategy. 

The above representation was chosen, especially the predicate 'adjacent', so 

that the models of problem-solving behaviour are restricted to solving 2-

term problems only. They are not general enough to solve problems with 

more than two addends. In order to solve such problems, the program 

learns to construct new rules. To do this, it needs a representation that 

captures all the information required for solving 2-term problems, so that it 

can handle new problems with little restructuring of its existing 

knowledge. 

In the following subsections, we discuss each component of the rules, and 

the aspects of students' performance that they simulate. 
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4.3.1 'Used' 

When children count with concrete objects, they normally put to one side 

the set of numbers that they have finished counting, in order to distinguish 

it from the set(s) that remain to be counted, so that they do not count the 

items in a set more than once. In production-rule modelling, we need a way 

to keep a record of this as well, in order to avoid the problem of the rules 

matching the same numbers. Hence, when numbers are added, one of the 

actions of the rules is to mark the numbers as they are used. This is done by 

adding to the working memory the facts that the numbers that have just 

been added, are now used. For example, 

(number =A =X) (number =B =Y) ... (not (used =A =X)) (not (used =B =Y)) 

---> ... (used =A =X) (used =B =Y) 

On the condition side, the rule states: "if there are two numbers that have 
not been used" and on the action side: "do the addition and add to the 
working memory the facts that these numbers have been used". 

Furthermore, the 'used' clauses provide a means for deciding the state at 

which a problem has been solved. The rule interpreter, at each cycle of rule 

firing, checks whether the solution state has been reached. The addends in 

the given problem are compared with the addends that have been used. 

When all the addends have been used, and there is an additional (resulting) 

number, then the problem has been solved. 

4.3.2 Indexing 

Related to the problem of distinguishing between the used and unused 

numbers, we also have to distinguish between two or more addends that 

have the same value (e.g. 3 + 3). This, again, is a distinction that children 

(perhaps unconsciously) take into account. When counting 3 + 3, with 

concrete objects or using fingers, they count out two sets, one to represent 
• 
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each 3. When using the 'counting on' strategy, one 3 is used as the number 

from which to start counting; the other 3 represents the number that is 

counted on. The two 3's are somehow different. For making this type of 

distinction explicit in the modelling, each number in a problem is given a 

unique index (a place holder). Hence, 4 + 7 + 4 is represented as (number 1 

4) (number 2 7) (number 3 4). If the numbers are not given a unique index, 

then after doing 4 + 7, in 4 + 7 + 4, the first 4 is used, and the remaining 4 

will never get matched, since the conditions in the rules specify that a 

number matches only if it is not used, and the two 4's are not distinguished. 

Indexing marks the 4's as two different ones. 

4.3.3 Negation 

The condition part of the rules may contain negated items. Negated items 

are those that are preceded by 'not's. Negation is used in rules to provide 

constraints on the items in working memory that can be matched. A 

negated condition succeeds if there are no working memory elements that 

satisfy the condition. It is handled by matching the non-negated condition 
, 

and adding the result of the match to a global variable (referred to from 

here-on as nots) and comparing it to the matches from the other condition

clauses (referred to as previous_bindings) of the rule. Nots contains a list of 

instantiations of items in working memory on which a rule is restricted to 

fire. Previous_bindings is the list of successful bindings to which the rule 

can fire. After matching each clause, any item that exists in both nots and 

in previous_bindings is removed from previous_bindings, since it is not 

consistent with all the condition clauses. 

This is illustrated further with the following example, where the left-hand 

side of a rule has one negated condition and the working memory contains 

four elements: 

conditions: (number =11 =X) (not (used =11 =X)) 
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working memory: (number 1 7) (number 2 7) (used 2 7) (used 3 14) 

The first condition instantiates previous_bindings to: 

«=I11) (=X 7» and «=I1 2) (=X 7» 

The second condition instantiates nots to: 

«=I1 2) (=X 7» and «=I1 3) (=X 14», 

that is, we wish to exclude numbers '7' (with index '2') and '14' as 

successful bindings of X since they have already been used. Comparing 

nots and previous_bindings, «=11 2) (=X 7» is common and is removed 

from the previous_bindings list. Hence, at this stage the set of bindings that 

is consistent with the two condition clauses is «=11 1) (=X 7». (The 

conditions required a number that is not used. There is one item in the 

working memory, (number 1 7), that satisfies these conditions). 

4.4 2·term problems 

In this section, we describe simulations of children's strategies for solving 

problems like 4 + 5, that were observed in the empirical studies . 
. ~ ! 

4.4.1 Strategies 

The following is the basic rule template for all the strategies for 2-term 

addition: 

(number =A =X) (number =B =Y) (adjacent =X =Y) (not (used =A =X)) 

(not (used =B =Y)) ---> (do addition) 

where 'do addition' solves a given problem using one of the observed 

strategies. 
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For each strategy, the condition sides of the rules are the same. The 'do 

addition' part models the different strategies. These are CAF, CAL, COF 

and COL (discussed in chapters 2 and 3). Note that all strategies are equally 

applicable - there is no attempt to model choice of strategy at this stage. 

Each of these strategies also has the alternative, 'copy the answer to the 

previous problem' (for the case of commuted pairs of problems). This is to 

model the strategies of those pupils who recognize the similarity of the 

sums in such pairs of problems and do not compute the answers to the 

second of the problems. 

The following set of rules model the COL strategy: 

(number =11 =X) (number =12 =Y) (adjacent =X =Y) (not (used =11 

=X)) (not (used =12 =Y)) ---> (col =11 =X =12 =Y) 

(col =11 =X =12 =Y) ---> (fn coladd =11 =X =12 =Y) 

(addd =11 =X =12 =Y) ---> (fn addd =X =Y) (used =11 =X) 

(used =12 =Y) 

where function names are preceded by fn. Function col add takes the two 

addends as arguments and returns addd 11 X 12 Y, where X is the larger of 

the addends. This is because the aim of the COL strategy is to start from the 

larger addend. Fn addd computes the sum of the two addends. For 

example, for the problem, 7 + 9, the first rule fires, and colI 7 2 9 is added to 

the working memory. This result matches the left-hand-side of the second 

rule, whose action evaluates fn coladd to addd 2 9 1 7. At this stage, the 

third rule fires, evaluating fn addd which adds the 7 to the 9 and also 

outputs the efficiency of the coladd strategy. The computations for 

efficiencies of the different strategies is discussed in the next section (4.4.2). 

The internal details, that is the one by one counting of each addend, in each 

strategy has not been modelled using rules. This is because it is not 
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important for the purpose pursued here, which is to study the transition 

from ability to solve 2-term problems to that of solving 3-term problems. 

Furthermore, the strategies are modelled at a level where they can be 

differentiated from the other strategies, and this has been done by focussing 

on which addend is considered first, and then noting whether the counting 

begins at '1' or at one of the addends. The counting details of 2-term 

strategies are assumed to remain the same for 3-term problems. The 

strategies for solving 2-term problems are the same as those used for 

adding two numbers in 3-term problems. 

The rules for modelling CAF, CAL and COF strategies are similar to that of 

COL above, except for the respective functions that carry out the addition. 

The functions for CAF and CAL addition are the same, except for their 

efficiency outputs. They iterate from 1 to the sum of the two addends. The 

function for COF addition iterates from the first addend to the sum of the 

two addends, the second addend times. 

The following rules model the 'copy the answer to the previous problem' 
i 

strategy: 

(number =11 =X) (number =12 =Y) (col =11 =Y =12 =X) 

---> (copy-answer =11 =Y =12 =X) 

(copy-answer =11 =Y =12 =X) (old-number 0 =ANS) 

---> (answer =ANS) 

Given a problem, X + Y, and having solved Y + X, the model copies the 

answer to Y + X, which is represented as 'old-number' in the working 

memory. Hence, if 3 + 8 has already been solved, then solving 8 + 3 using 

this model, produces the following output: 

copy-answer 1 3 2 8 
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answer 11 

4.4.2 Efficiencies 

Of the observed strategies, some are more efficient than others. One of the 

aims of an ITS is to help children make choices between the more and less 

efficient strategies. To be able to do this, the system needs to know which 

strategy is more efficient for a given problem. Thus, the production-system 

modelling includes estimates of the efficiencies of the different strategies. 

For calculating the efficiencies, it is assumed that for counting, children 

have a mental representation, for example, they visualize the addends with 

that number of fingers. The efficiencies are based on the amount of work 

involved in each strategy, and the demand on a child's memory. The 

amount of work depends on the number of counts, which depends on the 

size of the addends. The demand on memory is the effort required to keep a 

record of the numbers that have been counted and that are left to be 

counted. The lower the efficiency value, the more efficient the strategy. For 

the problem, A + B, the amount of work involved in solving it using CAF 

strategy is A + B (since all the numbers are counted, starting from 1). The 

demand on memory is a fraction (for example 1/10) of B. It is a fraction 

because it is assumed that more work is involved in representing the 

addend and counting it than remembering the number of counts. It is a 

fraction of B because B is the addend that is counted second and as the 

counting proceeds, one needs to keep a record of how many of Bare 

counted. Hence, for CAF, the efficiency value is A + B + a fraction of B. For 

CAL, the amount of work is the same as that of CAF, and the memory 

demand is a fraction (same as that for CAF) of the smaller one of the two 

numbers, A or B. For COF, the efficiency is the sum of the second addend, 

which is the number of counts and a fraction of it. For the COL strategy, it 

is the smaller one of A and B + a fraction of it. 
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The 'copy the answer to the previous problem' strategy is the most efficient 

(but can only be applied in special cases). The efficiency values are meant 

only for comparing which strategy is more efficient than which, and not by 

how much. The 'copy the answer to the previous problem' strategy is given 

'0', the minimum possible, as its efficiency value. Using these criteria for 

determining efficiencies, the following table shows the relative efficiencies 

for the example problem, 7 + 12. 

Table 4-1. Efficiencies for 7 + 12 

copy answer o 

COL 7.7 

COF 13.2 

CAL 19.7 

CAF 20.2 

4.5 3-term problems 

4.5.1 Strategies 

From the empirical work, children's strategies for solving 3-term 

problems, based on the order in which the additions were carried out, can 

be categorised into either a grouping or a linear strategy (described in the 

previous chapter). Each of these two general strategies includes other more 

specific strategies. For example, the linear strategy includes 'counting all' 

as well as 'counting on'. With the grouping strategy, once the two numbers 
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to be added first are selected, the sum of these two numbers is recalled from 

memory if it is known as a number fact. The simulation of this part of the 

strategy is done by looking up a table which represents children's number 

facts. If the sum is known as a number fact, then this sum has to be added 

on to the third addend. This is done by using one of the 2-term strategies 

described in section 4.4 above. If the sum of these two addends is not known, 

then the problem is two 2-term additions. For our purposes, we only note 

whether a child solves the problem in the order in which it is written (Le. 

linear strategy), or s/he ignores the order and uses the grouping strategy. 

The following rule template models the linear strategy, where 'do addition' 

is one of the 2-term strategies: 

(number =A =X) (number =B =Y) (not (used =A =X) ) 

(not (used =B =YJ) ---> (do addition) 

The rule instantiates to the first two numbers in the given problem, and the 

action part adds the two numbers giving another number as the result. The 

above rule fires again, this time instantiating to the resulting number and 

the third number in the problem, resulting in the solution to the problem. 

For example, for the problem 3 + 4 + 7, the rule fires on number 1 3 and 

number 24. The action of carrying out the addition is done by one of the 2-

term strategies. Most of the children who used the linear strategy used 

either the CAF or the COF strategy. Some used the CAL or the COL 

strategy. After performing the 2-term addition, the result, 7 is added to the 

working memory, with an arbitrary index, 0 attached to it. The state of the 

working memory at this stage is: 

( (number 3 7) (number 0 7) (used 2 4) (used 1 3) (number 2 4) (number 1 3) ) 

The above rule fires again, on number 0 7 and number 3 7. The addition is 

performed using the same 2-term strategy as that used on the first two 
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addends, resulting in number 14 as the solution to the problem. This leaves 

the state of the working memory as follows: 

( (number 0 14) (used 3 7) (used 0 7) (number 3 7) 

(number 0 7) (used 2 4) (used 1 3) (number 24) (number 1 3) ) 

For the grouping strategy, the left-hand side of the above rule requires three 

numbers, and the 'do addition' part involves trying out the different 

combinations of two numbers to find out if their sum is already known. The 

trace in Figure 4-1 shows the actions of a sequence of rules that 'fire' for 

solving the problem 9 + 6 + 4, using the grouping strategy. To decide which 

two of the three numbers to add first, the model tries all the three 

combinations (9 + 6, 6 + 4 and 9 + 4), looking up a working memory of 

known facts each time to find out if it knows the sum of the two numbers, 

until it succeeds. The second line of the trace, 'lookup unsuccess 9 6' means 

that the program does not have 9 + 6 as a prestored known fact. The result 

of a successful 'lookup' is 'part-answer' of the two addends and the 'left

over' addend. At step 4, 6 + 4 = 10 is known as a number fact. At this step, 
; 

the interpreter records that 6 and 4 have been used. Step 5 tells us that there 

is a number left over (not used). Step 6 is the result of a rule which 

combines a 'part-answer' and a 'left-over' addend to make a 2-term 
i ' 

problem. The two numbers are then added using the 'count-on from the 

larger addend' strategy to get the final answer. The 9 is used at this step. At 

step 7, the program halts, since the three addends have been used and there 

is a resulting number (19). 

1) Group-first 9 6 4 

2) Lookup unsuccess 9 6 

3) Group-second 9 6 4 

4) Lookup success 9 10 

5) Left-over 9, Part-answer 10 
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6) Count-on-from-Iarger 10 9 

7) Answer 19 

Figure 4-1. Trace of 'actions' for grouping strategy on 9 + 6 + 4 

4.5.2 Efficiencies 

Determining efficiencies of the strategies for solving 3-term problems is 

dependent on the problems. One strategy might be more efficient than 

another for a particular problem, whereas the opposite might be true for 

another problem. For example, for problems like 1 + 1 + 1 and 2 + 1 + 1, the 

linear strategy might be more efficient, depending on the 2-term strategy 

used. For most problems, the grouping strategy is more efficient than the 

linear strategy. For the linear strategy, the efficiencies are calculated in a 

similar way to that for 2-term strategies. The grouping strategy requires 

grouping two of the three addends, for which the sum is either known (as a 

number fact), or is easier/faster to calculate. The amount of effort needed to 

group two numbers, and to lookup the known sum, is a fraction of that 

required to calculate the sum. Ignoring problems with more than one '1', 

for which the linear strategy might be more efficient, each grouping is 

given an arbitrary efficiency value such that it is always lower than that for 

computing the sum. The assumption is that 'looking up' to find out if the 

sum of two of the addends is known as a number fact is more efficient than 

computing their sum. Each grouping in our case is given the efficiency 

value 0.5. The efficiencies of the two strategies for the problem, 1 + 4 + 6, is 

illustrated below: 

linear strategy 

grouping strategy 

6.6 (1.1 + 5.5) 

1.6 (1.1 + 0.5) 

Note that in both strategies, we assume that the strategy for adding two 

numbers is COL, the most efficient ofCAF, CAL, COF, COL. 

