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Abstract

Nowadays, the most interesting applications have data with many more
variables than observations and require dimension reduction. With such
data, standard exploratory factor analysis (EFA) cannot be applied. Re-
cently, a generalized EFA (GEFA) model was proposed to deal with any
type of data: both vertical data (fewre variables than observations) and hor-
izontal data (more variables than observations). The associated algorithm,
GEFALS, is very efficient, but still cannot handle data with thousands of
variables. The present work modifies GEFALS and proposes a new very
fast version, GEFAN. This is achieved by aligning the dimensions of the pa-
rameter matrices to their ranks, thus, avoiding redundant calculations. The
GEFALS and GEFAN algorithms are compared numerically with well-know
data.
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1 Introduction

The most popular dimension reduction techniques are principal component analysis
(PCA) and exploratory factor analysis (EFA) 2.

Both techniques aim to find low dimension representation of the data by using a small
number of linear combinations of the input variables. However, PCA and EFA differ
in the way this is achieved and how the goodness-of-fit to the data is measured. PCA
is much more popular than EFA, arguably because it enjoys: 1) a simple geometrical
meaning, 2) stable and fast computational procedures to find its component loadings,
and 3) no distributional assumptions. In contrast, EFA offers: 1) a complicated model,
2) comparatively slow computational procedures for finding its factor loadings, and 3)
restrictive distributional assumptions that are usually difficult to justify.

However, EFA has one big advantage: it is capable of delivering a better fit to the
data than PCA. That is the motivation for working towards a modernization of EFA
that avoids its weaknesses. It is worth mentioning that EFA currently enjoys increasing
popularity for building Bayesian computing models. Surprisingly, most modern work on
EFA is connected with Bayesian methodology, both among statisticians (Carvalho et al.,
2008; West, 2003) and computer science/machine learning specialists (Chen et al., 2010;
Knowles and Ghahramani, 2011). Some modern ‘big data’ textbooks even define FA
simply as a Bayesian model, e.g. Goodfellow et al. (2017). In contrast, classic EFA in-
volving parameter estimation, well-known from multivariate analysis and psychometrics
(Anderson, 1984; Mulaik, 2010), is hardly touched.

Recently, Trendafilov and Unkel (2011) proposed a new approach to EFA that yields
in fast numerical procedures, considerably faster than the classic approaches to EFA
estimation. In this paper, the aim is to further develop faster EFA procedures that are
comparable with, and possibly outperform in some aspects, its main competitor, PCA.

Trendafilov and Unkel (2011) define EFA as a new data matrix factorization . Their
idea was to make EFA a more sophisticated and precise dimension reduction technique,
a kind of PCA generalization. In order to align EFA with PCA, and overcome the listed
EFA weaknesses, the data and the factors are not considered random variables, which
seems natural when factoring a data matrix.

The idea for this work stems from multiple experiments in which the GEFALS al-
gorithms proposed in (Trendafilov and Unkel, 2011; Unkel and Trendafilov, 2013) was
applied to large data sets. They showed that GEFALS becomes very slow when analysing
data with tens of thousands of variables. Also, the estimated matrix parameters have an
undesirable feature: they contain zero sub-matrices that hardly contribute to model-fit
and overweight the computations. Indeed, the number of parameters in the EFA funda-
mental equation is inherited from the classical definition of EFA that assumes the data
have more observations n than variables p, i.e. n > p. However, for modern data sets
with p� n, some adjustments are required.

2EFA does not assume any prior knowledge about the relationships among original variables
and factors. On the contrary, the confirmatory FA takes into account preliminary knowledge or
hypothesis about those relationships (Mulaik, 2010, Ch15).
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Thus, we propose here a new procedure, GEFAN, which works with parameters
having effective dimensions rather than their ‘initial’ dimensions that are used in the EFA
formulation. The benefit will be a considerable saving of storage and CPU time, making
the analysis of large data sets feasible. It will be demonstrated that the new algorithm,
GEFAN, is considerably faster and capable of analysing very large data matrices.

