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Abstract 

The evolutionarily conserved signalling intermediate in the toll pathway (ECSIT) is a 50 

kDa protein involved in the function of many pathways and implicated in a variety of 

phenotypes. It functions as part of the toll pathway by integrating the signal from several 

toll receptors and facilitating the activation of downstream proteins NFКB, JNK and P38 

MAPK. It functions as part of the bone morphogenetic protein pathway through 

interaction with SMAD4 allowing for normal embryonic development. It also functions 

as a mitochondrial complex I assembly factor and loss of function leads to a reduction in 

fully assembled complex I.  

As part of a large scale ENU mutagenesis screen, The Harwell Ageing Screen, a novel 

missense mutation (N209I) was identified in ECSIT which resulted in a hypertrophic 

cardiomyopathy phenotype in homozygous mutant animals.  

Further investigation revealed this phenotype to be a result of a loss of function in 

ECSIT’s role as a complex I assembly factor. Mitochondria from EcsitN209I/N209I hearts 

showed a reduction in total complex I protein as well as a loss of enzymatic activity and 

fully assembled complex I.  Interestingly, this mitochondrial dysfunction was limited to 

the heart with other tissues maintaining protein levels and complex I function at or close 

to wild type levels, suggesting that there may be tissue specific differences in the 

complex I assembly pathway.  Investigation of the assembly pathway using first and 

second dimensional blue native PAGE suggests that this tissue specific pathway may 

involve the formation of a previously undescribed fragment of ECSIT that is present in 

heart tissue but absent from other tissues tested, is associated with fully assembled 

complex I in wild type mitochondria but absent in EcsitN209I/N209I hearts. 
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Chapter 1: Introduction 
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1.1. Mitochondria 

Mitochondria are present in almost all eukaryotic cells where their primary role is the 

production of ATP (adenosine triphosphate) as an energy source for other cellular 

processes. Mitochondria themselves are double membrane bound organelles that are 

believed to have evolved from gram-negative bacteria roughly 2 billion years ago. 

Through an endosymbiotic relationship with a eukaryotic ancestor, they have gradually 

lost the majority of their genome and transformed into the organelle that we study 

today [1].   

In the human heart, mitochondria occupy as much as 30% of the myocardial volume [1] 

and are responsible for producing energy in the form of around 300mg of ATP for every 

beat [2].  

1.1.1. Structure and function 

Mitochondria are tubular structures, typically about 0.1-0.5µm across, consisting of an 

outer and inner membrane each with their own unique properties [3]. The outer 

membrane is typically smooth in appearance and is permeable to molecules up to 

approximately 5kDa in size allowing for the natural diffusion of many molecules such as 

ADP, ATP, ions and small proteins [4]. Whilst the outer membrane is composed mainly 

of a phospholipid bilayer, the inner membrane has a higher proportion of proteins and 

in addition to phospholipids contains the mitochondrial specific lipid, cardiolipin [5-7]. It 

is the specific properties of cardiolipin that allows the inner membrane to fold and form 

invaginations known as cristae. These are the main sites of the oxidative 

phosphorylation (OXPHOS) machinery [7, 8]. 

The arrangement of the two membranes results in the formation of two spaces within 

the mitochondria. The first, between the two membranes, is the inter membrane space 

(IMS) and is essential for the mitochondria to perform OXPHOS as it forms a 

compartment into which protons are pumped, allowing for the establishment of a 

proton gradient. The other is the space enclosed by the inner membrane, referred to as 

the mitochondrial matrix which houses the mitochondrial DNA, and is the site of the 

tricarboxylic acid (TCA) cycle [8].  
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Despite their similarities in membrane structure, mitochondria are capable of taking on 

a variety of appearances, from small filamentous or punctate units, to large networks 

spanning a cell. There are also a variety of mitochondrial subpopulations that may take 

on different metabolic profiles or roles within a cell. In both skeletal and cardiac muscle 

these are grouped into subsarcolemmal (SS), intermyofibrillar (IMF) and perinuclear 

(PN) populations (Figure 1.1) [9-11].  

As the name would suggest, perinuclear mitochondria cluster around the nucleus and 

are thought to be involved in transcription and translation. Intermyofibrillar 

mitochondria have a small and compact structure and are organised in rows between 

muscle fibres in order to provide energy to the contractile machinery [12, 13]. Finally, 

subsarcolemmal mitochondria are slightly larger in appearance and sit immediately 

adjacent to the sarcolemma. They are slightly larger in size and demonstrate less 

organisation [9, 13]. There is evidence to suggest that there are considerable differences 

in SS and IMF mitochondrial metabolism, but that this is dependent on the muscle fibre 

type and health of the tissue in question [9]. 

 

Figure 1.1. A transmission electron micrograph of adult mouse cardiac tissue showing three distinct 

subpopulations of mitochondria: Subsarcolemmal (SM), intermyofibrillar (IM) and perinuclear (PN) with 

myofibrils (m) and nucleus (n) for reference points. Adapted from Piquereau et al. (2013) [13]. 
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1.1.2. Biogenesis 

The generation of new mitochondria in response to exercise or disease requires a 

complex system of regulatory control necessitated by the two genome nature of the 

mitochondria, especially of the complexes that drive oxidative phosphorylation. In total, 

mitochondrial biogenesis requires the expression and import of over 1000 proteins 

encoded by nuclear DNA [14]. Biogenesis is triggered by the action of a number of 

proteins and compounds (Figure 1.2) that sense a variety of situations throughout the 

cells and tissues of the body. Chief among these is AMPK, which is tasked with 

monitoring cellular energy levels and responding when the ATP/AMP ratio falls [15]. 

Some further key pathways involved are the generation of nitric oxide (NO) [16], 

increased expression of sirtuin 1 (SIRT1) [17], and through the action of TORC (target of 

rapamycin complex) [18], amongst others.  

The expression of the various genes required for mitochondrial biogenesis is under the 

control of a dedicated set of transcription factors (Figure 1.2). Amongst these are those 

responsible for direct regulatory control of the OXPHOS chain: nuclear respiratory 

factors 1 and 2 (NRF1 and NRF2) [19, 20], estrogen related receptor (ERRα) [21], and YY1 

[22]. In addition, ERRα and peroxisome proliferator activated receptor α (PPARα) assist 

in mitochondrial biogenesis through the regulation of the oxidation of fatty acids [23, 

24]. 

In common control over all of these transcription factors is the master regulator of 

mitochondrial biogenesis, PGC1α (peroxisome proliferator-activated receptor gamma 

coactivator 1α) (Figure 1.2). PGC1α was first identified as being key to mitochondrial 

biogenesis in brown adipose tissue where its expression is elevated in response to cold, 

leading to increased expression of respiratory chain proteins and mitochondrial DNA 

[25]. It is known to interact with the transcription factors mentioned above, enabling 

the expression of nuclear genes key for mitochondrial construction. Over expression of 

PGC1α leads to elevated mitochondrial content in both cultured cells and mouse tissues 

whilst knockdown animals show a mild OXPHOS defect phenotype under stable 

conditions but demonstrate severe phenotypes when exposed to challenges such as 

cold or exercise [26].  
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Figure 1.2. Network of key interactions showing how PGC1α acts as a master regulator over mitochondrial 

biogenesis and how control is maintained over it by proteins such as AMPK and SIRT1.  

1.1.3. The Electron Transport Chain 

The primary source of ATP production is oxidative phosphorylation (OXPHOS), which 

takes place on the mitochondrial inner membrane. OXPHOS links oxygen consumption 

with the transfer of electrons from NADH (Nicotinamide adenine dinucleotide) to O2 

through the mitochondrial electron transport chain (ETC) (Figure 1.3), a set of 5 protein 

complexes encoded by both nuclear and mitochondrial DNA (mtDNA), that allow for the 

establishment and utilisation of a H+ ion gradient across the mitochondrial inner 

membrane [27].  

The degree to which each complex is encoded by mitochondrial or nuclear DNA varies. 

Complex I (NADH:ubiquinone oxidoreductase) has 44 subunits of which 7 are encoded 

by mitochondrial DNA (mtDNA)[28]. Complex II (succinate dehydrogenase), III (ubiquinol 

cytochrome c reductase) and IV (cytochrome c oxidase) are smaller in size and comprise 

of 5, 11 and 13 subunits each, with only complexes III and IV having mtDNA encoded 

subunits (1 and 3 respectively) [29]. Complex V (F1F0 ATP Synthase) is a complex 
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molecular motor comprising of 16 subunits of which 2 are mitochondrially encoded [30, 

31]. The detail of the origin of each complex and their role in the electron transport 

chain is explored in more detail below.  

Figure 1.3. A schematic of the mitochondrial electron transport chain demonstrating proton movement 

and the subunits and structure of the individual transport chain complexes [32]. 

1.1.3.1. Complex I (NADH:Ubiquinone Oxidoreductase) 

Mammalian Complex I utilises a flavin mononucleotide (FMN) and its hydrophobic 

domain to oxidise NADH (Nicotinamide adenine dinucleotide). NADH in its reduced form 

is produced by the citric acid cycle and β-oxidation, and its oxidation to NAD+ allows 

these other processes to continue to function normally. As a result of the oxidation of 

NADH, complex I is left with two electrons which it passes through a series of eight iron-

sulphur (Fe-S) centres, acting as a series of electron acceptors and donors, ultimately 

donating the electrons to ubiquinone, reducing it to ubiquinol. The process of oxidising 

NADH to NAD+ and reducing ubiquinone is coupled to the translocation of four H+ ions 

across the mitochondrial inner membrane, beginning the establishment of a proton 

gradient [33, 34]. 

As mentioned earlier complex I is roughly 1mDa in size and consists of 44 proteins. 14 of 

these proteins are the ‘core’ subunits and form the overall ‘L’ shaped structure 

consisting of two roughly equal in size arms, one extending into the mitochondrial matrix 

and the other contained within the inner mitochondrial membrane. Of these 14 

proteins, 7 (ND1, ND2, ND3, ND4, ND4L, ND5 and ND6) are mitochondrially encoded, 

and 7 (NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS7 and NDUFS8) are nuclear 

encoded [35, 36].  
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The remaining 30 proteins are known as the accessory subunits and are thought to 

contribute to the stabilisation and regulation of the complex [37, 38]. It is the matrix arm 

that contains the 9 co-factors (FMN and 8Fe-S) that are responsible for the electron 

transport from NADH to ubiquinone. The FMN sits at the tip of the matrix arm whilst the 

Q domain resides at the apex of the ‘L’ shape. The 7 subunits of the membrane arm are 

then responsible for the transport of the 4 protons across the membrane. This is thanks 

to the formation of four proton transfer routes, one in each of ND2, ND4 and ND5 and 

a fourth through the interaction of ND1, ND4L and ND6[39].  

1.1.3.2. Complex II (Succinate Dehydrogenase) 

The oxidation of succinate to fumarate is performed by complex II as part of the citric 

acid cycle. This reaction occurs on the mitochondrial inner membrane and allows for 

electrons to be passed to ubiquinone via the flavin-adenine dinucleotide (FAD), three 

Fe-S centres ([2Fe-2S], [4Fe-4S] and [3Fe-4S]) and heme. However, complex II does not 

contribute to the establishment of the H+ ion gradient [40, 41]. Structurally, complex II 

is homologous to a protein that performs the reverse role in bacteria during anaerobic 

respiration, fumarate reductase [40] and in fact the two are interchangeable.  Complex 

II contains 4 subunits, 2 of which are hydrophobic and act as membrane anchors, with 

the remaining 2 being hydrophilic and act as a binding site for the cofactor FAD and the 

catalytic centre for the reduction of succinate [42, 43].  

1.1.3.3. Complex III (CoQH2-Cytochrome C Reductase) 

Ubiquinone, having been reduced by complexes I and II to ubiquinol, now undergoes 

oxidation by complex III in a process known as the ‘Q’ cycle, which passes the liberated 

electrons from ubiquinol to cytochrome C [44]. The ‘Q’ cycle consists of two reactions, 

the first involves the oxidation of ubiquinol to a semi-quinone, the second oxidises the 

newly formed semi-quinone to ubiquinone. The 2-step process results in the reduction 

of cytochrome C and the release of 4 H+ ions into the inter membrane space, further 

contributing to the established H+ ion gradient [45, 46]. Structurally, complex III contains 

11 subunits and spans the inner mitochondrial membrane, with the membrane portion 

consisting of 4 subunits, the transmembrane of 4 and the intermembrane portion of the 

remaining 3[44].   
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1.1.3.4. Complex IV (Cytochrome C Oxidase) 

The final step in the electron transport chain is the oxidation of cytochrome C and the 

passing of the electrons to oxygen to allow its reduction to water [47].  The process 

begins with the acceptance of 2 electrons from cytochrome C and the breaking of the 

O2 molecule’s bond; this, when coupled with the uptake of 2 H+ ions from the 

mitochondrial matrix, forms the first water molecule. The second is formed in a similar 

fashion, with the process also being linked to the translocation of 4 further H+ ions across 

the inner membrane [48]. Structurally, complex IV is a large integral membrane protein 

consisting of 13 subunits with 2 heme sites and 2 copper sites that are active in the 

transfer of electrons from cytochrome C to oxygen [49]. 

1.1.3.5. Complex V (ATP Synthase)  

The first 4 complexes of the electron transport chain allow for the establishment of the 

H+ ion gradient across the mitochondrial inner membrane. ATP synthase, or complex V, 

uses this electrochemical gradient to convert ADP into ATP [50, 51]. ATP synthase is 

comprised of an F1 and an F0 subunit. The F1 subunit is entirely nuclear encoded and 

comprises of 9 subunits (α3β3γδε) which sit in the mitochondrial matrix and catalyse the 

conversion of ADP to ATP via a rotary mechanism powered by the F0 subunit [52-55]. 

The F0 subunit is made up of: a main ‘C’ ring comprised of 8 identical protein subunits; a 

peripheral stalk of subunits b, d, F6 and OSCP; and a number of membrane associated 

proteins, e, f, g and A6L [53]. It is the main C ring that acts as a rotational motor powering 

the synthesis of ATP through the F1 subunit. Protons pass through the C ring at a rate of 

8 protons per cycle causing a rotational force to be exerted through the central stalk 

(γδε) of the F1 subunit. This rotational motion powers the catalytic activity of the β3  

subunits, producing 3 ATP molecules per cycle, a rate of 2.7 protons per ATP [56].  

1.1.3.6. Super-complexes 

Relatively small proportions of mitochondrial OXPHOS complexes actually exist as 

isolated complexes in the inner membrane. Most form large super molecules known as 

‘super-complexes’ or ‘respirasomes’, binding together with other respiratory complexes 

to improve efficiency of the OXPHOS machinery and improve complex stability [57]. This 

improved efficiency is thought to come from the ability of the super-complexes to 

perform substrate channelling, the passing of a reduced substrate directly from one 
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catalytic site to the next where it is immediately re-oxidised, thereby removing the delay 

associated with diffusion of the substrate [58].   

In mammalian systems these super-complexes are formed by the interactions between 

complexes I, III and IV in various stoichiometry. Complex II is rarely seen interacting with 

the other complexes in this manner whilst complex V is known to form homodimers that 

may closely interact with other super-complexes without acting as a constitutive 

component [57].  

The most common arrangements found in mammalian systems are; a single complex I 

associated with a complex III dimer (I + III2), a complex III dimer associated with 1 or 2 

complex IV units (III2 + IV1-2), and a single complex I associated with both a complex III 

dimer and a variable number of complex IV units (I + III2 + IV1-4) [59]. Super-complex 

formation may also include the integration of accessory subunits such as ubiquinone 

and cytochrome C, which are essential partners in the substrate channelling process. 

Evidence suggests that ubiquinone is an essential component of I + III2 + IV1-4, resulting 

in 2 pools of ubiquinone in the mitochondria; that which is bound in super-complexes 

and undergoes rapid reduction and oxidation, and that which is free and seemingly plays 

little role in the OXPHOS process. In contrast, cytochrome C may or may not be 

incorporated into the super-complex and as a result, fast or slow interactions may occur 

between complexes III and IV and bound or unbound cytochrome C (Figure 1.4) [60].  
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Figure 1.4. The 3 main super-complex formations identified in mammalian mitochondria, demonstrating 

the primary substrates and the fast and slow interactions with cytochrome C. A – supercomplex of I, III 

and IV with or without cytochrome C, and electrons being passed between various supercomplex 

formations. B - supercomplex of I and III, passing electrons to individual complex IV units. C – Electrons 

entering through complex II passed to various complex III and IV supercomplex arrangements [60]. 

The formation of the I + III2 + IV1-4 super-complex confers a significant advantage over 

the free complexes in that it not only allows for substrate channelling but the interaction 

of the complexes also appears to induce conformational changes that improve the 

efficiency of the individual complexes. In fact, super-complex formation may be an 

essential aspect of the OXPHOS machinery, as there is evidence to suggest that it is 

required for the stabilisation of complex I. Studies have shown that patients with 

mutations in complex III subunits also exhibit complex I deficiency. These studies 

demonstrated that in these patients, complex I was formed normally but demonstrated 

a reduced stability and ultimately a loss of function [61, 62]. It was also demonstrated 

that whilst complex III was essential for complex I stability, the reverse was not true [61]. 

Complex IV and cytochrome C were also revealed to be required for complex I stability, 
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indicating that it is the formation of a complete respirasome that confers complex I 

stability, and not the interaction with any one other complex [63, 64]. 

As with the individual complexes, assembly of super-complexes requires the assistance 

of assembly factors. As the field is fairly nascent, most of what is known comes from 

work on yeast species, with two assembly factors, RCF1 (respiratory complex factor 1) 

and RCF2 (respiratory complex factor 2), being identified. A study conducted by Chen et 

al. (2012) [65], compared the role of RCF1 to its human homologue HIG2A (HIG1 domain 

family member 2A), by knocking down the latter using siRNA in mammalian cells. This 

work  showed that loss of HIG2A protein resulted in a failure to assemble all super-

complexes[65]. Additionally, work by Jian et al. [66] has implicated the mitochondrial 

scaffold proteins PHB1 and PHB2 as super-complex assembly factors. By knocking down 

either of these proteins in HeLA cells using siRNA a reduction in super-complex 

formation was observed, coupled with elevated ROS production [66].  

Whist the role of super-complexes is still poorly understood it is becoming clear that 

their formation is an essential step in the establishment of a functional OXPHOS system 

and not just a convenient means to improve catalytic efficiencies.  

1.1.3.7. Complex I Assembly Factors 

As is detailed further in section 1.1.3.8, complex I assembly is an intricate process that 

requires the assistance of a large number of assembly factors that are not themselves 

incorporated into the final functional complex. To date at least 13 complex I assembly 

factors have been identified in mammalian systems. However, the actual function of 

these assembly factors is still unknown, it is hypothesised that they may act as 

chaperones, stabilising the intermediate assembly steps to allow the process to continue 

unhindered [67, 68]. 

The mitochondrial complex I assembly (MCIA) complex is formed from 5 of these 

assembly factors and is involved in the early assembly of the PP-b subcomplex. The 4 

core proteins in the MCIA are NDUFAF1 (NADH:ubiquinone oxidoreductase complex 

assembly factor 1), ECSIT (evolutionarily conserved signalling intermediate in toll 

pathway), ACAD9 (acyl-coA dehydrogenase  family member 9), and TMEM126B 

(transmembrane protein 126B) with possible involvement from TIMMDC1 (translocase 

of inner mitochondrial membrane domain containing 1) [69, 70]. This complex 
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assembles on the inner membrane with TMEM126B acting as the membrane anchor. 

ECSIT and NDUFAF1 bind to TMEM126B and are joined in turn by a dimer of ACAD9. It 

is then thought that this 4 protein complex interacts with TIMMDC1 prior to any complex 

I interaction [68]. The formation of this complex precedes the binding of complex I 

constituent proteins and appears to be an initiation step for the process of assembling 

membrane arm of complex I. 

Other assembly factors of the membrane arm of complex I include FOXRED1 (FAD 

dependant oxidoreductase containing 1), TMEM70 (transmembrane protein 70) and 

ATP5SL (ATP synthase subunit s-like protein) however, the function of these proteins 

remains poorly understood [71, 72].  

Evidence also suggests that the proteins COA1 (cytochrome c oxidase assembly factor 1 

homolog) and TMEM186 (transmembrane protein 186) play a role in the assembly of 

the membrane arm, however this role appears to be more transient than that of the 

proteins in the MCIA complex. These proteins were identified interacting with sub-

assemblies of the proximal portion of the membrane arm (PP-a) but were not identified 

in larger subassemblies incorporating both the membrane and matrix arms (Q/P) where 

members of the MCIA could still be seen [72, 73]. 

In addition to assembly factors of the membrane arm, there are a number of assembly 

factors associated with the matrix arm. Amongst these, NDUFAF2  (NADH:ubiquinone 

oxidoreductase complex assembly factor 2), NDUFAF3 (NADH:ubiquinone 

oxidoreductase complex assembly factor 3) and NDUFAF4 (NADH:ubiquinone 

oxidoreductase complex assembly factor 4) have been linked with mutations in patients 

resulting in deficiencies of complex I levels and activity [74-76]. NDUFAF2 has been 

shown to interact with the N module of complex I and mutations lead to an 

accumulation of the matrix arm structural subunits, indicating a role in the late stages 

of complex I assembly [77, 78]. Evidence suggests that NDUFAF3 is involved earlier in 

the assembly process as mutations do not lead to obvious accumulations of the matrix 

arm as was seen with NDUFAF2 [76]. Mutations in NDUFAF4 lead to accumulation of 

both large and small subassemblies, indicating that it may work in tandem with both 

NDUFAF2 and NDUFAF3 at both early and late stages of matrix arm formation [75] 
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Finally, there are assembly factors that appear not to be involved in the assembly of the 

structural aspect of complex I but with modifications of subunits, or in delivering the Fe-

S clusters to the complex. NUBPL is an iron-sulphur protein with an N terminal 

mitochondrial localisation signal. Through interactions with its CXXC domain, Fe-S 

clusters may be transported into the mitochondria and delivered to complex I where 

they are incorporated into key subunits. Knocking down the NUBPL protein in human 

cells results in the accumulation of matrix arm subassemblies and a reduction in the 

levels of iron incorporated into complex I [79, 80].  

Much is still to be gleaned about the mechanism of complex I assembly factors although 

there is little doubt that their role is absolutely essential. It is likely that there are more 

assembly factors yet to be discovered and there remains the possibility that there are 

tissue specific assembly factors that remain elusive. It is also probable that some 

redundancy exists in the system, given its essential nature.  

1.1.3.8. Complex I Assembly 

Given complex I’s size, complexity and two genome nature it is unsurprising that its 

assembly is an intricate process which we are only beginning to come to understand the 

detail of. As mentioned previously, complex I contains 44 subunits, 7 of which are 

encoded by the mitochondrial genome and the remaining by the nuclear genome. 

Involved in its assembly are at least 14 assembly factors which are not thought to 

comprise part of the final structure but are essential in the intervening steps between 

isolated proteins and functional complex [71, 72].  

The 14 core subunits are considered to be the main driving force behind complex I’s 

function but evidence suggests that many of the remaining 30 accessory subunits are 

also required for normal function either through stabilisation of the complex structure 

or through a contribution to the function of one of the modules [35, 81]. As a result, the 

assembly process has developed to ensure correct integration of both the core subunits 

as well as the seemingly essential accessory subunits.  

The assembly process proceeds in a step wise fashion with individual building blocks or 

sub-assemblies forming first before joining to form structural or functional portions of 

the complex and ultimately the complete complex. There are 4 main modules that must 

be assembled for full function: N, the NADH binding domain; Q, the quinone binding 
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domain; Pp, and PD, the proximal and distal portions of the membrane arm involved in 

proton pumping [82]. 

Guerrero Castillo et al. (2016) demonstrated that assembly begins within 4 hours of the 

induction of protein translation with the formation of the mitochondrial complex I 

assembly (MCIA) complex and its association with constitutive proteins of the Pp-b sub 

assembly, as can be seen in figure 1.5. Alongside the formation of the Pp-b unit, assembly 

of the Q/Pp-a unit begins, with the marrying of the fully assembled Q subunit with the 

adjacent segment of the Pp module. The assembly of the PD subunits was more difficult 

to observe and it was published that this module assembles in two sections, PD-a and 

PD-b, which begins around the same time as the Pp-b and Q/PP-a module formation but 

doesn’t finish until sometime later. Also at this time point, the N subunit has begun to 

form in two separate building blocks of 71 and 88kDa, these then join over the following 

2 hours to form the fully assembled N module.  

This 6-hour time point also sees the formation of a large 680kDa complex consisting of 

the Pp-b and PD-a modules as well as a 736kDa complex consisting of the Pp-b with the 

Q/Pp-a module. By 8 hours post translational induction, these two complexes have been 

replaced by a single large complex consisting of all three of the modules. These data 

suggest that the binding of PP-b with either PD-a or Q/PP-a is not a highly controlled 

process and which binding event occurs first is seemingly random. This single large 

complex (Q/P) now resembles completed complex I with the exception of the missing N 

module and some accessory subunits as well as the presence of a number of assembly 

factors. These remaining steps occur with an apparent lack of strict organisation or 

timing. By 24 hours post translational induction this process results in a significant 

amount of fully assembled and functional complex I. These fully assembled units are 

then stabilised by formation of respiratory chain super complexes through interaction 

with complexes III and IV [72]. 
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Figure 1.5. Assembly pathway of complex I demonstrating the assembly intermediates created during the 

course of assembly and the assembly factors associated with each sub-complex. Adapted from Guerrero-

Castillo et al. (2016) [72]. 
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1.1.4. Mitochondrial Processes 

1.1.4.1. Mitochondrial Fusion and Fission 

The classical view of the mitochondria as a small, rod shaped organelle isolated from its 

peers is an outdated one with little to no relevance in modern mitochondrial research. 

Instead mitochondria are viewed as a dynamic network in constant flux between 

individual punctate units and large branching networks.   

There exist two opposing processes that work in co-operation with mitophagy pathways 

to maintain functional mitochondria; mitochondrial fusion, and mitochondrial fission. 

Mitochondrial fusion is the process by which smaller units join to create large networks, 

allowing for the exchange of respiratory chain components, mitochondrial DNA and 

maintenance of membrane potential (Δψm). Mitochondrial fission is the reverse process, 

whereby networks are divided again allowing for the removal of dysfunctional portions 

or subunits.  

Fusion is governed by 3 GTPases, mitofusins 1 and 2 (MFN1 and MFN2) on the outer 

membrane and OPA1 on the inner membrane [83, 84]. MFN 1 and 2 form hetero and 

homodimers between adjacent mitochondrial subunits allowing for the fusion of the 

outer membrane. OPA1 performs a similar role on the inner mitochondrial membrane 

although evidence suggests that its expression is not required on both mitochondria for 

inner membrane fusion to occur [85]. To complicate matters, OPA1 is known to have as 

many as 8 protein isoforms in humans, with each seemingly playing slightly different 

roles in mitochondrial dynamics, mtDNA abundance, cristae formation and energetic 

efficiency. Longer isoforms appear to lend themselves to mitochondrial fusion whilst 

shorter isoforms focus on cristae structure and OXPHOS efficiency [86]. In mouse this 

number is reduced, with only 6 isoforms identified [87].  

Fission is a more complex process that involves a larger array of proteins. Key amongst 

these in the mammalian system is dynamin related protein 1 (DRP1). DRP1 is recruited 

to the outer mitochondrial membrane (OMM) where it oligomerizes and through the 

action of its GTPase domain contracts around the mitochondrial body, constricting it and 

creating a ‘pinch point’ [88]. However, as DRP1 lacks a transmembrane domain it is 

hypothesised that an adaptor protein must be present to recruit DRP1. A number of 

proteins have been implicated in this role including mitochondrial fission protein 1 
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(FIS1), mitochondrial fission factor (MFF) and mitochondrial dynamics proteins of 49 and 

51 kDa (MID49 and MID51)[83]. Zhang et al. (2016) [89] employed ASTC-a-1 cells 

exposed to UV light to induce mitochondrial fragmentation in order to dissect the 

function of a number of these proteins and proposed the following mechanism. The 

results suggest that DRP1 is dephosphorylated at the inhibitory site of Ser637 and 

migrates to the OMM where it is recruited by MFF1, which simultaneously stimulates 

the GTPase activity of DRP1. At the same time, the inhibitory effect of MID51 binding to 

DRP1 is ablated by the competitive binding of FIS1, thereby liberating DRP1. The model 

remains incomplete but offers a foundation on which future work can build.  

Ultimately the function of mitochondrial dynamics appears to be one of quality control. 

As mitochondria carry their own genome, without appropriate DNA repair mechanisms 

and in the presence of high levels of ROS (reactive oxygen species), mtDNA mutations 

can accumulate over the lifespan of an organism. In addition, mitochondrial OXPHOS 

units may become defective and membranes can become damaged leading to a loss of 

membrane potential. All of these issues, if left unchecked could lead to mitochondrially 

triggered apoptosis. Hence the exchange of mitochondrial components allows for the 

collection and removal of defective parts by mitophagy and ultimately promotes 

homeostasis [90].  

1.1.4.2. Reactive Oxygen Species Production 

Reactive oxygen species (ROS) such as superoxide (O2
-), hydrogen peroxide (H2O2) and 

hydroxyl (•OH) are primarily produced by complexes I and III as part of normal OXPHOS 

function. As these compounds can lead to damage of mtDNA and proteins their 

production is counteracted by antioxidants that mop up ROS and ensure the health of 

the mitochondria [91, 92].  

Under normal conditions the main source of ROS is complex I, which takes electrons 

from NADH and passes them through the Fe-S centres to ubiquinone; this is assisted by 

the flavin mononucleotide (FMN) cofactor that initially accepts the electrons from 

NADH. O2
- is produced by the reaction of the fully reduced FMN, the level of which is 

defined by the ratio of NADH to NAD+, with O2
 [93-95]. This means that deficiencies in 

the electron transport chain lead to an increased reduction of the mitochondrial 

NADH/NAD+ pool, a shift in the amount of fully reduced FMN and an over-production of 
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ROS. In the case of reverse electron transport, where respiration is driven through 

complex II substrates, electrons are forced backwards through complex I from ubiquinol, 

reducing the NADH/NAD+ pool as well as the FMN, again leading to high ROS production 

[96, 97].  

The link between elevated ROS and cardiomyopathy has been established by a number 

of studies but the mechanism linking the two remains elusive [98, 99]. Furthermore, the 

link remains tentative as some animal models of complex I deficiency induced 

hypertrophic cardiomyopathy (HCM) demonstrate no elevation of ROS or evidence of 

oxidative stress induced damage [100]. 

1.1.4.3. Regulation of Energetic Supply and Demand 

ATP is required for the normal function of the myocyte during both contraction and 

relaxation, with levels being maintained at around 10mmol/L by alterations in pathways 

involving ATP use and synthesis. The primary source of ATP is the mitochondrial electron 

transport chain and under normal conditions this system is capable of maintaining ATP 

levels even during periods of increased demand. Typically, reactions that hydrolyse ATP 

to ADP and Pi are inhibited by the accumulation of the products in a sub cellular 

compartmental fashion [101]. The oxidation of NADH and FADH2 by the electron 

transport chain establishes the proton gradient (ΔpH) which is one of the major 

components (along with membrane potential (ΔΨm)) of the proton motive force (ΔµH) 

that drives protons through the F1F0-ATP synthase, producing ATP. In the healthy heart, 

NADH and FADH2 are produced primarily by the utilisation of two substrates; glucose, 

via glycolysis; and fatty acids, via β-oxidation [102]. The utilisation of each substrate is 

tightly controlled to meet demand and maintain cellular ATP levels. β-oxidation of fatty 

acids is inhibited by the accumulation of both acetyl-CoA and NADH, whilst glycolysis is 

inhibited by the accumulation of pyruvate dehydrogenase (PDH). In addition the 

pathways reciprocally regulate each other through the Randle cycle, with the NADH and 

acetyl-coA produced by β-oxidation inhibiting glycolysis and the acetyl-coA produced by 

glycolysis inhibiting β-oxidation [103, 104].  

Under normal physiological conditions, β-oxidation accounts for roughly 70% of utilised 

substrate. During periods of increased demand, the upregulation of substrate utilisation 

is governed by two main factors, [ADP] and [Ca2+]. Increased ATP usage leads to a drop 
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in [ATP] and triggers the F1F0-ATP synthase to increase the turnover of ADP into ATP. 

This results in a temporary loss of ΔµH which acts as a signal drawing more electrons 

through the ETC. Increased ETC activity elevates the oxidation of NADH and FADH2, and 

reduces their inhibition of glycolysis and β-oxidation. Increased flow of Ca2+ through the 

cell both from extracellular deposits and the sarcoplasmic reticulum (SR) lead to an 

increase in [Ca2+] in the mitochondrial matrix. The elevation of [Ca2+] in this fashion 

stimulates PDH as well as the TCA cycle, elevating the production of NADH and FADH2 

[104, 105].    

In addition to the electron transport chain, the creatine kinase system plays an 

important role in buffering ATP levels in order to maintain constant ATP concentrations 

during fluctuations in supply and demand. Phosphocreatine (PCr) acts by buffering the 

local [ATP] and providing an energetic reserve during times of high energy demand. 

Creatine kinase catalyses the reversible phosphorylation of creatine to produce PCr 

when [ATP] is high, then when [ATP] is low the phosphate group is released back to ADP 

to restore [ATP]. In addition to its role in buffering and reserve capacity, PCr is more 

readily diffusible than ATP and is able to act as a shuttle through facilitated diffusion, 

collecting phosphate from sites of ATP production (mitochondria) and ferrying it to sites 

of high ATP usage in the muscle fibre [101, 104, 106]. This is possible due to multiple 

isoforms of creatine kinase in the cell. The mitochondrial isoform (mtCK) which catalyzes 

the phosphorylation of creatine to phosphocreatine  and the cytosolic isoforms (CK-MM, 

MB and BB) which typically catalyse the reverse reaction, releasing the phosphate group 

from the creatine to ADP, producing ATP at sites of high demand [107].  

The concept of the failing heart having a deficiency of ATP or being ‘energy starved’ has 

existed for many years and there is a great deal of evidence in support of this concept. 

The end stage failing heart may have reduced [ATP] in myocardium by as much as 30%, 

with even greater deficits in phosphocreatine, and the ratio of [PCr]:[ATP] provides a 

predictive metric for the severity of heart failure [101, 106, 108].  

Animals with pressure overload cardiomyopathy, as induced by transverse aortic 

constriction (TAC), demonstrate a reduced [PCr]:[ATP] very early in the progression of 

left ventricular hypertrophy, and show an increased relationship between the two as LV 

remodelling progresses [109]. Furthermore, mice with an inducible deletion of the gene 
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Slc25a3, resulting in the loss of the mitochondrial phosphate carrier protein (PiC), show 

a reduction in [ATP] and a severe cardiomyopathy by 10 weeks post deletion [110]. 

These results support the idea that energy insufficiency plays a key role in the 

development of cardiac hypertrophy. In contrast to this work, knockout mice lacking 

functional guanidinoacetate N-methyltransferase (GAMT), unable to produce creatine 

and maintained on a diet free of it, show no differences in maximal exercise capacity or 

in the 48 hour survival rate post myocardial infarction [111].  