109 



4.6 Matching models to data 

The models of children's strategies in PALM were constructed from the 

empirical data. They can be related to the data for all the subjects since the 

rules are general enough to include every child's strategy. The focus in this 

thesis has been on strategies related to commutativity and associativity, and 

hence the strategies are modelled at the level of the addend order. Detailed 

variations of the general strategies have not been implemented. 

For three term problems, there are two general models (grouping and 

linear strategy, Table 4-2) that account for every subject's strategy. A larger 

set of varied strategies exist for performing the additions, for example 

partitioning, rounding up and use of number facts such as doubles. In the 

empirical studies, for those children who used other, more specific 

strategies that PALM has not modelled, it was noted whether they ignored 

addend order or considered the addends from left to right. PALM's model 

for the general grouping strategy accounts for those strategies that ignore 

addend order. Similar specific strategies that consider the addends from 

left to right are accounted for by the linear strategy. 

The, models for 2-term strategies include CAL, COL, CAF, COF and 'copy 

answer'. Since approximately as many students used 'counting on' 

strategies (COF, COL) as those who used 'counting all' strategies (CAF, 

CAL), the empirical studies recorded this detail as well. Informal methods 

were noted for the addend that was considered first. The children who used 

informal methods and started from the first addend were classed as using 

COF. Those who started from the larger addend were classed as using 

COL. Hence, the models of the two counting on strategies can be further 

divided into counting strategies and informal methods. 
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Table 4·2. Summary of models 

Strategy Models 

CAF (number il x) (number i2 y) (adjacent x y) (not (used il x» 
(not (used i2 y» ---> (cafil x i2 y) 
(cafil x i2 y» ---> (fn cafadd il x i2 y) (used il x) (used i2 y) 

CAL (number il x) (number i2 y) (adjacent x y) (not (used il x» 
(not (used i2 y» ---> (cal il x i2 y) 
(cal i1 x i2 y» ---> (fn caladd il x i2 y) (used il x) (used i2 y) 

COF (number il x) (number i2 y) (adjacent x y) (not (used il x» 
(not (used i2 y» ---> (cofil x i2 y) 
(cofil x i2 y» ---> (fn cofadd il x i2 y) (used i1 x) (used i2 y) 

COL (number i1 x) (number i2 y) (adjacent x y) (not (used il x» 
(not (used i2 y» ---> (col i1 x i2 y) 
(col i1 x i2 y» ---> (fn coladd i1 x i2 y) (used i1 x) (used i2 y) 

Linear (number il x) (number i2 y) (not (used i1 x» (not (used i2 
y» ---> (add il x i2 y) ... 
(applied twice to solve a 3-term problem; add can be anyone 
of the above 2-term strategies) 

, 

Grouping (answer z) ._>. (stop) 
(a + b + c) --> (group-first a b c) 
(group-first a b c) --> (fn lookup-first a b c) 
(lookup success x y) --> (part-answer x) (left-over y) 
(part-answer x) (left-over y) --> (fn col add x y) 
(lookup-first unsuccess a b c) --> (group-second a b c) 
(group-second a b c) --> (fn lookup-second a b c) 
(lookup-second unsuccess a b c) --> (group-third a b c) 
(group-third a b c) --> (fn lookup-third a b c) 
(addd a b) --> (fn addd a b) 
(lookup-third unsuccess a b c) --> (do-it-anyway a b c) 
(do-it-anyway a b c) --> (fn do-it a b c) 
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In the following sections, we relate the production-rule models 

summarised in Table 4-2 to the data. 

4.6.1 Snapshot data 

Table 4-3 shows the number of children in the pilot study (n = 21) whose 

strategies could be matched by the 2-term models in Table 4-2. 

Table 4-3. Number of children in the pilot study described by each model 

model no. of children 

CAF 4 

COF 1 

COL 14 

CAL &CAF 1 

COL & CAF 1 
~ , 

The model for the COL strategy would account for two-thirds of the data. 

The proportion of children who are accounted for by each model depends on 

the subjects. In the pilot study, all the children were over six years of age, 

and most of them were using advanced and efficient strategies. If the 

sample consisted of children younger than five, then the dominant model 

would be CAF. If the sample consisted of children who were all at 

approximately the same performance level, then it is possible that fewer 

sets of models would be required to model their strategies. 
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The last 2 children's performance (Table 4-3) would be accounted for by two 

models. The model that describes hislher performance depends on the 

strategy slhe uses on a given problem. This would be fine for a system that 

models a child's strategy on every problem. An ITS in this domain will 

have to model on every problem in order to achieve a detailed description 

like "This child is using COL sometimes and CAF at other times". 

Table 4-4 presents a summary of the detailed analysis of the 3-term 

strategies that were observed in the main study (n = 77) and the number of 

children in each category. It also shows the models in PALM that represent 

the categories. The categories are as follows: 

1 - grouping 

2 - explicit knowledge of grouping but did not use it 

3 - applied commutativity to first 2 terms 

4 - no evidence of transfer of commutativity 

I 5 - did not know commutativity but used the COL strategy 

6 - linear strategy and did not know commutativity 

. \ 
The table is derived from the results in Appendix 4 (see also Figure 3-1, 

chapter 3). 
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Table 4-4. 3-term strategies in the main study 

category no. of children model 

1 50 grouping 

2 2 linear 

3 7 linear 

4 3 linear 

5 1 linear 

6 14 linear 

The model for the grouping strategy (Table 4-2) would account for all the 

children (n = 50) who used that strategy (category 1, Table 4-4). The other 

children (n = 27) would be best described by the linear model. As can be seen 

from Table 4-2, the production-rule models in PALM do not make a 

distinction between categories 2, 3, 4, 5 and 6. With the current 

implementation, PALM could have a separate model for category 3 that 

would distinguish students who applied commutativity to the first two 

terms of a 3-term problem from those who used the grouping or the linear 

strategy. However, PALM would not be able to model categories 2 and 5, 

since it does not have a means for representing conceptual knowledge. This 

remains a challenging extension to PALM (For an ITS, it is possible to 

diagnose categories 2 and 5 by interrogating the child). Categories 4 and 6 

would be distinguished by incorporating descriptions of children's 

performance on 2-term problems. Categories 2, 4 and 6 (70% of those 
t 
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children modelled as linear) would be described by the linear strategy, 

ignoring distinctions between their conceptual knowledge. 

In sum, the models in PALM match 'procedural data' well. Its limitation 

is distinguishing the conceptual knowledge associated with the procedures. 

4.6.2 Longitudinal data 

Referring to the results of the development of strategy (Table 3-5) for solving 

2-term problems, there is a definite trend in transition to more efficient 

strategies. The transitions observed in the 12 subjects over the 20-month 

period can be summarised as follows: 

CAF --> COL 

CAF --> CAF & COL --> COL 

CAF & COF --> COF --> COL 

CAF --> COF --> CAL & COF 

CAF --> CAL --> COL (2 children) 

CAF --> CAF & COF 

CAL --> COL 

The other 4 students had used the same strategy throughout, i.e. there was 

no observed strategy transition. Note that the time period between the 

strategy transitions varied from one individual to the next. Details of time 

intervals at which the transitions took place is presented in Table 3-5. To 

summarise the data for the development of strategies, the transition is from 

CAF as the most basic and inefficient strategy to COL as the most efficient 

one. Intermediate between these are CAL and COF. It seems that every 

child would get to the most efficient strategy, but it is not certain whether 
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everyone goes through all the intermediate steps. For example, the child 

who went through the following sequence of strategies 

CAF --> CAF & COL --> COL 

does not seem to have gone through CAL and COF. There is a possibility 

though, that she did go through them, but did not use them at the 

interview. The detailed sequence in which each child's strategy transition 

took place varies from another. There is only one sequence which was the 

same for two children. Even for them, the time intervals after which the 

transitions were observed were different. 

The models in Table 4-2 would be able to describe each child's strategy on 

any given problem. As in the case of the data for the pilot study, when 

modelled over a set of problems, there would be more than one model that 

describes the performance of those children who used more than one 

strategy at a particular interview session. 

PALM's production-rule models are not capable of modelling the transition 

of strategies over time. The objective of the learning mechanism described 

in the next chapter is to model the transition from one performance level to 

another. 

4.7 Discussion 

With respect to the order in which a given 2- or 3-term problem is solved, 

the models are capable of accounting for any individual's strategy. 

However, more distinctions can be made between their strategies if details 

like conceptual knowledge and the use of number facts are also modelled. 

The models can be used for diagnosing a child's strategy at a particular 

time. Although there are definite trends in the development of strategy, for 
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example from CAF to COL, PALM's production-rule modelling component 

cannot model them. Models of learning are needed to explain such trends. 

The efficiency estimates work very well for ordering the strategies that are 

modelled, in terms of their relative efficiencies. However, this method of 

estimating efficiencies may need revising when the other strategies are 

modelled as well. It would certainly need revision in the strategies for 

solving problems with operators like multiplication. 

The internal details of the strategies, such as the one by one counting of an 

addend, have not been implemented using rules. If this were done, then the 

efficiencies of the strategies could be modelled using rule firings. This 

would provide better justifications for arriving at efficiency values. 

Furthermore, the simulation of efficiencies of strategies using traces of 

rule firings would be able to take into account other strategies, for instance 

informal methods, that have not been implemented in PALM. Such an 

assessment of efficiencies could also be used for problem solving strategies 

involving the other arithmetic operators. 

Note that the production-rule models represent procedural knowledge only; 

if there is any conceptual knowledge, it is assumed in the procedural 

knowledge. Evidence from the empirical work reported in chapter 3 and 

from other research (Hennessy, 1986; Resnick, 1983) strongly suggests the 

need to make a distinction between these two types of knowledge. Self (1988) 

highlights the need for student models to include descriptions of conceptual 

knowledge in addition to purely procedural knowledge. For example, the 

production-rule models of performance on 2-term problems tell us whether 

a child copies an answer to a previous commuted problem or not. This 

indicates that such children know and use the concept of commutativity, 

but for those who do not use the concept, it does not tell us whether they 

know it or not. This is one example where diagnosing a child's conceptual 

. knowledge is important. One possible way to diagnose conceptual 

knowl~dge is by modelling tasks that were presented to the students in the 
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empirical work, and the measures that were used to categorise the different 

levels of the concept of commutativity (chapter 3). One such task was a pair 

of subtraction problems, e.g. 5 - 3 and 3 - 5. If a child generalizes the concept 

of commutativity to this problem, then it shows that s/he has some 

understanding of the concept. 

4.8 Summary 

This chapter described some possible architectures for production systems. 

Examples of existing production systems have been presented. The 

components of PALM were introduced. Its interpreter, the process of 

matching and conflict resolution strategies were described. The description 

language for representing the input problems, the rules and items in the 

working memory of the production system have been outlined. The 

empirically identified strategies for solving addition problems have been 

simulated using production rules. This also includes estimates 

representing efficiencies of the strategies. The models are descriptions of 

children's strategies at different levels of development. This does not 

explain where the strategies in such models come from and how they got 

there. 

In the following chapter, an attempt to model the transition process from 

one performance level to another, is discussed. The model begins with rules 

representing the ability to solve 2-term problems (e.g. 3 + 4) as prerequisite 

knowledge for learning. When presented with a 3-term problem like 3 + 4 + 

5, which is of a type that has not been encountered before, PALM's current 

rules are not adequate to solve it. As a result of this kind of failure, PALM 

learns to solve the new type of problem. 
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Chapter 5 

MODELLING LEARNING 

5.1 Introduction 

The last chapter was an account of the development of production-rule 

models that describe children's strategies for solving arithmetic problems 

related to the concepts of commutativity and associativity. The models 

describe 'snapshots' of children's performance, that is performance at one 

particular time only; they do not explain change in performance over time. 

A model of learning or a model for transition from one snapshot to the next, 

in addition to the production-rule models of the snapshots, would provide a 

more complete model of children's behaviour. This chapter describes the 

design and implementation of a model of learning for the transition from 

one of the performance levels of arithmetic problem solving to another. The 

computational model of the acquisition of procedural knowledge of 

associativity uses knowledge of commutativity (procedural, at least) as 

prerequisite knowledge. The model begins with rules representing the 

ability to solve 2-term problems. When presented with a 3-term problem, 

which is of a type that has not been encountered before, none of the current 

rules are applicable. In this situation, PALM learns as a result of failure. 

This is done by generalizing its existing rules. Once it has learnt to solve 3-

term problems, it is driven by the goal of learning more efficient strategies. 

The learning part of PALM consists of 2 components: 

i) Failure-driven learning, which occurs when there are no applicable 

rules to solve a given problem. The program learns by generalization. For 

example, it solves 3-term problems like 4 + 5 + 3 by generalizing its rules 

for solving 2-term problems like 3 + 4. 
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ii) Efficiency-driven learning, an ACM-like (Langley, Ohlsson and Sage, 

1984) learning component. It learns features of problems as conditions for 

which two of the three numbers to add first, in order to solve the problem 

most efficiently. 

Failure-driven learning is based on the assumptions that experience and 

previous knowledge facilitate learning and that learning takes place when 

one is 'stuck'. Efficiency-driven learning assumes that learning is driven 

by a search for a low effort solution. 

The chapter is organized as follows. The first section of the chapter provides 

an introduction to some of the types of machine learning techniques. This is 

followed by an outline of the learning components of PALM and a 

discussion on the motivation for the particular learning methods it 

employs. The next section presents the computational details of the 

learning mechanisms. The final section is a discussion of the learning 

mechanisms and also includes suggestions for extensions of the 

implementation. 

5.2 Machine learning techniques 

As outlined above, PALM includes learning by generalization (failure

driven learning) and by specialization (ACM-like operator applicability). 

This section introduces three main types of learning that have been 

addressed in the machine learning literature· learning from examples, 

learning by analogy and explanation-based learning. These three types of 

learning do not, by any means, cover all approaches to machine learning, 

but do illustrate a representative sample. In previous machine learning 

systems, the types of learning mechanisms that are in PALM are normally 

incorporated within the method of learning from examples. Hence, it is this 

type of learning that the discussion below covers in more detail. 
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5.2.1 Learning from examples 

Learning from examples is the method of arriving at a rule, hypothesis or 

description of a concept from a set of positive and negative examples. 

Despite its apparent simplicity, the approaches to learning from examples 

are nearly as numerous as the people who have worked on it (Langley and 

Carbonell, 1984). Regarding the examples, some of the ways in which 

systems that learn from examples differ are the type of examples, the way 

they are presented and the number of examples. There are two 

classifications according to the types of examples: 

- systems that learn from positive examples only 

- systems that learn from a set of positive and negative examples. 