The paper is organized as follows. Section 2 defines the classical EFA and the
generalized EFA (GEFA) models formulated as matrix decompositions (Trendafilov and
Unkel, 2011). Then, Section 3 proposes a modification of GEFALS so that it can deal
with very large data. Finally, Section 4 gives numerical illustration of the new algorithm
GEFAN, and compares it with GEFALS. Results are briefly summarized in Section 5.

2 GEFA model and GEFALS algorithm

For clarity, we summarize here the main results from (Trendafilov and Unkel, 2011).
Let X be a standardized data matrix of n observations on p variables, i.e. X>1n×1 =

0p×1 and X>X is the sample correlation matrix. Note that for some large data only
centring is a plausible option. The rank of X is at most min{n, p} − 1. The m-factor
EFA problem (m � min{n, p}) can be formulated as a specific matrix decomposi-
tion/factorization of X in the following form (De Leeuw, 1994; Trendafilov and Unkel,
2011):

X ≈ FA> + UΨ = [F U ][A Ψ]> , (1)

where the parameters F,A,U and Ψ (diagonal) are unknown matrices of sizes n ×m,
p × m, n × p and p × p respectively. The fundamental EFA equation (1) means that
EFA presents the data X as a linear combination of common and unique factors, F and
U . The corresponding weights A are called factor loadings, Ψ is uniquenesses, and Ψ2

contains the variances of U . The number of common factors, m, is generally unknown,
but may be chosen before the analysis.

We stress that F and U are not random variables, but fixed unknown matrices. The
classic EFA assumptions that the common and unique factors are uncorrelated (Mulaik,
2010, Ch6.2), can be adapted to the new EFA formulation (1) by simply requiring
F>F = Im, U>U = Ip and F>U = 0m×p. From these assumptions, we find from (1)
that the sample correlation matrix X>X is modeled as:

X>X ≈ C = AA> + Ψ2 . (2)

The attractiveness of the new EFA approach is that all unknown parameters F,A,U
and Ψ can be found simultaneously without any distributional assumptions. Classic EFA
solves (2), which determines A and Ψ. Additional assumptions and effort are needed to
find F and U (Unkel and Trendafilov, 2010). In this sense, (1) is an EFA model that can
fit data, rather than correlations. As we will see later, another important benefit from
this approach is that the EFA parameters are found by singular value decomposition
(SVD), for which fast and reliable algorithms exist. This overcomes the algorithmic
weakness of classical EFA, which depends on iterative procedures.
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2.1 The classic case n > p

The EFA formulation (1) suggests that the unknown EFA parameters can be found by
solving the following constraint least squares (LS) problem:

min
F,A,U,Ψ

‖X − [F U ][A Ψ]>‖2, (3)

subject to F>F = Im, U>U = Ip, F
>U = 0m×p and Ψ diagonal . (4)

This minimization problem is solved by alternating minimization over one unknown
and keeping the remainder fixed. The resulting algorithm is called GEFALS.

First, note that (1) and (4) imply that the optimal Ψ (F,U and A fixed) is necessarily
given by Ψ = diag(X>U). In a similar way, one can establish that the optimal A (F,U
and Ψ fixed) is given by X>F . The rotational indeterminacy of A can be avoided by
taking the lower triangular part of X>F (Trendafilov and Unkel, 2011).

Then, (3) is minimized over [F, U ], with A and Ψ kept fixed (known). Form an
n × (m + p) block matrix Z = [F, U ] and an p × (m + p) block matrix W = [A,Ψ].
Straightforward calculations and the EFA constraints in (4) show that:

Z>Z =

[
F>F F>U
U>F U>U

]
=

[
Im 0m×p

0p×m Ip

]
= Im+p . (5)

Thus, the latter minimization reduces to a standard Procrustes problem:

min
Z>Z=Im+p

‖X − ZW>‖2, (6)

for a given W and an orthonormal unknown Z. GEFALS alternates between finding
(A,Ψ) and Z, until convergence.