As [ADP] rises, so too does [AMP] as a result of the reaction catalysed by adenylate 

kinase (2ADP ↔ ATP + AMP). AMP-dependant protein kinase (AMPK) is a molecular 

sensor of [AMP] and as such can be thought of as a ‘fuel gauge’ for the mammalian cell. 

When [AMP] is high, AMPK is activated by the upstream AMPK kinase and begins 

remodelling cellular processes to improve ATP production. Amongst the pathways 

AMPK affects are: fatty acid synthesis (reduced), fatty acid oxidation (increased), glucose 

uptake and metabolism (increased), and mitochondrial biogenesis via PGC1α (increased) 

[112, 113]. Rats with pressure overload hypertrophy show near normal [ATP] whilst 

[PCr] is decreased resulting in an elevation of [ADP] and [AMP]. These hypertrophied 

hearts show activation of AMPK which in turn leads to elevated glucose uptake through 

GLUT1 and surprisingly a decrease in β-oxidation [114].   
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1.1.4.4. The Mitochondrial Unfolded Protein Response 

The mitochondrial unfolded protein response (UPRmt) is a mechanism for the detection 

of the accumulation of misfolded proteins within the mitochondria and the upregulation 

of factors intended to remove and counteract their formation. By necessity it differs 

from the endoplasmic reticulum unfolded protein response (UPRER) due to the double 

membrane structure of the mitochondria [115].  

The UPRmt can be activated by any one of a number of mitochondrial stresses including; 

accumulation of misfolded mitochondrial proteins, mitochondrial ribosome 

impairment, mitochondrial chaperone or protease inhibition, OXPHOS dysfunction, high 

glucose metabolism, and high ROS levels [116]. When activated, the UPRmt has three 

distinct mechanisms of action to counter any non-specific stress, these three prongs are; 

increased expression of mitochondrial chaperones, inhibition of protein production 

through translation inhibition and degradation of misfolded proteins by proteases. 

The UPRmt can be separated into two distinct sensing mechanisms and their associated 

responses. The first monitors protein folding in the mitochondrial matrix and is activated 

by JNK2 (c-JUN N-terminal kinase) and PKR (dsRNA-activated protein kinase), the second 

monitors the inter membrane space (IMS) and is activated by the phosphorylation of 

AKT (protein kinase B) [115]. 

Early work undertaken by Zhao et al. (2002) investigated the UPRmt in a model that 

introduced a mutant form of the protein ornithine transcarbamylase (OTC) into COS7 

cells. It was found that there is a distinct UPRmt that involves the upregulation of the 

mitochondrial chaperones HSP60 (heat shock 60kDa protein 1 (CPN60)), HSP10 (heat 

shock 10kDa protein (CPN10)) and MTDNAJ (mitochondrial DNAJ heat shock protein) as 

well as the protease CLPP (caseinolytic mitochondrial matrix peptidase proteolytic 

subunit), without any change in expression of factors known to be involved the UPRER. 

Central to this pathway are the transcription factors C/EBPβ (CCAAT/enhancer-binding 

protein) and CHOP (C/EBPβ homology protein). There also seems to be an inferred role 

for the mitochondrial unfolded protein response elements (Mure1 and Mure2), whose 

role is yet to be determined, but which have been found in close proximity to CHOP 

binding sites in many UPRmt genes [117, 118]. Bioinformatics tools have been used to 

identify the presence of an AP-1 binding site in the promoters of both Chop and Cebpb 
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[118]. AP-1 binding sites are the target of C-JUN, a transcription factor which is positively 

regulated by the NH2-terminal kinase, JNK2, indicating that this pathway is key for the 

activation of the matrix portion of the UPRmt (Figure 1.6) [119, 120]. 

 

Figure 1.6. Schematic representation of the matrix portion of the UPRmt. Accumulation of misfolded 

proteins triggers the response via PKR and JNK2 which activate the transcription factor c-Jun, leading to 

expression of the transcription factors CHOP and C/EBPβ which up regulate the expression of UPRmt genes 

encoding chaperones such as HSP60 and proteases such as ClpP. [115]. 

At the same time as there is upregulation of mitochondrial chaperones, there is also a 

reduction in protein translation in the cytoplasm. This is mediated by the action of 

dsRNA-activated protein kinase (PKR) which phosphorylates eukaryotic translation 

initiation factor 2α (EIF2α) and prevents protein translation to reduce the load on the 

mitochondrial chaperones [121]. It is also worth noting that the action of PKR with the 

aforementioned protease CLPP also activates the AP-1 binding transcription factor C-

JUN [121].    

In addition to this core set of proteins identified in the UPRmt, Aldridge et al. (2007) used 

bioinformatics tools to identify a further six genes under the control of CHOP, that were 

upregulated during the UPRmt response. In addition to the CHOP site in the promoter 

region of these genes, the bioinformatics analysis also identified the Mure1 and Mure2 

regions previously seen in other UPRmt genes. The six genes encode a variety of proteins; 

from mitochondrial proteases, YME1L and MPPβ; to enzymes, NDUFB2, EndoG and 

thioredoxin 2; and the import machinery component Tim17a. Whilst the role of these 

proteins in the UPRmt is not yet fully understood, mutation of the ‘Mure’ elements 
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results in a loss of upregulation during UPRmt activation indicating a putative role for 

these proteins in managing misfolded proteins in the mitochondrial matrix [118].  

Fiorese et al. (2016) set out to determine if, as in C.elegans, there is a key mammalian 

regulator of the UPRmt. In C.elegans this key regulator is ATFS-1, which is normally 

transported to the mitochondria, but under periods of stress accumulates in the cytosol 

before entering the nucleus and triggering the UPRmt. Bioinformatics analysis identified 

2 proteins with significant homology to ATFS-1, ATF4 (activating transcription factor 4) 

and ATF5 (activating transcription factor 5). Interestingly, only ATF5 had signs of a 

mitochondrial localisation signal, and only ATF5 was able to restore the UPRmt in worms 

lacking the ATFS-1 protein. Further work has confirmed that ATF5 behaves similarly to 

ATFS-1 in worms, by localising to the mitochondria under normal conditions, but 

activating the UPRmt under periods of stress. ATF5 primarily promotes the expression of 

genes with a UPRmtEs promoter, including the chaperones; HSP10, HSP60, MTHSP70 and 

the mitochondrial protease LONP1 (lon peptidase 1) [122]. 

More recent work has utilised a mutant form of the protein endonuclease G (ENDOG) 

(N174A), which accumulates in the IMS and induces mitochondrial stress [123, 124]. The 

results from this work indicate the existence of a second arm of the UPRmt which is solely 

concerned with proteins of the IMS (Figure 1.7).  

 

Figure 1.7. Schematic representation of the IMS portion of the UPRmt. In this case accumulation of 

misfolded proteins results in elevated ROS which activate AKT and lead to activation of the proteasome 

as well as upregulation of genes such as HTRA2. [115]. 

Control of the IMS UPRmt is held by protein kinase B (AKT) that becomes phosphorylated 

due to elevated ROS levels caused by accumulation of misfolded proteins in the IMS. 
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Phosphorylation of AKT leads to activation and in turn phosphorylation of estrogen 

receptor α (ERα) at serine 167 [123]. From here the response takes on a 2 step approach, 

both of which are promoted by ERα activation. The first is the activation of the 

proteasome to degrade misfolded proteins in the cytosol before they enter the IMS. The 

second is the increased expression of the protease HTRA2 (high temperature 

requirement protein A2) which degrades any misfolded proteins that have made it into 

the IMS [123, 124].  

Ultimately, any failure of the UPRmt leads to complete mitochondrial dysfunction 

without the requirement for loss of mitochondrial membrane potential (Δψm). This 

mitochondrial dysfunction can lead to accumulation of PINK1 (PTEN induced putative 

kinase 1) on the OMM via a currently unknown pathway and the activation of mitophagy 

[125]. The mechanism of mitophagy is discussed further in section 1.1.4.6.  

1.1.4.5. Mitophagy 

Mitophagy is the means by which a cell selectively disposes of defective mitochondria 

through autophagic processes. This typically follows the process of fusion/fission and is 

a significant portion of the process of mitochondrial quality control. The primary axis for 

inducing mitophagy involves the proteins PTEN-induced putative kinase 1 (PINK1) and 

parkin (PARK2) which recognise mitochondria through a drop in membrane potential, 

Δψm, and target them for digestion by autophagosomes. As mentioned in the previous 

section, there is also an unknown mechanism by which PINK1 can accumulate on the 

OMM without any change in Δψm, as may be seen during inability of the UPRmt to cope 

with mitochondrial stress [125]. 

Under conditions where Δψm is high, the serine-threonine kinase PINK1 (63kDa), 

localises to the outer mitochondrial membrane (OMM) where it is transported to the 

inner mitochondrial membrane (IMM) by the TOM (translocation of outer mitochondrial 

membrane) and TIM23 (translocation of inner mitochondrial membrane) complexes. 

Following insertion into the IMM, PINK1 is cleaved at residue A103 by the presenilin-

associated rhomboid-like protein (PARL) to form ΔN-PINK1 (52kDa). This process leads 

to degradation of PINK1 by the proteasome rendering it inert and allowing for 

mitochondria with high Δψm to be maintained in the cell [126-128]. When Δψm is low, 
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PINK1 remains in the OMM and is unable to be cleaved and targeted for degradation by 

PARL, leading to its accumulation on defective mitochondria.  

When left as a full length protein, PINK1 autophosphorylates at Serine 228 and 402, 

leading to activation and recruitment of PARK2. Okatsu et al. (2012) demonstrated that 

pseudo-phosphorylated PINK1 (S228D/S402D) is capable of recruiting PARK2 whilst 

introducing mutations that inhibit phosphorylation (S228A/S402A) demonstrate the 

opposite effect [129]. In addition to autophosphorylation, PINK1 is capable of 

phosphorylating both MFN2, at residues T111 and S442, and ubiquitin, at S65, with both 

events having independently been shown to be necessary for the translocation of PARK2 

to the OMM [130, 131]. As PARK2 is recruited it ubiquitinates proteins such as BNIP3L 

[132] on the OMM, with the ubiquitination acting as a signal to autophagosomes to 

degrade the damaged mitochondria [133, 134].  

Failure to remove mitochondria by this method leads to accumulation of defective 

subunits, mtDNA mutations and inefficient OXPHOS and has been associated with 

elevated levels of systemic inflammation and cardiomyopathy [135, 136] 

1.1.5. Genetic Defects of the Mitochondrial Electron Transport Chain 

1.1.5.1. Nuclear Encoded Mutations 

Of the roughly 1500 proteins in the mitochondrial proteome, only 13 are encoded by 

the mtDNA, leaving the vast majority to be synthesised in the cytoplasm and transported 

into the mitochondria [137]. Nuclear genome mutations that lead to mitochondrial 

defects can be broadly divided into 5 categories according to which genes they effect; 

nuclear encoded ETC subunits, assembly factors, mtDNA integrity maintenance, mtDNA 

copy number maintenance and control of mitochondrial gene expression. In the interest 

of brevity, this section will only focus on those mutations that directly affect the ETC.  

Between 1990 and 2014 in the north east of England, 62 individuals were reported with 

nuclear DNA (nDNA) mutations, corresponding to a prevalence of 2.9 per 100,000 adults 

(>16 years) [138]. Of these 62, the majority had mutations in the genes SPG7 (spastic 

paraplegia 7) (17), PEO1 (progressive external ophthalmoplegia) (15), OPA1 (optic 

atrophy 1) (8), POLG (polymerase gamma) (6) and RRM2B (ribonucleotide reductase M2 

B) (5) [138]. None of these proteins are constitutive elements of the electron transport 
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chain, indicating that even amongst mitochondrial disease, ETC mutations are rare, likely 

due to the essential nature of many components of the ETC. 

As complex I is the largest complex of the electron transport chain it is unsurprising that 

it is the site of most of the identified nuclear mutations causing ETC deficiency. Of 

complex I’s 37 nuclear encoded proteins, pathogenic mutations have been identified in 

at least 17, including all seven of the nuclear encoded ‘core’ subunits and 10 of the 

remaining subunits [28, 139, 140]. The patients identified so far represent a roughly 

60:40 split of those carrying core gene mutations to those with non-core gene mutations 

[139]. Table 1.1 shows all of the identified mutations in nuclear encoded complex I 

subunits. 

Mutations affecting the core subunit proteins of NDUFV1, NDUFV2, NDUFS1, NDUFS2, 

NDUFS3 NDUFS7 and NDUFS8, which comprise the main functional portions of the N 

and Q domains, account for the majority of known mutations [140]. Below I will give a 

brief overview of mutations identified in these 7 core subunits.  

Mutations in NDUFV1 were first identified in 3 children with symptoms including 

myoclonic epilepsy, muscular hypotonia and elevated lactate levels. The first 2 patients 

were found to be compound heterozygotes for 2 mutations (R59X and T423M), with the 

first mutation leading to a truncated protein, and the second lying in a well conserved 

region of the protein. The third patient was shown to be homozygous for an A341V 

mutation, leading to isolated complex I deficiency [141].  

An NDUFV2 mutation was identified in 3 members of a single family whom all suffered 

from a fatal HCM within the first 12 months of life. The causative mutation was found 

to be a 4bp deletion in the consensus splice-donor site of intron 2 resulting in the loss 

of the 66bp exon 2 and a reduction in the amount of NDUFV2 protein produced [142]. 

3 patients with NDUFS1 mutations were identified through a screening process looking 

for the disease causing alleles in a group of patients with complex I deficiency. This study 

identified 3 patients from 3 families, 2 of which had siblings with mitochondrial disease. 

The first presented with optical atrophy, leukodystrophy and lactic acidosis, with the 

causative mutation being identified as a deletion resulting in an aspartic acid being 

substituted for a glycine at residue 252 (D252G). The second patient demonstrated axial 
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hypotonia, hepatomegaly and hyperlactatemia and carried 2 mutations as a compound 

heterozygote (R412W and R557X). The final patient had similar symptoms of 

hyperlactatemia and hypotonia with the addition of microcephalia and pyramidal 

syndrome. This patient was found to be a heterozygote for a methionine to valine 

substitution at position 707 (M707V) with the addition of a de novo deletion in the 

paternal allele [143].  

NDUFS2 mutations were identified in members of 3 families with symptoms of complex 

I deficiency including nystagmus, acidosis, muscle hypotonia, cognitive development 

and HCM. Further study found 3 mutations within the NDUFS2 gene, (Arg228Gln, 

Pro229Gln, and Ser413Pro) all of which resulted in a complex I deficiency as measured 

by enzymatic assay [144].  

A patient with Leigh syndrome was identified with a mutation in NDUFS3. Briefly, Leigh 

syndrome is typically associated with neurological symptoms including epilepsy, 

nystagmus, ataxia and optic artrophy. A limited number of cases have also been 

described with cardiac involvement although this is variable [145]. The patient was 

found to be a compound heterozygote. The first mutation resulted in a well conserved 

Threonine at position 145 being changed to an Isoleucine (T145I) and the second 

changed an arginine into a tryptophan at position 199 (R199W). The R199W mutation 

was found to be paternally inherited and was also found in a healthy brother, with no 

signs of mitochondrial disease [146].   

Patients with mutations in NDUFS7 and NDUFS8 have mostly been identified as sufferers 

of Leigh syndrome. The first nuclear encoded mutations linked to Leigh syndrome were 

found in NDUFS8, the first being a proline to leucine change at position 79 (P79L) and 

the second an arginine to histidine at residue 102 (R102H). NDUFS7 was subsequently 

also found to be causative of Leigh syndrome with the mutation causing residue 122 to 

swap from a valine to a methionine (V122M) [147, 148].  

Complex II mutations are most commonly found in the gene for the subunit SDHA. An 

arginine to tryptophan change at reside 554 (R554W) resulted in Leigh syndrome in 2 

siblings [149]. Whilst a later study identified a third patient with Leigh syndrome as a 

result of a paternally inherited W119X mutation and a maternally inherited A83V 

mutation which resulted in a significant loss of functional complex II [150]. Mutations in 
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many of the other units of complex II are associated with various cancers. Mutations in 

SDHB, SDHC and SDHD are associated with paraganglioma and phaeochromocytoma 

whilst mutations in other TCA cycle enzymes such as fumarate hydratase (FH) can lead 

to leiomyoma, leiomyosarcoma or renal cell carcinoma. Possibly as a result of blocked 

metabolism of succinate or fumarate in the mitochondria which then trigger other 

cellular processes in pre-cancerous cells [151].  

Of the 10 nuclear encoded subunits of complex III, only UQCRB, UQCRQ, UQCRC2 and 

CYC1 have been found to contain mutations resulting in any form of complex III 

deficiency [152]. The UQCRB mutation was discovered in a single patient with a 4bp 

deletion in exon 4; this resulted in a reduction in complex III levels and symptoms 

including acute gastroenteritis and lactic acidosis [153].  

A change at residue 45 from serine to phenylalanine (S45F) in UQCRQ was identified in 

25 members of an Israeli Bedouin family, all of whom developed Leigh syndrome [154]. 

A mutation in UQCRC2 was discovered in a family in Mexico, the patients presented with 

similar symptoms to the UQCRB patient mentioned previously. The arginine to 

tryptophan (R183W) change caused a ~80% reduction in complex III levels and 

enzymatic activity levels reduced by half [155]. Finally, 2 unrelated mutations have been 

found in CYC1 (W96C and L215F). Yeast studies demonstrated an almost total absence 

of complex III for both mutations. Symptomatically, both patients demonstrated hyper-

glycaemia without any developmental delay [156]. The lack of known mutations in 

complex III probably stems from its essential role in the ETC. Damage to complex III 

structure or function results in lack of super-complex formation, which is required for 

complex I stability (see section 1.1.3.6) and it forms the funnel for electrons entering the 

chain from both complex I and complex II. As a result, mutations in complex III are likely 

to be too severe to be viable and unlikely to be found in patient populations.  

Mutations in complex IV structural subunits are rare, with the majority of complex IV 

deficiencies being caused by mutations in assembly factors such as SURF1, COX10, 

COX15, SCO1 and SCO2 [157]. To date, only 3 genes have been found with mutations in 

complex IV subunits that lead to complex IV deficiency. Of these genes, COX4I2, COX7B 

and COX6B1, only COX6B1 has been found to carry a mutation leading to 

cardiomyopathy. The mutation caused an arginine to cysteine change at position 20 
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(R20C) of the protein and resulted in an 89% reduction in protein levels and an 83% drop 

in complex IV enzymatic activity [158].  

Disorders of complex V or ATP synthase are also rare, the majority have been traced to 

mutations in mtDNA, over 30 have been linked to the mtDNA genes MTATP6 and 

MTATP8 [159]. Of those that have been traced to nuclear mutations, most are 

associated with assembly factors which will be covered in more detail in section ‘1.1.5.3. 

Assembly factor mutations’, only the genes ATP5A1 and ATP5E have been implicated in 

human disease with a total of three patients being known. A mutation (R329C) in 

ATP5A1 of 2 patients led to severe neonatal encephalopathy and was shown to cause 

an ATP synthase deficiency in both patients [160]. A less severe phenotype was also 

found in a patient harbouring a homozygous Y12C mutation in ATP5E. This mutation also 

led to an ATP synthase deficiency as confirmed by a 70% reduction in ATP synthase 

content when compared to controls [161]. 

Overall, of the roughly 75 nuclear encoded subunits of the mitochondrial electron 

transport chain, at least 27 have been implicated in causing conditions associated with 

mitochondrial deficiency. This is likely an underrepresentation of the real rate of 

causative mutations in the general population as many mutations are likely to result in 

phenotypes too severe to be viable. Furthermore, the lack of identified mutations in 

supernumerary subunits may indicate that these are better tolerated and less likely to 

be pathogenic.   
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Subunit Location Known Mutations Clinical Phenotype Reference 

NDUFV1 N R59X-T423M Progressive unspecified encephalomyopathy  [141] 

  
 

A341V Leukoencephalopathy with macrocephaly  [143] 

  
 

E214K-IVS8+4A>C (Skip exon 8) Leigh syndrome  [143] 

  
 

A432P-c.989-990del (C332X) Leigh-like syndrome  [145] 

  
 

Y204C-C206G Leigh-like syndrome  [145] 

  
 

A4341V Leukoencephalopathy with macrocephaly  [162] 

  
 

R386C Leukoencephalopathy  [163] 

  
 

R257Q-A211V Leukoencephalopathy  [164] 

  
 

E377K Lethal infantile mitochondrial disease  [74] 

NDUFV2 N IVS2+5_+8delGTAA (Skip exon 2) Cardiomyopathy and encephalopathy  [142] 

  
 

IVS2+5_+8delGTAA (Skip exon 2) Cardiomyopathy and encephalopathy  [165] 

NDUFS1 N del222leu-D252G Leukoencephalopathy  [145] 

  
 

R421W-R557X Unspecified Encephalopathy  [145] 

  
 

M707V-LS deletion Leigh-like syndrome  [145] 

  
 

Q552K Leukoencephalopathy  [163] 

  
 

L231V Leigh syndrome  [166] 

  
 

D619N-R557X Leukoencephalopathy  [167] 

  
 

R408C Leukoencephalopathy  [168] 

  
 

R408C Leigh syndrome  [168] 

  
 

del211Glu-V228A Leukoencephalopathy  [169] 

  
 

V228A-D252G Leukoencephalopathy  [169] 

  
 

T595A Progressive cavitating leukoencephalopathy  [170] 

NDUFS2 Q R228Q Hypertrophic cardiomyopathy/encephalomyopathy  [144] 

  
 

P229Q Hypertrophic cardiomyopathy/encephalomyopathy  [146] 

  
 

S413P Encephalomyopathy  [146] 

  
 

M292T-R118Q Leigh syndrome  [169] 

  
 

M292T-M443K Leigh syndrome  [169] 

  
 

M292T-E148K Leigh syndrome  [169] 

  
 

R138Q-R333Q Leigh-like syndrome  [169] 

  
 

M292T-c.866+4A>G ‡ Leigh-like syndrome  [169] 

NDUFS3 Q T145I-R199W Leigh syndrome  [146] 

NDUFS7 Q V122M Leigh syndrome  [147] 

  
 

R145H Leigh-like syndrome  [171] 

  
 

c.17-1167C>G (Cryptic exon and fs) Leigh-like syndrome  [172] 

NDUFS8 Q P79L-R102H Leigh syndrome  [148] 

  
 

P85L-R138H Leigh syndrome  [173] 

  
 

P79L  Leigh-like syndrome  [169] 

  
 

G154S Leukoencephalopathy  [74] 

NDUFV3 N None     

NDUFS4 N K158fs Unspecificed encephalomyopathy  [174] 

  
 

W97X Leigh-like syndrome  [175] 

  
 

R106X Leigh-like syndrome  [176] 

  
 

R106X Leigh-like syndrome  [176] 

  
 

W14X Leigh-like syndrome  [177] 

  
 

IVS1-1G>A Leigh-like syndrome  [178] 

  
 

K154fs Leigh-like syndrome  [179] 
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D119H-K154fs Leigh-like syndrome  [180] 

  
 

c.99-1G>A-K154fs Leigh syndrome  [74] 

  
 

c.99-1G>A-c.351-2A>G Leigh syndrome  [74] 

NDUFS6 N Exon 3/4 deletion Lethal infantile mitochondrial disease  [181] 

  
 

c.186+2T>A Lethal infantile mitochondrial disease  [182] 

  
 

C115Y Severe neonatal lactic acidosis  [182] 

NDUFA12 N R60X Leigh syndrome  [183] 

NDUFA13 Pp R57H Leigh-like syndrome  [184] 

NDUFA11 Pp IVS1+5G>A ‡ Lethal infantile mitochondrial disease  [185] 

  
 

IVS1+5G>A ‡ Encephalocardiomyopathy  [185] 

NDUFA7 Q None     

NDUFA5 Q None     

NDUFA2 N IVS2+5G>A Leigh-like syndrome  [186] 

NDUFA10 Pp c.1A>G-c.425A>G Leigh syndrome  [187] 

NDUFA9 Q R360C Myopathy  [188] 

  
 

R321P Leigh-like syndrome  [189] 

NDUFS5 Pp None     

NDUFA1 Pp G8R Leigh-like syndrome  [189] 

  
 

R37S Encephalomyopathy  [188] 

  
 

G32R Progressive neurodegeneration  [190] 

NDUFA8 Pp None     

NDUFA6 Q None     

NDUFA3 Pp None     

NDUFC1 Pp None     

NDUFA4 * C.42+1G>C ‡ Leigh syndrome (COX deficient only)  [191] 

NDUFAB1 Q/ PD None     

NDUFB4 PD None     

NDUFB2 PD None     

NDUFB8 PD None     

NDUFB11 PD R88X MLS syndrome  [192] 

  
 

c.402delG MLS syndrome  [193] 

NDUFB1 PD None     

NDUFB10 PD E70X-C107S Lactic acidosis and cardiomyopathy  [193] 

NDUFB5 PD None     

NDUFB9 PD None     

NDUFB7 PD None     

NDUFB6 PD None     

NDUFC2 Pp None     

NDUFB3 PD None     

Table 1.1. Mutations of nuclear encoded complex I subunits and associated clinical phenotypes. Adapted 

and updated from Pagniez-Mammeri et al. (2012) [140]. Locations of proteins in modules according to 

Guerrero-Castillo et al. (2016) [72]. *NDUFA4 does not have a recognized position within complex I. ‡ 

Mutation results in splicing abnormality.  
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1.1.5.2. Mitochondrial DNA Mutations 

Human mitochondrial DNA is 16.5 kb in length and codes for 37 genes, 22 of which are 

tRNAs and 2 are rRNAs, the remaining genes are all constituent proteins of the 

mitochondrial electron transport chain [145]. Due to the large copy number of 

mitochondrial DNA, mutations may often not lead  to symptoms until mutated DNA 

reaches a threshold level of heteroplasmy in a given tissue, this threshold level may 

differ from tissue to tissue and can depend on the type of causative mutation [194]. 

Mitochondrial mutations take on 2 forms, those affecting mitochondrial protein 

synthesis, and those affecting mitochondrial protein coding genes. 

Mutations that affect mitochondrial tRNA, lead to a defect in protein synthesis and an 

overall reduction in the assembly of mitochondrial proteins, this type accounts for 

almost 60% of mutations whilst tRNA genes only account for 10% of the mitochondrial 

genome [194]. Perhaps the most well characterised mitochondrial mutation, an A to G 

at nucleotide 3423 in tRNALEU, is widely associated with MELAS syndrome. However, 

evidence has also linked it to a maternally inherited cardiomyopathy without any other 

signs or symptoms of MELAS [195, 196]. Other tRNAs have also been implicated in 

mitochondrial disorders, with mutations in the genes MTTL1 (tRNALeu(UUR)), MMTI 

(tRNAIle), MTTK (tRNALys), MTTL2 (tRNALeu(CUN)) and MTTT (tRNAThr) all being linked 

to conditions involving cardiomyopathy [145].  Large scale deletions can also lead to the 

loss of tRNA genes, these mutations are suspected to occur in the germ line rather than 

be maternally inherited as it is uncommon to find parents or siblings sharing mutations. 

These mutations can occur anywhere in the mitochondrial genome and typically result 

in one of three syndromes; Kearns-Sayre, progressive external ophthalmoplegia (PEO), 

or Pearson’s. The threshold level for deletion mutations tends to be lower than that for 

point mutations with a requirement for roughly 80% of damaged DNA before symptoms 

become apparent [194].  

Mutations in mitochondrial protein coding genes are less common than those in tRNA, 

accounting for roughly 40% of mutations in the 13 protein coding genes that account for 

70% of the genome [194].  Complexes I, III, and IV as well as ATP synthase may be 

affected by mutations in any of their mitochondria encoded subunits, but complex II is 

unaffected as it is entirely nuclear encoded [197]. Symptoms are typically noticed in 
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infants and vary from cardiomyopathy to myopathy, deafness, mental retardation, 

cataracts, retinitis pigmentosa, epilepsy, encephalopathy and neuropathy. Govindaraj 

et al. (2013) identified 28 novel mutations in mtDNA from 114 HCM patients. Of these, 

10 were non-synonymous and lay in genes encoding electron transport chain proteins 

including MTND1, MTCOI, MTATPase8 and MTATPase6 [198].   

Finally, rRNA mutations are comparatively rare, accounting for about 2% of mutations, 

and may occur in either the 12 or 16kDa ribosomal subunits. These conditions may be 

mild, resulting in hearing loss,  or more severe, resembling MELAS [197].  

1.1.5.3. Assembly Factor Mutations 

The complexity and two genome nature of most of the mitochondrial electron transport 

chain complexes necessitates the involvement of a variety of chaperone and assembly 

factor proteins which allow for the correct and efficient assembly of the complexes 

within the mitochondria. Mutations in these assembly factors account for the majority 

of mitochondrial deficiencies and the resultant diseases [29].  

All five of the mitochondrial electron transport chain complexes have a unique set of 

assembly factors that are required for functional assembly. Despite the identification of 

many of these assembly factors there is still an incomplete picture and more work is 

required. This section will primarily focus on complex I assembly factors, although the 

remaining complexes will be summarised.  

In mammals complex I is known to have at least 13 assembly factors involved directly 

with structural assembly (NDUFAF1, NDUFAF2, NDUFAF3, NDUFAF4, ACAD9, ECSIT, 

TIMMDC1, TMEM186, TMEM126B, COA1, TMEM70, FOXRED1 and ATP5SL) as well as a 

number of other chaperones or assembly factors involved in other aspects of forming 

functional complex I or whose role is not yet fully understood (NDUFAF5, NDUFAF6, 

NDUFAF7, IND1, DNAJC11, and AIF). Of these 19 proteins, at least 11 (Table 1.2) have 

been identified in human patients with mitochondrial disease and it is noteworthy that 

roughly 40% of all patients suffering from mitochondrial disease have no mutations in 

structural genes [74, 199-202]. Mutations in complex I assembly factors lead to a loss of 

fully assembled complex I, an accumulation of complex I assembly intermediates and a 

reduction in enzymatic activity [29, 75, 203].  
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Subunit Known Mutations Clinical Phenotype Reference 

NDUFAF1 (CIA30) T207P-K253R Cardioencephalopmyopathy [204] 

  R211C-G245R Fatal infantile hypertrophic cardiomyopathy [205] 

NDUFAF2 (NDUFA12L/B17.2L) R45X-LS deletion Progressive encephalopathy [78] 

  M1L Progressive encephalopathy [206] 

  Y38X Leigh syndrome [77] 

  LS deletion Encephalomyopathy [207] 

  W3X Leigh syndrome [208] 

  W74X Leigh syndrome [74] 

  I35SfsX17 Leigh syndrome [74] 

  A73GfsX5 Leigh syndrome [74] 

NDUFAF3 (C3ORF60) G77R Lactic acidosis [76] 

  R122P Encephalomyopathy with macrocephaly [76] 

  M1T-R122P leukoencephalopathy [76] 

NDUFAF4 (C6ORF66) L65P Encephalomyopathy [75] 

  L65P Encephalomyopathy and Cardiomyopathy [75] 

NDUFAF5 (C20ORF7) L229P Dysmorphism and lactic acidosis [209, 210] 

  L159F Leigh-like syndrome [211] 

  G250V Leigh syndrome [212] 

NDUFAF6 (C8ORF38) Q99R Leigh-like syndrome [213] 

NDUFAF7 (MIDA) None     

ACAD9 R518H Exercise intolerance, hypertrophic cardiomyopathy [214] 

  E63X-E413K Encephalopathy, hypertrophic cardiomyopathy [216] 

  V546L Hypertrophic cardiomyopathy [215] 

  A170V-H563D Hypertrophic cardiomyopathy [217] 

  R414S-c.1650_1672dup Fatal infantile hypertrophic cardiomyopathy [217] 

ECSIT None     

TMEM186 None     

TMEM126B G212V Exercise intolerance [201] 

  c.401delA-G212V Exercise intolerance [203] 

TMEM70 * c.317-2A>G 

Hypotonia, lactic acidosis, hypertrophic 

cardiomyopathy [202] 

  c.317-2A>G;c.A628C 

Hypotonia, lactic acidosis, hypertrophic 

cardiomyopathy [204] 

  c.701A>C 

Leukoencephalopathy, hypertrophic 

cardiomyopathy [204] 

COA1 None     

TIMMDC1 (C3ORF1) None     

FOXRED1 Q232X-N430S Leigh syndrome [74] 

IND1 (NUBPL) G56R-D273QfsX31 - del. Dup. Encephalomyopathy [74] 

ATP5SL None     

DNAJC11 None     

AIF None     

Table 1.2. Mutations of complex I assembly factors and associated clinical phenotypes. Adapted and 

updated from Pagniez-Mammeri et al. (2012) [200]. *Mutations result in complex V deficiency, not 

complex I. 
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In the interests of brevity, this report will focus only on those assembly factors identified 

as part of complex I assembly by Guerrero-Castillo et al. (2016) [72]. 

Of the 5 assembly factors that form the MCIA complex [69, 70] 3 have been identified 

with pathogenic mutations, NDUFAF1, ACAD9 and TMEM126B (Table 1.2). In addition 

to the 2 unrelated patients identified by Nouws et al. (2010), Dewulf et al. (2016) 

identified a further 9 patients from 3 families who all suffered from hypertrophic 

cardiomyopathy and due to mutations in ACAD9. Loss of full ACAD9 function led to 

decreased levels of the associated proteins NDUFAF1 and ECSIT as well as a reduction in 

the levels of complex I [214, 215].  The two patients identified with NDUFAF1 mutations 

also demonstrate a loss of complex I, 30%[204] and ~40%[205] of healthy controls, 

however, ACAD9 levels were not measured to confirm the reciprocal relationship. In 

contrast to the other patients with MCIA complex protein mutations, TMEM126B 

patients display a milder phenotype with a later onset. Most of these patients were 

identified over the age of 8 years with an exercise intolerance phenotype due to reduced 

complex I protein levels (10-48% of healthy control) and elevated complex II, III, IV and 

V levels, possibly as a compensatory mechanism. Of most interest is that these patients 

all show decreased levels of all of the other MCIA components, raising the question of 

why these patients display a comparatively mild phenotype [201]. Furthermore, in 2 of 

these patients it was seen that both ECSIT and ACAD9 were present in super-complexes 

containing complexes I, III and IV. 

Of the remaining characterised membrane arm assembly factors only 2, TMEM70 and 

FOXRED1, contain known pathogenic mutations. TMEM70 mutations result in a severe 

phenotype including hypertrophic cardiomyopathy, however these mutations all result 

in complex V deficiency with no reports of effects on complex I [202]. Only a single 

patient with Leigh syndrome has been identified with a FOXRED1 mutation [74]. 

The three known matrix arm assembly factors all have greater numbers of known 

patients with pathogenic mutations. The NDUFAF2 mutations described in table 1.2 all 

result in a truncation or complete loss of the protein leading to a significant loss of 

complex I protein in all cases. The NDUFAF3 mutations were found in 5 patients from 3 

families all of whom died before 6 months of age. In contrast to the NDUFAF2 patients, 

these mutations did allow for the formation of NDUFAF3 protein, although the levels of 
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complex I in those tested was severely reduced [76]. Finally, NDUFAF4 is the only 

remaining assembly factor from this list whose place in the assembly pathway was 

characterised by Guerrero-Castillo et al. (2016) [72]. Six patients from 2 families were 

identified carrying the same leucine to proline change (Table 1.2), which resulted in a 

loss of complex I activity which caused encephalopathy in all of the patients and 

hypertrophic cardiomyopathy in one [75].  

