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Abstract  

Background: Hepatocellular carcinoma (HCC) arises in an inflammatory, 

hypoxic/acidic microenvironment that favours tumour progression and fosters 

immunosuppression. Tumour cells survive this hostile environment by over-

expressing pH regulatory molecules such as carbonic anhydrase (CA) IX, XII 

and V-ATPase complex, but the relevance of these molecules in HCC is 

poorly defined.  

Aim: The aim of this study was to dissect the relationships between pH 

regulatory molecules and the aggressive behaviour of malignant hepatocytes, 

and to evaluate how pH regulatory molecules influence the immune 

microenvironment of HCC.  

Methods: HCC, non-tumour and normal liver tissue samples were analysed 

by qRT-PCR for the expression of genes encoding the pH regulatory 

molecules (CAIX, CAXII and V-ATPase), of genes associated to epithelial-to-

mesenchymal-transition (EMT) (TWIST, CDH1, VIM) and those encoding for 

HCC stem cell-associated markers (CD13, CD24, CD44, CD90, EpCAM, 

CD133, KRT19, OCT4, NANOG and SOX2). Selected HCC, non-tumour and 

normal liver tissue samples were evaluated by immunohistochemistry (IHC) 

to detect the presence and localization of CAIX, CAXII and VATPase and to 

assess the distribution of macrophages and T cells. Confocal microscopy and 

flow cytometry were implemented to assess the co-expression of selected 

markers. HCC cell lines, characterised for the expression of pH regulators, 

were tested for the sensitivity to the CAIX, CAXII, and V-ATPase specific 

inhibitors. The effects of V-ATPase specific drug were also studied ex vivo in 

primary human HCC tumour explants by qRT-PCR and by flow cytometry in 
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HCC single cell suspensions obtained by the enzymatic digestion of HCC 

specimens.  

Results:  Our mRNA analysis showed that the expression of CA9 was 

significantly correlated with the expression of the hypoxia-inducible factor 1α-

related gene (HIF1A) and of the stem cell-associated markers CD24, CD133, 

EpCAM and KRT19. Moreover, mRNA for CA9 and for the different CA12 

isoforms were associated with tumour grading, thus indicating their possible 

role in tumour malignancy. Applying a machine learning tool known as the 

‘Adaptive Index Model’ the combined expression of different CA12 

isoforms,CD209 and CDH1 defined a ‘signature’ classifying HCC patients in 

groups at different risk of recurrence, thus indicating a link between pH 

regulators, myeloid and EMT markers likely influencing HCC prognosis. IHC 

analysis indicated that HCC displays a complex expression pattern for the pH 

regulatory proteins. Both CAIX and CAXII were detected in transformed, but 

not in normal hepatocytes. CAIX protein had a focal distribution in the 

tumour, thus supporting its possible association with hypoxic and the most 

aggressive tumour area. Conversely, CAXII was homogeneously expressed 

by all tumour hepatocytes, but mainly retained in the endoplasmic reticulum 

(ER). The majority of HCC expressed V-ATPase which, importantly, was also 

present in immune infiltrating cells. This expression pattern qualified the 

CAIX, CAXII and V-ATPase as possible targetable molecules. Our in vitro 

data indicated that blockage of their enzymatic activities by specific drugs 

affected the viability of HCC cell lines in a dose dependent fashion, although 

with the CAXII specific inhibitor showing low efficacy, likely related to the 

preferential ER localization of CAXII molecules inside the HCC cells.  
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Ex vivo experiments with HCC tissue explants and HCC cellular suspensions 

showed that inhibition of VATPase modulated the epithelial/mesenchymal 

features of HCC cells and the levels of pro- and anti-tumour cytokines 

expressed by M2 macrophages and T cells infiltrating HCC. 

Conclusions: Herein, our data demonstrated that the pH regulatory 

molecules, CAIX, CAXII and V-ATPase are over expressed in the HCC 

microenvironment and interfering with their pathways exerted anti-tumour 

activities, although these data also lead to the conclusion that more effective 

CAXII specific drugs should be designed. The results of this thesis also 

suggest that pH regulatory molecules might have a role in HCC 

aggressiveness and prognosis. Importantly, one of these pH regulators, 

namely V-ATPase complex, influences the mesenchymal features of tumour 

cells and the immunosuppressive tumour microenvironment (TME). 

Interfering with tumour metabolism is an emerging strategy for treating 

cancers that are resistant to standard therapies. Thus, targeting the unique 

crosstalk between tumour cells and the microenvironment, played by the pH 

regulatory molecules, can be considered as a new option for HCC treatment 

and the blockage of the V-ATPase complex might represent a multi-task 

strategy for the treatment of HCC patients. 
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1. Introduction  

1.1.1 Metabolism and cancer 

Metabolism can be described as series of chemical reactions at a cellular 

level aimed at converting fuel into energy to carry out cellular processes 

within a living cell. In metabolism, complex organic molecules (such as 

polysaccharides, lipids, nucleic acids and proteins) are broken down into 

smaller units that are either oxidized to release energy  (catabolism) or used 

in anabolic reactions that construct complex molecules from smaller units 

(such as monosaccharides, fatty acids, nucleotides, and amino acids) using 

energy (anabolism). Monosaccharides, fatty acids and amino acids are 

transformed into acetyl-Coenzyme A (acetyl-CoA), which is used in the 

mitochondrial tricarboxylic acid (TCA) cycle releasing carbon dioxide (CO2). 

During cellular respiration, the electrons removed from organic molecules in 

the oxidative reactions are transferred to oxygen through a series of enzymes 

associated with the electron trasport chain of the oxidative phosphorylation. 

The energy released by electron transport is used to make adenosine 

triphosphate (ATP) coupled with the production of protons (H+). The 

produced ATP is then used both in the catabolic and anabolic reactions, 

being also a precursor for DNA and RNA synthesis. Normal differentiated 

tissues, proliferating tissues and cancer cells differ in their metabolic 

pathways [1].   

1.1.2 The Warburg effect 

In the presence of oxygen (O2), normal differentiated cells mainly rely on 

oxidative phosphorylation for their energy production. Glucose is first 
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metabolized to pyruvate via glycolysis and most of it is then completely 

oxidized to CO2 in the mitochondria during the TCA cycle. This is a highly 

efficient process, which produces 36 mol ATP per mol glucose. Only in the 

absence of oxygen, the normal differentiated cells skip the mitochondrial 

oxidative phosphorylation of pyruvate which instead is fully converted into 

lactate though anaerobic glycolysis, although with minimal ATP production of 

2 mol ATP per glucose molecule. In 1924 Otto Warburg discovered that 

proliferative cells and cancer cells generate energy mainly using aerobic 

glycolysis and, despite the presence of O2, most of the pyruvate (about 85%) 

is converted into lactate. With only a minor fraction of pyruvate entering the 

TCA cycle, the energy efficiency is that of 4 mol ATP production per glucose 

molecule. Afterwards, “the Warburg effect” is the enhanced conversion of 

glucose to lactate even in the presence of normal levels of O2 [1]. The 

Warburg effect is summarised in Figure 1.1.2. 
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Figure 1.1.2. Schematic representation of oxidative  phosphorylation, 
anaerobic glycolysis, and aerobic glycolysis (Warbu rg effect) in 
differentiated tissue, proliferating tissue and tum our. Differentiated 
tissues use oxidative phosphorylation to metabolize glucose to pyruvate and 
carbonic dioxide (CO2) in the mitochondria in the presence of oxygen (O2). In 
limiting O2 conditions, differentiated tissues convert the pyruvate into lactate 
by anaerobic glycolysis, without the participation of the mitochondria. 
Proliferative and tumour tissues mainly convert pyruvate into lactate even in 
the presence of normal levels of O2 through aerobic glycolysis. This 
phenomenon is known as the Warburg effect. This figure is taken from 
reference [1]. 

 

This metabolic reprogramming is as a hallmark of cancer [1] and it is directly 

linked to the presence of activated oncogenes and inactivated tumour 

suppressors in cancer cells. Thus, aberrant cancer metabolism certainly 

results from the intrinsic genetic features of cancer cells. The influence of 

oncogene driven pathways on cellular metabolism is discussed in the 

following paragraph. 

1.1.3 Metabolic reprogramming 

Among the different signaling pathways altered in cancer cells, 

PI3K/Akt/mTOR/mTORC1 and Myc pathways have been shown to be 
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important regulators of carbohydrate, lipid, protein and amino acid 

metabolism in several tumours. Specifically, PI3K/Akt controls the uptake of 

glucose increasing the expression of the glucose transporter (GLUT1) on the 

cell surface. Akt is involved in the conversion of citrate into acetyl-CoA which 

is used for lipid synthesis, while protein synthesis is enhanced by mTORC1, 

a downstream molecule of the PI3K/Akt pathway. Moreover, Myc is linked to 

lactate production through the increased expression of lactate dehydrogense 

A (LDHA), and it is involved in the promotion of glutamine uptake and in the 

conversion of glutamine into acetyl-CoA in the mitochondria [2, 3]. The 

PI3K/Akt/mTOR and Myc pathways are involved in the constitutive activation 

of hypoxia-inducible factor 1α (HIF-1α), the master regulator of the hypoxic 

response. Under normoxic conditions, the activation of PI3K/Akt/mTOR 

signaling stimulates protein synthesis of HIF-1α [4], while Myc induces the 

stabilization of HIF-1α and the transcription of enzymes involved in the 

glycolysis [5]. The reprogramming of cancer metabolism is schematised in 

the Figure 1.1.3.  
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Figure 1.1.3. Signaling pathways and oncogenes invo lved in the 
metabolic reprogramming of cancer cells. PI3K/Akt pathway is 
responsible for the increased glycolysis. Akt regulates lipid synthesis through 
the conversion of citrate into acetyl-CoA. Protein synthesis is regulated by 
mTORC1. PI3K stimulates the synthesis of HIF-1α that activates glycolytic 
genes. HIF-1α and dysregulated Myc promote glycolysis. The conversion of 
glutamine to glutamate involves Myc. This figure is taken from reference [2]. 

 

The stabilization of HIF-1α can be also mediated by the establishment of 

hypoxic conditions due to the fast proliferation of cancer cells [6]. This will be 

discussed in the next paragraph.  

1.1.4 Hypoxia, acidity and cancer metabolism 

During tumour development, cancer cells proliferate rapidly, oxygen and 

nutrients supplied from normal vasculature are not sufficient to support their 

high metabolic rate and low O2 availability (hypoxia) characterises fast 

growing tumours. The hypoxic tumour cells release angiogenic factors that 

drive the formation of new vasculature in a process known as angiogenesis. 

The new vessels are not well organised and are not very functional, thus they 

contribute to exacerbate the already existent hypoxia at the tumour site. The 
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low O2 tension induces the stabilization of HIFs through the inactivation of a 

family of HIF prolyl hydroxylases (PHDs) [7]. Hypoxia restricts oxidative 

phosphorylation, thus hypoxia further pushes the tumour cell metabolism 

toward the conversion of pyruvate to lactate in an O2 independent manner. 

The production of lactate, CO2 and H+ during the metabolic reactions are the 

main causes of acidity in the tumour. The large amounts of acidic metabolites 

increase intracellular and extracellular acidosis that is associated with 

changes in intracellular pH (pHi) and extracellular pH (pHe). The optimal pHi 

for cell proliferation in tissues is around 7.4, but it decreases when cells are 

exposed to metabolic acidosis. To maintain neutral pHi cancer cells 

overexpress several types of pH regulators that will be discussed in detail in 

chapter 1.3 of this thesis. The pH regulators are responsible for extruding 

acid metabolites out of the cells, thus establishing an acidic extracellular 

microenvironment. The acidic and hypoxic microenvironment supports the 

pro-tumourigenic functions of cancer cells and cells composing the TME [8]. 

The following paragraph will examine the effect of acidity and hypoxia at the 

tumour site. 
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Figure 1.1.4. Model of hypoxia, cancer metabolism a nd acidity in tumour 
cells. Oncogenes, signaling pathways and hypoxia can reprogram cellular 
metabolism by the stabilization of HIF-1α dependently or independently from 
O2. The metabolic reprogramming contributes to the generation of metabolic 
acid and carbonic dioxide (CO2). Cancer cells extrude acidic elements out of 
the cells by pH regulators reducing the extracellular pH (pHe) and generating 
an acidic microenvironment, while increasing the intracellular pH (pHi). This 
condition favours the growth and proliferation of cancer cells. This figure is 
adapted from reference [8].  

 

1.1.5 Hypoxia and acidity are pro-tumourigenic: inf luence on tumour 

aggressiveness and immunosuppression 

The combinatorial effects of hypoxia and poor vasculature perfusion increase 

flux of carbons induce the acidosis of the TME. Hypoxia and acidity have 

been also involved in the regulation of aggressive behaviour of malignant 

cells such as proliferation, migration and invasion [9, 10] and in the support of 

cancer stem cells (CSCs), a tumourigenic subpopulation of tumour cells able 

to perpetuate the tumour [11].  

In addition to transformed, malignant cells, the tumour mass also includes 

stromal and immune cells which communicate with each other and compose 
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the TME. A tumour mass highly enriched by innate and adaptive immune 

cells is defined as a ‘hot’ or ‘inflamed’ tumour [12]. Tumours and inflammation 

share a decreased O2 tension that causes the induction of HIFs. Nuclear 

factor of kappa light polypeptide gene enhancer in B cells (NF-kB), a master 

regulator of inflammation, is also a direct transcriptional regulator of HIF-1α 

[13]. Hypoxia regulates the secretion of chemokines from cancer cells that 

contribute to the recruitment of immune cells at the tumour site thus further 

boosting local inflammation [14]. The immune and stromal cells, such as 

stellate cells in HCC, secrete factors that, by remodelling the extracellular 

matrix (ECM) and contributing to the development of fibrosis, further hamper 

the delivery of oxygen and nutrients from vessels and limit the elimination of 

lactate from the extracelluar melieu. Thus, lactate produced by the high 

proliferating cancer cells accumulates at the tumour site and it is in part 

responsible for the local acidification of the TME. Lactate accumulation leads 

to the setting of a pro-tumour and immune suppressed environment [15]. In 

fact, lactate serves as nutriment for cancer-associated fibroblasts (CAFs), 

which generally exert pro-tumour activities. It also inhibits the T cell anti-

tumour response in part by feeding tumour-associated macrophages (TAMs) 

which in turn suppress T cell activity [16]. T regulatory cells (Tregs) are also 

attracted to the hypoxic and acidic tumour areas [15, 17]. Figure 1.1.4 

illustrates the role of hypoxia and acidity in tumour aggressiveness and 

immunosuppression. In the next sections, will be described additional details 

on the effect of hypoxia and acidity on proliferation, invasion and metastasis, 

EMT, CSCs and in immunosuppression.   
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Figure 1.1.5. Tumour hypoxia and acidic tumour micr oenvironment can 
influence tumour aggressiveness and immunosuppressi on. Hypoxia and 
acidity can increase tumour growth, invasion and migration capacity of 
cancer cells, promote the self-renewal of cancer stem cells (CSCs) and 
induce epithelial-to-mesenchymal transition (EMT). Furthermore, hypoxia and 
acidity can promote the aggressiveness of cancer cells by the induction of 
immunosuppression. Hypoxic and acidic cells release immune factors 
(cytokines and chemokines) that recruit immunosuppressive cells such as 
tumour-associated macrophages (TAMs), T regulatory cells (Tregs) and 
myeloid-derived suppressor cells (MDSCs), which in turn suppress the anti-
tumour activity of T and NK cells. Figure adapted from reference [13]. 

 

1.1.5.1 Proliferation, invasion and metastasis 

Recently, it has been shown that hypoxia-mediated extracellular acidification 

sustains the growth and proliferation of cancer cells [18]. Moreover, an acidic 

pH also contributes to resistance to apoptosis through the activation of 

signalling pathways that are also implicated in the regulation of tumour 

aggressiveness such as the mitogen-activated protein kinase (MAPK) and 

Mek/ERK pathway [19]. It has been reported that an acidic pHe increases the 

invasive and metastatic ability of tumour cells [20] by favouring the enzymatic 

degradation and remodelling of the ECM operated by the matrix 

metalloproteinases [21, 22]. Through the induction of lysyl oxidases (LOX), 
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hypoxia promotes the formation of the premetastatic niche in several organs 

including liver [23]. Furthermore, hypoxia and acidosis induce the release of 

proangiogenic factors, such as interleukin 8 (IL-8) [24] and vascular 

endothelial growth factor A (VEGF-A) and vascular endothelial growth factor 

C (VEGF-C) involved in the development of lymphangiogenesis [25, 26] and 

thus, they promote metastasis formation. 

1.1.5.2 Epithelial-to-mesenchymal transition (EMT) and cancer stem 

cells (CSCs)  

EMT is a process characterised by diminished proliferation, induced 

expression of mesenchymal markers, increased resistance to apoptosis and 

increased invasiveness associated with metastasis formation and CSCs [27]. 

In renal cell carcinoma, a highly hypoxic tumour, hypoxia promotes EMT 

through the downregulation of E-cadherin and by the induction of nuclear 

transcription factors such as Snail family transcriptional repressor 1 (SNAIL1) 

and Twist family BHLH transcription factor (TWIST) [28]. EMT can also be 

promoted by the acid pH in melanoma and breast cancer cells [20, 29] CSCs 

(also known as tumour-initiating cells, TICs) are a subpopulation of cancer 

cells in the tumour mass that are able to self-renew. Division of CSCs 

produces one CSC that maintains the pool of cells that propagate the tumour, 

and one differentiated cell that forms the tumour mass. It has been recently 

shown that adult epithelial and embryonic stem cells have a lower pHi 

compared to the differentiated cells, thus opening the possibility that also 

TICs might have a lower pHi than the cells composing the bulk of the tumour 

mass [30]. Mathieu and colleagues found that, through HIF-1α, hypoxia 
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promotes the expression of embryonic stem cell markers such as Nanog, 

OCT4 and SOX2 [31]. The relationship between hypoxia/acidity, EMT and 

CSCs has been reported in several studies. For example, the inhibition of 

vacuolar ATPase (V-ATPase), a complex responsible for the extrusion of the 

H+ out of the cells, reduces the self-renewal of mammospheres and 

decreases the EMT phenotype of immortalized human mammary epithelial 

cells [32]. In glioma, hypoxia and acidosis maintain the pool of CSCs through 

the induction of HIF [33]. Moreover, Hjelmeland and collaborators 

demonstrated that without the concomitant setting of hypoxia, low pHe per 

se, acts as an inductor of the cancer stem cell phenotype in glioma stem cells 

(GSCs), by promoting the HIF-2α and VEGF-A expression [34]. 

1.1.5.3 Macrophages and tumour-associated macrophag es (TAMs) 

In general, all tumours are infiltrated by macrophages, a subpopulation of 

myeloid cells recruited to the tumour site from the circulation by soluble 

factors actively released by cancer cells. Macrophages are subdivided into 

classically activated, pro-inflammatory and anti-tumour M1 or alternatively 

activated and pro-tumourigenic M2 (TAMs) [35]. M2 macrophages are 

enriched in tumour zones with a low O2 tension, while the M1 type is mainly 

localized in tumour areas with a normal O2 level [36]. Laoui and colleagues 

showed that hypoxia does not drive the differentiation of macrophages into 

TAMs, but it regulates the pro-angiogenic phenotype of M2 cells [37]. 

Macrophages migrate to the hypoxic zones of the tumour responding to 

signals mediated by VEGF, endothelin A, C-X-C chemokine receptor type 

4 (CXCR4) and Semaphorin 3A [38, 39]. TAMs are involved in tumour 
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invasion and metastasis. In particular, TAMs located in low oxygen areas of 

the tumour release VEGF-A stimulating angiogenesis, exacerbating hypoxia 

and promoting the migration of cancer cells [40]. Tripathi and collaborators 

showed that Oncostatin M and Eotaxin produced by hypoxic breast cancer 

cells are essential factors to recruit M2 macrophages. The blockade of 

Oncostatin M and Eotaxin reduced the recruitment of M2 cells and increased 

the efficacy of the anti-angiogenic drug Bevacizumab [41]. HIF-1α alone [42] 

or in combination with an acidic TME rich in lactic acid [43] increases the 

immunosuppressive capacity of TAMs by the production of VEGF, arginase 1 

(Arg1) and nitric oxide synthase (iNos) [42, 43]. Hypoxia induces also the 

“don’t eat me signal” through the expression of CD47 mediated by HIF-1 in 

tumour cells that thus are protected from macrophage-derived phagocytosis 

[44]. 

1.1.5.4 Myeloid-derived suppressor cells (MDSCs) 

MDSCs are an immature myeloid cell population and two main types of 

MDSC have been described: monocytic MDSCs (mMDSC) and granulocytic 

MDSCc (gMDSC). In healthy conditions, MDSCs present in the bone marrow 

differentiate into macrophages or neutrophils. MDSCs exert their 

immunosuppressive function in tumours by inhibiting T and NK cell functions. 

MDSCs are associated with increased tumour burden in several cancer types 

[45] and are recruited to the tumour site in response to tumour-derived 

factors such as the macrophage migration inhibitory factor (MIF) produced by 

tumour cells expressing HIF-1α and HIF-2α in response to hypoxia. The 

migration of MDSCs to the tumour site can be reduced by the inhibition of the 
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axis HIF-1α/2α and NF-kB/IL-6 [46]. Low O2, by promoting the stabilization of 

HIF-1α, induces the differentiation of MDSCs into TAMs [47]. In addition, in 

hypoxic conditions, HIF-1α leads to the expression of the immune-checkpoint 

PD-L1 (programmed cell death ligand 1) on MDSCs. These cells inhibit T 

cells by interleukin 10 (IL-10) and the suppressive activity of MDSCs is 

abrogated by the usage of anti-PD-L1 and a neutralizing antibody against IL-

10 [48]. Hypoxia contributes to the formation of pre-metastatic niche in lung 

by inducing the production of C-C motif chemokine 2 (CCL-2), tumour 

necrosis factor α (TNF), VEGF, metalloprotease 9 (MMP-9), 

metallopeptidase inhibitor 1 (TIMP-1), granulocyte colony-stimulating factor 

(G-CSF) in murine breast cancer cell lines. CCL-2 works by recruiting 

MDCSs and its neutralization using a specific antibody restores the anti-

tumour activity of NK cells in lung metastasis [49]. Another example of the 

significance of hypoxia in the pre-metastatic niche formation, which involved 

MDSC recruitment, comes from the study published by Chafe and 

collaborators. They showed that carbonic anhydrase IX, induced by hypoxia, 

promotes MDSC mobilization and the establishment of a metastatic niche by 

stimulating G-CSF production in breast cancer cells [50]. 

1.1.5.5 Regulatory T cells (Tregs) 

Tregs are another important component of the TME that are frequently 

increased in cancer and that support tumour progression. Tregs are CD4+ 

cells identified by the expression of forkhead box transcription factor 3 

(Foxp3). In physiological conditions, Tregs are required to prevent 

autoimmune diseases [51]. Treg formation is promoted by hypoxia through 
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the expression of Foxp3 induced by HIF-1α [52]. Moreover, the production of 

TGF-β1 mediated by hypoxic conditions in gastric cancer cells also boosts 

the expression of Foxp3 in Tregs [53]. In turn, Foxp3 expression favours 

Tregs survival with respect to T cells in an acid pH rich in lactate [54]. 

Furthermore, hypoxia likely potentiates also the Treg effector functions. In 

fact, HIF-1α induction mediated by hypoxia induces the expression of CD39 

and CD73, molecules involved in the conversion of ATP to adenosine, a 

crucial pathway of immune suppression mediated by Tregs and MDSCs [55, 

56]. Hypoxia not only favours the induction/generation and effector functions 

of Treg as described above, but also it is involved in Treg recruitment by 

inducing C-C motif chemokine 28 (CCL-28) expression in cancer cells as 

shown for ovarian and liver cancer cells. CCL-28 works as chemoattractant 

for C-C chemokine receptor type 10 (CCR10)-positive Treg [57, 58]. In line 

with all these observations, Pilon-Thomas and colleagues demonstrated that 

neutralizing the acidity of the TME in several models improved the efficacy of 

the checkpoint-based immunotherapy by restoring the anti-tumour function of 

T cells [59]. 

1.2 Hepatocellular carcinoma: role of hypoxia, canc er stem cells and 

immunosuppression in the biology of the tumour  

1.2.1 Hepatocellular carcinoma 

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the 

second most common cause of cancer-related deaths worldwide [60]. HCC 

constitutes 85–90% of all primary liver cancers. HCC generally occurs in a 

chronically inflamed liver showing hepatocyte necrosis and regeneration 
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together with fibrosis. Risk factors for HCC include hepatitis virus B (HBV) or 

C (HCV) and aflatoxin B1 infections, alcohol abuse, obesity and visceral 

adiposity that can result in non-alcoholic fatty liver disease (NAFLD) and non-

alcoholic steatohepatitis (NASH) and haemochromatosis. All these viral and 

metabolic insults cause inflammation and can progress into a chronic status 

establishing cirrhosis in the liver of 70-80% of patients. 

The stage and treatment strategy of HCC patients is based on the Barcelona 

Clinic Liver Cancer (BCLC) classification that takes into account the number 

and the size of the tumour nodules, the chronic liver disease and cirrhosis 

status (Child-Pugh score). Patients affected by HCC with localised disease 

are subjected to curative surgery with surgical resection and ablation. 

Unfortunately, about 70% of HCC patients relapse in approximately five years 

after the treatment [61]. Liver transplantation is applicable to patients with 

early-stage tumours, but patients with poor outcomes are not treated with 

liver transplantation. Few systemic therapies are available which include 

treatment with anti-angiogenic drugs such as sorafenib and regorafenib [62]. 

Sorafenib and regorafenib are inhibitors of the receptor for VEGF or for 

platelet-derived growth factor (PDGF) expressed by tumour cells. In addition, 

sorafenib can control the proto-oncogene serine/threonine-protein kinase c-

RAF that participates in the MAPK cascade, while regorafenib can inhibit the 

angiopoietin-1 receptor (TIE2) present on TAMs [63]. Recently, 

immunotherapy trials based on immune checkpoint inhibitors (ICIs) have 

demonstrated that HCC patients could derive benefit from immunotherapy 

based on ICIs [64] and the usage of nivolumab (anti-PD-1), one of the ICIs, 

has been recently approved by the FDA in advanced HCC patients. However, 
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the major obstacles for the complete response to these therapies are the 

establishment of tumour-intrinsic and -extrinsic resistance which certainly 

includes the emergence of dysmetabolism and immunosuppressive pathways 

[65]. 

1.2.2 Chronic inflammation and HCC   

Complex molecular events link chronic liver damage and cell death with 

inflammation and HCC development. Figure 1.2.2 summarises the key steps 

leading to HCC development in the setting of a chronic inflammation. 

Different damaging agents, which include viral infection, alcohol abuse, high 

fat, induce cell death in hepatocytes. Different types of cell death occur in 

liver disease including caspase-mediated apoptosis and also necroptosis, a 

highly regulated form of necrosis involving receptor-interacting protein 

kinases1 and 3 (RIPK1-3) [66]. Dying hepatocytes release damage-

associated molecular patterns (DAMPS) including high mobility group box 1 

(HMGB1), S100, which induce a sterile inflammation by activating 

macrophages through the triggering of advanced glycation end product 

(RAGE) and Toll-like receptors [67]. This chronic ‘wound healing response’ 

drives HCC development. M1 macrophages are early players in the TME and 

they work by recruiting other inflammatory cells including Th17 and Th1 cells. 

The local production of TNF, interleukin 1β (IL1β) and importantly interleukin 

6 (IL-6) induce anti-apoptotic signals and compensatory proliferation in 

hepatocytes. Reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) produced by the activated inflammatory/immune cells induce DNA 

damage and mutations that then accumulate in the proliferating hepatocytes, 

thus constituting the basis for HCC carcinogenesis and promoting the 
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appearance of pre-malignant cells. Of note, IL-6, present in the inflammatory 

milieu, helps malignant hepatocyte progenitor cells to survive in the early 

phase until they became self- sufficient by acquiring an autocrine production 

of IL-6 (see chapter 1.2.3) [68]. At later stages of tumour progression the 

immune microenvironment becomes more suppressive with the accumulation 

of pro-tumour M2 macrophages (see paragraph 1.2.2), Th2 cells and 

MDSCs. Th1 cytotoxic anti-tumour response is then blocked and completely 

ineffective unless immunosuppressive factors are eliminated [69]. 

Overcoming immune suppressive pathways by the usage of ICIs is one of the 

promising strategies in cancer treatment (see below). 
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Figure 1.2.2. HCC development in the setting of a c hronic inflammation. 
Virus infections, alcohol abuse, high fat induce injury in the liver that leads to 
death of hepatocytes through several mechanisms of cell death. Dying 
hepatocytes release damage-associated molecular patterns (DAMPS) 
including HMGB1 and S100 that induce inflammation. The early stage of the 
tumour inflammation process is mediated by M1 macrophages that by the 
release of cytokines recruit Th1 and Th17 cells. The latter cells produce TNF 
and IL-6 which activate anti-apoptotic and proliferative signals such as NF-kB 
and STAT3 in hepatocytes. Activated inflammatory/immune cells produce 
ROS/RNS that cause genetic alterations in hepatocytes that acquire the 
ability to survive and proliferate. In the late stage of tumour development, M2 
macrophages recruit Th2 cells leading to immunosuppression. MDSCs 
participate to immunosuppression producing IL-10 and TGFβ and inducing 
angiogenesis. Figure taken from reference [69]. 
 

1.2.3 Molecular mechanisms and pathogenesis of HCC  

HCC derives from the malignant transformation of different liver resident 

cells, including hepatocytes and stem or progenitor cells (see paragraph 

1.2.4 for further details) occurring in a setting of inflammation (see paragraph 

1.2.2). The development of the tumour starts with the formation of low-grade 

dysplastic nodules (LGDNs) that progress into high-grade dysplastic nodules 

(HGDNs), and then into early-stage HCC which finally progresses into 
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advanced HCC. This is a complex multistep process driven by the 

progressive accumulation of alterations at the molecular and cellular levels 

resulting in the loss of tumour suppressor genes or in the activation of 

oncogenes and their related molecular pathways. These genetic 

modifications contribute to proliferation, progression, invasion and immune 

escape of HCC [63] and depict for HCC a highly heterogeneous molecular 

landscape. However, inside this enormous complexity, genomic studies 

performed on a large set of primary HCC surgical specimens identified 

different molecular subclasses of HCC and new targetable genomic 

alterations, such as MDM4 or IDH1 and 2 have been recently identified [70]. 

Although the full translation into clinical management of this molecular 

classification still needs to be achieved, these new findings possibly open 

fresh approaches of precision medicine for this deadly disease for which few 

effective therapeutic options are currently available (see paragraph 1.2.1) 

[70-72].  

1.2.4 Stem cells and cancer stem cells in HCC 

The liver is composed by hepatocytes and cholangiocytes together with non-

parenchymal cells which include fibroblasts, hepatic stellate cells, Kupffer 

cells and endothelial cells. Hepatocytes constitute about the 60-80% of the 

liver mass. Adult stem cells are specialised cells able to sustain tissue 

turnover because of their self-renewal potential and capacity to differentiate. 