2.2 The modern case p� n

Modern applications frequently require the analysis of data with more (often many more)
variables than observations (p � n). Such data cause severe problems in many classic
multivariate techniques, including EFA. Indeed, the classic EFA problem (n > p) is to fit
a hypothetical correlation structure of the form in (2) to the sample correlation matrix
X>X (Mulaik, 2010, 6.2.2). However, X>X is singular when p � n. Of course, one
can still fit C to X>X, but this will differ from the original EFA problem. To see this,
recall that the EFA model is initially defined by (1) and the assumptions for the involved
unknowns, while (2) is derived from (1). Specifically, when p� n, the classic constraint
U>U = Ip can no longer be fulfilled. Thus, the classic EFA correlation structure (2)
turns into

C = AA> + ΨU>UΨ . (7)

The new correlation structure (7) coincides with the classic one (2) if the more general
constraint U>UΨ = Ψ is introduced in place of U>U = Ip. In other words, a universal
EFA definition, valid for any n and p, should impose the constraint U>UΨ = Ψ. An
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important consequence from this new assumption is that Ψ2 is not positive definite
(p.d.), when p� n (Trendafilov and Unkel, 2011, Lemma 1).

The rest of the classic EFA constraints F>F = Im and U>F = 0p×m remain valid.
Thus, for p� n, EFA requires solution of the following constrained LS problem:

min
F,A,U,Ψ

‖X − ZW>‖2, (8)

subject to F>F = Im, U>UΨ = Ψ, F>U = 0m×p and Ψ diagonal (9)

where, as before, Z = [F U ] and W = [A Ψ]. The solution is called generalized EFA
(GEFA).

Trendafilov and Unkel (2011) use the same updating formulas for Ψ and A as in the
classic case (Section 2.1). However, the update of Z is changed to reflect the presence
of the new constraint U>UΨ = Ψ. Then, the GEFA problem (8) – (9) reduces to:

min
ZZ>=In

‖X − ZW>‖2 , (10)

which is a standard Procrustes problem. GEFALS finds the GEFA parameters in the
same alternating manner. The central GEFA result is summarized as:

Theorem 2.1 (Trendafilov and Unkel, 2011) The matrix XW is always rank deficient,
and the orthonormal Procrustes problems (6) and (10) have no unique orthonormal
solution Z. When p� n, unlikely exception is possible, if rank(XW ) = n.

The phenomenon of factor indeterminacy is notorious for the problems it causes.
Theorem 2.1 quantifies its origin, and thus, clarifies the existing philosophical explana-
tions (Mulaik, 2010).

3 Modified GEFALS – GEFAN

The updating formulas for A and Ψ used by Trendafilov and Unkel (2011) are well-
known from classic EFA, where n > p. They are easily obtained by pre-multiplication
of equation (1) by F> and U>. When n > p,

F>X ≈ F>FA> + F>UΨ = A> (11)

U>X ≈ U>FA> + U>UΨ = Ψ . (12)

As Ψ is assumed diagonal, (12) becomes Ψ ≈ diag(U>X). Simple calculations show that
the first order necessary conditions for the minimum of (3) with respect to A and Ψ are
A = X>F and Ψ = diag(U>X).

For p � n, we have U>U 6= Ip, and pre-multiplication of (1) by U> leads to the
following,

U>X ≈ U>FA> + U>UΨ = U>UΨ . (13)
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which is different from (12). In this case, the first order necessary condition for min-
imization of (3) with respect to Ψ becomes U>UΨ = U>X, instead of the classical
condition Ψ = U>X in (12).

The requirement for diagonal Ψ, and the fact that U>U contains an identity subma-
trix and zeros elsewhere (see Lemma 3.1, Lemma 3.2), imply that the new optimality
condition U>UΨ = U>X can be rewritten as U>UΨ = diag(U>X). Thus, we arrive
at a new updating formula, Ψ = (U>U)diag(U>X). This differs from GEFALS, which
uses the same updating formula Ψ = diag(U>X) for any data format, n > p and p� n
(Trendafilov and Unkel, 2011; Unkel and Trendafilov, 2013). For data with p� n, we up-
date Ψ through Ψ = (U>U)diag(U>X). It has dramatic implications: large data, which
cannot be analysed by GEFALS using the update Ψ = diag(U>X), become perfectly
manageable when the update is switched to Ψ = diag(U>X).