It is interesting to note that certain phenotypes appear to be common to different arms 

of complex I and the associated assembly factors. Assembly factors of the matrix arm 

appear to have an anecdotal link with Leigh syndrome and encephalopathy whilst those 

of the membrane arm are more often than not found with a cardiomyopathy in addition 

to other phenotypes.  

In humans, complex II has only two known assembly factors, SDHAF1 (succinate 

dehydrogenase assembly factor 1) and SDHAF2 (succinate dehydrogenase assembly 

factor 2), though there are expected to be further undiscovered proteins with an 

important role as there are at least four assembly factors in yeast [29]. SDHAF1 was the 

first to be implicated in disease with a study finding 2 families with children exhibiting 

leukoencephalopathy caused by loss of complex II activity [216]. SDHAF2 mutations 

have been identified in families with history of certain types of cancer (paraganglioma 

and phaeochromocytoma), but there remains to be a case of SDHAF2 mutation linked 

to any classical mitochondrial disease [217].  

Complex III again only has two known assembly factors, BCS1L and TTC19, but with 

complex III deficiencies being rare, possibly due to the catastrophic effect of reduced 

complex III on super-complex formation, little is known about the involvement of any 

other assembly factors [29]. A large number of patients with mutations throughout the 

BCS1L gene have been identified with a variety of phenotypes [29]. The BCS1L protein is 

known to contain 4 domains; a transmembrane domain (TMD), a mitochondrial 

targeting sequence (MTS), an import auxiliary sequence (IAS) and an ATPase domain 

[218]; with mutations identified in at least 3, although there appears to be no correlation 

between the disease caused and the domain affected. The mildest form of disease is 

Björnstad syndrome which results in sensorineural hearing loss and twisted brittle hair 

cells (pili torti), mutations that lead to this condition have been identified throughout 
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the BCS1L gene [219]. At the other end of the scale is GRACILE (growth retardation, 

aminoaciduria, cholestasis, iron overload, lactacidosis, and early death) syndrome, 

which results in neonatal lethality and may again be caused by mutations anywhere in 

the BCS1L gene [219, 220]. In between these two extremes a number of patients have 

been identified with phenotypes ranging from encephalomyopathy, lactic acidosis, liver 

failure and muscle weakness [218, 221-223]. Mutations in the other known assembly 

factor, TTC19, typically result in neurological impairment although the age of onset is 

highly variable. The first patients identified with neurological conditions varied in onset 

from late infancy to 42 years of age [224]. A later study identified another patient with 

a TTC19 mutation that resulted in Leigh syndrome with early onset at about 13 months 

of age [225].      

Studies in yeast have shown that Complex IV assembly is highly regulated and may 

involve as many as 40 assembly factors though only a fraction have been identified as 

causative of human disease [226], however, these will not be covered in detail in this 

section. The mutations identified in complex IV assembly factors are associated with a 

wide range of clinical phenotypes ranging from Leigh syndrome and leukodystrophy, to 

myopathy, cardiomyopathy and lactic acidosis as well as others.   

Finally, ATP synthase has a similar situation to that of complex III. Several factors 

required for assembly have been identified in yeast but of these only two have been 

found in humans (ATP12 and ATP11), both of which prevent the formation of aggregates 

of the incomplete F1 portion of the complex by binding the α and β subunits 

respectively[227]. A single patient with a tryptophan to arginine mutation (W94R) was 

described as having a condition resembling COFS (cerebro-oculofacioskeletal) syndrome 

[228]. 

It can be seen as a common feature that the majority of assembly factor mutations result 

in multi-system disorders that invariably prove fatal. Only those mutations affecting the 

membrane arm of complex I appear to cause milder or mono-systemic disorders. This 

may be due to a greater degree of toleration for these mutations in the complex I 

assembly process, it may be due to complex I’s earlier point in the ETC meaning a loss of 

function is less devastating to the overall function of the chain, or it may reflect some 
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degree of redundancy either across tissue types (different assembly factors in different 

tissues) or within tissues (other assembly factors can take up the slack). 

1.2. ECSIT 

In humans, evolutionarily conserved signalling intermediate in toll pathway (ECSIT) is a 

431 amino acid adapter protein with 2 identifiable isoforms (50/33kDa) and a third 

potential isoform based on splice prediction (24kDa) [229, 230]. In the mouse ECSIT 

contains 435 amino acids and maintains almost 75% sequence homology with the 

human protein (Figure 1.8), however there is only experimental evidence of a single 

protein isoform existing in mouse tissues (50kDa).  

ECSIT was first identified from a yeast 2 hybrid screen as a signalling intermediate in the 

toll/IL-1 pathway, where it was shown to regulate MAP3K1 (MEKK-1) [229]. Later work 

in a mouse knock-out line implicated ECSIT in the bone morphogenetic protein (BMP) 

pathway. As part of this pathway, ECSIT interacts with SMAD1 and SMAD4 and is 

involved in mesoderm formation of the early embryo [230]. More recently, ECSIT has 

been shown to localise to mitochondria where it binds and stabilises the complex I 

assembly factor NDUFAF1, allowing for the efficient assembly of complex I [231]. 
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Figure 1.8. Protein sequence alignment of ECSIT protein in Homo sapiens, Mus musculus, Rattus 

norvegicus, Bos taurus, Danio rerio and Drosophila melanogaster. Source: ncbi.nlm.nih.gov/homologene. 
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1.2.1. Protein Structure and Homology 

Human ECSIT protein has 3 recognisable domains in the full length protein, an N-

terminal mitochondrial targeting sequence (amino acids 1-48), a highly ordered (Figure 

1.9) pentatricopeptide repeat region (PPR) (amino acids 90-266) and a less ordered C 

terminal domain that shows some 3D resemblance to pleckstrin homology domains 

(amino acids 275-380) [68]. Mouse ECSIT protein maintains roughly 73% sequence 

homology to the human protein (Figure 1.9) and shows the presence of the same 

mitochondrial targeting sequence seen in the human protein (amino acids 1-48) (results 

according to Phyre2 web server) [232]. The PPR motif in mouse is reduced in size from 

the human protein prediction, 176 vs 129 amino acids. However, the pleckstrin 

homology domain appears to occupy roughly the same section of the protein from 278 

to 379 amino acids, only being 4 amino acids shorter in the mouse.  

The N terminal mitochondrial targeting (MTS) sequence is required for the localisation 

of the protein to the mitochondria where the MTS is cleaved, this results in 2 protein 

products from the single long ECSIT isoform, a ~50kDa cytosolic form, and a ~45kDa 

mitochondrial form [231]. Of the remaining two potential domains in the ECSIT protein, 

only the PPR domain has been shown to have any potential link to mitochondrial 

processes. These domains are thought to bind RNA in a sequence specific manner, 

although this has not been demonstrated for ECSIT, and play a role in maturing and 

stabilising RNA molecules [233]. There is some evidence to suggest that at least one 

mammalian protein containing at PPR domain, PTCD2, is involved in mitochondrial 

electron transport chain assembly, and interfering with the PPR domain results in 

defects of complex I and complex III assembly in a variety of tissues [234, 235].  

 

Figure 1.9. Protein domains of human [68] and mouse ECSIT as predicted by Phyre2 webserver [232]. 

Mitochondrial targeting sequence (MTS) shows no variation between the two models whilst the PPR 

domain is shorter in the mouse model and the PH domain differs in length by 4 amino acids.  
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1.2.2. Toll Like Response 

As mentioned above, ECSIT was first identified as interacting with the proteins TRAF6 

(tumour necrosis factor (TNF) receptor associated factor 6) and MEKK-1/MAP3K1 (ERK 

kinase kinase-1/Mitogen–activated protein kinase) in the Toll/IL-1 pathway. It was 

shown that ECSIT binds to the multi-adapter protein TRAF6 and allows for the 

phosphorylation of MEKK1 (MAP3K1) into an active state. This phosphorylation event 

leads to activation of NF-κB and promotion of the innate immune response [229]. The 

work by Kopp et al. (1999) also suggested that the ECSIT-TRAF6 complex leads to 

activation of the TAK1 protein, allowing it to interact with and phosphorylate TAB1 and 

2, offering another pathway by which ECSIT can participate in the toll pathway [229].  

Studies around the same time showed that TRAF6, and by association ECSIT, is involved 

in not only the activation of NF-κB but also in the activation of other aspects of the 

MAP3K1 signalling cascade, resulting in phosphorylation of JNK, IKK and NF-κB [236]. It 

was later revealed that the nature of the interaction between TRAF6 and ECSIT is not 

simply binding but poly-ubiquitination of ECSIT, leading to localisation to the OMM 

(outer mitochondrial membrane) and degradation [237]. Macrophages deficient in 

either TRAF6 or ECSIT exhibit reduced mitochondrial ROS and had an increased 

susceptibility to intracellular bacteria, as was demonstrated by infecting the cells with a 

strain of salmonella expressing GFP (green fluorescent protein). These infected 

macrophages showed increased levels of bacterial CFU (colony forming units) at all of 

the time points tested, indicating that ECSIT may link mROS production with the innate 

immune system [237].  

In the first of two papers, Wi et al. (2014) demonstrated that the interaction between 

TRAF6 and ECSIT occurs between residues 200 and 257 of the human ECSIT protein and 

in a second paper showed that the poly-ubiquitination of ECSIT by TRAF6 occurs at 

residue K372 of the human protein, leading to ECSIT interacting directly with the 

p65/P50 NF-κB proteins, activating them and facilitating their translocation to the 

nucleus [238]. In addition, this group confirmed the suspicions of Kopp et al. (1999) by 

demonstrating that ECSIT interacts with TAK1 in the region of residues 257-431 of the 

human protein, resulting in the formation of a TAK1-ECSIT-TRAF6 complex that is 

activated by TLR4. The formation of this complex activates TAK1, in turn activating IKK 
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complexes. IKK complexes are then activated to phosphorylate and polyubiquitinate IκB-

α which is degraded, liberating p65/P50 NF-κB [239]. 

In addition to investigating ECSIT’s part in the BMP pathway, Xiao et al. (2003) knocked 

down ECSIT in the macrophage cell line Raw 264.1 using shRNA, showing that loss of 

ECSIT protein leads to loss of NF-κB activation through the toll pathway, but not through 

the TNFα pathway, indicating that ECSIT works exclusively as an intermediary of the TLR 

pathway [230].  

The role of ECSIT in the innate immune system and in particular the Toll like receptor 

pathway is demonstrated in figure 1.10, this shows that the result of ECSIT interaction 

with TRAF6 is the activation of MEKK-1 (MAP3K1) ultimately leading to the activation of 

NF-κB, JNK and p38 MAPK resulting in stimulation of the innate immune response.  

 

Figure 1.10. Diagram of the Toll-like response and the position of ECSIT (1) in the pathway. Interaction of 

ECSIT with TRAF6 and MEKK-1 results in the activation of NF-κB (2) through the degradation of IκB-α, and 

phosphorylation of JNK (3) and p38 MAPK (4) through the activation of MEKK-1 (MAP3K1). Image courtesy 

of Cell Signaling Technology® (www.cellsignal.com). 
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1.2.3. Bone Morphogenetic Protein Pathway 

In addition to its role in toll-like receptor (TLR) signalling and complex I assembly, ECSIT 

also has an identified role in the bone morphogenetic protein (BMP) pathway and 

mouse knockouts show embryonic lethality around the point of gastrulation (E7.5). 

Mutant embryos demonstrated abnormal development with the loss of mesoderm 

development and a thickening of the epiblast as well as a loss of downstream expression 

of the BMP pathway gene, Tlx2 (T-Cell leukaemia homeobox 2).  Ultimately the role of 

ECSIT in the BMP pathway was found to be as an essential co-factor of SMAD4. Following 

BMP expression, the ECSIT-SMAD4 complex interacts with SMAD1 and allows the 

complex to bind the BMP response element of the Tlx2 promoter, enabling transcription 

[230].   

 

Figure 1.11.  Schematic of the BMP and TGF-β pathways. ECSIT interacts with SMAD4 (1) as an essential 

co-factor leading to Tlx2 expression. Image courtesy of Cell Signaling Technology® (www.cellsignal.com). 

Interestingly, ECSITs interaction with SMAD4 implicates it in the TGF-β pathway (Figure 

1.11) as SMAD4 acts as the common cofactor of all TGF-β activated SMAD complexes in 

the nucleus, possibly through its unique SAD (SMAD-activation domain) [240].  

The link between the BMP and TGF-β pathways and innate immunity is well established 

and ECSIT may function as part of the mechanism linking these essential pathways [241]. 
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1.2.4. Complex I Assembly 

The role of ECSIT in the assembly of complex I was first noted by Vogel et al. (2007), this 

work used tandem affinity purification (TAP) of mitochondrial lysates from human 

embryonic kidney (Hek293) cells containing a tagged form of the known complex I 

assembly factor NDUFAF1. Amongst the proteins identified by FT-MS (Fourier transform 

mass spectrometry) were a number of peptides specifically related to ECSIT. Prediction 

software also identified a cleavable mitochondrial targeting sequence corresponding to 

the 49 N-terminal amino acids, the presence of which was confirmed by the persistence 

of a ~45-kDa isoform upon treatment with trypsin and the loss of the non-mitochondrial 

~50-kDa isoform under the same conditions. Further work, using a GFP tagged form of 

ECSIT with and without its N-terminal targeting sequence, confirmed that the 5-kDa 

fragment is necessary for mitochondrial localisation [231].  

The interaction of ECSIT with NDUFAF1 and complex I was confirmed using two-

dimensional blue native PAGE analysis of mitochondrial lysates. ECSIT was found in large 

complexes of ~500, 600 and 850kDa, the same as that of NDUFAF1 in the cell type of 

interest. siRNA knock-down of ECSIT then showed a severe reduction in complex I levels 

and a loss of 50% of complex I enzymatic activity [231].   

In support of the work completed on the ECSIT-NDUFAF1 interaction, Nouws et al. 

(2010) demonstrated that ACAD9 is also a complex I assembly factor that interacts with 

both ECSIT and NDUFAF1 and knock down of ACAD9 leads to a decrease in NDUFAF1 

and ECSIT protein levels and a reduction in functional complex I levels [214].  

Since the initial discovery of ECSIT’s interaction with NDUFAF1 and ACAD9, work by 

Heide et al. (2012) has shown that ECSIT forms part of the MCIA complex (Figure 1.12) 

along with NDUFAF1, ACAD9, TMEM126B and TIMMDC1 [68, 69].  ACAD9 forms a 

homodimer which acts as the scaffold for the interaction of ECSIT and NDUFAF1, 

bringing the 3 proteins together. This trimer then interacts with the membrane bound 

proteins TMEM126B and TIMMDC1 before acting as part of the complex I assembly 

process [68].   
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Figure 1.12. Structure and subunits of complex I alongside the proposed formation of the MCIA complex 

containing ACAD9, NDUFAF1 and ECSIT which go on to interact with TMEM126B and TIMMDC1. [68] 

ECSIT protein contains an RNA binding domain in the form of a PPR domain. The same 

is true for NDUFAF1 which contains an RRM (RNA recognition motif) (Figure 1.13) and 

whilst no evidence yet exists, this may implicate the MCIA complex in the processing of 

RNA for complex I proteins [68].  

 

Figure 1.13. Protein domains of human ECSIT, NDUFAF1 and ACAD9 proteins showing RNA recognition 

motifs within ECSIT and NDUFAF1. ACAD9 has 3 AcylCoA domains denoted as the N, M and C domains 

with the C domain being split into the C-1 and C-2.  Adapted from Giachin et al. (2016) [68]. 

Finally, the role of ECSIT in complex I assembly was confirmed by Guerrero-Castillo et al. 

(2017) in work that dissected the full complex I assembly process and was detailed 

earlier in section ‘1.1.3.8. – Complex I Assembly’. By synchronising the complex I 

assembly process this work demonstrated that the MCIA is involved in the formation of 

the PP-b module of the membrane arm of complex I as one of the initial steps of complex 

I assembly [72]. 
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1.3. Cardiomyopathy 

1.3.1. Definition, classification and identification 

Cardiomyopathy by its broadest definition is any disease of the heart muscle, of which 

there are many types with a wide range of genetic and environmental causes (Table 1.3), 

however this report will focus on the two main kinds of hypertrophic and dilated 

cardiomyopathy (Figure 1.14).  

Disease Mutated gene Pathology 

Hypertrophic cardiomyopathy Myosin binding protein C Increased heart mass 

  β-Myosin heavy chain Left ventricular wall thickening 

  α-Myosin heavy chain Increased cardiomyocyte size 

  α-tropomyosin Myofibrillar disarray 

  Troponin T Decreased volume of left ventricular chamber 

  α-Cardiac actin Interstitial fibrosis 

  Troponin I Enlarged nuclei 

  Titin Ventricular wall stiffness 

  Myosin light chains Inflammation 

  Troponin C   

  Vinculin   

  Muscle LIM protein   

  Telothonin   

Dilated Cardiomyopathy β-Myosin heavy chain Ventricular wall thinning 

  Desmin Ventricular chamber enlargement 

  N-cadherin Cardiomyocyte apoptosis 

  α-Cardiac actin Interstitial fibrosis 

  Skeletal muscle myopathies Enlarged nuclei 

  α-Tropomyosin 1 Ventricular wall stiffness 

  Muscle LIM protein δ-sarcoglycan Inflammation 

  Lamin A/C   

  TAZ (G4.5)   

  Titin   

  Phospholamban   

  Vinculin   

  Troponin I   

  Troponin T2   

  SCN5A   

  Presenilin 1 & 2   

  Troponin C   

  α-Cardiac actinin   

  Plakoglobin   

Restrictive cardiomyopathy Troponin I Ventricular wall stiffness 

  Desmin Apoptosis 

  α-Cardiac actin Fibrosis 

  Skeletal muscle myopathies Myofibrillar disarray 
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  Troponin T   

  β-Myosin heavy chain   

Left ventricular non-compaction TAZ (G4.5) Trabeculated ventricular walls 

  α-Dystrobrevin Noncompaction of ventricular andocardium 

  FKBP12 Necrotic myocytes 

  β-Myosin heavy chain Fibrosis 

  α-Cardiac actin Myofibrillar disarray 

  Cardiac troponin   

Arrhythmogenic right ventricular Plakophilin-2 Right ventricular dilation 

cardiomyopathy Junctional plakoglobin Right ventricular fibrosis 

  Desmocollin-2 Fibrofatty infiltration 

  Desmoglein-2 Apoptosis 

  Desmoplakin   

Muscular dystrophy-associated Dystrophin Left ventricular hypertrophy or dilation 

cardiomyopathy Sarcoglycan Fibrosis 

  Dystroglycan Apoptosis 

  Dystrobrevin   

Table 1.3. Different classifications of cardiomyopathy with associated genetic causes and typical 

pathological features. Adapted from Harvey and Leinwand (2011) [242]. Bold – genetic causes common 

to more than one classification of cardiomyopathy.  

Figure 1.14. Diagrammatic representation of healthy heart (A) vs hypertrophic (B) and dilated (C) 

cardiomyopathy. Ao – Aorta, RV – right ventricle, LV – left ventricle, LA – left atrium. Hypertrophic 

cardiomyopathy shows characteristic thickening of the left ventricular (LV) free wall and intraventricular 

septum (IVS) resulting in decreased LV volume. Dilated cardiomyopathy shows an increase in LV volume 

and a thinning of the LV free wall and IVS. Taken from Harvey and Leinwand (2011) [242]. 

Hypertrophic cardiomyopathy (HCM) was first described by Donald Teare in 1957 where 

he described 8 patients between the ages of 14 and 44 all of whom died of a poorly 

understood cardiac condition which he then characterised as HCM [243]. Today HCM 
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affects approximately 1 in 500 people with annual mortality rates around 6 per 10,000 

affected individuals [244]. Classical diagnosis of HCM is performed by echocardiography 

to look for thickening of the left ventricular (LV) free wall, in humans this diagnosis is 

typically greater than 15mm, without an increase in LV chamber volume. More recently 

the use of cardiac magnetic resonance imaging (CMR) has improved understanding of 

the disease and refined risk assessment by providing more detail of the state of not only 

the LV wall, but also of the mitral valves, papillary muscles and any potential scarring 

that may have taken place [245]. The genetic causes of HCM are quite well understood 

with 60% of cases having an identified genetic cause in one of 11 genes encoding 

proteins of the sarcomere, typically with an autosomal dominant inheritance pattern 

[245, 246]. Of these 11 sarcomeric genes, 8 are considered to be the core sarcomeric 

proteins leading to inherited HCM (MYH7, MYBCP3, TNNT2, TPM1, MYL2, MYL3, TNNI3 

and ACTC1) [247]. The most common mutations are in beta-myosin heavy chain (MYH7) 

and myosin-binding protein c (MYBPC3) which account for between 60% and 70% of  

cases with an identified genetic variant [245, 247].   

Despite the predominance of sarcomeric protein mutations as the cause of HCM, there 

is also evidence linking ATP regulation to the development of HCM in some patients. 

Specifically, mutations in the γ2 subunit protein PRKAG2, have been identified in two 

families containing a total of 8 affected individuals. The two mutations (‘Exon 5:ins Leu’ 

and H142R) lead to HCM, ECG traces with pre-excitation, symptomatic wolf-parkinson-

white syndrome (WPWS) as well as a high incidence of sudden death [248].  

In addition to these common mutations there is also significant involvement from 

mitochondrial OXPHOS deficiencies with cardiomyopathy along with encephalopathy 

being among the most common manifestations of a variety of mitochondrial disorders 

(See section 1.3.2.) [27]. 

Whereas HCM is characterised by an increased thickness of the LV wall without an 

increase of the LV volume, dilated cardiomyopathy (DCM) is characterised by an 

increase in LV volume and systolic dysfunction, typically without thickening of the LV 

wall [249]. Whilst the incidence rate for DCM is not as well understood as HCM, 

conservative estimates put it in the region of 1 in 250 people, though mortality rates are 

unknown. As with HCM, most DCM is inherited in an autosomal dominant pattern with 
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a variable, age-dependant variance. However, unlike HCM, DCM has been linked to 

more than 40 genes including many which are also implicated in HCM. Pathogenic 

mutations in these 40 genes only account for roughly 30% of known cases of DCM, with 

the most common being truncation mutants of the protein TITIN. These truncation 

mutants are found in about 25% of familial cases and 18% of sporadic cases [250].  

1.3.2. Mitochondrial Conditions with Cardiac Involvement 

Given the essential nature of mitochondria it is unsurprising that defects in 

mitochondrial OXPHOS function cause a wide variety of diseases with a diverse set of 

symptoms. Tissues with increased energy demands, such as liver, kidney, brain and 

heart, are often worst affected [158], but which tissues are affected and which 

symptoms are present is often unpredictable.  

Common amongst the most well characterised mitochondrial syndromes are symptoms 

resulting from cardiac abnormalities, these can include both myocardial changes and 

cardiac conduction abnormalities which may include long QT syndromes, increased PR 

interval, atrioventricular (AV) block and cardiomyopathy (hypertrophic and dilated) 

amongst others [145]. This section details some of the conditions known to include 

cardiac abnormalities but is not meant to be exhaustive.  

Kearns-Sayre syndrome is a mitochondrial syndrome characterised by pigmentary 

retinopathy and ophthalmoparesis that affects individuals within the first 2 decades of 

life. Also present are cardiac conduction abnormalities, hearing loss, cerebellar ataxia, 

dementia [251] and the condition can ultimately lead to sudden cardiac death [252]. 

Kearns-Sayre syndrome is a result of large scale deletions of mtDNA which may affect 

multiple genes involved in the OXPHOS complexes and their assembly.  

Myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) was first 

described in 1984 where it was described as being clinically separate from both Kearns-

Sayre syndrome and myoclonus epilepsy and ragged red fibres (MERRF) [253]. The 

clinical diagnosis was later defined as requiring 3 key features; stroke before 40 years of 

age, encephalopathy, and either lactic acidosis or ragged red fibres [254]. The condition 

may also lead to a variety of other phenotypes including diabetes mellitus, small stature, 

deafness, cataracts and cardiomyopathy (38% of patients) [145]. The mitochondrial DNA 

mutation m.3243A>G in the mitochondrial encoded tRNA leucine 1 (MT-TL1) accounts 



50 
 

for roughly 80% of all known MELAS cases [255]. However, the condition has also been 

associated with as many as 30 other mtDNA mutations [255] including in the complex I 

subunits MT-ND1[256], MT-ND5[257] and MT-ND6[258].    

Leigh syndrome was first described in 1951 by Denis Leigh and is characterised by lesions 

in the brainstem, thalamus, cerebellum, spinal cord and optic nerves [259]. Clinical 

symptoms may include respiratory abnormalities, epilepsy, nystagmus, ataxia, optic 

atrophy, elevated lactate levels and some cases have presented with dilated or 

hypertrophic cardiomyopathy, although cardiac involvement appears to be dependent 

on the nature of the mutation [145]. Leigh syndrome can be caused by mutations in 

either nuclear or mitochondrial DNA and may affect any of the electron transport chain 

complexes with over 75 individual genes being linked to the condition (Table 1.4) [260].  

However the most common are mutations affecting complex I (34%) [261], with the 

most common individual mutation being m.9176T>G in the gene MT-ATP6 [145, 262]. 
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Biochemical Deficiency Genes 

Pyruvate dehydrogenase PDHA1a, PDHB, PDHX, DLAT, DLD, LIPT1, TPK1, SLC19A3, SLC25A19 

Complex I 

MTND1b, MTND2b, MTND3b, MTND4b, MTND5b, MTND6b, NDUFV1, NDUFV2, NDUFS1, 
NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFA1a, NDUFA2, NDUFA9, NDUFA10, 
NDUFA12, NDUFAF2, NDUFAF5, NDUFAF6, FOXRED1 

Complex II SDHA, SDHAF1 

Coenzyme Q10 PDSS2 

Complex III UQCRQ, BCS1L, TTC19 

Complex IV MTCO3b, NDUFA4, SURF1, COX10, COX15, SCO2, PET100, LRPPRC, TACO1, ETHE1 

Complex V MTATP6b 

Combined OXPHOS defects - Pathway 
affected   

Mitochondrial DNA maintenance FBXL4, POLG, SUCLA2, SUCLG1 

Mitochondrial translation 
ΔmtDNAc, MTTIb, MTTKb, MTTL1b, MTTVb, MTTWb, MTFMT, GTPBP3, TRMU, EARS2, 
FARS2, IARS2, NARS2, GFM1, GFM2, TSFM, C12orf65, PNPT1  

Disease genes that cause secondary 
impairment of mitochondrial energy 
generation   

OXPHOS ± PDHc HIBCH, ECHS1, SERAC1, AIFM1a 

Biotinidase BTD 

Table 1.4. Table of human genes containing mutations known to cause Leigh syndrome. Adapted from 

Lake et al. (2016) [260]. Except where denoted, all genes show autosomal recessive inheritance pattern. 

aX-linked inheritance, bmaternal inheritance, csporadic inheritance.  

Other conditions such as Pearson syndrome, myoclonus epilepsy and ragged red fibres 

(MERRF) and neuropathy, ataxia and pigmentary retinopathy (NARP) have also been 

linked with cardiomyopathy, but this link is less robust and the number of affected 

patients is much lower, hence it has not been covered in detail here [145].  

1.3.3. Mouse models of Complex I Dysfunction Related Cardiomyopathy 

A number of techniques are available for the study of mitochondrial diseases in animal 

models; these include the production of point mutations, knockout animals, knockdown 

using siRNA and chemical inhibition amongst others. Here I will focus on the few 

knockout animal models of complex I deficiency in existence.   
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At present no technology exists to produce reliable mutations in mitochondrially 

encoded electron transport chain proteins and no mouse lineages exist with stable 

mitochondrial mutations, hence all murine models are a result of nuclear encoded 

mutations [263].  

NDUFS4 was the first protein to be globally knocked out in mice that produced a complex 

I deficiency in mice. However these animals presented with primarily neurological 

defects and died at 7 weeks of age due to encephalomyopathy and symptoms 

resembling Leigh syndrome, no cardiological manifestations were observed [264]. Later 

work involving a tissue specific knockout in cardiac tissue resulted in a ~50% loss of 

complex I activity and a profound cardiomyopathy as shown by MRI imaging. By assaying 

mitochondrial hydrogen peroxide production and investigating caspase 3 cleavage this 

work demonstrated that the cardiomyopathy was not the result of oxidative damage or 

elevated apoptosis and occurs solely because of complex I deficiency [100]. 

Another protein, NDUFS6, has also been globally knocked down in a mouse model 

resulting in a severe cardiomyopathy. Animals demonstrated a 3.2 fold increase in heart 

weight when compared with wild type mice and a ~90% reduction in complex I activity. 

This research did not investigate whether there was a relationship with ROS production 

or increased apoptosis that may ultimately be causative of the cardiomyopathy [265]. 

Interestingly, this model differs from known human mutations in its presentation, with 

humans having a system wide disease and early death, although cardiac involvement 

was not investigated and hence cannot be ruled out.  

1.4. ENU Mutagenesis 

The discovery that N-Ethyl-N-Nitrosourea (ENU) functioned as a powerful chemical 

mutagen was first described in 1979 [266] and has since become a valuable tool for the 

identification of novel genes and pathways associated with mammalian disease. ENU is 

an alkylating agent which functions by transferring an ethyl or methyl group to the 

oxygen or nitrogen of nucleotide bases resulting in a DNA adduct that if not corrected 

leads to a point mutation or small deletion in the genome. ENU typically modifies A/T 

base pairs either by transversion to T/A (44%) or transition to G/C (38%). G/C to A/T 

transitions (8%), G/C to C/G transversions (3%), A/T to C/G transitions (5%), and G/C to 

T/A transitions (2%) are less common [267]. ENU mutagenesis is typically administered 
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as a series of injections into a male mouse where sperm are mutagenised, allowing for 

the phenotyping and genetic characterisation of his offspring. Typical dosage leads to a 

mutation load in the region of one mutation for every 1-1.5Mb [268].  

Two of the key advantages of ENU mutagenesis over other systems for genetic 

modification is the ability to produce a wide range of alleles (hypo, hyper, neo, null, anti) 

and breeding schemes can be employed to screen for a variety of different mutation 

types. Single generation breeding can allow for the investigation of dominant or X-linked 

dominant traits, whilst multi generation schemes can allow for recessive screens. In 

addition, ENU mutagenesis can be employed in so called ‘sensitized strains’ which carry 

a pre-existing mutation or heritable trait to look for modifier genes or regions of the 

genome associated with a particular trait [269]. A limitation of ENU mutagenesis is the 

preference for A/T modifications, resulting in the favouring of certain areas of the 

genome or amino acid changes [268]. 

1.4.1. The Harwell Ageing Screen 

The Harwell ageing screen was a large scale recessive ENU mutagenesis screen using a 

phenotype driven approach to discover new models of diseases associated with ageing. 

C57BL/6J male mice were mutagenised with an initial ENU dose of 120mgkg-1 followed 

by two further doses of 100mgkg-1 with a week between each dose. Mutagenised mice 

were then bred with C3H.Pde6b+ females to produce a G1 cohort. G1 males were again 

crossed to C3H.Pde6b+ females to produce a G2 cohort. G2 females were genotyped for 

the presence of the hypomorphic Cdh23 allele ahl1 (Inherited from the C57BL/6J 

parent), this allele is associated with hearing loss and would confound the phenotyping 

tests planned as part of the screening process. Wild-type animals crossed back to their 

G1  fathers to produce an experimental G3 cohort of roughly 100 male and female 

carrying a wide variety of genetic modifications. Screening was primarily undertaken on 

female mice due to issues with singly housing males following long term procedures, but 

males were screened at a later time point where phenotypes were identified in females 

from any given pedigree.  

Phenotyping tests were carried out longitudinally, typically at an early (3-6 months), 

intermediate (~12 months) and late (15-18 months) time point with final terminal 
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procedures undertaken at 18 months of age (Table 1.5) and included a wide variety of 

systems [270].  

Test Phenotypic Area Group Age (weeks) 

ECG Cardiac All 12 

SHIRPA Neurological Females (males) 13, 66 

Grip strength Musculoskeletal/neurological All 13, 66 

Slit lamp/ophthalmoscope Vision All 15, 49, 65, (73) 

Optokinetic drum Vision/neurological All 15, 49, 65, (73) 

Click box Hearing Non ahl 14, 26, 39, 50 

Auditory brainstem response+click stimulus Hearing Non ahl 14, 39 

Echo-MRI Growth/body composition Males (females) 16, 27, 51, 71 

DEXA Musculoskeletal/body composition Females (males) 16, 51, 

X-ray Musculoskeletal Females (males) 16, 51, 74 

Pupillometry Vision/neurobehaviour All 18, 68 

Sleep tracking Neurobehaviour Females (males) 18, 68 

Clinical chemistry Pathology Females (males) 28, 53, 80 

Fasted bleed Diabetes/metabolism Males (females) 17, 28, 52, 80 

Fasted insulin Diabetes/metabolism Males (females) 33, 57, 72 

IPGTT Diabetes/metabolism Males (females) 33, 57, 72 

Table 1.5. Summary and timetable of phenotyping tests performed during the Harwell Ageing Screen 

showing tests used, time points performed and sex of animals used. In addition, all animals were weighed 

every 3 months up until 12 months of age and then monthly. Where a single sex is indicated the other sex 

was tested where outliers were identified. ECG – electrocardiograph, SHIRPA – Smithkline Beecham, 

Harwell, Imperial College and Royal London Hospital phenotyping assessment, DEXA – dual energy x-ray 

absorptiometry, MRI – magnetic resonance imaging, IPGTT – intraperitoneal glucose tolerance test. 

Adapted from Potter et al. (2016) [270]. 

1.4.2. ENU Screens for Models of Cardiac Disease 

ENU screens have previously been used to investigate novel mutations leading to 

cardiovascular defects in mice. These screens have focused screening both on adult mice 

[271] and on identifying defects in the embryonic mouse by using non-invasive in utero 

Doppler echocardiography [272]. Use of colour Doppler to identify defects in mouse 

embryos was successful in identifying 425 out of 10,091 screened foetuses with cardiac 

abnormalities, however only small portion of these were mapped and causative genes 

were not described [273]. It is important to note that limitations with the screening 

method result in conditions such as hypertrophic cardiomyopathy being under reported 

in the screen [272].   
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1.5. Thesis Aims and Objectives 

The aim of this project is to characterise a novel model of cardiomyopathy resulting from 

an ENU induced point mutation in the gene Ecsit and identified as part of the Harwell 

ageing screen. Ecsit, the evolutionarily conserved signalling intermediate in the toll 

pathway, encodes a 50kDa protein known to be involved in innate immunity through 

the toll pathway, embryogenesis via the bone morphogenetic pathway and in 

mitochondrial complex I assembly as a key assembly factor with a currently unknown 

mechanism.  