Along the dimension of the way the examples are presented, learning from 

examples can be: 

- one-trial 

- incremental 

In the one-trial method, learning is based on all the examples considered at· 

onc~. Some learning from examples systems that employ the one-trial 

method are Michalski's Star methodology (Michalski, 1983), ID3 (Quinlan, 

1983) and ACM (Langley, Ohlsson and Sage, 1984). The incremental 

method is where the examples are considered one at a time, and at each 

stage, the previous learned rule or hypothesis is refined accordingly. 

Examples of systems that employ this method are Winston's ARCH 

program (Winston, 1975), SPROUTER (Hayes-Roth and McDermott, 1977), 

Thoth (Vere, 1977) and the version spaces (Mitchell, 1977, 1978, 1982). 

Incremental learning methods provide much more plausible accounts of 

the human learning process (Langley and Carbonell, 1984; Langley, 

Ohlsson and Sage, 1984). 
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The third, minor distinction regarding examples is the number of 

examples. This varies along several dimensions; for example, the objective 

of the learning system, its application, the precision of the learning 

outcome, the availability of examples and the task domain. A special case of 

learning from examples is explanation-based learning (described in section 

5.2.2 below), which requires only a single example. 

Furthermore, within the learning from examples approach, systems can 

differ in their detailed mechanisms for learning. There are two main 

mechanisms for learning: discrimination and generalization. 

Discrimination 

Discrimination (or specialization) is a mechanism for learning that 

involves the creation of a new rule, or modification of an existing one, so 

that it is less general than an existing rule, while still retaining the same 

actions. When using a set of positive and negative instances to arrive at a 

description that covers the positive instances, learning by specialization is 
, 

usually used to make the description specific so that it does not include the 

negative examples. Discrimination-based learning programs normally use 

discrimination networks for representing knowledge. Some examples of 
• 

such systems are ID3 (Quinlan, 1983), which is a descendant of CLS (Hunt 

et al., 1966) and ACM (Langley, Ohlsson and Sage, 1984). Figure 5·1 shows 

a discrimination network representing the concept black or (not black and 

circle). '+' means that all the instances at that node are positive and '.' 

means all the instances are negative. 
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-Circle 

o 0 

Figure 5·1. A sample discrimination network 

The discrimination network representation is used to arrive at a hypothesis 

that discriminates the positive instances from the negative ones in a given 

set of instances. Discrimination begins at the top node of a network, and 

proceeds with one branch at a time. In the example above, the system 

would begin with the black or not black branch. Next, it would create a 

branch coming from one of the new nodes, if necessary. The tree grows 

downward until terminal nodes are reached which have either all positive 

or all negative instances. The path(s) leading to the 'all positive' nodes form 

the description of the concept. 

Generalization 

\ 

Generalization is a mechanism of learning which involves creating a new 

rule, or modifying an existing one, so that it is more general than an 

existing one, while the actions remain the same. The term generalization 

is also used for the process of arriving at a rule or hypothesis that describes 

a set of instances of a concept. Positive and negative instances are used in a 

different manner from the way they are used in discrimination-based 

learning. Rather than looking for differences between positive and negative 

instances, generalization-based learning looks for features held in common 

by all positive instances. Examples of learning from examples systems that 

learn by generalization include SPROUTER (Hayes-Roth and McDermott, 

1977), Thoth (Vere, 1977) and Winston's program for learning structural 

concepts such as 'arch' (Winston, 1975). 
« 
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There are several ways of implementing generalization. Some of these are: 

i) Dropping condition rule - to generalize a conjunction, drop any of its 

conjunctive conditions. For example, given the current description of a 

class of objects, black, large and circle and a new instance, white, large and 

circle, the description can be revised by dropping the condition for the 

colour of the objects. Hence, the generalized description, large and circle 

covers the new instance. 

ii) Turning constants to variables. In the above example, the concept 

description could be generalized by turning the constant black to a variable: 

?colour, large and circle 

iii) Adding disjunction rule - to generalize a conjunction, change it to a 

disjunction. To include the new instance in the above concept description, it 

could be generalized by adding a disjunction: 

(black, large and circle) OR (white, large and circle). 

iv) Climbing generalization tree rule. For example, using the 

generalization tree in Figure 5-2, an instance including triangle and 
• 

another including rectangle in their descriptions can be generalized to 

polygons. 
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polygons 

/ \ 
triangle rectangle 

square 

Figure 5-2. A generalization tree 

Further and more detailed rules of generalization are described in 

Dietterich and Michalski (1983) and Michalski (1983). 

5.2.2 Explanation-based learning 

Explanation-based learning (EBL) is a technique for obtaining generalized 

concept definitions based on an analysis of one example only, using a set of 
i 

facts about the domain. The facts include abstract rules of inference about 

the domain. A high level description of the target concept (goal concept) and 

a definition of what an acceptable concept definition (ope rationality 
't! 

criterion) would be is also provided. EBL works by constructing 

explanations of why the training example satisfies the goal concept. This is 

done by expanding the terms in the high level description until all the 

terms in the description meet the operationality criterion. Then the 

explanation is generalized to form a rule which is capable of matching 

instances of the goal concept. In brief, the goal of EBL is to redefine a given 

concept in operational (usable) terms. 

Table 5-1 presents an example for learning the concept cup, borrowed from 

Mitchell, Keller and Kedar-Cabelli (1986). 
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Table 5-1. An example of the EBL approach 

Giyen: 

- Goal concept: The concept of a cup: 

open-vessel(o) & stable(o) & liftable(o) --> cup(o) 

- Training example: 

part-oft:obj1, concavity-1) 

isa(concavity-1, concavity) 

is(concavity-1, pointing-up) 

part-oft:obj 1, bottom-1) 

is(obj 1, light) 

- Domain theory: 
i 

is(x, light) & part-oft:x, y) & isa(y, handle) --> liftable(x) 

part-oft:x, y) & isa(y, bottom) & is(y, flat) --> stable(x) 

part-oft:x, y) & isa(y, concavity) & is(y, pointing-up) --> open-vessel(x) 

- Operationality criterion: The concept must be defined in terms of predicates used in the 

example. 

Determine: An operational description of the goal concept that covers the training 

example. 
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Note that the domain theory contains at least one rule with 'cup' in the 

right-hand-side, and that it contains rules which mention features from 

the training example in the left-hand-side. Both are necessary in order to 

generate an operational definition of the concept. 

The basic approach to generalization involves two steps: 

i) Explanation - the domain theory is used to construct an explanation that 

proves that the training example is a positive instance of the goal concept. 

Figure 5-3 presents an explanation for the training example of the concept 

'cup' given in Table 5-1. Note that the top node in the explanation tree refers 

to 'cup', and each of the terminal nodes refer to propositions in the training 

example. If a proposition was missing in the training example, then the 

explanation of the concept would not be complete. For example, if part-of(x, 

y), was missing, then the description stable(objl) would not have been 

achieved, and hence the goal concept would not be able to be explained. 

open-vessel(objl) 

part-of(objI. concavity-I) 
isa( concavity-I, concavity) 
is(concavity-I. pointing-up) 

cup(objl) 

stable( obj I) 

part-of(objl. bottom-I) 
isa(bottom-I. bottom) 
is(bottom-l, flat) 

liftable( obj 1) 

is(obj 1. light) 
part-of(objl. handle-I) 
isa(handle-I. handle) 

Figure 5-3. Explanation for an instance of 'cup' 
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ii) Generalization - the terminal nodes are transformed into a set of 

conditions under which the explanation will hold. The most general 

version of the explanation in step i) which is consistent with the domain 

theory is achieved using generalization rules like replacing constants with 

variables. 

The operational definition of the concept in Table 5-1 from the explanation 

in Figure 5-3 is as follows: 

part-oft x, xc) & isa(xc, concavity) & is(xc, pointing-up) 

& part-of(x, xb) & isa(xb, bottom) & is(xb, flat) 

& part-oftx, xh) & isa(xh, handle) & is(x, light) ---> CUP(x). 

The EBL approach has several advantages. Firstly, it requires only one 

example; negative examples are not required at all. Secondly, a justification 

is provided for the concept description that is generated. Finally, it is 

capable of handling noisy data, since these will be identified in the 

explanation process. Provided the domain knowledge is complete, if an 
, 

explanation cannot be constructed, it would imply that the data (example) is 

noisy. The approach also has some disadvantages. Firstly, it requires 

significant domain knowledge, which restricts its application to domains 
~ , 

where such knowledge is available. Secondly, as pointed out by DeJong and 

Mooney (1986), the generalization obtained from one example only can be 

biased or specific to that particular training example. 

"It often does not generalize the new concept far enough from the 

particular training example. The result is undergeneralizations that 

reflect many unimportant details of the example problem." (DeJong 

and Mooney, p. 146). 

Current development of research on learning from examples incorporates 

EBL in order to benefit from both approaches. Some of the limitations of the 
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explanation-based approach can be counteracted by the learning from 

examples approach and vice-versa. Some of the approaches that have been 

used for combining EBL with learning from examples are: 

i) Applying learning from examples to obtain· a set of possible 

generalizations. This set is then pruned and refined using EBL, to obtain 

an explained/justified (in terms of domain theory) generalization. An 

example of a system utilizing this approach is UNIMEM (Lebowitz, 1986a, 

1986b). 

ii) Applying EBL to each example and learning from examples to the 

resulting generalized examples. Such an approach is employed in the WYL 

program (Flann and Dietterich, 1986). 

5.2.3 Learning by analogy 

Learning by analogy is the process of applying existing knowledge to a new 

domain by recognizing similarities between the two domains, and then 

finding the transformation that when applied to information in the 

previous domain, will yield new information that works in the new domain. 

There are two main ways in which analogy has been applied to problem 
~ \ 

solving. Figure 5·4 illustrates the first one, called transformational 

analogy, in which the solution to an existing problem is transformed onto 

an analogical one. The method matches an old problem similar to the new 

one and transforms the final solution to the old problem to the new one. The 

match between the two problems is used to guide the transformation 

process. The procedure for reaching the solution to the old problem, that is, 

the mapping between the old problem and its solution is ignored; it is a 

solution to solution mapping. Problem solving using this type of analogy 

has been explored by Carbonell (1983). 
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new problem 

solution to old problem 

old problem 

analogIcal mappIng A 

--------I.~ solution to new problem 

transformatIon of analogIcal 
mappIng A 

Figure 5-4. The process of transformational analogy 

The second method is called derivational analogy. The basic idea is 

illustrated in Figure 5-5. Unlike the previous method which transforms the 

solution to the existing problem onto the new problem, this method 

considers two things: an analogy between the two problems, and a 

derivation of the solution of the old problem. It then replays the derivation to 

solve the new problem. This type of analogy has been examined by 

Carbonell (1986). 

~ I 

old problem 

analogical 
mapping 

new problem 

solution to old problem 

derIvation 0 

solution to new problem 

replay of derIvation 0 

Figure 5-5. The process of derivational analogy 

130 



5.3 Learning mechanisms in PALM 

In this section, the choice of the learning mechanisms in PALM and the 

motivation for the choices, based on the empirical work are discussed. An 

introduction to the learning components of PALM is provided first. 

5.3.1 Outline of PALM's learning components 

As mentioned in the previous chapter, PALM has two major components. 

The learning component is an extension of its production-rule modelling 

component, discussed in chapter 4. PALM's cycle of matching rules to 

working memory items, conflict resolution strategies, etc. remain the same 

with or without the learning component being active. The motivations for 

learning are failure and minimizing the amount of work required, i.e. 

efficiency. Failure-driven learning occurs when PALM has rules for 

solving 2-term problems, like 4 + 5, but does not have rules for solving 3-

term problems, like 5 + 7 + 6. After learning to solve 3-term problems, 

PALM learns more efficient strategies, like grouping. Figure 5-6 is an 
i 

outline of the learning components of PALM. It shows efficiency-driven 

learning being applied to 3-term problems. Note that it could be applied to 2-

term problems as well . . \ 
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Failure-driven 
learning 

Efficiency-driven 
learning 

Figure 5-6. The learning components of PALM 

Failure-driven learning 

Learning in PALM is driven by failure when there are no rules that are 

applicable to its current problem-solving state. The program tries to adjust 

its existing knowledge to apply to the new situation. After solving 2-term 

problems, when faced with a 3-term problem, like 3 + 4 + 5, none of its 

current rules are applicable. The existing knowledge in this case is the set . \ 
of rules for solving 2-term problems. An example of such a rule is: 

(number a x) (number by) (adjacent x y) (not (used a x)) 

(not (used by)) ---> (do addition) 

The above rule adds two numbers that are adjacent to each other. It applies 

to 3-term problems to get only a partial solution. For example, for the 

problem 5 + 4 + 5 (represented as (number 1 5) (number 2 4) (number 3 5)), 

the rule applies to 5 + 4. The next step is to add the resulting 9 and the 

remaining 5. PALM is not able to do this because the two numbers are not 
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adjacent to each other. As a result of this failure, PALM learns to complete 

the solution to such 3-term problems by generalizing its existing rules. 

Efficiency-driven learning 

As a result of the failure-driven learning, PALM is able to add numbers 

that are not necessarily adjacent to each other. For example, for the 

problem above, it can now add the two 5's together first. The program 

learns strategies that are more efficient than those it already knows. To do 

this, it draws on children's number facts. The goal is to apply number facts 

to select which two of the numbers in a 3-term problem to group and add 

first. The system begins with general rules representing basic strategies for 

solving 3-term addition problems, and a set of operators, like (equal x y), 

representing children's number facts. It tests whether an operator is 

applicable to a given problem. If it is, then that operator becomes an 

additional condition of the initial rule which adds two numbers. Hence the 

learning problem is one of finding conditions where the number facts are 

applicable. This is discussed in more detail in section 5.4 under 

computational details. 

5.3.2, Choice of learning mechanisms in PALM 
< 

The learning mechanisms in PALM are closest to learning from examples. 

More specifically, they could be seen as an incremental method of learning . 
from examples, and concentrate on the first example only. In the 

discussion that follows, some of the reasons for not using analogy and 

explanation-based learning are highlighted. 

The transition being studied here is that from the ability to solve 2-term 

problems to that of 3-term problems. To solve 3-term problems, children 

'split' them into two 2-term problems. This process does not appear to be 

analogy. It seems more likely that it is generalization. Furthermore, for 
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analogy to be applied, the problems must be fairly close to each other. All 

current analogy systems involve a one-to-one correspondence such that 

each element maps to another. Referring to a similar kind of problem with 

analogy that is addressed here (matching two problems with different 

numbers of addends), Keane (1988), argues that most current analogy 

theories face the difficulty of not being able to match two relations with 

different numbers of arguments, even though they may be very similar. For 

example, for the problems, 3 + 5 and 2 + 7 + 4, analogy would require 

mappings between 3 and 2, 5 and 7, and similarly an item that would 

correspond with the 4. Since there is no corresponding element that could 

represent a mapping for 4, computational analogy could not be applied 

between 2-term and 3-term problems. 