In addition, numerical experiments with GEFALS show that, when p � n, the
estimated parameters F and U contain large zero sub-matrices which hardly contribute
to the model fit and overweight the computations. One consequence of this undesirable
feature is that GEFALS’ performance is unnecessarily slowed down.

In order to address these issues, we propose here an algorithm that is partially
inspired by the approach adopted in Unkel and Trendafilov (2013). The new algorithm
is called GEFAN. For data with n > p, GEFAN coincides with GEFALS. For data
with p � n, GEFAN works only with the non-zero submatrices of the GEFA matrix
parameters to avoid redundant calculation. Some algebraic features of the effective sizes
of the GEFA parameters are discussed in Trendafilov and Unkel (2011). Others are
considered below.

Considering A and Ψ fixed, write the GEFA problem (8) for the case p� n as:

min
F>F = Im

U>F = Op×m

‖X − FA> − UΨ‖2 , (14)

keeping in mind the new constraint U>UΨ = Ψ from (9). The problem in (14) can be
solved by alternately solving the following two problems: for fixed U ,

min
F>F=Im

‖(X − UΨ)− FA>‖2 , (15)

and for fixed F ,
min

U>UΨ = Ψ
U>F = Op×m

‖(X − FA>)− UΨ‖2 . (16)

The problem in (15) is a standard orthonormal Procrustes problem. The solution is
F = VW>, where V DW> is the SVD of (X − UΨ)A. However, the problem in (16)
needs more attention. For this reason, we first transform the objective function in (16)
as follows. Let F⊥ be the n × (n −m) matrix containing an orthonormal basis of the
nullspace of F in Rn, so that the block matrix [F F⊥] is n × n orthogonal. Then, the
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objective function in (16) can be rewritten as follows:

‖[F F⊥]>(X − FA> − UΨ)‖2 =

∥∥∥∥[ F>(X − FA> − UΨ)
F>⊥ (X − FA> − UΨ)

]∥∥∥∥2

= (17)∥∥∥∥[ F>X −A>

F>⊥X − F>⊥UΨ

]∥∥∥∥2

=

∥∥∥∥[ 0r×p
F>⊥X − F>⊥UΨ

]∥∥∥∥2

= ‖F>⊥X − F>⊥UΨ‖2 ,

making use of the EFA optimality condition (11), which is valid for any format of data.
Further simplification of the problem can be achieved by taking into account the

structure of U and Ψ that follows from the EFA constraints. We start with the following
two results that help to avoid redundant calculations.

Lemma 3.1 F>F = Im and U>F = Op×m imply that rank(U) ≤ n−m.

Proof : rank(U>) + rank(F ) − n ≤ rank(U>F ) = 0 ((Horn and Johnson, 1985,
0.4.5.(c))) �

Lemma 3.1 implies that U can be rewritten (possibly after reordering of its columns)
as a block matrix [U1 U2] with U1 of size n× (n−m) and U2 = 0n×(p−n+m). Note, that
U2 can be huge and it seems reasonable to exclude it from the calculations.

We already know from Section 2.2 that Ψ2 cannot be positive definite, i.e. Ψ2 ≥ 0.

Lemma 3.2 Suppose Ψ has r zero diagonal entries. Then rank(Ψ) = p− r ≤ n−m.

Proof : The proof is based on the constraint U>UΨ = Ψ and Lemma 3.1. Assume,
for simplicity, that the r variables with zero unique variances are the last r variables.