The study will involve the following: 

- Phenotyping analysis 

o Characterisation of the cardiomyopathy and longitudinal study to 

determine disease progression. 

o Characterisation of other body systems, liver, renal, neurological, bone, 

to determine if there are secondary effects of the mutation which are less 

prominent than the observed cardiomyopathy.  

- Gene identification 

o SNP mapping to identify region of genome carrying mutation. 

o Whole genome sequencing to identify candidate mutations. 

o Sanger sequencing and pyrosequencing, to confirm candidate mutations 

and isolate causative mutation.  

- Functional characterisation of the pathways affected 

o Ex vivo investigation of the BMP pathway. 

o In vitro investigation of the TLR pathway using bone marrow derived 

macrophages. 

o Protein expression, complex analysis, mitochondrial function analysis, 

and downstream effects of mitochondrial dysfunction to investigate the 

mechanism of ECSITs involvement in complex I assembly.  
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Chapter 2: Materials and Methods 
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2.1. Materials List 

Consumable Supplier Product code 

2,3-Butanedione monoxime Sigma-Aldrich B0753-100G 

20% SDS Solution National Diagnostics EC-874 

2-Mercaptoethanol Gibco 21985-023 

2-Mercaptoethanol (50mM) Gibco 31350-010 

2x Taqman Fast Universal PCR Mastermix Applied Bioystems 4352042 

3,3'-Diaminobenzidine tetrahydrochloride 

hydrate 

Sigma-Aldrich D5637-1G 

70µm cell strainer Greiner bio-one 542070 

96F Without lid Microwell plate Thermo Scientific 269620 

96-Well PCR Plate Non-Skirted 4titude 4ti-0750-25 

Accelerator TAAB Embedding Resin Premix TAAB T037 

Acetonitrile, anhydrous 99.8% Sigma-Aldrich 271004-1L 

Adhesive Film Covers Abgene AB-0558 

Adhesive Sealing Sheets Thermo Scientific AB-0558 

Alkaline Phosphatase New England Biolabs M0290S 

Amersham hyperfilm ECL GE Life Sciences 28906839 

Amersham™ Hybond™ P 0.45 PVDF GE Healthcare 10600023 

Ampicillin Sodium FORMEDIUM AMP25 

Antimycin A Sigma-Aldrich A8764 

Bovine Serum Albumin Sigma-Aldrich A7906-100G 

Bovine Serum Albumin, fatty acid free Sigma-Aldrich A8806-5G 

Carbonyl cyanide 4-

(trifluoromethoxy)phenylhydrazone 

Sigma-Aldrich C2920-10MG 

CELLSTAR 10cm Cell Culture Dishes Greiner bio-one 664-160 

CELLSTAR 6 Well Cell Culture Plate, Sterile, 

With Lid 

Greiner bio-one 657-160 

CELLSTAR Cell Culture Flasks 25cm2, 50ml, 

Red filter 

Greiner bio-one 690-175 
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CELLSTAR Cell Culture Flasks 75cm2, 250ml, 

Red filter 

Greiner bio-one 658-175 

Collagen from calf skin Sigma-Aldrich C9791-

100MG 

Collagen from calf skin Sigma-Aldrich C8919-20ML 

Collagenase/Dispase Roche 10 269 638 

001 

cOmplete Tablets EDTA-free, EASYpack Roche 04 693 132 

001 

Cytochrome C from bovine heart Sigma-Aldrich C2037 

Cytosine β-D-arabinofuranoside Sigma-Aldrich C1768-

100MG 

D-Mannitol Sigma-Aldrich M9546-250G 

DMEM (1x) + GlutaMAX™-1 +4.5g/L D-

Glucose, -Pyruvate 

Gibco 61965-026 

DMEM (1x) +4.5g/L D-Glucose, +L-Glutamine, 

+Pyruvate 

Gibco 41966-029 

DPBS (1x) -CaCl2, -MgCl2 Gibco 14190-094 

Dried Skimmed Milk Marvel   

EDTA Thermo Scientific 17892 

EGTA Sigma-Aldrich E4378-25G 

Ethanol, absolute Fisher Scientific E/0650DF/17 

Foetal Bovine Serum Gibco 10500064 

Glycerol VWR 444482V 

Hardener Component TAAB Embeddding 

Resin Premix 

TAAB T035 

HBSS -Calcium Chloride, -Magesium Chloride, 

-Magnesium Sulfate 

Gibco 14175-095 

HEPES Buffer Solution (1M) Gibco 15630-056 

High Capacity cDNA Reverse Transcription Kit Applied Bioystems 4368814 

Horse Serum Gibco 16050-122 
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HotShot Mastermix   HS002 

Illustra™ DNA Esxtraction Kit BACC2 GE Healthcare RPN-8502 

Isoproterenol hydrochloride Sigma-Aldrich I-6501 

jetPRIME reagent Polyplus 114-07 

Kanamycin Sulfate from Streptomyces 

kanamyceticus 

Sigma-Aldrich K4000-1G 

L-(-)-Malic acid Sigma-Aldrich M6413-25G 

LCGreen® Plus+ BioFire BCHM-ASY-

0005 

Leibovitz's L-15 Medium (1x) +L-Glutamine 

+L-Amino Acids 

Gibco 11415-049 

L-Glutamic acid Sigma-Aldrich G8415-100G 

L-Glutamine Sigma-Aldrich G8540-25G 

Lipopolysaccharides from Escherichia coli 

O55:B5 

Sigma-Aldrich L2880-10MG 

Live/Dead Cytoxicity/Viability Kit Invitrogen L3224 

Medium 199 (1x) +Earle's Salts +L-Glutamine 

+2.2g/L Sodium Bicarbonate 

Gibco 11150-059 

MEM Non-Essential Amino Acids Solution 

(100x) 

Gibco 11140-050 

Methanol Fisher Scientific M/4000/PC1

7 

MicroAmp® Fast Optical 96-Well Reaction 

Plate w/ Barcode 0.1mL 

Applied Bioystems 4346906 

MicroAmp™ Optical Adhesive Film Applied Bioystems 4311971 

Mlu1 Promega R6381 

NADH, disodium salt Roche 10 107 735 

001 

NativePAGE™ 20x Cathode Buffer Additive Invitrogen BN2002 

NativePAGE™ 20X Running Buffer Invitrogen BN2001 
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NativePAGE™ 3-12% Bis-Tris Gel 

1.0mmx10well 

Invitrogen BN1001BOX 

NativePAGE™ 3-12% Bis-Tris Gel 

1.0mmx15well 

Invitrogen BN1003BOX 

NativePAGE™ Sample Prep Kit Invitrogen BN2008 

Nitro Blue Tetrazolium Sigma-Aldrich N5514-

10TAB 

Nonidet® P 40 Substitute Fluka 74385 

NuPAGE™ 4-12% Bis-Tris Gel 1.0mmx10well Invitrogen NP0321BOX 

NuPAGE™ 4-12% Bis-Tris Gel 1.0mmx12well Invitrogen NP0322BOX 

NuPAGE™ 4-12% Bis-Tris Gel 1.0mmx15well Invitrogen NP0323BOX 

NuPAGE™ 4-12% Bis-Tris Gel 1.0mmx2Dwell Invitrogen NP0326BOX 

NuPAGE™ Antioxidant Invitrogen NP0005 

NuPAGE™ LDS Sample Buffer Invitrogen NP0007 

NuPAGE™ MOPS SDS Running Buffer (20x) Invitrogen NP0001 

NuPAGE™ Sample Reducing Agent (10x) Invitrogen NP0004 

NuPAGE™ Transfer Buffer (20x) Invitrogen NP0006 

Oligomycin Sigma-Aldrich 75351 

Penicillin-Streptomycin (10,000U/mL) Gibco 15140-122 

Penicillin-Streptomycin (5,000U/mL) Gibco 15070-063 

Phenylephrine Sigma-Aldrich P-6126 

PhosSTOP EASYpack Roche 04 906 837 

001 

Pierce® ECL Western Blotting Substrate Thermo Scientific 32106 

Plasmid Midi Kit (25) QIAGEN 12143 

Potassium hydroxide Fisher Scientific P/5640/53 

Potassium phosphate monobasic Sigma-Aldrich P5655-100G 

Precellys Lysing Kit Tissue Grinding 

CKmix50_7mL 

Bertin Technologies KT03961-1-

306.7 

Precision Plus Protein™ Dual Color Standard Bio Rad 1610374 

Propan-2-ol Fisher Scientific P/7490/21 
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Protein G Sepharose® Fast Flow Sigma-Aldrich P3296-5ML 

Proteinase A/G Sepharose® Abcam ab193262 

Proteinase K Solution QIAGEN 19133 

Pyromark Annealing Buffer QIAGEN 979009 

Pyromark Binding Buffer QIAGEN 979006 

Pyromark Denaturation Solution QIAGEN 979007 

Pyromark Gold Q96 QIAGEN 972807 

Pyromark Q96 HS plates QIAGEN 979001 

Pyromark Q96 Vaccuum Prep Troughs QIAGEN 979011 

Pyromark Wash Buffer QIAGEN 979008 

Q5® Site-Directed Mutagenesis Kit New England Biolabs E0554S 

QIAquick Gel Extraction Kit (50) QIAGEN 28704 

QIAquick PCR Purification Kit (50) QIAGEN 28104 

QIAzol Lysis Reagent QIAGEN 79306 

Quick Start™ Bradford 1x Dye Reagent Bio Rad 500-0205 

Resin Component TAAB Embedding Resin 

Premix 

TAAB T033 

Rneasy® Micro Kit (50) QIAGEN 74004 

RNeasy® Midi Kit (50) QIAGEN 75144 

RNeasy® Plus Mini Kit (50) QIAGEN 74134 

Rotenone Sigma-Aldrich R8875-1G 

RPMI Medium 1640 (1x) +L-Glutamine Gibco 21875-034 

RT2 SYBR®Green ROX™FAST Mastermix Qiaqen 7570665 

Seahorse XF Assay Medium Modified DMEM 

(0mM glucose) 

Agilent 102365-100 

Seahorse XF-24 FluxPak Agilent 100850-001 

Sgf1 Promega R7103 

SOC Outgrowth Medium New England Biolabs #B9020S 

Sodium acetate Sigma-Aldrich S2889-250G 

Sodium carbonate decahydrate, 99+% Acros Organics 213500010 

Sodium deoxycholate Sigma-Aldrich D6750-100G 
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Sodium phosphate Sigma-Aldrich 342483-25G 

Streptavidin Sepharose™ High Performance GE Healthcare 17-5113-01 

Sucrose Fisher Scientific S/8600/60 

Syringe filter 0.2µm Fisherbrand 09-719c 

T4 DNA Ligase New England Biolabs M0202S 

TBS (10x) Cell Signaling 

Technology 

12498S 

Triton X-100 Sigma-Aldrich X100-100ML 

Trizma® base Sigma-Aldrich T6066-500G 

Trizma® hydrochloride Sigma-Aldrich T5941-500G 

Trypsin (0.25%) phenol red Gibco 25050-014 

Trypsin-EDTA (0.05%) phenol red Gibco 25300-054 

Trypsin-EDTA (0.25%) phenol red Gibco 25200-056 

Tween® 20 National Diagnostics EC-607 

Ultrapure Agarose Invitrogen 16500-500 

Western Blotting Filter Paper, 

7cmx8.4cmx0.83mm 

Thermo Scientific 84783 

XL-10 Gold ultracompetent E.coli cells Agilent 200314 
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2.2. Primers 

2.2.1. Sequencing Primers for Mutation Validation 

Primer Sequence (5’ to 3’) 

Pdgfd Forward CCTTATTGCTGGTGGCCAGA 

Pdgfd Reverse AAGGCTGGTGCTGTCAAAGT 

Trpc6 Forward ACTATGAAAATTTTCC 

Trpc6 Reverse GCACCTCCGTCACTACCAAT 

Ecsit Forward AAAGGGACGATCACGGTCAC 

Ecsit Reverse TGGATCTGCCCAAAACAGGG 

 

2.2.2. Pyrosequencing Primers 

Primer Sequence (5’ to 3’) 

9-7.16 (Dync2h1) Forward  AAAATGCCTTCACAGACAAGT 

9-7.16 (Dync2h1) Reverse Biotinylated GAGGTACCAGCATGATTCTCT 

9-7.16 (Dync2h1) Sequencing Forward TGAAAACCCACTTCCA 

9-14.36 (Endod1) Forward AGGGATCCACAGAGGACA 

9-14.36 (Endod1) Reverse Biotinylated CGTGTGGTCAGAACACAAA 

9-14.36 (Endod1) Sequencing Forward GAGGACACTGAGCAGG 

9-16.63 Forward Biotinylated AGGCCCCAGAGAGTTTAGAGG 

9-16.63 Reverse CACTCCATATTCCGTTCTCTAGC 

9-16.63 Sequencing Reverse TCCACTCTCCAATTGC 

9-20.65 (Pin1) Forward TGGTCGTGCAAACCTGTAATCT 

9-20.65 (Pin1) Reverse Biotinylated AATTCAGGCCCTTAAGTTTAGTGG 

9-20.65 (Pin1) Sequencing Forward AGTGGGCAAAGGTACT 

9-22.07 (Ecsit) Forward Biotinylated CACTGGGTAGGGGTTGAT 

9-22.07 (Ecsit) Reverse AAGTTACCCCATGCTCAAG 

9-22.07 (Ecsit) Sequencing Reverse TCACCCGATTCAAGA 

9-23.24 (Bmper) Forward Biotinylated CTCAGGGTTTTAGAAATGTGG 

9-23.24 (Bmper) Reverse CGGCCTGTCTCTAGTCAAA 

9-23.24 (Bmper) Sequencing Reverse CAGAAGATGCTGACCTC 
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9-27.22 Forward Biotinylated CACTTCCTTCGCTCAGAATGC 

9-27.22 Reverse AGCAAGGACCACACCTTCAACAT 

9-27.22 Sequencing Reverse CTTTGGAAGACATCCC 

9-32.13 (Arhgap32) Forward 

Biotinylated 

GGGGTGCAGTTTACTTGG 

9-32.13 (Arhgap32) Reverse GTGGGAGTCTCCATACCTG 

9-32.13 (Arhgap32) Sequencing Reverse ATGCTGGGCAAGTATG 

9-44.10 (Rnf26) Forward Biotinylated TTCTGTGGTTGCCTCTTG 

9-44.10 (Rnf26) Reverse TTTCCACACGCGTCATAG 

9-44.10 (Rnf26) Sequencing Reverse CGTCATAGGCACTTCTG 

 

2.2.3. Lightscanner Primers 

Primer Sequence (5’ to 3’) 

Ecsit Forward TGCTCAAGTTCCTGCGGAT 

Ecsit Reverse CTAGCTTGGCCAGGTCCAAA 

Ecsit Lunaprobe GTTCACCCGATTCAAGATTATCAACCC 

 

2.2.4. Cloning Primers 

Primer Sequence (5’ to 3’) 

Ecsit Forward Sgf1 AGGCGATCGCCATGAGCTGGGTGCAGGTCAACTT 

Ecsit Reverse Mlu1 GCGACGCGTACTTTGCCCCTGCTGCTGCTCTG 

Ndufaf1 Forward Sgf1 GAGGCGATCGCCATGTCTTCCATTCACAAATTACT 

Ndufaf1 Reverse Mlu1 GCGACGCGTTCTGAAGAGTCTTGGGTTAAGAA 

 

2.2.5. Site Directed Mutagenesis Primers 

Primer Sequence (5’ to 3’) 

Ecsit N209I Forward CGATTCAAGATTATCAACCCCTAC 

Ecsit N209I Reverse GGTGAACCACAGCTTCATC 
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2.2.6. Cloning Sequencing Primers 

Primer Sequence (5’ to 3’) 

VP1.5 Forward GGACTTTCCAAAATGTCG 

XL39 Reverse ATTAGGACAAGGCTGGTGGG 

 

2.3. Vectors and cDNA clones 

Vector Supplier Code 

pCMV6-Entry Origene PS100001 

pCMV6-AC-His Origene PS100002 

pCMV6-Entry-ACAD9 Origene MR209542 

pCMV6-Entry-SMAD4 Origene MR208755 

pCMV6-Entry-TRAF6 Origene MR208489 

MGC Mouse Ecsit cDNA Dharmacon MMM1013-202766953 

MGC Mouse Ndufaf1 cDNA Dharmacon MMM1013-202762755 

 

2.4. Primary Antibodies 

Antibody (Protein) Species 

/clonality 

Supplier Code Dilution Size 

(kDa) 

6X His Rabbit 

poly 

Origene TA150031 1:1000 N/A 

ACAD9 Rabbit 

poly 

Abcam ab99952 1:500 69 

AMPK Mouse 

mono 

CST 2793 1:1000 62 

ATP5A Mouse 

mono 

Abcam ab14748 1:1000 53 

CD5 – BV421 Rat mono BD  562739 1:800 

(FACS) 

N/A 

CD11b – PE – CF594 Rat mono BD 562317 1:200 

(FACS) 

N/A 
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CLPP Rabbit 

poly 

Abcam ab124822 1:5000 26 

COXIV Mouse 

mono 

Abcam ab14744 1:1000 17 

DRP1 Rabbit 

mono 

Abcam ab184247 1:1000 82 

ECSIT Rabbit 

poly 

Abcam ab21288 1:1000 50/45 

ECSIT Rabbit 

poly 

Abcam ab66380 1:800 50/45 

ECSIT Rabbit 

poly 

Atlas HPA042979 1:100 50/45 

EIF2α Rabbit 

mono 

CST 5324 1:1000 36 

F4/80 - PE Rat mono Thermo 

Fisher 

12-4801-80 1:200 

(FACS) 

N/A 

GRP75 Mouse 

mono 

Abcam ab2799 1:1000 74 

HSP60 Rabbit 

poly 

Abcam ab46798 1:20000 60 

JNK Rabbit 

poly 

CST 9252S 1:1000 54/46 

LONP1 Rabbit 

poly 

Abcam ab103809 1:1000 106 

LY6C – FITC Rat mono Abcam ab15686 1:200 

(FACS) 

N/A 

LY6G – BV421 Rat mono BD  562737 1:200 

(FACS) 

N/A 

MFN2 Mouse 

mono 

Abcam ab56889 1:1000 86 

MHCI Mouse 

mono 

DSHB A4.840 1:1 (ICC) N/A 
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MHCIIA Mouse 

mono 

DSHB A4.74 1:1 (ICC) N/A 

MHCIIB Mouse 

mono 

DSHB BF.F3 1:1 (ICC) N/A 

MHCIIX Mouse 

mono 

DSHB 6H1 1:1 (ICC) N/A 

MTCO1 Mouse 

mono 

Abcam ab14705 1:2000 40 

MT-ND1 Rabbit 

mono 

Abcam ab181848 1:1000 36 

Myc Mouse 

mono 

Origene TA150121 1:1000 N/A 

NDUFA10 Rabbit 

poly 

Abcam ab103026 1:500 41 

NDUFA3 Mouse 

mono 

Santa 

Cruz 

sc-365351-

S 

1:1000 9 

NDUFA8 Mouse 

mono 

Santa 

Cruz 

sc-398097-

S 

1:1000 20 

NDUFAF1 Rabbit 

mono 

Nijtmans 

Lab 

N/A 1:250 43/38 

NDUFB1 Rabbit 

poly 

Abcam ab201302 1:1000 12 

NDUFB11 Rabbit 

mono 

Abcam ab183716 1:10000 17 

NDUFB3 Mouse 

mono 

Santa 

Cruz 

sc-393351-

S 

1:1000 12 

NDUFB8 Mouse 

mono 

Abcam ab110242 1:2000 22 

NDUFC2 Rabbit 

mono 

Abcam ab192265 1:1000 14 

NDUFS2 Rabbit 

mono 

Abcam ab192022 1:1000 49 
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NDUFS3 Mouse 

mono 

Santa 

Cruz 

sc-374282-

S 

1:1000 30 

NDUFS8 Mouse 

mono 

Santa 

Cruz 

sc-515527-

S 

1:1000 23 

NDUFV2 Rabbit 

mono 

Abcam ab183715 1:1000 24 

NFκB Mouse 

mono 

CST 6956T 1:1000 65 

OPA1 Rabbit 

poly 

Abcam ab42364 1:1000 92/86 

P38 MAPK Rabbit 

poly 

CST 9212S 1:1000 43 

PARP Rabbit 

mono 

Abcam ab32138 1:1000 113 

PGC1α Rabbit 

poly 

Abcam ab54481 1:1000 105 

Phospho AMPK Rabbit 

mono 

CST 2535 1:1000 62 

Phospho DRP1 

(Ser616) 

Rabbit 

poly 

CST 3455S 1:1000 82 

Phospho DRP1 

(Ser637) 

Rabbit 

poly 

CST 4867S 1:1000 82 

Phospho EIF2S1 Rabbit 

mono 

Abcam ab32157 1:500 36 

Phospho JNK 

(T183/Y185) 

Rabbit 

poly 

CST 9251S 1:1000 46/54 

Phospho NFκB Rabbit 

mono 

CST 3033T 1:1000 65 

Phospho P38 MAPK 

(T180/Y182) 

Mouse 

mono 

CST 9216S 1:2000 43 

PINK1 Rabbit 

poly 

Abcam ab23707 1:1000 66 
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SDHA Mouse 

mono 

Abcam ab14715 1:10000 70 

TOM20 Rabbit 

poly 

Abcam ab199641 1:1000 16 

UQCRC2 Mouse 

mono 

Abcam ab14745 1:1000 49 

VDAC Rabbit 

poly 

Abcam ab15895 1:1000 31 

α-TUBULIN Rabbit 

mono 

Abcam ab176560 1:2000 50 

FACS – Fluorescence associated cell sorting, ICC – Immunocytochemistry 
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2.5. Secondary Antibodies 

Antibody Supplier Code Dilution 

IRDye® 680LT Goat 

anti-Mouse IgG (H 

+ L) 

Li-Cor 926-68020 1:15000 

IRDye® 680LT Goat 

anti-Rabbit IgG (H + 

L) 

Li-Cor 926-68021 1:15000 

IRDye® 800CW 

Goat anti-Rabbit 

IgG (H + L 

Li-Cor 926-32211 1:15000 

IRDye® 800CW 

Goat anti-Mouse 

IgG (H + L) 

Li-Cor 926-32210 1:15000 

Alexa fluor 633 

Goat anti-Mouse 

Life Technologies A20146 1:200 (ICC) 

Alexa fluor 488 

Goat anti-Mouse 

Life Technologies A11029 1:200 (ICC) 

Anti Mouse HRP Promega W402B 1:1000 

Anti Rabbit HRP Promega W401B 1:1000 

ICC – immunocytochemistry 
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2.6. Animals 

All animals were housed at the Mary Lyon Centre (Harwell, Oxfordshire) according to 

the Animals (Scientific Procedures) Act 1986 (ASPA) (amended in 2012) and according 

to MRC guidance issued in ‘Responsibility in the Use of Animals in Bioscience Research’. 

Animals were maintained under the home office project licence 30/3070 (MRC Harwell) 

– ‘New mouse models of human disease’ and according to the procedures laid out 

within. Animal husbandry work was carried out by staff in ward 3 of the Mary Lyon 

centre. 

Animals were caged in individually ventilated cages with no more than 5 animals to a 

cage, except in cages with nursing mothers. Checks were performed daily and food (RM3 

(E) – Dietex -  Special Diet Services (irradiated to 3 rads)) and water (Mains water purified 

by reverse osmosis and chlorinated to 9-13 ppm) supplied ad libitum. Standard 12:12 

(0700:1900) light dark cycle with 30 minute dawn and dusk periods was maintained 

throughout. Temperature was maintained between 19 and 22oC with 45-65% humidity. 

Health screening was performed regularly on sentinel animals to ensure a pathogen free 

environment.  

2.6.1. Original Pedigree 

The original muta-ped-c3pde-178 (MPC-178) pedigree from which all further animals 

were derived was produced from the intercrossing of C57BL/6J mutagenised males to 

C3H.Pde6b+ females to produce a G1 cohort (Figure 2.1), heterozygous for any ENU 

induced mutations. C57BL/6J (G0) animals were mutagenised using the chemical 

mutagen N-ethyl-N-nitrosourea (ENU) which induces point mutations throughout the 

mouse genome. Mice were dosed with 1x120mgkg-1 and 2x100mgkg-1 with 7 days 

between each dose. G1 males were subsequently crossed to C3H.Pde6b+ females to 

obtain a G2 cohort. G2 females were finally crossed to the G1 male parent to obtain the 

experimental G3 cohort carrying both heterozygous and homozygous ENU induced 

mutations and allowing for screening of dominant and recessive traits [270].  
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Figure 2.1. ENU mutagenesis and breeding plan for the production of the G3 experimental cohort. Male 

C57BL/6J mice are mutagenized and crossed to female C3H.Pde6b+ to produce a G1 cohort. Through 

successive rounds of breeding a G3 experimental cohort is produced that allows for the screening of 

recessive mutations. Adapted from Goldsworthy and Potter (2014) [274].  

The G3 pedigree was produced as 2 cohorts of approximately 50 animals 3 months apart. 

With the first (A) cohort undergoing primary screening and the second (B) cohort used 

to confirm the presence of phenotypes observed in the first.  

 

Figure 2.2. Graphical representation of the phenotyping tests undertaken during the Harwell Ageing 

Screen. Circles represent phenotyping tests carried out at each time point. In addition to these tests mice 

are weighed every 3 months up until 12 months of age and monthly thereafter. Adapted from Potter et 

al. [270] 

Animals were aged for 18 months and screened throughout their lifetimes (Figure 2.2) 

using a variety of techniques including, clinical chemistry, auditory brain stem response 

(ABR), optokinetic drum (OKD), ophthalmoscope, X-ray, Dual energy x-ray 
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absorptiometry (DEXA), grip strength, SHIRPA (Smithkline Beecham, Harwell, Imperial 

College, Royal London Hospital, phenotype assessment), and Echo-MRI. 

The G3 mating program typically results in one in eight mice from the G3 cohort which 

are homozygous for any given ENU induced mutation.  

2.6.2. Incipient Congenic Pedigree 

Following identification of the cardiac phenotype in the MPC-178 pedigree the line was 

re-derived from frozen sperm and subsequently backcrossed to C3H.Pde6b+ for 5 

generations before intercrossing to obtain the incipient congenic pedigree used for the 

majority of phenotyping and sample collection. All animals and samples used are from 

this backcross unless otherwise stated.  

2.6.3. Compound Heterozygote 

Heterozygous Ecsit knockout (Ecsit+/-) animals on a C57BL/6J background were obtained 

from the laboratory of Professor Sankar Ghosh at Columbia University (New York, USA) 

and imported into the Mary Lyon Centre through standardised quarantine procedure. 

Briefly, sperm is collected from Ecsit+/- males and used to fertilise eggs from 

superovulated donor females. Embryos are imported into the Mary Lyon Centre, 

implanted into pathogen free female mice and carried to term.  

Following import and confirmation of allele transfer, heterozygous Ecsit knockout 

(Ecsit+/-) males were crossed to incipient congenic heterozygous females (EcsitN209I/+) to 

produce offspring of 4 possible genotypes (Ecsit+/+, Ecsit+/-, EcsitN209I/+, EcsitN209I/-) for 

further phenotyping and sample collection.  
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2.7. Phenotyping 

2.7.1. Clinical Chemistry 

Male and female mice from both backcross one and the incipient congenic pedigree 

were terminally anaesthetised using Euthatal (pentobarbital) and blood samples 

collected using a lithium heparin coated capillary tube inserted into the retro-orbital 

sinus. Blood samples were collected in lithium heparin microvette tubes on ice.  

Following collection, plasma is separated by centrifugation at 5000xg at 4oC for 10 

minutes and is collected in a separate uncoated micro centrifuge tube. Plasma 

concentrations of relevant compounds were assessed by the clinical chemistry core at 

MRC Harwell using an Olympus U400 bio analyser.  

2.7.2. Echocardiogram 

Echocardiography was performed by the phenotyping core of the Mary Lyon centre at 

MRC Harwell. Twelve week old male and female mice were anaesthetised with 4% 

isoflurane (maintained at 1.5%) in oxygen and echo-cardiogram performed using a Vevo 

770 high-resolution in vivo micro imaging system with a Visualsonics RMV707B Probe 

(30 MHz). Body temperature was monitored using a rectal thermometer and maintained 

using a heat lamp at 36-38oC. ECG monitoring was performed using limb electrodes, to 

which the animals paws were attached using surgical tape and the heart rate maintained 

at or above 400bpm. Short axis B and M mode images were taken using the papillary 

muscles as a point of reference for positioning of the probe. Image contrast and gain 

functions were used for clarity and frame rate of 110Hz used throughout. 

Measurements were taken from M-mode images using the inbuilt Vevo software.  

2.7.3. ECG 

ECG was performed on 12 week old male and female animals using an anaesthetised 

ECG technique. Animals were anaesthetised using 4% isoflurane (maintained at 1.5%) 

and placed on a corkboard. 25G needles were passed through the skin in both armpits 

and on either flank into the cork board. ECG cables were attached to the needles and 2 

lead ECG readings recorded at 2kHz taken for 90 seconds using a  Dual Bio Amp (ML135) 

(AD Instruments, Oxford, UK)  connected to a Powerlab 4/30 (ML866) (AD Instruments, 

Oxford, UK). A spirometer pod (ML311) (AD Instruments, Oxford, UK) connected to a 
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spirometry pad placed under the animals chest was used to monitor breathing rate. 

Anaesthetic regime was monitored in order to maintain steady heart rate (350-450 bpm) 

and breathing rate (90-120 bpm). Analysis was performed on lead 1 using LabChart pro 

V.8.1.5 (AD Instruments, Oxford, UK) with ECG analysis plugin with setting for rodent T 

wave, block averaging, and default detection and analysis parameters. Where software 

was unable to determine position of ECG parameters these were manually called 

according to the guidelines set out in Boukens et al. (2014) [275]. 

2.7.4. Intra Peritoneal Glucose Tolerance Test 

Intra peritoneal glucose tolerance test (IPGTT) was performed by Mr Laurence Goosey 

at MRC Harwell. IPGTT was performed on 12 week old male and female wild type and 

incipient congenic EcsitN209I/N209I animals. Mice were fasted overnight prior to IPGTT 

assessment. The tail is anaesthetised with EMLA (Lidocaine/Prilocaine) to induce local 

anaesthesia prior to a 40µL sample of blood being collected in a lithium heparin 

microvette tube. Plasma is collected from this sample for later analysis. 2g of glucose 

per kg is then injected by intraperitoneal (IP) injection and animals returned to the home 

cage. Blood glucose levels are then measured using an Alphatrak (Abbott, UK) at 30, 60 

and 120 minutes post glucose injection.  

2.7.5. Echo-MRI 

Echo-MRI was performed on male and female wild type and incipient congenic 

homozygous animals (EcsitN209I/N209I) at 8, 10, 14 and 18 weeks of age to show the 

accumulation of fat and lean mass over time. Animals were weighed to determine true 

body weight before measurements were made on mice using an ECHO MRI-100 

(Houston, TX, USA) body composition analyser. Briefly, un-anaesthetised animals were 

placed into an acrylic tube and restrained using a second acrylic rod. The restrained 

animal was then placed inside the ECHO MRI-100 and measurements taken using the 

magnet, taking approximately 60 seconds. Animals were returned to their home cage 

immediately following measurements. Measurements were also obtained for total 

water content. 

2.7.6. Grip Strength 

Grip strength was performed on male and female wild type and incipient congenic 

homozygous animals (EcsitN209I/N209I) at 14 weeks of age. Animal body weights are 
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collected immediately before hand to provide a crude means of normalisation. Grip 

strengths are then measured using a grip strength meter with a grid attachment. To 

obtain a measurement mice are placed on the staging area of the strength meter and 

gently pulled across the grid by their tail. The machine measure the maximum force 

before the animal releases from the grid. To measure the strength of the forepaws, the 

animal’s tail is lifted slightly so that the hind limbs are unable to grip the grid. 3 

measurements are taken ensuring good contact with the grid and no erroneous readings 

are taken, the mean of the 3 measurements is taken.   

2.8. Mapping and Whole-Genome Sequencing 

DNA from affected mice and littermate controls was extracted using Illustra Nucleon 

BACC2 kit (GE Healthcare) according to manufacturer’s protocol and sent to GenProbe 

Life Sciences Ltd. To be run on the Illumina Golden Gate Mouse MD Linkage Panel, 

consisting of 1,449 loci and including approximately 4 SNPs (single nucleotide 

polymorphisms) per 27 Mb interval across the mouse genome 

(https://products.illumina.com). Because the ENU treatment is carried out on the 

C57BL/6J father, the region(s) carrying the causative mutation should be either 

homozygous (recessive line) or heterozygous (dominant lines) for C57BL/6J SNPs in 

affected individuals, whilst control animals should carry C3H.C3pde SNPs in the same 

region.  

After identifying the candidate region that could contain the causative mutation, the 

DNA from the G1
  founder of the pedigree was sent for whole genome sequencing (WGS) 

employing the Illumina HiSeq platform (Oxford Genomics Centre, Wellcome Trust 

Centre for Human Genetics). The sequence was then analysed by the bioinformatics 

group based at MRC-Harwell, highlighting the possible coding and non-coding mutations 

and the confidence in each mutation based on read depth of the WGS.  

2.9. Mutation Validation 

To confirm the mutations in Pdgfd, Trpc6 and Ecsit, DNA was extracted from the tail of 

an affected G3 animal and C57BL/6J control animal using the GE Illustra BACC2 kit 

according to manufacturer’s instructions. The relevant locus was then amplified using 

appropriate primers (section 2.2.1).  

https://products.illumina.com/
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Q5 high fidelity DNA polymerase (New England Biolabs) was used as a polymerase. The 

50µL reaction contained; 10µL 5X Q5 reaction buffer, 1µL 10mM dNTPs, 2.5µL 

10pmol/µL forward primer, 2.5µL 10pmol/µL reverse primer, 5µL 10ng/µL DNA 

template, 28.5µL ddH2O, 0.5µL (1 unit) Q5 high-fidelity DNA polymerase. PCR cycling 

conditions were set with an initial denaturation step of 98oC for 30 seconds followed by 

30 cycles of 98oC for 10 seconds, 58oC for 10 seconds and 72oC for 30 seconds. A final 

elongation step at 72oC for 2 minutes was included before samples were stored at 4oC 

awaiting PCR purification.  

2.9.1. PCR Purification 

All samples were purified using a QIAquick PCR purification kit (Qiagen) according to 

manufacturer’s instructions. Briefly, DNA is bound to a silica membrane in a 

centrifugation column in the presence of a high salt buffer by centrifuging at 17,900xg 

for 60 seconds. Following binding, buffer is discarded and bound DNA is washed once 

using the supplied buffer. Finally, DNA is eluted in low salt buffer by centrifuging at 

17,900xg for 1 minute.  

Following purification samples were sent for Sanger sequencing by Source Bioscience 

(Oxford) and results analysed using Seqman pro (DNASTAR, USA). 

2.9.2. Sanger Sequencing 

All sequencing was performed by Source Bioscience (Oxford) 

(www.sourcebioscience.com). Plasmids (100ng/µl) and PCR products (10ng/µl) from 

genomic DNA using appropriate sequencing primers supplied (3.2ng/µl) (sections 2.2.1 

and 2.2.6).  