While this is well accepted for skin or intestine, the situation in the liver is 

more complex. Hepatocytes, which are quiescent in the liver steady state 

condition, became highly proliferative following liver injury and it is believed 
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that liver regeneration relies also on the replication capacity of differentiated 

hepatocytes. In line with these data is the recent finding that a few 

hepatocytes, highly positive for telomerase reverse transcriptase (TERT) 

expression, are distributed along the liver lobule. These hepatocytes self-

renew and differentiate to maintain the liver mass during homeostasis. This 

finding is well in agreement with the notion that activation of TERT is 

associated with cirrhosis, and that activation of the TERT promoter is the 

most frequent molecular event in HCC [73]. However, additional evidence on 

the existence of cells with features of hepatic stem or progenitors cells do 

exist in the adult liver although no definitive consensus about their location 

and nature has been reached yet. Oval cells, which can differentiate both into 

hepatocytes and into cholangiocytes are supposed to be located in the 

canals of Hering, the most terminal branches of the biliary duct. However 

other studies have indicated the presence of highly proliferating self-renewing 

duct-like cells responsible for liver reconstitution located in the portal zone of 

the hepatic lobule. Finally, it has been suggested that epigenetic 

programming might be involved in the transdifferentiation of mature 

hepatocytes into oval like cells [74].  

Given this complex background, several hypotheses on the cells of origin of 

HCC have been formulated. Indeed, HCC are heterogeneous and some HCC 

display strong stem cell features, suggesting their origin from stem cell like 

cells. Other studies in animal models strongly support this hypothesis [75]. 

However, several lines of evidence exist that support the origin of HCC from 

adult differentiated hepatocytes, mainly based on their extraordinary plasticity 

and their capacity to dedifferentiate and acquire a progenitor phenotype [75-
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77]. Several molecular pathways are associated to this dedifferentiation 

including loss of TP53, activation of WNT and NOTCH. But, irrespective of 

the origin of HCC, HCC displaying stem cell-like features have the worse 

prognosis [78].  

As in other solid tumours, the population of CSCs of the liver has been 

prospectively identified as cells expressing several different markers [76], but 

a unique definition of CSCs for HCC has not yet been defined. The HCC 

CSC-associated markers include epithelial cell adhesion molecule (EpCAM), 

cytokeratin 19 (KRT19), prominin 1 (CD133), sialoglycoprotein (CD24), 

thymocyte differentiation antigen 1 (CD90) and cell-surface glycoprotein 

(CD44) [76].  

Regarding the origin of CSCs in HCC, as for the ‘normal’ liver stem cells, 

several hypothesis have been formulated which include: - CSCs originate 

from transformation of normal liver stem cells; - mature hepathocytes and 

biliary cells might be transformed into CSCs by genetic/ epigenetic alteration; 

- mature hepathocytes and biliary cells might acquire CSCs feature by 

dedifferentiation processes [76]. An additional important concept in HCC is 

that chronic inflammation seems to be crucial in sustaining, at least at the 

initial disease phases, the growth and expansion of the putative HCC CSCs 

by providing the inflammatory cytokine IL-6. With disease progression, HCC 

CSCs acquire an autonomous IL-6 production, as shown in a murine model 

[68]. In humans, gene expression analysis partially confirmed this 

finding/hypothesis by showing that late recurrence in surgically resected HCC 

patients was associated with the presence of an IL-6 driven inflammatory 

signature [79].  
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Indeed, an important crosstalk between the immunosuppressive TAMs and 

CSCs has been reported for HCC. In HCC, CD44+ CSCs are expanded and 

maintained by IL-6-producing TAMs. IL-6 enhances the tumourigenic 

potential of CSCs in immunocompromised mice [80]. In addition, hypoxia 

plays a role in increasing the CSC marker expression and the tumourigenic 

potential of these cells. For example, CD133+ HCC stem cells displayed a 

preferential survival in a TME with low oxygen and nutrients by the activation 

of an autophagy pathway [81].  

1.2.5 Hypoxia as a metabolic condition in HCC affec ting immune 

infiltrating cells 

To prevent an aberrant immune response to gut-derived microbes, the liver 

displays an inherent tolerogenicity. Tolerogenicity is mediated by Tregs, 

dendritic cells (DCs) and macrophages resident in the liver (Kupffer cells) that 

suppress the activity of T cells [82]. This tolerogenic setting is further 

exacerbated during chronic inflammation and the development of HCC by 

contribution of Tregs, TAMs and MDSCs newly and actively recruited to the 

tumour site through the stimulation of hypoxia and acidity [83]. 

When HCC is growing, cancer cells suffer from a reduced level of O2. O2 

supply becomes limiting due to the high metabolic rate of the cancer cells 

and the increased tumour size [84]. Although there are no studies that 

measure the exact extent of hypoxia in human HCC, it is well-known that in 

normal human liver the partial pressure of oxygen (pO2) is about 5% and in 

patients with liver metastasis from colorectal cancer the pO2 is 0.8% [85]. 

Moreover, in an orthotopic rat HCC model, the pO2 inside the tumour ranges 
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from about 0-1% [86]. Furthermore, hypoxia is implicated in the lipid 

accumulation, inflammation and fibrosis of the damaged liver [87]. Liver 

fibrosis is a wound-healing response to the persistent injury in liver 

parenchyma, characterised by the deposition of collagen type I by the 

activated hepatic stellate cells (HSCs) [88]. The activation of HSCs 

contributes also to the setting of immunosuppression by inducing the 

differentiation of monocytes into MDSCs [89]. It was recently reported from 

Chiu and collaborators that the C-C motif chemokine ligand 26 (CCL-26) is 

produced by hypoxic HCC cell lines and attracts CX3CR1+MDSCs in vitro 

and in vivo. The blockade of CCL-26 inhibits MDSCs recruitment [90]. Further 

work from the same group showed that a metabolic regulator ectonucleoside 

triphosphate diphosphohydrolase 2 (ENTPD2) that transforms ATP into 5’-

AMP is induced in hypoxic HCC tumours and maintains the pool of MDSCs 

[91]. Hypoxia promotes the release of the C-C motif chemokine ligand 20 

(CCL-20) by tumour hepatocytes and induces the production of indoleamine-

pyrrole 2,3-dioxygenase (IDO) by immunosuppressive macrophages. The 

IDO suppresses T cells and promotes the expansion of Tregs [92]. The 

recruitment of Tregs to the tumour site is also due to the release of CCL-28 

by hypoxic malignant hepatocytes and it is essential for tumour growth in vivo 

[58]. 

Among the molecular factors implicated in the pathogenesis of HCC, the 

activation of Wnt/β-catenin and Akt-mTOR-MAPK signalling and the 

amplification of VEGF-A can be found in advanced HCC [63]. The 

contribution of hypoxia and acidity in the regulation of these pathways was 

extensively described in the previous section. For the specific field of HCC, it 
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is already known that hypoxic conditions induce the stabilization of β-catenin 

through the reduction of GSK-3β associated with the increased 

phosphorylation of Akt. This signalling pathway regulates in vitro EMT, 

migration and the metastatic potential of malignant hepatocytes [93]. 

Furthermore, HIF-1α enhances the gene transcription of β-catenin through 

the co-activator B-cell lymphoma 9 (BCL9). BCL9 acts as a bonafide 

oncogene and its loss contributes to a reduction of tumour growth, 

angiogenesis and the gene targets of β-catenin in immunocompromised mice 

[94].  

Recently, it was reported that transarterial chemoembolization (TACE), a 

therapy used for the intermediate stage of HCC without vascular invasion, 

induces a hypoxic microenvironment associated with an increased 

expression of carbonic anhydrase IX in cells expressing CSC markers such 

as KRT19 and EpCAM [95]. These data collectively suggest that the hypoxic 

and acidic microenvironment in the liver is an important driver for 

tumourigenesis exacerbating inflammation, inducing the 

activation/maintenance of CSCs and immunosuppression. Thus, targeting 

hypoxia alone or in combination with other factors might contribute to reduce 

the aggressiveness of HCC. In this regard, a recent study performed on HCC 

showed that limiting the acidity of the TME by the usage of bicarbonate 

improves the survival of HCC patients undergoing TACE [96]. Mechanisms 

implicated in HCC development and discussed in this chapter are 

summarised in Figure 1.2.5. 
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Figure 1.2.5. The main players in the development o f HCC. Normal hepatocytes undergo cell death induced by different 
damaging agents (hemochromatosis, alcohol, HBV or HCV or aflatoxin infections, NASH or NAFLD). An inflammatory 
response is then initiated together with the activation of hepatic stellate cells (HSCs) that produce collagen ending with 
fibrosis. Inflammation and fibrosis promote hypoxia which leads to lipid accumulation in the liver and the establishment of 
cirrhosis. In the cirrhotic liver, macrophages and hepatocytes produce IL-6, which supports the self-renewal and expansion 
of CSCs. The development of HCC is driven by hypoxia that activates the β-catenin pathway, epithelial-to-mensenchymal 
transition (EMT). Hypoxia also contributes to immunosuppression by further recruiting tumour-associated macrophages 
(TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) responding to the chemokines (CCL-20, 
CCL-26, CCL-28) produced by hypoxic tumour cells. The immunosuppressive cells inhibit the anti-tumour cytotoxic immune 
response and contribute to tumour expansion, invasion and metastasis.  
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1.3 pH regulatory molecules as a therapeutic strate gy for the hypoxic 

and acidic tumour microenvironment  

As described in the previous paragraphs, metabolic reprogramming, hypoxia, 

acidity and inflammation lead to the acidification of the pHi. To preserve the 

alkaline pHi, cells express many pH regulators such as monocarboxylate 

transporters (MCTs), Na+/H+ exchanger 1 (NHE1), G-protein coupled 

receptors (GPCR), non-G-protein coupled receptors (GPCR), including 

vacuolar ATPase (V-ATPase) and carbonic anhydrases (CAs) [15, 97]. 

These pH regulators are expressed by immune cells, in which they regulate 

physiological functions, but they have gained increasing attention, because of 

their expression in tumour cells. Therefore, cancer cells expressing pH 

regulators in a hypoxic and acidic microenvironment have a great advantage 

in growth with respect to normal cells. Thus, pH regulators represent 

interesting therapeutic targets, alone or in combination, across many cancer 

types [98]. In Figure 1.3 we provide a graphic explanation of the function of 

V-ATPase and the most studied cancer-related carbonic anhydrases (CAIX 

and CAXII). V-ATPase extrudes H+ out of the cells, while carbonic 

anhydrases catalyse the reversible hydration of CO2 and water to 

bicarbonate and H+. In the following paragraphs we describe in detail their 

role in cancer.   
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Figure 1.3. Hypoxic and acidic cancer cells express  pH regulators. V-
ATPase and carbonic anhydrases (CAIX and CAXII) are expressed on the 
cell surface of hypoxic and acidic tumour cells. The V-ATPase combines the 
energy released from ATP hydrolysis to the extrusion of protons (H+) out of 
cells into the extracellular space.  CAIX and CAXII convert carbonic dioxide 
(CO2) and water (H2O) into bicarbonate (HCO3

-) and protons. These 
reactions contribute to increase the pHi acidifying the pHe.  

 

1.3.1 V-ATPase complex 

V-ATPase is composed of many subunits organized into the V1 and the V0 

domains. The V1 is composed of eight subunits A3B3CDE3FG3H, it is 

localized on the cytoplasmic side of the cells and it is responsible for the 

hydrolysis of ATP. Five subunits ac9c’’de constitute the integral V0 domain 

assigned to the extrusion of the protons out of cells. The binding site for the 

proton pump inhibitors (PPIs) resides in a subunit. This unidirectional proton 

transport is due to ATP hydrolysis at the interface of A and B subunits that 

cause a rotation of subunits D and F of V1 and subunits d, c and c’’ of the V0 

domain. The inactivation of V-ATPase is due to the separation between the 

V1 and the V0 domain, while the activation of the complex is regulated by 
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either a high glucose level, growth factor exposure, amino acid starvation or 

viral infection. V-ATPase is localised in the membranes of lysosomes, 

endosomes and secretory vesicles, but also in the plasma membrane of 

specialised cells such as osteoclasts or cancer cells. The NH2-terminal 

domain is implicated in the localization of the complex in the plasma 

membrane of the cells [99]. The structure and function of V-ATPase is 

schematised in Figure 1.3.1.1. 

 

Figure 1.3.1.1. Graphic representation of structure  and mechanism of 
the V-ATPase complex. Two domains, the V0 and the V1 compose the V-
ATPase complex. On the cytoplasmic side of the cells resides the V1 domain 
that carry out the hydrolysis of ATP generating a rotation of the central part of 
the complex which includes D and F subunits of the V1 and c,c’’ subunits of 
the V0 domain. The V0 is a transmembrane domain and it is responsible for 
the extrusion of the protons (H+) out of the cells. The extrusion of H+ 

contributes to the acidification of the extracellular microenvironment, while 
maintaining the neutral intracellular pH (pHi) of the cells. a subunit of V1 
domain binds proton pump inhibitors (PPIs). This figure is adapted from 
reference [100]. 
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Although the expression of V-ATPase is increased in hypoxic tumour cells, its 

expression is not dependent on HIF-1α, but it has been demonstrated that V-

ATPse promotes the degradation of HIF-1α through its binding to VHL and 

lysosomal degradation [101]. Moreover, the iron depletion mediated by V-

ATPase inhibition leads to HIF-1α degradation. This mechanism is reversed 

by iron supplementation in ovarian cancer cells [102]. Recent work has 

shown that V-ATPase has important roles in cancer cells [100]. Some 

subunits of this large complex are overexpressed in breast cancer [103, 104], 

gastric cancer [105], HCC [106-108], melanoma [109], colon cancer [110], 

ovarian cancer cells [111], oral squamous cell carcinoma [112], sarcomas 

[113] and prostate cancer [114].  

V-ATPase controls directly or indirectly pathways implicated in the growth 

and survival of tumour cells and CSCs. For example, the prorenin receptor 

(PRR), an additional accessory protein of the V-ATPase, is important for the 

activation of Wnt/β-catenin signalling, the stabilization of β-catenin and it 

allows β-catenin to continue the transcription of its target genes. Specifically, 

PRR permits communication between the complex LPR6 and Frizzled of the 

β-catenin pathway and the internalization of the complex mediated by V-

ATPase. Notch signalling requires V-ATPase for enhancing the cleavage of 

the Notch receptor dependent on the acidification of endosomes after the 

internalization of the receptor and the consequent increase of Notch target 

gene transcription [100]. These pathways are also involved in the 

maintenance of CSCs, thus it is conceivable that V-ATPase is implicated in 

the regulation of CSCs. In support of this concept, it is already known that 

murine neuronal stem cells are preserved by Notch signalling through the 
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function of V-ATPase [115]. Furthermore, Di Cristofori and colleagues 

demonstrated that V-ATPase is also active in CSCs. Specifically, the 

expression of the G1 subunit regulates the self-renewal of glioblastoma stem 

cells and this subunit is also associated with poor prognosis of glioblastoma 

patients [116]. It is well known that cancer cells rely on the expression and 

activity of V-ATPase to increase their survival and evade apoptosis in an 

acidic environment and this complex regulates the migration and invasive 

capacity of cancer cells [117]. Moreover, the expression of V-ATPase was 

also studied in immune cells, in which it is implicated in the regulation of their 

physiological functions see reference [15] for further details. Interestingly, it 

was recently reported that the polarization of TAMs requires the activation of 

the mTOR pathway in combination with V-ATPase [118].  

For all the reasons described in this section, the inhibition of V-ATPase has 

become an interesting strategy to fight cancer. Specific inhibitors of V-

ATPase are known. In particular, compounds of microbial origin such as 

concanamycin A, bafilomycin A1 and archazolid bind the c subunit of the V0 

domain. The anti-tumour activity of these drugs has been studied in vitro and 

in vivo [32, 107,119-121]. For example, concanamycin A reduces the cell 

migration ability and invasiveness of melanoma and breast cancer cells [119]. 

Archazolid inhibits in vitro and in vivo tumour growth of breast cancer cells 

through the blockade of iron metabolism [120]. Furthermore, archazolid 

reduces the invasiveness of breast cancer cells [122] and the metastatic 

capacity of several metastatic cancer cells [123]. Archazolid is also able to 

restrain TIC generation affecting EMT [32]. Another class of compounds that 

inhibit H+/K+ ATPase expressed in gastric parietal cells are the PPIs that are 
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able to cross-react with V-ATPase. These compounds could be selective for 

cancer cells, because their activation is mediated by acidic conditions [124]. 

Among the PPIs we found omeprazole and esomeprazole. Omeprazole and 

esomeprazole are able to delay tumour growth in vivo of melanoma and B-

cell tumours, displaying a low toxicity [125-127]. Remaining in the field of 

melanoma, Calcinotto and collaborators showed that esomeprazole, the S-

enantiomer of omeprazole, reconstitutes the anti-tumour activity of T cells 

[128]. Figure 1.3.1.2 summarises the effects of targeting V-ATPase in cancer 

cells. 

 

Figure 1.3.1.2. The role of V-ATPase inhibition in cancer. Targeting V-
ATPase contributes to reduce tumour growth, invasion, migration, metastasis 
formation, epithelial-to-mesenchymal transition, cancer stem cell (CSC) self-
renewal and immunosuppression. Figure adapted from reference [100].  
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1.3.2 Carbonic anhydrase IX and XII 

CAs are a big family of metalloenzymes, which contain zinc in their active site 

and comprise 15 isoforms in humans. These members are membrane-

associated, cytosolic, secreted and mitochondrial. The two transmembrane 

proteins identified to be important for cancers are CAIX and CAXII [129]. 

They are organised into the catalytic domain (CA) on the extracellular side, 

the transmembrane domain (TM) and the intracellular C-terminal tail (IC) on 

the cytoplasmic side of the cells. CAIX has also a proteoglycan domain (PG) 

in the N-terminus CA domain and this part is important for conferring 

aggressive features to cancer cells [130]. Interestingly, CAIX and CAXII are 

up-regulated in tumour hypoxic areas [131], but only CAIX contains in its 

promoter the hypoxia-response element (HRE) for HIF-1α [132].  

The distribution of CAIX and CAXII has been investigated across several 

normal and tumour tissues [133], but the impact of these molecules on the 

prognosis of cancer patients is tissue-dependent [134]. The presence of 

CAIX is associated with poor prognosis in a variety of cancers, such as 

breast [135], non-small cell lung cancer (NSCLC) [136], adrenocortical 

tumours [137], ovarian cancer [138] and HCC [139-141]. In renal cell cancer 

(RCC) a high level of CAIX is a predictor of a good prognosis [142]. 

Conversely, the relationship of CAXII with the outcome of cancer patients is 

controversial and remains to be fully clarified. CAXII is associated with better 

clinical outcomes in breast cancer [143], cervical cancer [144] and NSCLC 

[145, 146]. While CAXII presence has a worse prognostic value in infiltrating 

astrocytic gliomas [147]. Ilie and colleagues demonstrated also that the 

combined expression of high level CAIX and low level CAXII has a bad 



37 

 

impact for the prognosis of patients with NSCLC. They showed that CAIX is 

the most sensitive molecule to re-oxygenation, which maintains a stable 

expression when the lung cell lines were shifted from hypoxic to normoxic 

conditions. On the contrary, in lung cancer cell lines CAXII was slightly up-

regulated by hypoxia, but down-regulated after the re-oxygenation [148].  

CAIX and CAXII are involved in the aggressiveness of cancer cells by 

regulating the spreading of cancer cells. Recently, Dedhar’s group 

demonstrated that the enzymatic activity of CAIX is required for collagen 

degradation mediated by metalloprotease 14 (MMP-14) [149]. Moreover, 

CAIX and CAXII are able to enhance cell migration and invasion through the 

activation of important signalling pathways for cancers. Specifically, CAIX 

activates the FAK/PI3K/mTOR pathway in ovarian and cervical cancer cell 

lines [150], and induces mTORC1, which is implicated in the expansion of 

CD44+CD24-/low breast CSCs [151]. CAXII enhances the migration and 

invasive capacity of tumour cells by increasing the expression of MMP-2 and 

9 induced by the activation of p38 MAPK signalling pathway [152]. 

Several compounds belonging to the sulfonamide/sulfamate and coumarin 

families have been developed by Supuran’s group [129] and the generation 

of more selective drugs specific for CAIX and CAXII is on-going [153].  

Among all the compounds for CAs only a few have been  investigated in 

animal models and only the CAIX inhibitor called SLC-0111 has entered in a 

clinical trial for solid tumours (NCT02215850). Several studies have shown 

that the inhibition of CAIX and CAXII by these small molecules inhibits the 

growth of breast cancer cells and have an anti-metastatic effect [154-157]. 

Moreover, interfering with CAXII also reduces cell proliferation and induces 
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apoptosis in T-cell lymphomas [158]. In addition to pharmacological inhibition, 

anti-CAXII monoclonal antibodies have been developed. The systemic 

administration of a CAXII blocking antibody delays the in vivo tumour growth 

of several human cancer cell lines in xenograft models [159, 160].  

The inhibition of CAIX and CAXII can also display synergistic activity when 

administered in combination with other anti-tumour treatments. For example, 

CAIX inhibition by specific drugs improves the effect of temozolomide in 

glioblastomas [161] and potentiates the effect of rapamycin in the down-

regulation of the mTOR pathway. Moreover, the gene silencing of CAIX in 

combination with bevacizumab (anti-VEGF-A) reduces the tumour growth 

and induces necrosis in colon cancer and glioblastoma cells [162]. Finally, 

the efficacy of radiotherapy in colon adenocarcinomas is boosted by the 

reduction of CAIX and CAXII activity [163, 164]. The anti-cancer effects of 

CAIX and CAXII inhibition are summarised in Figure 1.3.2. 
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Figure 1.3.2. Anti-cancer effect of CAIX and CAXII inhibition. The 
inhibition of CAIX and CAXII by specific antibody or inhibitors reduces tumour 
growth, invasion, migration, cancer stem cell (CSC) self-renewal also 
interfering with the wnt/β-catenin and p38 MAPK pathways. Furthermore, 
inhibiting CAIX and CAXII increases the effect of common therapies such as 
rapamycin, anti-angiogenic treatments and radiotherapy.  
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1.4 Aims of the study  

Featuring a rapid proliferation rate and exacerbated glycolysis, HCC creates 

a highly hypoxic and acidic microenvironment, which promotes disease 

aggressiveness and cancer-related immunosuppression. This thesis had the 

final aim of assessing whether interfering with tumour metabolism could 

represent a potential new therapeutic strategy for HCC patients. 

To achieve this goal, this project was focused on pH regulators. These 

molecules, with their enzymatic activities, work as a bridge between tumour 

cells and their surrounding milieu and are directly involved in the setting of 

the TME acidity. In HCC cell lines and ex vivo in patient’s tumours, we 

investigated the expression and the role of these molecules in shaping 

tumour properties and in modulating the immunological features of HCC. 

Specifically, we evaluated: 

a) the expression of genes encoding for the pH regulatory molecules in 

patient-derived HCC tissues, their relationship with markers related to 

aggressiveness and immunosuppression in HCC, evaluating any potential 

influence on patient prognosis 

b)  the distribution and cellular localization of the pH regulatory molecules in 

HCC tissues to assess whether, on the basis of their ex vivo expression 

profile, they represented targetable molecules  

c) the effects of inhibition of the pH regulatory molecule on cell viability of 

HCC cell lines and dissect also the mechanisms of cell death  
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d) the expression of the pH regulator V-ATPase in the HCC immune 

infiltrating cells and the effects of blocking V-ATPase activity.on the HCC 

TME. 
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2. Materials and Methods 

2.1 Ex vivo experiments 

2.1.1 Ethical statement 

This study was conducted in compliance with the Declaration of Helsinki 

1975. The research protocol was approved by the review board of 

Fondazione IRCCS Istituto Nazionale dei Tumori of Milan (protocol number: 

INT 110/13). Patients with HCC who underwent curative resection at 

Fondazione IRCCS Istituto Nazionale dei Tumori of Milan signed a written 

informed consent form for the collection of their liver tissue specimens for 

research purposes. 

2.1.2 Patients, tissue samples and clinical data 

Tumour (T) and adjacent non-tumour liver tissue (NT), sampled within two cm 

proximal to the tumour margin, were collected from patients with well-

compensated cirrhosis (n=57) undergoing curative resection from 2011 to 

2015 at the Gastrointestinal Surgery and Liver Transplantation Unit of 

Fondazione IRCCS Istituto Nazionale dei Tumori of Milan headed by the 

Professor Mazzaferro. Nine non-cirrhotic, normal (N) liver tissue samples 

were obtained from patients who underwent operations unrelated to cancer 

(cholecystectomy). The liver specimens were collected in the operating room 

and to maintain RNA integrity of cells in the tissue, under sterile conditions, 

the fresh tissues were cut in small pieces (≤ 0.5 cm) and then they were 

placed in five-ten volumes of RNAlaterTM solution (Thermo Fisher Scientific), 

stored at 4°C for overnight (ON) and then placed at  -80°C until use. The 

characteristics and medical information of patients, including sex, age, 

aetiology of chronic liver disease, alpha-fetoprotein (AFP) serum levels, 
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number and size of tumour nodules, grade of tumour differentiation and 

presence or not of micro vascular invasion and recurrence, were obtained 

from the patients’ medical records (see Table 3.1.1 in Chapter 3.1). The 

impact of the clinicopathological parameters on the recurrence of the tumour 

was assessed by univariate Cox proportional hazards regression analysis 

(see Table 3.1.2 in Chapter 3.1).   Formalin-fixed, paraffin-embedded (FFPE) 

samples corresponding to the liver tissues stored in the RNAlaterTM solution 

were also prepared for immunostaining. Breast cancer samples were used as 

a control (n=3) and were obtained from a pathology archive of Fondazione 

IRCCS Istituto Nazionale dei Tumori of Milan.  

2.1.3 HCC tissue explants: generation and treatment  

Culturing of the ex vivo HCC tissue explants was adapted from reference 

[165]. The fresh HCC tissues (n=12) were cut into three mm pieces using a 

biopsy punch under sterile conditions and were cultured for 24h in a 48-well 

plate (Corning) in the presence of 300 µl RPMI 1640 with 1% FCS (Lonza) 

and 100 µg/ml omeprazole (Sigma-Aldrich) or drug vehicle 

(dimethylsulfoxide, DMSO, Sigma-Aldrich). Tumours treated with the drug or 

with control medium were then frozen in RNAlaterTM solution for qRT-PCR 

analysis.  

2.1.4 RNA extraction, reverse transcription and qua ntitative real-time 

PCR on HCC tissues 

Total RNA from frozen liver tissues was extracted using a NucleoSpin miRNA 

kit (Macherey-Nagel). The RNAlaterTM solution was removed and, to maintain 

the RNA integrity and to enhance the yield, the specimens were placed in 

liquid nitrogen and then homogenized with a TissueLyser Homogenizer 
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(Qiagen) in the presence of lysis buffer ML (provided in the NucleoSpin 

miRNA kits) and tungsten carbide beads (Qiagen) for 2 min at a frequency of 

30 oscillations/sec. After the addition of ethanol, DNA and RNA were bound 

to the NucleoSpin RNA columns. The DNA was digested on the columns by 

RNase-free recombinant DNase. Subsequently, the RNA was washed and 

eluted with RNase-free water pre-warmed at 95°C. Th e purity of the RNA 

samples was assessed by measuring the OD260/OD280 ratio on a Picodrop 

spectrometer (Picodrop). The RNA with a ratio of 1.8-2.0 was considered 

pure and further processed. The total RNA (2.5 µg) was used to synthesize 

cDNA using the High-Capacity cDNA Reverse Transcription kit (Thermo 

Fisher Scientific) and the reverse transcription polymerase chain reaction 

(RT-PCR) was carried out in the GeneAmp PCR System 9700 instrument 

(Thermo Fisher Scientific) using the following settings: 25 °C for 10 min and 

60 °C for 120 min. cDNA obtained from the HCC tissu e explants was pre-

amplified using the TaqMan® Preamp Master Mix Kit (Thermo Fisher 

Scientific) by combining 188 ng cDNA with TaqMan® Preamp Master Mix and 

pooling the TaqMan® gene expression assays (Thermo Fisher Scientific) at a 

final concentration of 0.2X, according to the manufacturer’s instructions. 

cDNA was used to perform real-time PCR (qRT-PCR) with TaqMan® gene 

expression assays and the primers/probes reported in Table 2.1.4. qRT-PCR 

assays were run in the ABI 7900HT instrument (Thermo Fisher Scientific) 

with the standard qRT-PCR settings: 50 °C for 2 min , 95 °C for 10 min, and 

40 cycles of 95 °C for 15 s and 60 °C for 1 min. Da ta analysis was performed 

with SDS 2.2.2 software (Thermo Fisher Scientific). The relative levels of 

templates in each sample were determined through relative quantification 
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(RQ) using the comparative Ct (∆∆CT) method (RQ=2-∆∆CT, where 

∆CT=CTtarget gene–CTGAPDH, and ∆∆CT=∆CTsample – ∆CTcalibrator). 
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Table 2.1.4. Panel of TaqMan ® gene expression assays  
Gene name  Gene symbol  RefSeq (NM) Assay ID a Amplicon length  Protein name  

Alanyl Aminopeptidase, Membrane  ANPEP 
(CD13) 

NM_001150.2 
 

Hs00174265_m1 
 

64 Aminopeptidase N 

ATPase H+ transporting V0 subunit a1  ATP6V0A1 NM_001130020.1 
NM_001130021.1 
NM_005177.3 

Hs00193110_m1 62 V-ATPase subunit a isoform 1 

ATPase H+ Transporting V0 Subunit C  ATP6V0C NM_001198569.1 
NM_001694.3 

 
Hs00798308_sH 

100 V-type proton ATPase 16 kDa 
proteolipid subunit 

ATPase H+ transporting V1 subunit A1  ATP6V1A1 NM_001690.3 Hs01097169_m1 66 V-ATPase subunit A isoform 1 
ATPase H+ transporting V1 subunit C1  ATP6V1C1 NM_001695.4 Hs00940702_m1 67 V-ATPase subunit C isoform 1 
ATPase H+ transporting V1 subunit H  ATP6V1H NM_015941.3 

NM_213619.2 
NM_213620.2 

Hs00977521_m1 103 V-ATPase subunit H 

Carbonic anhydrase 9  CA9 NM_001216.2 Hs00154208_m1 78 CAIX 
Carbonic anhydrase 12  CA12 1 NM_001218.4 Hs01080910_m1 51 CAXII 
Carbonic anhydrase 12  CA12 2/3 NM_206925.2 

NM_001293642.1 
Hs01080911_m1 64 CAXII 

C-c motif chemokine ligand 22  CCL22 NM_002990.4 Hs01574247_m1 88 C-C motif chemokine 22 
CD24 Molecule  CD24 NM_001291737.1 

NM_001291738.1 
NM_013230.3 

Hs03044178_g1 

 

146 Signal transducer CD24 

CD44 Molecule (Indian Blood Group)  CD44 NM_000610.3 
NM_001001389.1 
NM_001001390.1 
NM_001001391.1 
NM_001001392.1 
NM_001202555.1 
NM_001202556.1 
 