Then, rank(Ψ) = p− r and Ψ can be partitioned as Ψ =

[
Ψ1 0(p−r)×r

0r×(p−r) 0r×r

]
, where

Ψ1 is (p − r) × (p − r) diagonal with nonzero entries. Similarly, U can be partitioned
as U = [U∗1 U∗2 ], where U∗1 and U∗2 are block matrices with sizes n × (p − r) and n × r,
respectively. Then, the general constraint U>UΨ = Ψ gives U∗>2 U∗1 Ψ1 = 0r×(p−r) and

U∗>1 U∗1 Ψ1 = Ψ1. As Ψ1 is non-singular diagonal matrix, they are equivalent to U∗>2 U∗1 =
0r×(p−r) and U∗>1 U∗1 = Ip−r. This implies that rank(U∗1 ) = p− r. As U∗1 is a submatrix
of U , it follows from Lemma 3.1 that p− r ≤ n−m. �

To simplify the derivation of the new GEFA algorithm (GEFAN) we assume that Ψ
and U are partitioned as in the proof of Lemma 3.2. Note, that these assumptions are
not restrictive. In practice, GEFAN counts the number r of zero diagonal entries in Ψ
at each iteration step, which also changes the size of Ψ1. Thus, GEFAN works with the
actual sizes n× (p− r) and (p− r)× (p− r) of U1 and Ψ1, respectively.

Now, write X −FA> as the block matrix [X1 X2] with X1 of size n× (p− r). Note,
that X1 is composed of those columns of X that correspond to non-zero entries in Ψ1.
Then, with this notation, the problem in (16) becomes:

min
U>1 U1=Ip−r

‖F>⊥X1 − F>⊥U1Ψ1)‖2 + constant , (18)

where the constant does not depend on U1.
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In general, a problem like (18) does not have a closed form solution. It is known as
the weighted orthonormal Procrustes problem or the Penrose regression problem (Chu
and Trendafilov, 2001). Fortunately, the problem in (18) can be simplified and solved
as an ordinary Procrustes problem. Indeed, let Q = F>⊥U1 be a new unknown. Then
Q>Q = U>1 F⊥F

>
⊥U1 = U>1 (In−m − FF>)U1 = U>1 U1 = Ip−r, so the unknown Q is

orthonormal (n−m)× (p− r) and the problem in (18) reduces to:

min
Q>Q=Ip−r

‖F>⊥X1 −QΨ1‖2 , (19)

which is a standard Procrustes problem whose solution is given by the SVD of F>⊥X1Ψ1.
When Q is found, U1 is obtained from U1 = F⊥Q. If p − r = n −m (which generally
seems the case in numerical experiments), then Q is square, and it is orthogonal. Then,
U1U

>
1 = F⊥QQ>F>⊥ = F⊥F

>
⊥ , which implies:

UU> + FF> = U1U
>
1 + FF> = F⊥F

>
⊥ + FF> = In .

These considerations show that the parameters obtained by GEFAN possess equivalent
features to those by GEFALS (Section 2.2).

To summarize, a solution to the EFA problem for data with p� n is obtained by solv-
ing (15) for F and (19) for U , followed by updating A and Ψ. Finding such {F,U,A,Ψ}
is repeated until convergence. The orthogonal complement F⊥ is not uniquely deter-
mined, but the solution of (19) is unique for a given F⊥, provided that rank(X1) ≥ p−r.
This implies that A and Ψ are uniquely determined.

GEFAN is an alternating least squares procedure, alternately finding[F,U ] and [A,Ψ].
In general, alternating procedures may get stuck while solving one of the sub-problems.
However, GEFAN uses SVD to find [F,U ], while the new [A,Ψ] is a simple update
involving matrix multiplications only. Thus, convergence problems have never arisen.