2.10. Genotyping 

Genotyping was performed using one of two methods. Initially animals were genotyped 

using a panel of SNVs (single nucleotide variants) across the mapped region with 

pyrosequencing, allowing for both the validation of mutations and the narrowing of the 

causative region. After genotype to phenotype relationship was more certain, 

genotyping was performed using a Lightscanner high resolution melting assay.  

http://www.sourcebioscience.com/
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2.10.1. Pyrosequencing 

Initial genotyping was performed on a panel of 9 SNVs across the region of interest 

identified as part of the next generation sequencing performed on the G1 animal. DNA 

was obtained from ear biopsies taken from G3 animals using KAPA express extract kit 

(KAPA Biosystems) according to manufacturer’s instructions. PCR of the regions of 

interest was performed using Taq PCR master mix (Qiagen) and the primers listed in 

section 2.2.2. 

Reaction mix is as follows for a 10µL reaction; 5µL Taq PCR master mix, 2.6µL ddH2O, 

0.2µL forward primer (table 5.2.2), 0.2µL reverse primer (table 5.2.2), and 2µL template 

DNA. PCR cycling conditions are then set with an initial denaturation step of 95oC for 5 

minutes followed by 45 cycles of 95oC for 15 seconds, 54oC for 30 seconds and 72oC for 

15 seconds with a final elongation step of 72oC for 5 minutes.  

Following PCR the samples are run on a PSQ HS96A pyro sequencer according to 

manufacturer’s protocol using Pyromark reagents (Qiagen), Streptavidin SepharoseTM 

high performance beads (GE Healthcare) and the appropriate sequencing primer for 

each fragment as listed in section 2.2.2.  

2.10.2. Lightscanner 

Routine genotyping was performed by Lightscanner (Idaho technology, USA) high 

resolution DNA melting assay using LCGreen and a Lunaprobe developed by the MRC 

genotyping and mutation detection screens (GEMS) core facility. To distinguish between 

wild type, homozygous, and heterozygous animals for the single point mutation a 3’ 

blocked oligonucleotide (LunaProbe) is designed that sits directly over the SNP and 

exhaustive asymmetric PCR is performed. This creates two products, one is the full PCR 

product between the normal primers (section 2.2.3), whilst the other results from the 

probe annealing to the complementary strand. PCR products are then gradually heated 

and the fluorescence of the bound LCGreen dye is measured. The difference in melting 

temperatures caused by altered affinity of the probe allows for determination of wild 

type, heterozygous and homozygous samples.   

The reaction conditions for a 10μl reaction were 5μl of Hot Shot PCR master mix 

(Diamond, Clent Life Science, UK), 1μl LCGreen, 0.5μl reverse primer (20ng/μl), 0.1μl 

forward primer (20ng/μl), 0.5μl probe (20ng/μl), and 0.9μl ddH2O. 



79 
 

Standard PCR cycling conditions were as follows: starting temperature at 95oC for 2 min, 

then 55 cycles of 95°C for 30 seconds, 60°C for 30 seconds and 72°C for 30 seconds. The 

hybridisation step was at 95°C for 30 seconds, 25°C for 30 seconds and 15°C for 30 

seconds.  

2.11. Histology 

Hearts were collected from wild type and EcsitN209I/N209I animals at 0, 1, 2, 4, 6, 8, and 12 

weeks of age to investigate the development of the cardiomyopathy phenotype, no 

preference was made for male or female samples. Animals were culled by cervical 

dislocation, hearts excised and fixed in 10% neutral buffered formalin. Histology was 

prepared by the histology core team at MRC Harwell by embedding the fixed hearts in 

paraffin and sectioning at 4µm using a Finesse ME+ microtome (Thermo Fisher). 

Transverse sections (T/S) were stained with Haematoxylin and Eosin (H&E).  

2.12. Muscle Fibre Typing 

Muscle fibre typing was performed by Mr. Saleh Salman Omairi at the University of 

Reading [276]. Soleus and extensor digitorum longus (EDL) from male wild type and 

EcsitN209I/N209I animals and frozen over isopropanol on liquid nitrogen. Following freezing, 

frozen muscle samples were mounted in Tissue Tech freezing medium (Jung) and cooled 

by dry ice/ethanol. Cryosections taken at 10µM thick were dried for 30 minutes at room 

temperature before being washed three times in PBS and incubated in permeabilisation 

buffer solution (4mM HEPES, 3mM MgCl2, 10mM NaCl, 1.5mM Sodium azide, 60mM 

Sucrose, 0.1% Triton X-100) for 15 minutes. Following permeabilisation, samples were 

washed in wash buffer (1x PBS with 5% foetal calf serum (v/v) and 0.05% Triton X-100) 

for 30 minutes at room temperature.  

Primary antibodies against MHCI, MHCIIA, MCHIIX and MHCIIB were diluted in wash 

buffer and incubated overnight at 4oC. The next day samples are incubated in secondary 

antibody diluted in wash buffer for 1 hour in darkness. Finally, slides were mounted in 

fluorescent mounting medium and myonuclei visualised with 2.5µg/ml DAPI.  

Fluorescence microscopy was performed with Zeiss AxioImegar AI an images captured 

with Axiocam digital camera. Analysis was performed with Zeiss Axiovision computer 

software version 4.8.  
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2.13. Transmission Electron Microscopy 

For transmission electron microscopy (TEM), 1mm3 cubes of left ventricular tissue were 

fixed in 3% glutaraldehyde and 4% formaldehyde in 0.1 M PIPES and post-fixed with 1% 

osmium tetroxide in 0.1 PIPES. Samples were taken from the left ventricular free wall of 

3 wild-type and 3 EcsitN209I/N209I males at 16 weeks of age. After serial dehydration in 

increasing concentration of ethanol, the tissue was embedded in epoxy resin (TAAB) and 

polymerised overnight at 60˚C. Golden ultrathin sections (70-80 nm) were cut with a 

diamond knife and collected on copper/palladium grids. To improve contrast, blocks 

were stained with 2% uranyl acetate and grids were stained with lead citrate. 

Images were collected at the Wolfson bioimaging facility at the University of Bristol using 

a Tecnai 12 Biotwin electron microscope with the assistance of Mrs Judith Mantell. 

Analysis was performed using FIJI software.  

2.14. Mitochondrial DNA quantification 

DNA was extracted from left ventricle heart tissue from wild type and EcsitN209I/N209I male 

and female animals (n=3 per group) using Illustra Nucleon BACC2 kit (GE Healthcare) 

according to manufacturer’s protocol and DNA concentrations measured using a 

Nanodrop 8000 spectrophotometer (Thermo Fisher).  

The relative copy numbers of mitochondrial and nuclear DNA were assessed using 

NovaQUANT™ Mouse Mitochondrial to Nuclear Ratio kit according to manufacturer’s 

instructions. Briefly, purified DNA (1ng/well) is diluted and combined with 2x RT2 Fast 

SYBR® Green Mastermix before being aliquoted into the plate of pre-aliquoted primers 

against 2 mitochondrial (12s, trLEV), and 2 nuclear (BECN1,  NEB) genes. The plate is 

sealed with optically clear lids, briefly centrifuged and copy number assessed using a 

7500 Fast real-time PCR system (Applied Biosystems) with a denaturing step at 95oC for 

10 minutes followed by 40 cycles of 95oC for 3 seconds and 60oC for 30 seconds.  

Analysis was performed using the ‘Relative copy number’ method outlined in the 

manufacturers protocol. Ct values of the 2 gene pairs (trLEV/BECN1, 12s/NEB) are 

compared to obtain the ΔCt value for each pair. The average of the two 2ΔCt values then 

gives the average copy umber of mitochondrial DNA per cell.   
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2.15. Seahorse 

All Seahorse analysis was performed using a Seahorse XF24 extracellular flux analyser 

(Agilent) on cultured cells or isolated mitochondria as described below. In all cases 

seahorse cartridges were hydrated by loading calibration plate with 1ml of calibrant 

(Agilent) and incubating overnight at 37oC in a non-CO2 incubator, any evaporation was 

replaced the following morning to maintain 1ml of calibrant in all wells. The Seahorse 

XF24 was also pre-heated to 37oC for at least 8 hours prior to use.  

2.15.1. Seahorse on Mouse Embryonic Fibroblasts (MEFs) 

MEFs were isolated and cultured as in section 2.24. MEFs were plated on Seahorse XF24 

plates at a concentration of 40,000 cells/well in 250µL of MEF culture media and 

incubated overnight at 37oC, 5% CO2. The following day MEF culture medium was 

replaced with CAS medium (Seahorse DMEM, 25mM glucose, 2mM glutamine, 1mM 

sodium pyruvate, pH 7.2) and incubated at 37oC in a non-CO2 incubator for 90 minutes.  

Seahorse is performed according to protocol laid out in table 2.1 with final 

concentrations of oligomycin (2.0µM), FCCP (carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone) (1.0µM), rotenone (2.0 µM) and antimycin A 

(2.0µM).  

Step Command Time 

(Min.) 

Compound 

/Repeats 

Step Command Time 

(Min.) 

Compound 

/Repeats 

1 Calibrate   31 Mix 2 Repeat 3 

times 2 Mix 2 Repeat 5 

times 

32 Wait 2 

3 Wait 2 33 Measure 4 

4 Measure 4 40 Inject  Anti A/Rot 

17 Inject  Oligomycin 41 Mix 2 Repeat 3 

times 18 Mix 2 Repeat 3 

times 

42 Wait 2 

19 Wait 2 43 Measure 4 

20 Measure 4 50 End   

30 Inject  FCCP     

Table 2.1. Seahorse protocol for measurement of O2 consumption rate and addition of compounds during 

MEF assay.  
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Following Seahorse analysis, the cell plate is retained, washed gently with PBS and total 

live cell count assessed by live/dead viability/cytotoxicity kit for mammalian cells (Life 

Technologies). Cells are incubated in 200µl of PBS containing 2µM calcein AM per well. 

Cells are incubated at room temperature for 30 minutes whilst protecting from light and 

fluorescence measured (excitation/emission 485/530nm) on a Fluostar OPTIMA plate 

reader (BMG Labtech, Aylesbury, UK) to determine live cell concentration per well. 

Seahorse readings are normalised to relative intensity of fluorescent signal rather than 

true cell count.  

2.15.2. Seahorse on Isolated Neonatal Cardiomyocytes 

Neonatal mouse cardiomyocytes were isolated and cultured as in section 2.26. 

Cardiomyocytes were plated into pre-coated seahorse XF24 cell culture plates at a 

variable cell density (25,000, 50,000, 75,000 or 100,000 cells/well) and seahorse 

protocol performed according to procedure laid out in table 2.2 with final 

concentrations of oligomycin (2.0µM), FCCP (1.0µM), rotenone (2.0 µM) and antimycin 

A (2.0µM). 

Step Command Time 

(Min.) 

Compound 

/Repeats 

Step Command Time 

(Min.) 

Compound 

/Repeats 

1 Calibrate   31 Mix 2 Repeat 3 

times 2 Mix 2 Repeat 5 

times 

32 Wait 2 

3 Wait 2 33 Measure 4 

4 Measure 4 40 Inject  Anti A/Rot 

17 Inject  Oligomycin 41 Mix 2 Repeat 3 

times 18 Mix 2 Repeat 3 

times 

42 Wait 2 

19 Wait 2 43 Measure 4 

20 Measure 4 50 End   

30 Inject  FCCP     

Table 2.2. Seahorse protocol for measurement of O2 consumption rate and addition of compounds during 

cardiomyocyte cell density and FCCP concentration titrations. 

Following cell density titration the optimal density was selected and FCCP titration was 

performed by plating freshly isolated cardiomyocytes at this density followed by 

measurements with variable final FCCP titrations (0, 0.5, 1.0, 2.0, 4.0, and 6.0 µM). 
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2.15.3. Seahorse on Isolated Mitochondria 

Mitochondria for seahorse analysis were isolated from freshly dissected hearts and 

brains obtained from 15 week old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

wild type and EcsitN209I/N209I animals culled by cervical dislocation, no preference was 

made for sex. Samples were kept on ice and homogenised in MSHE+BSA (70mM sucrose, 

210mM Mannitol, 5mM HEPES, 1mM EGTA, 0.2% w/v FFA free BSA, 1M KOH) in a 

Dounce homogeniser using both A and B pestles. Mitochondria are separated from 

lysate by subsequent centrifugation 800xg for 10 minutes at 4oC twice, discarding the 

pellet after each step. The supernatant is retained and centrifuged at 8000xg for 10 

minutes at 4oC. The remaining mitochondrial pellet is suspended in MSHE+BSA and the 

concentration measured using a Bradford assay (Bio-rad). 

Mitochondria are diluted 1:10 in ice cold mitochondrial assay solution (MAS) (70mM 

sucrose, 220mM mannitol, 10mM KH2PO4, 5mM MgCl2, 2mM HEPES, 1mM EGTA, 0.2% 

w/v FFA free BSA, 1M KOH) before diluting further in MAS to the desired concentration 

and loaded onto Seahorse XF24 plates at a concentration of 5µg/well. The plate is 

centrifuged at 2000xg for 20 minutes at 4oC to ensure mitochondria are adherent.  

450µL of MAS containing 10mM pyruvate and 10mM malate is added to the 

mitochondria in the plate and the plate incubated at 37oC for 10 minutes without CO2. 

Measurements are made on the seahorse according to the procedure laid out in table 

2.3. ADP, FCCP and Antimycin A are added to give a final concentration of 40µM, whilst 

oligomycin is added to a final concentration of 20µM.  
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Step Command Time 

(Min.) 

Compound 

 

Step Command Time 

(Min.) 

Compound 

1 Calibrate   14 Mix 1  

2 Mix 1  15 Inject  Oligomycin 

3 Wait 3  16 Mix 0.5  

4 Mix 1  17 Measure 3  

5 Wait 3  18 Mix 1  

6 Mix 0.5  19 Inject  FCCP 

7 Measure 3  20 Mix 0.5  

8 Mix 1  21 Measure 3  

9 Measure 3  22 Mix 1  

10 Mix 0.5  23 Inject  Antimycin 

11 Inject  ADP 24 Mix 0.5  

12 Mix 1  25 Measure 3  

13 Measure 3  26 End   

Table 2.3. Seahorse protocol for measurement of O2 consumption rate and addition of compounds during 

isolated mitochondria assay.  

2.16. Western Blots 

Tissues samples were obtained from terminal wild type and EcsitN209I/N209I male and 

female animals (n=3 per group) and snap frozen at the time of dissection. Heart, liver, 

brain, kidney and skeletal muscle taken from the hind limb were stored at -80oC until 

required. Proteins were extracted from tissue by homogenising in RIPA buffer (150mM 

NaCl, 1% NP-40, 0.5% DOC, 0.1% SDS, 50mM Tris, pH 7.5) containing phosphatase 

(Roche) and protease (Roche) inhibitors in precellys CK28 homogenisation tubes.  

Proteins were isolated from macrophages by scraping the macrophages from the plate 

and centrifuging to obtain the cell pellet before lysing in RIPA buffer containing 

phosphatase and protease inhibitors.  

Protein concentration was measured by Bradford assay (Bio-rad) and measured on a 

µQuant plate reader (Biotek instruments inc., VT, USA). 20µg of total protein was mixed 

with LDS sample buffer (Invitrogen) and reducing agent (Invitrogen) loaded onto 
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NuPAGE™ 4-12% Bis-Tris protein gels (Invitrogen). Electrophoresis was performed at 

200V for 60 minutes at room temperature in 1x MOPS. 

PVDF membrane (GE) is activated in absolute methanol for 1 minute and proteins 

transferred using X-Cell blot module (Invitrogen) containing 1x transfer buffer 

(Invitrogen), 20% methanol and 1x anti-oxidant (Invitrogen) according to manufacturer’s 

instructions.  

Following transfer, membranes are blocked in either 5% w/v milk powder in phosphate 

buffered saline (PBS) containing 0.1% tween or 5% BSA (bovine serum albumin) in TBS 

containing 0.1% tween (for phosphorylated proteins) for 60 minutes with shaking. 

Primary antibodies (Section 2.4) diluted in 5% milk/PBS-T or 5% BSA/TBS-T are incubated 

overnight at 4oC before three, 5 minute washes in PBS-T or TBS-T. Secondary antibodies 

(Section 2.5) are diluted in 5% milk/PBS-T or 5% BSA/TBS-T and incubated for 1 hour. 

Fluorescent secondary antibodies are protected from light during this and subsequent 

steps. Membranes are subsequently washed a further 3 times before drying. Blots were 

scanned using a LI-COR Odyssey Cl-x or SA scanner (LI-COR Biosciences, Cambridge, UK). 

Image Studio Lite software (LI-COR Biosciences) is used for quantification and analysis 

(Median, 3 pixel border background).  

2.17. Blue Native PAGE 

Mitochondria were isolated from frozen heart and brain tissue taken from wild type and 

EcsitN209I/N209I male and female animals (n=3 per group).  

Hearts were lysed in 10mL/g of homogenisation medium A (0.32M sucrose, 1mM EDTA, 

10mM tris-HCl, pH7.4, filter sterilised) in an Elvehjem-Potter homogeniser on ice by 

hand. Homogenate was centrifuged at 1000xg or 5 minutes at 4oC and supernatant 

retained. Supernatant was centrifuged for 2 minutes at 9000xg at 4oC before removing 

the supernatant and fluffy coat, leaving behind the mitochondrial pellet. The 

mitochondrial pellet was subsequently resuspended in 100µL of homogenisation 

medium A and centrifuged at 9000xg for 10 minutes at 4oC, discarding the supernatant. 

This wash step is repeated 5 times and the mitochondrial pellet stored at -80oC. 

Brains were lysed in 5mL/g of homogenisation medium AT (0.075M sucrose, 0.225M 

mannitol, 1mM EGTA, 10mM tris-HCl, pH7.4, filter sterilised) in an Elvehjem-Potter 
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homogeniser on ice by hand. Homogenate was centrifuged at 1000xg for 5 minutes at 

4oC and supernatant retained. Supernatant is centrifuged at 12000xg for 10 minutes at 

4oC before removing the supernatant and fluffy coat, leaving behind the mitochondrial 

pellet. The mitochondrial pellet was subsequently resuspended in 100µL of 

homogenisation medium AT and centrifuged at 12000xg for 10 minutes at 4oC, 

discarding the supernatant. This wash step was repeated 5 times and the mitochondrial 

pellet stored at -80oC. 

Mitochondria were resuspended in 100uL of appropriate homogenisation medium and 

the concentration determined by Bradford assay (Bio-rad). 

250µg of mitochondria were resuspended in 50µL of native page sample buffer (12.5µL 

4x native page sample buffer, 10µL digitonin, 1x protease inhibitors), incubated on ice 

for 1 hour, and centrifuged at 20000xg for 30 minutes at 4oC. 6.7µL of Native PAGE G-

250 sample additive is added before loading 30µg of mitochondria on to NativePAGE™ 

3-12% bis-tris gels (Invitrogen). First dimensional electrophoresis was performed with 

an initial step of 150V for 30 minutes at 4oC, 1x NativePAGE™ running buffer (Invitrogen) 

was used at the anode, whilst the cathode contained 1x NativePAGE™ running buffer 

(Invitrogen) with 1x NativePAGE™ cathode buffer additive (Invitrogen). After 30 minutes 

the cathode buffer was exchanged for 1x NativePAGE™ running buffer with 0.1x 

NativePAGE™ cathode buffer additive and run for at 250V for a further 90 minutes at 

4oC.  

First dimensional blots were transferred to PVDF using X-cell blot module containing 

bicarbonate transfer buffer (1mM NaHCO3, 0.3mM NaCO3.10H2O) at 60 volts for 1 hour 

at 4oC. Membranes were blocked in 5% milk in PBS-T (0.1%tween) for 1 hour. Primary 

antibodies (Section 2.4) were diluted in 5% milk/PBS-T and incubated overnight before 

three, 5 minute washes in PBS-T. Secondary antibodies (Section 2.5) were diluted in 5% 

milk/PBS-T and incubated for 1 hour before proteins are visualised using Pierce™ ECL 

reagent (Thermo scientific) and Amersham hyperfilm ECL (GE Life Sciences) developed 

using an Mi-5 x-ray film processor (Medical Index, Germany). 

For second dimension BN-PAGE, first dimensional gels are cut out and incubated in 1% 

SDS with 1% beta-mercaptoethanol for 1 hour before loading into a NuPAGE 4-12% 
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1.0mmx2D well gel. Gels are run at 200V for 50 minutes at room temperature in MOPS. 

Only male samples were used for second dimensional blots.  

Proteins are transferred to PVDF membrane using X-Cell blot module (Invitrogen) 

containing 1x transfer buffer, 20% methanol and 1x anti-oxidant (Invitrogen) according 

to manufacturer’s instructions. Following transfer, membranes are blocked in either 5% 

w/v milk powder in PBS containing 0.1% tween for 1 hour. Primary antibodies (Section 

2.4) diluted in 5% milk/PBS-T are incubated overnight at 4oC before three, 5 minute 

washes in PBS-T. Secondary antibodies (Section 2.5) are diluted in 5% milk/PBS-T and 

incubated for 1 hour, protecting from light. Membranes are subsequently washed a 

further 3 times before drying. Fluorescent blots are scanned using a LI-COR Odyssey Cl-

x or SA scanner (LI-COR Biosciences, Cambridge, UK). Image Studio Lite software (LI-COR 

Biosciences) is used for analysis.  

2.18. In-Gel Activity assay 

As described in section 2.16. mitochondria were isolated from wild type and 

EcsitN209I/N209I male and female hearts and brains and run on first dimensional 

NativePAGE™ 3-12% Bis-Tris gels. First dimensional electrophoresis was performed with 

an initial step of 150V for 30 minutes at 4oC, 1x native PAGE running buffer was used at 

the anode, whilst the cathode contained 1x NativePAGE™ running buffer with 10x 

NativePAGE™ cathode buffer additive. After 30 minutes the cathode buffer was 

exchanged for 1x NativePAGE™ running buffer with 1x NativePAGE™ cathode buffer 

additive and run for at 250V for a further 90 minutes at 4oC. 

Following electrophoresis proteins were not transferred to PVDF membrane but the gels 

removed from the casings and stained as below.  

2.18.1. Complex I 

For complex I activity gels were stained for 1 hour in 10mls of buffer containing 150µM 

NADH, 3mM nitro blue tetrazolium and 2mM Tris-HCl (pH 7.4). The oxidation of NADH 

to NAD+ results in the reduction of the nitro blue tetrazolium dye and the appearance 

of a deep blue staining. The depth of stain is proportional to the activity of complex I in 

the gel. Following 1 hour of incubation, the gels are scanned using a desktop PC scanner 
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and can be analysed by importing the images into Image Studio (Li-Cor Biosciences, 

Cambridge, UK). 

2.18.2. Complex IV 

For complex IV activity gels were stained for 1 hour in buffer containing 2.3mM DAB 

(3,3’-diaminobenzidine), 1g/l cytochrome C, 2mM sucrose and 50mM sodium 

phosphate buffer (pH 7.4). In this case, cytochrome C oxidised by complex IV reacts with 

DAB to give a dark brown stain on the gel corresponding to the activity of complex IV. 

Following 1 hour of incubation, the gel was scanned using a desktop PC scanner and was 

analysed by importing the images into Image Studio (Li-Cor Biosciences, Cambridge, UK). 

2.19. ROS assay 

Reactive oxygen species were measured indirectly by assessing the levels of 4-

hydroxynonenal (4-HNE) in wild type and EcsitN209I/N209I heart tissue. 4-HNE is the 

product of lipid peroxidation by reactive oxygen species and was measured using an HNE 

adduct competitive ELISA from Cell Biolabs Inc. according to manufacturer’s 

instructions.  

Briefly, whole hearts from 3 male and 3 female wild type and EcsitN209I/N209I animals were 

homogenised in PBS and normalised to a protein concentration of 5mgml-1. An ELISA 

plate is coated with HNE adduct before incubation with known and unknown samples 

before addition of anti-HNE polyclonal antibody is added. This is followed by washing 

and incubation with an HRP-conjugated secondary antibody. The plate is washed again 

and substrate added and incubated for up to 20 minutes before stop solution is added. 

Finally, absorbance is measured at 450nm on a Fluostar OPTIMA plate reader (BMG 

Labtech, Aylesbury, UK) and values of unknown samples are determined by comparison 

to a standard curve.  

2.20. ADP:ATP quantification assay 

ADP:ATP ratio was assessed using Enzylight™ ADP/ATP ratio kit (Bioassays systems). For 

this, 5µl of whole heart lysate from 3 male and 3 female wild type and EcsitN209I/N209I 

animals was normalised to a concentration of 5mgml-1 by Bradford assay. The lysate is 

treated sequentially with two solutions to measure the concentration of ATP and ADP 

in the lysate. In the first reaction D-luciferin reacts with ATP in the presence of luciferin 
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to produce a light signal proportional to the concentration of ATP. In the second 

reaction, ADP is converted to ATP via an enzymatic reaction, allowing for the ATP 

concentration to be measured again via the same reaction as the first measurement.  

The ADP:ATP ratio (R) is calculated by subtracting the background signal obtained 

following complete ATP reaction after the first reaction (B) from the ADP reaction signal 

(C) and divide the result by the signal obtained from the initial ATP reaction (A).  𝑅 =

𝐶−𝐵

𝐴
  

2.21. Cloning and Transfection 

Full length Ecsit and Ndufaf1 cDNA clones (Dharmacon) in pCMV-SPORT vector were 

transformed into 100µl of XL-10 gold E.coli (Agilent) by incubating on ice for 30 minutes 

with 4µl of 2-mercaptoethanol before heat shocking at 42oC for 30 seconds and 

returning to ice for a further 2 minutes. Pre-warmed SOC media is added (900µl) is 

added and bacteria plated on 100µg/mL ampicillin LB-agar plates before colonies were 

picked and grown overnight at 37oC with shaking in 100µg/mL liquid LB media. DNA was 

extracted using QIAprep Spin Miniprep Kit (Qiagen) according to manufacturer’s 

protocol. Briefly, bacteria were pelleted and lysed before neutralised lysis buffer is 

centrifuged to pellet cell membranes and organelles. Supernatant is applied to a 

supplied spin column and DNA bound by centrifugation. Bound DNA was briefly washed 

before being eluted in 10mM Tris buffer. 

PCR was performed using primers (Section 2.2.4) against the 3’ and 5’ ends of the 

respective ORFs that introduce restriction enzyme sites (Sgf1, Mlu1). PCR is performed 

using a touchdown protocol with an initial denaturation of 95oC for 10 minutes followed 

by cycles of 95oC for 10 seconds, 62oC (2x), 60oC (2x), 58oC (2x), 56oC (15x) for 20 seconds 

and 72oC for 4 minutes with a final elongation step of 10 minutes.  

PCR amplified ORF was purified using  QIAquick PCR purification kit (Qiagen) (Section 

2.9.1) according to manufacturer’s protocol of binding DNA to a spin column, washing 

briefly and finally eluting in 10mM tris buffer. 

pCMV6-ENTRY and pCMV6-AC-HIS vectors were transformed into XL-10 gold E.coli and 

DNA extracted as above (pCMV6-ENTRY is grown in 25µg/ml kanamycin, pCMV6-AC-HIS 

in 100µg/ml ampicillin LB media). 
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ORF and vector DNA are digested using Sgf1 and Mlu1 restriction enzymes (Promega) in 

restriction buffer C (Promega) for 3 hours at room temperature. Alkaline phosphatase is 

added to vector digestions, but not to ORF, for a final 30 minutes. 

Following digestion, DNA is again purified using QIAquick PCR purification kit (Section 

2.9.1), or QIAquick gel extraction kit (Qiagen) for vector DNA, after being run on a 1.3% 

agarose gel (tris borate EDTA (TBE) and gel-red) at 200V for 90 minutes to separate the 

excised fragment. Gel extraction differed from PCR purification in that the excised 

agarose slice was solubilised at 50oC for 10 minutes in the supplied buffer and 

isopropanol added to a final concentration of 20%, before the DNA was bound to the 

supplied column in the same manner.  

ECSIT ORF was ligated into pCMV6-AC-HIS vector and NDUFAF1 into pCMV6-ENTRY 

using T4 DNA ligase (NEB) for 60 minutes at room temperature. Ligated vector and ORF 

were transformed into XL.10 gold E.coli as before and DNA extracted using a plasmid 

midi kit (Qiagen) according to manufacturer’s protocol (an up-scaled version of the mini-

prep). Correct ligation and orientation was confirmed by Sanger sequencing (Section 

2.9.2) with supplied VP1.5 and XL39 sequencing primers (Section 2.2.6). 

pCMV6-AC-HIS-ECSIT was then used as a template for site directed mutagenesis of the 

N209I mutation using Q5 site-directed mutagenesis kit (NEB) and primers (table 5.2.5) 

designed to introduce the point mutation. PCR is performed according to 

manufacturer’s protocol with an initial denaturation of 98oC followed by 25 cycles of 

98oC for 10 seconds, 62oC for 30 seconds and 72oC for 2 minutes. KLD reaction was 

performed according to the kit instructions for 5 minutes at room temperature before 

mutagenised vector was transformed into 50µL of NEB-5α E.coli by incubating on ice for 

30 minutes and heat shocking at 42oC for 30 seconds. 950 µL SOC media is added and 

plated on 100µg/mL ampicillin LB plates overnight before colonies are picked and grown 

for a further 24 hours in liquid LB (100 µg/mL ampicillin) at 37oC with shaking overnight. 

DNA is again extracted using plasmid midi kit (Qiagen). 

Vector DNA is transfected into HEK-293T cells grown in a 6 well plate using jetPRIME® 

reagent (Polyplus) according to manufacturer’s protocol. Briefly, 2.5x105
 cells/well are 

pre-plated 24 hours prior to transfection in DMEM (high glucose, glutamax) 

supplemented with 10% FBS and 100U/ml penicillin-streptomycin (Section 2.23). 2µg of 
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DNA (1µg of each vector for co-transfection) is diluted in 200µL of jetPRIME® buffer and 

4µL of jetPRIME® reagent added. Mixture is incubated at room temperature for 10 

minutes following a brief vortex and centrifugation. Finally, mixture is applied drop-wise 

to media containing cells and incubated at 37oC with 5% CO2 for 48 hours.  

ACAD9, TRAF6 and SMAD4 were purchased pre cloned into the pCMV6-Entry vector and 

transformed into XL.10 gold E.coli, grown and DNA extracted as above.  

2.22. Co-Immunoprecipitation 

48 hours following transfection, HEK293T cells transfected with relevant vectors to 

express ECSIT or associated proteins were briefly washed with PBS and lysed in RIPA 

buffer (150mM NaCl, 1% NP-40, 0.5% DOC, 0.1% SDS, 50mM Tris, pH 7.5) with protease 

inhibitors (Roche) with manual scraping. Protein concentration was assessed by 

Bradford assay (Bio-Rad) and protein diluted to 1mg/ml 1ml of protein lysate was pre-

cleared with 20µl of protein G sepharose bead slurry (Sigma) for 1 hour to remove native 

immunoglobulins. Protein G beads were removed by briefly spinning at 1000xg for 1 

minute and the supernatant incubated with 4µg of relevant antibody (Section 2.4) over 

night to bind the protein of interest. Following antibody binding, lysate was incubated 

with 20µl of protein G sepharose bead slurry for 1 hour to bind antibody and attached 

protein/s. Beads were again pelleted by centrifugation at 100xg for 1 minute and 

washed 3 times in RIPA buffer. Beads were left in 30µl of RIPA buffer and 1x LDS sample 

buffer (Invitrogen) and reducing agent (Invitrogen) added before boiling the sample at 

95oC for 10 minutes to dissociate the beads from the bound antibody.  

Samples were loaded onto NuPAGE™ 4-12% Bis-Tris protein gels (Invitrogen) and run as 

with western blots (Section 5.13), before being transferred to PVDF membrane (Section 

2.16).   

2.23. Growth and maintenance of HEK-293T Cells 

HEK-293T cells (ECACC) were maintained in DMEM (high glucose, glutamax) with 10% 

FBS and 100U/ml penicillin-streptomycin. When required, cells were split 1:20-1:40 by 

first washing with pre-warmed D-PBS, and detached using 0.05% trypsin. Following 

detachment of cells, trypsin was deactivated using twice the volume of complete media 
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and seeded into 20mls total volume of complete DMEM in a T-75 flask or other 

appropriate cell culture container where required.   

2.24. Mouse Embryonic Fibroblast Isolation and Culture 

MEFs were harvested from 12.5-14.5dpc (days post coitum) mouse embryos by 

removing the head, heart and liver and washing gently in ice cold PBS. Harvested 

embryos were minced in 1.5mLs of 0.25% trypsin and incubated at 37oC for 5 minutes 

followed by homogenisation using a 21 gauge needle. Trypsin was deactivated using 

5mLs of MEF culture media (DMEM (high glucose, pyruvate), 10% FBS, 50µM β-

mercaptoethanol, 1x non-essential amino acids, 100U/ml penicillin streptomycin) and 

incubated overnight at 37oC, 5% CO2. The following day media was changed for fresh 

MEF culture media and maintained at 37oC, 5% CO2. When required, MEFS were split 

1:20 after washing with PBS and detaching using 0.25% trypsin. 

2.25. Bone Marrow Derived Macrophage Isolation 

12 week old Wild type and EcsitN209I/N209I animals were sacrificed by cervical dislocation 

and femur, tibia and fibula dissected from both hind limbs without damaging the 

epiphyses of any of the bones. Samples were kept on ice whilst dissection was 

performed.  

In a laminar flow hood, excess muscle was removed by scraping with a scalpel blade and 

the epiphyses of the femur and tibia removed, exposing the bone marrow. Bone marrow 

was flushed from the bone cavity with a 25G needle and syringe containing 1-2mls of 

PBS containing 0.6mM EDTA and flow through collected. Collected cells were pelleted 

by centrifugation at 400xg for 7 minutes at 4oC. Supernatant was removed and cells 

resuspended in 5mls of PBS containing 0.6mM EDTA. Cell suspension was filtered 

through a pre-wetted 70µm cell strainer and the cell strainer washed with 10mls of PBS 

containing 0.6mM EDTA. Cells were again pelleted at 400xg for 7 minutes (4oC). Red 

blood cells were removed by resuspending the pellet in 3mls of red blood cell lysis buffer 

(155mM NH4Cl, 12mM NaHCO3, 0.1mM EDTA) and incubated for 1 minute before 

diluting in 10mls of PBS (0.6mM EDTA) and again pelleted at 400xg. Cells were 

resuspended in PBS (0.6mM EDTA) one last time to measure cell concentration using a 

sceptre cell counter (Merck Millipore). Cells were pelleted and washed once in DMEM 

(pyruvate, glutamine) containing 10% FBS, 100U/ml penicillin-streptomycin to remove 
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EDTA. Finally, cells were plated at a concentration of 2.5x106 cells/mL in DMEM 

(pyruvate, glutamine) containing 10% FBS, 100U/ml penicillin-streptomycin and 

100ng/ml of macrophage colony stimulating factor (MCSF) (Cell Guidance Systems). 