Hs01075861_m1 70 CD44 antigen 
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CD209 Molecule  CD209 NM_001144893.1 
NM_001144894.1 
NM_001144895.1 
NM_001144896.1 
NM_001144897.1 
NM_001144899.1 
NM_021155.3 

Hs01588349_m1 131 CD209 antigen 

Cadherin 1  CDH1 NM_001317184.1 
NM_001317185.1 
NM_001317186.1 
NM_004360.4 

Hs01023894_m1 61 cadherin 1 

Epithelial Cell Adhesion Molecule  EpCAM NM_002354.2 Hs00901885_m1 95 Epithelial cell adhesion molecule 
Glyceraldehyde -3-phosphate 
dehydrogenase 

GAPDH NM_001289746.1 
NM_002046.5 

Hs99999905_m1 122 Glyceraldehyde-3-phosphate 
dehydrogenase 

Hypoxia Inducible Factor 1 Alpha 
Subunit 

HIF1A NM_001530.3 
NM_181054.2 

Hs00936371_m1 62 Hypoxia-inducible factor 1-alpha 

Interleukin 6  IL6 NM_000600.4 Hs00985639_m1 66 interleukin-6 

interferon gamma  IFNG NM_000619.2 Hs00989291_m1 73 Interferon gamma 
Keratin 19  KRT19 NM_002276.4 Hs00761767_s1 116 Keratin, type I cytokeratin  19 
V-myc avian myelocytomatosis viral 
oncogene homolog 
 

MYC NM_002467.4 Hs00153408_m1 107 Myc proto-oncogene protein 

Nanog Homeobox   NANOG NM_001297698.1 
NM_024865.3 
 

Hs02387400_g1 109 Homeobox protein NANOG 

POU Class 5 Homeobox 1B  POU5F1B 
(OCT4) 

NM_001159542.1 Hs01596605_s1 113 Putative POU domain, class 5, 
transcription factor 1B 

Prominin 1   PROM1 
(CD133) 

NM_001145847. 
NM_001145848.1 
NM_001145849.1 
NM_001145850.1 
NM_001145851.1 
NM_001145852.1 

Hs01009250_m1 

 

75 Prominin-1 
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NM_006017.2 
SRY-Box 2  SOX2 NM_003106.3 Hs01053049_s1 91 Transcription factor SOX-2 
Thy-1 Cell Surface Antigen  THY1 (CD90) NM_001311160.1

NM_001311162.1
NM_006288.4 

Hs00264235_s1 99 Thy-1 membrane glycoprotein 

Tumour necrosis factor  TNF NM_000594.3 Hs00174128_m1 80 tumour necrosis factor 

Twist  Family BHLH Transcription 
Factor 1 

TWIST NM_000474.3 Hs01675818_s1 85 Twist-related protein 1 

Vimentin  VIM NM_003380.3 Hs00958111_m1 65 vimentin 
Note: a TaqMan® Gene Expression Assays purchased from Thermo Fisher Scientific 
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2.1.5 Immunohistochemistry on HCC tissues 

Serial sections of 1-2-µm-thickness FFPE HCC (n=23) and normal liver (n=9) 

samples were processed for immunohistochemical staining. For each HCC 

case, the FFPE section slides of non-tumour, (NT) tumour (T) and peri-

tumour (PT) tissues were analysed. PT corresponds to the FFPE HCC 

sections, which include areas enriched in immune infiltrating cells adjacent to 

tumour nodules. After xylene deparaffinization and rehydration, the sections 

were incubated in a 3% H2O2 solution for 10 min to block endogenous 

peroxidase. Antigen retrieval was performed by heating the sample in 1 mM 

EDTA at pH 8 or 5 mM citrate buffer solution in a high pressure cooker for 

10-15 or 20 min and cooled for 15 min prior to immunostaining. A peroxidase-

labeled polymer (UltraVision Quanto Detection System HRP Polymer, 

Thermo Fisher Scientific) was used for detection according to the 

manufacturer's instructions and was visualized using 3,3′-

diaminobenzidinetetrahydrochloride (DAB)/H2O2. The immunostaining 

intensity was evaluated with a scoring system performed by the pathologist 

Massimo Milione of Fondazione IRCCS Istituto Nazionale dei Tumori of 

Milan. The intensity of the nuclear or membrane/cytoplasmic staining was 

scored as I = 0 negative, I = 1 lower than the internal or experimental control, 

and I = 2 equal to the internal or experimental control. The extent of the cell 

staining was scored as 0 (0-<5%), 1 (<10%), 2 (10-50%), and 3 (>50%). The 

score categories are shown in Table 4.1.1 and 4.2.1 in chapter 4. Bile duct 

cells were used as positive internal control for CAIX staining, while the 

glandular and superficial foveolar compartment in the stomach tissue were 

used as positive experimental control for and CAXII staining. The islets of 
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Langerhans in the human pancreas and the glandular compartment in 

stomach tissues were used as positive experimental controls for a1 and H 

staining, respectively. The antibodies used are reported in Table 2.1.5. 

Stained whole-section slides were scanned using the Aperio Scanscope Cs 

(Aperio Technologies). Images were visualized and annotated with 

ImageScope software (Aperio Technologies).  
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Table 2.1.5. Antibodies used for immunohistochemistry (IHC) anal ysi s  
Antibody  Catalogu

e number 
Company  Clone  Host 

species 
Isotype  Staining 

platform 
Dilution  Antigen 

retrieval 
Visualization system  

β-catenin  #9582 Cell Signaling 6B3 rabbit monoclonal 
IgG 

Manual 
staining 

1:200  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

CAIX / BioScience M75 mouse monoclonal 
IgG2b 

Manual 
staining 

1:100  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

CAXII sc-374314 

 

Santa Cruz 
Biotechnology 

D-2 mouse monoclonal 
IgG1 

Manual 
staining 

1:50  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

CD3 ab699 Abcam PS1 mouse monoclonal 
IgG2a 

Manual 
staining 

1:50  Citrate buffer 
pH 6,  
pressure 
cooker 20 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

CD14 MS-1080 Thermo Fisher 
Scientific 

7 mouse monoclonal 
IgG2a 

Manual 
staining 

1:50  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

CD34 M7165 Dako QBEnd-10 mouse monoclonal 
IgG1 

Manual 
staining 

1:100  Citrate buffer 
pH 6,  
pressure 
cooker 20 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 
 

CD68 NCL-
CD68-
KP1 

Leica 
Microsystems 

KP1 mouse monoclonal 
IgG1 k 

Manual 
staining 

1:200  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 
 

CD163 NCL-L-
CD163 

Leica 
Microsystems 

10D6 mouse monoclonal 
IgG1 

Manual 
staining 

1:100  Citrate buffer 
pH 6,  
pressure 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
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cooker 20 min 
at 110 °C 

System DAKO 

CD209 551186 BD DCN46 mouse monoclonal 
IgG2b 

Manual 
staining 

1:20  Citrate buffer 
pH 6,  
pressure 
cooker 20 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

V- 
ATPase 
subunit a 
isoform 1 

HPA0221
44 

Sigma-Aldrich / rabbit polyclonal Manual 
staining 

1:200  EDTA buffer 
pH 8 and 
0.5% Triton, 
pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

V- 
ATPase 
subunit C 
isoform 1 

HPA0239
43 

Sigma-Aldrich / rabbit polyclonal Manual 
staining 

1:200  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

V- 
ATPase 
subunit H  

NBP1-
85668 

Novus 
Biological 

/ rabbit polyclonal Manual 
staining 

1:50  EDTA buffer 
pH 8, pressure 
cooker 15 min 
at 110 °C 

Ultravision Quanto Detection 
System HRP Thermo + Liquid 
DAB substrate chromogen 
System DAKO 

Note: /, not available 
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2.1.6 Confocal microscopy analysis of HCC tissues 

Serial sections of 1-2-µm-thick FFPE paired tumour and adjacent non-tumour 

liver tissues (n = 3) and breast cancer tissues (n = 3) were processed for 

deparaffinization and antigen retrieval. The sections were treated briefly with 

0.1 M glycine in PBS, pH 7.4 followed by 0.3% Triton X-100 in 1x PBS 

(Sigma-Aldrich) and incubated overnight at 4 °C wit h the primary antibodies. 

The samples were washed and incubated for 1 h with dye-conjugated 

secondary antibodies (see Table 2.1.6). Following a final wash, the stained 

tissue sections were mounted on glass slides with 95% glycerol in 1x PBS. 

Confocal microscopic analyses were performed using FFPE samples and 

HCC cell lines that were exposed or not to hypoxia (1% O2) for 72h. The 

antibodies used are reported in Table 2.1.6. The nuclei were stained with 

Toto-3 (Thermo Fisher Scientific). Confocal microscopy was performed using 

a Radiance 2100 microscope (Bio-Rad Laboratories) equipped with a 

krypton/argon laser and a red laser diode. 
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Table 2.1.6. Antibodies used for immunofluorescence (IF) analy sis  
Antibody  Catalogue 

number 
Company  Clone  Host 

species 
Isotype  Staining 

platform 
Dilution  Antigen 

retrieval 
Visualization 

system 
β-catenin  #9582 Cell Signaling 6B3 rabbit monoclonal 

IgG 
Manual 
staining 

1:20  EDTA buffer pH 
8, pressure 
cooker 15 min at 
110 °C 

anti-rabbit 488 
Alexa Fluor® 

Calnexin  NBP2-36570 Novus 
Biological 

1C2.2D11 mouse monoclonal 
IgG2b k 

Manual 
staining 

1:200  EDTA buffer pH 
8, pressure 
cooker 15 min at 
110 °C 

anti-IgG2b 
488Alexa 
Fluor® 

CAXII sc-374314 Santa Cruz 
Biotechnology 

D-2 mouse monoclonal 
IgG1 

Manual 
staining 

1:5 EDTA buffer pH 
8, pressure 
cooker 15 min at 
110 °C 

anti-IgG1 
568Alexa 
Fluor® 

CD3 ab699 Abcam PS1 mouse monoclonal 
IgG2a 

Manual 
staining 

1:10  Citrate buffer pH 
6,  pressure 
cooker 20 min at 
110 °C 

anti-IgG2b 
488Alexa 
Fluor® 

CD163 NCL-L-
CD163 

Leica 
Microsystems 

10D6 mouse monoclonal 
IgG1 

Manual 
staining 

1:10  Citrate buffer pH 
6,  pressure 
cooker 20 min at 
110 °C  

anti-IgG1 
568Alexa 
Fluor® 

CD209 551186 BD DCN46 mouse monoclonal 
IgG2b 

Manual 
staining 

1:10  Citrate buffer pH 
6,  pressure 
cooker 20 min at 
110 °C 

anti-IgG2b 
488Alexa 
Fluor® 

V- ATPase 
subunit a 
isoform 1 

HPA022144 Sigma-Aldrich / rabbit polyclonal Manual 
staining 

1:20  EDTA buffer pH 
8 and 0.5% 
Triton, pressure 
cooker 15 min at 
110 °C 

anti-rabbit 488 
Alexa Fluor® 

V- ATPase 
subunit H  

NBP1-85668 Novus 
Biological 

/ rabbit polyclonal Manual 
staining 

1:50  EDTA buffer pH 
8, pressure 
cooker 15 min at 
110 °C 

anti-rabbit 488 
Alexa Fluor® 

Note: /, not available 
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2.1.7 Single-cell suspensions from HCC tissues 

To obtain single-cell suspensions, the HCC tissues were enzymatically and 

mechanically digested using the gentleMACS Dissociator (Miltenyi Biotec) 

and were stored in liquid nitrogen until use. Briefly, the tumour liver tissue 

specimens were minced under sterile conditions into small pieces and 

digested for 1h at 37°C in the incubator following the gentleMACS Dissociator 

protocol (Miltenyi Biotec). The obtained cell suspension was filtered through a 

70 µm mesh (BD Biosciences), the red blood cells were lysed, and the cell 

suspension was washed with RPMI 1640 (Lonza). The cells were stained 

with trypan blue and counted, then were stored in liquid nitrogen until use.  

2.1.7.1 Flow cytometry on single-cell suspensions f rom HCC tissues  

Multiparametric flow cytometry was carried out on single-cell suspensions 

obtained from the HCC liver tissues. The antibodies used in flow cytometry 

are reported in Table 2.1.7.1. Dead cells were identified using the 

LIVE/DEAD Fixable Violet Dead Cell Stain Kit (ThermoFisher Scientific) and 

were excluded from the analysis.  

Intracellular staining was performed to detect CCL22, IFNγ and TNF in the 

single-cell suspensions treated with 100 µg/ml omeprazole or with the vehicle 

of the drug (DMSO) for 24h. Golgi Stop (0.7 µl/ml) was added after 1.5h of 

treatment. Briefly, the samples were stained with the antibodies recognising 

the cell surface markers (see Table 2.1.7.1). The cells were then fixed and 

permeabilised with Cytofix/Cytoperm buffer (BD Biosciences), and then 

stained for the above mentioned cytokines/chemokine. Data were acquired 

using a Gallios flow cytometer (Beckman Coulter) and analyzed by FlowJo, V 

8.5.2 (Tree Star) or Kaluza 1.3 software (Beckman Couter). Positive 



56 

 

populations were defined setting the marker on Fluorescence minus one 

(FMO) control. The FMO control consists of the sample stained with all the 

antibodies included in the panel except the antibody specific for the marker 

under analysis. Here, we provide an example of the FMO for the detection of 

CD209+ myeloid cells. The antibodies contained in the panel are: anti-CD45, 

anti-CD11b, anti-CD14 and anti-CD209. The FMO control contained anti-

CD45, anti-CD11b, anti-CD14, but not anti-CD209 (Figure 2.1.7.1).  

 

2.1.7.1 Expression of CD209 in positive myeloid cel ls.  Multiparametric 
flow cytometry analysis of live myeloid cells in the cell suspension of freshly 
dissociated HCC tumour tissues. Marker for CD209+ cells inside 
CD14+CD11b+CD45+ live cells was set based on the FMO control (dot plot on 
the left).  
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Table 2.1.7.1. List of antibodies used for multiparametric flow cy tometry   
Marker  Cellular localization  Fluorochrome  Clone  Host species  Isotype  Company  
CCL22 Intracellular Alexa Fluor® 647 57203 mouse monoclonal IgG2b R&D Systems 
CD3 Cell surface PC7 UCHT1 mouse monoclonal IgG1 Beckman Coulter 
CD11b Cell surface PC7 Bear1 mouse monoclonal IgG1 Beckman Coulter 
CD14 Cell surface APC-H7 MϕP9 mouse monoclonal IgG2b k BD Biosciences 
CD45 Cell surface BV510 H130 mouse monoclonal IgG1 k BD Biosciences 
CD163 Cell surface PerCP-Cy5.5 6H1/61 mouse monoclonal IgG1 k BD Biosciences 
CD209 Cell surface Pe DCN46 mouse monoclonal IgG2b BD Biosciences 
IFNγ Intracellular Fitc 4S.B3 mouse monoclonal IgG1 Biolegend 
TNF Intracellular APC Mab11 mouse monoclonal IgG1 BD Biosciences 
V-type proton ATPase 
subunit a isoform 1  

Cell surface Purified / rabbit polyclonal Santa Cruz 
Biotechnology 

Secondary antibody:  
goat anti -rabbit   Alexa Fluor® 647 / goat / Thermo Fischer 

Scientific 
Note: /, not available 
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2.1.8 Generation of the index score 

The prognostic effect of the gene expression of HIF1A, CA9, CA12 1, CA12 2/3, 

ATP6V0A1, ATP6V0C, ATP6V1A, ATP6V1C1, ATP6V1H, IL6, CD209, TWIST, 

CDH1, VIM, CD13, CD24, CD44, CD90, EpCAM, CD133, KRT19, OCT4, 

NANOG and SOX2 on relapse-free survival (RFS) was assessed by Dr. Luigi 

Mariani and Dr. Luca Lalli of Fondazione IRCCS Istituto Nazionale dei Tumori of 

Milan on the 57 HCC tissues analysed by qRT-PCR.  

We performed univariate Cox proportional hazards regression analysis to 

assess the association between recurrence and our genes (see Table 3.4.2 in 

chapter 3.4). In addition, multivariate analysis based on a machine learning tool 

known as ‘Adaptive Index Model’ [166] was applied to generate the HCC index 

score (HIS). This method proceeds according to the following steps: 1) the 

genes were considered as variables; 2) a cut-off was assigned to each variable, 

so as to clearly separate (dichotomise) the expression of the genes in each 

patient analysed (Variable selection+dichotomisation); 3) enumeration of the 

altered genes, whereby each selected gene is considered as altered if the 

corresponding measure is above or below the cut-off value, depending on the 

existence of a positive or negative association with RFS (index score 

generation); 4) groups that are homogeneous in terms of number of altered 

genes are created (aggregation). The workflow of the HIS is reported in Figure 

2.1.8. We investigated also the association of the HIS with the 

clinicophatological parameters by Mann-Whitney or Chi squared tests for 

continuous or categorical variables, respectively (see Table 3.4.2 in chapter 3.4). 
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Figure 2.1.8. Generation of the HCC Index Score (HI S). This figure illustrates 
the workflow for the generation of the HIS. 

 

2.2 In vitro experiments 

2.2.1 Cell lines and culture conditions 

Human HCC cell lines C3A, PLC/PRF/5, SNU-449 and the breast cancer cell 

line T-47D were purchased from American Type Culture Collection (ATCC). 

RPMI-1640 (Lonza) was used as a complete culture medium supplemented with 

10% heat-inactivated foetal calf serum (FCS, Lonza), 100 U/ml penicillin, 100 

U/ml streptomycin. Standard culturing condition (normoxia, N) was performed 

under 21% O2, 5% CO2, 37oC, 95% humidity. Incubation in hypoxia (H) was 

carried out at 1% O2, 5% CO2, 94% N2 gas mix at 37oC, 95% humidity. The HCC 
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cell lines grown at 80-90% confluence were trypsinized, washed in 1x PBS 

(Lonza) and used for the analysis. The cell lines were routinely checked for their 

identity by STR profiling and were free of mycoplasma, as assessed using the 

N-GARDE Mycoplasma PCR reagent set (EMK-090020, Euroclone). 

2.2.2 RNA extraction, reverse transcription and qua ntitative real-time PCR 

on HCC cell lines 

The cells were seeded at a density of 2.5 x 105 cells/well on six-well plates with 3 

ml RPMI+10% FCS and incubated under either normoxic or hypoxic conditions 

for 72h. The total RNA from the HCC cell lines grown was extracted using a 

NucleoSpin miRNA kit (Macherey-Nagel). To avoid changes  in the oxygen 

content in the culture, the cells were removed from  the normoxic or hypoxic 

specific incubators and, under sterile conditions, were removed from the medium 

from each well, washed two times with 1x PBS (Lonza) and 300 µl of lysis buffer 

ML added (provided in the NucleoSpin miRNA kits). The cells were lysed 

immediately, and then the lysates were recovered to proceed with RNA 

extraction and cDNA sythesis as indicated in 2.1.4.   

2.2.3 Western blotting on HCC cell lines  

The HCC cell lines exposed to either normoxia or hypoxia were lysed in modified 

RIPA buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet 

P-40) in the presence of protease Inhibitors (Roche), 1 mM Na3VO4 and 1 mM 

PMSF. Protein samples were boiled in NuPAGE LDS sample buffer (Invitrogen) 

and separated on NuPAGE Novex 10% Bis-Tris gels (Invitrogen) in MES 

running buffer (Invitrogen), and then transferred onto nitrocellulose filters and 
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immunoblotted with the appropriate antibodies. The monoclonal mouse anti-

human antibodies were directed against the following antigens: CAIX (clone 

M75, IgG2b, 1:2000 dilution, BioScience), vinculin (1:10000 dilution, cat. no.: 

V4505, Sigma-Aldrich) and α-tubulin (1:6000 dilution, cat. no.: T5168, Sigma-

Aldrich). Rabbit monoclonal anti-human antibodies were directed against the 

following antigens:  CAXII (clone D75C6, IgG, 1:500 dilution, cat. no.: 5864, Cell 

Signaling), β-actin (1:1000 dilution, cat. no.: A2066, Sigma-Aldrich), V-type 

proton ATPase subunit a isoform 1 (1:1000, cat. no.: HPA022144, Sigma-

Aldrich), and V-type proton ATPase subunit C isoform 1 (1:1000, cat. no.: 

HPA023943, Sigma-Aldrich). The immuno-reactive bands were visualized using 

horseradish peroxidase (HRP)-conjugated secondary antibodies (Sigma-

Aldrich), and the intensity of the signal was evaluated after incubation of the 

membranes with the HRP substrate (ECL Western Blotting Detection Reagent, 

Amersham) followed by exposure of the membranes to autoradiography film 

(Hyperfilm MP, Amersham Biosciences) and development using an automatic 

developer (Curix 60, AGFA). 

2.2.4 Flow cytometry on HCC cell lines 

Anti-human CAIX and CAXII were purchased from BioScience and Cell 

Signaling, respectively. Cell surface staining was performed at RT. 1 x 106 cells 

were added in each assay tube. An anti-mouse FITC-conjugated secondary 

antibody (Dako) and anti-rabbit Alexa 647 (Thermo Fischer Scientific) was used 

for the detection of CAIX and CAXII, respectively. Data were acquired by Gallios 

(Beckman Coulter) and analyzed using FlowJo, V 8.5.2, (Tree Star). 
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2.2.5 Pharmacological inhibitors and cell viability  assays 

The selective CAIX inhibitor S4 and the selective CAXII inhibitor compound 25 

were developed by the team of Professor Claudiu Supuran. See Table 2.2.5 for 

the chemical and biological details of the CAIX and CAXII inhibitors. These 

inhibitors have a sulfonamide group, which binds the catalytic zinc ion located in 

the active site of CAs. The synthesized compounds inhibit the in vitro CO2 

hydration activity of the recombinant CAIX and CAXII proteins evaluated by a 

colorimetric enzymatic assay using a Photophysics stopped-flow instrument. The 

selected compounds display specificity for CAIX and CAXII having no effect on 

the enzymatic activity of the ubiquitous off-target isoforms CA I and CA II, used 

as recombinant proteins, of in the above mentioned enzymatic assay [167-168]. 

Omeprazole was purchased from Sigma-Aldrich. Drugs were dissolved in DMSO 

(Sigma-Aldrich) and were stored at -20 °C. The HCC cells were plated at a 

density of 4 x 103 cells/well on 96-well plates (Corning), drugs were added to 

fresh medium after 24 h from the seeding in the appropriate normoxic or hypoxic 

conditions, and the plates were incubated for an additional 72h in the 

appropriate growing conditions. The tested concentrations of the CAIX inhibitor 

S4 were 12.5 µM, 25 µM, 50 µM and 100 µM. The CAXII inhibitor compound 25 

was used at concentrations of 12.5 µM, 25 µM, 50 µM, 100 µM and 200 µM, 

while omeprazole was used at concentrations of 25 µg/ml, 50 µg/ml, 100 µg/ml 

and 150 µg/ml. Prior to use, omeprazole was activated in acidified water at pH 

3.7 for 30 min at RT in the dark and then diluted in culture medium. The 

activated omeprazole was used throughout the present study. The effects of 
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both CA inhibitors and activated omeprazole were tested in cell viability assays. 

As a vehicle control, the cells were treated with respective volumes of DMSO 

using the same approach. Treatment with the CA inhibitors was performed 

under normoxia (21% O2) and hypoxia (1% O2). Treatment with omeprazole was 

performed under normoxia (21% O2) only. Cell viability was evaluated using the 

(3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric 

assay (Sigma-Aldrich). Briefly, in each well, 50 µl of conditioned medium was 

replaced with 50 µl pre-warmed MTT solution (Sigma-Aldrich), and the plates 

were incubated at 37 °C for 2 h. When the purple pr ecipitate of formazan 

crystals was clearly visible under the microscope, the total volume of each well 

was discarded by aspiration. Subsequently, 100 µl detergent solution was added 

to all the wells, and the plates were covered and incubated at RT on a shaker for 

10 min in the dark. The absorbance was measured at 570 nm with a 

spectrophotometer (Infinite® M1000, Tecan). Data were reported as the average 

values from triplicate readings. 
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Table 2.2.5. Chemical details of selective CAIX and CAXII inh ibitors  

Compound  Structure 
Formula  

Weight 

Ki (nM) 

hCA IX  hCA XII  

CAIX inhibitor  

S4 

 

335.38 7 2 

CAXII inhibitors  

12 

 

291.30 > 50 000 2 520 

16 

 

323.37 > 50 000 2 540 

18 

 

301.32 > 50 000 1 780 

19 

 

346.31 > 50 000 970 

20 

 

346.31 > 50 000 2010 

25 

 

322.34 > 50 000 250 
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2.2.6 Cell proliferation assay  

Cell proliferation was assessed using a BrdU Cell Proliferation Assay Kit (Cell 

Signaling). The cells were seeded at 4 x 103 cells/well in a 96-well plate and 

incubated overnight at 37°C. The cells were then tr eated with either 100 µM 

CAIX inhibitor (S4), 200 µM CAXII inhibitor (25), 100 µg/ml omeprazole or 5 µM 

doxorubicin for 48h. Finally, 10 µM BrdU was added to the plate, cells were 

incubated for 4h at 37 °C, and cell proliferation w as assessed following the 

manufacturer’s instruction. The assay was carried out under normoxia (21% O2). 

The optical density was recorded using Infinite® M1000 (Tecan) at a reference 

wavelength of 450 nm. 

2.2.7 Apoptosis assays 

The cells were seeded at 8 x 105 cells/well in a T-75 cm2 flask (Corning) and 

incubated overnight at 37°C. The cells were then tr eated with either 100 µM 

CAIX inhibitor (S4) or 1 µM staurosporine for 24h. Cell apoptosis was detected 

using a Caspase-3 Apoptosis Kit (Becton Dickinson) by a Gallios flow cytometer 

(Beckman Coulter) and analyzed by FlowJo, V 8.5.2 (Tree Star). 

Caspase 3/7 activity was determined using a Caspase-Glo 3/7 assay kit 

(Promega, UK) according to the manufacturer’s protocol. Briefly, the cells at 4 x 

103 cells/well in an opaque-walled 96-well plate were incubated overnight at 37 

°C. The cells were then treated with either 100 µM CAIX inhibitor (S4), 200 µM 

CAXII inhibitor (25), 100 µg/ml omeprazole or 1 µM staurosporine for 24 h. 

Then, 100 µl Caspase-Glo 3/7 reagent was added to the wells. The plates were 

gently shaken and then incubated in the dark at 37°C. The generated 
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luminescent signals were measured by Infinite® M1000 (Tecan). The apoptotic 

assays were performed under normoxia (21% O2). 

2.2.8 Necrosis assay 

Necrosis induction was evaluated using the RealTime-Glo Annexin V Apoptosis 

and Necrosis Assay (Promega) according to the manufacturer’s instructions. 

Briefly, the cells were seeded at 10 x 103 cells/well in an opaque-walled 96-well 

plate and incubated overnight at 37 °C. The cells w ere then treated with either 

100 µM CAIX inhibitor (S4), 200 µM CAXII inhibitor (25), 100 µg/ml omeprazole 

or 50 µg/ml digitonin and, at the same time, 100 µl 2x Detection reagent was 

added. The plates were incubated in the dark at 37°C. The assay was carried 

out under normoxia (21% O2). This assay is based on a fluorescent dye that is 

internalized in the cells when the cell membrane is compromised. The generated 

fluorescent signals at 485nmEx/530nmEM were measured by Infinite® M1000 

(Tecan) after 48h and 72h of treatment. 

2.2.9 Confocal microscopy analysis on HCC cell line s 

The HCC cell lines (C3A, PLC/PRF/5 and SNU-449) exposed or not to hypoxia 

(1% O2) for 72h were collected by centrifugation, washed in 1x PBS (Lonza),  

fixed in 4% paraformaldehyde for 30 min, washed with 1x PBS and plated on 

glass slides. The confocal microscopy analysis was performed to evaluate the 

combined expression of CAXII, β-catenin and calnexin. The antibodies used are 

reported in Table 2.1.6. The immunofluorescence staining was performed as 

reported in 2.1.6.  
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2.3 Statistical analysis 

Statistical analyses were performed using GraphPad Prism Software v.5 

(GraphPad). The Wilcoxon matched pairs test was used to compare gene 

expression levels between matched non-tumour and tumour tissues, and the 

unpaired Mann-Whitney U-test was used to compare the gene expression levels 

between normal and non-tumour tissues and between unrelated normal and 

tumour tissues. p-values less than or equal to 0.05 were considered significant. 

Spearman correlation analysis was performed on gene expression data 

(∆Ct=Cttarget gene-CtGAPDH) in the 57 liver tissues analyzed by qRT-PCR.   

Fitted lines were generated using the four-parameter dose-response curve 

(variable slope), and the IC50 values for the inhibition of cell growth at 72 h of S4, 

compound 25 and omeprazole treatment were calculated. One-way analysis of 

variance (ANOVA) followed by Bonferroni correction was used to evaluate 

statistical significance.  

One-way analysis of variance (ANOVA) followed by Dunnett correction was 

used to evaluate the statistical significance of the impact of  S4, compound 25 

and omeprazole on cell viability, BrdU incorporation, apoptosis and necrosis.  

The paired t test was used to compare the expression of MYC, CDH1, VIM, 

CCL22, IFNG and TNF in HCC tumour explants treated with 100 µg/ml 

omeprazole or the vehicle of the drug. To evaluate the modulation of IFNγ, TNF 

and CCL22 in fresh CD163+ and CD3+ cells isolated from HCC tissues due to 

the treatment with 100 µg/ml omeprazole or the vehicle of the drug, paired t 

tests were used.  
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3. Results and discussion  

3. pH regulatory molecules, intrinsic features and 

aggressiveness of HCC 

HCC is one of the ten most frequent cancers in the world and it is the second 

leading cause of cancer-related death worldwide [60]. Although HCC is a 

hypervascular tumour, it arises in a hypoxic microenvironment due to the 

inflammation status of the surrounding tissue and the insufficient supply of 

oxygen to sustain the metabolic rate of HCC cells [84]. In conditions of hypoxia, 

tumour cells, including HCC cells, further exacerbate their dysfunctional 

metabolism and generate high quantities of CO2 and acidic metabolites, such as 

lactate and H+, which leads to a decreased pHi. To cope with this acidity and to 

restore a physiological alkaline pHi, tumour cells overexpress pH regulatory 

molecules such as CAIX and CAXII that catalyse the reversible hydration of CO2 

and water to bicarbonate and H+, and V-ATPase complex that extrudes H+ out of 

the cells. This export leads to a reduction of the extracellular pH and acidification 

of the TME [97]. The hypoxic and acidic TME is pro-tumourigenic, because it 

favours immune evasion and local inflammation. 

Immunosuppressive/inflammatory cells, mainly by releasing soluble 

cytokine/chemokines, directly influence tumour aggressiveness [17]. However, 

the pH regulators per se are involved in the functional specification of 

suppressive cells such as M2 macrophages [169]. They also directly affect 

molecular pathways crucial in cancer cells [50, 100, 150, 152] and in CSC 

biology [116, 151]. Hence, pH regulatory molecules constitute a crucial hub of a 
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multimodal network resulting in tumour maintenance and progression. To the 

best of our knowledge, the relevance of these molecules in HCC is poorly 

defined. Thus, we investigated the expression of genes encoding for the pH 

regulatory molecules in patient-derived HCC tissues and their relationship with 

markers related to aggressiveness and immunosuppression of HCC with the 

final aim to discover any potential influence on patient prognosis. 