The learning mechanisms in PALM share two features in common with 

explanation-based learning. First, they both use only one positive example. 

Second, both EBL and the mechanisms in PALM use domain knowledge. 

Note that domain knowledge in PALM serves a slightly different purpose to 

its role in EBL. In failure-driven learning, domain knowledge is knowledge 

of ability to solve 2-term problems, which is used to solve 3-term problems. 

In efficiency-driven learning, domain knowledge is existing knowledge 

which is used to learn more efficient strategies. Explanation-based 

learning proper is not used here because our aim is to solve a new type of 

problem, and not to generalize the description of the example problem. 

Failure-driven learning: generalization 

Children who use the linear strategy for solving 3-term problems 

generalize from their previous knowledge of solving 2-term problems to add 

the first two numbers. Then they write the sum of the first two addends and 

the third addend as another 2-term problem. For example, 
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4+7+5= 

4+ 7 = 11 

11+5 = 16 

4 + 7 = 11 is a generalization of 2-term addition. The transition from the 

'count on from larger addend' (COL) strategy on 2-term problems to the 

grouping strategy on 3-term problems provides more evidence of 

generalization. Ignoring addend order on 2-term problems leads to 

ignoring addend order on 3-term problems. For example, 

3 + 8: 9, 10, 11 

5 + 7 + 5: 5 + 5 = 10: 10 + 7 = 17 

Further evidence for generalization from the empirical work reported in 

chapter 3 is provided by subtraction problems where the minuend is 

smaller than the subtrahend (e.g. 3 - 5). Performance on such problems 

revealed children's generalization of their existing problem solving 

knowledge to solve a new type of problem. This is strong evidence for the 

possibility of generalization from 2-term to 3-term problem solving. 
: 

Furthermore, there is ample evidence from previous research of children 

using generalization in their problem solving. For example, in subtraction, . ' 
there is evidence of students who always borrow after having consistently 

seen examples requiring borrowing (VanLehn, 1987). Matz (1982) and 

Sleeman (1984) provide evidence of generalization in the domain of algebra. 

PALM's generalization mechanism considers learning from a single 

example. This choice has been influenced by previous research which 

suggests the validity of generalization from a single example (Ahn, 

Mooney, Brewer and DeJong, 1987; Anderson, 1989; Elio and Anderson, 

1981). 
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Finally, generalization has been chosen, as opposed to discrimination, 

because only a positive example is considered. Negative examples are not 

considered and hence there is no need to discriminate between positive and 

negative examples. 

Efficrency-driven learning: condition learning 

The choice of the condition learning mechanism in PALM has been 

influenced by condition learning in ACM (reviewed in chapter 2), and by 

Langley's (1987) theory of discrimination learning. Both ACM and 

Langley's theory use the production-system formalism, where learning is 

modelled by creating new rules. A set of general rules representing an 

initial problem solving state and a set of conditions for generating a new 

state are provided. The learning problem is then one of finding the 

conditions, and to which problem state they should be applied. Conditions 

are learnt in order to form new rules which are more discriminant than 

the initial set. A rule is a discriminant version of another when the first 

rule has conditions that are special cases of the second, and the action sides 

of the two rules are the same. 

The second motivation for choosing the learning mechanism in efficiency

driven learning is the use of existing knowledge (Le. number facts) to reach 

a more advanced stage in problem solving. This existing knowledge is 

represented as the set of conditions that is provided to the learning system. 

As children gain more experience in solving arithmetic problems, their 

strategies become more efficient. Furthermore, as the strategies become 

. more efficient, they include more number facts. In the empirical studies 

reported in chapter 3, there was substantial evidence of children using 

strategies based on number facts. For example, for the problem, 4 + 5 + 4, 

performing 4 + 4 first was a common strategy. When asked why they had 

chosen to do the 4 + 4 first, a common reply was "because I know 4 and 4". 
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On a problem like 3 + 6 + 4, children who chose to do 6 + 4 first explained 

"because I know that 6 + 4 = 10" or "because that makes 10" or "because it is 

easier to deal with a 10", and so on. Further empirical evidence of children 

using number facts in their strategies will be quoted in the following 

sections. 

5.4 Computational Details 

The basic outline of the learning mechanisms in PALM was presented in 

section 5.3.1 above. This section provides details of the two learning 

mechanisms. 

5.4.1 Failure-driven learning 

The implementation of sets of production rules that represent strategies for 

solving problems like 3 + 5 and 6 + 4 + 7 in PALM was described in chapter 

4. Such problems are given as input to the production system, and the 

interpreter selects and executes the appropriate rules for solving them. It is 

able to solve those types of problems for which it has explicit problem

solving rules. However, when a different type of problem is encountered, it 

is not able to solve it because it does not have rules for solving this . ' 
particular type of problem. The way PALM solves such closely related, new 

types of problems is discussed in this section. 

Failure-driven learning in PALM takes place when PALM does not 

complete solving a given problem. Completion of the problem solving is 

determined by reaching the ends tate, that is arriving at an answer to the 

problem. When PALM has not successfully completed solving a problem, 

and it does not have any more rules that match the current problem solving 

state, it learns by restructuring its existing rules. It generalizes its rules to 

apply to the current problem. We shall assume that PALM is capable of 

solving 2-term problems only, and not 3-term problems. Hence, PALM does 
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not contain rules for solving 3-term problems. The following set of rules is a 

model for one of the strategies for solving 2-term problems: 

(number il x) (number i2 y) (adjacent x y) (not (used il x)) (not (used i2 y)) 

---> (col il x i2 y) 

(col il x i2 y) •.. > (rn coladd il x i2 y) 

(addd il x i2 y) ---> (rn addd x y) (used il x) (used i2 y) 

Given a 3-term problem, PALM applies its 2-term rules in an attempt to 

solve it. The following is a trace of the actions after the above rules are 

executed for solving 7 + 15 + 6. The function SSTART starts the execution of 

the program. 

(SSTART '( (number 1 7) (number 2 15) (number 36») 

1) (adjacent 7 15) 

2) (coIl 7 2 15) 

3) (addd 2 15 1 7) 

4) (number 0 22) (used 2 15) (used 1 7) 

t I 

The first step is a result of the knowledge of adjacency: 

(number 1 x) (number 2 y) ••• > (adjacent x y) 

The program stops after the 2-term rules solve 7 + 15. As discussed in the 

last chapter, there are two reasons for the interpreter coming to a 'halt'. 

Firstly, if the problem has been solved, and secondly if there are no more 

applicable rules. In the example above, the program stops because of the 

latter. The working memory at this state is as follows: 
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( (number 022) (used 2 15) (used 1 7) (addd 2 15 1 7) (coIl 72 15) 

(adjacent 7 15) (number 1 7) (number 2 15) (number 3 6) ) 

In order to complete solving the problem, (number 3 6) and (number 0 22) 

need to be added. The first rule above should match with these two 

numbers, but it cannot since 22 and 6 are not adjacent to each other. PALM 

generalizes its rules by dropping a condition from one of its rules. The 

dropping condition generalization rule has been chosen because of its 

simplicity, and because of its applicability to the particular transition that is 

studied here. 

In order to choose a condition to drop, PALM assesses the conditions of its 

rules to find those that probably caused the premature halt of the system. 

This is done by evaluating whether the conditions of rules match the 

current state or not. The preferred conditions to drop are those that do not 

match, since it is likely that if these conditions had matched, then the rule 

containing the conditions could have fired. In the current implementation, 

only one such condition in a rule can be dropped. A condition can only be 

dropped if it is the only one in the selected rule that does not match. This is 

because when there are several possible conditions to drop, there is no 

principled way of choosing which one(s) to drop. Furthermore, in such a 

case, all the conditions that do not match will need to be dropped for the rule 

to be able to 'fire'. 

Another reason for dropping only one condition is that the aim of the 

program is to create as little change in the original rule as possible, so that 

it applies to the problems it could solve previously as well as to the new type 

of problem that it is trying to solve. Since it is learning by generalization, 

and since the new problem is quite similar to the previous problems, 

minimum change to the original rule is desired. 

If there is more than one rule whose condition can be dropped, then PALM 

chooses the first rule. The first rule is chosen because the rules in the 
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ruleset are ordered. Rule ordering is one of the conflict resolution strategies 

in PALM (see chapter 4). The firing of the later rules usually depend on the 

earlier ones. Hence, if the earlier ones do not fire, then it is probable that 

this is the reason for the later rules not having items in the working 

memory to match to. 

Once a condition is dropped and the rule is amended, the interpreter 

continues its cycle of matching, selecting and executing its rules. If the. 

changed rule becomes applicable then the problem solving continues from 

the point where the program had 'halted'. If it is not applicable, then the 

changed rule is replaced by the original one, and the next rule to generalize 

. is chosen until an amendment of a rule leads to all its conditions being 

satisfied. If this does not succeed, then PALM is not able to complete solving 

the given problem. 

In the above example, the process of finding out whether the conditions of 

the current set of rules have matching working memory items or not 

returns: 

( (yes yes no yes yes) (no) (no)) 

The three lists correspond to the three rules representing a 2-term strategy: 
t \ 

(number il x) (number i2 y) (adjacent x y) (not (used il x)) (not (used i2 y)) 

---> (col il x i2 y) 

(col il x i2 y) ---> (rn coladd il x i2 y) 

(addd il x i2 y) ---> (rn addd x y) (used il x) (used i2 y) 

The lists show that the third condition in the first rule, and the only 

conditions in the other two rules do not match. The first rule that has a 'no' 

is the rule that is selected to be amended. The 'no-condition' of this rule is 

deleted and the interpreter then checks if it is applicable. By dropping the 
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third condition in the first rule (i.e. the adjacency condition), the rule 

becomes applicable. The set of rules is reset with the first ru1e amended to 

(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y)) 

---> (col il x i2 y). 

The interpreter continues with the cycle of matching, selecting and 'firing' 

rules, producing the following output: 

(colO 22 3 6) 

(addd 0 22 3 6) 

(number 028) (used 0 22) (used 36) 

The interpreter at this stage works out that the problem has been solved, 

and hence comes to a halt. The final number, 28, is the solution to the 

problem. 

5.4.2 Efficiency-driven learning 

After the failure-driven learning, the system is able to solve 3-term 

problems. Since the numbers do not have to be adjacent to each other, the 

three numbers can be added in any order. In order to use an efficient 

strategy, PALM learns specific conditions to choose which two of the three 

numbers to add first. To begin with, there is a set of initial problem-solving 

rules which represent the linear strategy, a set of operators that represent 

children's known facts and a given 3-term problem. The set of operators are 

derived from the empirical studies of children's arithmetic problem 

solving. The goal of the efficiency-driven learning is to combine the initial 

problem solving knowledge and the known facts to achieve a strategy that is 
. 

more efficient than the initial ones. The following is an example of a rule 

representing an initial strategy: 
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(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y)) 

---> (fn col il x i2 y). 

The condition sides for all the initial problem solving strategies are the 

same. The action sides include the 2-term addition strategies, COL (rule 

above), COF, CAL, CAF and 'lookup answer'. Two such 2-term strategies 

are applied to solve a 3-term problem using the linear strategy. 

Presented below are some examples of operators representing number facts 

that children use for 'shortcut' in their strategies. They are derived from 

children's grouping strategy for solving 3-term problems. 

1. (equal x y) - two of the three numbers are the same. For example, for a 

problem like 6 + 9 + 6, children were often observed to do 6 + 6 first. Their 

explanations for finding the sum of two equal numbers first were of the type 

"because I know that 6 and 6 are 12" and "because I already know that one, 

I do not have to count". 

2. (equal (x + y) 10) - two of the numbers add to 10. For example, a problem 

like 3 + 4 + 6 using grouping strategy was often solved by doing 4 + 6 first. 

Explanations of this choice included "because I know that it makes 10", 

"because it is easier to add to 10" and "because it makes 10 and it is easier to . ' 
deal with 10". 

3. (equal (x or y) 1) - one (or more) of the numbers is '1'. For example, some 

children solved 4 + 7 + 1 by doing 7 + 1 first. When asked why they had 

chosen to do that first, the replies included "because it is easier to do that 

first" and "because it is just 1 number more than that (referring to 7)". 

4. (equal x (y + 1» - one of the numbers is 1 more than another. For 

example, Freda solved 7 + 4 + 5 by solving 4 + 5 first: 

"I pretend that the 4 was 5 
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5+5 = 10 

10 -1 = 9" 

5. (equal (x + y) z) - the sum of two of the numbers equals the third. For 

example, some children who solved 2 + 4 + 6 as 6 + 6, that is by solving 2 + 4 

first, gave explanations like "I know that 6 and 6 are 12, ... and that 

(referring to 2 + 4) gives 6". 

PALM learns to apply these operators as conditions for efficient problem 

solving. Given an input problem, the efficiency-driven learning algorithm 

works as follows. The operators are tested against the problem to select 

those that are applicable. The selected operators are added as additional 

conditions to the left hand sides of the rules for each strategy. The problem 

is then solved using each strategy, and their efficiencies are compared. The 

efficiencies are computed in the same way as in chapter 4. The rules 

representing the most efficient strategy are added to the list of rules, and 

the inefficient ones are eliminated. If there is more than one equally 

efficient rule, then all of them are added to the ruleset, and when the 

problem is solved, one of these rules is chosen. Note that the initial, more 

general rule is not replaced, since the newly learned rule only applies in 

specific cases. The operators that have been used are deleted from the list of 

operators, since rules containing them as conditions are already in the 

ruleset. When the next problem is presented, PALM repeats the process of 

finding applicable operators, adding the new rule(s), if any, to the ruleset, 

deleting the used operator from the list of operators and then solving the 

problem. 

For example, initially, the problem 5 + 7 + 3 would be solved using the 

linear strategy, that is by adding the 5 and the 7 first. After testing each of 

the operators, (equal (x + y) 10) is the only one that is applicable. It is added 

as a condition to each of the strategies. The new rule for the 'lookup 

answer' strategy, for example, is 
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(number il x) (number i2 y) (not (used il x)) (not (used i2 y)) 

(equal (x+ y) 10) ---> (fn lookup il x i2 y). 

The input problem is then solved using all possible combinations of 2-term 

strategies. Some of the combinations for solving 5 + 7 + 3 are: 

i) lookup 7 + 3 followed by lookup 10 + 5 

ii) lookup 7 + 3 followed by COL 10 + 5 

iii) lookup 7 + 3 followed by CAL 10 + 5 

iv) COL 7 + 3 followed by COL 10 + 5 

After trying out all combinations, 'lookup 7 + 3 followed by COL 10 + 5' is the 

most efficient combination of strategies. This follows from the assumption 

that 10 + 5 is not known as a number fact. If it was known, then' lookup 7 + 

3 followed by lookup 10 + 5' would have been the most efficient combination. 