The GEFAN algorithm, the modified GEFALS, can be summarized as follows:

F ← rand(n,m)− .5 , U ← rand(n, p)− .5 , A← X>F, Ψ← diag(U>X)

fold = ||X||2F , f = ||X − FA>||2F

while |fold − f | > 10−6

I ← {i : |Ψ(i, i)| > 10−7}, nI ← #(I)

U1 ← U(:, I) , Ψ1 ← Ψ(I)

For fixed A,U1 and Ψ1

min
F>F=Im

‖[X(:, I)− U1Ψ1]− FA>‖2

A← X>F, X1 ← X − FA>, F⊥ ← [F F⊥] ( n× n orthogonal)

For fixed X1, F⊥ and Ψ1

min
Q>Q=InI

‖F>⊥X1(:, I)−QΨ1‖2
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U1 ← F⊥Q , Ψ1 ← diag(U>1 U1)diag[U>1 X1(:, I)]

U(:, i)← U1(:, i)i∈I ∪ 0i∈{I , Ψ(i, i)← Ψ1(i, i)i∈I ∪ 0i∈{I

fold = f, f = ||X − FA> − UΨ||2F

end while

4 Numerical examples

In this Section, we compare the solutions obtained by GEFALS with those obtained
by GEFAN . As noted earlier, they are some data set that GEFAN can analyse while
GEFALS cannot produce a solution.

Factor analysis of data with more variables than observations is a relatively new
subject. The following well-known example illustrates that the new procedures produce
sensible solutions that are compatible with the ones given by classic EFA and/or PCA.
We will see that the GEFALS and GEFAN solutions coincide and simply differ in the
way the zero entries in Ψ are handled.

The example is Thurstone’s 26-variable data set on boxes that is widely used in factor
analysis, it was used by Trendafilov and Unkel (2011) and a great number of authors in
classic EFA. Thurstone collected a random sample of 20 boxes and measured their three
dimensions x (length), y (width) and z (height) (Thurstone, 1947, p.141). The boxes are
the observations, and the variables are 26 functions of these dimensions listed below in
Table 1. Thus, the data set has n = 20 and p = 26. As the first three eigenvalues of the
sample correlation matrix are considerably greater than the rest, three common factors
will be sought, i.e. m = 3. Note, that the rank of this (standardized) data matrix is 18.
Thus, according to Lemma 3.2, the number of zeros (r) in Ψ for this particular example
should be between 9 and 11.

The first GEFALS solution is depicted in the first four columns of Table 1. It was
obtained with the classical update Ψ = diag(U>X). The table shows that Ψ has 11
elements that are 0 to four decimal places, which agrees with theory, although only 3 of
the elements are 0 to 15 decimals.

Then, we applied a second form of GEFALS by replacing the classical updating
formula with the new one, Ψ = (U>U)diag(U>X), which is suited to data with n > p.
The solution is given in the second (middle) four columns of Table 1. Now, Ψ has three
exact zeros according to the floating point arithmetic (0.00000000000000e+000), but
the loadings are nearly the same as with the first form of GEFALS. The fit (0.5919) is
unchanged.

The GEFAN solution is given in the last four columns of Table 1. Again, the fit
and loadings are virtually the same. Now, Ψ has r = 11 exact zeros. The benefit from
the new procedure is that a considerable amount of redundant calculation is avoided.
GEFAN explicitly works with smaller matrices than GEFALS by reducing matrices to
their effective dimensions. For example, the active part of U has size 20 × 16, which
is significantly smaller than its “model” size 20 × 26. This reduces calculation and,
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in particular, SVDs are calculated for much smaller matrices. Finally, we stress that
the GEFALS/GEFAN loadings are close to the classic EFA solution (Thurstone, 1947,
p.370-371).

Table 1: Two solutions for Thurstone’s 26-variable box data.