3.1 mRNA expression of pH regulators in HCC patient s 

We collected 57 matched tumour (T) and non-tumour (NT) snap-frozen tissues 

from HCC patients undergoing curative resection from 2011 to 2015 at the 

Gastrointestinal Surgery and Liver Transplantation Unit of our Institute headed 

by the Professor Mazzaferro. The characteristics and medical information of the 

patients, including sex, age, liver status, aetiology of chronic liver disease, 

pathology results are reported in Table 3.1.1. The vast majority of the patients 

were male with a medium age ≥ 50 years, have a single HCC nodule in the liver 

with an intermediate grade of differentiation (grading 2 or G2) and have tumour 

invasion into minor vessels identified during macroscopic examination or 

radiological imaging, which is defined as micro vascular invasion. The patients 

are similarly distributed in the etiology subclasses, in the size of the tumour 

nodule, while 40.4% of patients recurred after surgical intervention.  
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We evaluated the association between the clinicopathological parameters and 

recurrence of the 57 HCC patients by Cox’s univariate proportional hazards 

model. The results reported in Table 3.1.2 indicated that gender is a prognostic 

factor for these patients (HR=4.193 for females versus males, 95% CI 1.827-

9.627, p<0.001). The other clinicopathological parameters were not significantly 

associated with tumour relapse (Table 3.1.2).  

 

We started our analysis evaluating the positivity of the pH regulators CAIX, 

CAXII, V-ATPase subunits and HIF1-α at the gene expression level in the 

surgical tissue samples. CAIX, CAXII and HIF1-α are encoded by the genes 

CA9, CA12 and HIF1A, respectively. Regarding CA12, alternative spliced 
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isoforms of CA12 transcript have been described. One of these forms is present 

in astrocytic gliomas [147]. By alternative splicing, a single gene can generate 

multiple transcripts, ultimately leading to different proteins. In the splicing events, 

regulated by several splicing factors, which constitute the spliceosome 

machinery, one or more exons can be included or excluded during the 

maturation of the mRNA. The proteins generated from alternatively spliced 

mRNAs have differences in their amino acid sequence, which might be 

associated also to differences in their biological functions. In many cancer types, 

genes encoding splicing factors are frequently mutated and the generation of 

alternative splicing variants have been associated with cancer. Since hypoxia 

induces changes in gene transcription and it can also modulate the splicing of 

pre-mRNA molecules [170], we were interested in investigating the expression 

of the alternative splicing isoforms of CA12 in HCC and its relationship with 

hypoxia.  

Until now three transcripts of CA12 mRNA are described, whose sequences are 

reported on the nucleotide database in the National Centre for Biotechnology 

Information (NCBI). The transcript variant #1, here called CA12 1, identified by 

the NCBI reference sequence: NM_001218.4 is 4209 bp in length contains 11 

exons and encodes a protein of 354 aa. The NCBI reference sequence: 

NM_206925.2 coincides with the alternative transcript variant #2 of CA12, 

namely CA12 2, which lacks exon nine and encodes a protein of 343 aa. Finally, 

the alternative transcript variant #3, which is CA12 3, corresponds to the NCBI 

reference sequence: NM_001293642.1. It lacks exons three and nine and 
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encodes a protein of 284 aa. Figure 3.1.1 illustrates the graphical 

schematisation of CA12 transcript variants. As described in Materials and 

Methods (chapter 2), TaqMan® gene expression assays exist for detecting CA12 

1, and CA12 3 and the joint expression of CA12 2 and 3. No TaqMan® gene 

expression assay exists which uniquely detects the CA12 2 form. In the present 

thesis we checked the expression of the gene transcripts: NM_001218.4 (CA12 

1) identified by the Hs01080910_m1 TaqMan® and NM_206925.2 and 

NM_001293642.1 evaluated by the same assay Hs01080911_m1. 
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Figure 3.1.1 Schematic representation of CA12 transcript variants.  Three transcript variant sequences of 
CA12 are reported in the nucleotide database National Centre for Biotechnology Information (NCBI) and the 
relative NCBI reference sequences are depicted in the figure (A-C). (A) The transcript variant one of CA12 
(NM_001218.4) has 11 exons and it encodes a protein of 354 amino acids (aa). (B) NM_206925.2 identifies the 
alternative transcript variant two of CA12, which is composed of ten exons. It loses the exon nine and it encodes a 
protein of 343 aa. (C) The alternative transcript variant three of CA12 (NM_001293642.1) loses exons three and 
nine and it is in total composed of nine exons. This transcript encodes a protein of 284 aa. 
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To investigate the expression of the V-ATPase complex, we chose to test the 

ATP6V0A1, ATP6V0C, ATP6V1A, ATP6V1C1 and ATP6V1H genes that encode 

for the proteins a1, c, A1, C1 and H, respectively. Among the 14 subunits of the 

complex we studied these subunits because a1 contains the binding site for 

PPIs, while c, A1, C1 and H are involved in the regulation and the status of the 

whole complex [100]. 

Given that HCC arises from chronically inflamed liver tissue, samples from 

normal liver (N) obtained from patients undergoing an operation unrelated to 

cancer (cholecystectomy) (n=9) were included as a control group. qRT-PCR 

analysis showed that in comparison with N, both NT and T tissues displayed 

increased transcription of the HIF1A gene. NT and T tissues also exhibited an 

increase in the expression of CA9 mRNA. Conversely, CA12 1 was strongly 

positive in T samples, while it was barely detectable in N and NT tissues. 

Interestingly, the CA12 2/3 was almost selectively expressed in T tissues. 

Concerning the V-ATPase complex, altogether all the subunits displayed an 

enhanced expression in T compared with NT or normal liver, with the differences 

reaching statistical significance for the ATP6V1A, ATP6V1C1 and ATP6V1H 

genes. The ATP6V0A1 and ATP6V0C genes were overexpressed in NT and T 

compared to N samples, but the differences were not statistically significant 

(Figure 3.1.2). 
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Figure 3.1.2. Gene expression of pH regulatory mole cules in liver tissues. mRNA expression levels of HIF1A, 
CA9, CA12 1, CA12 2/3, ATP6V0A1, ATP6V0C, ATP6V1A, ATP6V1C1 and ATP6VIH. The expression of the 
indicated genes was evaluated in nine normal (N) and 57 paired samples of adjacent non-tumour (NT) and tumour 
(T) liver tissues (see Materials and Methods for the statistical analyses used). The data are reported as 2-∆Ct 
values (∆Ct=Cttarget gene–CtGAPDH).  
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To investigate any possible clinical relevance of the pH regulatory molecules, we 

evaluated the gene expression of the pH regulatory molecules in relationship to 

tumour number and size, presence or not of micro vascular invasion and 

grading. In our series, among the pH regulators analysed, CA9, CA12 and CA12 

2/3 gene expression was associated with tumour grade of HCC, thus indicating 

their possible involvement in tumour malignancy (Figure 3.1.3). The other 

clinicopathological parameters tested did not show any significant relationship 

with the pH regulators. 

 

Figure 3.1.3. Expression of pH regulatory molecules  in relationship to 
tumour differentiation. High expression of CA9, CA12 1 and CA12 2/3 was 
associated with poorly differentiated HCC (grading 3 or G3). Gene expression 
data of 57 tumour tissues analysed were reported as –∆Ct values. The reported 
p-values were calculated by the unpaired t test. 

 

3.2 Evaluation of genes related to HCC aggressivene ss in HCC patients 

In order to characterise the aggressive features of HCC, we evaluated the 

expression of EMT-, CSC- and inflammatory/immunosuppressive-related genes. 

As EMT-related genes, we explored the gene expression of TWIST, CDH1 and 

VIM. We found that TWIST expression was much higher in NT and T than in N 
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tissues. The expression of CDH1 in T samples was similar to N tissues, while T 

tissues showed lower CDH1 expression compared to NT, in which CDH1 was 

increased. We expected a high positivity of VIM in T tissues, but we observed 

the same expression level of VIM between NT and T samples. Nevertheless, 

this positivity was higher than that found in N samples (Figure 3.2.1).  

 

Figure 3.2.1. Gene expression of EMT-related genes in liver tissues. mRNA 
expression levels of TWIST, CDH1 and VIM. The expression of the indicated 
genes was evaluated in nine normal (N) and 57 paired samples of adjacent non-
tumour (NT) and tumour (T) liver tissues (see Materials and Methods for the 
statistical analyses used). The data are reported as 2-∆Ct values (∆Ct=Cttarget 

gene–CtGAPDH).  

 

In our liver tissues, we also investigated the expression of CD13, CD24, CD44, 

CD90, EpCAM, CD133, KRT19, OCT4, NANOG and SOX2, all genes encoding 

for markers described as associated to the putative CSCs of HCC [76]. These 

markers exhibited enhanced expression in T compared to N with the differences 

reaching statistical significance for the CD24 and CD90. However, NT tissues 

exhibited high positivity of CD13, PROM1 or CD133, EpCAM, KRT19 and 

OCT4, suggesting an expansion of the stem cell compartment due to the 

inflammation and wound healing present in NT tissues (Figure 3.2.2).  
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Figure 3.2.2. Gene expression of CSC-related genes in liver tissues. mRNA expression levels of ANPEP or 
CD13, CD24, CD44, THY1 or CD90, PROM1 or CD133, EpCAM, KRT19, NANOG, POU5F1B or OCT4 and 
SOX2. The expression of the indicated genes was evaluated in nine normal (N) and 57 paired samples of adjacent 
non-tumour (NT) and tumour (T) liver tissues (see Materials and Methods for the statistical analyses used). The 
data are reported as 2-∆Ct values (∆Ct=Cttarget gene–CtGAPDH).  
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It is well known that IL-6 is a pro-tumourigenic cytokine that can be produced by 

TAMs and it can support the expansion of liver CSCs [80]. CD209 in a marker 

for myeloid cell-infiltration and it is considered as a TAM-associated marker [35].  

Thus, we analysed the gene expression of IL6 and CD209 in our samples by 

qRT-PCR. IL6 was significantly increased in T compared to NT samples, on the 

contrary CD209 was significantly reduced in NT and T tissues compared to N 

samples (Figure 3.2.3).  

 

Figure 3.2.3. Gene expression of inflammatory/immun osuppressive-related 
genes in liver tissues. mRNA expression levels of IL6 and CD209. The 
expression of the indicated genes was evaluated in nine normal (N) and 57 
paired samples of adjacent non-tumour (NT) and tumour (T) liver tissues (see 
Materials and Methods for the statistical analyses used). The data are reported 
as 2-∆Ct values (∆Ct=Cttarget gene–CtGAPDH).  

 

3.3 Correlation between pH regulators and genes rel ated to HCC 

aggressiveness  

To investigate if there was any connection among all the genes analysed, 

namely HIF1A, CA9, CA12 1, CA12 2/3, ATP6V0A1, ATP6V0C, ATP6V1A, 

ATP6V1C1, ATP6V1H, IL6, CD209, TWIST, CDH1, VIM, CD13, CD24, CD44, 

CD90, EpCAM, CD133, KRT19, OCT4, NANOG and SOX2, we performed 

Spearman’s correlation analysis.  
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The results revealed a different significant degree of correlation among the 

studied genes (Figure 3.3). We noticed these most relevant correlations: 

1. The genes encoding the different V-ATPase subunits were linked to each 

other. No correlation was found between genes of the V-ATPase family to 

those of the CA family (with the exclusion of a low degree of correlation 

linking CA12 3/2 to ATP6V1C1), thus suggesting that CA and ATPase 

molecules are likely to exert non-redundant functions in HCC. 

2.  As expected from the literature data, the expression of CA9 and of the 

spliced variants CA12 2/3 were positively correlated to HIF1A. Likely 

because of their dependency on hypoxia, CA9 and CA12 2/3 gene 

expression was also partially correlated. Moreover, the expression of the 

transcript variant CA12 2/3 was linked to the level of the main transcript 

CA12 1. 

3. HIF1A positively correlated with the EMT-associated gene TWIST, with 

CD44 and, although to a lower extent with KRT19, representative of CSC-

related genes. 

4. CA9 expression was strongly correlated to TWIST, and to most of the 

CSC-related genes evaluated, including CD24, EpCAM, CD133 and 

KRT19. CA12 1 and CA12 2/3 were both correlated to the expression of 

VIM and CD44. 

5. The IL6 gene expression was strongly correlated, as expected, to the 

myeloid marker CD209 and to CD133, likely supporting the hypothesis 

that CSCs may directly produce IL-6 protein. Importantly, although with a 
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low degree of correlation, IL6 was also associated to the expression of 

the pH regulatory genes, including CA12 2/3, ATP6V1A and ATP6V1C1. 

Moreover a link between CA12 2/3 and CD209 expression was also 

found. 

Altogether, these data support our hypothesis that hypoxia and pH regulatory 

molecules are linked to the aggressive and the 

inflammatory/immunosuppressive status of HCC. 
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Figure 3.3. Analysis of correlation between genes r elated to hypoxia and pH regulatory molecules, 
epithelial-to-mesenchymal transition and HCC aggres siveness and inflammation/immunosuppression. 
Table shows results obtained from Spearman’s correlation analysis for the gene expression levels of HIF1A, CA9, 
CA12 1, CA12 2/3, ATP6V0A1, ATP6V0C, ATP6V1A, ATP6V1C1, ATP6V1H, IL6, CD209, TWIST, CDH1, VIM, 
ANPEP or CD13, CD24, CD44, THY1 or CD90, EpCAM, PROM1 or CD133, KRT19, POU5F1B or OCT4, NANOG 
and SOX2 in the malignant liver tissues obtained from 57 patients. In this analysis we used ∆Ct values (∆Ct=Ct 
target genes–Ct GAPDH). The correlation coefficient R values are reported in the Table and are highlighted in white, 
olive-green, light green or pale green if their correspondent p-values are non-significant (NS), *** p<0.0001, ** 
p≤0.005, * p≤0.0500, respectively.  
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3.4 The development of a prognostic index score  

Given that we showed that the pH regulators are associated with poor 

differentiation grade (G3) of the tumour and the expression of 

inflammatory/immunosuppressive-, EMT- and CSC-related genes, we 

investigated the prognostic effect in 57 HCC patients of the genes analysed in 

the previous paragraphs. The clinical endpoint of interest was relapse-free 

survival (RFS). The RFS was calculated as the time interval between the date of 

surgery and the date of diagnosis of any type of relapse (intrahepatic recurrence 

or extrahepatic metastasis). Firstly, we evaluated the effect of the genes on RFS 

by univariate analysis. As shown in Table 3.4.1, only TWIST and EpCAM genes 

were identified as prognostic factors for RFS (Table 3.4.1) in such analysis. 
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Secondly, we evaluated if the combined expression of the genes impacts on the 

RFS of HCC patients. To this aim we used a machine-learning tool known as the 

‘Adaptive Index Model’. This tool allowed us to obtain a HCC Index Score (HIS) 

based on the following steps: 1) selection of the genes significantly associated 

with the RFS in a proportional-hazard Cox regression model; 2) definition of an 

optimal cut-off for each selected gene; 3) construction of the HIS, as an 

enumeration of altered genes. A gene is classified as altered if the 

corresponding measure is above or below the cut-off value, in cases of 

respectively positive or negative association with the endpoint. The HIS built with 

our data included four genes, namely CD209, CA12 1, CA12 2/3 and CDH1, and 

the respective cut-offs were >0.0327, >0.0653, <0.0094, <0.0665. Hence, we 

could split the patient cohort into two groups based on HIS=0-1 (none or one 

gene with altered expression, “low risk” group) or HIS=2-3 (two or more genes 

with altered expression, “high risk” group). The low risk group included 29 

patients with median a RFS >24 months, while the high risk group included 28 

patients with a median RFS of 11.7 months. The corresponding RFS curves are 

shown in Figure 3.4, and their difference was statistically significant (P<0.0001). 
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Figure 3.4.  Prognostic significance of CA12 1, CA12 2/3, CDH1 and CD209 
expression in the HCC training cohort.  The graphs report the relationship 
between the expression of CA12 1, CA12 2/3, CDH1 and CD209 and relapse-
free survival (RFS Probability). As shown in the graph, HIS=0-1 identified the 
“low risk” group in which none or one gene has an altered expression, while 
HIS=2-3 represented the group of patients with two or more genes with altered 
expression, namely “high risk” group. This analysis was performed by the 
statisticians Dr. Luigi Mariani and Dr. Luca Lalli. 
 

We also investigated the possible association between the HIS and the 

clinicopathological parameters. As shown in Table 3.4.2, the only significant 

result was achieved for tumour size. Therefore, by not showing in general an 

association between HIS and clinicopathological parameters, it is possible to 

infer that HIS should retain an independent prognostic effect even in a 

multivariate analysis. The latter, however, could not be performed in our study 

because of the small patient series. A direct demonstration and unbiased 

quantification of the HIS prognostic effect would require an ad hoc validation 

study that is currently under way.  
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In order to perform the validation of our HIS, we are sequentially collecting 

another series of matched tumour (T) and non-tumour (NT) snap-frozen tissues 

from patients with HCC undergoing curative resection at the Gastrointestinal 

Surgery and Liver Transplantation Unit of our Institute headed by the Professor 

Mazzaferro. So far 38 paired samples have been collected. The 

clinicopathological parameters associated with this cohort are reported in Table 

7 and are similar to those reported for the training cohort (Table 3.4.3).   
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The expression of all the genes analysed in the training cohort will be then 

assessed in this cohort of patients by qRT-PCR when we have reached the 

same number of samples as in the discovery cohort; a follow up of at least 24 

months will be carried out. The obtained data will be then used by the 

statisticians to confirm the prognostic value of the HIS.  

Discussion 

The aims of this chapter were: - to characterise the expression of pH regulatory 

molecules ex vivo in HCC patients; – to evaluate the expression of genes 

involved in the aggressive features of HCC; - to assess whether genes related to 

pH regulatory molecules and HCC aggressiveness were associated; - to develop 

a prognostic index score comprising the simultaneous gene expression of pH 

regulators and aggressiveness.  

Our ex vivo gene expression analysis revealed that HCC tissues express pH 

regulators, although with different levels of expression. Consistent with Wykoff 

and colleagues, who reported the dependency of CAIX expression on hypoxia in 

several human carcinomas [132], we found that also in HCC the gene 

expression of CA9 was positively related to HIF1A. Furthermore, we 

demonstrated for the first time the presence of CA12 1 in HCC and we showed 

that the alternative splicing variants CA12 2/3 were expressed almost 

exclusively in the tumour hepatocytes. The expression of the alternative splicing 

variants CA12 2/3 was correlated with the expression of HIF1A in line with the 

notion that hypoxia can modulate the splicing of pre-mRNA molecules [170]. 

Regarding the expression of V-ATPase in HCC, our study is the first describing 
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the expression of several subunits of the V-ATPase complex. We observed that 

all the V-ATPase subunits analysed were overexpressed in T samples 

compared to N and NT. The ATP6V0C and ATP6V0A1 genes represented an 

exception to this rule. In fact, they certainly displayed a trend of overexpression 

in NT and T samples compared to normal liver, but without reaching statistical 

significance. We also observed that the gene expression of V-ATPase was not 

dependent on HIF1A, with perhaps the exception of ATP6V0C for which a small 

proportion of its expression was related to HIF1A (r=0.29).  

We dissected the aggressive features of HCC in terms of genes related to EMT, 

CSCs and inflammation/immunosuppression. In the complex field of 

inflammation/immunosuppression status of the liver, we conducted an 

explorative study by investigating the gene expression of IL6 and CD209. We 

chose these two genes, because IL-6 is involved in EMT in HCC [171] and 

because of its relevance for the survival and expansion of progenitor cells [68, 

80]. CD209, also known as DC-SIGN, is expressed in the liver by cells exerting 

different functions. In fact, CD209 is expressed by myeloid cells with different 

functional specifications. Moreover, CD209 is expressed by DCs involved in 

antigen presentation and the generation of a positive anti-tumour immunity. 

Furthermore, it is also a marker of pro-tumour M2 macrophages. Our results 

showed that IL6 was overexpressed in tumour tissues, in agreement with its 

supposed function in sustaining inflammation and CSC growth [68], while CD209 

was less expressed in non-tumour and tumour tissues as compared to normal 

liver. It should be mentioned that CD209 is constitutively expressed by the 
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sinusoidal endothelial cells (SECs) and works as a receptor for HIV entry 

infection [172]. The diminished expression of CD209 likely reflects the reduced 

presence of a normal sinusoidal organization, which characterises the normal 

liver and that is progressively lost in cirrhosis and in HCC.     

Considering EMT, as expected, we observed a down-modulation in the gene 

expression of CDH1 in tumour tissues, while we did not find the concomitant up-

regulation of TWIST and VIM. TWIST and VIM are implicated in the metastasis 

of HCC [173, 174], and this could be the reason why the primary tumours in our 

samples lack a high expression of TWIST and VIM.  

Several markers have been associated or used to identify CSCs in HCC, and 

this heterogeneous situation is true for the CSCs of other tumours as well. We 

studied the genes related to the most commonly utilised markers for HCC CSCs: 

ANPEP or CD13, CD24, CD44, THY1 or CD90, EpCAM, PROM1 or CD133, 

KRT19, POU5F1B or OCT4, NANOG and SOX2 [76]. In our work, we observed 

that these genes were present both in tumour and non-tumour tissues with a 

level of expression increased with respect to normal liver tissues. Only the levels 

of CD24 and THY1 or CD90 were found to be enriched in tumour samples 

compared to the normal and non-tumour ones, as already reported by Yang and 

colleagues for CD24 [175] and by Yang and collaborators for CD90 [176]. 

Moreover, the ANPEP or CD13, EpCAM, KRT19 and POU5F1B or OCT4 genes 

displayed higher expression levels in NT tissues, while CD44, NANOG and 

SOX2 did not show any significant differences. This illustrates the heterogeneity 

and complex nature of CSC biology. The expression of CSC markers can be 
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considered as a sign of aggressiveness. In fact, HCC tumours with a stem cell 

signature, which includes the expression of these CSC related genes, are 

classified as having the worst prognosis [75]. We considered the CSCs in the 

context of the TME, and thus we looked for possible association/correlation with 

the other markers/genes we were studying, namely the pH regulators, hypoxia 

and immune-related genes.  

Interestingly Spearman’s correlation analysis outlined a link between CA9 and 

EMT (TWIST) and especially CSC (CD24, CD133, EpCAM, KRT19) genes thus 

suggesting a possible association of CA9 with HCC aggressiveness. In line with 

this hypothesis, we also found that CA9, and also CA12 1 and CA12 2/3 were 

associated with poorly differentiated HCCs, confirming a possible role of pH 

regulators in influencing HCC malignancy. 

Since our analysis revealed other possible relationships between genes involved 

in inflammation/immunosuppression, EMT, CSCs and pH regulators, we 

investigated if the concomitant expression of the genes analysed in this chapter, 

or a subset of them, might have a prognostic significance in HCC. 

By the machine learning tool known as ‘Adaptive Index Model’, the statisticians 

of our Institute developed an HCC Index Score (HIS). The HIS comprised the 

simultaneous gene expression of CA12 1, CA12 2/3, CDH1 and CD209. The 

HIS showed that patients with two or more of these genes with altered 

expression were associated with a short RFS. This HIS is important for our 

study, because it was constructed based on the concomitant expression of pH 

regulators (CA12 1, CA12 2/3), EMT (CDH1) and 
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inflammation/immunosuppression (CD209). Thus, this result supports our 

hypothesis that all these players are important for HCC biology. An additional 

cohort of patients with similar clinicopathological features will be soon be 

available for validation purposes. 

In conclusion, in HCC the pH regulators are widely -expressed and may have a 

non-redundant function. Furthermore, CA9, CA12 1 and the alternative splicing 

variants CA12 2/3 were associated with tumour malignancy. Moreover, the pro 

survival role V-ATPase has been demonstrated in different tumour models. 

Thus, to further and better explore whether these pH regulatory molecules 

indeed represent targetable molecules in HCC, in the next chapter, we assessed 

the ex vivo protein expression and distribution of pH regulators in patient-derived 

HCC tissues. 
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4. Results and discussion 

4. Expression of pH regulatory molecules at the tum our site: 

IHC analysis 

In the previous chapter, we reported the expression of the pH regulatory 

molecules at the mRNA levels in HCC patients. We showed that CA9, CA12 1, 

CA12 2/3 alternative splicing variants and genes encoding different V-ATPase 

subunits, crucial for the assembly of the functional enzymatic complex, were 

expressed in HCC tissues, although at different levels. We also observed their 

positive association with genes related to the aggressiveness of HCC such as 

inflammation/immunosuppression, EMT and CSCs. Moreover, the CA9, CA12 1 

and CA12 2/3 mRNAs were associated with the HCC tumour grade, and CA12 1 

and CA12 2/3 together with EMT-related gene CDH1 and 

inflammation/immunosuppression-associated gene CD209 had a prognostic 

significance in HCC. Thus, the pH regulators might affect tumour promotion, 

maintenance and progression of HCC and thus represent targets for therapeutic 

intervention.  

To explore further this issue, we investigated at the protein level which cells in 

the HCC TME were positive for the pH regulatory molecules under our 

investigation. Unfortunately, no antibodies specific for the different CA12 

isoforms are currently available and thus, we were not able to dissect which 

CAXII protein variant was expressed.  
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4.1 Protein expression of CAs in HCC patients 

To investigate the ex vivo distribution of CAs in HCC, we performed IHC 

analysis on a set of 23 formalin-fixed, paraffin-embedded (FFPE) pairs of 

tumour, non-tumour and peri-tumour samples obtained from the cohort of 57 

HCC patients. Areas enriched in immune infiltrating cells adjacent to tumour 

nodules were found in the peri-tumour samples. Ex vivo analysis showed focal 

and intense plasma membrane immunoreactivity for CAIX located in discrete 

nests of hepatocytes inside the HCC lesions (Figure 4.1.1, upper panel).  

 

Figure 4.1.1. Expression and cellular distribution of CAIX and CAXII in liver 
tissues. Representative images of immunohistochemical staining for CAIX and 
CAXII in normal and matched non-tumour, tumour and peri-tumour liver tissues. 
Peri-tumour tissue was identified as areas adjacent to tumour nodules enriched 
in immune infiltrating cells. Membranous staining of CAIX was detectable in bile 
ductular cells in normal and non-tumour tissues and in malignant hepatocytes. 
CAXII was expressed in the cytoplasm of malignant hepatocytes. No positive 
staining was evident in the inflammatory cells infiltrating the peri-tumour areas. 
*Identifies tumour area in peri-tumour sections. Representative images with 
scale bars=100 µm. IHC analysis was performed by Consorzio Mia, University of 
Milan-Bicocca.  
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This pattern of expression was found in approximately 50% of tumour samples, 

as illustrated in Table 4.1.1, in which we reported the score based on the 

intensity of the staining and the extent of stained cells as assessed by the 

pathologist Dr. Massimo Milione.  

 

The presence of CAIX was limited to the plasma membrane of cholangiocytes in 

normal and non-tumour tissues. No positivity of CAIX was detected in the 

inflammatory cells infiltrating the peri-tumour area.  

In contrast to CAIX, CAXII was abundantly and selectively expressed in a large 

majority of the tumour hepatocytes, while hepatocytes in normal and non-tumour 

tissues were completely negative for CAXII. All the samples analysed shared 

this pattern of expression (Figure 4.1.1 and Table 4.1.1). Interestingly, in 

contrast with other tumour histotypes, such as breast cancer [177], in tumour 

hepatocytes the positivity of CAXII was mainly detected in the cytoplasm. No 
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positivity of CAXII was evident in the inflammatory cells infiltrating the peri-

tumour area (Figure 4.1.1, lower panel).  

As a positive control for a plasma membrane distribution of CAXII, IHC analysis 

was performed on breast cancer tissues. We confirmed that in this tumour CAXII 

was associated with the plasma membrane of malignant cells (Figure 4.1.2). 

 

Figure 4.1.2. Cell surface expression of CAXII in in situ breast cancer 
tissues. Immunohistochemical staining for CAXII expression in in situ breast 
cancer tissues. Membranous staining of CAXII was detected in breast tumour 
cells. Representative image with scale bar = 100 µm. IHC analysis was 
performed by Consorzio Mia, University of Milan-Bicocca.  
 
To define the cellular localization of CAXII in transformed hepatocytes, we 

performed immunofluorescence staining and confocal microscopy analysis of 

FFPE tumour tissue samples. As shown in Figure 4.1.3, left panel, confocal 

analysis revealed no co-localization between CAXII (green) and the cell surface-

expressed β-catenin (red). Thus, these results confirm the lack of CAXII in the 

plasma membrane of malignant hepatocytes. In agreement with the IHC data 

shown in Figure 4.1.2, the same analysis performed on breast cancer tissue 

clearly showed CAXII and β-catenin co-localization (Figure 4.1.3, right panel).  
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Figure 4.1.3. Cellular distribution of CAXII in tis sues obtained from HCC and 
breast cancer patients. Confocal laser scanning micrographs of immunofluorescence 
staining with anti-CAXII (green) and anti-β-catenin (red). Nuclei were stained with 
TOTO-3 (blue). In HCC, CAXII displayed a cytoplasmic expression with no co-
localization with the membranous staining of β-catenin (red) (left panel). Membrane 
CAXII and β-catenin co-expression was evident in in situ breast cancer tissue used as 
control (right panel, yellow staining). Confocal analysis was performed by 
Consorzio Mia, University of Milan-Bicocca.  

 
To further analyse the cellular localization of CAXII, we evaluated the 

concomitant expression of CAXII and calnexin, a marker of ER. Interestingly, we 

observed that CAXII co-localized with calnexin thus indicating that CAXII was 

largely retained in the ER (Figure 4.1.4, left panel). This pattern of expression 

was not observed in in situ breast carcinoma cells (Figure 4.1.4, right panel).  
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Figure 4.1.4. Cellular localization of CAXII in HCC  and in situ breast tissues. 
Confocal laser scanning micrographs of immunofluorescence staining with anti-CAXII 
(green) and anti-calnexin (red). Nuclei were stained with TOTO-3 (blue). In HCC, CAXII 
partially co-localized with calnexin in malignant hepatocytes (left panel, yellow staining). 
The white triangle indicates the co-localization of CAXII and calnexin. This co-
localization was not found in in situ breast cancer tissue used as control (right panel). 
Scale bars=50 µm. Confocal analysis was performed by Consorzio Mia, University 
of Milan-Bicocca. 
 