The two 2-term rules representing the most efficient combination for this 

problem are 

(number i1 x) (number i2 y) (not (used il x)) (not (used i2 y)) 

(equal (x + y) 10) ---> (fn lookup i1 x i2 y) 

(number i3 x) (number i4 y) (not (used i3 x)) (not (used i4 y)) 

---> (fn col i3x i4 y). 

5.5 Discussion and further work 

5.5.1 Psychological plausibility 

Ideally, a model of learning of the mechanisms for transition from one 

snapshot of human behaviour to the next should be psychologically valid. 
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There is no claim that the models described in this chapter satisfy this 

criterion. However, an attempt has been made to make them as plausible as 

possible. The empirical work was used to guide the algorithms and to 

match outputs of the models. The prerequisite or domain knowledge, for 

example the operators for efficiency-driven learning, was compiled from 

children's protocols. The end-products of the learning models are 

simulations of children's performance. 

The failure-driven learning models a mechanism for the transition from 

ability to solve 2-term problems to that of 3-term problems. No explanation of 

this type of transition has been provided in the past. The generalization 

mechanism described above is one hypothesis for such a transition. In the 

empirical work, children showed evidence of the use of knowledge of 2-term 

problems for solving 3-term problems. The transition from 2-term 

strate~es to the 3-term linear strategy was discussed in section 5.3.2 above. 

The dropping adjacency condition rule for generalization was supported by 

some children's performance, for example, Craig's protocols from the 

longitudinal study (chapter 3). The first time that children were observed 

solving a 3-term problem, most of them used the linear strategy. However, 

there were also a few children who were observed to use the grouping 

strategy. Craig's protocols suggest a possibility that the first time children 

encounter a 3-term problem, they do not necessarily apply the linear 

strategy. The first two interview sessions during the longitudinal study that 

Craig was given a 3-term problem, he could not solve it. 

E:4+6+4= 

Craig: I don't know. 

E: I know you know it. Have you ever seen this kind of problem 
before? 

C:No 
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On the next session, less than three weeks later, he used the grouping 

strategy. It is improbable that Craig encountered a 3-term problem between 

the interview sessions. It is also improbable that he used the linear strategy 

during that time, and then changed strategy to grouping. 

E: 3+4+3 = 

Craig: 10 

E: How did you do it, Craig? 

Craig: I knew that 3 and 3 are 6, I left the 4 out until the end. 

Furthermore, at the interview sessions when Craig did not know how to 

solve 3-term problems, he used the 'count all starting from the first addend' 

strategy (CAF) for solving 2-term problems. On the following session, he 

used grouping and the 'count all from the larger addend' strategy (CAL). 

There are two possible explanations for his transition from not being able to 

solve 3-term problems to solving them using the grouping strategy. Firstly, 

it could be that he learnt that the order in which the problem was written 

did not matter, and hence they could be solved in any order. For 3-term 
! 

problems, 'the problem could be solved in any order' is represented in 

PALM as 'dropping the adjacency condition' since by dropping this 

condition, PALM is able to add the three numbers in any order. Secondly, 
• 

he could have had some sort of 'adjacency' representation of the problem 

which did not allow him to solve 3-term problems before, and now, 

'dropping the adjacency' representation allowed him to solve the problem. 

With either possible explanation of his cognitive processes, the dropping 

adjacency condition rule models the transition. Further empirical work 

might be able to support the validity of the transition modelled in PALM. 

Such empirical work would pay particular attention to those children who 

are able to solve 2-term problems but are not able to solve 3-term problems, 

and would be aimed at finding the 'gap' between the two states. 
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For the efficiency-driven case, the end-products are consistent with the 

behaviour observed in children. After learning the conditions, PALM's 

strategies for solving 3-term problems are the grouping strategies that 

children were observed using. Moreover, the conditions in the learnt rules 

account for the reasons that children gave for the particular order in which 

they solved the problem. Even when children gave explanations like 

"because it is easier to do that first" (and the experimenter did not succeed 

in persuading the child to make an explicit statement on why that 

particular choice was easier), their choices of the numbers they added first 

could be explained by the use of operators such as those used for learning in 

PALM. 

In sum, the models of learning in PALM may not necessarily be the only 

ones that could explain children's cognitive processes in the specific 

domain of 3-term problem solving. Detailed investigations of other learning 

mechanisms such as analogy and explanation-based learning, and their 

applicability to this domain might lead to using them as alternatives for 

modelling. For example, as a test for the plausibility of learning by analogy, 

empirical work can be carried out to study whether children use analogy 

with previous problems. This could be investigated through a sequence of 

problems; for example, 

3+5=8 

6+3+5= 

Another specific type of problem where analogy could be applied is on 

commutative problems like 4 + 7 and 7 + 4. The 'copy answer' strategy for 

the second of such pairs of problems could be interpreted as the use of 

analogy. The statements made by children who used this strategy, like "it's 

the same as that one" suggest the use of analogy. 
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5.5.2 Failure-driven learning 

Rules in PALM are generalized by deleting conditions. Deleting conditions 

does not necessarily generate rules that produce correct behaviour, but only 

a rule that is applicable. However, this is not a limitation of the system 

since generalizations that do not result in correct behaviour may account 

for children's generalization errors. For example, on 2-term commutative 

problems, dropping the addition (+) operator accounts for children's 

generalization of the concept to subtraction. This kind of generalization 

technique can be used in an ITS for generating possible generalizations 

that children can make. The correct generalization, from the point of view 

of the ITS would be the one that matches its student's generalization. The 

implications of such generalizations for ITS is discussed further in the next 

chapter. 

The empirical investigation in chapter 3 did not resolve how the transition 

from 2-term to 3-term strategies takes place. Furthermore, it is difficult to 

investigate this transition empirically since children either know 3-term 

addition or they do not know it. There isn't anything like 'they know 2 and a 

1/2 term .. .'. The computational model of learning by generalization is one 

hypothesis for a mechanism for the observed transition. This mechanism 
t ' 

and the results of the empirical work can be used as a pilot for designing 

further empirical work to investigate the transition in more detail and to 

provide feedback on the model. 

There are some similarities between the failure-driven learning in PALM 

and the impassse-driven learning proposed by VanLehn (1988). Firstly, both 

methods assume that learning occurs at 'impasses'. Learning occurs 

when the current knowledge base is insufficient to solve a given problem. 

VanLehn argues further that it is not just any incompleteness that causes 

learning. For learning to take place, problem solving must require a piece 

of knowledge that the problem solver does not possess. In PALM, failure-
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driven learning occurs when there are no explicit rules for solving certain 

types of problems. Secondly, after learning, both in PALM and in the case of 

impasse-driven learning, the problem solving procedure continues from 

where it was stuck. 

5.5.3 Efficiency-driven learning 

Condition learning 

As a result of learning the conditions for efficient problem solving, the 

position of the learned rules in the set of rules is important. The learned, 

specific rules need to be executed in preference to the more general ones 

from which they were derived. In PALM, as new rules are learnt, they are 

added at the the beginning of the list of rules. This is because one of the 

conflict resolution strategies in PALM is rule ordering. Mter applying the 

other resolution strategies, rule ordering selects the first rule, which, as a 

result of the order of the rules in the ruleset, is one of the most specific rules 

in the conflict set. If PALM's conflict resolution strategies included rule 

specificity, then there would not be any restriction on where in the list of 

rules the new rules that it learns are placed. Rule specificity would select 

specific rules over more general ones. An immediate improvement on the 

implementation of PALM would be to include rule specificity as an 

additional conflict resolution strategy. In PALM, a simple measure of 

specificity could be the number of conditions in a rule. A rule with more 

conditions would be more specific than another with fewer conditions. For 

example, the first rule below is more specific than the second one. 

(number i1 x) (number i2 y) (not (used i1 x)) (not (used i2 y)) 

(equal (x + y) 10) ---> (rn lookup i1 x i2 y) 

(number i1 x) (number i2 y) (not (used i1 x)) (not (used i2 y)) 

---> (rn col i1 x i2 y). 
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In the method for finding conditions for grouping two of the numbers in a 3-

term problem, only 1 condition has been considered at a time. An obvious 

extension to this method is to allow the addition of more than one condition. 

For example, 6 + 4 + 4, satisfies two of the conditions, (equal 4 4) and (equal 

(6 + 4) 10). In this case, learning more than one condition provides a more 

specific description of this particular type of problems. The choice of which 

two numbers to add first in such problems can be represented in the action 

part of the rules. 

The idea of finding specific conditions is similar to that of ACM. However, 

ACM learns by discrimination because it has negative instances as well. In 

PALM's condition finding process, there are only positive instances, since 

its focus is on different strategies, and not incorrect ones. Furthermore, 

ACM learns by discriminating positive instances of an operator from its 

negative instances over a set of examples. PALM, on the other hand 

considers only one example and one that is a positive instance. 

Strategy Composition 

Composition is the process of combining multiple steps into one. Strategy 

composition is the learning process where two rules are combined to make 
t ' 

a new one. The composition algorithm in ACT* (Anderson, 1983) can be 

described as follows. New rules are generated by combining old ones. The 

conditions of the old rules are combined to form the conditions of the new 

rule. The actions of the old rules are combined into a sequence of actions in 

the new rule. The resulting composition is a single new rule that 

accomplishes the combined effects of the old rules. Anderson (1983) and 

Neves and Anderson (1981) provide evidence of the psychological plausibility 

of composition. For example, composition accounts for speedup of a skill 

with practice. In this section, the application of composition to 3-term 

strategies as an extension of PALM's efficiency-driven learning is 

discussed. 
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In PALM, 3-term problems are solved by applying two 2-term strategies, (or 

one 2-term strategy twice). PALM could employ an ACT*-like knowledge 

composition algorithm (Anderson, 1983, 1986) to combine two 2-term 

strategies that solve 3-term problems. The composition algorithm could be 

applied in order to make an explicit 3-term strategy. The whole condition 

side of the combined rule would become a 2-term strategy and the action 

side would represent the remaining 2-term strategy. This would make 

PALM's problem solving process more efficient, since it would not have to 

apply its cycle of rule matching, conflict resolution and executing the 

selected rule twice. It is also consistent with children's strategies for 

solving 3-term problems. Although they solve the problem using two 2-term 

strategies, they do not perform an addition on two terms and then decide to 

do another 2-term addition. Instead, before they perform any addition, they 

know how they are going to solve the problem. They know in advance that 

they are going to perform two 2-term additions. 

Furthermore, in the condition-learning mechanism described above, 3-

term problems are solved using two separate rules. The strategy used for 

solving a given problem may not necessarily be the most efficient one, since 

the overall strategy is not known until the problem is solved. The efficiency 

of only the first 2-term addition is known. The overall efficiency then 
• 

depends on the remaining 2-term strategy. However, if the two 2-term 

strategies were combined as one strategy, then the overall efficiency of the 

3-term strategy can be computed. The possible combinations of 2-term 

strategies would lead to 3-term strategies with different efficiencies. Hence, 

in choosing the most efficient strategy, the overall efficiencies of the 

different 3-term strategies can be compared. 

In the process' of solving a given problem, a pair of rules which are 

executed one after the other and where the execution of one depends on the 

results of the other can be composed into one as follows: 

• R1: C1 ---> A1 
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R2: . C2 ---> A2 

Rl&R2: Cl Al C2 ---> A2 

It is A2, the action of the second rule, which is the solution to the given 

problem. Al is an intermediate step in the problem solving, the result (or 

one of the results) of which is used by one (or more) of C2, the conditions of 

the second rule. In other words, the problem is solved by A2 which depends 

on the results of Al. The action side of the composed rule contains the 

actions of the second rule, A2. The condition side consists of all the 

conditions and actions of the first rule and the conditions of the second rule. 

The actions of the first rule are needed because combination can only be 

used when all conditions of both rules are satisfied, and the conditions of 

the second rules cannot be satisfied without AI. Ideally, instead of 

containing all the conditions from rule 2, it should contain only the 

conditions that do not match the actions of the first rule. This is because the 

conditions in rule 2 that match the actions of rule 1 are redundant. 

However, they are included in the new rule because the variables in the 

actions of the second rule (and of the resulting rule) depend on these 

conditions for their bindings. 

The' following is an example of two rules that could be composed into one 

that accomplishes the combined result: 

Rl: (number il nol) (number i2 no2) (not (used il nol)) (not (used i2 

no2)) (equal (nol + no2) 10) ---> (fn lookup il nol i2 no2) 

R2: (number i3 no3) (number i4 partial-ans) (not (used i3 no3)) 

(not (used i4 partial-ans)) ---> (fn col i3 no3 i4 partial-ans). 

Rl &R2: (number il nol) (number i2 no2) (not (used il nol)) (not (used 

i2 no2)) (equal (nol + no2) 10) (fn lookup il nol i2 no2) 

(number i3 no3) (number i4 partial-ans) (not (used i3 no3)) 
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(not (used i4 partial-ans)) 

ans). 

---> (fn col i3 no3 i4 partial-

The order of the conditions in the new rule is important, since the 

conditions from rule 2 depend on the actions of the first rule. In the above 

example, in the combined rule, (number i4 partial-ans) is the result of the 

action (fn lookup il nol i2 no2). Hence, to solve 3 + 6 + 4 using the combined 

rule, nol would bind to 6, no2 to 4, lookup would return 10, partial-ans 

would bind to 10, no3 would bind to 3 and the action would evaluate 10 + 3 

using the col strategy. 

When the action part of the first rule becomes the condition part of the 

combined rule, it plays the role of a condition as well as an action. The role 

of an action would be to plan ahead and decide if a certain grouping of 

addends would leave a more efficient addition for completing the problem 

solving. For example, for a problem like 5 + 1 + 6, if 6 + 6 is known as a 

number fact, then, 'planning ahead' could lead to performing 5 + 1 first, 

since it leaves 6 + 6 as a lookup. 

Note that Anderson's (1983) mechanism for composition will not work for 

the task of arithmetic addition. Both the task of arithmetic strategies and of 

those described by Anderson are sequential. Two rules that represent a 

sequential task are reduced to one rule that achieves the same task. In 

Anderson's tasks, the subtask represented by the second rule follows the 

subtask represented by the first rule, but does not depend on the results of 

the first subtask. In the rules representing the arithmetic problem solving 

described here, the result of the first step determines the following step. 

Rule composition in ACT* can be described as follows: 

R1: C1 ---> A1 

R2: C2 ---> A2 
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Rl &R2: 01 (02 - 02Al) ---> Al A2 

where C2Al represents the conditions of rule 2 that match AI, and (02 -

C2Al) represents the conditions of rule 2 that do not match AI. Note that 

the conditions of rule 2 that match Al are not included in the condition side 

of the new rule, which reveals that the actions of rule 2 do not depend on the 

actions of rule 1. An example of a task where this kind of composition is 

applicable is dialing a telephone number. This requires dialing a sequence 

of numbers. The following two rules illustrate part of the process of dialing 

the number 65310 

IF the goal is to dial 65310 and 6 is the first number THEN dial 6. 