Cells were maintained at 37oC, 5% CO2 with media changes on day 3 and 6. On day 7 

cells were harvested by manual scraping with PBS (0.6mM EDTA). Cells were counted 

again and re-plated at a concentration of 6x106 cells/well of a 6 well plate in DMEM 

(pyruvate, glutamine), 10% FBS, 100U/ml penicillin-streptomycin, 100ng/mL MCSF. 

Plated cells were activated with 100ng/ml of lipopolysaccharide (LPS) added directly to 

the media and incubated for 24 hours at 37oC, 5% CO2.  

Activated cells were harvested by manual scraping with PBS (0.6mM EDTA) and cells 

pelleted before lysis (Section 2.16). 

2.26. Cardiomyocyte Isolation 

Cardiomyocytes were isolated from wildtype and EcsitN209I/N209I neonatal mice between 

1 and 3 days old, no preference for sex was made. Animals were sacrificed by cervical 

dislocation and skin sterilised with 70% ethanol. Hearts were dissected and gently 

washed in Ca2+/Mg2+ free PBS supplemented with 20mM BDM (2,3-butanedione 

monoxime) before mincing in 250µL of isolation medium (Ca2+/Mg2+ free HBSS 

supplemented with 20mM BDM and 0.0125% w/v trypsin). Minced hearts from 6-10 

animals were incubated overnight in 10mL of isolation medium at 4oC with gentle 

agitation.   

The following day, isolation medium was replaced with 5mLs of digestion medium (L15 

medium, 20mM BDM, 1.5mg/mL Roche collagenase/dispase enzyme mix) and 5mLs of 

L15 medium supplemented with 20mM BDM before oxygenating for 1 minute. The 

oxygenated sample was then incubated for 30 minutes at 37oC with gentle agitation 

before digested fragments were triturated 10-20 times with a 10mL stripette. Cell 

suspension was passed through a pre-wetted 70µM cell strainer and the flow-through 

collected. Cardiomyocytes were pelleted by centrifuging at 100xg for 5 minutes at room 

temperature and resuspended in plating medium (65% DMEM high glucose, 19% M-199, 

10% horse serum, 5% FCS, 100U/ml penicillin-streptomycin) before being plated on 

uncoated 10cm tissue culture plates for 3 hours at 37oC, 5% CO2. Media was washed 

over the plate after 3 hours, leaving the adherent fibroblasts stuck to the plate, this step 
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was repeated once more before the cardiomyocyte suspension was plated at 1.5x105 

cells/cm2 on collagen coated tissue culture plates.  

24 hours post plating, plating medium was replaced for maintenance medium (78% 

DMEM high glucose, 17% M-199, 4% horse serum, 100U/ml penicillin-streptomycin, 

1µM AraC, 1µM isoproterenol) and cultured at 37oC, 5% CO2 for up to 5 days [277].  

2.27. Immunoprecipitation for Mass-Spec 

Immunoprecipitation was performed by one of 3 methods. For methods 1 and 2 proteins 

were extracted from wild type hearts by homogenisation in precellys tubes in a precellys 

homogeniser (Bertin instruments) in either RIPA buffer (150mM NaCl, 1%NP-40, 0.5% 

DOC, 0.1% SDS, 50mM Tris, pH 7.5) or incomplete RIPA buffer (150mM NaCl, 1% NP-40, 

0.5% DOC, 50mM Tris, pH 7.5) with the inclusion of 1x protease inhibitor cocktail (Roche) 

and 1x phosphatase inhibitor (Riche). 

Lysates were cleared by centrifuging at 10,000xg for 15 minutes at 4oC before protein 

concentration was determined by Bradford assay (Bio rad).  

5mg of total protein at a concentration of 2mg/mL was pre-cleared by incubating for 1 

hour with 30µl of protein G sepharose bead slurry (Sigma) at 4oC for 1 hour with rotation 

to remove native immunoglobulins. Following pre clearance, samples were centrifuged 

at 1,000xg for 1 min to remove protein G beads and supernatant incubated overnight 

with 20µg of antibody.  

Following overnight incubation, antibody was bound by incubation with 30µl of protein 

G sepharose beads for 1 hour at 4oC with rotation. Beads were collected by 

centrifugation (1,000xg, 1 min) and washed 3 times in 500µL lysis buffer. Antibody and 

bound protein were recovered by addition of 30µl of lysis buffer containing 1X LDS 

sample buffer (Invitrogen) and reducing agent (Invitrogen) before samples were run on 

an SDS-PAGE gel as in section 2.16. 

For method 3 proteins were extracted from wild type hearts by homogenisation in 

precellys tubes in a precellys homogeniser (Bertin instruments) in a mild 

homogenisation buffer (0.5% Triton X-100, 50mM HEPES, 150mM NaCl, 1mM MgCl2, 

1mM EGTA, pH 7.5) containing 1x protease inhibitors (Roche). Following lysis, samples 
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were cleared by centrifugation at 16,000xg for 20 minutes at 4oC and concentration 

assessed by Bradford assay (Bio rad).  

Preclearing of 1mg total protein (2mg/mL) was performed by incubation with 50µl of 

Protein A/G sepharose beads for 30 minutes at 4oC with rotation. Beads were removed 

by centrifugation at 16,000xg for 10minutes at 4oC.  

Supernatant was incubated with 1µg of antibody for 1 hour at 4oC with rotation before 

the addition of 30µl of protein A/G sepharose bead slurry and continued incubation 

overnight. Beads are collected by centrifugation (16,000xg, 10 mins, 4oC) and washed 

three times in lysis buffer. Antibody and bound protein were collected by addition of 

30µl of lysis buffer containing 1x LDS sample buffer (Invitrogen) and 1x reducing agent 

(Invitrogen) before western blot was performed.  

2.28. Fluorescence Associated Cell Sorting (FACS) 

FACS analysis was performed by Dr Pratik Vikhe at MRC Harwell. For analysis blood was 

collected by terminal retro-orbital sinus bleed following terminal overdose of 

pentobarbital using lithium heparin capillary tubes and lithium heparin collection tubes. 

25µl of whole blood was diluted in 175µl of FACS buffer (5mM EDTA, 0.5% foetal calf 

serum, PBS) in 96well V bottom plates. Blood was centrifuged at 2000rpm for 2 minutes 

and the pellet resuspended in red blood cell lysis buffer (155mM NH4Cl, 12mM NaHCO3, 

0.1mM EDTA) and incubated at room temperature for 5 minutes before centrifuging at 

2000rpm for 2 minutes. The pellet was resuspended in 200µl of FACS buffer and 

transferred to 96 well FACS analysis plate, centrifuged as previously and washed once 

more in FACS buffer. Following washes the pellet was suspended in 200µl of FACS buffer 

and the Fc receptor blocked by 1µl of CD16/32 antibody followed by incubation at room 

temperature for 10 minutes. Cells were centrifuged again at 2000rpm for 2 minutes and 

pellet suspended in 100µl of staining solution (FACS buffer + anti-F4/80 (1:200), anti-

CD11b (1:200), anti-Ly6g (1:200), anti-Ly6c (1:200) and anti CD5 (1:800) followed by 20 

minutes at room temperature in dark. Cells were washed with FACS buffer and fixed in 

100µl of 0.5% PFA for 10 minutes at room temperature in the dark. Finally, cells were 

washed twice in FACS buffer and resuspended in 210µl of FACS buffer and analysed 

using BD FACSCanto™ II system. FlowJo software (Tree Star™) was used to analyse the 

data.  
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2.29. Quantitaive Real Time PCR 

For Tlx2 expression, E7.5 embryos from wild type x wild type and EcsitN209I/N209I x 

EcsitN209I/N209I matings were collected, pooled and frozen on dry ice. RNA was extracted 

from pooled embryos using RNeasy Micro Kit (Qiagen) according to manufacturer’s 

protocol and concentration measured using a Nanodrop 8000 spectrophotometer 

(Thermo Fisher). Briefly, pooled embryos are lysed in 350µl of RLT buffer before addition 

of 350µl of 70% ethanol. The RNA is then bound to a supplied spin column by 

centrifugation for 15 seconds at 8000xg. Flowthrough is discarded and membrane 

incubated with 70µl of RDD buffer containing DNAse I for 15 minutes at room 

temperature. Following incubation, the membrane is washed once with RW1 buffer, 

once with RPE buffer and once with 80% ethanol with each wash followed by 

centrifugation at 8000xg for 15 seconds. Finally, the RNA is eluted in 14µl of RNAse free 

water and concentration calculated.  

RNA was diluted to a concentration of 100ng/µl and cDNA synthesised using high 

capacity cNDA reverse transcription kit (Thermo Fisher). Briefly, 10µl of diluted RNA is 

combined with 2µl of 10x RT buffer, 0.8µl of 25x dNTP mix (100mM), 2µl of 10x RT 

random primers, 1µl of multiscribe reverse transcriptase and 4.2µl of nuclease free 

water. The solution is then incubated on a PCR block at 25oC for 10 minutes followed by 

37oC for 120 minutes and 85oC for 5 minutes. cDNA is stored at -20oC until qRTPCR is 

run.  

The synthesised cDNA is diluted 1:25 to give a final concentration of 2ng/µl, suitable for 

taqman assay. Diluted cDNA (5µl) is combined with 10µl of 2X Taqman fast universal PCR 

master mix (Thermo Fisher), 1µl of relevant Taqman assay and 4µl of nuclease free 

water. The combined reagents are plated in a MicroAmp Fast Optical 96-wel Reaction 

plate (Thermo Fisher), the plate sealed with optically clear adhesive film and run on a 

7500 fast real-time PCR system (Applied Biosystems). Taqman assays used were specific 

for the target gene Tlx2 (Mm00437109_g1) and the endogenous controls B2m 

(Mm00437762_m1), Gapdh (Mm99999915_g1), and Hprt1(Mm00446968_m1). Hprt 

was selected for comparison as it demonstrated the least variability between samples.  



97 
 

2.30. Statistical Analysis 

Statistical analysis was performed using GraphPad Prism 7 (GraphPad software, CA, 

USA). Data are presented as mean ± SEM unless otherwise stated. Comparisons between 

2 groups were performed using unpaired Student’s t-test, an F test was performed to 

determine if there was a significant difference in variance between groups and where 

appropriate a Welch’s correction was included. For more than two groups, one (single 

variable) or two way (two variables) ANOVA was used with Bonferroni’s multiple 

comparison test for testing between groups. Correlations were assessed by linear 

regression. Results were considered significant at p<0.05. All phenotyping tests were 

performed blind to genotype of animals and in the case of echocardiograph, analysis 

was too performed blind. However, downstream molecular biology techniques were 

performed with prior knowledge of the genotype of samples being handled.  
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Chapter 3: Phenotypic Characterisation, 

Genetic Mapping and Confirmation of 

Mutation
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3.1. Introduction 

The aim of the Harwell Ageing Screen was to identify new mouse models of diseases 

associated with ageing by mutagenizing male mice and ageing their G3 descendants for 

18 months. During this time, the mice underwent a range of phenotyping tests across a 

range of physiological systems. As a result of this rigorous phenotyping regime a number 

of phenotypes of interest, resulting from ENU-induced mutations, were identified across 

the physiological systems that were part of the screening program [270].  

This chapter will focus on the identification, mapping, sequencing and further 

phenotyping of a small number of mice from pedigree MPC-178, which all exhibited a 

hypertrophic cardiomyopathy phenotype before 6 months of age. The pedigree was re-

derived from original G1 founder DNA in order to continue work after the identified 

affected animals were sacrificed. Whole-genome sequencing identified a candidate 

gene (Ecsit) and further phenotyping and inheritance testing confirmed the recessive 

nature of the trait. Despite Ecsit being thought to be ubiquitously expressed, the 

phenotype appears to be localised primarily to the heart with only small defects in 

weight gain and kidney function being observed.  

3.2. Mapping 

Mice were initially identified as part of the Harwell Ageing Screen when approximately 

15 mice from the initial G3 pedigree (78 mice) showed various signs of ill health (sudden 

weight loss, hunched appearance, piloerect coat, inactivity) or died suddenly. Four of 

these mice were collected for systematic necropsy and were noted to have enlarged 

hearts by visual inspection. Histology from this original pedigree revealed characteristic 

signs of hypertrophic cardiomyopathy: enlargement and disorganisation of the 

cardiomyocytes and the presence of vacuolation (Figure 3.1).  
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Figure 3.1. Histology of wild type and EcsitN209I/N209I heart from original pedigree showing enlargement of 

cardiac muscle with presence of disorganisation and vacuolation of cardiomyocytes in EcsitN209I/N209I heart.  

The number of affected mice (15/78) suggested that this was a recessive mutation and 

no founder G1 or G2 mice were found to be affected. Using the hypertrophic 

cardiomyopathy as the affected trait, the causative mutation was mapped to a 46Mb 

region of C57BL/6J origin at the proximal end of chromosome 9 spanning 8 SNPs of the 

golden gate panel (1449 SNPs total) (Figure 3.2). Mapping is based on SNP variations 

between the C57BL/6J and C3H.Pde6b+ founder strains with the knowledge that any 

ENU induced mutations must lie in a region of the genome inherited from the C57BL/6J 

ancestor. 

 

Figure 3.2. SNP mapping panel results showing results for affected and unaffected animals across the 

region identified. SNP positions demonstrate a region from the proximal end of Chromosome 9 up to 

46.53Mbs as homozygous for C57BL/6J (2.3H) that must contain the causative mutation.  
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3.3. Whole Genome Sequencing 

DNA from the G1 founder male was sent for whole genome sequencing (WGS) to 

determine the nature of the causative mutation. Whole genome sequencing was utilised 

instead of exome sequencing to include the possibility of a mutation in a non-coding 

portion of the DNA being causative of the phenotype. Results were analysed by the MRC 

Harwell bioinformatics team who aligned the sequences with the C57BL/6J reference 

sequence (NCBIM38/mm10), determined read depth and annotated the mutations 

[270]. The results identified 37 high confidence mutations within the mapping region 

(Table 3.1) however none of these were found to cause coding changes in any protein 

coding genes. Twenty-five lay in intergenic regions, whilst eleven were identified as 

intronic variants and 1 was a 3’ UTR variant in the gene Sidt2. Only one missense variant 

was identified in the region of interest, a medium confidence A to T change at position 

916 in the gene Ecsit. The mutation results in an asparagine to isoleucine change at 

residue 209 in the ECSIT protein (N209I). Whilst it is feasible that non-coding mutations 

could result in the observed phenotype, I initially concentrated on those mutations that 

affected protein coding as our experience to date shows that the majority of causative 

mutations cloned within the Harwell Ageing Screen resulted in a change to protein 

sequence. 
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Position Reference Alternate Functional Class Gene Name 

3312365 A G Intergenic variant - 

5017927 T A Intergenic variant - 

5139754 T A Intergenic variant - 

5391313 T G Intergenic variant - 

5726491 T C Intergenic variant - 

6253838 A T Intron variant Pdgfd 

7169444 T C Intron variant Dync2h1 

8532327 G A Intergenic variant - 

8560942 T C Intron variant Trpc6 

8948900 T C Intron variant Pgr 

9282243 T A Intergenic variant - 

12502691 T A Intergenic variant - 

14147347 T C Intergenic variant - 

14360948 T C Intron variant Endod1 

14535993 C G Intergenic variant - 

16632293 T A Intergenic variant - 

17778686 C A Intergenic variant - 

18057518 C A Intergenic variant - 

20231528 T C Intergenic variant - 

20656400 T C Intron variant Pin1 

22074703 A T Missense variant Ecsit 

23247306 T C Intron variant Bmper 

25035963 G A Intergenic variant - 

27226439 T C Intergenic variant - 

27449832 G A Intergenic variant - 

32135464 T C Intron variant Arhgap32 

35578580 G A Intron variant Pate2 

35941372 G A Intergenic variant - 

35960065 G A Intergenic variant - 

36371877 A T Intergenic variant - 

37016075 G T Intron variant Pknox2 

41610811 T C Intron variant . 

42189413 A T Intergenic variant - 

43404358 A G Intergenic variant - 

43593770 A G Intergenic variant - 

44105948 A G Intron variant Rnf26 

45938935 T A 3’ UTR variant Sidt2 

46898334 G A Intergenic variant - 
Table 3.1. List of high confidence mutations in the 46Mb region identified from SNP mapping. The Ecsit 

mutation is shown in grey as the only coding mutation (medium confidence) identified in the region.  
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3.4. Mutation Validation 

To confirm the validity of the WGS, three of the mutations were selected for 

confirmation by Sanger sequencing.  The mutations in Pdgfd (platelet derived growth 

factor d), Trpc6 (transient receptor potential cation channel, subfamily C, member 6) 

and Ecsit (Evolutionarily conserved signalling intermediate in toll pathway) were 

considered to be the most interesting candidate genes given their potential role in 

pathways with a link to cardiac function (Table 3.2). Results from Sanger sequencing of 

a G3 affected animal (Figure 3.3) confirm the WGS results and demonstrate that all three 

mutations are present in the G3 offspring.   

Gene Mutation Link to cardiac function 

Pdgfd Intron 

mutation 

Recruits macrophages and increases blood pressure when 

overexpressed [278]. 

Trpc6 Intron 

mutation 

Forms a calcium permeant cation channel, other calcium 

channels linked to cardiac conditions [279].  

Ecsit N209I Linked to mitochondrial function, dysfunction commonly 

associated with cardiomyopathy [231]. 

Table 3.2. The three genes containing mutations considered most likely to be causative of the phenotype 

in affected animals. Ecsit was considered to be the best candidate at this point due to direct links with 

cardiomyopathy whilst the remaining two only showed tentative links via other proteins with loosely 

similar functions. 

 

Figure 3.3. Sanger sequencing results from Pdgfd, Trpc6 and Ecsit showing confirmation of mutations from 

WGS in a G3 homozygous for the critical interval.  
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3.5. Narrowing the causative region 

In order to begin narrowing the causative region to confirm that Ecsit contained the 

causative mutation the line was rederived from frozen G1 sperm and heterozygous 

offspring crossed to C3H.Pde6b+ females in order to obtain a new cohort. 

Pyrosequencing was performed on ear clips taken from this pedigree, this allowed for 

both genotyping of animals and for confirmation of a number of the remaining intron 

variant mutations. A selection of mutations were used as markers, spanning the region 

to search for recombinants. A number of the single nucleotide variants (SNVs) were 

unsuitable for use in pyrosequencing due to the inability to design pyrosequencing 

primers in the region of the mutation (High GC content, repetitive sequence). The 

validated results shown in figure 3.4 demonstrate the expected pyrosequencing traces 

from each of the validated SNVs for both WT and mutant.  
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Figure 3.4. Example traces from each of the pyrosequencing primer sets used to genotype the SNVs in 

affected and control animals. The results confirm the WGS data for the mutations tested.  
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Pyrosequencing results from the initial cohort of 39 mice showed 7 animals with 

portions of the region of interest that were homozygous for all or some of the 5 SNVs 

tested (7.16, 14.36, 22.07, 23.24 and 32.13). Further SNVs were introduced to genotype 

later pedigrees to further narrow the region where possible. Of the 39 animals, 6 were 

later shown to be affected by cardiomyopathy by echocardiography, with these 6 all 

homozygous for the Ecsit mutation. The one animal without cardiomyopathy (2.1i) was 

only homozygous for SNV 7.16, indicating that this animal carries the mutation Pdgfd 

and thus eliminating this mutation from consideration (Table 3.3).  A further animal 

(1.1b) carried a region resulting from a crossover event between SNVs 14.36 and 22.07 

and was also shown to be affected by the cardiomyopathy phenotype. This allowed for 

the subsequent elimination of both the Pdgfd and Trpc6 mutations from consideration 

as they both lay in this heterozygous region and whilst this animal showed a 

cardiomyopathy phenotype, other animals with heterozygosity across the region 

displayed no phenotype (Table 3.3). 

These data also confirm that the trait is inherited in a recessive fashion as no 

heterozygous animals were found to be affected by the cardiomyopathy phenotype.  

Animal Affected? 9_7.16 9_14.36 9_22.07 9_23.24 9_32.13 

1.1b Yes HET HET HOM HOM HOM 

2.1i No HOM HET HET HET HET 

1.1g No WT WT WT WT WT 

1.1n No HET HET HET HET HET 

1.1i Yes HOM HOM HOM HOM HOM 

Table 3.3. Example pyrosequencing results across the region tested for 5 animals of the initial rederived 

pedigree. Results for animal 1.1b (confirmed affected by echocardiography) eliminate the region up to 

SNV 14.36 (Endod1), thus eliminating Pdgfd and Trpc6 as candidates as they lie upstream of this SNV. 2.1i 

also demonstrates a homozygous region around 7.16 
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3.6. Protein structure prediction 

To predict the effect that the N209I mutation may have on ECSIT, a selection of protein 

prediction algorithms were consulted through their online interfaces. Consistent results 

(Table 3.4) show that the N209I mutation is predicted to cause a deleterious change to 

protein structure or function and may result in disease. Whilst this is only a prediction it 

is informative that all software packages used reached the same conclusion and offered 

a starting point from which to begin work on the ECSIT protein. 

Software PANTHER PhD-SNP SIFT SNAP Meta-SNP SNAP2 Provean 

Score 0.783 0.648 0.000 0.560 0.644 52 -7.252 

Outcome Disease Disease Disease Disease Disease Effect Deleterious 

Table 3.4. Protein prediction scores and expected outcome from a variety of SNP prediction softwares. 

Panther1 (0-1, >0.5 Disease), PhD-SNP1 (0-1, >0.5 Disease), SIFT1 (0-1, <0.5 Disease), SNAP1 (0-1, >0.5 

Disease), Meta-SNP1 (0-1, >0.5 Disease), SNAP22 (-100-100, >50 Effect), Provean3 (-13-4, <-2.5 

Deleterious). 1http://snps.biofold.org/meta-snp, 2rostlab.org/services/snap, 3provean.jcvi.org. 

3.7. Production of phenotyping cohorts 

Further phenotyping was delayed until an incipient congenic line was obtained to reduce 

the potential effects of the mixed genetic background and to eliminate mutations 

outside of the region of interest. To obtain the incipient congenic line EcsitN209I/+ males 

were crossed to C3H.Pde6b+ females for 5 generations. Genotyping was performed by 

pyrosequencing across the region described above at each generation, selecting animals 

heterozygous for the mutation in Ecsit and where possible eliminating any other sections 

of the region. The pyrosequencing panel was expanded to assist with this narrowing of 

the region.  

3.7.1. Inheritance 

As the global deletion of Ecsit in mice is known to be lethal [230], it was important to 

test for the viability of EcsitN209I/N209I animals. To demonstrate that the EcsitN209I mutation 

was not homozygous lethal, the total number of mice for each genotype that were 

obtained as part of the incipient congenic backcross line were compared to predicted 

numbers for typical Mendelian inheritance from Het intercross matings (1:2:1). The total 

number of mice that were genotyped post weaning was 587 throughout the projects 

lifetime giving a Mendelian ratio of 146.75:293.5:146.75. The actual ratio of mice 

genotyped was 158:270:159 (Figure 3.5) giving a chi-square value of 0.1521 (two-tailed 
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Chi square), indicating that the N209I mutation does not result in elevated pre-weaning 

lethality. 

 

Figure 3.5. Total numbers of mice from each genotype from incipient congenic mice.  

3.8. Phenotyping 

Phenotyping was undertaken to examine a number of physiological systems to 

determine if the phenotype observed in the heart was isolated or part of a syndromic 

condition. Some phenotyping tests were unable to be performed at late time points due 

to the sensitivity of affected animals to general anaesthesia and as such were omitted. 

As a result, phenotyping tests shown below focus on metabolism and the function of 

organs with high energy demand such as the heart, liver, kidneys and skeletal muscle. 

Except where stated, all following phenotyping was undertaken on animals from the 

incipient congenic line (Backcross 5 intercross). 

3.8.1. Clinical Chemistry 

The concentrations of a variety of minerals, metabolites and enzymes can provide clues 

to the function of various organs and systems within the body and may indicate which 

organs are most severely affected by the ECSIT N209I mutation. To investigate this, 

terminal plasma samples were collected from 16 week old animals from both the 

original re-derived pedigree (back cross 1) (M:F, WT 11:7, HET 15:6, HOM 5:5)  and from 

the incipient congenic backcross animals (back cross 5) (M:F, WT 13:17, HOM 7:14). 

Samples were taken from wild type, EcsitN209I/+, and EcsitN209I/N209I male and female 

animals, but as no meaningful differences in any tests were seen between wild type and 

EcsitN209I/+ animals, EcsitN209I/+ animals were excluded from further analysis. No 
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significant differences were observed between male and female animals and as a result, 

values were not separated.  

The electrolytes sodium, potassium and chloride are responsible for a variety of roles in 

the body, including signalling, blood pressure homeostasis, maintaining cellular 

pressure, propagating action potentials and acid-base homoeostasis amongst others. 

The levels of the electrolytes sodium and chloride (Figure 3.6) show no significant 

changes indicating that the N209I mutation in ECSIT is not affecting the maintenance of 

these ions. However, average potassium concentration in EcsitN209I/N209I animals was 

significantly elevated over control animals in both backcrosses tested, which may be 

caused by failure of the kidneys to remove high levels of potassium from the blood.  

 

Figure 3.6. Plasma concentrations of the electrolytes, sodium (A), potassium (B) and chloride (C) in 

backcross 1 and 5 animals. Results show no significant differences in sodium or chloride concentration 

between any genotypes tested but do demonstrate a significant elevation in potassium levels in 

EcsitN209I/N209I animals over controls in both backcrosses. Mean ± SEM, *p<0.05, **p<0.01, ***p<0.001. 
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Kidney function can be assessed by measuring the levels of urea and creatinine in plasma 

as these two compounds are typically filtered out by the kidneys during normal healthy 

function. EcsitN209I/N209I animals show a significant elevation of both urea and creatinine 

in EcsitN209I/N209I animals (Figure 3.7) compared to controls in both the backcross 1 and 

incipient congenic lines. Taken together with the elevation of potassium (Figure 3.6) 

these data could indicate a loss of function of the kidney filtration barrier as potentially 

harmful compounds are not being removed effectively from the blood. 

 

Figure 3.7. Plasma concentrations of the kidney function markers urea (A) and creatinine (B) in backcross 

1 and 5 animals. Results demonstrate a significant elevation of both Urea and Creatinine in EcsitN209I/N209I 

animals over controls in both backcrosses. Mean ± SEM, *p<0.05, **p>0.01, ****p<0.0001. 

The liver is essential to normal metabolic function and there are many compounds that 

can measure different aspects of liver function (Figure 3.8). Proteins such as albumin are 

produced by the liver to regulate oncotic pressure of the blood and as a carrier for 

compounds with low solubility in water [280]. Total protein content and albumin 

concentration of plasma show no significant difference between EcsitN209I/N209I animals 

and controls in either backcross tested indicating that this function of the liver is 

unaffected.  

Bilirubin concentration shows mild elevation in EcsitN209I/N209I animals compared to 

controls in both backcrosses. As bilirubin has a potential role as an antioxidant, this may 

indicate an upregulation due to increased reactive oxygen species either in the liver, the 

circulation or other tissues [281]. However, the difference between the groups is very 

small and may not be biologically relevant, despite being statistically significant.  
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Alkaline Phosphatase (ALP) dephosphorylates compounds throughout the body and 

elevated levels may be associated with a variety of liver conditions [282]. However, 

whilst the differences seen between EcsitN209I/N209I and wild type animals here (Figure 

3.8) are statistically significant, the levels seen in EcsitN209I/N209I are not outside of the 

reference ranges established at MRC Harwell for wild type animals (57-136 U/l)  

indicating that this elevation may not be biologically significant.  

Aspartate transaminase (AST) and alanine transaminase (ALT) are enzymes that catalyse 

the conversion of aspartate and α-ketoglutarate to oxaloacetate and glutamate, and L-

alanine and α-ketoglutarate to pyruvate and L-glutamate, respectively. These reactions 

are reversible and serve to provide the substrates of a variety of metabolic processes.  

ALT and AST both show no significant differences between genotypes in the backcross 

1 animals tested (Figure 3.8). Interestingly, AST does show a slightly elevated average 

AST level in EcsitN209I/N209I animals from the incipient congenic backcross (Figure 3.8). 

However, with the exception of a single outlier, these values all lie within the ranges 

established for wild type mice at MRC Harwell (37-104 U/l) and are unlikely to truly 

represent a liver phenotype.  
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Figure 3.8. Plasma concentrations of the liver function markers total protein (A), albumin (B), bilirubin (C), 

ALP (D), AST (E) and ALT (F) in backcross 1 and 5 animals. Results show no significant differences in either 

total protein, or the specific protein, albumin, levels between any genotypes in either backcross. Bilirubin 

and ALP levels are elevated in EcsitN209I/N209I animals over heterozygotes in the original backcross and over 

wild types in the incipient congenic line. AST also demonstrates a difference between wild type and 

EcsitN209I/N209I animals in the incipient congenic line although no differences were apparent in the original 

backcross line. Finally, ALT shows no significant differences between any groups tested. Mean ± SEM, 

*p<0.05, **p>0.01, ***0<0.001, ****p<0.0001. 
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Calcium and inorganic phosphate levels in all groups from both backcross lines show no 

significant differences between genotypes indicating that there are no changes in the 

maintenance of these minerals, which are typically associated with bone health (Figure 

3.9).  

 

Figure 3.9. Plasma concentrations of the minerals calcium (A) and inorganic phosphate (B) in backcross 1 

and 5 animals. Results show no significant differences in either mineral between any of the groups 

compared. Mean ± SEM. 

The lipids, cholesterol, high density lipoprotein (HDL) and low density lipoprotein (LDL) 

are primarily synthesised as part of cell membranes and for the transport of fat between 

cells. Elevated levels of cholesterol and LDL are significant risk factors for atherosclerosis 

whilst HDL is considered protective. Whilst results (Figure 3.10) show no significant 

differences in total cholesterol levels, HDL levels in EcsitN209I/N209I animals appears 

significantly decreased when compared to control animals. Crucially, this is coupled with 

an elevation of LDL in EcsitN209I/N209I animals compared to wild types in the incipient 

congenic line. However, it is apparent from figure 3.10 that whilst the averages of these 

compounds differ, there is significant overlap between the ranges seen in wild type and 

EcsitN209I/N209I animals.  
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Figure 3.10. Plasma concentrations of the lipids, cholesterol (A) high-density lipoprotein (HDL) (B) and 

low-density lipoprotein (C) in backcross 1 and 5 animals. Results show no changes in total cholesterol 

levels in any of the groups compared, however, HDL levels are marginally reduced in EcsitN209I/N209I animals 

in both backcross when compared to controls. Also of interest is the marginal elevation of LDL in 

EcsitN209I/N209I in the incipient congenic backcross animals when compared to wild types. Mean ± SEM, 

*p<0.05. 

Circulating triglycerides are a high energy density molecule that is broken down via 

lipolysis into glycerol and free fatty acids (FFA) which are then metabolised as part of 

glycolysis, gluconeogenesis or beta-oxidation to provide substrates for the TCA cycle. 

Ketone bodies are produced by the liver from free fatty acids during periods of fasting 

to provide the body with a substrate which can be converted into acetyl-CoA and enter 

the TCA cycle.  

There were no significant differences (Figure 3.11) between genotypes in the backcross 

1 animals. However, in the incipient congenic line, EcsitN209I/N209I animals show a 

significant reduction in circulating triglycerides, and an elevation of both glycerol and 
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ketone bodies when compared to wild type animals. Taken together these data suggest 

an increase in metabolism of triglycerides in the liver to form substrates for the TCA 

cycle, similar to what is seen during periods of fasting [283].  

 

Figure 3.11. Plasma concentrations of the fatty acid metabolism products, triglyceride (A), glycerol (B) and 

free fatty acids (FFA) (C) in backcross 1 and 5 animals. Ketone bodies (D) were only tested in the incipient 

congenic backcross and not in the earlier backcross. Results show no differences in any of the metabolites 

between genotypes in the backcross 1 animals. However, in the incipient congenic animals there is a 

marginal decrease in total triglyceride levels and a similarly marginal elevation of glycerol in EcsitN209I/N209I 

animals compared to wild types. Ketone bodies also show a significant elevation in EcsitN209I/N209I animals 

compared to wild types. Mean ± SEM, *p<0.05. 

Glucose and fructosamine are typically elevated in plasma in diabetes mellitus as the 

glucose is unable to be taken into tissues and subsequently reacts with an amine group 

to form fructosamine resulting in elevated levels of this compound too. Results here 

(Figure 3.12) demonstrate a reduction in plasma glucose levels and a corresponding 

reduction in fructosamine in EcsitN209I/N209I animals in the incipient congenic backcross 
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animals. This may indicate an increased metabolism of glucose which in turn results in a 

reduction in fructosamine levels however, these results are taken from non-fasted 

animals and these results may not be representative of real differences between 

genotypes.  

 

Figure 3.12. Plasma concentrations of the diabetic markers glucose (A) and fructosamine (B) in backcross 

1 and 5 animals. Glucose levels show a significant reduction in EcsitN209I/N209I animals compared to wild 

types in the incipient congenic line, whilst the back-cross 1 animals show a marginal decrease which does 

not reach a significant level. Meanwhile, fructosamine levels are significantly reduced in EcsitN209I/N209I 

animals compared to controls in both backcross groups. Mean ± SEM, *p<0.05, **p<0.01, ****p<0.0001. 

Lactate dehydrogenase and creatine kinase are enzymes which are typically contained 

within cells and their presence in plasma can be indicative of tissue damage. Cytosolic 

creatine kinase is comprised of two different subunits, B – Brain and M – Muscle, and 

there are 3 possible isoforms as a result, MM, BB and MB, each with varying proportions 

in different tissues. In humans CK-MM is the majority cytosolic form in skeletal muscle 

(97%), CK-BB is the predominant form found in brain, colon, stomach and bladder, whilst 

CK-MB is relatively uncommon in most tissues (2-3% of skeletal muscle) but is found in 

considerable amounts in heart tissue (15-40%) along with CK-MM. Following cardiac 

injury, serum levels of total and CK-MB are known to rise peaking roughly 24 hours after 

injury and returning to baseline after about 72 hours in humans [284]. In contrast, the 

mouse heart has very low levels of CK-MB and the predominant form is CK-MM, 

accounting for roughly 90-95% of cytosolic CK activity, with CK-MB only contributing 

roughly 5% to total cytosolic CK activity [285].  
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Results illustrated here (Figure 3.13) show no significant changes in CK levels between 

wild type and EcsitN209I/N209I animals. However, this test does not distinguish between 

the CK isoenzymes and only measures total CK levels, however, had a difference been 

apparent, further investigation would have been relatively simple with the use of an 

ELISA.  

Lactate dehydrogenase catalyses the conversion of lactate to pyruvic acid and is a 

tetramer primarily composed of different subunits LDH-M and LDH-H. Through varying 

the proportions of the 2 subunits in the tetramer there are 5 main isoenzymes that are 

present in different tissues (LDH-1 (4H), 2 (3H1M), 3 (2H2M), 4 (1H3M), and 5 (4M)). 