4.2 Protein expression of V-ATPase in HCC patients 

We explored ex vivo the protein distribution of the V-ATPase subunits 

(ATP6V0A1, ATP6V1C1 and ATP6V1H) that at mRNA level were 

overexpressed in tumour tissues. IHC analysis was performed using antibodies 

specific for the a1, C1 and H proteins encoded by ATP6V0A1, ATP6V1C1 and 

ATP6V1H, respectively. a1 and C1 subunits were overexpressed in malignant 

hepatocytes with respect to non-tumour tissues and normal liver (Fig. 4.2.1).  
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Figure 4.2.1. Expression pattern of V-ATPase subuni ts in liver tissues. The 
immunohistochemical expression of a1, C1 and H V-ATPase subunits was 
evaluated in normal and matched non-tumour, tumour and peri-tumour liver 
tissues. Peri-tumour tissues were identified as areas adjacent to tumour nodules 
enriched in immune infiltrating cells. The membranous/cytoplasmic expression of 
a1 and C1 subunits was detected in malignant hepatocytes. The H subunit was 
mainly expressed in the Kupffer cells present in non-tumour and tumour tissues. 
The a1 and H subunits were also expressed by infiltrating immune cells in the 
peri-tumour areas of the liver. *Identifies a tumour area in the peri-tumour 
sections. Representative images with scale bars = 100 µm. IHC analysis was 
performed by Consorzio Mia, University of Milan-Bicocca.  
 
This expression pattern was detectable in approximately 90% of HCC cases, 

although a heterogeneous frequency of positive cells and staining intensity was 

observed (Table 4.2.1).  

 

 



103 

 

 

The H subunit was not detected in tumours and normal hepatocytes, as shown 

by the IHC staining of tumour and non-tumour tissues (Figure 4.2.1) except for 4 

HCC cases (Figure 4.2.2). In these samples, the V-ATPase subunit H was 

intracellularly expressed in malignant hepatocytes, with a pattern suggesting its 

accumulation in the Golgi apparatus.  
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Figure 4.2.2. Expression of V-ATPase subunit H in m alignant hepatocytes 
of HCC. Representative immunohistochemical staining for the V-ATPase 
subunit H which was found in four of the 23 HCC tissues analyzed. The H 
subunit displayed an intracellular expression pattern, suggesting its 
accumulation in the Golgi apparatus of malignant hepatocytes. Scale bars=100 
µm. IHC analysis was performed by Consorzio Mia, University of Milan-Bicocca.  
 

The H subunit was also detectable in cells infiltrating non-tumour and tumour 

tissues, likely to be Kupffer cells, the liver’s macrophages lining the walls of the 

sinusoids. Notably, in approximately half of the cases analysed, marked 

expression of the V-ATPase a1 and H subunits could also be detected in the 

HCC inflammatory infiltrate in the peri-tumour area of the HCC samples (Figure 

4.2.1 and Table 4.2.1).  

 

Discussion 

The aim of this chapter was to characterise protein expression and cellular 

localisation of pH regulatory molecules in the TME of HCC patients.  

Our IHC analysis complemented the results obtained by gene expression 

analysis and added new important information on the heterogeneity of intra-

tumour and intra-cellular distribution of these crucial molecules affecting the 

metabolic status of the tumour and its microenvironment. The IHC analysis shed 
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light on the tissue distribution of CAIX and CAXII molecules in HCC and the 

corresponding non-tumour tissues. 

Importantly, we found that both CAIX and CAXII were expressed by 

transformed, but not normal hepatocytes thus qualifying them as proteins 

acquired during the transformation process, a feature crucial for their definition 

as targetable molecules.  

Inside the transformed hepatocytes, CAIX displayed a focal distribution and it 

was expressed within discrete tumour nests that may represent areas of tumour 

with a particularly low O2 tension. This hypothesis is in line with the data we 

discussed in chapter 3, which showed a positive significant correlation between 

the expression of CA9 and HIF1A. Furthermore, it is possible that the hypoxic 

niches, defined by CAIX expression, host HCC cells with stem cell-like features 

and that thus CAIX targeting would likely control the most aggressive portion of 

the tumour . In support of this hypothesis, Lock and collaborators demonstrated 

that CAIX was associated with stemness features in breast cancer [151]. We 

think that this association can occur in HCC as well, in line with the results of the 

previous chapter illustrating a positive association between CA9 and several 

genes related to CSCs.  

However, analysis of CAIX expression revealed that this protein is also 

expressed in the bile ducts of normal liver and in non-tumour adjacent tissues, 

likely in relation to their secretory functions. This may pose a limit to its clinical 

utilization as a therapeutic target.  
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In contrast to CAIX, the IHC analysis revealed that CAXII was expressed by a 

large majority of tumour cells and it was not detectable in any of the cells of 

normal tissue. This pattern of expression is clearly a great advantage for 

effective therapeutic targeting. IHC also demonstrated that CAXII was hardly 

detectable at the plasma membrane of the tumour hepatocytes, while this 

protein was instead mainly accumulated in the cytoplasm, likely retained in the 

ER of HCC cells. These data are partially in agreement with that of Haapasalo 

and colleagues showing that astrocytic gliomas express CAXII not only at the 

plasma membrane, but also in the cytoplasm of tumour cells. These authors 

interpreted this cytoplasmic accumulation of CAXII as the result of the elevated 

production of new enzyme. However, it should be noted that astrocytic gliomas 

also expressed the alternative splicing variant of CA12 2 [147], as we also found 

in HCC. Although it is well recognized that altered glycosylation or alternative 

splicing events, known to occur in cancer under certain conditions [178, 179] 

might play a role in determining the abnormal intracellular localization of 

proteins, neither we, nor Haapasalo and colleagues in astrocytic gliomas, could 

formally define which isoforms of CAXII were retained in the ER.  

Our data concerning the V-ATPase expression described the precise distribution 

of several subunits that are involved in the function of the V-ATPase complex. 

We demonstrated a significant up-regulation of the ATP6V0A1, ATP6V1C1 and 

ATP6V1H1 genes in tumour tissues at the mRNA level. Furthermore, malignant 

hepatocytes expressed the a1 and C1 subunits in the plasma membrane with a 

strong or moderate intensity. Interestingly, these pH regulators, namely a1 and 
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H V-ATPase subunits, were also detectable in immune cells infiltrating HCC 

tissue, and thus they might also have immunomodulating functions. 

In conclusion, the data we collected about pH regulatory molecule distribution in 

HCC patients, their relationship with the aggressive features of the tumour and 

their prognostic significance, concur to define these molecules as promising 

therapeutic targets for HCC. Thus, taking advantage of HCC cell lines 

representative of the epithelial and mesenchymal phenotypes of HCC, in the 

next chapter we explored the effects of pH regulator inhibitors on HCC viability.  
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5. Results and discussion 

5. pH regulators as targets for pharmacological int ervention in 

HCC: in vitro data 

The data described in chapter 3 and 4 suggests that the pH regulatory 

molecules are potential targetable molecules. In fact, we showed that their 

expression at the mRNA level correlated with the aggressive features of the 

tumour and that at the protein levels they were enriched in cancer tissues.  

Moreover, we found that the CAIX and CAXII proteins were expressed by 

transformed but not by normal hepatocytes.  

Based on these results, the aims of this chapter were: - to characterise the 

expression of the pH regulatory molecules in HCC cell lines and the role of 

hypoxia in the modulation of their expression; – to assess whether drugs 

inhibiting the function of pH regulatory molecules affected the in vitro growth of 

HCC cells.   

5.1 In vitro characterisation of CAs in HCC cell lines 

To explore the effects of pH regulator inhibitors on HCC viability, we selected 

from the ATCC® cell bank three different HCC cell lines representative of the 

tumour subtypes present in HCC [169, 180] and we characterized them for the 

expression of the pH regulatory molecules. These cell lines have been 

previously described as epithelial or mesenchymal types. PLC/PRF/5 and C3A 

were defined as epithelial since they are highly positive for E-cadherin (CDH1) 

and EpCAM and CD133, (two epithelial stem cell markers), and display a low 

level of vimentin (VIM), CD44 and CD90 (mesenchymal markers). On the 



109 

 

contrary, SNU-449 cells were annotated as mesenchymal, because they 

showed a higher expression of the mesenchymal markers vimentin and CD44 

[171, 180]. 

Since it is well known that CAIX and CAXII are induced by hypoxia in tumours 

[132] and our ex vivo data showed a correlation between CA9 and CA12 2/3 in 

HCC tissues, we explored the gene and protein expression of these molecules 

in these commercially available HCC cell lines. Although no studies have 

measured the exact level of hypoxia in human HCC, it should be considered that 

5% O2 characterizes the normal liver and it is thus considered as the normal 

physiological condition (normoxia) [85]. Hence, we decided to set the in vitro 

hypoxia level for HCC cell lines at 1% O2.  

Cells cultured for 72h in either normoxic (21% O2) or hypoxic (1% O2) conditions 

were evaluated for the hypoxia-induced CA expression. Figure 5.1.1 shows that 

the mRNA level of CA9 was normally expressed by the PLC/PRF/5 and C3A 

cells and significantly augmented under hypoxia. In contrast, the SNU-449 cells 

did not express CAIX in any culture conditions.  
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Figure 5.1.1 Gene expression of CA9 in HCC cell lines.  mRNA level of CA9 
was evaluated in HCC cell lines grown in either normoxia (N=21% O2, white 
column) or hypoxia (H=1% O2, red column) for 72 h. Data are reported as 2-∆Ct 
values (∆Ct=Cttarget gene–CtGAPDH) of three biological replicates in C3A and 
PLC/PRF/5. SNU-449 did not express CA9 in any of the tested conditions. The 
unpaired t-test was used to compare CA9 gene expression between cells 
exposed to N or H.  
 

In the PLC/PRF/5, we found that the expression of CA12 1 and CA12 2/3 was 

significantly increased by hypoxia, with the latter displaying a stronger up-

regulation. The C3A and SNU-449 cell lines expressed CA12 1 although at 

lower levels compared to the PLC/PRF/5 cells and this expression was not 

modified by hypoxia. Furthermore, hypoxia did not influence the low expression 

of CA12 2/3 in the SNU-449 cells (Figure 5.1.2). The analysis of these different 

CA12 isoforms is unfeasible at the protein level, because no antibodies specific 

for each of these three forms are currently available. 
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Figure 5.1.2 Gene expression of CA12 isoforms in HCC cell lines.  mRNA 
level of CA12 1 and CA 12 2/3 was evaluated in HCC cell lines grown in either 
normoxia (N=21% O2, white column) or hypoxia (H=1% O2, red column) for 72 h. 
Data are reported as 2-∆Ct values (∆Ct=Cttarget gene–CtGAPDH) of three biological 
replicates in C3A and PLC/PRF/5. Graph related to the expression of CA12 2/3 
in C3A cells was not shown, because these cells were negative for these 
isoform genes. The unpaired t-test was used to compare CA12 gene expression 
isoforms between cells exposed to N or H.  
 

To confirm these mRNA data at the protein level, we performed western blot and 

flow cytometry analyses for the corresponding CA molecules. A marked up-

regulation of CAIX was detected in the C3A and PLC/PRF/5 cell lines upon 

hypoxia exposure. In contrast, the SNU-449 cells were completely negative for 

CAIX independently from the cell culture conditions (Figure 3.1.4A). CAXII was 

expressed by all the HCC cell lines, but up-regulated after 72h of hypoxia 
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exposure exclusively in the PLC/PRF/5 cells (Figure 5.1.3A). Flow cytometry 

confirmed the plasma membrane expression of CAIX in the PLC/PRF/5 and 

SNU-449 cell lines and this expression was enhanced when the cells were 

exposed to hypoxia for 72h (Figure 5.1.3B). A very low level of cell surface 

expression of CAXII was observed in all our cell lines, and this expression was 

not modulated by hypoxia (Figure 5.1.3B).  

 

Figure 5.1.3 Protein expression of carbonic anhydra ses (CAs) in HCC cell 
lines.  CA protein expressions were analysed in HCC cell lines grown in either 
normoxia (N=21% O2) or hypoxia (H=1% O2) for 72 h. (A) CAIX, CAXII and 
vinculin was measured in cell lysates of C3A, PLC/PRF/5 and SNU-449 by 
western blot. (B) The cell surface expression of CAIX and CAXII was evaluated 
by flow cytometry. The percentages of cells positive for the indicated markers 
(filled histograms) evaluated with respect to the corresponding secondary 
antibody (black line) were reported in each histogram plot. These analyses were 
performed in collaboration with my colleague Olga Kuchuk. 
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As already observed in HCC tissues, we detected only weak membranous 

expression of CAXII despite a strong protein signal revealed by western blot. In 

order to evaluate if CAXII in the cultured HCC cell lines was also retained in the 

ER, we performed immunofluorescence staining for CAXII (green) in 

combination with wheat germ agglutinin (WGA, red) which marks the plasma 

membrane and calnexin. Confocal analysis revealed that CAXII was mainly 

detected in the cytoplasm when cells were grown in normoxia (Figure 5.1.4, left 

panels), while the protein appeared to be largely retained in the ER after 72h of 

hypoxia exposure, as indicated by the co-localization with calnexin, defined by 

the appearance of an azure colour (Figure 5.1.4, right panels).  
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Figure 5.1.4 Cellular distribution of CAXII in HCC cell lines.  Confocal laser 
scanning microscopy of triple immunofluorescence staining with anti-CAXII (in 
green), anti-WGA (in red, detecting cell membrane) and anti-calnexin (in blue, 
detecting the ER compartment) performed on the indicated HCC cell lines grown 
in either normoxic (N 21% O2, left panels) or hypoxic (H 1% O2, right panels) 
conditions for 72 h. HCC cells grown in normoxia mainly display cytoplasmic 
expression of CAXII as shown  by the green staining with no or very little  
overlap with the membranous staining of WGA (red) or with the calnexin staining 
of ER (blue) (left panels). Co-localization of CAXII and calnexin in the ER was 
evident by the appearance of an azure colour in HCC cell lines exposed to 
hypoxia (right panels). Confocal analysis was performed by Consorzio Mia, 
University of Milan-Bicocca.  
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5.2 In vitro characterisation of V-ATPase in HCC cell lines 

Since data from HCC patients (see chapter 3) showed no correlations between 

the gene expression of the V-ATPase subunits and HIF1A, we evaluated the 

expression of V-ATPase only in cells maintained in vitro under normoxic 

conditions. We analysed the protein expression of the a1 and C1 subunits, 

which we found to be expressed by malignant hepatocytes of HCC patients. We 

observed that all the HCC cell lines displayed a prominent expression level of 

the a1 and C1 V-ATPase subunits (Figure 5.2.1).  

 

Figure 5.2.1 Protein expression of V-ATPase subunit s in the HCC cell lines.  
The protein expression of a1 and C1 V-ATPase subunits, β-actin and tubulin 
was assessed by Western Blot in cell lysates of C3A, PLC/PRF/5 and SNU-449 
grown under normoxic conditions. 
 

Altogether, these results show that the commercially available HCC cell lines 

expressed the pH regulatory molecules, thus representing a suitable model to 

study the pH regulatory molecules in the HCC biology.  
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5.3 Effect of pH regulatory molecule inhibitors on the cell viability of HCC 

cell lines 

To assess whether the inhibition of the pH regulatory molecules influences the 

viability of HCC cells, we treated the HCC cell lines with CAIX, CAXII and V-

ATPase inhibitors. The CAIX and CAXII inhibitors, namely S4 and compound 25, 

respectively, were provided by Professor Supuran’s group from the University of 

Florence. The chemical details of these small molecules are described in 

Materials and Methods section of this thesis (see chapter 2). To inhibit V-

ATPase we used omeprazole (Sigma) belonging to the PPI class of molecules. 

Omeprazole has shown anti-tumour effects in several cancers [124]. We 

evaluated the effect of these drugs in affecting HCC cell viability using the MTT 

assay.  

The CAIX-positive C3A and PLC/PRF/5 cell lines were susceptible to the S4 

drug with an IC50 value around 100 µM, when cultured under normoxia. Exposed 

to S4 in hypoxia, the C3A and PLC/PRF/5 cell viability rapidly decreased and 

IC50 values were equal to 57.4 and 53.9 for C3A and PLC/PRF/5, respectively. 

The specificity of the drug was confirmed by the lack of any S4-mediated effect 

on the CAIX-negative SNU-449 cells (IC50 >100 µM) under both normoxic and 

hypoxic conditions (Figure 5.3.1). 
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Figure 5.3.1.  The effect of S4 (CAIX inhibitor) treatment on HCC cell  
viability.  Graphs show the viability of the three HCC cell lines treated with 
different doses of S4 (µM) under normoxic (N=21% O2, black triangles) or 
hypoxic (H= 1% O2, white triangles) conditions for 72h. The cell viability was 
evaluated using the MTT assay. The data are expressed as mean values of six 
replicates. This analysis was performed in collaboration with my colleague Olga 
Kuchuk. 
 
The breast cancer cell line T-47D, which was negative for CAIX, but expressed 

high levels of CAXII in the plasma membrane (Figure 5.3.2A), was used as a 

positive control to screen for the effects of several CAXII inhibitors. Among the 

six compounds (12, 16, 18, 19, 20 and 25) tested by the MTT assay, compound 

25 showed the highest, dose-dependent inhibition of cell viability of the T-47D 

cell line (Figure 5.3.2B).  
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Figure 5.3.2  CAXII expression in the T-47D cells and cell growth  inhibition 
by CAXII specific compounds.  (A) The cell surface expression of CAXII was 
evaluated by flow cytometry. The expression of CAXII (filled histograms) was 
evaluated with respect to the corresponding secondary antibody (black line) 
reported in the histogram plot. (B) The T-47D cell line was treated with 100 µM 
(dark columns) and 50 µM (gray columns) of several CAXII inhibitors (compound 
12, 16, 18, 19, 20 and 25) and the cell viability was assessed by MTT assay. 
The data are expressed as mean values of six replicates. These analyses were 
performed in collaboration with my colleague Olga Kuchuk. 
 

Based on the degree of growth inhibition of the breast cancer cell line, 

compound 25 was selected and tested on the three HCC cell lines, all of which 

expressed CAXII, although with different levels of positivity. As shown in Figure 

5.3.3, the viability of HCC cells was affected by the drug under normoxic 

conditions, with an IC50 of 198.5 and 142.9 µM in the C3A and PLC/PRF/5 cell 

lines, respectively. Unexpectedly, all the HCC cell lines were less sensitive to 

compound 25 when exposed to hypoxia as shown by the clear increase in the 

IC50 (> 200 µM for all cell lines). The SNU-449 cells appeared rather resistant to 

the drug (IC50 > 200 µM) independently from the culture conditions.  
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Figure 5.3.3  The effect of compound 25 (CAXII inhibitor) treatme nt on HCC 
cell viability.  Graphs show the viability of the three HCC cell lines treated with 
different doses of compound 25 (µM) under normoxic (N=21% O2, black 
triangles) or hypoxic (H= 1% O2, white triangles) conditions for 72h. The cell 
viability was evaluated using the MTT assay. The data are expressed as mean 
values of six replicates. This analysis was performed in collaboration with my 
colleague Olga Kuchuk. 
 

All the HCC cell lines were sensitive to omeprazole under normoxic conditions 

(Figure 5.3.4), with IC50 values of 39.4 µg/ml for PLC/PRF/5 cells and of 100.9 

µg/ml for the C3A cells. As for the CA inhibitors, the SNU-449 cells displayed the 

lowest sensitivity to omeprazole (IC50 values of 128.4 µg/ml).  

 

Figure 5.3.4  Treatment of HCC cell lines with omeprazole.  Graphs show the 
viability of the three HCC cell lines treated with different doses of omeprazole 
(µg/ml) under normoxic (N=21% O2) conditions for 72h. The data are expressed 
as mean values of six replicates. This analysis was performed in collaboration 
with my colleague Olga Kuchuk. 
 



120 

 

5.4 Mechanisms of cell death induced by pH regulato ry molecule inhibitors 

Our data demonstrated that the pH regulatory inhibitors (CAIX, CAXII and V-

ATPase inhibitors) affect the viability of HCC cells grown in either 21% O2 or 

hypoxic 1% O2 conditions. We next sought to determine which mechanisms of 

cell death these inhibitors induced in the HCC cell lines. Firstly, we evaluated if 

the drugs interfere with the proliferation of HCC cell lines. To this aim, we 

performed an ELISA to quantify changes in BrdU incorporation under drug 

exposure. We observed that the CAIX inhibitor and omeprazole limited the cell 

proliferation of C3A and PLC/PRF/5 cell lines. Conversely, the CAXII inhibitor 

did not affect the proliferation of any of the HCC cell lines tested. In agreement 

with the MTT assay, which defined the SNU-449 cells as quite resistant to all the 

used drugs, no variation in proliferation was detected in the SNU-449 cells 

treated with S4 or compound 25. Significant inhibition of SNU-449 cell 

proliferation was only detected in omeprazole treated cells. Of note, the SNU-

449 cells were resistant to doxorubicin and as a positive control, staurosporine 

was used as an anti-proliferative drug (Figure 5.4.1). 
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Figure 5.4.1 The impact of pH regulatory inhibitors  on the proliferation of HCC cell lines. HCC cell lines 
were exposed to either 100 µM CAIX inhibitor (S4), 200 µM CAXII inhibitor (compound 25) or 100 µg/ml 
omeprazole and subjected to evaluation of proliferation (BrdU incorporation assay, OD: optical density). Data are 
the mean of three replicates ±SD. BrdU incorporation was evaluated after 24h of drug treatment. As positive 
control compounds, 5 µM doxorubicin and 1 µM staurosporine were used. *p<0.05 and ***p<0.001 values were 
calculated using one-way analysis of variance (ANOVA) followed by Dunnett correction comparing cells treated 
with the drugs or the vehicle.  
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To investigate whether these drugs induce apoptosis and necrosis in our cell 

lines we used the RealTime-Glo Annexin V Apoptosis and Necrosis Assay. In 

this assay, the translocation of phosphatidylserine to the outer cell membrane 

during the apoptotic process is measured by a luminescent signal. Cell necrosis 

is detected by a dye that becomes fluorescent when internalized in the cells with 

a compromised membrane. Unfortunately, measurement of apoptosis by this kit 

was not feasible in cells treated with the pH regulatory inhibitors due to an 

unexpected interference of these drugs with the enzymatic luminescent reaction 

of the test. Both S4 and omeprazole significantly induced necrosis in our HCC 

cell lines after 48h and 72h of treatment. No effect was recorded for the CAXII 

inhibitor (Figure 5.4.2). 
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Figure 5.4.2 Necrosis detection in HCC cell lines. HCC cell lines were exposed to 100 µM CAIX inhibitor (S4), 
200 µM CAXII inhibitor (25) or 100 µg/ml omeprazole and subjected to evaluation of necrosis (fluorescence 
emission upon internalization of a specific dye, RFU: relative fluorescence units). Data shown in the graphs are the 
mean of three replicates ±SD. Necrosis was evaluated after 48h and 72h of drug treatment. As a positive control 
50 µg/ml digitonin was used to evaluate the necrosis. *p<0.05, **p<0.01 and ***p<0.001 values were calculated 
using one-way analysis of variance (ANOVA) followed by Dunnett correction comparing cells treated with the 
drugs or the vehicle. 
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To detect apoptosis induced by our drugs, we also used the Caspase-Glo 3/7 

assay that measures Caspase 3/7 activity. This assay is based on an enzymatic 

reaction that generates a luminescent signal recorded by a luminometer. We 

observed that neither the CAXII inhibitor nor omeprazole were able to induce 

apoptotic death in our cells compared to cells treated with the apoptosis inducer 

staurosporine (Figure 5.4.3A). Unfortunately, measurement of caspase 3/7 

activity was not possible in S4-treated cells due to the interference of S4 with the 

enzymatic reaction of the test. For this reason, we grew the HCC cell lines in the 

presence or not of 100 µM S4 for 24h and then we evaluated the percentage of 

activated caspase 3 by flow cytometry. However, no activation of caspase 3 was 

found in our cells exposed to S4 (Figure 5.4.3B). 
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Figure 5.4.3 Apoptosis measurement in HCC cell line s. HCC cell lines were exposed to 100 µM CAIX inhibitor 
(S4), 200 µM CAXII inhibitor (25) or 100 µg/ml omeprazole and subjected to evaluation of (A) apoptosis in 
compound 25 and omeprazole drug-treated cells (caspase 3/7 activity, RLU: relative luminescence units) and (B) 
apoptosis in S4-treated cells (percentage of cells positive for activated caspase 3 evaluated by flow cytometry). 
Data shown in the graphs are the mean of three replicates ±SD. Apoptosis was evaluated after 24h of drug 
treatment. Positive control: cells treated with 1 µM staurosporine. *p<0.05 and ***p<0.001 values were calculated 
using one-way analysis of variance (ANOVA) followed by Dunnett correction comparing cells treated with the 
drugs or the vehicle. 
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Discussion 

The aims of this chapter were: - to characterise the expression of pH regulatory 

molecules in HCC cell lines and the role of hypoxia in the modulation of their 

expression; – to assess whether drugs inhibiting the function of pH regulatory 

molecules affected the in vitro growth of HCC cells.  

Regarding CAIX, we observed that in normoxic conditions CAIX was expressed 

in two epithelial HCC cell lines (PLC/PRF/5 and C3A) and its expression was 

incrementally increased upon 1% O2 exposure. Our data are in agreement with 

Hyuga and colleagues that showed hypoxia-mediated up-regulation of CAIX in 

two different epithelial HCC cell lines (Huh-7 and HepG2). They also reported 

that CAIX induced by hypoxia promotes EMT in epithelial HCC cells [140]. Thus, 

CAIX is involved in the induction of EMT in epithelial cells, but its expression is 

probably not necessary for the maintenance of the mesenchymal phenotype. In 

fact, we noticed that the SNU-449 cells, with evident mesenchymal traits, were 

constitutively negative for CAIX and hypoxia did not induce EMT. 

To inhibit CAIX function, we used a sulphonamide drug whose anti-proliferative 

and-metastatic effect is well-characterized in breast cancer by in vitro and in vivo 

experiments [151, 154]. Consistent with these data, we observed an anti-

proliferative effect of the CAIX inhibitor in the CAIX-positive HCC cell lines (C3A 

and PLC/PRF/5). In our setting, this drug failed to induce apoptosis, but instead 

it directly caused necrotic death in the HCC cells lines after 48h and 72h of 

exposure. The anti-tumour effect of this inhibitor might be dependent on the 

tumour type. In fact, in laryngeal tumours the CAIX inhibitor did not affect 
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proliferation, apoptosis or necrosis [181]. Moreover, in breast cancer and in 

HCC, CAIX expression is associated with stemness features [95, 151]. Thus, 

CAIX likely represents a promising targetable molecule to suppress aggressive 

tumours, although its clinical benefit needs to be further demonstrated. The 

CAIX inhibitor (SLC-0111) has entered a phase I clinical trial in patients with 

advanced solid tumours (NCT02215850), but data about the anti-tumour effects 

and toxicity of this drug are not yet available. 

While investigated in other tumours such as kidney, breast and ovarian cancers, 

CAXII expression remains poorly explored in HCC. All our studied HCC cell lines 

constitutively expressed the CAXII protein as shown by Western blot analysis, 

while hypoxia up-regulated CAXII both at gene and protein levels. Interestingly, 

qRT-PCR analysis showed that hypoxia induced the up-regulation of different 

transcript variants of CA12, including the transcript CA12 1 and the CA12 

alternative transcripts variants CA12 2/3. Unfortunately, the currently available 

anti-CAXII antibody does not discriminate between the different CAIX protein 

isoforms. Thus, we cannot verify whether the alternative CAXII transcripts were 

indeed translated into their corresponding CAXII protein. In astrocytic gliomas, 

CAXII was expressed not only at the plasma membrane, but also in the 

cytoplasm of tumour cells [147]. These results in part parallel our data. In fact, 

we found that CAXII was poorly detectable at the plasma membrane of the HCC 

cells, and that this protein mainly accumulated in the cytoplasm of HCC cells. 

Moreover, we found that hypoxia induced the retention of CAXII in the ER. 

Collectively these data suggest an altered protein folding of CAXII mediated by 
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hypoxia preventing its transport to the cell membrane. The ER retention and the 

expression of the different splicing variants of CA12 might somehow explain the 

poor anti-tumour effect exerted by the CAXII inhibitor compound 25 in our cell 

lines. This poor activity was indeed further exacerbated when the cells were 

grown in hypoxia. Thus, we formulated the following hypotheses: a) CAXII 

retained in the ER loses its activity and/or its function is not crucial for the in vitro 

growth of HCC cell lines; b) compound 25 does not gain access to the ER and 

thus, it is not able to block CAXII function; c) compound 25 has no effect against 

the spliced variant of CAXII strongly up-regulated under hypoxia. Further 

experiments should be designed to address all these open questions, but 

certainly the discovery of novel and selective drugs effectively targeting CAXII 

and its spliced variants are mandatory to further explore any possible clinical 

application. 

Regarding the expression of V-ATPase in HCC, we found that some subunits of 

the V-ATPase complex were expressed by HCC cell lines including the a1 

subunit, in which the binding site for PPIs is located. The study developed by Xu 

and collaborators used bafilomycin as a V-ATPase inhibitor in HCC [107]. Since 

bafilomycin show prohibitive toxicity [182] we used omeprazole. Omeprazole is a 

PPI which reduces gastric acid secretion and has recently been reported to exert 

broad antitumor effects at preclinical and clinical levels [183, 184]. PPIs were 

designed to bind to gastric H+, K+-ATPase, but they can also cross-react with V-

ATPase, albeit with lower affinity [100]. In our setting, omeprazole efficiently 

inhibited the cell viability and proliferation of HCC cell lines. Contrary to what has 
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been reported in human B-cell tumours, omeprazole did not induce apoptosis in 

our HCC cell lines. Nevertheless, necrotic death occurred in the omeprazole 

treated HCC cells, probably as a secondary event following caspase-dependent 

apoptosis. The production of reactive oxygen species (ROS), as described 

previously in melanoma by De Milito and collegues [125], might have played a 

role, but additional studies are required to precisely dissect the type of events 

induced by omeprazole and leading to HCC cell death. Omeprazole and its S-

enantiomer esomeprazole have shown low toxicity and side effects in pre-clinical 

settings [125, 126]. In addition, esomeprazole was used in a clinical study for 

osteosarcoma patients showing low hepatic toxicity [184]. Thus, we think that 

this class of PPIs might also have a promising clinical potential in HCC.  

The V-ATPase a1 and H subunits were expressed not only in transformed 

hepatocytes, but also in the tumour immune infiltrating cells (see chapter 4), thus 

we designed additional experiments: 1) to precisely locate the expression of V-

ATPase in the immune components of the HCC microenvironment and 2) to 

evaluate whether inhibiting V-ATPase exerts any immune modulating activity in 

the HCC microenvironment.  
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6. Results and discussion 

6. V-ATPase as a modulator of the tumour microenvir onment 

In the previous chapter we showed that V-ATPase blockage with omeprazole 

exerted an anti-tumour activity in vitro in the HCC cell lines by inducing blockage 

of proliferation and necrosis of tumour cells. In addition, we also reported 

(chapter 4) that in HCC tissues V-ATPase was not only expressed by the tumour 

cells, but also by the immune infiltrating cells.  