GEFALS (0.5919) GEFALS (0.5919) GEFAN (0.5919)
Variable A Ψ A Ψ
x 1.0 0 0 .0000 1.0 0 0 .0000 1.0 0 0 0
y .25 .97 0 -.0000 .25 .97 0 .0000 .25 .97 0 0
z .10 .24 .96 .0000 .10 .23 .96 -.0000 .10 .23 .96 0
xy .68 .73 -.01 -.0000 .68 .73 -.00 .0000 .68 .73 -.00 0
xz .49 .20 .84 -.0000 .49 .20 .84 .0000 .49 .20 .84 0
yz .19 .60 .77 .0000 .20 .59 .77 -.0000 .20 .59 .77 0
x2y .82 .55 -.00 -.1383 .82 .55 -.00 .1382 .82 .54 -.00 .1383
xy2 .52 .84 -.03 -.0066 .52 .84 -.03 -.0124 .52 .84 -.03 0
x2z .68 .16 .69 .1407 .68 .15 .69 -.1406 .68 .15 .69 .1406
xz2 .33 .25 .90 -.0001 .33 .24 .90 -.0000 .33 .24 .90 -.0012
y2z .24 .73 .60 .1726 .24 .73 .60 -.1726 .25 .73 .60 .1727
yz2 .15 .46 .85 -.0000 .15 .46 .85 .0000 .16 .46 .85 0
x/y .45 -.87 -.04 .1670 .45 -.87 -.04 .1669 .44 -.87 -.05 .1670
y/x -.47 .86 .01 -.1702 -.47 .86 .01 .1701 -.46 .87 .02 .1703
x/z .31 -.16 -.88 -.2848 .31 -.15 -.88 -.2848 .31 -.15 -.89 .2848
z/x -.36 .20 .87 .2181 -.36 .20 .87 .2181 -.36 .20 .88 .2181
y/z .05 .39 -.88 -.2379 .05 .40 -.87 -.2379 .05 .40 -.87 .2379
z/y -.04 -.37 .88 -.2552 -.04 -.38 .88 .2552 -.04 -.38 .88 .2553
2x + 2y .79 .61 .00 .0000 .79 .61 .00 0 .79 .61 .00 0
2x + 2z .74 .16 .65 -.0000 .74 .16 .65 0 .74 .15 .65 0
2y + 2z .22 .76 .60 .0000 .22 .76 .61 0 .23 .76 .61 0

(x2 + y2)1/2 .87 .49 -.00 .0019 .87 .49 -.00 -.0021 .87 .49 -.01 -.0022

(x2 + z2)1/2 .90 .11 .40 .0097 .90 .11 .40 .0097 .91 .10 .39 -.0098

(y2 + z2)1/2 .24 .86 .43 .0023 .24 .86 .44 -.0019 .24 .86 .44 .0015
xyz .46 .54 .68 .0414 .46 .54 .68 -.0414 .47 .54 .68 .0414

(x2 + y2 + z2)1/2 .80 .52 .28 -.0088 .80 .52 .28 .0088 .80 .52 .28 .0088

The previous example was too small to yield a noticeable difference between the per-
formances of GEFALS and GEFAN. To appreciate the advantage of using the new algo-
rithm, the different algorithms were applied to a large horizontal data matrix of size 72×
12582. The data are available from http://research.dfci.harvard.edu/korsmeyer/MLL.htm

and were studied by Armstrong et al. (2002) to select gene profiles to one kind of
leukaemia. The following experiments use the standardized data matrix.

First, two-factor solutions were determined. We start with the original GEFALS
as proposed in (Trendafilov and Unkel, 2011), i.e. using only the classic update Ψ =
diag(U>Z). The reported results in Table 2 (line GEFALS orig) are obtained from 10
runs and include: the minimal fit achieved (among the 10 runs), the average fit and its
standard deviation. These same features are also reported for the CPU in seconds. The
average fit for the original GEFALS over 10 runs was 94.392 with standard deviation
.002. This small standard deviation shows that the algorithm produced stable results. In
contrast, the CPU times are quite diverse, ranging from about 3 seconds for the fastest
run, and up to 23 seconds for the slowest.
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The remaining results are also obtained with 10 runs of the corresponding algorithm.
The second line of Table 2 gives the results obtained by GEFALS (new), when the new
update Ψ = diag(U>U)diag(U>Z) is used (appropriate for these data as p � n). The
improvement in terms of CPU time is obvious: this algorithm is much faster, and the
standard deviation is rather small suggesting similar performance in all 10 runs. The
difference in the fit is less than 1%. Now, the third line of Table 2 gives the results
obtained by the new algorithm GEFAN. The fit is virtually identical to that of GEFALS,
but GEFAN is three times faster. The small CPU standard deviation also indicates a
uniform time in each run.