IF the goal is to dial 65310 and 6 has just been dialed and 5 is after 6 

THEN dial 5. 

Composition of these two rules would create 

IF the goal is to dial 65310 and 6 is the first number and 5 is after 6 

THEN dial 6 and then 5. 

Note that the action of dialing 6 does not generate an output or a result that 

is used for the second action (dialing 5). In contrast, in the task of 3-term . 
addition, the result of the first action (sum of two addends) is used as an 

input for the second action (sum of the 3rd addend and the result of the first 

action). The proposed mechanism for rule composition in PALM would 

result in 

01 Al 02 ---> A2 

Al is performed as a condition of the new rule; A2 depends on the results of 

AI. 
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For simplicity, the mechanism above only describes the composition of two 

rules into one, but the same procedure is easily extendable to composing 

multiple rules. As learning continues, composed rules can be composed 

with other rules, until there is a single rule for solving the problem. For 

example, a rule for solving 4-term problems can be created by composing a 

3-term rule with a 2-term rule. ACT* is capable of composing multiple 

rules - when a goal is completed successfully, all the executed rules are 

composed together, yielding a single rule that accomplishes the goal 

(Anderson, 1983). 

5.6 Summary 

This chapter introduced some of the techniques of learning that have been 

studied by researchers in machine learning - learning from examples, 

learning by analogy and explanation-based learning. The choice of the 

learning methods in PALM was discussed. The implementation of 

learning models based on existing ones (Michalski's learning by 

generalization and ACM's condition learning) have been discussed. The 

chapter described the models applied to children's strategies for solving 

elementary addition problems. A model of failure-driven learning has been 

implemented as a candidate mechanism for children's transition from 

ability to solve 2-term problems to that of 3-term problems. Furthermore, 

the implementation of an efficiency-driven model of learning that learns to 

apply children's number facts to problems in order to save work in 

computing a sum was described. The last section of the chapter discussed 

strategy composition as an extension of PALM's efficiency-driven learning. 

The model of failure-driven learning can be extended to other operators like 

multiplication and subtraction, and to other domains like fractions and 

algebra. The efficiency-driven learning can be extended to other domains 

which involve alternate strategies for problem solving. 
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The relation of such models of learning to ITS and some directions for 

further work are discussed in the next chapter. 
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Chapter 6 

CONCLUSIONS 

The final chapter presents an overview of the thesis. The contributions of 

the research are highlighted. The research is discussed in the context of 

ITS. Finally, some directions for further research are proposed. 

6.1 Summary of thesis 

The overall intention of this research has been to model the transition from 

procedural knowledge of commutativity to that of associativity. In order to 

do this, models of children's strategies for solving problems associated with 

the two concepts which describe 'snapshots' of their performance at 

different stages of development were constructed first. Then, learning 

models were constructed as a candidate mechanism for the transition from 

one performance level to another. A model of learning by generalization 

has been constructed for transition from performance on 2-term problems 

(e.g. 4 + 5) to that on 3-term problems (e.g. 4 + 6 + 3). This model is one 

hypothesis for the mechanism underlying the observed transition . 
• 

Furthermore, a computational model has been constructed for learning the 

most efficient strategy for solving a given problem. To learn more efficient 

strategies, PALM learns features of problems to which number facts could 

be applied. For 3-term problems, specific conditions, that is number facts, 

are applied to the input problem to select which two of the three numbers to 

add first. The system begins with general rules representing basic 

strategies for solving 3-term addition problems, and a set of operators, like 

(equal x y), representing children's number facts. It learns specific rules by 

adding operators to the general rules in order to define conditions for 

efficient problem solving. An ACT*-like (Anderson, 1983) knowledge 

composition algorithm to combine a sequence of actions into a single task 
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has also been suggested as further work. Knowledge composition would 

combine two 2-term strategies to form one 3-term strategy (3-term problems 

are solved by applying two 2-term strategies). 

The production-rule formalism was used for modelling children's 

strategies on problems related to commutativity and associativity. The 

models represent 'snapshots' of children's problem solving behaviour. The 

construction of the models showed features of children's problem solving 

that were not noticed initially in the studies. For example, while 

performing an addition, children do not normally count a set of objects 

more than once. For problems in which two addends are the same, the two 

addends serve slightly different purposes. Such features needed to be 

considered in the implementation in order to simulate children's 

performance. The simulations are in the form of sets of rules, where a set 

represents problem solving using one of the observed strategies. As in 

previous production system models, these models do not describe the 

processes involved in development. However, as described above, the 

learning component of PALM moves towards modelling the learning 

process. 

The models are based on empirical investigations of children's 
• 

performance on problems related to the two concepts commutativity and 

associativity. The thesis reports three studies that were carried out to 

examine children's strategies for solving problems like 3 + 6 and 3 + 4 + 5, 

and to study the transition from 2-term to 3-term problems. It discusses the 

performance levels of commutativity that were identified in the studies. It 

also discusses children's responses to subtraction problems where the 

subtrahend is smaller than the minuend. 

The pilot study gave indications of the age range in which children should 

be studied for the concepts and of what tasks could be performed in order to 

get the most out of the students. The main study provided a space of 

strategies that children at different levels used. It also proposed . 
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performance levels of the concept of commutativity. Furthermore, the main 

study investigated the transition from commutativity to associativity. The 

longitudinal study provided more detailed analysis of children's behaviour, 

for example, change in strategies over time. It also supported the 

conclusions obtained in the main study. 

To conclude, this research has demonstrated the strength of the 

combination of the two methodologies of understanding a task: empirical 

work and computational modelling. Significant steps have been taken 

towards the goal of modelling learning processes. Although the 

mechanisms of transition are not necessarily psychologically valid, they 

are plausible. The algorithms are based on empirical data. The inputs and 

outputs at different stages in the algorithm are consistent with empirical 

evidence. 

6.2 Contributions 

... Performanoo levels of commutativity 

... Estimates of efficiencies of strategies 

~ A candidate mechanism of transition from 2-term to 3-term problem solving 

... A model of efficiency-driven learning 

... Generalization errors can be modelled using the model for transition 

... PALM can be used for modelling in other domains 

... PALM's learning mechanisms can be used for generating student models 

Performance levels of commutativity 

The thesis reported empirical investigations of children's acquisition of 

commutativity and associativity. Four levels of performance of the concept 

of commutativity are proposed. Such a detailed investigation of the concept 

has riot been carried out before. 
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Estimates of efficiencies of strategies 

Efficiencies of strategies are estimated based on the amount of work 

involved and the demand on the child's memory. Although it is a very basic 

measure, it serves the purpose of distinguishing a more efficient strategy 

from a less efficient one. The procedure for the efficiency estimates works 

for 2~term as well as for 3~term problems. 

A candidate mechanism of transition from 2-term to 3-term problems 

The transition from commutativity to associativity has not been considered 

at all in previous research. Furthermore, cognitive modelling of the 

transition from the ability to solve 2-term problems to that of 3-term addition 

problems has not been undertaken before. The research in this thesis used 

empirical evidence as well as techniques from machine learning and 

theories of skill acquisition in order to model a possible mechanism for this 

transition. 

A model of efficiency-driven learning 

A model of efficiency-driven learning has been constructed. PALM learns 

efficient strategies by applying previous knowledge of number facts to given 

problems. It tests the applicability of the known facts to features of the 

problem and learns those features that are applicable. PALM applies this 

mechanism to 3-term addition problems to select two of the three numbers 

whose sum it already knows as a number fact. Hence it does not have to 

compute the sum of these two numbers. Furthermore, the model of 

efficiency-driven learning can be generalized to the acquisition of strategic 

knowledge in other related domains, for example, algebra. 

Generalization errors can be modelled using the model for transition 

Children's subtraction errors such as 'smaller from larger' and 

generalization have not been modelled in the current implementation, but 

could be included by adding production rules representing such errors. 
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Generalization of commutativity can also be modelled using the learning by 

generalization algorithm that has been applied to the transition from 2-

term to 3-term problem solving. 

PALM can be used for modelling in other domains 

The production system used for modelling addition problems can be used 

for modelling in other similar, closed domains, for example, fractions, 

algebra and problems with other operators, like multiplication. For 

example, a rule for finding the common denominator in the fraction 

domain could be represented in PALM as follows: 

(Fraction 1 =NlI=Dl) (Fraction 2 =N2I=D2) ---> (fn MULTIPLY =D1 =D2) 

The algebra malrule N + X = P => X = P + N could be represented as follows: 

(lhs Number =N Variable =X) (rhs Number =P) ---> (lhs Variable =X) 

(rhs Number =P Number =N) 

, 

To include operations other than addition, the description language could 

be revised to include the operator as well. Hence, a multiplication problem 

could be described as follows: , 

(Number 1 =X) (Number 2 =Y) (Operator *) ---> (fn * =X =y) 

PALM's learning mechanisms can be used for generating student models 

Previous research has used machine learning techniques for automating 

the construction of student models. Examples of such systems are ACM 

(Langley, Ohlsson and Sage, 1984) and PIXIE (Sleeman, 1983). The main 

aim of this type of application has been to avoid extensive libraries of 'bugs' 

by providing some data and getting the machine to generate students' 

'bugs'. The resulting student models are static models like those of LMS 

(Sleeman and Smith, 1981) and DEBUGGY (Brown and Burton, 1978). The 

efficiency-driven learning component of PALM learns conditions for the 
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applicability of its previous knowledge, which achieves a similar end result 

to that of ACM. Hence, the efficiency-driven learning model can be used for 

constructing student models. PALM has demonstrated this possibility for 2-

term and 3-term addition problems. Note that ACM and PIXIE model 

'bugs' whereas PALM models a variety of strategies. With domains in 

which 'bugs' are commonly observed, PALM's efficiency-driven learning 

mechanism would be able to model 'bugs' once a set of 'buggy' operators 

such as the 'smaller from larger' operator in ACM is available. 

6.3 Implications for ITS 

6.3.1 Production-rule models 

The production-rule models in PALM can be used for student modelling in 

an ITS, like those previous tutoring systems that have been implemented in 

production systems: for example, for teaching medicine (Clancey, 1982), 

programming skills (Anderson and Reiser, 1985), for geometry (Anderson, 

Boyle' and Yost, 1985), and for quadratic equations (O'Shea, 1979). In order 

to diagnose the students' strategies, an interface, like the Graphical 

Arithmetic Description Language (Evertsz, Hennessy and Devi, 1988) will 

be ri~eded for the students to simulate their arithmetic problem solving and 

to communicate it to the ITS. The Graphical Arithmetic Description 

Language (GADL) interface was designed for children to explain their 

informal arithmetic strategies to a student modelling system and similarly 

for the system to communicate example solutions to its users. The 

information gathered from such an interface could be compared to the 

production-rule models, which could then be used as a basis for tutoring. 

For example, the tutor could use the knowledge of the estimated efficiencies 

of strategies to guide its students to use more efficient ones. 

Similarly, an interface like GADL could be used for subtraction problems. 

The interface could be used for distinguishing between generalization of 
t 
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commutativity and using the 'smaller from larger bug'. Note that the final 

solution to a subtraction problem using these two strategies is the same. 

With such an interface, children can display their methods for arriving at 

their solutions to subtraction problems. Hence, it would also be appropriate 

for modelling the different reasons for children offering '0' or 'don't know' 

as their response to problems like 2 - 5. 

6.3.2 Conceptual knowledge 

As discussed in chapter 4, production-rule models represent knowledge of 

procedures but do not take adequate account of conceptual knowledge. For 

example, in solving 5 + 8, a child's strategy of starting from 8 and counting 

on 5 is a display of his/her procedural knowledge. The related conceptual 

knowledge would be the concept of commutativity, i.e. 'it does not matter 

whether one starts counting from the first addend or from the second, the 

sum is the same'. An ITS that has a production-rule representation for 

procedural knowledge must have separate machinery to represent the 

conceptual knowledge. This machinery could involve modelling of tasks 

that were presented to the students in the empirical work, and the 

measures that were used to categorise the different levels of the concept of 

commutativity (Devi, 1990a). For example, a child who generalizes 

commutativity to subtraction, indicates that s/he possesses some knowledge 

of the concept. Furthermore, whether a child copies the previous answer on 

a task like 

47 +58= 104 

58+47 =? 

provides an indication of whether s/he possesses the knowledge of 

commutativity or not. Further details of such tasks are presented in 

chapter 3. 
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There is evidence from literature concerning domains in which procedural 

knowledge is acquired before conceptual knowledge (Baroody and Gannon, 

1984; Briars and Sieglar, 1984; Fuson, Sec ada and Hall, 1983), and domains 

where the reverse is true (Gelman and Gallistel, 1978, Gelman and Meck, 

1983, 1987; Greeno, Riley and Gelman, 1984). From our experience of the 

empirical work, in the domain of arithmetic, it is difficult to establish 

which comes first. Perhaps further research in the field, including studies 

aimed at interrogating students to elicit their conceptual knowledge, will 

help us to improve our understanding of this dilemma. From what is 

known so far, we conclude that the important thing is that children should 

possess both, and know the relationship between the two. Hence, the 

separate diagnosis of conceptual and procedual knowledge could be used by 

a tutor to help students to link the two types of knowledge, and to facilitate 

their understanding of their procedures. 

6.3.3 Models ofleaming 

Previous student models have not embodied explanations of how a student 

arrives at a particular knowledge state. This limitation has been noted by 

other researchers (Brown and Burton, 1978; Hennessy, 1990; Laurillard, 

1990; Wenger, 1987). A tutoring system that has the potential of explaining 

how a student reaches a certain knowledge state, can focus its tutoring on 

the student's underlying learning. The modelling of learning is a step 

towards predicting how a student arrives at an answer. For example, in the 

case of efficiency-driven learning, an ITS would be able to predict not only 

what two numbers a child added first, but also why s/he chose them. For 

the problem, 4 + 7 + 4, the learning model would employ the number fact 

(equal x y) for transition from linear to grouping strategy. Using this 

information, if a student did not use the grouping strategy on such a 

problem, to facilitate transition to this strategy, the tutor could focus its 

tutoring on the number fact. 
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With access to models of transition such as that for the transition from 2-

term problems to 3-term problems, the tutor, in addition to predicting the 

student's solution, can also predict how that student got to that stage. With 

such additional information about the student's learning strategy, the tutor 

can predict the learning outcome before a task is presented to the student. 

This would provide the tutor with further information on which to base its 

teaching actions. Furthermore, once the tutor has information about the 

student's learning outcome in addition to how that outcome was achieved, 

it has more information for its further tutoring. 

The tutoring knowledge could be represented in the system as static 

knowledge. This could take the form of production rules with the left-hand 

side representing a learning strategy and the right-hand side representing 

a corresponding tutoring strategy; Examples of such tutorial rules are: 

IF learning by dropping condition generalization rule achieves the 

desired state, THEN present a sequence of examples to facilitate this 

generaliza tion. 