Several studies have reported the expression of V-ATPase subunits in cells 

belonging to both the adaptive and innate immune systems, as we summarised 

in recent reviews [15, 183]. Indeed, V-ATPase is an important component in 

DCs, monocytes, macrophages and lymphocytes. Specifically, the A1 subunit is 

involved in the maturation process of DCs; the B2 subunit, expressed by 

macrophages, is crucial for the maintenance of an optimal pHi in inflammatory 

conditions. Moreover, the cleaved isoform of the a2 subunit is expressed by 

ovarian and breast cancer cells and is involved in the differentiation of 

monocytes into TAMs. The a2 subunit is present on the plasma membrane of 

activated lymphocytes, while the a3 subunit is expressed by activated T cells 

[15]. This chapter aims were: - to further investigate the ex vivo expression of V-

ATPase in immune cells infiltrating the HCC microenvironment; - to evaluate the 

effects of V-ATPase blockage on the TME of HCC, considering both the tumour 

and immune components. To accomplish these tasks, we used IHC, 

immunofluorescence staining and confocal analysis together with flow cytometry 

of single cell suspensions obtained by the enzymatic digestion of HCC 
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specimens. We also took advantage of human primary HCC tissue explants, 

which preserve the intercellular network operating in local tissue.  

6.1 Expression of V-ATPase in the immune components  of the HCC 

microenvironment 

We started our analysis characterising the type of immune cells infiltrating the 

HCC tissues. By IHC we evaluated the expression of markers related to myeloid 

cells, which included markers for monocytes/macrophages (CD14), 

macrophages (CD68) and M2 macrophages (CD163, CD209). For cells 

belonging to the adaptive immune response, we checked for the presence of T 

cells using the CD3 marker. Our results, reported in Figure 6.1.1 indicated an 

abundant presence of both myeloid and T cells in the peri-tumour areas of HCC 

tissues. 

To investigate which type of immune cells expressed the V-ATPase subunits, we 

performed confocal microscopy analysis in HCC tissues stained with anti-a1 

(red), anti-H (red), anti-CD163 (green), anti-CD209 (green) and anti-CD3 

(green). As shown in Figure 6.1.2, in the peri-tumour region of HCC tissues, the 

V-ATPase a1 and H were co-expressed with the M2-like macrophage markers 

CD163 and CD209. In addition, we found that CD3+ cells also expressed the a1 

subunits of the V-ATPase complex. No co-staining was observed for the CD3 

and H subunits (Figure 6.1.2, next page). 
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Figure 6.1.1. Expression of V-ATPase in immune cell s infiltrating HCC tissues. Representative images of 
immunohistochemical staining for the myeloid-associated markers CD14, CD68, CD163, CD209 and T cell marker 
CD3 in HCC tissues. Scale bars = 100 µm are shown. *Identifies the tumour area. IHC analysis was performed by 
Consorzio Mia, University of Milan-Bicocca. 
 
 

 
 
Figure 6.1.2. Expression of V-ATPase in M2-like mac rophages infiltrating HCC tissues. Triple-labeled 
immunofluorescence staining for a1 and H subunits of the V-ATPase complex (red) and CD163 (green), CD209 
(green) or CD3 (green) in HCC tissues. Nuclei were stained with Toto-3 (blue). White arrows indicate the co-
expression of the analysed markers. Representative images with scale bars = 25 µm. Confocal analysis was 
performed by Consorzio Mia, University of Milan-Bicocca.  
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These data suggest that the expanding edge of HCC is enriched in 

immunosuppressive M2 macrophages and CD3 T cells, which both express the 

V-ATPase complex. 

To confirm these findings, single-cell suspensions, obtained from surgical 

resected HCC tissue by enzymatic digestion, were analysed by multiparametric 

flow cytometry. The frequencies of myeloid cells, defined as 

CD11b+CD14+CD163+ or CD11b+CD14+CD209+, and that of T lymphocytes, 

characterized as CD3+, were assessed in the CD45+ gated population. The 

expression of the a1 V-ATPase, for which a specific antibody working in flow 

cytometry is available, was evaluated inside the above mentioned immune cells. 

Figure 6.1.3A and B report the gating strategy. The CD209 and CD163 positive 

populations, as well as the positivity for V-ATPase a1, have been defined by 

setting the markers on the corresponding FMO control. For FMO definition and 

examples see Materials and Methods. HCC patients had different frequencies of 

myeloid (CD14+, CD163+, CD209+) and lymphocytic (CD3+) cells as illustrated  

in Figure 6.1.3C which reports cumulative results obtained from the analysis of 

six independent samples. The expression of the a1 V-ATPase marker was 

evaluated inside the above mentioned immune cells and interestingly, we found 

that a1 was mainly expressed in macrophages expressing M2-related markers 

(Figure 6.1.3D). CD3+ cells evaluated in the gate of CD45+ cells were also 

positive for a1, although only a small fraction of a1 positive cells was detectable 

(Figure 6.1.3E). Figure 6.1.3D illustrates the cumulative results of the 

percentage of a1 V-ATPase-positive cells in the CD14+, CD163+/-, CD209+/- and 
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CD3+ gated populations of six independent samples analysed. A higher 

percentage of a1+ cells was found in the CD163+ and CD209+ M2-like 

macrophages. 

 

Figure 6.1.3.  Expression of V-ATPase a1 in immune cells infiltrat ing HCC 
tissues.  Multiparametric flow cytometry analysis of live myeloid and lymphocytic 
cells in cell suspensions of freshly dissociated HCC surgical specimens. (B-C) 
The cell surface expression of V-ATPase a1 was evaluated in CD14+CD11b+, 
CD11b+CD163-, CD11b+CD163+ CD11b+CD209-, CD11b+CD209+ (A) and 
CD45+CD3+ cells (B). (C) The graph summarizes the percentages of CD14+, 
CD163+, CD209+ and CD3+ cells found in the analysed HCC samples. (D) The 
graph illustrates the percentages of V-ATPase a1+ cells assessed in the 
indicated myeloid cell populations and in (E) CD3+ cells for all the analysed 
samples.  
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6.2 In the tumour microenvironment, V-ATPase inhibi tion modulated 

cancer and immune cell features: ex vivo analysis   

In the chapter 5 using HCC cell lines, we showed that V-ATPase blockage with 

omeprazole exerted anti-tumour activity. Since here we showed that, besides 

tumour cells, the V-ATPase was also expressed by innate and adaptive immune 

components infiltrating HCC, we asked whether interfering with V-ATPase 

activity with omeprazole could modulate the HCC microenvironment in both the 

tumour and immune cells. Thus, we used two different ex vivo approaches: HCC 

tissue explants and single-cell suspensions from HCC tissues.  

We applied drug treatment to primary human HCC tissue explants (n=8), which 

preserve the complex network of the tumour, linking tumour cells and cells of the 

local microenvironment, including inflammatory infiltrating cells (see chapter 2 

for further technical details). Inflammation/immune evasion and EMT are linked 

by bidirectional interactions [186, 187], and they both confer aggressive traits to 

human carcinomas, including HCC [169]. Thus, to evaluate whether the V-

ATPase blockage by omeprazole may impact these phenotypic HCC features, 

HCC tissue fragments, cultured for 24h in omeprazole-conditioned medium or in 

control medium, were assessed by qRT-PCR for the mRNA expression of MYC, 

CDH1 and VIM, all genes associated with EMT [188, 189]. Data reported in 

Figure 6.2.1 upper panel show that MYC and VIM were down-modulated in 

parallel with an increased CDH1 expression in HCC tissue explants treated with 

omeprazole. Omeprazole treatment induced also a reshaping in the TME 

cytokine milieu characterized by a down-regulation of genes encoding for the 
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immune-suppressive cytokine CCL22 (Figure 6.2.1, lower panel) and up-

regulation of the antitumor, Th1 associated IFNG and TNF genes (Figure 6.2.1, 

lower panel).  

 

Figure 6.2.1. Omeprazole affects the expression of genes conferring EMT 
and suppressive features at HCC TME. Graphs illustrate the expression levels 
of the indicated genes in HCC tissue explants (MYC, VIM, CDH1, CCL22, IFNG 
n=12; TNF, n=8) cultured ex vivo in the presence of 100 µg/ml omeprazole or 
the vehicle of the drug for 24h. The gene expression data are reported as 2-∆Ct 

values. The p-values are calculated by the paired t test comparing cells treated 
with omeprazole or the vehicle.  

 

To define whether cytokine modulation also occurred at the protein level and to 

assess if omeprazole interferes with the production of inflammatory and 

immunosuppressive molecules in specific immune cell populations of the HCC 

TME, single cell suspensions obtained from HCC specimens were exposed ex 

vivo to omeprazole or vehicle for 24h (see Materials and Methods on chapter 2 
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for further details). To assess the cytokine/chemokine secretion by the different 

immune cell compartments, the single-cell suspensions treated or not with the 

drug were subjected to intracellular staining in multiparametric flow cytometry. 

Interestingly, compared to cells exposed to the vehicle of the drug, omeprazole 

decreased the production of CCL22, whereas it significantly increased IFNγ and 

TNF expression in M2-like macrophages, identified by their positivity for CD11b 

and CD163 in the gate of CD45+CD3- cells (Figure 6.2.2). 

 

Figure 6.2.2. Modulation of the cytokine profile in  M2-like macrophages by 
omeprazole treatment. (A) Multiparametric flow cytometry of live cells in freshly 
dissociated HCC tumours treated with the drug vehicle (red line) or with 
omeprazole (100 µg/ml, blue line) for 24 h. IFNγ, TNF and CCL22 production 
was evaluated by intracellular staining in CD163+ myeloid cells gated inside the 
live CD45+CD3- cells. FMO control for each cytokine (gray line) is reported in the 
histogram plot. FMO control consists of the same cells as those of the sample 
stained with all the antibodies of the sample, minus the antibody for which the 
positivity is evaluated. (B) The graphs show the percentages of IFNγ-, TNF- and 
CCL22-positive cells in the CD163+ cells. The p-values are calculated by the 
paired t test comparing cells treated with omeprazole or the vehicle. 
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Interestingly, the same immunomodulating activities of omeprazole were evident 

in the in CD3+ T cells (Figure 6.2.3). 

Altogether, these data indicate pleiotropic modulating functions of omeprazole 

and that V-ATPase blockage affects the TME both at the tumour and at the 

immune cellular levels. 

 

Figure 6.2.3. Modulation of the cytokine profile in  CD3+ T cells by 
omeprazole treatment. (A) Multiparametric flow cytometry of live cells in freshly 
dissociated HCC tumours treated with the drug vehicle (red line) or with 
omeprazole (100 µg/ml, blue line) for 24h. IFNγ, TNF and CCL22 production 
was evaluated by intracellular staining in CD3+ T cells gated inside the live 
CD45+ cells. FMO control for each cytokine (gray line) is reported in the 
histogram plot. FMO control consists of the same cells as those of the sample 
stained with all the antibodies of the sample, minus the antibody for which the 
positivity is evaluated. (B) The graphs show the percentages of IFNγ-, TNF- and 
CCL22-positive cells in the CD3+ cells. The p-values are calculated by the paired 
t test comparing cells treated with omeprazole or the vehicle. 
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Discussion  

The aims of this chapter were: - to characterise the immune infiltrate of HCC 

TME; - to evaluate the expression of V-ATPase in the immune components of 

HCC TME; - to assess the effects of omeprazole on tumour and immune cells of 

HCC TME. 

Our results showed that CD163+ and CD209+ M2-like macrophages and CD3+ T 

cells infiltrated HCC tissues and these cells were the prevalent immune 

components in the HCC TME. Interestingly, our data revealed the detection of V-

ATPase in the majority of the malignant hepatocytes and in the infiltrating 

immune cells. Thus, in the HCC TME, V-ATPase represents the most broadly 

and highly expressed pH regulator among those analysed in this thesis. 

Importantly, M2-like TAMs, located within tumour nests or in the peri-tumour 

area at the boundary between tumour and adjacent non-tumour tissue, 

expressed V-ATPase. It is well-known that ATP6V1B2 encoding for the B2 V-

ATPase subunit is up-regulated in human monocytic cells during macrophage 

differentiation [169]. Furthermore, as previously reported by Brisseau and 

collaborators the expression of V-ATPase on the plasma membrane of murine 

macrophages is essential for maintaining the optimal pHi that becomes acid in 

an inflammatory microenvironment. Specifically, the authors demonstrated that 

IL-1, released in the microenvironment, boosts the activity of V-ATPase and 

consequently increases the pHi in macrophages [190]. Recently, Kimura and 

colleagues demonstrated that M2 polarization requires the activation of the 

mTORC1/mTOR pathway through V-ATPase [118]. Hence, it is conceivable that 
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HCC-associated macrophages might exploit V-ATPase expression to survive the 

acidic TME and possibly to exert their immunosuppressive effects. Indeed our 

data showed that targeting V-ATPase ex vivo by omeprazole in patient-derived 

HCC tissue explants and cell suspensions interfered with TAM activity, by 

decreasing CCL22 expression and concomitantly increasing IFNγ and TNF. 

Thus, omeprazole possibly limits the immunosuppressive function of TAM and 

favours the conversion of pro-tumour M2-like myeloid cells into antitumor M1-like 

cells 

In our setting, the a1 V-ATPase subunit was also expressed by CD3+ T cells. 

Other studies have already demonstrated a physiological expression of a2 and 

a3 subunits in lymphocytes and activated T cells [191, 192]. Bulwin and 

collaborators showed that a3 expression co-localizes with CTLA-4 in human T 

cells and is involved in the control of T cell proliferation [193]. This opens the 

way for possible combinatorial therapeutic approaches between PPIs and anti-

CTLA-4 therapy (ipilimumab). Furthermore, we observed that CD3+ T cells 

infiltrating HCC tissues can be targeted by omeprazole and this inhibition caused 

the modulation of the same cytokines modulated in the M2-like macrophages. 

These results may indicate a reactivation of a Th1 anti-tumour response. Thus, 

our data indicate a broad impact of omeprazole in creating a less 

immunosuppressive HCC microenvironment involving both innate and adaptive 

effector T cells. Although we have not demonstrated a direct effect of 

omeprazole on tumour or stromal cells, our data (Fig. 6.2.1) showed a down-

regulation of the oncogenes MYC and VIM, while an up-regulation of CDH1. 
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These results point to a block in EMT, a process that can be also sustained by 

myeloid cells [92, 194]; the anti-tumour effect of reverting EMT has already been 

described in melanoma cells treated with esomeprazole, an S-enantiomer of 

omeprazole [127]. 

In conclusion, our data indicate that targeting V-ATPase could reduce the 

viability and aggressive features of tumour cells, while concomitantly interfering 

with the pro-tumour and immunosuppressive functions exerted by the myeloid 

cell infiltrate in HCC, likely favouring an anti-tumour response mediated by T 

cells. 
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7. General Discussion  

7.1 Overall summary 

The metabolism of tumour cells is the focus of a new wave of studies aimed to 

better understand cancer biology and to develop new therapeutic interventions. 

Metabolic dysfunction of cancer cells not only determines the survival and 

aggressiveness of transformed cells, but it also directly influences the TME [17]. 

In the present thesis we showed that in HCC, whose metabolism adapts to a 

highly hypoxic environment, the pH regulators CAIX, CAXII and V-ATPase are 

overexpressed at the gene and protein levels in tumour tissues. Proton extrusion 

and pHi regulation are the physiological functions of these proteins and in 

tumour cells they exert detoxification functions ensuring tumour cell survival. The 

pH regulatory molecules alkalinise the pHi and simultaneously they contribute to 

microenvironment acidification [17]. Our in vitro data indicated that the inhibition 

of CAIX, CAXII and V-ATPase with specific drugs affected the growth and cell 

viability of HCC cell lines, chosen to represent the known HCC heterogeneity 

[171, 180]. Thus, our findings suggest a strong pro-survival role of these 

molecules in HCC biology and qualify CAIX, CAXII and V-ATPase as possible 

targets for anti-tumour therapy. However, our ex vivo analysis performed on a 

series of autologous adjacent, non-tumour and HCC tissues, showed that HCC 

displays a complex expression pattern for these molecules in terms of inter- and 

intra-tumour variability and cellular distribution. Hepatocytes in normal and in the 

inflamed non-tumour liver tissues were CAIX negative, thus, the CAIX 

expression in HCC is possibly de novo acquired during neoplastic 
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transformation. We observed a focal distribution of CAIX in discrete nests of 

tumour hepatocytes, which is probably associated to areas of the tumour with 

low oxygen tension and high aggressive features. In support of this observation, 

we found that the expression of the CA9 gene positively correlated in tumour 

tissues with that of hypoxia inducible factor 1 α (HIF1A). Moreover, our ex vivo 

analysis in HCC specimens also revealed an enhanced expression of CA9 in 

poorly differentiated tumours (grading 3) and a relationship between CA9, 

TWIST and the majority of CSC-related genes. Our data are in agreement with 

the findings obtained in other solid malignancies highlighting the association of 

CAIX to stemness [95, 151], cell migration and invasion [140]. Thus, our results 

indicate an association of CA9 with malignancies, and stemness in HCC and 

suggest that, targeting CAIX might also possibly result in the inhibition of the 

most aggressive HCC cancer cells. 

However, we found that CAIX was also highly positive in the bile ducts of normal 

liver and in non-tumour tissues, likely in relation to their secretory functions. This 

expression pattern in normal liver cells indeed poses worries for the utilization of 

CAIX as therapeutic target in HCC. In vivo studies, that showed the selective 

and anti-metastatic activity of CAIX inhibitors, have shown that these drugs are 

well tolerated and do not cause any toxic and cachectic effects in treated mice. 

However, these studies did not specifically investigate liver toxicity caused by 

inhibiting CAIX functions [154-157]. Thus, additional pre-clinical studies are 

warranted to exclude any adverse events due to liver toxicity, especially in HCC 

patients, who display already partially compromised liver functions.  
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Our ex vivo analysis revealed for the first time the presence of CAXII in HCC. 

We observed that tumour hepatocytes also expressed the alternative splicing 

variant CA12 2/3 which unlike the normal transcript CA12 1, was positively 

associated to HIF1A. Furthermore, this association was further supported by our 

in vitro results, in which we demonstrated a clear induction of CA12 2/3 in HCC 

cell lines mediated by hypoxia. These results are in line with the reported 

observation that indeed hypoxia can modulate the splicing of pre-mRNA 

molecules [170]. The ex vivo protein distribution of CAXII in HCC patients 

showed a selective and homogeneous expression in tumour hepatocytes, while 

no positivity of CAXII was found in normal or peri-tumour tissues. Moreover, as 

we have already reported for CAIX, CAXII was also implicated in the 

aggressiveness of HCC. Specifically, we found that poorly differentiated HCC 

also have high gene expression levels of CA12 1 and CA12 2/3. Thus, these 

results support a possible role of CAXII in influencing HCC malignancy. This 

conclusion was supported by our HCC index score (HIS), which comprised the 

concomitant gene expression levels of a number of pH regulators (CA12 1, 

CA12 2/3), plus the EMT-related CDH1 and the 

inflammation/immunosuppression-related gene (CD209). Based on the alteration 

of two or more of these genes, this HIS identified patients with a short RFS. For 

these reasons, CAXII represents an ideal targetable molecule in HCC patients. 

However, our data also showed that ex vivo, unexpectedly, CAXII was mainly 

localised in the cytoplasm and in the ER with no or a paucity of expression at the 

cell surface. This intracellular distribution was also seen in the HCC cell lines, in 
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which hypoxia further accentuated the retention of CAXII in the ER. Of note, in 

hypoxic conditions, HCC cells became partially refractory to the action of the 

CAXII specific inhibitor compound 25, probably because CAXII displayed limited 

availability to the drug. It remains to be assessed whether and how this peculiar 

cellular distribution affects CAXII-mediated biological functions, but it likely 

hampers the clinical targeting of this protein in the context of the highly hypoxic 

HCC. Nevertheless, with compound 25 being highly specific, modifications might 

be incorporated to make this drug able to target CAXII inside the cell and 

increase its efficacy in a hypoxic environment that is a main feature of human 

HCC [85].  

In contrast to CAIX and CAXII, whose expression was restricted to malignant 

hepatocytes, we observed that not only were the vast majority of malignant 

hepatocytes  positive for V-ATPase subunits but, importantly, myeloid and 

lymphocytic cells, infiltrating the tumour nodule or localized at the expanding 

edge of the tumour also expressed V-ATPase. This expression was found in 

CD163+ and CD209+ M2-like macrophages and CD3+ T cells in HCC tissues. It 

is already reported that in macrophages the V-ATPase is expressed to maintain 

the optimal pHi in an inflammatory microenvironment [190]. Thus, it can be 

speculated that in the hypoxic/acidic TME the enzymatic activity of V-ATPase 

protects M2 macrophages with suppressive and pro-tumour functions. Our data 

suggest that by V-ATPase blockade we may inhibit tumour and pro-

tumorigenic/immunosuppressive immune cells. In support of this hypothesis, our 

data obtained by short-term treatment of HCC tissue explants with omeprazole, 
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actually demonstrated that omeprazole exerted important effects on TME, 

reducing CCL22 together with increasing IFNG and TNF transcription. 

Importantly, this drug affected the aggressiveness of malignant cells inducing a 

down-modulation of EMT-associated genes VIM and MYC, while increasing the 

transcription of CDH1. By the usage of cell suspensions obtained from HCC 

tissues, we clearly demonstrated that V-ATPase inhibition induced a reshaping 

of the cytokine pool, specifically by decreasing CCL22 production and 

concomitantly increasing IFNγ and TNF in M2-like macrophages and CD3+ T 

cells. Omeprazole possibly limits the immunosuppressive function of TAMs 

favouring the conversion of pro-tumour M2-like cells into anti-tumour M1-like 

myeloid cells, while it stimulates an anti-tumour response mediated by boosting 

the T cell subset (Th1).  

While it is already known that the buffering of the external pH by bicarbonate 

treatment favours anti-tumour immunity and potentiates the efficacy of ICIs in a 

pre-clinical model [59], the mechanism by which omeprazole induces these 

pleiotropic modifications at the TME remains to be fully addressed. Interestingly, 

emerging evidence indicate that infiltrating M2 polarized macrophages might 

function as a bridge between EMT and immunosuppression [92]. In our ex vivo 

experiments, the relief in immune suppression induced by V-ATPase blockage 

was associated with a change in the EMT features of the tumour cells. Thus, we 

speculate that this effect can be mediated by the direct targeting of tumour cells, 

which express V-ATPase, or by the inhibition of the pro-tumourigenic functions 

of TAMs. The anti-tumour effect of omeprazole has been demonstrated at 
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preclinical and clinical levels [183, 184], but not in HCC. Furthermore, 

omeprazole is a safe drug, well-tolerated by mice and esomeprazole, the S-

enantiomer of omeprazole, showed low hepatic toxicity in a clinical study 

enrolling osteosarcoma patients [184]. These observations support the usage of 

a V-ATPase inhibitor in HCC. Particularly, in advanced HCC patients in which a 

randomized study comparing TACE versus TACE plus the local administration of 

bicarbonate has clearly shown that the cohort of patients receiving the 

combination therapy had a strong improvement in the objective response rate, 

thus indicating that local normalization of acidosis improves tumour control [96]. 

7.2 Conclusions 

The present work supports the belief that the TME acidity can be an important 

target to counteract the pro-tumourigenic features of the HCC TME. Specifically, 

inhibition of pH regulators in HCC can be useful to block the most aggressive 

cancer cells. However, considering the expression and distribution of CAIX and 

CAXII in HCC, the usage of CAIX and CAXII inhibitors in this setting requires 

additional pre-clinical studies and the development of more selective drugs 

efficiently targeting the different isoforms of CAXII. Nevertheless, on the basis of 

the data contained in this thesis, the inhibition of V-ATPase in HCC should be 

considered a multi-task strategy which restrains tumour growth and 

aggressiveness by simultaneously inhibiting cancer cells and 

immunosuppressive cells, while also stimulating an anti-tumour immune 

response. Figure 7 summarises this discussion. 
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Figure 7. The schematic representation of the discu ssion and conclusions of this 
thesis. (A) CAIX is selectively expressed by malignant hepatocytes and its expression 
is increased by hypoxia. It is involved in the aggressive features of HCC. (B) Malignant 
hepatocytes express the CA12 1 and the splicing variants CA12 2/3 that are up-
regulated by hypoxia. These CA12 isoforms at the moment can not be targeted by 
specific drugs. CA12 1 and CA12 2/3 are associated with the aggressiveness of HCC. 
(C) V-ATPase is expressed by tumour and immune cells (M2-like macrophages and T 
cells). Targeting V-ATPase in HCC reduces the immunosuppressive cytokine (CCL22) 
and increases the anti-tumour-associated cytokines (INFγ and TNF), while reverting 
EMT in malignant hepatocytes. The reduction of EMT could be related to the inhibition 
of V-ATPase in cancer cells or to the control of immunosuppression.  
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7.3 Future perspectives 

Regarding this study, there are many issues that remain to be investigated 

for elucidating the connections between pH regulatory molecules and the 

immunosuppressive and aggressive status of HCC. 

With this work, we have demonstrated that the pH regulators are well 

expressed in HCC and they display different expression patterns. Several 

issues related to the precise functions exerted by CAIX, CAXII and V-ATPase 

in HCC biology still remain open to investigation.  

Concerning CAIX, our ex vivo analyses showed a peculiar expression of 

CAIX in discrete nests of hepatocytes inside the hypoxic areas of HCC 

lesions, along with its apparent association with tumour aggressiveness, 

invasive features and stemness of HCC. In order to further dissect the 

functions of CAIX in HCC, CAIX-positive and CAIX-negative adjacent areas 

from FFPE HCC samples will be microdissected, and we will perform 

genome-wide transcriptional analyses to identify pathways regulated by CAIX 

and hence likely to be involved in tumour aggressiveness. 

We think that many aspects of CAXII biology still deserve attention. Our data 

showed the presence of different spliced variants of the CA12 gene 

transcripts, and all of them were associated with hypoxia and HCC 

malignancy. Several issues are still open regarding the protein encoded by 

each of these spliced variants and the role they may play in the intracellular 

distribution of the CAXII proteins and in affecting HCC behaviour. We thus 

plan to use the CRISPR/Cas9 genome editing technology to generate stable 

HCC cell lines that express separately CA12 1 and CA12 2/3. Then, we will 

evaluate whether these genome-edited cells acquire a more aggressive 
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behaviour (decreased cell-cell adhesion and increased cell motility, enhanced 

invasiveness into the surrounding tissues, greater ability to self-renew and to 

form tumours in immunodeficient mice, influencing the pro-tumourigenic 

functions of immunosuppressive cells). Moreover, in collaboration with 

Professor Supuran’s group we will develop novel and selective drugs able to 

target the different isoforms of CAXII expressed in HCC, that then will be 

tested in vitro and ex vivo for their biological activity in HCC.   

Intriguingly, we have also observed that V-ATPase is an important modulator 

of tumour cells and of the HCC microenvironment. Specifically, V-ATPase 

inhibition changed the anti-tumour immune profile that involved both innate 

and adaptive immune cells, but also suggested that it reversed the 

expression levels of some genes associated with the EMT of malignant 

hepatocytes. One of our objectives will be to define which molecular 

pathways are modulated in HCC tumour cells by V-ATPase inhibition and 

evaluate whether these pathways are also involved in the shaping of the 

immune-related features of HCC. As a first step in this analysis, we will 

perform genome-wide transcriptional analyses on HCC cell lines treated with 

omeprazole and the vehicle to identify genes differentially expressed. 

Particular interest will be focused on genes encoding for immunomodulating 

molecules. Then, we will apply Ingenuity Pathway Analysis (IPA) to identify 

signaling pathways and biological functions induced by V-ATPase in tumour 

cells. Since we have already obtained good quality RNA samples from HCC 

tissue explants treated with omeprazole and the vehicle, as a second step of 

this analysis, we will perform genome-wide transcriptional analysis on these 
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samples and then we will apply CIBERSORT software for studying the 

immune cell composition of our HCC tissue explants. 
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ABSTRACT
Interfering with tumor metabolism is an emerging strategy for treating cancers that are resistant to
standard therapies. Featuring a rapid proliferation rate and exacerbated glycolysis, hepatocellular
carcinoma (HCC) creates a highly hypoxic microenvironment with excessive production of lactic and
carbonic acids. These metabolic conditions promote disease aggressiveness and cancer-related
immunosuppression. The pH regulatory molecules work as a bridge between tumor cells and their
surrounding milieu. Herein, we show that the pH regulatory molecules CAIX, CAXII and V-ATPase are
overexpressed in the HCC microenvironment and that interfering with their pathways exerts antitumor
activity. Importantly, the V-ATPase complex was expressed by M2-like tumor-associated macrophages.
Blocking ex vivo V-ATPase activity established a less immune-suppressive tumor microenvironment and
reversed the mesenchymal features of HCC. Thus, targeting the unique cross-talk between tumor cells and
the tumor microenvironment played by pH regulatory molecules holds promise as a strategy to control
HCC progression and to reduce the immunosuppressive pressure mediated by the hypoxic/acidic
metabolism, particularly considering the potential combination of this strategy with emerging immune
checkpoint-based immunotherapies.

KEYWORDS
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therapy; tumor
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immunosuppressive cells

Introduction

Hepatocellular carcinoma (HCC) is the second leading cause of
cancer death worldwide.1 Surgical resection and ablation,
depending on tumor burden and intra-hepatic location, are the
sole curative, non-transplant treatments; nevertheless, relapse
occurs in approximately 70% of patients within five years,2

with a dismal prognosis when eligibility criteria for salvage
transplantation are not met.3 Promising results are emerging
with immunotherapy based on immune checkpoint inhibition,4

but tumor-intrinsic and -extrinsic resistance points in meta-
bolic and immunosuppressive pathways are the major obstacles
to effective immune-mediated cancer control.5

HCC is a highly hypoxic tumor due to its rapid growth rate
and the surrounding fibrotic tissue produced by chronic
inflammation.6 In cancer cells, hypoxia is associated with

metabolic reprogramming based on anaerobic glycolysis, lead-
ing to the overproduction of pyruvate, lactate and carbonic
acids.7 A hypoxic/acidic microenvironment is the hallmark of
invasive tumors,8,9 the aggressiveness of which is also driven by
the ability to escape adaptive immune surveillance and contrib-
ute to local inflammation.10-13 To cope with hypoxic stress and
acidity, tumor cells overexpress different pH regulators, includ-
ing carbonic anhydrase (CA) IX and XII.14 CAs are zinc metal-
loenzymes that catalyze the reversible hydration of carbon
dioxide to carbonic acid and are involved in respiration and
acid-base equilibrium.14 V-ATPase is also a key protein in the
regulation of the tumor acidic microenvironment and is one of
the most studied pH regulators in cancer.15 V-ATPase consists
of multiple subunits assembled in two domains: the mem-
brane-associated domain V0 transports protons across the
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membrane, while the cytoplasmic domain V1 hydrolyses
ATP.16 Each V-ATPase subunit displays several splice variants,
conferring specific intracellular localization and tissue
specificity.17

The main function of pH regulators is to counteract the
intracellular accumulation of protons caused by tumor energy
metabolic dysfunction, expelling protons into the extracellular
milieu, leading in turn to its acidification.14 Additionally, CAs
and V-ATPase are crucial components of signal transduction
cascades associated with neoplastic transformation.18 Because
of their pivotal role in tumor survival, pH regulators are receiv-
ing attention as promising therapeutic targets, and pharmaco-
logical strategies to disrupt their function have recently been
developed and tested in early clinical trials.19

In the present study, we investigated the expression and role
of pH regulators in the tumor microenvironment of HCC
patients, focusing on CAIX, CAXII and V-ATPase because of
the availability of specific inhibitors with potential clinical use.
Interestingly, we found that interfering with these pathways
may represent a pleiotropic strategy to influence tumor sur-
vival, aggressiveness and the immunological properties of HCC.