Further on, Table 2 provides the same information for GEFALS (new) and GEFAN,
found for an increasing number of factors. The general conclusion is that the algorithms
deliver a stable fit: all fit standard deviations are very small. As expected, GEFAN is
always faster, by about three times.

Table 2: Comparison of three GEFA algorithms

Fit CPU (sec)
Factors Method Minimum Average StD Minimum Average StD

GEFALS orig 94.392 94.397 .002 2.44 16.06 6.20
2 GEFALS 94.760 94.765 .004 .75 1.34 .48

GEFAN 94.763 94.768 .004 .34 .48 .09
3 GEFALS 90.628 90.635 .005 1.13 2.58 1.96

GEFAN 90.632 90.636 .004 .37 .47 .10
4 GEFALS 87.607 87.614 .004 1.12 1.91 .43

GEFAN 87.603 87.610 .005 .39 .50 .07
5 GEFALS 84.991 84.997 .005 .89 1.29 .29

GEFAN 84.988 84.997 .007 .36 .49 .09
6 GEFALS 82.933 82.937 .003 1.46 2.99 .88

GEFAN 82.929 82.935 .006 .56 .88 .24

We now consider another leukaemia-related data set, this time collected and studied
by St. Jude Research3. In this example, we applied GEFALS (new) and GEFAN to a
centred and normalized 248 × 12558 data matrix. Table 3 gives the results, reporting
the quantities as in Table 2 and also providing information on the number of iterations
used by each algorithm.

As with the first example, GEFAN is three-four times faster than GEFAN. Again, we
see that both algorithms produce quite close fits, and are very stable: the fits’ standard
deviations for each algorithm is small. The number of iterations use by both algorithms
are reasonably similar. Clearly, working with a smaller matrix parameters pays off, and
each GEFAN iteration is computationally much cheaper.

All numerical experiments were performed using Matlab R2018a on a MacBook Pro
2017, 2.8 GHz Intel i7 (quad-core), 16 GB RAM.

3http://datam.i2r.a-star.edu.sg/datasets/krbd/Leukemia/Stjude.html
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Table 3: More comparisons of GEFALS vs. GEFAN

Fit CPU (sec) Iterations
Factors Method Min Av StD Min Av StD Min Av StD

2 GEFALS .322 .323 0.000 5.50 7.49 1.75 18 27 7.67
GEFAN .322 .323 0.001 1.06 1.68 .35 16 29 6.98

3 GEFALS .292 .293 0.001 7.48 9.83 1.05 27 37 4.22
GEFAN .292 .293 0.001 1.31 1.79 .40 21 30.1 7.75

4 GEFALS .281 .282 0.001 5.59 9.29 2.13 18 34.6 9.52
GEFAN .281 .282 0.000 1.09 2.17 .73 17 40.5 15.67

5 GEFALS .270 .271 0.001 7.34 10.14 1.51 26 38.2 6.60
GEFAN .270 .271 0.000 1.49 2.06 .36 25 34.4 7.40

6 GEFALS .261 .262 0.001 5.28 9.23 2.03 18 34.0 8.67
GEFAN .261 .262 0.001 1.43 2.23 .45 19 39.9 10.66

5 Discussion

This paper proposed a modification of the EFA model to make it applicable to data
with more variables than observations. The most important practical aspect of this new
development is that the notorious factor (scores) indeterminacy is quantified and related
to the ranks of the parameter matrices and the number of EFA parameters. The resulting
EFA algorithm is efficient because it works with parameter matrices whose dimensions
are aligned with their ranks, thus avoiding redundant calculations. This greatly reduces
the CPU time required to fit the EFA model – by two third for the large data sets in
our experiments. The numerical solutions follow precisely the theoretically prescribed
features of the unknown parameters.
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