Under typical conditions LDH-2 is the form found in plasma, however following cardiac 

damage LDH-1 levels may become elevated in the plasma and result in a shift in the ratio 

of LDH-1:LDH-2 [286]. From the results illustrated here (Figure 3.13) it is apparent that 

there are no significant changes in total LDH levels and no further investigation was 

undertaken.  

As neither of these enzymes show elevation at the total enzyme level it was therefore 

unnecessary to investigate the ratios of the two to determine if there is significant tissue 

damage. Further investigation could have been undertaken using cardiac troponin levels 

as a more accurate test of myocardial infarction [287] but given that these samples were 

taken from animals prior to any signs of ill-health, this is unlikely to be informative.  

 

Figure 3.13. Plasma concentrations of the tissue damage markers lactate dehydrogenase (LDH) (A) and 

creatine kinase (B) in backcross 1 and 5 animals. Neither compound shows a significant difference 

between wild type and EcsitN209I/N209I animals in either of the backcrosses tested. Mean ± SEM, *p<0.05. 
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Finally, iron is a major constituent of heme and differences in iron levels may indicate 

blood disorders or a nutritional deficiency. Results (Figure 3.14) show no differences in 

iron concentration in the plasma of any animals tested.  

 

Figure 3.14. Plasma concentrations of iron in backcross 1 and 5 animals showing no difference between 

any of the genotypes in either backcross tested. Mean ± SEM. 

Individually these clinical chemistry results do not appear to reflect any major changes 

in organ function or general metabolism, with many differences being either small or 

falling within the expected ranges established for wild type animals. However, when 

considered together these results demonstrate an impairment of kidney as well as liver, 

although to lesser extent. In addition results seem to demonstrate an increase in the 

metabolism of both glucose and triglycerides which may reflect a change in the general 

metabolic phenotype of EcsitN209I/N209I animals.  

3.8.2. Body weight 

Body weight was measured every 2 weeks from 6 weeks of age up until 16 weeks of age. 

Males and females were separated for the purpose of analysis due to sex differences in 

the wild type controls. From the results it is apparent that EcsitN209I/N209I animals display 

a reduced body weight from as early as 6 weeks of age, and whilst they do show a small 

increase in body weight over time, this is mostly accounted for by growth up to the age 

of 10 weeks which then plateaus (Figure 3.15). The slope of the curve, representing the 

growth curve from 6 to 16 weeks of age, is significantly different (simple linear 

regression) between wild type and EcsitN209I/N209I animals in both males (p=0.0026) and 

females (p=0.04).  
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Despite the differences in overall body weight, measurements of the femur (Figure 3.16) 

show no significant differences between wild types (n=23) and mutants (n=24). This 

indicates that despite differences in body weight, the growth of the mutant animals is 

not stunted and is attributable to lean and fat mass accumulation rather than overall 

reduced body size.  

 

Figure 3.15. Weight against time of male and female wild type and EcsitN209I/N209I animals. Results show a 

significant difference between genotypes from 6 weeks of age with the rate of growth of mutant 

animals (simple linear regression) significantly reduced compared to wild types. Each time point was 

also tested for significance with a standard t-test, demonstrating that differences in weights are 

apparent from 6 weeks of age. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 3.16. Length of femurs (mm) measured from wild type and EcsitN209I/N209I animals. (Mean ± SEM). 

3.8.3. Body Composition 

To determine the fat and lean mass composition of wild type and EcsitN209I/N209I animals 

Echo-MRI was performed. Echo-MRI is a simplified form of nuclear magnetic resonance 

imaging (MRI) that gives only a composition analysis instead of the images typically 

associated with the technique. Echo-MRI performed on wild type and EcsitN209I/N209I 

animals demonstrates significant differences in total body weight, lean mass and fat 

mass (both absolute and expressed as a % of total body weight). EcsitN209I/N209I animals 

show a reduction in body weight, fat mass and lean mass when compared to sex and 

age matched wild type animals. Sexes were separated as differences were seen between 

wild type males and females across all time points (graph not shown), n numbers shown 

in table 3.5. The results show that mutant animals do not increase in overall body mass 

(Figure 3.17) from 8 weeks of age primarily due to a lack of accumulation of fat mass 

(Figure 3.18) and lean mass (Figure 3.19) in both sexes. 

At 8 weeks of age, wild type and EcsitN209I/N209I animals are statistically indistinguishable 

from their sex matched counterparts in terms of all 3 parameters measured, indicating 

normal growth up to this point. However, after 8 weeks of age, differences begin to 

emerge. By 10 weeks, males have measurably less fat mass than wild type animals 

(Figure 3.18) and females overall body mass is statistically different from that of wild 

types (Figure 3.17). At 14 weeks, greater differences are apparent in body weight in both 

sexes in terms of both body weight (Figure 3.17) fat mass (Figure 3.18). Finally, at 18 
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weeks differences can be seen in fat, lean and total mass in both sexes when comparing 

to wild type controls.  

Time 

Point 

Male WT Female WT Male EcsitN209I/N209I Female 

EcsitN209I/N209I 

8 Weeks 9 8 12 12 

10 Weeks 6 10 4 7 

14 Weeks 6 10 3 5 

18 Weeks 7 6 3 6 

Table 3.5. n Numbers for each time point and genotype used in Echo-MRI experiment.  

 

Figure 3.17. Body weight of wild type and EcsitN209I/N209I animals demonstrates that whilst wild types 

increase in size between 8 and 18 weeks of age, mutant (male or female) animals do not grow in terms of 

absolute body mass beyond 8 weeks of age when compared to wild type controls. Mean ± SEM,*p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001. Any comparison not labelled should be considered non-significant 

(ns). 
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Figure 3.18. Absolute fat mass measurements show that both male (A) and female (B) wild type animals 

continue to accumulate fat mass beyond 8 weeks of age whilst EcsitN209I/N209I animals do not. This 

becomes more apparent as the animals age (Mean ± SEM, *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001). Any comparison not labelled should be considered non-significant (ns). 

 

Figure 3.19. Absolute lean mass measurements show that both male (A) and female (B) wild type 

animals continue to accumulate lean mass beyond 8 weeks of age whilst EcsitN209I/N209I animals do not. 

By 14 weeks of age this difference is apparent in male animals and at 18 weeks of age both sexes show a 

significant reduction in lean mass compared to sex matched wild type controls.  (Mean ± SEM, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001). Any comparison not labelled should be considered non-

significant (ns). 
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3.8.4. Grip Strength 

Grip strength was assessed in 14 week old male (WT:10, HOM: 8)  and female (WT:9, 

HOM:13) animals to determine if a muscular phenotype was associated with the 

cardiomyopathy phenotype seen in EcsitN209I/N209I animals. This might be expected with 

a systemic myopathy as is common with complex I disorders and might be associated 

with a mutation in an assembly factor such as ECSIT. Male and female results were not 

separated as no significant differences were present between sexes. Grip strength 

results can be demonstrated as raw values, or expressed as a value normalised to the 

animal’s body weight. Below (Figure 3.20), the absolute values show no difference in 

grip strength between wild type (n=19) and EcsitN209I/N209I (n=21) animals either in the 

fore paws only or in all 4 paws. However, when the data is normalised to body weight 

(Figure 3.21) the mutant animals demonstrate an increased grip strength of both the 

fore paws and all 4 paws. This is most likely due to the decreased body weight of the 

mutant animals as is seen in section ‘3.8.2 – Body Weight’ and ‘3.8.3 – Body 

Composition’. 

 

Figure 3.20. Absolute grip strength measurements of fore paws (A) and all paws (B) showing no 

differences between wild type and EcsitN209I/N209I animals. (Mean ± SEM). 
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Figure 3.21. When normalised to body weight, grip strength results show a significant increase in both the 

fore (A) and all paw (B) measurements in EcsitN209I/N209I animals over wild type controls. (Mean ± SEM, 

*<0.05, ***p<0.001). 
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3.8.5. IPGTT 

An intraperitoneal glucose tolerance test (IPGTT) measures the ability to take up glucose 

into tissues following a glucose challenge. It reflects the ability to both sense glucose, 

secrete insulin and to respond to insulin in key insulin sensitive tissues. In type 2 diabetes 

there will be insulin resistance and defects in insulin secretion. Impaired glucose 

tolerance typically precedes the development of a diabetic phenotype.  

An inability to effectively regulate glucose levels is typically indicative of a diabetic 

phenotype which may be related to mitochondrial dysfunction in certain tissues (heart, 

muscle and liver) [288]. Results from wild type and EcsitN209I/N209I male (WT:10, HOM:10) 

and female (WT:8, HOM:10) animals reveals a small but significant difference in blood 

glucose levels 60 minutes post injection. This difference takes the form of a decrease in 

plasma glucose levels rather than the increase that would be expected in a diabetic 

phenotype. Male and female results were not separated as no significant differences 

were seen between sexes. This difference does not persist across all time points (Figure 

3.22) suggesting that the affected animals demonstrate no long term benefits to glucose 

metabolism and are unlikely to have a real primary phenotype as a result of the N209I 

mutation. These data reflect a minor change in the ability to dispose of glucose but are 

unlikely to significantly affect the maintenance of normal glucose homeostasis.  

 

Figure 3.22. IPGTT results from wild type (n=18) and EcsitN209I/N209I (n=18) animals. (Mean ± SEM, 

**p<0.01). 
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3.8.6. Tissue Weights 

Tissue weights were assessed at the time of death (16 weeks) to assess the 

cardiomyopathy phenotype and which other tissues may be affected as a result of 

congestion of the left or right heart. Male (WT:10, HOM:10) and female (WT:12, 

HOM:14) samples were not separated as no difference in sexes was observed. Heart, 

lung and liver weights can be analysed as absolute values or normalised to the animal 

size either as a % of total body weight or by normalising to the length of the long bones, 

such as the femur. Below the weights of these tissues are expressed in all three ways. 

These three tissues were selected to assess the hypertrophy of the heart. Left ventricular 

hypertrophy would lead to increased lung weight due to congestion of the pulmonary 

circulation. Similarly, an increase in liver size would indicate right ventricular 

hypertrophy due to congestion of the systemic circulation.  

Heart weights show a significant increase in EcsitN209I/N209I (n=24) animals over wild type 

controls (n=22) in terms of absolute values (Figure 3.23) as well as both types of 

normalisation used (Figures 3.24 and 3.25), indicating a robust enlargement of the heart 

muscle that is not affected by animal size or weight. Similarly, lung weights demonstrate 

the same trend across the board, suggesting that the left ventricle is hypertrophied and 

causing congestion in the pulmonary circulation. In contrast, liver weights do not show 

an increase across any of the three categories. Absolute liver weights (Figure 3.23) are 

decreased in EcsitN209I/N209I animals compared to controls, and the same holds true when 

normalised to femur length (Figure 3.25). However, when liver weight is normalised 

according to the animal’s overall bodyweight (Figure 3.24) there are no significant 

differences in tissue weights between the genotypes. In summary these data 

demonstrate that there is no increase in liver weight and it is possible to speculate that 

there is little to no hypertrophy of the right ventricle.  
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Figure 3.23. Absolute values for all tissue weights, showing an increase in heart weight and lung weight 

and a decrease in liver weight of EcsitN209I/N209I animals compared to healthy wild type controls. (Mean ± 

SEM, ***p<0.001, ****p<0.0001) 
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Figure 3.24. Tissue weights normalised to total body weight of the animal. Heart and lung weights still 

demonstrate a significant elevation in EcsitN209I/N209I animals over wild type. Whilst liver does not show 

any significant difference. (Mean ± SEM, ****p<0.0001) 
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Figure 3.25. Tissue weights normalised to femur length, expressed as mg of tissue weight per mm length 

of femur. Similarly to the un-normalised tissue weights in figure 3.23 heart and lung weights reveal a 

significant increase in EcsitN209I/N209I animals compared to wild type controls, whilst liver weights show the 

reverse trend. (Mean ± SEM, ****p<0.0001). 

3.8.7. Histology Time Course 

Hearts were taken from 3 wild type and 3 EcsitN209I/N209I animals (2 sections per animal) 

at various time points to assess the development of the cardiomyopathy. No 

preferences were made for sex of the animals as this was unreliable at very early time 

points. EcsitN209I/N209I hearts show signs of cardiomyopathy from as early as 6 weeks of 

age (Figure 3.26), with the development of mineralisation (yellow arrows Figure 3.27) 

which progresses over time to become apparent at 12 weeks of age. Vacuolation is 

apparent in some areas of the heart at 6 weeks of age (black arrows Figure 3.27) and 

progresses so that the majority of 12 week old heart tissue shows signs of severe 

vacuolation. Also present, but difficult to quantify, is cardiomyocyte hypertrophy and 

disorganisation. In wild type hearts (Figure 3.27) cardiomyocytes can be seen in well 

organised striated patterns.  At 6 weeks of age EcsitN209I/N209I hearts show regions where 

cardiomyocytes appear to be marginally enlarged and no longer form this organised 

structure. At 12 weeks, EcsitN209I/N209I cardiomyocytes no longer show any signs of 

structure and appear completely disorganised.  
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Figure 3.26. Time course of histology (1.25x) on wild type and EcsitN209I/N209I hearts showing development 

of cardiomyopathy in mutant animals. Enlargement of EcsitN209I/N209I hearts is first apparent around 6 

weeks of age and progresses up to 12 weeks of age where a significant enlargement is apparent. Scale bar 

= 2.5mm. 
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Figure 3.27. Histology time course at 20x magnification demonstrating structure of the cardiac tissue 

and showing vacuolation (black arrows) and mineralisation of tissue (yellow arrows) in EcsitN209I/N209I 

hearts from 4-6 weeks of age which is not seen in wild type controls. Also present are signs of 

cardiomyocyte hypertrophy and disorganisation from 4 weeks of age.   Scale bar= 100µm. 
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3.8.8. Echocardiography 

Echocardiography, performed on incipient congenic backcross mice at 10 weeks of age 

shows significant differences in heart size and contractility (Male WT:7, HOM:9, Female 

WT:6, HOM:9). During diastole both the anterior and posterior left ventricular walls 

show a significant increase in thickness in EcsitN209I/N209I animals compared to wild type 

(Figure 3.28). This is also reflected in the left ventricular interior diameter (Figure 3.29) 

which shows a significant increase in EcsitN209I/N209I animals during both diastole and 

systole.  During systole the posterior wall no longer shows a significant increase in 

thickness in EcsitN209I/N209I animals, whilst the anterior wall remains significantly enlarged 

(Figure 3.28).  

 

Figure 3.28. Echocardiographic measurements of the left ventricular anterior (A) and posterior (B) walls 

during diastole and systole showing a significant increase in anterior wall thickness during both systole 

and diastole and a significant thickening of the posterior wall during diastole which is unchanged during 

systole. (Mean ± SEM, **p<0.01, ****p<0.0001). 

Left ventricular volume and mass show a significant increase in EcsitN209I/N209I animals 

during both systole and diastole (Figure 3.29) indicating an enlargement of not only the 

muscle mass but also a dilation of the heart cavity. The ejection fraction in EcsitN209I/N209I 

animals is significantly reduced, demonstrating a reduction in the contractility of the 

heart muscle (Figure 3.30). Heart rate taken during the echocardiograph measurements 

(Figure 3.30) shows a reduction in average beats per minute (BPM) in EcsitN209I/N209I 

animals, which was not seen earlier in the ECG measurements. Heart rate is coupled 

with stroke volume (end diastolic volume – end systolic volume) (Figure 3.30) to allow 

for the calculation of cardiac output (stroke volume x heart rate) (Figure 3.30), giving an 
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overall impression of the function of the heart in EcsitN209I/N209I animals. Taken together 

these data indicate a profound cardiomyopathy with characteristics that may be 

attributed to both dilated and hypertrophic cardiomyopathy. 

 

Figure 3.29. Left ventricular interior diameter (A) measured by echocardiograph and volume (B) calculated 

from changes in diameter, both showing an enlargement of the left ventricle in EcsitN209I/N209I animals 

during both diastole and systole, suggestive of a dilated cardiomyopathy. Calculated left ventricular mass 

(C) indicates an overall enlargement of the left ventricle. (Mean ± SEM, ****p<0.0001). 
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Figure 3.30. Ejection fraction (A) demonstrates a significant reduction in EcsitN209I/N209II animals compared 

to wild types. Heart rate (B) measured during echocardiography readings can be coupled with the 

calculated stroke volume (C) to give an overall cardiac output (D).  (Mean ± SEM, ****p<0.0001). 
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3.8.9. Cardiac Electrophysiology 

Electrocardiogram (ECG) was performed on 12 week old wild type (M:6, F:5), EcsitN209I/+ 

(M:9, F:3) and EcsitN209I/N209I (M:5, F: 5) animals from an early cohort prior to 

backcrossing to C3H.Pde6b+ for 5 generations to obtain the incipient congenic line. 

Results were obtained by signal averaging across the length of the trace obtained. No 

significant differences were detected in any of the parameters measured (Figure 3.31) 

showing that the N209I mutation has no effect on signal transduction through the 

cardiac tissue. This result is unsurprising as the cardiomyopathy would not necessarily 

be reflected by changes in the conductive tissue of the heart and hence in ECG 

abnormalities.  Given this result, further phenotyping was not performed on later 

backcrosses so as to reduce the strain on animals under anaesthesia.  
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Figure 3.31. ECG parameters measured in 12 week old wild type (n=11), EcsitN209I/+ (n=12) and 

EcsitN209I/N209I (n=10) animals. Results show no significant differences in R-R interval (A), PR interval (B), P 

duration (C), QRS duration (D), QT interval (E), corrected QT interval (QTc) (F) or heart rate (G).  (Mean ± 

SEM). 
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3.8.10. Muscle Fibre Typing 

Muscle fibre typing was performed on soleus and extensor digitorum longus (EDL) 

muscles isolated from 3 wild type and 3 EcsitN209I/N209I male animals by Saleh Salman 

Omairi at the University of Reading. Fibres were classified as either oxidative or non-

oxidative according to profiling of succinate dehydrogenase (SDH) and were classified 

according to myosin heavy chain (MHC) proportions of MHC I, MHCIIA, MHC IIX, and 

MHC IIB. Results show no differences in the proportion of oxidative to non-oxidative 

fibres in either the EDL or the soleus (Figure 3.33) indicating that the mutation of ECSIT 

does not affect the metabolic profile of these muscles.  

 

Figure 3.32. Percent oxidative and non-oxidative fibres in (EDL) and soleus muscles from wild type and 

EcsitN209I/N209I animals.  Results show no significant differences between genotypes in either of the muscles 

investigated. Mean ± SEM. 
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Following MHC profiling, muscle fibres were counted and cross sectional area measured 

in both the EDL and the soleus. From these data (Figure 3.33) we can see that there are 

no significant differences in the MHC ratio in either muscle. Soleus is primarily a slow 

twitch muscle type with a predominance of MHC I and IIA fibres, this is unchanged in 

EcsitN209I/N209I animals when compared to wild types (Figure 3.33). EDL is a faster twitch 

muscle type with high levels of MHC IIB fibres which again is not significantly altered in 

EcsitN209I.N209I animals compared to wild-types.  

 

Figure 3.33. Percent of each fibre type in EDL (A) and soleus (B) in wild type and EcsitN209I/N209I animals 

showing no significant differences between genotypes in either muscle investigated. Mean ± SEM. 

Cross sectional area (CSA) was determined from the average of 100 CSAs of each fibre 

type in each sample. Results here show a significant reduction in all fibre types in both 

muscles measured in EcsitN209I/N209I animals compared to wild types (Figure 3.34). This 

reduction in CSA in all fibre types in EcsitN209I/N209I animals is likely to be related to the 

reduction in overall lean mass seen in section 3.8.3. 

Collectively, these data do not demonstrate a significant alteration to the muscular 

phenotype of EcsitN209I/N209I animals when compared to wild type controls.  
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Figure 3.34. Cross sectional areas of fibre types in EDL (A) and soleus (B) showing a significant reduction 

in all fibre type sizes in EcsitN209I/N209I animals compared to wild type controls. Mean ± SEM, *p<0.05. 

  



138 
 

3.9. Compound Heterozygote Phenotyping 

To confirm that the Ecsit N209I mutation is causative of the hypertrophic 

cardiomyopathy seen in homozygous animals, compound heterozygotes (EcsitN209I/-) 

were generated from the intercrossing of EcsitN209I/+ and Ecsit+/- animals. Ecsit+/- animals 

were obtained from the laboratory of Professor Sankar Ghosh at Columbia University 

Medical Centre (NY, USA).  

The EcsitN209I/- offspring are heterozygous for the N209I mutation and the surrounding 

region inherited from the original C57BL/6J mutagenized parent, and hence should not 

exhibit the cardiomyopathy phenotype without a complementary knockout allele of the 

causative gene, in this case Ecsit. Similarly, Ecsit+/- animals are not known to exhibit any 

cardiomyopathy phenotype, indicating that Ecsit is haplosuffcient with regards to this 

phenotype.  

All 4 possible genotypes of the intercross were assessed for heart weight (absolute and 

normalised) at 10 weeks of age. In all cases (Figure 3.35), hearts from EcsitN209I/- animals 

show a significant increase in mass when compared to all other genotypes. This 

demonstrates that the N209I mutation is the causative allele inherited from the ENU 

mutagenized C57BL/6J ancestor and also confirms that Ecsit is haplosufficient in relation 

to the cardiomyopathy phenotype.  

 



139 
 

 

Figure 3.35. Absolute (A), and normalised to; body weight (B); and femur length, (C) heart weights from 

wild type (n=9 (M:3, F:6)), EcsitN209I/+ (A, B: n=16 (M:9, F:7) , C: n=12 (M:6, F:6)), Ecsit+/- (A, B, n=17 (M:9, 

F:8), C: n=12 (M:6, F:6)) and EcsitN209I/- (A, B: n=18 (M:9, F:9), C: n=10 (M:5, F:5)) animals. By all methods 

of assessment, EcsitN209I/- animals show a significant increase in tissue weight over all control genotypes. 

Mean ± SEM, **p<0.01, ***p<0.001, ****p<0.0001. 
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3.10. Discussion 

Through SNP mapping and whole genome sequencing a single coding mutation was 

identified in a good candidate gene, Ecsit, which results in an asparagine to isoleucine 

change at position 209 of the protein. Through successive back crosses and using Sanger 

and pyro sequencing, together with the complementation assay, the mutation was 

confirmed as causative of the primary cardiomyopathy phenotype seen in affected 

animals.  Protein prediction softwares indicate that the mutation has a deleterious effect 

on the structure or function of the protein. Given that the domains of mouse ECSIT are 

homologous to those of the human protein we can infer that the mutation lies in the 

pentatricopeptide (PPR) region of the protein, which is potentially involved in 

mitochondrial processes through binding and stabilising RNA molecules. 

The compound heterozygote of EcsitN209I and Ecsit knock-out was produced to confirm 

the genotype-phenotype interaction in the EcsitN209I/N209I- animals. A lack of phenotype 

in heterozygote (EcsitN209I/+) animals indicates that Ecsit is haplosufficient and a single 

copy of the mutant allele is insufficient to cause a phenotype. This is also seen in the 

heterozygous knockouts (Ecsit+/-), where no phenotype is present despite the loss of one 

allele.  

ECSIT is known to bind and stabilise the complex I assembly factor NDUFAF1 and to be 

involved in complex I assembly as part of the mitochondrial complex I assembly (MCIA) 

complex, however the domain responsible for this role is unclear. With this role in mind, 

phenotyping focused on traits typically associated with mitochondrial complex I 

deficiency, including lactic acidosis, failure to thrive, myopathy, cardiomyopathy, sight 

loss and encephalopathy.  

Through analysis of plasma taken from both the original backcross 1 animals, and from 

the incipient congenic line it is apparent that there are some key differences in some of 

the metabolites measured and that this reflects a change in the function of the kidney. 

Elevated potassium as well as urea and creatinine are indicative of failure of the kidney’s 

filtration barrier, indicating that the N209I mutation in ECSIT is affecting the function of 

the kidney. It is unclear if this is primary (direct effect of loss of mitochondrial function 

in kidneys) or secondary (altered cardiac function leading to kidney failure) or whether 

this may be an effect of one of the other pathways ECSIT is involved in.  
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In addition, elevated bilirubin, ALP and AST, indicate that there may be a loss of function 

of the liver including elevated bilirubin, ALP and AST. However, the differences seen 

between wild type and EcsitN209I/N209I animals in all of these metabolites is very small, 

and with the exception of a small number of outliers the ranges of the EcsitN209I/N209I 

animals overlap the wild types considerably, furthermore these values do not exceed 

the reference ranges established at MRC Harwell for these tests.  

Plasma levels of triglycerides, glycerol, ketone bodies, glucose and fructosamine, 

suggest an increased metabolism of both glucose and triglycerides and may reflect an 

energy deficiency of the heart and/or other tissues which the body is attempting to 

compensate for by increasing overall metabolism of substrates. Intra peritoneal glucose 

tolerance test (IPGTT) results show a significant improvement in glucose tolerance of 

EcsitN209I/N209I animals at one time point (T=60 minutes). Whilst this is not consistent 

across all time points it may indicate an improvement in glucose tolerance due to 

reduced fat mass in EcsitN209I/N209I animals or it may be directly related to the reduced 

glucose levels seen in the clinical chemistry results. Taken together these data may 

suggest an alteration in the metabolic phenotype of EcsitN209I/N209I animals, either 

towards metabolising glucose, as is often seen in the failing heart, or in a general 

increase in metabolism of all substrates, potentially in an attempt to compensate for a 

loss of complex I efficiency.  

Mutant animals are indistinguishable from wild type littermates up to the age of 6-8 

weeks when differences in body weight first become apparent. It is around the same 

time point that differences in cardiac tissue can first be seen, with very early tell-tale 

signs of cardiomyopathy beginning to develop, including mineralisation of tissue and 

some signs of cardiomyocyte disorganisation. At 12 weeks of age, the phenotype has 

progressed to a distinct and severe cardiomyopathy of the left ventricle with no signs of 

right ventricular involvement, and is ultimately lethal. The cardiomyopathy is 

hypertrophic in nature but has some traits typically associated with dilated 

cardiomyopathy, including an increased left ventricular volume.  

ECG measurements show no significant changes from wild type to EcsitN209I/N209I animals, 

despite the cardiomyopathy changes. Indicating that the cause of the cardiomyopathy 
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phenotype is unrelated to an electrophysiological defect and that conductive tissues are 

unaffected by the ECSIT N209I mutation.  

Whilst mutant animals appear smaller in terms of overall bodyweight and lean/fat mass, 

the length of long bones such as the femur is unchanged in comparison to wild types 

indicating that growth is normal. It is primarily the accumulation of fat that leads to 

overall body weight differences. This is further reflected in the relatively small 

differences in lean mass as late as 14 weeks of age. 

Despite profound differences in cardiac muscle, differences in skeletal muscle measured 

by grip strength were less robust, with EcsitN209I/N209I animals actually showing a 

moderately increased grip strength compared to wild types when normalised to overall 

body weight. This again is likely a reflection of the reduction in fat mass without a 

significant loss of lean or muscle mass, which would distort the normalised results. 

Further to this, muscle fibre typing shows no significant differences in fibre numbers or 

types of either soleus or EDL. EcsitN209I/N209I animals do show a reduction in cross 

sectional area of all fibre types measured in both the soleus and EDL which may be 

reflective of the loss in lean mass seen in animals at later time points. However, given 

the lack of any grip strength phenotype, this is unlikely to be a pathological loss and 

unlikely to represent a true myopathy phenotype.  

Taking into consideration the phenotypes assessed, and the lack of any obvious 

encephalopathy or neurological phenotype observed, it appears that EcsitN209I/N209Imice  

are affected by a left ventricular hypertrophic cardiomyopathy with no effects on brain, 

muscle or liver function. Some significant changes in kidney function are apparent from 

clinical chemistry analysis however it is unclear without further investigation, what the 

nature of the kidney defect is and whether it is a primary, or secondary phenotype 

associated with the severe cardiomyopathy. The overall metabolic profile of the 

EcsitN209I/N209I animals is likely significantly altered from that of the wild types, with an 

increase in glucose and triglyceride metabolism, and further work on the function of the 

mitochondria may reveal more about the causes of this.   
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Chapter 4: Effect of mutation on the Toll-

Like Receptor and Bone Morphogenetic 

Protein Pathways 
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4.1. Roles of ECSIT 

ECSIT has a diverse set of roles including as a key signal intermediary in the toll-like 

receptor response and as a co-factor of SMAD4 in the bone-morphogenetic protein 

(BMP) pathway. Previous studies have shown that knocking out ECSIT can lead to 

increased susceptibility to intracellular bacteria via a suppression of the TLR response 

[229] and embryonic lethality due to failure of gastrulation via loss of expression of 

genes under the control of the BMP pathway [230]. Either of these pathways could be 

implicated in the development of the cardiomyopathy phenotype and it was 

investigated whether either of them were affected by the N209I mutation of ECSIT.   

4.2. Toll like receptor response 

ECSIT’s role in the TLR pathway was assessed to confirm that this did not contribute to 

the phenotype observed, as an enlargement of the cardiac muscle could be attributed 

to a pro-inflammatory phenotype. Alongside its role in traditional innate immune 

response, the TLR response has been implicated in the development of myocardial 

inflammation. The most highly expressed TLR in heart is TLR4 which can cause the 

expression of pro-inflammatory cytokines via the MYD88 dependant and independent 

activation pathways, both of which involve the activation of ECSIT’s binding partner, 

TRAF6 [289]. 

To investigate the TLR response in wild type and EcsitN209I/N209I animals, three different 

approaches were used. Firstly, circulating leukocytes were assessed to determine if 

there was a shift to a pro-inflammatory phenotype. Secondly, the role of ECSIT in the 

TLR pathway was determined by assessing its interaction with the known TLR pathway 

binding partner TRAF6. Finally, bone marrow derived monocytes were isolated and 

derived into macrophages which were in turn activated with lipopolysaccharide (LPS) to 

determine if the TLR pathway was activated as normal in EcsitN209i/N209I animals.  

4.2.1. Flow cytometry of immune cells 

Fluorescence associated cell sorting (FACS) allows for the determination of proportions 

of leukocytes of each type and from this it is possible to infer if the ECSIT N209I results 

in a significant alteration of the immune phenotype of EcsitN209I/N209I animals. FACS was 

performed on whole blood collected from wild type and EcsitN209I/N209I animals and the 
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percentage of lymphocytes, monocytes, neutrophils and macrophages expressed as a % 

of total leukocytes (Figure 4.1).  

Results show no differences in the levels of monocytes or neutrophils when comparing 

wild type and EcsitN209I/N209I animals. However, a statistically significant difference is 

visible in both lymphocytes and macrophage counts, where both show a significant 

reduction in EcsitN209I/N209I animals when compared to wild type controls.  

This reduction in lymphocytes and macrophages reflects a reduced immune response in 

both innate and adaptive immunity. Unfortunately, as macrophages exist as both pro- 

(M1) and anti- (M2) inflammatory populations; and this analysis is unable to distinguish 

between the two; it is not immediately possible to determine if this result truly reflects 

a reduction in systemic inflammation or if the ratio of M1:M2 macrophages may be 

shifted towards a pro-inflammatory phenotype.  

 

Figure 4.1. Percent of leukocyte types as a % of total leukocytes identified by FACS analysis. Mono(cytes) 

and neutro(phils) show no significant changes whilst lympho(cytes) and macro(phages) both show a 

significant reduction in EcsitN209I/N209I animals compared to wild type controls. FACS analysis performed by 

Dr. Pratik Vikhe – MRC Harwell. Mean ± SEM, *p<0.05. 
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4.2.2. Co-Immunoprecipitation of ECSIT and TRAF6 

Full length wild type and mutant ECSIT created by site directed mutagenesis (AC-HIS) as 

well as TRAF6 (Entry (C, DDK-Myc)) were cloned into pCMV6 vectors (Origene) and 

transiently transfected into HEK293T cells (ECACC 12022001). Co-immunoprecipitation 

of the proteins from cell lysate using antibodies against the relevant tags (Figure 4.2) 

shows that both proteins are expressed in transfected cells (lane 2 and 3) but not in 

untransfected cells (lane 1). Co-transfecting wild type ECSIT with TRAF6 and 

immunoprecipitating with either anti-His (lane4) or anti-Myc (lane 6) primary antibody 

show that the two proteins interact and can be co-immunoprecipitated. Transfecting 

N209I ECSIT with wild type TRAF6 demonstrates that the introduction of the mutation 

by site-directed mutagenesis does not affect the interaction with TRAF6. Control lanes 

using empty His (lanes 5 and 9) and entry (Myc) vector (lanes 7 and 11), that only express 

the tag and neither of the proteins of interest, with the respective primary antibody 

demonstrate that the co-immunoprecipitation is not possible without the respective 

interacting partner protein expressed. Therefore it is possible to conclude that the N209I 

mutation of ECSIT has no effect on the interaction with TRAF6.  
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Figure 4.2. Immunoprecipitation of wild type and mutant ECSIT (His tagged) (45 and 50kDa) with full 

length wild type TRAF6 (Myc tagged) (60kDa). (A) Shows combined channels with secondary antibodies 

against mouse (green – Myc) and rabbit (red – His). (B) and (C) show the separated channels of 

demonstrating the anti-rabbit (Anti-His) and anti-mouse (Anti-Myc) secondary antibodies respectively. 1. 

Untransfected input lysate, 2. Wild type ECSIT(His) + wild type TRAF6(Myc) input lysate 3. ECSIT N209I(His) 

+ wild type TRAF6(Myc) input lysate, 4. Wild type ECSIT(His) + wild type TRAF6(Myc) anti-His 

immunoprecipitation, 5. Empty AC-His vector + wild type TRAF6(Myc) anti-His immunoprecipitation, 6. 

Wild type ECSIT(His) + wild type TRAF6(Myc) anti-Myc immunoprecipitation, 7. Wild type ECSIT(His) + 

empty entry(Myc) vector anti-Myc immunoprecipitation, 8. N209I ECSIT(His) + wild type TRAF6(Myc) anti-

His immunoprecipitation, 9. Empty AC-His vector + wild type TRAF6(Myc) anti-His immunoprecipitation, 

10. N209I ECSIT(His) + wild type TRAF6(Myc) anti-Myc immunoprecipitation, 11. N209I ECSIT + empty 

entry(Myc) vector anti-Myc immunoprecipitation.  
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4.2.3. Macrophage Stimulation with Lipopolysaccharide 

To determine if the mutation of ECSIT significantly affects activation of the toll like 

response, monocytes were isolated from the bone marrow of wild type and 

EcsitN209I/N209I animals and differentiated into macrophages before treating with 

lipopolysaccharide. Macrophages are immune cells that form part of the innate immune 

response and are typically rich in toll like receptors, including TLR4, which recognises 

LPS and acts upstream of ECSIT in the TLR response [237].  

Bone marrow derived macrophages isolated from wild type and EcsitN209I/N209I animals 

were exposed to 100ng/ml of LPS to induce the TLR response and assess the role of ECSIT 

in activating JNK, p38 MAPK and NFκB via MAP3K1 and TAK1 which form one of the final 

steps in the TLR response. The phosphorylation of the 3 proteins was assessed and 

compared to total protein expression levels to determine activation level.  

 

Figure 4.3. Quantification of p38-MAPK phosphorylation in cultured BMDMs activated with LPS. 