Results

pH regulatory molecules are expressed in HCC

Matched tumor (T) and adjacent non-tumor (NT) snap-frozen
tissues from patients with HCC undergoing curative resection
(n D 57, see Table 1 for the pathological features of these
tumors) were profiled for the expression of CA9 and CA12,
encoding for CAIX and CAXII proteins respectively, and
ATP6V0A1, ATP6V1A, ATP6V1C1 and ATP6V1H encoding for

the a1, A1, C1 and H subunits of the V-ATPase. These subunits
were chosen for analysis because a1 contains the binding site for
proton pump inhibitors (PPIs), while A1, C1 and H encompass
the V1 domain involved in the regulation and stator of the whole
encoded complex.16 The level of HIF1A mRNA was also
assessed. Given that HCC arises from chronically inflamed liver
tissue, samples from normal liver obtained from patients under-
going an operation unrelated to cancer (cholecystectomy) (n D
9) were included as a control group. In line with the literature
data,20 qRT-PCR analysis showed that in comparison with nor-
mal liver, both NT and T tissues displayed increased transcrip-
tion of the HIF1A gene. NT and T tissues also displayed an
increase in the expression of CA9 mRNA (Fig. 1A). CA9 and
HIF1A expression was positively correlated both in NT and T
tissues, thus highlighting the dependence of CA9 on hypoxia
also in the HCC setting21 (Supplementary Fig. S1). NT tissues
displayed higher CA9 mRNA levels, likely due to their enrich-
ment in bile ducts with cholangiocytes positive for CAIX.22 Con-
versely, CA12 was strongly positive in T samples, while it was
barely detectable in normal liver and NT tissues (Fig. 1A). Con-
cerning the V-ATPase complex, all the subunits exhibited
enhanced expression in T compared with NT or normal liver,
with the differences reaching statistical significance for the
ATP6V1 A, ATP6V1C1 and ATP6V1 H genes (Fig. 1A).

In the tumor tissues, the expression of ATP6V0A1,
ATP6V1C1 and ATP6V1 H genes was positively associated, in
agreement with the notion that they encode for ATPase subu-
nits essential in the functional activity of the V-ATPase
molecular complex.16 No other significant correlation was
found, suggesting that the CA and ATPase molecules are
likely to exert non-redundant functions in HCC (Supplemen-
tary Fig. S1). Moreover, in our series, CA9 and CA12 gene
expression was associated with tumor grading, thus indicating
their possible role in tumor malignancy (Fig. 1B).

Selective expression of CAIX and CAXII in HCC tumor cells

The distribution of pH regulatory molecules in the HCC micro-
environment was assessed by IHC analysis performed on a set
of formalin-fixed, paraffin-embedded (FFPE) pairs of T, NT
and peri-tumor (PT) samples (n D 23). PT corresponds to
FFPE HCC sections, which include areas enriched in immune
infiltrating cells adjacent to tumor nodules.

In normal liver and NT tissues, the presence of CAIX was
limited to the plasma membrane of cholangiocytes, while nor-
mal hepatocytes were completely negative for the protein
(Fig. 2A). In contrast, approximately 50% of the T samples
exhibited scattered foci of HCC cells that were strongly positive
for CAIX at the plasma membrane level; these cells were eve
nly distributed within discrete tumor nests (Fig. 2A and
Table 2). Conversely, CAXII was abundantly and homo-
geneously expressed in most tumor cells, but was largely unde-
tectable in NT tissue and normal liver. This expression pattern
was shared by all the analyzed samples (Fig. 2A and Table 2).
In contrast to reports using other tumor histotypes,23 in the
present study, CAXII was mainly confined to the cytoplasm of
HCC cells. We confirmed the paucity of CAXII expression at
the plasma membrane by immunofluorescence staining and
confocal analysis of tumor tissue samples, revealing no

Table 1. The clinicopathological characteristics of HCC patients.

Clinical variable N� %

Age, mean § SD, years 72.0 § 9.9
<50 2 3.5
�50 55 96.5

Sex
Male 44 77.2
Female 13 23.6

Etiology
HBV 13 22.8
HCV 19 33.3
Others (NASH, potus, hemochromatosis) 16 28.1

healthy liver 9 15.8
Tumor number
Single 49 86.0
Multiple 8 14.0

Tumor size, cm
<3 20 35.1
3–5 17 29.8
�5 20 35.1

Microvascular invasion
Yes 35 61.4
no 22 38.6

Grading
G1 3 5.3
G2 40 70.2
G3 14 24.6

Clinical and pathological features of 57 paired tumor and adjacent non-tumor liver
tissues collected from patients with HCC who underwent curative resection from
2011 to 2015 at the Gastrointestinal Surgery and Liver Transplantation Unit of
our institute.
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detectable co-localization between CAXII and cell surface-
expressed b-catenin. Interestingly, the majority of CAXII co-
localized with calnexin, indicating that the protein was likely
retained in the endoplasmic reticulum (ER) (Fig. 2B). This pat-
tern of expression was specific to HCC since breast carcinoma
cells displayed conventional CAXII membranous expression
and b-catenin co-localization (Supplementary Fig. S2 A and
S2B). For both CAIX and CAXII, no positivity was detected in
the inflammatory cells infiltrating the PT areas (Fig. 2A).

Modulation of CA expression and distribution by hypoxia

HCC cell lines, representative of HCC subtypes,24,25 were pro-
filed for the expression of CAs and were subsequently tested for
their sensitivity to selective inhibitors. As detected by western
blotting, we observed that the PLC/PRF/5 and C3A cell lines

expressed CAIX under normoxia (ND 21% O2), which was sig-
nificantly up-regulated upon exposure to hypoxia (H D 1% O2)
for 72 h. In contrast, SNU-449 cells did not express CAIX irre-
spective of the culture conditions (Fig. 3A).

CAXII was expressed by all HCC cell lines but only up-regu-
lated under hypoxia in the PLC/PRF/5 cell line (Fig. 3A and Sup-
plementary Fig. S3). Flow cytometric analysis confirmed the
membrane-bound expression of CAIX in C3A and PLC/PRF/5
cells cultured under normoxia (approximately 35% positive cells),
which was markedly enhanced by 72 h of hypoxia, while the
SNU-449 cell line was completely negative, consistent with the
qRT-PCR data (Fig. 3B). Conversely, all HCC cell lines grown
under either 21% or 1% O2 expressed very low levels of CAXII at
the cell surface (Fig. 3C), in agreement with the expression pat-
terns observed in HCC samples. To further explore the cellular
distribution of CAXII, immunofluorescence staining of HCC cell

Figure 1. Gene expression of pH regulatory molecules in liver tissues. (A) mRNA expression levels of HIF1 A, CA9, CA12, ATP6V0A1, ATP6V1 A, ATP6V1C1 and ATP6VIH.
The expression of the indicated genes was evaluated in 9 normal (N) and 57 paired samples of adjacent non-tumor (NT) and tumor (T) liver tissues (see Materials and
Methods for the statistical analyses used). The data are reported as 2¡DCt values (DCt D Cttarget gene–CtGAPDH). (B) High expression of CA9 and CA12 was associated
with poorly differentiated HCC (G3). Gene expression data of 57 tumor tissues analyzed were reported as –DCt values. The reported p-values were calculated by the
unpaired t test.
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lines was performed for CAXII (green) in combination with
wheat germ agglutinin (WGA, red) and an anti-calnexin mono-
clonal antibody (blue) to mark the plasma membrane and ER
respectively. Confocal analysis confirmed that CAXII was mainly
localized in the cytoplasm when the cells were grown under nor-
moxia, while the protein was largely retained in the ER after 72 h
of hypoxia exposure, indicated by the co-staining with calnexin
defined by the appearance of an azure color (Fig. 3D). Hence,
HCC cell lines reacted to hypoxia in a similar fashion to the in
vivo setting, i.e., with hypoxia causing intracellular retention of
CAXII, primarily localized in the ER.

Sensitivity of HCC to CA inhibitors and the consequences
of sub-cellular target localization

To investigate whether pH regulators may serve as effective
therapeutic targets in HCC, the effect of CA blockade on HCC
cell lines was investigated by inhibiting CAIX with the specific
inhibitor S4, known to exert antitumor activity in breast cancer
models.26,27 CAXII was blocked using the inhibitor compound
25, a molecule belonging to a new series of N-substituted sac-
charin derivatives, displaying a KI of 0.25 mM for human

CAXII while being largely inactive against other human car-
bonic anhydrase isoforms, including CAIX (KI >50 mM)28

(Supplementary Table S1). Among the saccharin-based deriva-
tives, compound 25 was selected for its in vitro activity in
blocking the growth of the breast cancer cell line T-47D, a cell
displaying membrane positivity for CAXII in the absence of
CAIX expression (Supplementary Fig. S4 A and B).

The CAIX-positive HCC cell lines C3A and PLC/PRF/5 had
a low sensitivity to S4 under normoxia (IC50 >100 mM), but
they exhibited rapidly decreased cell viability under 1% O2

(down to 30% for C3A and 20% for PLC/PRF/5, with IC50 val-
ues of 57.4 and 53.9 respectively) (Fig. 3E). The lack of any
antitumor effect of S4 on SNU-449 cells (IC50 >100 mM),
which were negative for CAIX under both normoxic and hyp-
oxic conditions, confirmed the specificity of the drug (Fig. 3E).

The CAXII inhibitor compound 25 was tested on the three
HCC cell lines, all of which expressed CAXII. As depicted in
Fig. 3F, the drug affected the viability of HCC cells under nor-
moxic conditions, with an IC50 of 198.5 and 142.9 mM in the
C3A and PLC/PRF/5 cell lines, respectively, while the SNU-449
cells appeared rather resistant to the drug (IC50 > 200 mM).
Unexpectedly, all the HCC cell lines showed a significantly

Figure 2. Expression and cellular distribution of CAIX and CAXII in liver tissues. (A) Representative images of immunohistochemical staining for CAIX and CAXII in normal and
matched non-tumor, tumor and peri-tumor liver tissues. Peri-tumor tissue was identified as areas adjacent to tumor nodules enriched in immune infiltrating cells. Membra-
nous staining of CAIX was detectable in bile ductular cells in normal and non-tumor tissues and in malignant hepatocytes. CAXII was expressed in the cytoplasm of malignant
hepatocytes. No positive staining was evident in the inflammatory cells infiltrating the peri-tumor areas. �Identifies tumor area in peri-tumor sections. Representative images
with scale bars D 100 mm. (B) Confocal laser scanning micrographs of immunofluorescent staining with anti-CAXII (green), anti-b-catenin (red) and anti-calnexin (red) in for-
malin-fixed, paraffin-embedded HCC tissues. Nuclei were stained with Toto-3 (blue). In the left panel, CAXII displays cytoplasmic expression without any co-localization with
the membranous staining of b-catenin (red). In the right panel, the white triangle indicates the co-localization of CAXII and calnexin. Scale bars D 50 mm.
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decreased sensitivity to compound 25 when cultured under
hypoxic conditions, with a consequential marked increase in
the IC50 (> 200 mM for all cell lines) (Fig. 3F). These data sug-
gest that CAXII sequestration in the ER under hypoxia ham-
pered the activity of compound 25, indicating that drug
modifications or alternative pharmacological strategies need to
be applied for the effective targeting of CAXII in HCC.

CA inhibitors affected HCC cell viability, and we found that
blockage of CAIX activity limited the proliferative capacity of
the CAIX-positive cell lines (C3A and PLC/PRF/5) and induced
necrosis. However, our experiments failed to depict a clear
mechanism of drug-induced cell death common to CAIX and
CAXII inhibitors in the HCC cell lines (Supplementary
Fig. S5). In agreement with data from the literature, the cell
death pathway induced by CAs is reminiscent of the ‘metabolic
catastrophe’ occurring in cancer cells upon disruption of pro-
ton dynamics and energy metabolism.29

Expression of the V-ATPase complex in the HCC
microenvironment

We then explored the in vivo distribution of the V-ATPase com-
plex. IHC analyses showed selective overexpression of the
V-ATPase subunits a1 and C1 in T in comparison with NT tissues
and normal liver (Fig. 4). This pattern was detectable in approxi-
mately 90% of HCC cases, although a heterogeneous frequency of
positive cells and staining intensity could be observed (Table 2).
The H subunit was not detected in tumors and normal hepato-
cytes, as observed by the IHC staining of T and NT tissues (Fig. 4)
except for 4 HCC cases. In these samples, V-ATPase subunit H
was intracellularly expressed in malignant hepatocytes, with a pat-
tern suggesting its accumulation in the Golgi apparatus

(Supplementary Fig. S6). The H subunit was detectable in cells
infiltrating NT and T tissues, likely to be Kupffer cells, the liver’s
macrophages lining the walls of the sinusoids. Notably, in approx-
imately half of the cases analyzed, marked expression of the V-
ATPase a1 and H subunits could also be detected in the HCC
inflammatory infiltrate in the PT area of the HCC samples (Fig. 4
and Table 2). IHC analysis defined these immune cells as being
composed of myeloid cells, expressing the CD14, CD68, CD163
and CD209 markers, and of CD3C lymphocytes (Fig. 5A). Confo-
cal microscopic analysis showed that V-ATPase a1 and H were
co-expressed with CD163 and CD209, known markers of M2
macrophages (Fig. 5B and Supplementary Fig. S7 A). In addition,
a fraction of CD3C cells were positive for the V-ATPase a1 sub-
unit (Fig. 5B and Supplementary Fig. S7B), while no co-staining
with the V-ATPase H subunit was detectable (data not shown).
Flow cytometry analysis of cell suspensions obtained from HCC
surgical specimens confirmed that myeloid cells expressing
CD163 and CD209 markers were clearly present, although with
different frequencies, along with the presence of CD3C cells
(Fig. 5C-E). A fraction of CD14CCD11bC cell population was V-
ATPase a1 positive, and in agreement with confocal microscopy
analysis, V-ATPase a1 was preferentially expressed by myeloid
cells expressing the M2-associated marker CD163C or CD209C

(Fig. 5C, F). Flow cytometry also confirmed that a small fraction
of CD3C lymphocytes expressed V-ATPase a1 (Fig. 5D, G).

Pleiotropic effects of V-ATPase inhibition by omeprazole in
the HCC microenvironment

C3A, PLC/PRF/5 and SNU-449 cells displayed significant levels
of the V-ATPase a1 and C1 subunits (Fig. 6A), corroborating
the expression data observed in the HCC specimens. To test

Table 2. Score categories for the expression of pH regulatory molecules and CD163 in clinical HCC tissues (n D 23) analyzed by immunohistochemistry.

Extent of stained cells

Markers Intensity of staining 0 1 2 3

CAIX# 0 10a 0 0 0
2 0 3 0 10

CAXII# 2 0 0 0 23

a1# 0 3 0 0 0
1 0 5 1 0
2 0 2 6 6

C1# 0 2 0 0 0
1 0 4 3 0
2 0 1 10 3

a1� 0 7 0 0 0
1 6 7 1 0
2 0 2 0 0

H� 0 3 0 0 0
1 8 7 0 0
2 0 3 2 0

CD163� 2 2 5 8 8

Abbreviations: HCC, hepatocellular carcinoma.
Note: a, number of cases in each category; the expression of these markers was evaluated: # in tumor hepatocytes and � in immune infiltrating cells in peri-tumor areas. Every
tumor was given a score category according to the intensity of themembrane/cytoplasmic staining (0D negative; 1D lower than the internal or experimental control; 2D equal
to the internal or experimental control) and to the extent of the stained cells (0D 0-<5%, 1D<10%, 2D 10–50%, 3D>50%). Bile duct cells and the glandular and superficial
foveolar compartment in the stomach tissue were used as control for CAIX and CAXII staining, respectively. The islets of Langerhans in the human pancreas and the glandular
compartment in stomach tissues were used as controls for a1 and H staining, respectively. Subunit H of V-ATPase was not expressed by malignant hepatocytes, except for 4 of 23
HCC lesions that displayed strong staining in the Golgi (see Supplementary Fig. S6). Kupffer cells of the liver were used as an internal control for CD163 staining.
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Figure 3. CAIX and CAXII expression and functional inhibition in HCC cell lines. The indicated HCC cell lines were cultured under either normoxic (N D 21% O2) or hypoxic
(H D 1% O2) conditions for 72 h and were analyzed as indicated below. (A) The protein expression of CAIX, CAXII and vinculin was assessed by western blotting in cell
lysates of the C3A, PLC/PRF/5 and SNU-449 cell lines. The cell surface expression of CAIX (B) and CAXII (C) was evaluated by flow cytometry. The number in each histogram
plot shows the percentage of cells positive for the indicated markers (filled histograms) evaluated with respect to the corresponding secondary antibody (black line). Rep-
resentative histograms from three independent experiments are shown. (D) The cellular distribution of CAXII was assessed by confocal laser scanning microscopy under
the indicated conditions. Representative micrographs of triple immunofluorescence staining with anti-CAXII (green), anti-WGA (red, detecting the cell membrane) and
anti-calnexin (blue, detecting the ER compartment) are reported. Scale bars D 50 mm and D 5 mm for the lower and higher magnification respectively. The cell viability
of the HCC cell lines treated with different doses of S4 (mM) (E) and compound 25 (mM) (F) under normoxia (N D 21% O2, black triangles) or hypoxia (H D 1% O2, white
triangles) for 72 h was evaluated using the MTT assay. The data show the percentage of viable cells of the untreated control and represent the mean of six replicate reac-
tions from 3 independent experiments. IC50 values for S4 were >100 mM for all HCC cell lines grown under normoxic conditions and 57.4, 53.9 and >100 mM for C3 A,
PLC/PRF/5 and SNU-449 exposed to hypoxia respectively. For compound 25, C3 A, PLC/PRF/5 and SNU-449 cells grown under normoxia displayed IC50 values of 198.5,
142.9 and>200 mM respectively. All the HCC cell lines exposed to hypoxia displayed IC50 values >200 mM for compound 25.

e1445452-6 O. KUCHUK ET AL.



the antitumor potential of V-ATPase targeting, we chose omep-
razole, a selective inhibitor of proton pumps that is broadly
used to block acid secretion by gastric parietal cells through
inhibition of the HC/KC ATPase system.30 Omeprazole has
been shown to cross-react with V-ATPase and mediate antitu-
mor properties in a preclinical setting15. As shown in Fig. 6B,
all HCC cells showed a significantly blocked growth response
to omeprazole, with IC50 values ranging from 39.4 mg/ml for
PLC/PRF/5 cells to 100.9 mg/ml for C3A cells. SNU-449 cells
again displayed the lowest sensitivity (IC50 values of 128.4 mg/
ml), in accordance with the relative resistance observed with
CA inhibitors (Fig. 3E and F) and described for other drugs,
including sorafenib.31 No difference in the sensitivity to omep-
razole treatment was found in hypoxic conditions for any of
the HCC cell lines (Supplementary Fig. S8). These experiments
suggested that omeprazole affected the proliferative capacity of
all the HCC cell lines tested and induced necrosis, but the
mechanisms leading to drug-induced HCC cell death remain to
be elucidated, as discussed for the CA inhibitors (Supplemen-
tary Fig. S5).

V-ATPase was expressed not only in tumor cells but also in
the infiltrating immune cells. To evaluate whether interfering
with V-ATPase activity could modulate the HCC microenvi-
ronment in both the tumor and immune components, human

primary HCC tissue explants (n D 12), preserving the intercel-
lular networks of local tissue,32 were cultured for 24 h with
omeprazole or drug vehicle and were then analyzed for the
modulated expression of selected tumor and immune genes.

MYC and VIM, expressed by tumor cells and associated with
epithelial-to-mesenchymal transition (EMT),33,34 were down-
regulated in HCC tissue explants, in parallel with increased
CDH1, indicating a reduced aggressiveness of the tumor com-
ponent (Fig. 6C). Omeprazole treatment also induced a reshap-
ing of the cyto/chemokine milieu, including a down-regulation
of CCL22 and a concomitant up-regulation of the IFNG and
TNF genes (Fig. 6C). The expression of other immune genes,
including CCL2 and IL6, was not consistently detectable by
qRT-PCR.

To gain further evidence of the functional role of V-ATPase
in the modulation of the cytokine profile of the HCC TME and
to assess whether the cytokine modulation in the HCC TME
also occurred at the protein level, cell suspensions obtained
from HCC surgical specimens were treated for 24 h with omep-
razole or vehicle and monitored by multiparametric flow
cytometry for cyto/chemokine secretion by the different
immune cell subsets.. In CD11bCCD163C myeloid cells and
in CD3C T cells, omeprazole treatment was associated with a
decreased production of CCL22, paralleled by a significant

Figure 4. Expression pattern of V-ATPase subunits in liver tissues. The immunohistochemical expression of a1, C1 and H V-ATPase subunits was evaluated in normal and
matched non-tumor, tumor and peri-tumor liver tissues. Peri-tumor tissues were identified as areas adjacent to tumor nodules enriched in immune infiltrating cells. The
membranous/cytoplasmic expression of a1 and C1 subunits was detected in malignant hepatocytes. The H subunit was mainly expressed in the Kupffer cells present in
non-tumor and tumor tissues. The a1 and H subunits were also expressed by infiltrating immune cells in the peri-tumor areas of the liver. �Identifies a tumor area in the
peri-tumor sections. Representative images with scale bars D 100 mm.
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Figure 5. Expression of V-ATPase in immune cells infiltrating HCC tissues. (A) Representative images of immunohistochemical staining for the myeloid-associated markers CD14,
CD68, CD163, CD209 and the CD3 T cell marker in HCC tissues. Scale bars D 100 mm are shown. �Identifies the tumor area. (B) Triple-labeled immunofluorescence staining for
a1 and H1 subunits of the V-ATPase complex (red) and CD163 (green), CD209 (green) or CD3 (green) in HCC tissues. Nuclei were stained with Toto-3 (blue). White triangles indi-
cate the co-expression of the analyzed markers. Representative images with scale barsD 25 mm. No co-staining was found for CD3 and V-ATPase H1 (data not shown). (C) Multi-
parametric flow cytometry analysis of live myeloid cells in cell suspensions of freshly dissociated HCC surgical specimens. The CD209 and CD163 positive population has been
defined by setting the marker on the corresponding FMO control. The cell surface expression of V-ATPase a1 was evaluated within the CD14CCD11bC, CD11bCCD163¡,
CD11bCCD163C CD11bCCD209¡ and CD11bCCD209C cell populations and the corresponding histograms are reported (black line). FMO control is shown (gray line). (D) Multi-
parametric flow cytometry analysis of cell surface V-ATPase a1 expression in live CD3 cells in cell suspensions of freshly dissociated HCC tumors. V-ATPase a1 positive cells have
been defined using the FMO control. (E) The graph summarizes the percentages of CD14C, CD163C, CD209C and CD3C cells found in the analyzed HCC samples. (F-G) The per-
centages of V-ATPase a1-positive cells assessed in the indicated myeloid cell populations and within the CD3C cells for all the analyzed samples.
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increase in IFNg and TNF Representative flow cytometry histo-
grams are shown (Fig. 7A, B), and cumulative data obtained
from all the HCC cell suspensions are summarized (Fig. 7C,
D). Altogether, these data indicate that omeprazole promotes
a rapid modulation of the HCC TME involving a relief of
immunosuppression and a potential gain of a more antitum
or immune profile that involved both innate and adaptive
immune cells.

Discussion

Tumor metabolism is the focus of a new wave of studies aimed
at a better understanding of cancer biology and for developing
novel tools for therapeutic intervention.35,36 In the present
work, we show that HCC, the dysfunctional metabolism of
which promotes a highly hypoxic and acidic environment,7

selectively overexpress molecules such as V-ATPase, CAIX and
CAXII that are in charge of proton extrusion and intracellular
pH regulation. The pharmacological inhibition of these pH reg-
ulators greatly decreased tumor cell viability, suggesting a
strong pro-survival role of these transporters in HCC biology.
Moreover, in our HCC series, CA9 and CA12 gene expression
was associated with tumor grading, thus indicating their possi-
ble involvement in tumor malignancy in vivo in HCC patients.
Overexpression of these pH regulatory molecules is a biological
feature common to many human tumors, and data in the litera-
ture show that their blockage exerts strong antitumor activity in
vivo in human tumor xenografts.27, 37–39 However, to fully qual-
ify these pH regulatory molecules as therapeutic targets for
HCC patients, the in vivo antitumor effects of their specific
antagonistic drugs in human HCC xenografts have still to be
demonstrated.

Figure 6. Effects of omeprazole on HCC cell line viability and on the tumor microenvironment of HCC tissue explants. (A) The protein expression of a1, C1, b-actin and
a-tubulin was assessed by western blotting in cell lysates of the C3A, PLC/PRF/5 and SNU-449 cell lines. (B) The HCC cell lines were treated with different doses of omepra-
zole, and cell viability was evaluated using the MTT assay. The data on the y-axes report the percentage of viable cells of the untreated control and represent the mean of
six replicate reactions from 3 independent experiments. The calculated IC50 values for omeprazole are 100.9, 39.4, and 128.4 mg/ml for C3A, PLC/PRF/5 and SNU-449
respectively. (C) Expression levels of the indicated genes in HCC tissue explants (MYC, VIM, CDH1, CCL22, IFNG N D 12; TNF, N D 8) cultured ex vivo in the presence of
100 mg/ml omeprazole or the vehicle of the drug for 24 h. The gene expression data are reported as 2¡DCt values. The p-values are calculated by the paired t test compar-
ing cells treated with omeprazole or the vehicle.
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Although selectively associated with the neoplastic transfor-
mation of hepatocytes, the expression patterns of V-ATPase,
CAIX and CAXII in HCC showed non-redundant functions
and thus diverse potentials as druggable targets. The focal dis-
tribution of CAIX within discrete tumor nests indicates that
this transporter, promptly induced by hypoxia, might identify
tumor areas with particularly low O2 tension. Given that CAIX
is associated with stemness and enhanced malignancy in other
solid cancers40,41 and that acidity may promote per se cell pluri-
potency,42 it is possible that hypoxic niches may host HCC cells
with stem-like features and that CAIX targeting may control
the most aggressive cancer cells. These data also identify CAIX
as a potential HCC prognostic biomarker, in accordance with a
recent meta-analysis identifying that CAIX tumor expression is
associated with a higher risk of locoregional failure and meta-
static spread in multiple cancers.22,43

On the other hand, CAXII showed a homogeneous expression
pattern in transformed hepatocytes, which is clearly a great
advantage for effective therapeutic targeting. However, this pH
regulator was unexpectedly retained intracellularly in both the
HCC specimens and cell lines. Of note, the ER localization of
CAXII was exacerbated by hypoxia and was seemingly specific to
this tumor histotype, being undetectable in other solid cancers.23

Although the molecular mechanism underlying this phenome-
non is presently unknown, it could be that altered CAXII glyco-
sylation or alternative splicing events, known to occur in cancer
under certain conditions44,45 might play a role in determining the

intracellular localization of CAXII. Nevertheless, since HCC cell
lines became partially refractory to CAXII inhibitor compound
25 under hypoxic conditions, it suggests that either the protein
loses its function when retained in the ER or the drug has no
access to this intracellular compartment. Modifications of com-
pound 25 to allow binding to ER-retained CAXII, or the use of
“intrabodies” designed to target splice variants,46 could increase
the efficacy of CAXII-specific targeting in liver cancer.

Our results show that V-ATPase was positive in most malig-
nant hepatocytes, was detectable in infiltrating immune cells
and was thus the most broadly and highly expressed pH regula-
tor in the HCC microenvironment among those tested. These
observations are consistent with data reported for melanoma
and breast cancer, for which V-ATPase overexpression has also
been associated with more aggressive disease and multi-drug
resistance.47 Selective V-ATPase inhibitors for clinical use are
presently unavailable, and those developed for in vitro studies
(e.g., bafilomycin) have exhibited prohibitive toxicity.48 Hence,
the functional analysis of the role of V-ATPase in HCC has
been performed with omeprazole, a proton pump inhibitor
(PPI) that is widely used to reduce gastric acid secretion30 and
has recently been reported to exert broad antitumor effects at
preclinical and clinical levels.47,49 PPIs were designed to bind to
gastric HC, KC-ATPase, but they can also cross-react with
V-ATPase, albeit with lower affinity.16 In our hands, omepra-
zole displayed antitumor activity in the HCC cell lines, suggest-
ing promising clinical potential. Nevertheless, novel V-ATPase

Figure 7. Modulation of the cytokine profile in HCC immune-infiltrating cells by omeprazole treatment. (A-D) Multiparametric flow cytometry of live cells in freshly disso-
ciated HCC tumors treated with the drug vehicle (red line) or with omeprazole (100 mg/ml, blue line) for 24 h. IFNg , TNF and CCL22 production was evaluated by intracel-
lular staining (A) in CD163C myeloid cells gated inside live CD45CCD3¡ cells and (B) in CD3C T cells gated inside live CD45C cells. FMO control for each cytokine (gray
line) is reported in the histogram plot. The percentages of IFNg-, TNF- and CCL22-positive cells in the CD163C and in the CD3C cells are shown in C and D respectively.
The p-values are calculated by the paired t test comparing cells treated with omeprazole or the vehicle.
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inhibitors that have recently been introduced, such as enoxacin
and other small molecules, will potentially provide additional
tools for therapeutic intervention in HCC.50

Importantly, our data indicated that in contrast to the other
pH regulators, V-ATPase was also markedly expressed by both
the resident myeloid Kupffer cells and by the HCC immune
cell infiltrate. Specifically, V-ATPase expression occurred in
myeloid cells, most likely M2-like TAMs located within tumor
nests or in the peri-tumor area at the boundary between tumor
and adjacent non-tumor tissue. Transcriptional up-regulation
of V-ATPase genes has been reported to occur in monocytic
cells during macrophage differentiation in association with
phagocytic activity.51 Hence, it is conceivable that HCC-associ-
ated macrophages might exploit V-ATPase expression to sur-
vive the acidic tumor microenvironment and possibly exert
their immunosuppressive effects. Data from HCC tissue
explants, likely preserving the intercellular network operating
in vivo, and the analysis of cell suspensions obtained from
HCC specimens indicate that V-ATPase blockade via omepra-
zole can interfere with TAM activity, possibly favoring the
conversion of protumor M2-like myeloid cells into antitumor
M1-like cells, as indicated by the decrease in CCL22 expression
and the concomitant significant increase of IFNg and TNF.
This cytokine modulation also occurred in the adaptive CD3C

cell population. Whether the immune cells were direct targets
of the drugs or their functional modulation was the result of
the drug-induced modification in tumor or other stromal cells
remains to be addressed. Nevertheless, these data indicate a
broad impact of omeprazole in creating a less immune-sup-
pressive HCC microenvironment involving both innate and
adaptive effector T cells. Indeed, omeprazole changed the
tumor cell phenotype; V-ATPase inhibition in HCC explants
by omeprazole down-regulated the MYC oncogene and
induced an inverse modulation of E-cadherin and vimentin
expression, thus implying a block of the EMT, a process that is
also sustained by myeloid cells9,52 and which drives disease pro-
gression in HCC.24 Thus, targeting V-ATPase could achieve the
twin goals of reducing the viability and aggressive features of
tumor cells while concomitantly interfering with the protumor
and immunosuppressive functions exerted by the myeloid cell
infiltrate in HCC.53

The precise molecular mechanisms underlying these effects
remain to be fully elucidated. Tumor pH buffering mediated by
omeprazole administration can certainly play a role in both
tumor growth and associated immune dysfunctions.11 Consis-
tent with this opinion is the evidence that bicarbonate can be
beneficial in HCC patients receiving locoregional therapy54 and
in mice undergoing tumor immunotherapy.55 Nevertheless, it
should be underlined that blockade of pH regulators might also
directly interfere with downstream signaling pathways, includ-
ing Wnt/b-catenin, Notch and mTOR,16,18 and with genes
involved in the so called “metabolic catastrophe”29 both in
tumor cells and immune cells.