IF learning by generalization, THEN present a counter-example. 

If m~re than one such tutorial rule could be applied at a particular time, 

then conflict resolution strategies, which could be based on information 

from the student's past history, could be employed. 

The bounded user modelling technique (Elsom-Cook, 1987) is an example of 

dynamic modelling. Since it is very difficult to construct a model of the 

student's exact knowledge state, Elsom-Cook proposed that the upper and 

lower bounds of the student's possible knowledge state could be constructed, 

such that the exact model lies somewhere in between. He proposed that the 

technique can lead towards making predictions of the student's learning 

process. The bounded user modelling technique can be used in an ITS for 

representing children's specialization and generalization of the concept of 
• 
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commutativity. An example of specialization of commutativity is its 

application to small numbers only; there are children for whom 10 + 7 is 

obviously the same as 7 + 10, but they do not recognize the concept for 70 + 

100 and 100 + 70. Given operators like « 10 (x + y)) to model specialization, 

the learning model can add such conditions to the rules representing the 

student's application of the concept. Such conditions can eventually be 

dropped to model generalization of the concept to all numbers. Similarly, 

children's generalization of the concept to subtraction can be modelled. 

Furthermore, the specialization algorithm for learning to apply number 

facts to problem solving, as well as the generalization algorithm for 
, 

modelling transition from 2-term problem solving to 3-term problem solving 

(detailed in chapter 5) can be applied in the bounded user modelling 

technique to define the 'space' of models within which a student's strategy 

lies. 

Finally, there is little research concerning teaching strategies in ITS. Two 

systems that have used teaching strategies are PROTO-TEG (Dillenbourg, 

1988) and DOMINIE (Elsom-Cook and Spensley, 1987; Elsom-Cook, 1989). 

They represent only the student's current knowledge state. They do not take 

into account how that state was arrived at. Further work on teaching 

strategies is dependent on dynamic student modelling. More specifically, it 

is dependent on leamer-based models like PALM. PALM demonstrates the 

simplest type of student model that can be used with respect to teaching 

strategies. Dynamic modelling would enable a tutoring system to make 

more informed predictions about teaching strategies it should use. For 

example, the system could have knowledge about teaching strategies 

associated with learning strategies. Once the system has a mechanism for 

transition from the current state to a desired state, it can choose the 

teaching strategy accordingly. 
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6.4 Further work 

The immediate next steps in relation to the present research should be to 

improve on the psychological validity of the learning mechanisms by 

carrying out further and more detailed empirical studies related to the 

models. This section outlines some proposals for further research 

. concerning empirical work and computational modelling. 

6.4.1 Empirical Work 

In the empirical studies reported in this thesis, commutativity and 

associativity of addition only were investigated. Related empirical research 

could include the extensions of the concepts to the other operators of 

arithmetic, and to other domains like fractions and algebra. 

Furthermore, it is generally believed that children's invention of informal 

algorithms is based on principles like commutativity. The empirical studies 

in the current research showed evidence of children using algorithms and 

not possessing the underlying conceptual knowledge. It will be interesting 

to investigate if informal algorithms are invented as a result of their 

underlying conceptual knowledge or not. ' 

A major issue that remains to be answered regarding the concept of 

commutativity is how children come to learn it and how they learn to apply 

it. Baroody and Gannon (1984) propose that it is learnt by discovery. Other 

possible means of learning this concept are from abstract examples, and 

from experience with real situations, for example, calculations using 

sweets (like Smarties). There is scope for investigating whether the concept 

can be taught or not, and if so, then how. 

The models of learning in PALM produce human-like behaviour that is 

compatible with the empirical studies. In order to improve the validity of 

the inechanisms of learning, empirical tasks could be defined to study 
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specific parts of the mechanisms in detail. This could include evaluation of 

specific parts of the learning mechanisms. For example, detailed studies 

could be carried out to study the transition from commutativity to 

associativity. The empirical tasks on which the models are based were 

general - they included 2-term problems, 3-term problems, subtraction, 

levels of development of commutativity, and so on. As a result of the 

implementation, more specific tasks can be designed for further 

investigation. The description language, for example, the concept of 

'adjacency' can be tested for its validity. Tasks can be designed to 

investigate whether children apply analogy, generalization, etc. in specific 

cases. Such evaluation, and comparison of human learning and the 

program's performance can lead to improvements in the cognitive models. 

6.4.2 Computational modelling 

As outlined above, the psychological validity of the learning mechanisms 

can be improved through empirical testing. Psychologically valid and more 

detailed models of learning need to be developed. One of the limitations of 

the models is that they do not take conceptual knowledge into account. An 

obvious suggestion for further work involves incorporating this type of 
• ! 

knowledge. 

The model of transition from 2-term problems to 3-term problems is only 

one possible hypothesis for the transition. Other types of learning, for 

example, learning by analogy, explanation-based learning, and learning 

from examples should also be considered. 

The techniques of learning by generalization and by discrimination have 

been employed for cognitive modelling by other researchers; for example, in 

ACT* (Anderson, 1983) and in SOAR (Rosenbloom and Newell, 1986). 

Further evaluation of the models in PALM can be carried out by comparing 

the performance of the program with that of such systems. 
* 
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6.5 Summary 

This chapter presented a summary of the thesis. It highlighted the 

contributions of the research reported in the thesis. The importance of the 

work in relation to ITS was discussed. The thesis concluded by outlining 

some areas for further work. 

In sum, the research reported in this thesis demonstrates the feasibility of 

implementing computer models of certain aspects of mechanisms of 

transition from one stage to another. The iteration of empirical work and 

computational modelling provides a promising approach towards 

psychological models of learning. 
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APPENDICES 

Appendix 1. List of problem pairs for task 1 

1+2 1+4 

1+3 3+1 

3+4 4+3 

2+5 5+2 

6+1 6+1 

5+2 2+3 

5+4 4+5 

3+1 0+1 

4+3 1+3 

2+3 1+1 

3+2 2+3 

7+2 3+2 

2+1 2+8 

2+2 2+2 
t' 

3+6 6+3 

6+2 2+6 

2+5 2+10 

2+7 10+7 

6+4 4+6 

3+6 6+4 

3+7 7+3 

8+2 2+8 
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Appendix 2. A sample protocol in task 2 

(Ex refers to the experimenter) 

Ex: (writes the problem and reads it out) 4 + 6 = 

SE: (slides out 4 blocks from the pile, counting as he does this) 1,2,3,4. (slides them 

all together on to the left hand side, in front of the pile, does the same for 6, slides 

them together to the right hand side of the set of 4 (note the sets are not in linear 
arrays and also the 2 sets are kept separate), then counts them all from the left) I, 2, 

3,4, ... ,10. 

(7 + 2 = 9) 

Ex: 9 + 6 = ... 

SE: (slides the resulting set (9) from the previous problem), this is 9 already, I don't 
have to pick them up. (takes 6 from the pile and counts the whole set) 1, 2, 3, ... , 15. 

Ex: 6 + 9 ... 

SE: 6 + 9. 1,2,3,4,5,6,7,8,9. (pause) Oops! (looks at the problem) 6. (counts out 6 

from the counted 9; counts 1, 2, 3 for the remaining 3, and 6 from the pile, puts the 

sets side by side) 1,2, .... 15. 

Ex: "I'll give you some hard ones now. 7 + 13 

SE: Oh! 1, 2, 3, 4, is 5 that how you do your 7? I thought it was something different. 

Ex: How do you do your 7? 

SE: I do them like that (pointing to one of my previous 7s) 

Ex: okay 

SE: 1. 2, 3. 4, 5, 6, 7, I'm gonna use these, pick this up (picks up one of the rods, i.e. 

one with 10 units, starts sliding units from the pile, next to the rod) 11, 12, 13, 14, 15. 

(ex asks if SE can do the problems without the counters; he says he cannot; back to 
the problem) 

SE: (counts out 1, 2, .... 22). 
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Ex: You sure its the right problem? 7 + 13? Check that you've got the right problem. 

SE: 1,2,3, ... ,13 (realized that he had 15 instead of7; Note that he checks 13 before 7, 
paying no attention to the order). 1,2,3, ... , 20. 

Ex: good, can you do 13 plus 7? 

SE: Have I just done 13 + 7? 

Ex: You've just done 7 + 13 

SE: ok (gets the 13 set to the front, and the 7 set to the right, counts them all out again) 

Ex: can you do 7 plus 14? (writing out 7 + 14) 

SE: (counts out 7, counts out 14, then counts them all) 1,2, ... , 21. 

Ex: 21, good. Can you do 14 + 7? You just did 7 + 14. 

SE: (Swaps the two sets of counters around and then counts out the whole set) 1, 2, 3, 4, 
5, 6, 7, 8, 9, 10, 11, 12, 13, 14 (pause) 15, 16, 17, 18, 19, 20 (misses out 1 in between) 

Ex: what is it? 

SE:20! 

Ex: I don't think that's right. 

SE: 1,2,3, ... ,21. 

Ex: So what is the right answer, 20 or 21? 

SE:20 

Ex: why? 

SE: because it is (not aware of the similarity of this problem to the previous one) 

Ex: 14 + 7? 

SE:21 

Ex: ok Can you do 6 + 9? 

SE: 1, ... , 6. 1, ... , 9. 1, .. " 15, 

(7 + 9 = 16; 9 + 7 swaps the counters around and counts all again) 
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t 1 

Ex:4+6 

SE: 1, 2, 3, 4. 1, 2, 3, 4, 5, 6. 1, 2, ... , 10. 

Ex: Now I'll give you the problem 6 + 4. Can you tell me whether this will be the 
same or different? will be 10 or not? You just did 4 add 6. Can you tell me if6 add 4 
whether it will be the same (pointing to the 10 above, answer to previous problem) or 
different? 

SE: different 

Ex: why will it be different? 

SE: Umm ... (pause - 30 sec) Because they are the other way around. 

Ex: So it will be different? 

SE: yeah! 

Ex: Can you work out 6 + 4 and see if it will be different or not? 

SE: ok 1, 2, 3, 4, 5, 6. 1, 2, 3, 4. 1, 2, ... , 10! (a little surprised, looks at the ex for 
response). So it is the same. 

Ex: yes 

SE: Doh! 

Ex: So what do you think? It's the same or different? 

SE: different (laughs) 

Ex: why do you think it's different? Can you tell me why you think 4 + 6 is different 
from 6 + 4? 

SE: because they are the other way around. 

Ex: ok, last problem: Do you think the sum of 8 and 2 (writes down 8 + 2) and the 
sum of 2 and 8 (writes down 2 + 8) are different? 

SE: different 

Ex: why are they different? 

SE: because they are the other way around. 
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Appendix 3. A sample of problems in the main study 

4+5 

5+4 

7+9 

9+7 

B+7 

7+B 

6+10 

10+6 

7+13 

13+7 

11+14 

14+11 

4-2 

2-4 

Word problem: Suppose you bought lollies worth He, 7e and Be. How would you find out how 
much money you needed to give to the shopkeeper? Can you write down the problem? 

2+5+5 

2+6+4 

6+3+7 

3+B+B 

10+ 16+ 10 

187 



Appendix 4. Table showing details of subjects and results of the main study 

on commutativity stages, generalization to subtraction and 3-addend 

addition 

ability is one of high, medium or low (determined by the teacher). 

subtraction column: G for generalization, SFL - smaller from larger, 0 - zero, NP - not 
possible, - for those not tested. 

grouping: 1 - grouping, 2 - explicit knowledge of grouping but did not use it, 3 - applied 
comm. to first 2 terms, 4 - no evidence of transfer, 5 - did not know comm. but used COL, 6-
left to right strategy (did not know comm.). 

other operator: marks the subjects tested for their performance on other operators. 

subject age ability comm. stage subtraction grouping other operator 

1.AAK 6.6 H i G 6 

2. DR 6.4 H iii NP 4 

3. STM 6.3 H i G 6 

4. JMS 6.8 H NP 6 

5.AAN 6.9 H i NP 6 

6. KD 6.8 H i 

7. Me 6.11 H i Iii 0 

8. YPR 6.3 H iv 1 

9'. 'AS 6.10 H iii NP 4 

10. AS 6.10 H iv NP 1 

11. AK 6.8 H iv 0 1 

12.AN 6.7 H iii G 2 

13.MSN 6.11 M iii 0 2 

14.VS 6.6 H iv G 1 

15.RDP 6.5 H iv 0 1 

16.AAN 6.10 M iv NP 1 

17.RDD 6.5 M 6 

18.AS 6.3 M iv 0 1 
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19.PR 6.9 M 6 

20.MS 6.6 L 

21.PS 6.7 L 

22.PA 6.4 L 

23.AD 6.9 M 

24.JS 6.11 H Iv 1 

25.SP 6.8 M iv 0 1 

26.RM 6.6 M iv G 1 

27.AK 6.8 M iiliii G 

28.AS 5.8 H 

29.M 5.7 M 

30.S 6.6 L i 

31.AK 5.9 L 

32.K 6.8 L i 

33.WA 6.9 H i 0 

34.PA 6.3 H i 0 

35.S8 5.9 M 
i 

36.APS 7.6 H iv G 1 

37.AS 7.6 H Iv SFL 1 

38.NV 7.8 M iii NP 4 
• 

39.PKP 7.5 L iii G 2,3 

40.RD 7.8 L iii G 

41.SR 7.8 H ilii np 6 

42.NPS 7.10 H iv NP 1 

43.HN 7.6 L iv 1 

44.PP 7.5 M 0 6 

45.SL 7.1 H i NP 6 

46.RL 7.2 M iv G 1 

47.AS 7.3 H iv NP 1 
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48.MS 7.1 H iv NP 1 

49.AC 7.2 H iv NP 1 

50.TAG 7.3 M iii NP 3 

51.APL 7.0 M iv NP 1 

52.SL 7.10 H iv SFL 1 

53.SS 7.5 H iv G 1 

54.SH 7.6 H iv SFL 1 

55.RK 7.9 L iv 1 

56.NR 7.2 M 6 

57.AA 7.9 H iv 1 

58.SR 7.9 L iv G 1 

59.RP 7.8 L iv 1 

60.SR 7.8 L iii NP 3 

61.VK 7.1 L 

62.KL 7.2 L 

63.M 7.6 M iv 0 1 

64.RK 7.3 M 

65.JR 7.0 M i 

66.AK 7.0 L 

67,R 7.7 H iv 1 , 

68.ML 7.5 H i 0 

69.NNK 8.3 M iii G 1 

70.AS 8.0 M i 0 

71.NTR 8.1 M i 

72.RP 8.6 H iii NP 3 

73.RP 8.6 H iii NP 3 

74.AK 8.0 H iv NP 1 

75.IRL 8.5 L Vii 0 6 

76.S0 8.3 M Vii 0 6 
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77.AS 8.6 H iv NP 1 

78.PD 8.4 M i 5 

79.SK 8.7 M i G 1 

80.M 8.8 H i 0 6 

81.KN 8.7 H iii 1 

82.NS 8.4 H 6 

83.AS 8.0 H iv 0 1 

84.RK 8.2 M iv G 1 

85.GC 8.0 L iv 1 

86.SKL 8.2 M iv 1 

87.JN 8.4 H iv SFL 1 

88.RP 8.0 H iv NP 1 * 

89.AB 8.6 M iv NP 1 

90.ST 8.6 H iii 0 

91.AC 9.2 L i 

92.RP 9.5 M Vii 6 

93.SSD 9.3 M i NP 

94.LD 9.0 M i 0 3 

95.R 9.11 H iv 1 * 

96.SM 9.10 H iii 0 3 * 

97.N 9.9 H iv SFL 1 * 

98.NC 9.0 M iv 0 1 

99.SP 10.7 H iv 1 * 

100.F 10.2 H iv 1 * 

101.RK 10.10 H iv 1 * 

102.M 10.11 H iv 1 * 

103.JH 10.2 H iv NP 1 * 

104.AD 11.0 H iv 1 * 

105.N 11.4 H iv 1 * 
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Appendix 5. The set of problems for the study of performance on 3-addend 

problems with operators other than addition-only 

16 -10-5 

19-7 -6 

15 -9-4 

5+2-5 

12-6+4 

5-3+5 

7*2*4 

3*5*5 

2 * 10*6 

12/6/2 

32/4/2 

5 *3/3 

10/2 *2 

. \ 
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Appendix 6. Subjects' performance on a-addend problems with other 
operators (besides addition-only) 

subject age used grouping on 

SP 10.7 * only 

F 10.2 * only 

R 9.11 * only 

AD 11.0 * only 

N 11.4 *, -, I only problems, but not on 
problems with combinations of 
operators. 