In conclusion, drugs that inhibit pH regulation might repre-
sent a promising therapeutic strategy in HCC patients,
endowed with the novelty of simultaneously interfering with
metabolic pathways of tumors and the associated immunosup-
pressive cell populations. In this era of immune checkpoint-
based immunotherapy, not only showing promising efficacy in

HCC patients4 but also underscoring the key role of myeloid
cells in primary and acquired resistance,56,57 the identification
of drugs that may potentially induce a less-aggressive and
immunosuppressive tumor microenvironment could provide
further therapeutic benefit when used in combination therapy.

Materials and methods

Ethical statement

This study was conducted in compliance with the Helsinki Dec-
laration of 1975 and was approved by the review board of Fon-
dazione IRCCS Istituto Nazionale dei Tumori of Milan
(protocol number: INT 110/13). Written informed consent was
obtained from the patients.

Patients, tissue samples and clinical data

Tumor (T) and adjacent non-tumor liver tissue (NT), sampled
within 2 cm proximal to the tumor margin, were collected
from resected HCC in patients with well-compensated cirrhosis
(n D 57). Nine non-cirrhotic, normal (N) liver tissue samples
were obtained from patients who underwent operations unre-
lated to cancer (cholecystectomy). Liver tissue specimens were
snap-frozen in RNAlaterTM solution (Thermo Fisher Scientific)
for RNA analyses and stored at ¡80�C until use. See Table 1
for the tumor pathology features. Formalin-fixed, paraffin-
embedded (FFPE) samples corresponding to the liver tissues
stored in the RNAlater solution were also prepared for immu-
nostaining. Breast cancer samples were used as a control
(n D 3) and were obtained from a pathology archive. To obtain
single-cell suspensions, HCC tissues were enzymatically and
mechanically digested using the gentleMACS Dissociator (Mil-
tenyi Biotec) and were stored in liquid nitrogen until use.

Cell lines and culture conditions

The human HCC cell lines C3A, PLC/PRF/5 and SNU-449 and
the breast cancer cell line T-47D (ATCC, Manassas, Virginia,
USA) were cultured in complete culture medium (RPMI-1640,
Lonza) supplemented with 10% heat-inactivated fetal calf
serum (FCS, Lonza), 100 U/ml penicillin and 100 U/ml strepto-
mycin under normoxia (N D 21% O2) or hypoxia (H D 1% O2)
as indicated. HCC cell lines grown at 80–90% confluence were
trypsinized, washed in 1x PBS and used for the analysis. Cell
lines were routinely checked for their identity by STR profiling
and were free of mycoplasma, as assessed using the N-GARDE
Mycoplasma PCR reagent set (EMK-090020, Euroclone).

Ex vivo treatment of HCC tissue explants

Culturing of ex vivo HCC tissue explants was performed as pre-
viously described.32 Fresh HCC tissues (n D 5) were cut into
3 mm3 pieces using a biopsy puncher under sterile conditions
and were cultured for 24 h in a 48-well plate (Corning) in the
presence of 300 ml RPMI 1640 with 1% FCS (Lonza) and
100 mg/ml omeprazole (Sigma-Aldrich) or drug vehicle (dime-
thylsulfoxide, DMSO, Sigma-Aldrich).
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RNA extraction, reverse transcription and quantitative
real-time PCR

Total RNA was extracted using a NucleoSpin miRNA kit
(Macherey-Nagel). cDNA was generated using a High-Capacity
cDNA reverse transcription kit (Thermo Fisher Scientific). In
addition, cDNA obtained from HCC tissue explants was also
pre-amplified using the TaqMan� Preamp Master Mix Kit
(Thermo Fisher Scientific). cDNA was used to perform real-
time PCR (qRT-PCR) with TaqMan� gene expression assays
and the primers/probes reported in Supplementary Table S2.
qRT-PCR assays were conducted using an ABI 7900HT instru-
ment (Thermo Fisher Scientific). Data analysis was performed
with SDS 2.2.2 software (Thermo Fisher Scientific).

Immunohistochemistry

Serial sections of 1-2-mm-thickness FFPE HCC (n D 23) and
normal liver (n D 9) samples were processed for immunohisto-
chemical staining. For each HCC case, the FFPE section slides
of non-tumor, (NT) tumor (T) and peri-tumor (PT) tissues
were analyzed. PT corresponds to the FFPE HCC sections,
which include areas enriched in immune infiltrating cells adja-
cent to tumor nodules. The antibodies used are reported in
Supplementary Table S3. Stained whole-section slides were
scanned using Aperio Scanscope Cs (Aperio Technologies).
Images were visualized and annotated with ImageScope soft-
ware (Aperio Technologies).

Confocal analysis

Confocal microscopic analyses were performed using FFPE
samples and HCC cell lines that were exposed or not to hypoxia
(1% O2) for 72 h. The antibodies used are reported in Supple-
mentary Table S3. The nuclei were stained with Toto-3
(Thermo Fisher Scientific). Confocal microscopy was per-
formed using a Radiance 2100 microscope (Bio-Rad Laborato-
ries) equipped with a krypton/argon laser and a red laser diode.

Flow cytometry

Antibodies used in flow cytometry are reported in Supplemen-
tary Table S4. CAIX and CAXII were detected at the cell sur-
face. Multiparametric flow cytometry was performed on cell
suspensions obtained from clinical HCC tissues and stored in
liquid nitrogen. The cells were stained for cell surface markers,
including V-ATPase a1, fixed and permeabilized with Cytofix/
Cytoperm buffer (BD Biosciences), and stained with the intra-
cellular markers (CCL22, IFNg and TNF). CCL22, IFNg and
TNF production was measured after treatment with 100 mg/ml
omeprazole or the vehicle of the drug (DMSO) for 24 h. Golgi
Stop (0.7 ml/ml) was added after 1.5 h of treatment

Dead cells were identified using the LIVE/DEAD Fixable
Violet Dead Cell Stain Kit (ThermoFisher Scientific) and were
excluded from the analysis. Data were acquired using a Gallios
flow cytometer (Beckman Coulter) and were analyzed by
FlowJo, V 8.5.2 (Tree Star) or Kaluza 1.3 software (Beckman
Couter).

Pharmacological inhibitors and cell viability assays

The selective CAIX inhibitor S4 (4-(30-(300,500-dimethylphenyl)
ureido)phenyl sulfamate) and the selective CAXII inhibitor
compound 25 were developed by the team of Dr. CT Supuran.
See Supplementary Table S1 for the chemical and biological
details of the CAXII inhibitors. Omeprazole was purchased
from Sigma-Aldrich. Drugs were dissolved in DMSO (Sigma-
Aldrich) and were stored at ¡20�C. Prior to use, omeprazole
was activated in acidified water at pH 3.7 for 30 min at RT in
the dark and then diluted in culture medium. Activated omep-
razole was used throughout the present study. HCC cells were
plated at a density of 4–5 £ 103 cells/well in 96-well plates
(Corning), drugs were added to fresh medium after 24 h, and
plates were incubated for an additional 72 h. Cell viability was
evaluated using the (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl-
tetrazolium bromide (MTT) colorimetric assay (Sigma-Aldrich).
Absorbance was measured at 570 nm with a spectrophotometer
(Infinite� M1000, Tecan), and the average values from triplicate
readings were calculated.

Statistical analysis

Statistical analyses were performed using GraphPad Prism Soft-
ware v.5 (GraphPad, La Jolla). The Wilcoxon signed-rank test
was used to compare gene expression levels between non-
tumor and tumor tissues, and the Mann-Whitney U-test was
used to compare the gene expression levels between normal
and non-tumor tissues and between normal and tumor tissues.
p-values less than or equal to 0.05 were considered significant.
Fitted lines were generated using the four-parameter dose-
response curve (variable slope), and the IC50 values for inhibi-
tion of cell growth at 72 h of S4, compound 25 and omeprazole
treatment were calculated. One-way analysis of variance
(ANOVA) followed by Bonferroni correction was used to eval-
uate statistical significance. The paired t test was used to com-
pare the expression of MYC, CDH1, VIM, CCL22, IFNG and
TNF in HCC tumor explants treated with 100 mg/ml omepra-
zole or the vehicle of the drug. To evaluate the modulation of
IFNg, TNF and CCL22 in fresh CD163C and CD3C cells iso-
lated from HCC tissues due to the treatment with 100 mg/ml
omeprazole or the vehicle of the drug, paired t tests were used.
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SUPPLEMENTARY MATERIALS  

SUPPLEMENTARY MATERIALS AND METHODS  

RNA extraction, reverse transcription and quantitative real-time PCR  

To maintain RNA integrity and to enhance the yield, the specimens were placed in liquid 

nitrogen and then homogenized with a TissueLyser Homogenizer (Qiagen) in the presence of 

lysis buffer ML (provided in the NucleoSpin miRNA kits) and tungsten carbide beads (Qiagen) 

for 2 min at a frequency of 30/sec. After the addition of ethanol, DNA and RNA were bound to 

the NucleoSpin RNA columns. The DNA was digested on the columns by RNase-free 

recombinant DNase. Subsequently, RNA was washed and eluted with RNase-free water. The 

purity of the RNA samples was assessed by measuring the OD260/OD280 ratio on a Picodrop 

spectrometer (Picodrop). A ratio of 1.8-2.0 was generally accepted as “pure” for RNA in all 

cases. The reverse transcription polymerase chain reaction (RT-PCR) was conducted in the 

GeneAmp PCR System 9700 instrument (Thermo Fisher Scientific) using the following settings: 

25 °C for 10 min and 60 °C for 120 min. cDNA obtained from the HCC tissue explants was pre-

amplified using the TaqMan® Preamp Master Mix Kit (Thermo Fisher Scientific) by combining 

188 ng cDNA with TaqMan® Preamp Master Mix and pooling the TaqMan® gene expression 

assays (Thermo Fisher Scientific) at a final concentration of 0.2X, according to the 

manufacturer’s instructions. qRT-PCR assays were run in the ABI 7900HT instrument (Thermo 

Fisher Scientific) with the standard qRT-PCR settings: 50 °C for 2 min, 95 °C for 10 min, and 40 

cycles of 95 °C for 15 s and 60 °C for 1 min. The relative levels of templates in each sample 

were determined through relative quantification (RQ) using the comparative Ct (∆∆CT) method 

(RQ=2-∆∆CT, where ∆CT=CTtarget gene–CTGAPDH, and ∆∆CT=∆CTsample – ∆CTcalibrator). 

  



Immunohistochemistry  

After xylene deparaffinization and rehydration, the sections were incubated in a 3% H2O2 

solution for 10 min to block endogenous peroxidase. Antigen retrieval was performed by heating 

the sample in 1 mM EDTA at pH 8 or 5 mM citrate buffer solution in a high-pressure cooker for 

10-15 or 20 min and cooled for 15 min prior to immunostaining. A peroxidase-labeled polymer 

(UltraVision Quanto Detection System HRP Polymer, Thermo Fisher Scientific) was used for 

detection according to the manufacturer's instructions and was visualized using 3,3′-

diaminobenzidinetetrahydrochloride (DAB)/H2O2. The immunostaining intensity was evaluated 

with a scoring system performed by the pathologist (MM). The intensity (I) of the nuclear or 

membrane/cytoplasmic staining was scored as I = 0 negative, I = 1 lower than the internal or 

experimental control, and I = 2 equal to the internal or experimental control. The extent of the 

cell staining was scored as 0 (0-<5%), 1 (<10%), 2 (10-50%), and 3 (>50%). The score 

categories are shown in Table 2.  

Confocal analysis  

Serial sections of 1-2-µm-thick FFPE paired tumor and adjacent non-tumor liver tissues (n = 3) 

and breast cancer tissues (n = 3) were processed for deparaffinization and antigen retrieval. The 

HCC cell lines (C3A, PLC/PRF/5 and SNU-449) were fixed in 4% paraformaldehyde for 30 min, 

washed with 1x PBS and plated on glass slides. The samples were washed and incubated for 1 h 

with dye-conjugated secondary antibodies (see Supplementary Table S3). The sections were 

treated briefly with 0.1 M glycine in PBS, pH 7.4 followed by 0.3% Triton X-100 in 1x PBS 

(Sigma-Aldrich) and incubated overnight at 4 °C with the primary antibodies. Following a final 

wash, the stained tissue sections were mounted on glass slides with 95% glycerol in 1x PBS. 

  



Pharmacological inhibitors and cell viability assays 

The tested concentrations of the CAIX inhibitor S4 were 12.5 µM, 25 µM, 50 µM and 100 µM. 

The CAXII inhibitor compound 25 was used at concentrations of 12.5 µM, 25 µM, 50 µM, 100 

µM and 200 µM, while omeprazole was used at concentrations of 72.4 µM, 144.8 µM, 299.5 µM 

and 434.3 µM. As a pro-drug, omeprazole was activated in acidified water at pH = 3.7 for 30 

min at RT in the dark prior to use. The effects of both CA inhibitors and activated omeprazole 

were tested. As a vehicle control, cells were treated with respective volumes of DMSO using the 

same approach. Treatment with CA inhibitors was performed under normoxia (21% O2) and 

hypoxia (1% O2). Treatment with omeprazole was performed under normoxia (21% O2) only. 

Cell viability assay: briefly, in each well, 50 µl of conditioned medium was replaced with 50 µl 

pre-warmed MTT solution (Sigma-Aldrich), and the plates were incubated at 37 °C for 2 h. 

When the purple precipitate of formazan crystals was clearly visible under the microscope,, the 

total volume of each well was discarded by aspiration. Subsequently, 100 µl detergent solution 

was added to all the wells, and the plates were covered and incubated at RT on a shaker for 10 

min in the dark.  

Cell proliferation assay 

Cell proliferation was assessed using a BrdU Cell Proliferation Assay Kit (Cell Signaling). The 

cells were seeded at 4 x 103 cells/well in a 96-well plate and incubated overnight at 37 °C. Cells 

were then treated with either 100 µM CAIX inhibitor (S4), 200 µM CAXII inhibitor (25), 100 

µg/ml omeprazole or 5 µM doxorubicin for 48 h. Finally, 10 µM BrdU was added to the plate, 

cells were incubated for 4 h at 37 °C, and cell proliferation was assessed following the 

manufacturer’s instruction. The assay was carried out under normoxia (21% O2). The optical 

density was recorded using Infinite® M1000 (Tecan) at a reference wavelength of 450 nm. 



Apoptosis assays 

The cells were seeded at 8 x 105 cells/well in a T-75 cm2 flask (Corning) and incubated overnight 

at 37 °C. Cells were then treated with either 100 µM CAIX inhibitor (S4) or 1 µM staurosporine 

for 24 h. Cell apoptosis was detected using a Caspase-3 Apoptosis Kit (Becton Dickinson) by a 

Gallios flow cytometer (Beckman Coulter) and analyzed by FlowJo, V 8.5.2 (Tree Star). 

Caspase 3/7 activity was determined using a Caspase-Glo 3/7 assay kit (Promega, UK) according 

to the manufacturer’s protocol. Briefly, the cells at 4 x 103 cells/well in an opaque-walled 96-well 

plate were incubated overnight at 37 °C. The cells were then treated with either 100 µM CAIX 

inhibitor (S4), 200 µM CAXII inhibitor (25), 100 µg/ml omeprazole or 1 µM staurosporine for 

24 h. Then, 100 µl Caspase-Glo 3/7 reagent was added to the wells. The plates were gently 

shaken and then incubated in the dark at 37 °C. The generated luminescent signals were 

measured by Infinite® M1000 (Tecan). The apoptotic assays were performed under normoxia 

(21% O2). 

Necrosis assay 

Necrosis induction was evaluated using the RealTime-Glo Annexin V Apoptosis and Necrosis 

Assay (Promega) according to the manufacturer’s instructions. Briefly, the cells were seeded at 

10 x 103 cells/well in an opaque-walled 96-well plate and incubated overnight at 37 °C. The cells 

were then treated with either 100 µM CAIX inhibitor (S4), 200 µM CAXII inhibitor (25), 100 

µg/ml omeprazole or 50 µg/ml digitonin and, at the same time, 100 µl 2X Detection reagent was 

added. The plates were incubated in the dark at 37 °C. The assay was carried out under normoxia 

(21% O2). This assay is based on a fluorescent dye that is internalized in the cells when the cell 

membrane is compromised. The generated fluorescent signals at 485nmEx/530nmEM were 

measured by Infinite® M1000 (Tecan) after 48 h and 72 h of treatment. 



HCC tumor dissociation 

HCC tissues were enzymatically and mechanically digested using the gentleMACS Dissociator 

(Miltenyi). Briefly, tumor specimens were minced under sterile conditions into small pieces and 

digested for 1 h at 37 °C following the gentleMACS Dissociator protocol (Miltenyi). The 

obtained cell suspension was filtered through a 70-µm mesh (BD Biosciences), the red blood 

cells were lysed, and the cell suspension was washed with RPMI 1640. The cells were stored in 

liquid nitrogen until use.  

Western blotting 

HCC cell lines exposed to either normoxia (21% O2) or hypoxia (1% O2) were lysed in modified 

RIPA buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 5 mM EDTA, 1% Nonidet P-40) in the 

presence of protease Inhibitors (Roche), 1 mM Na3VO4 and 1 mM PMSF. Protein samples were 

boiled in NuPAGE LDS sample buffer (Invitrogen) and separated on NuPAGE Novex 10% Bis-

Tris gels (Invitrogen) in MES running buffer (Invitrogen), and then transferred onto 

nitrocellulose filters and immunoblotted with the appropriate antibodies. The monoclonal mouse 

anti-human antibodies were directed against the following antigens: CAIX (clone M75, IgG2b, 

1:2000 dilution, BioScience), vinculin (1:10000 dilution, cat. no.: V4505, Sigma-Aldrich) and α-

tubulin (1:6000 dilution, cat. no.: T5168, Sigma-Aldrich). Rabbit monoclonal anti-human 

antibodies were directed against the following antigens:  CAXII (clone D75C6, IgG, 1:500 

dilution, cat. no.: 5864, Cell Signaling), β-actin (1:1000 dilution, cat. no.: A2066, Sigma-

Aldrich), V-type proton ATPase subunit a isoform 1 (1:1000, cat. no.: HPA022144, Sigma-

Aldrich), and V-type proton ATPase subunit C isoform 1 (1:1000, cat. no.: HPA023943, Sigma-

Aldrich). The immuno-reactive bands were visualized using horseradish peroxidase (HRP)-

conjugated secondary antibodies (Sigma-Aldrich), and the intensity of the signal was evaluated 

after incubation of the membranes with the HRP substrate (ECL Western Blotting Detection 



Reagent, Amersham) followed by exposure of the membranes to autoradiography film 

(Hyperfilm MP, Amersham Biosciences) and development using an automatic developer (Curix 

60, AGFA). 

Statistical analysis 

Statistical analyses were performed with GraphPad Prism Software (GraphPad). Spearman 

correlation analysis was performed on gene expression data (∆Ct=Cttarget gene-CtGAPDH) for 

HIF1A, CA9, ATP6V0A1, ATP6V1C1 and ATP6V1H in 57 liver tissues analyzed by qRT-PCR. 

One-way analysis of variance (ANOVA) followed by Dunnett correction was used to evaluate 

the statistical significance of the impact of  S4, compound 25 and omeprazole on cell viability, 

BrdU incorporation, apoptosis and necrosis.  

 



SUPPLEMENTARY TABLES 

Table S1. Chemical details of selective CAXII inhibitors 

Compounda Structure FW 
Ki (nM) 

hCA IX hCA XII 

12 

 

291.30 > 50 000 2 520 

16 

 

323.37 > 50 000 2 540 

18 

 

301.32 > 50 000 1 780 

19 

 

346.31 > 50 000 970 

20 

 

346.31 > 50 000 2 010 

25 

 

322.34 > 50 000 250 

Note: a  These compounds were provided by Professor CT Supuran’s group; 
solubility in DMSO. FW: formula weight. 



Table S2. Panel of gene expression assays  

Gene name Gene symbol RefSeq (NM) Assay IDa Amplicon 
length 

Protein name 

ATPase H+ transporting V0 
subunit a1  

ATP6V0A1 NM_001130020.1 
NM_001130021.1 
NM_005177.3 

Hs00193110_m1 62 V-ATPase subunit a isoform 1 

ATPase H+ transporting V1 
subunit A1 

ATP6V1A1 NM_001690.3 Hs01097169_m1 66 V-ATPase subunit A isoform 1 

ATPase H+ transporting V1 
subunit C1 

ATP6V1C1 NM_001695.4 Hs00940702_m1 67 V-ATPase subunit C isoform 1 

ATPase H+ transporting V1 
subunit H 

ATP6V1H NM_015941.3 
NM_213619.2 
NM_213620.2 

Hs00977521_m1 103 V-ATPase subunit H 

cadherin 1 CDH1 NM_001317184.1 
NM_001317185.1 
NM_001317186.1 
NM_004360.4 

Hs01023894_m1 61 cadherin 1 

carbonic anhydrase 9 CA9 NM_001216.2 Hs00154208_m1 78 CAIX 

carbonic anhydrase 12 CA12 NM_001218.4 
NM_206925.2 

Hs01080902_m1 60 CAXII  

c-c motif chemokine ligand 22 CCL22 NM_002990.4 Hs01574247_m1 88 C-C motif chemokine 22 

glyceraldehyde-3-phosphate 
dehydrogenase 

GAPDH NM_001289746.1 
NM_002046.5 

Hs99999905_m1 122 Glyceraldehyde-3-phosphate 
dehydrogenase 

interleukin 6 IL6 NM_000600.4 Hs00985639_m1 66 interleukin-6 

interferon gamma IFNG NM_000619.2 Hs00989291_m1 73 Interferon gamma 

v-myc avian myelocytomatosis 
viral oncogene homolog 

MYC NM_002467.4 Hs00153408_m1 107 Myc proto-oncogene protein 

tumor necrosis factor TNF NM_000594.3 Hs00174128_m1  tumor necrosis factor 

vimentin VIM NM_003380.3 Hs00958111_m1 
 

65 vimentin 

Note: a TaqMan® Gene Expression Assays purchased from Thermo Fisher Scientific 

  



Table S3. Antibodies used for immunohistochemistry (IHC)/immunofluorescence (IF) analysis  
Antibody Clone Isotype Company Dilution Antigen retrieval 

Primary antibodies:       
β-catenin 6B3 rabbit monoclonal IgG Cell Signaling 1:200 

IHC/1:20 IF 
EDTA buffer 15 min 

Calnexin 1C2.2D11 mouse monoclonal IgG2b 
k 

Novus Biological 1:200 IF EDTA buffer 15 min 

CAIX M75 mouse monoclonal IgG2b BioScience 1:100 IHC EDTA buffer 15 min 
CAXII D-2 mouse monoclonal IgG1 Santa Cruz 

Biotechnology 
1:50 IHC/1:5 
IF 

EDTA buffer 15 min 

CD3 PS1 mouse monoclonal IgG2a Abcam 1:50 IHC/1:10 
IF 

Citrate buffer 15 min 

CD14 7 mouse monoclonal IgG2a Thermo Fisher Scientific 1:50 IHC EDTA buffer 20 min 
CD34 QBEnd-10 mouse monoclonal IgG1 Dako 1:100 IHC Citrate buffer 15 min 
CD68 KP1 mouse monoclonal IgG1 

k 
Leica Microsystems 1:200 IHC EDTA buffer 10 min 

CD163 10D6 mouse monoclonal IgG1 Leica Microsystems 1:100 
IHC/1:10 IF 

Citrate buffer 15 min 

CD209 DCN46 mouse monoclonal IgG2b BD 1:20 IHC/1:10 
IF 

Citrate buffer 15 min 

V- ATPase subunit a 
isoform 1 

/ rabbit polyclonal Sigma-Aldrich 1:200 
IHC/1:20 IF 

EDTA and Triton buffer 
15 min  

V- ATPase subunit C 
isoform 1 

/ rabbit polyclonal Sigma-Aldrich 1:200 IHC EDTA buffer 15 min 

V- ATPase subunit H  / rabbit polyclonal Novus Biological 1:50 IHC/IF EDTA buffer 15 min 

Note: /, not available 



 

Table S4. Flow cytometry antibodies  
Marker Clone Isotype Company 
CAIX M75 mouse monoclonal 

IgG2b 
BioScience 

CAXII D-2 rabbit monoclonal IgG Cell Signaling 
CCL22 57203 mouse monoclonal 

IgG2b 
R&D Systems 

CD3 UCHT1 mouse monoclonal IgG1 Beckman Coulter 
CD11b Bear1 mouse monoclonal IgG1 Beckman Coulter 
CD14 MϕP9 mouse monoclonal 

IgG2b k 
BD Biosciences 

CD45 H130 mouse monoclonal IgG1 
k 

BD Biosciences 

CD163 6H1/61 mouse monoclonal IgG1 
k 

BD Biosciences 

CD209 DCN46 mouse monoclonal 
IgG2b 

BD Biosciences 

IFNγ 4S.B3 mouse monoclonal IgG1 Biolegend 
TNF Mab11 mouse monoclonal IgG1 BD Biosciences 
V-type proton ATPase subunit a 
isoform 1 

/ rabbit polyclonal Santa Cruz 
Biotechnology 

Secondary antibodies:    
goat anti-mouse  
 
 

/ polyclonal IgG Dako 

goat anti-rabbit  / polyclonal IgG H+L Thermo Fisher 
Scientific 

Note: /, not available 
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Supplementary Figure S1. Correlations between pH regulatory molecules under hypoxia in 

liver tissues.  HIF1A/CA9, ATP6V0A1/ATP6V1C1, ATP6V0A1/ATP6V1H and 

ATP6V1C1/ATP6V1H correlations were analyzed by Spearman’s correlation test in non-tumor 

and tumor liver tissues (n=57). The R values, Spearman’s correlation coefficient, and p-values 

are reported. 

  



 

 

Supplementary Figure S2. Cell surface expression of CAXII in in situ breast cancer tissues. 

(A) Immunohistochemical staining for CAXII expression in in situ breast cancer tissues. 

Membranous staining of CAXII was detected in breast tumor cells. Representative image with 

scale bar = 100 µm. (B) Confocal laser scanning micrographs of immunofluorescent staining 

with anti-CAXII (green) and anti-β-catenin (red). Nuclei were stained with Toto-3 (blue). CAXII 

co-localized with β-catenin in the membrane of breast tumor cells as indicated by the yellow 

staining. Representative image with scale bar = 50 µm. 

  



 

 

Supplementary Figure S3. Gene expression of CAIX and CAXII in HCC cell lines cultured 

under normoxic and hypoxic conditions. HCC cell lines were grown under normoxic (N=21% 

O2) or hypoxic (H=1% O2) conditions for 72 h. The mRNA levels of CA9 and CA12 were 

evaluated in the indicated HCC cell lines and reported as the relative quantity (RQ) using cells 

exposed to normoxia as calibrators. The p-values reported in the graphs were calculated using 

the paired t test.  

  



 

 

Supplementary Figure S4. CAXII expression and functional activity in the breast cancer 

cell line T-47D. (A) Screening of the biological activity of CAXII inhibitors in limiting the 

tumor growth of the T-47D cell line was assessed by the MTT assay. The T-47D cells were 

treated with 100 µM (dark columns) and 50 µM (gray columns) of the different CAXII inhibitors 

(compounds 12, 16, 18, 19, 20 and 25). The data are expressed as the mean values of six 

replicates. The chemical structures of these compounds are reported in Table S1. (B) The cell 

surface expression of CAXII was evaluated by flow cytometry in T-47D cells. Representative 

histograms from three independent experiments are shown.  

  



 

 



 

Supplementary Figure S5. Mechanisms of drug-induced cell death in HCC cell lines. HCC 

cell lines were exposed to either 100 µM CAIX inhibitor (S4), 200 µM CAXII inhibitor 

(compound 25) or 100 µg/ml omeprazole and subjected to evaluation of (A) cell viability (MTT 

assay, OD: optical density), (B) proliferation (BrdU incorporation assay, OD: optical density), 

(C) apoptosis in compound 25 and omeprazole drug-treated cells (caspase 3/7 activity, RLU: 

relative luminescence units) and (D) apoptosis in S4-treated cells (percentage of cells positive for 

activated caspase 3 evaluated by flow cytometry). Measurement of caspase 3/7 activity was not 

feasible in S4-treated cells due to the interference of S4 with the enzymatic assay of the test. (E) 

Necrosis (fluorescence emission upon internalization of a specific dye, RFU: relative 

fluorescence units). Data are the mean of 3 replicates ±SD. Cell viability, BrdU incorporation, 

apoptosis and necrosis were evaluated after 48 h, 24 h, 48 h and 72 h of drug treatment, 

respectively. As positive control compounds, 5 µM doxorubicin, 1 µM staurosporine and 50 

µg/ml digitonin were used to evaluate the BrdU incorporation, apoptosis and necrosis 

respectively. *p<0.05, **p<0.01 and ***p<0.001 values were calculated using one-way analysis 

of variance (ANOVA) followed by Dunnett correction comparing cells treated with the drugs or 

the vehicle.  

  



 

 

Supplementary Figure S6. Expression of V-ATPase subunit H in malignant hepatocytes of 

HCC. Representative immunohistochemical staining for the V-ATPase subunit H which was 

found in 4 of the 23 HCC tissues analyzed. The H subunit displayed an intracellular expression 

pattern, suggesting its accumulation in the Golgi of malignant hepatocytes. Scale bars=100 µm. 

  



 

 

Supplementary Figure S7. Confocal microscopy of V-ATPase a1 in CD209+ myeloid cells 

and in CD3+ T cells. Immunofluorescence staining for a1 subunits of the V-ATPase complex 

(red), CD209 (green) (A) and CD3 (green) (B) of the HCC peri-tumor area. Nuclei were stained 

with Toto-3 (blue). Additional representative images of the case reported in Fig. 5 are reported 

here. White triangles indicate the co-expression of the analyzed markers.  Scale bars=25 µm.  

  



 

 

Supplementary Figure S8. Omeprazole treatment of HCC cell lines exposed to either 

normoxia or hypoxia. The HCC cell lines grown under normoxia (N=21% O2, black triangles) 

or hypoxia (H=1% O2, white triangles) were treated with different doses of omeprazole for 72 h. 

The cell viability was evaluated using the MTT assay. The data on the y-axes report the 

percentage of viable cells of the untreated control and represent the mean of 6 replicate reactions 

from 3 independent experiments. 
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