The other 6 subjects did not use grouping for any of the problems. 

~ \ 
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Appendix 7. A listing of the program. 

;;; -*- Mode:Common-Lisp;Package:(RD (LISP»;Base:10 -*
(in-package 'RD :use '(lisp» 

(defvar *world*) 

(defvar *nots*) 

(defvar *abstractions*) 

(defvar *known-facts*) 

(defun sstart (instance) 
(setq *world* 

(append instance 
(subst 'old-number 'number (subst 'old-used 'used *world*»» 

(rule-interpreter (reverse (apply-prods instance» instance» 

(defun rule-interpreter (cset instance) 
(cond 
«problem-solved) 'done) 
«null cset) '(no rules apply - learning here» 
(t (perform-action (conflict-resolution cset) instance) 

(rule-interpreter (remove-repeat cset (reverse (apply-prods instance») 
instance»» 

I! 

(defun problem-solved 0 
(or (equal (length (remove-if-not #'(lambda (i) (equal (car i) 'number» 

*world*» 
(1+ (length (remove-if-not #'(lambda (i) (equal (car i) 'used» 

*world*»» (equal (caar *world*) 

(defun remove-repeat (lisl lis2) 
(cond 

'answer») 

«equal (car lis1) (car lis2» (cdr lis2» 
(t lis2») 

(defun conflict-resolution (cset) 
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(let (recent-value recent-value-clauses) 
(setq recent-value (apply #'max (apply 'append (mapcar #'caar cset)) 
(setq recent-value-clauses (remove-if-not #'(lambda (i) (member recent

value 
(caar i») 

cset» 
(cond «equal (length recent-value-clauses) 1) 

(car recent-value-clauses» 
(t (setq recent-value (apply #'max (delete 'nil (map car 'cadr 

(mapcar 'nsort (mapcar 'caar recent-value-clauses»»)) 
(setq recent-value-clauses (remove-if-not #'(lambda (i) 

(equal recent-value (cadr (nsort 
(caar i»)) 

recent-value-clauses) 
(car recent-value-clauses») ))) 

(defun nsort (li) 
(sort li '») 

(defun perform-action (actions instance) 
(declare (ignore instance» 
(map nil #'{lambda (i) 

(print (cdr i)) (setq *world* (append (list (cdr i») *world*))) 
actions)) 

(defun apply-prods (instance) 
(do «plist *abstractions* (cdr plist)) 

(result nil 
I' 

(append result 
(match-prod (car plist) 

(new-match (get-test (car plist») instance»» 
«null plist) result»)) 

(defun new-member (element list) 
(cond 
«null list) nil) 
«atom (car list») 
(cond 
«equal element (car list)) list) 
(t (new-member element (cdr list»»)) 

(t 

(cond 
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«new-member element (car list») 
(t (new-member element (cdr list»»») 

(defun match-prod (prod bindings instance) 
(cond 
«null bindings) nil) 
(t 

(append (match-prod prod (cdr bindings) instance) 
(remove nil 

(list 
(multiple-actions (act-pattern prod) (car bindings) 

instance»»») 

(defun get-test (prod) 
(car prod» 

(defun act-pattern (prod) 
(caddr prod» 

(defun multiple-actions (actions bindings instance) 
(cond 
«null actions) nil) 
(t 

(append (multiple-actions (cdr actions) bindings instance) 
(build-clause (car actions) bindings »») 

(defun build-clause (clause bindings) 
(dQ «old-clause clause (cdr old-clause» 

(new-clause nil 
(append new-clause 

(list 
(or (associate (assoc (car old-clause) 

(delete-nos bindings) 
:test #'equal» 

(car old-clause»»» 
«null old-clause) 
(edit-old 
(cond 

«equal (car new-clause) 'fn) (eval (cdr new-clause») 
(t new-clause» 
(car bindings»») 
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(defun edit-old (clause recency-value) 
(cond ( (some #'(1ambda (i) (or (member clause i) (equal clause i)) 

*world * ) nil) 

(t (list (cons recency-value clause»») 

(defun associate (lis) 
(cadr lis» 

(defun new-match (pattern) 
(new-matchl pattern '(nil») 

(defun new-matchl (parts answers) 
(cond 
((null parts) (fdups answers nil» 
((null answers) nil) 

(t 

(new-matchl (cdr parts) 
(rd-merge 
(cond 
((equal (car (car parts» 'not) 
(cons 'not (matchl (cadr (car parts»») 

( (equal (car (car parts» 'fn) (test-function 
(cdr (car parts» 
answers» 

(t (matchl (car parts»» 
answers»») 

(de fun test-function (test-fn bindings) 
(cond ((equal (car test-fn) 'equal) (fequals bindings nil» 

(t (print '(test fn. not defined»») 

(defun fequals (lis result) 
(cond 
((null lis) result) 
(t 

(fequals (cdr lis) 
(cond 
((eqtest (cdar lis) nil) (cons (car lis) result» 
(t result»»» 

(defun eqtest (lis res) 
(cond 
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«null lis) nil) 

«member (next-value lis) res) t) 
(t (eqtest (cdr lis) (cons (next-value lis) res»») 

(defun fdups (lis result) 
(cond 
«null lis) result) 
(t 

(fdups (cdr lis) 
(cond 
«duptest (car lis» result) 
(t (cons (car lis) result»»»)) 

(defun duptest (lis) 
(cond 
«null lis) nil) 

«numberp (caar lis» 
(cond 
( (and (member (caar lis) (cdar lis) :test #'equal) 

(equal (length (delete (caar lis) (car lis») 0» t) 

(t (duptest (cdr lis»)))) 
(t (duptest (cdr lis»») 

(defun next-value (lis) 
(cadar lis» 

(defun nos-first (lis) 
(mapcar #'check-number lis)) 

(defun check-number (lis) 
(append (list (copy-seq (remove-if-not #'numberp lis») 

(delete-nos lis») 

(defun delete-nos (lis) 
(remove-if #'numberp lis» 

(defun merge-old (ins previous) 
(apply #' append 

(mapcar #'(lambda (y) (merge-pair ins y» previous») 

(defun merge-pair (ins! ins2) 
(cond 
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«or (null ins1) (null ins2» (list (or ins1 ins2») 
(t 

(do «chores ins! (cdr chores» 
(result ins2 (merge-ins result (car chores»» 

«null chores) 
(cond 
(result (list result» 
(t niD» 

(cond 
«null result) (return nil»»») 

(defun merge-ins (ins pair) 
(cond «numberp (car pair» (append (list (cons (car pair) (car ins») 

(cdr ins») 
«and (equal (length ins) 1) (numberp (caar ins») nil) 
«numberp (caar ins» (cond «null (merge-ins (cdr ins) pair» nil) 

(t (append (list (car ins» (merge-ins 
(cdr ins) pair»») 

«assoc (car pair) ins :test #'equal) 
(cond 

«equal (cadr pair) (cadr (as soc (car pair) ins :test #'equal)) 
ins) 
(t nil)) 

(t (cons pair ins»» 

(defun elem-match (pattern data) 
(cond 
«variablep pattern) (list pattern data» 
«equal pattern data) t) 
(t niD» 

(defmacro nthchar (x n) 
'(intern (subseq (princ-to-string ,x) (1- ,n) ,n) 'rd» 

(defun variablep (term) 
(equal (nthchar term 1) '=» 

(defun attach-recency (lis dat &optional (world (reverse *world*» (index 1» 
(when world 
(if (equal (car world) dat) 

(cons (cons index lis) 
(attach-recency lis dat (cdr world) (1+ index») 
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(attach-recency lis dat (cdr world) (1+ index»») 

(defun delete-ts (lis) 
(remove 't lis» 

(defun matchl (pattern &optional (world (reverse *world*» (index 1» 
(when world 

(append (match-clause pattern (car world) index) 
(match1 pattern (cdr world) (1+ index»») 

(defun match-clause (pat dat position) 
(cond 
«equal (length pat) (length dat» 
(filter (mapcar 'elem-match pat dat) position» 

«and (listp (car dat» (equal (length pat) (length (car dat»» 
(filter (mapcar 'elem-match pat (car dat» position» 

(t nil)) 

(defun filter (lis position) 
(cond 
«member nil lis :test #'equal) nil) 
(t (list (cons (list position) (delete-ts lis»»» 

(defun rd-merge (new previous) 
(cond 
«equal (car new) 'not) (setq *nots* (append (cdr new) *nots*» 
(merge-nots *nots* previous» 

«null new) nil) 
«equal previous '(nil» new) 
(t (apply #'append 

(mapcar #'(lambda (x) (merge-old x previous» new»») 

(defun merge-nots (*nots* previous) 
(let «merged-list 

(car 
(last 
(remove 'nil 

(mapcar 
#'(lambda (j) 

(when (some #'{lambda (i) (each-not (cdr i) j» *nots*) 
(setq previous (remove j previous»» 

previous»»» 
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(cond 
«null merged-list) previous) 
(t merged-list»» 

(defun each-not (not-item previous-item) 
(not (member nil (mapcar #'(lambda (i) (member i previous-item :test 

#'equal) 
not-item) :test #'equal)) 

(defun col add (it a i2 b) 
(cond 
«> a b) (list 'addd it a i2 b» 
(t (list 'addd i2 b it a»» 

(defun addd (addend1 addend2) 
(do «total addend1 (+ total 1» (counter 0 (+ counter 1») 

«= counter addend2) (list 'number 0 total)) 

(defun cal add (il a i2 b) 
(cond 
«> a b) (list 'addcal il a i2 b» 
(t (list 'addcal i2 b i1 a»» 

(defun addcal (addend1 addend2) 
(do «total 0 (+ totall) (counter 0 (+ counter 1») 

«= counter (+ addend1 addend2» (list 'number 0 total»» 

(defun cafadd (addend1 addend2) 
(setq fract (* .1 addend2» 
(do «total 0 (+ total 1» (counter 0 (+ counter 1») 

«= counter (+ addend1 addend2» (list 'number 0 total (+ fract total))) 

(defun lookup-first (a b c) 
(cond 
«lookup a b) (list 'lookup 'success (+ a b) c» 
(t (list 'lookup-first 'unsuccess a b c»» 

(defun lookup-second (a b c) 
(cond 
«(lookup a c) (list 'lookup 'success (+ a c) b» 
(t (list 'lookup-second 'unsuccess a b c»» 
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(defun lookup-third (a b c) 
(cond 
«lookup b c) (list 'lookup 'success (+ b c) a» 
(t (list 'lookup-third 'unsuccess abc»» 

(defun lookup (x y) 
(car (nth (1+ y) (car (nth (1+ x) *known-facts*»») 

(defun doit (a be) 
(addd (addd a b) c» 

(setf *known-facts* 
'«0 1 2 3 4 5 6 7 8 9) (12 3 4 5 6 7 8 9 10) (2 345 67 8 9 10 11) 

(34 nil 6 nil nil nil nil nil nil) (4 5 nil nil 8 nil nil nil nil nil) 
(5 6 nil nil nil 10 nil nil nil nil) 
(67 nil nil nil nil 12 nil nil nil nil) 
(7 8 nil nil nil nil nil 14 nil nil) (8 9 nil nil nil nil nil nil 16 nil) 
(9 10 nil nil nil nil nil nil nil 18») 

(defun match-all-conds (rules) 
(cond «null rules) nil) 

(t (append (list (match-yes-or-no (get-test (car rules»» 
(match-all-conds (cdr rules» »» 

(defun match-yes-or-no (conds) 
(cond « null conds) nil) 

(t (append (match2 (car conds» (match-yes-or-no (cdr conds» »» 
• ! 

(defun match2 (lcond) 
(cond «equal (car 1cond) 'not) (cond ( (match1 (cadr 1cond» '(no» 

(t '(yes»» 
(t (cond «match11cond) '(yes» 

(t '(no»»» 

(defun remove-cond (*abstractions*) 
(setq *abstractions* (cons (cons (delete (nth (position 

'no (car (match-all-conds 
*abstraetions*») 

(caar *abstractions*» 
(caar *abstraetions*) :test 'equal) 

(edar *abstractions*» (cdr *abstractions*»» 
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(defun check-operator (operator a be) 
(cond «equal operator '(equal x y» (or (equal a b) (equal b c) (equal a c») 

«equal operator '(equal (+ x y) z» (or (equal (+ a b) c) (equal (+ be) 
a) (equal (+ a c) b») 

«equal operator '(equal (+ x y) 10» (or (equal (+ a b) 10) (equal (+ b 
c) 10) 

(equal (+ a c) 10») 
«equal operator '(equal x 1» (or (equal a 1) (equal b 1) (equal c 1») 
«equal operator '(equal (+ 1 x) y» (or (equal (+ 1 a) b) (equal 

(+ 1 b) c) 

(equal (+ 1 a) c) (equal 
(+ 1 b) a) 

(equal (+ 1 c) a) (equal 
(+ 1 c) b»») 

(defun learn-cond (operators a b c) 
(cond «null operators) *abstractions*) 

• ! 

«check-operator (car operators) a b c) (setq *abstractions* (append 
(list (append (list (cons (car operators) (caar *abstractions*») 

(cdar *abstractions*») (cdr *abstractions*»» 
(t Oeam-cond (cdr operators) a be»» 
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