Representative blot shows total and phosphorylated p38-MAPK. Results indicate there are no significant 

changes between wild type and EcsitN209I/N209I BMDMs. (Mean ± SEM). 

The phosphorylation of p38MAPK was assessed on the same immunoblot as the total 

protein and phosphorylated protein primary antibodies were raised in different species 

and hence could be overlaid and separated in the green and red channels. Results show 

no increase in phosphorylation levels of p38MAPK in bone marrow derived 
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macrophages induced by LPS from EcsitN209I/N209I animals (Figure 4.3) compared to wild 

type controls. 

JNK phosphorylation was assessed across two individual immunoblots as the total and 

phosphorylated primary antibodies were raised in the same species. Protein levels were 

normalised to α-tubulin and then the level of phosphorylation determined. Results show 

no differences in total JNK protein expression (Figure 4.4) whilst levels of 

phosphorylated JNK (Figure 4.4) show a trend towards a reduction in overall 

phosphorylation but do not achieve significance. It is possible that further repeats of the 

experiment would increase the level of significance but as these results tend towards a 

reduction in inflammatory phenotype and not a pro-inflammatory phenotype, as might 

cause hypertrophy, this was not performed.  

 

Figure 4.4. Quantification of total and phosphorylated (T183/Y185) JNK and normalised to the loading 

control α-tubulin. Phosphorylated JNK is normalised to total JNK levels. Representative blots show total 

and phosphorylated JNK as well as the loading control, α-tubulin. (Mean ± SEM). 

Levels of NFκB, both total and phosphorylated, were unable to be assessed due to a lack 

of signal from both primary antibodies. This may have been due to poor storage of the 

lysates, although the same lysates were used for both the p38 MAPK and JNK 

immunoblots so this is unlikely, or it may have been due to an old or unreliable batch of 

antibody. As this was part of a larger section of work, and all other results showed a 
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trend in the same direction, it was decided not to persevere with this particular protein 

as its contribution to the overall results was likely insignificant. 

  



151 
 

4.3. Assessment of developmental pathways in mutant ECSIT mice 

The role of the BMP pathway has primarily been investigated in relation to the 

developing myocardium, especially the growth and differentiation of myocardium 

precursors from the primitive streak of the early embryo. However, there is an emerging 

role for BMP signalling in the differentiation of adult stem cells into cardio myocytes, 

with BMP2 seemingly playing an important role in the regeneration of cardiac tissue 

following myocardial infarction [290].  

The indispensable role of ECSIT in the bone morphogenetic protein (BMP) pathway 

occurs at a very early time point and it is difficult to tell from existing literature whether 

this pathway could contribute significantly to the cardiomyopathy phenotype. Knockout 

animals display embryonic lethality long before it would be possible to detect any 

cardiac phenotype [230]. Similarly, knockouts of ECSITs partner in the BMP pathway, 

SMAD4, also show early stage embryonic lethality. It is noteworthy that whilst this 

embryonic lethality occurs before complete heart development, it does appear that this 

process is impaired in these embryos. Cardiac cell lineages appear to begin to 

differentiate normally but normal heart development is impaired, with only primitive 

features being visible [291, 292].  Conditional knockout mice with a cardiac specific 

deletion of SMAD4 also demonstrate embryonic lethality, although this was at the 

slightly later time point of E13.5-14.5. Histology from knockout embryos revealed a 

defective alignment of cardiac outflow tracts. Despite this marked effect, heterozygous 

animals (Smad4flox/+) developed normally despite a reduction in growth factor signalling 

[293]. 

These previous studies would suggest that any significant impairment of this pathway 

should result in embryonic lethality. However, it is important to determine whether or 

not this pathway is affected by the N209I mutation and therefore if it could possibly 

have any role in cardiac phenotype development, potentially due to a reduction in 

growth factor signalling that is insufficient to result in embryonic lethality.   

4.3.1. Co-Immunoprecipitation of ECSIT and SMAD4 

The interaction of ECSIT and SMAD4 was previously demonstrated by co-

immunoprecipitation of the two proteins in mouse embryonic carcinoma cells (P19 cells) 

[230]. To determine if the N209I mutation may affect this binding event full length wild 
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type and mutant Ecsit as well as full length Smad4 were cloned into pCMV6 vectors in 

order to generate a tagged protein (Ecsit – His, Smad4 – Myc). Expression of the plasmids 

in Hek293T cells was confirmed and co-immunoprecipitation performed to assess the 

interaction of both the wild type proteins and the mutant ECSIT with wild type SMAD4. 

Co-immunoprecipitation was performed using antibodies against the relevant tags 

(mouse anti-myc, rabbit anti-6xHis) and immunoblotting visualised using the same 

primaries with fluorescent secondaries (anti-mouse alexafluor 568, anti-rabbit 

alexafluor 488). Lanes 1, 2 and 3 of figure 4.5 show the un-transfected, wild type 

ECSIT(50/45kDa)/wild type SMAD4 (60kDa) and mutant ECSIT(45/50kDa)/wild type 

SMAD4 cell lysates prior to immunoprecipitation, confirming successful transfection and 

the expression of the tagged proteins. Lane 4 (Figure 4.5) shows the wild type ECSIT co-

transfected with SMAD4 and immunoprecipitated using anti-His antibody which should 

draw down the ECSIT protein and the partnered SMAD4 protein. However, whilst it is 

possible to see the 45kDa ECSIT protein (the 50kDa protein is masked by the 50kDa 

immunoglobulin) confirming successful immunoprecipitation, the 60kDa SMAD4 is not 

present in this lane. The same is true when the reverse immunoprecipitation is 

performed (Lane 6, Figure 4.5), pulling down using the anti-Myc antibody we can see no 

presence of either of the ECSIT isoforms. Unfortunately, without the ability to confirm 

the immunoprecipitation results from Xiao et al. (2003) [230] in wild type proteins it is 

impossible to determine whether or not the N209I mutation is affecting the interaction. 
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Figure 4.5. Immunoprecipitation of wild type and mutant ECSIT (His tagged) (45 and 50kDa) with full 

length wild type SMAD4 (Myc tagged) (60kDa). (A) shows combined channels with secondary antibodies 

against mouse (green – Myc) and rabbit (red – His). (B) and (C) show the separated channels 

demonstrating the anti-rabbit (Anti-His) and anti-mouse (Anti-Myc) secondary antibodies respectively. 1. 

Untransfected input lysate, 2. Wild type ECSIT(His) + wild type SMAD4(Myc) input lysate 3. ECSIT 

N209I(His) + wild type SMAD4(Myc) input lysate, 4. Wild type ECSIT(His) + wild type SMAD4(Myc) anti-His 

immunoprecipitation, 5. Empty AC-His vector + wild type SMAD4(Myc) anti-His immunoprecipitation, 6. 

Wild type ECSIT(His) + wild type SMAD4(Myc) anti-Myc immunoprecipitation, 7. Wild type ECSIT(His) + 

empty entry(Myc) vector anti-Myc immunoprecipitation, 8. N209I ECSIT(His) + wild type SMAD4(Myc) 

anti-His immunoprecipitation, 9. Empty AC-His vector + wild type SMAD4(Myc) anti-His 

immunoprecipitation, 10. N209I ECSIT(His) + wild type SMAD4(Myc) anti-Myc immunoprecipitation, 11. 

N209I ECSIT + empty entry(Myc) vector anti-Myc immunoprecipitation.  
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4.3.2. Embryonic Expression of Tlx2 

The interaction of ECSIT with SMAD4 leads to the expression of the gene Tlx2 and 

knocking out Ecsit results in a loss of Tlx2 expression [230]. To assess if the N209I 

mutation had any effect on Tlx2 expression and therefore may be affecting the BMP 

pathway and embryogenesis, Tlx2 expression was assessed by qRT-PCR in E7.5 day 

embryos. Litters of embryos from wild type x wild type or mutant x mutant crosses were 

pooled in order to increase overall RNA yields.  

Results (Figure 4.6) indicate an approximately 50% reduction in Tlx2 expression in 

EcsitN209I/N209I embryos compared to wild types indicating that the mutation of ECSIT may 

have an effect on the BMP pathway and accordingly on the expression of downstream 

genes. However, statistical analysis was not performed as one WT sample had to be 

excluded due to inconsistent results.  

 

Figure 4.6. Relative gene expression of Tlx2 in wild type and EcsitN209I/N209I pooled embryos shows a 

reduction in the expression of Tlx2 expression in EcsitN209I/N209I embryos at E7.5. Mean ± SEM. 
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4.4. Discussion 

The role of ECSIT in both the TLR and BMP response has the potential to explain the 

cardiomyopathy phenotype observed. Such functional studies will also help define 

important functional domains with the ECSIT protein. However, from the results 

obtained here it isn’t possible to draw meaningful conclusions about the role of these 

pathways in the development of this phenotype, or indeed that this mutation can be 

considered pathogenic in either of these pathways. Further investigation into these 

pathways specifically in heart tissue may reveal more about the individual contribution 

of these pathways to HCM, or how ECSIT may link these pathways to a metabolic 

impairment, ultimately leading to HCM.  

Results from experiments assessing the TLR pathway and its activation appear to show 

that ECSIT is still able to perform its role normally with respect to binding to TRAF6 and 

activating downstream proteins through indirect phosphorylation. The interaction of 

ECSIT with TRAF6 in human is known to occur between amino acids 200 and 257 of the 

human ECSIT protein [239], which aligns well with the mouse protein. This would place 

the N209I mutation at the start of this region and make this pathway an obvious 

candidate to suffer a significant loss of function. However, as can be seen from the co-

immunoprecipitation performed with TRAF6, it does not appear that the mutation 

affects the binding of the two proteins and given its position, it is unlikely to affect the 

ubiquitination of ECSIT at K372 [238]. Furthermore, the downstream phosphorylation of 

2 of the 3 key proteins (p38 MAPK and JNK) that are activated by this interaction show 

no significant changes in phosphorylation levels and are unlikely to result in a pro-

inflammatory phenotype that could cause inflammation or enlargement of the cardiac 

muscle. Unfortunately, due to the issues with antibodies against NFκB it wasn’t possible 

to determine if the N209I mutation may affect the formation of the TAK1-ECSIT-TRAF6 

complex [239] that would lead to activation of IKK proteins and ultimately NFκB 

phosphorylation. 

Despite gaps in the data, results do not implicate the effect of the N209I mutation on 

the TLR response as the main driving force behind the phenotype development. As this 

work was undertaken in macrophages, there may still be a great deal to learn from 

investigating the pathway further in heart tissue, or specifically in cardiomyocytes.  
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Unfortunately, results relating to the role of ECSIT in the BMP pathway are mixed. There 

are no signs of reduced viability of EcsitN209I/N209I embryos indicating that the pathway is 

not significantly impacted. However, there is a reduction in the expression of Tlx2 in 

EcsitN209I/N209I embryos at E7.5 suggesting that the mutation of ECSIT does affect 

signalling through the pathway to a measurable degree. It is important to note that 

these results are taken from pooled embryos and it is difficult to age match embryos at 

such a small and early time point, and to ensure that the entire embryo is collected 

correctly.  

The co-immunoprecipitation of ECSIT with SMAD4 may have provided much needed 

clarity on the issue however as this was unsuccessful, further investigation is warranted.  

Taken together these data seem to indicate that the mutation of ECSIT does not result 

in a null allele with regards to its function in the BMP pathway, as embryos that are 

homozygotes are born at the expected mendelian ratio and Tlx2 expression, whilst 

reduced, is present.  

Overall these data provide an incomplete picture of the role of ECSIT in the BMP and 

TLR pathways and further investigation is warranted. However, given the minimal 

changes seen in these pathways, it seems prudent to investigate a mitochondrial role 

for ECSIT further before focusing on small changes to these pathways.  
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Chapter 5: Characterisation of 

Mitochondrial Function 
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5.1. Introduction 

With data implicating the toll like receptor response and the bone morphogenetic 

pathway as causes of the phenotype seen in EcsitN209I/N209I animals mixed, the focus 

shifted towards the more obvious candidate pathway; ECSIT’s role in complex I 

assembly. Several papers had shown how ECSIT interacts with a number of other 

complex I assembly factors (ACAD9, NDUFAF1, TMEM126B and TIMMDC1) to form the 

mitochondrial complex I assembly (MCIA) complex and assist in the assembly process. 

As it is established that defects in mitochondrial function can lead to cardiomyopathy, 

amongst other phenotypes, this process warranted in depth investigation. Assessment 

of mitochondrial function began with structural analysis and quantification before 

determining the protein levels and function of the electron transport chain through a 

variety of methods including seahorse analysis of cultured cells and isolated 

mitochondria. ECSIT protein levels and its interaction with known binding partners was 

also assessed by SDS-PAGE and co-immunoprecipitation, revealing a previously 

undescribed 16kDa fragment detected by the antibody in wild type cardiac tissue but 

absent from mutants, offering a potential mechanism for the tissue specific phenotype 

seen.  

Once dysfunction was established, it was possible to begin looking at how the mutation 

of ECSIT affects the construction of complex I and investigate this across tissues. This 

work demonstrates that ECSIT may work differently in heart and brain, leading to tissue 

differences in complex I assembly. 

Finally, work was undertaken to identify the 16kDa fragment detected in wild type 

cardiac tissue using immunoprecipitation and mass-spectrometry.    

5.2. Structure and Quantification 

Structure of mitochondria as well as total mitochondrial mass are assessable via a variety 

of methods. Mitochondrial structure was assessed by transmission electron microscopy 

examining the cross sectional area of mitochondria as well as the structure of the cristae. 

Quantification of mitochondria was attempted using a variety of different methods due 

to the variability between them. Mitochondrial DNA quantification does not necessarily 

reflect an increase or decrease in total mitochondrial mass due to a non-linear 

relationship between mtDNA and actual mass. Inner and outer mitochondrial 
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membrane proteins may give a better reflection of total mitochondrial mass however 

variation between the two membranes can occur with variations in mitochondrial 

structure.  

5.2.1. Transmission Electron Microscopy 

Transmission electron microscopy (TEM) images of wild type and EcsitN209I/N209I cardiac 

mitochondria demonstrate some qualitative changes in mitochondrial ultrastructure in 

mutant animals (Figure 5.1). Both interfibrillar and perinuclear mitochondria in wild type 

samples show a characteristic shape and evenly stacked cristae structure with no signs 

of disorganisation or mitochondrial swelling. Sub-sarcolemmal mitochondria were not 

imaged due to limitations with sample preparation and access to TEM facilities. When 

compared to wild type controls, interfibrillar mitochondria from EcsitN209I/N209I hearts 

have some signs of highly condensed cristae, forming uneven stacks through the 

mitochondria. Also apparent are disorganised cristae which do not form the clean, 

uniform stacks seen in wild type mitochondria. Perinuclear mitochondria from 

EcsitN209I/N209I hearts also show signs of cristae disorganisation, although no signs of 

hyper condensed cristae were seen in this sub-population. It is difficult to quantify what 

proportion of mitochondria display these characteristics in each population as the 

cristae are not clearly visible in each mitochondria to the same degree, many 

mitochondria in EcsitN209I/N209I tissues did not show any of the cristae abnormalities 

mentioned here.   



160 
 

 

Figure 5.1. Representative TEM images of wild type and EcsitN209I/N209I interfibrillar and perinuclear 

mitochondria from cardiac tissue demonstrating structural abnormalities observed in EcsitN209I/N209I 

samples. Wild type interfibrillar (A) and perinuclear (B) mitochondria demonstrate consistent evenly 

stacked cristae with no signs of disorganisation. Mutant interfibrillar mitochondria demonstrate 

phenotypes such as hyper condensed (C) and disorganised cristae (D). Perinuclear mitochondria from 

mutant hearts also demonstrate disorganisation (E and F) although hyper packed cristae were not 

observed. Scale bars = 500nm.  
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To determine if there was any mitochondrial swelling present in EcsitN209I/N209I cardiac 

mitochondria, cross sectional areas of mitochondria from all populations were assessed 

in FIJI (Image J) by manually drawing around whole visible mitochondria and measuring 

the area within the double membrane (Figure 5.2). Mitochondria without a complete 

membrane in view in an image were excluded from this analysis. Contrary to what might 

be expected, results demonstrate a small reduction in cross sectional area of both 

interfibrillar and perinuclear mitochondria in EcsitN209I/N209I cardiac tissue, although this 

result is not statistically significant with the small n number used.  

 

Figure 5.2. Cross sectional areas of mitochondria were assessed in wild type and EcsitN209I/N209I animals in 

both interfibrillar and perinuclear mitochondria populations. Results demonstrate a small reduction in 

mitochondrial sizes in EcsitN209I/N209I populations which does not achieve statistical significance. 
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5.2.2. Nuclear to Mitochondrial DNA ratio 

A crude method for quantification of total mitochondria is to assess the ratio of 

mitochondrial DNA (mtDNA) to nuclear DNA (nDNA) in a tissue or cell sample of interest. 

DNA was isolated from heart tissue taken from 16 week old wild type and EcsitN209I/N209I 

animals and assessed using NovaQUANT™ mouse mitochondrial to nuclear ratio kit. This 

kit uses quantitative PCR to determine the copy number of 2 nuclear (Becn1 and Neb) 

and 2 mitochondrial genes (trLEV and 12S) and through comparison of copy number it 

is possible to determine mtDNA copy number compared to nDNA. Three male and 3 

female wild type EcsitN209I/N209I animals were compared, however, results from one plate 

(female samples) showed no amplification from nuclear genome DNA and were 

excluded from the final analysis. Results (Table 5.1) show no significant differences in 

the copy number of the mtDNA between wild type and EcsitN209I/N209I animals (Figure 

5.3). However, a significant caveat to this observation is the great deal of variance in the 

EcsitN209I/N209I samples in comparison to the tightly clustered wild type samples, 

furthermore, small N numbers limit meaningful interpretation of the results. Taking this 

result as it is, there do not appear to be gross differences in the mtDNA copy number 

between wild type and EcsitN209I/N209I animals in heart tissue, although further 

investigation is warranted.  
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Figure 5.3. Novaquant™ mouse mitochondrial to nuclear ratio kit results showing mitochondrial DNA copy 

number in cardiac left ventricle tissue as a multiple of nuclear DNA copy number. Results show no 

significant difference in the mean of the two genotypes. (Mean ± SEM)  
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Sample Target Ct ΔCt 2ΔCt 

Average copy mtDNA 

number 

Ecsit+/+ 1 

trLEV 19.082 
10.810 1795.3 

1822 
Becn1 29.892 

12S 17.662 
10.852 1848.3 

Neb 28.514 

Ecsit+/+ 2 

trLEV 18.187 
10.592 1543.5 

1567 
Becn1 28.779 

12S 16.795 
10.635 1590.2 

Neb 27.43 

Ecsit+/+ 3 

trLEV 18.303 
10.667 1625.9 

1881 
Becn1 28.97 

12S 16.952 
11.061 2136.5 

Neb 28.013 

EcsitN209I/N209I 1 

trLEV 16.081 
12.168 4601.9 

4484 
Becn1 28.249 

12S 14.767 
12.092 4365.7 

Neb 26.859 

EcsitN209I/N209I 2 

trLEV 15.563 
11.242 2422.0 

2172 
Becn1 26.805 

12S 14.269 
10.908 1921.5 

Neb 25.177 

EcsitN209I/N209I 3 

trLEV 15.732 
10.351 1306.1 

1290 
Becn1 26.083 

12S 14.549 
10.315 1273.9 

Neb 24.864 

 

Table 5.1. Novaquant™ mouse mitochondrial to nuclear ratio kit results showing mitochondrial DNA copy 

number in cardiac left ventricle tissue as a multiple of nuclear DNA copy number. Nuclear and 

mitochondrial genes are divided into 2 pairs (mtNDA/nDNA) for analysis (trLEV/Becn1, 12S/Neb).  
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5.2.3. Protein 

In contrast to mtDNA copy number, which may vary regardless of mitochondrial mass, 

mitochondrial membrane proteins may be quantified for a more accurate 

representation of overall mitochondrial mass when normalised to a cytosolic protein 

such as α-tubulin. Two proteins were quantified, TOMM20, a mitochondrial outer 

membrane protein, and COXIV, a mitochondrial inner membrane protein. The 

quantification of these two proteins may also provide clues about changes in 

mitochondrial morphology, as a differential change in one over the other may represent 

a change in the abundance of one membrane over the other. Results (Figure 5.4) show 

no significant differences between wild type and EcsitN209I/N209I inner or outer 

mitochondrial membrane proteins in cardiac tissue.  This result indicates that the 

mitochondrial mass per cell in the heart is unchanged, although as could be seen in 

histology, cell size is increased so it is possible to interpret that the overall mitochondrial 

mass of the heart is increased accordingly.  

 

Figure 5.4. Normalised protein expression levels of inner mitochondrial membrane protein COXIV (A) and 

outer mitochondrial membrane protein TOMM20 (B). Showing no differences in protein levels between 

wild type and EcsitN209I/N209I animals. (Mean ± SEM). 
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5.2.4. Biogenesis 

In addition to determining the existing mass of mitochondria within cardiac tissue, it is 

also possible to determine the cellular demand for the production of new mitochondria, 

or mitochondrial biogenesis in tissues. Protein levels of the master regulator of 

mitochondrial biogenesis, PGC1α, show a significant upregulation in cardiac tissue of 

EcsitN209I/N209I animals over wild types indicating increased mitochondrial biogenesis, 

although this is not reflected in actual mitochondrial mass. Other tissues tested, liver, 

kidney and brain do not reflect the upregulation of PGC1α indicating that this is a tissue 

specific change in demand, isolated to the heart tissue. 

 

Figure 5.5. Quantified protein levels and representative immune blots of mitochondrial biogenesis 

regulator PGC1α normalised to VDAC are elevated in cardiac tissue of EcsitN209I/N209I animals compared to 

wild type controls (A). Levels in other tissues, brain (B), kidney (C) and liver (D) remain significantly 

indistinguishable from wild types. Mean ± SEM, **p<0.01. 
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5.3. Electron Transport Chain Function 

As results indicated that the N209I mutation in ECSIT was unlikely to result in a pro-

inflammatory phenotype through the TLR response and differences in the BMP pathway 

were inconclusive, further work was focused on the role of ECSIT in the assembly of 

mitochondrial complex I. To determine if and how this role was affected, complex I levels 

and activity as well as the assembly process was assessed in a variety of tissues. As the 

primary phenotype was cardiac, initial characterisation took place in mitochondria and 

tissue lysates from the heart. Further investigation was also carried out in brain tissue 

as this is a tissue typically associated with complex I deficiency related phenotypes. 

Where possible comparisons have also been made to kidney, liver and muscle samples. 

5.3.1. Electron transport chain proteins 

Quantification of electron transport chain proteins was used as a crude assessment of 

overall complex levels and activity across all tissues available. Tissues tested were taken 

from male (n=3) and female (n=3) wild type and EcsitN209I/N209I animals at 16 weeks of 

age. Results show a consistent reduction in complex I protein (NDUFB8) levels across 

tissues tested (Figures 5.6-5.10) with the exception of skeletal muscle. The most 

significantly affected of these tissues is the heart, with a >95% reduction in total complex 

I protein levels. Other tissues form a continuum from no (muscle) or very mild (brain) 

affect to a moderate reduction (liver) indicating that the effect of the N209I mutation in 

ECSIT does not uniformly affect complex I production across all tissue and cell types. 

None of the tissues tested show a reduction in any of the remaining electron transport 

chain proteins tested, and interestingly, none show an elevation of the remaining 

proteins as might be seen with a potential compensatory effect.  
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Figure 5.6. Quantification of cardiac electron transport chain proteins (A) NDUFB8 (CI), SDHA (CII), 

UQCRC2 (CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I. Results show a significant 

reduction in the complex I protein NDUFB8 in EcsitN209I/N209I heart tissue, with no changes in any of the 

remaining complexes. Representative blots (B) reflect this change with a profound loss of NDUFB8 seen 

in EcsitN209I/N209I (HOM) samples. Mean ± SEM, **p<0.01. 

 

Figure 5.7. Quantification of brain electron transport chain proteins (A) NDUFB8 (CI), SDHA (CII), UQCRC2 

(CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I. Results show a significant reduction 

in the complex I protein NDUFB8 in EcsitN209I/N209I brain tissue, with no changes in any of the remaining 

complexes. Representative blots (B) reflect this change with a slight reduction of NDUFB8 seen in 

EcsitN209I/N209I (HOM) samples. Mean ± SEM, ***p<0.001. 
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Figure 5.8. Quantification of kidney electron transport chain proteins (A) NDUFB8 (CI), SDHA (CII), UQCRC2 

(CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I. Results show a significant reduction 

in the complex I protein NDUFB8 in EcsitN209I/N209I kidney tissue, with no changes in any of the remaining 

complexes. Representative blots (B) reflect this change with a slight reduction of NDUFB8 seen in 

EcsitN209I/N209I (HOM) samples. Mean ± SEM, **p<0.01. 

 

Figure 5.9. Quantification of liver electron transport chain proteins (A) NDUFB8 (CI), SDHA (CII), UQCRC2 

(CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I. Results show a significant reduction 

in the complex I protein NDUFB8 in EcsitN209I/N209I liver, with no changes in any of the remaining complexes. 

Representative blots (B) reflect this change with a moderate reduction in NDUFB8 seen in EcsitN209I/N209I 

(HOM) samples. Mean ± SEM, **p<0.01. 

 



169 
 

 

Figure 5.10. Quantification of skeletal muscle electron transport chain proteins (A) NDUFB8 (CI), SDHA 

(CII), UQCRC2 (CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I. Results show no 

significant changes in any of the electron transport chain proteins assessed. Representative blots (B) show 

no consistent changes between wild type and mutant samples. Mean ± SEM. 

5.3.2. Other Complex I proteins 

As complex I is a large protein with many sub-complexes and a convoluted assembly 

process, it is foreseeable that the reduction in NDUFB8 levels seen in the previous 

section may not hold true for all complex I proteins or subcomplexes. To investigate this, 

a selection of proteins from each of the complex I sub-complexes was blotted to 

determine protein levels in both heart (Figure 5.11) and brain (Figure 5.12) tissue. 

Tissues tested were taken from male (n=3) and female (n=3) wild type and EcsitN209I/N209I 

animals at 16 weeks of age. The proteins tested show a significant reduction in the levels 

of all complex I sub-complexes but not in all proteins tested. NDUFV2 is a constituent of 

the N sub-complex and shows a reduction in both heart and brain tissue, however, as 

with NDUFB8 this reduction is more severe in cardiac tissue (>95%) than in brain tissue 

(~25%). Constituent proteins of the Q sub-complex, NDUFS2 and S8, show a less 

significant reduction in heart tissue (70-90%) than NDUFV2, whilst the protein NDUFS3 

does not show a significant reduction at all in heart tissue. In the brain this same pattern 

is seen, however, the level of reduction of the affected proteins is less severe in brain 

tissue (30-40%) than in cardiac, with NDUFS3 unchanged. One of the proteins of the 

proximal portion of the membrane arm, NDUFC2 shows the same pattern of significant 

reduction in heart (>95%) with only a moderate decrease in brain (~50%). The other, 
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NDUFA8 shows a steep reduction in heart (>95%) with no difference in brain. 

Unfortunately, MT-ND1, which shows no difference in cardiac tissue was unable to be 

detected in brain tissue. The proteins of the distal portion of the membrane arm 

demonstrate the most consistent results in both tissues NDUFB11 and B3 show a greater 

reduction in cardiac tissue (70-80%) than in brain tissue (~25%). Finally, the accessory 

protein, NDUFA10 maintains the trend with a greater than 95% reduction in heart tissue 

and only a 25% reduction in brain tissue. Taken together, these data suggest that the 

effect of the N209I mutation in ECSIT is not observed uniformly across all proteins and 

sub-complexes of complex I with proteins of the membrane arm more consistently 

affected than those in the N or Q subunits. It is also noteworthy that the mitochondrially 

encoded protein MT-ND1 was the only protein of the membrane arm tested that 

showed no significant reduction in cardiac tissue.  
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Figure 5.11. Quantification (A) and representative blots (B) of other complex I proteins in heart tissue. The 

proteins tested represent the various subcomplexes of complex I, N (V2), Q (S2, S3, S8), PP (ND1, A8, C2), 

PD (B11, B3) and the accessory protein NDUFA10. Quantification (Normalised to VDAC, relative to WT 

average) shows a significant reduction in protein levels of all except 2 proteins, NDUFS3 and MT-ND1. 

Mean ± SEM, *p<0.05, ***p<0.001. 
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Figure 5.12. Quantification (A) and representative blots (B) of other complex I proteins in brain tissue. As 

in heart tissue proteins tested represent the various subcomplexes of complex I, N (V2), Q (S2, S3, S8), PP 

(ND1, A8, C2), PD (B11, B3) and the accessory protein NDUFA10. Quantification (Normalised to VDAC, 

relative to WT average) shows a significant reduction in protein levels of NDUFS2, S8, C2, B11, B3, A10. 

NDUFV2, S3 and A8 show no significant changes in protein levels in brain tissue and MT-ND1 was 

undetectable on blots. Mean ± SEM, *p<0.05, **p<0.01, ****p<0.0001. 
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5.3.3. Electron Transport Chain Proteins in 2 Week Old Hearts 

The changes in complex I protein levels are most distinct in cardiac tissue with a >95% 

reduction in complex I protein levels whilst other tissues show a comparatively modest 

reduction. As the tissue samples used for previous immunoblotting were obtained from 

16 week animals, long after the onset of the cardiac phenotype, it is difficult to 

determine if the complex I deficiency is causative of the cardiac phenotype, or if the 

ECSIT N209I mutation affects the tissue in a different manner and the complex I 

deficiency is secondary to this effect.  

To investigate this further, cardiac tissue was collected from 2-week old wild type and 

EcsitN209I/N209I animals to determine if the mitochondrial dysfunction precedes the 

cardiac phenotype first seen at around 4 weeks of age. Western blots were performed 

in the same manner as those shown previously. Results (Figure 5.13) demonstrate a 

reduction in complex I protein levels (NDUFB8) as was seen in 16-week old cardiac tissue 

though at this time point it is of a smaller magnitude (~60%). As with the 16 week old 

hearts, no changes in any other mitochondrial complexes are apparent in the 2 week old 

hearts.  

 

Figure 5.13. Quantification of cardiac electron transport chain proteins (A) NDUFB8 (CI), SDHA (CII), 

UQCRC2 (CIII), MTCO1 (CIV) and ATP5A (CV) from wild type and EcsitN209I/N209I 2 week old hearts. Results 

show a consistent reduction in the complex I protein NDUFB8 in EcsitN209I/N209I heart tissue, as well as a 

consistent elevation of complex IV protein MTCO1. Representative blots (B) reflect the changes seen in 

the quantification. (Mean ± SEM), **p<0.01. 
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5.3.4. In Gel Activity 

Whilst a reduction in complex I proteins gives an idea of how much complex I is available 

to function as part of the electron transport chain, it does not reflect the true levels of 

the fully assembled complex or the activity of those fully assembled units. By isolating 

intact mitochondria from tissue and running on native first dimensional PAGE it is 

possible to isolate the intact complex I and assess its activity by supplying substrate in 

the form of NADH. This assay couples the oxidation of NADH to the reduction of the 

compound nitro-blue tetrazolium which forms a dark blue stain when reduced. 

Accordingly, the depth of the staining corresponds directly to the activity of the fully 

assembled complex I. Mitochondria were isolated from male (n=3) and female (n=3) wild 

type and EcsitN209I/N209I animals at 16 weeks of age. 

Whilst difficult to quantify, the results in figure 5.14 demonstrate a reduction in complex 

I activity in EcsitN209I/N209I hearts when compared to wild type. Furthermore, whilst a 

significant reduction in complex I protein levels was seen in brain, the same difference 

is not apparent in the activity of complex I seen in figure 5.14. It is also worth noting the 

presence of super-complexes in the wild type lanes of the heart, and in both wild type 

and mutant lanes in the brain. The formation of these super-complexes is dependent on 

the presence of complex I and the absence of any super-complexes in the EcsitN209I/N209I 

lanes of the heart assay is another indication that complex I levels are significantly 

reduced.  

In addition to complex I activity, it is also possible to assess complex IV activity by a 

similar means. In this case, complex IV is isolated as with complex I above, and supplied 

with reduced cytochrome C as a substrate. The oxidised cytochrome C then oxidizes DAB 

to form a brown stain corresponding to the level of complex IV activity. As can be seen 

in figure 5.15, and as with the protein levels shown previously, this assay demonstrates 

no changes in complex IV activity between wild type and EcsitN209I/N209I animals in either 

heart or brain tissue. This supports the hypothesis that ECSIT is only involved in complex 

I assembly and plays no role in the activity of other electron transport chains.  
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Figure 5.14. In gel activity assay of complex I in mitochondria isolated from heart and brain tissue of wild 

type and EcsitN209I/N209I animals. Depth of stain corresponds to complex I activity with deeper staining 

reflecting greater activity. Results show a reduction in complex I activity of EcsitN209I/N209I hearts, whilst 

brains show no differences between genotypes.  

 

Figure 5.15. In gel activity assay of complex IV in mitochondria isolated from heart and brain tissue of wild 

type and EcsitN209I/N209I animals. Depth of stain corresponds to complex IV activity with deeper staining 

reflecting greater activity. Results show no differences between wild type and EcsitN209I/N209I animals in 

either mitochondria isolated from heart or brain.  

5.3.5. Complex I Assay 

Due to the difficulty in accurately quantifying the in gel activity of complex I, a further 

experiment using a plate based assay was performed. This assay captures the intact 

complex I on the plate using a monoclonal antibody before a substrate is supplied 

allowing complex I to couple the oxidation of NADH to NAD+ to the reduction of a die 

that absorbs light at 450nm. The increase in absorbance at 450nm over time can then 

be plotted, with the slope of the line corresponding to the level of complex I activity.  

For this assay, complex I from both heart (WT n=6, HOM n=6) and brain (WT n=6, HOM 

n=6) lysates was used to determine the activity of complex I in wild types and 

EcsitN209I/N209I in both tissues. From figure 5.16 it is apparent that the slope of the lines 

in both EcsitN209I/N209I heart and brain differs significantly from the wild type. Figure 5.16-

A shows the individual plotted averages from heart samples at each time point with 

error, demonstrating that EcsitN209I/N209I samples give a negative slope with regards to 
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optical density over time. This would indicate that complex I is either not present or is 

completely inactive in this tissue as no change in NADH oxidation can be observed. 

Complex I activity in both wild type and EcsitN209I/N209I brains show a positive slope and 

whilst the difference in slope is significant (Figure 5.16) the EcsitN209I/N209I samples show 

a similar slope to wild type samples taken from the heart tissue of the same animals.   

Taken together these data indicate that there is a significant impairment of complex I 

activity in the heart tissue of EcsitN209I/N209I animals and there is a significant although 

less profound reduction in the complex I activity in brains of these same animals when 

compared to wild types. It is important to note that this assay is antibody based and if 

the complex I in heart is unable to bind to the antibody then no activity would be 

observed. It is also noteworthy that EcsitN209I/N209I brain shows a similar level of complex 

I activity to wild type heart.  

 

Figure 5.16. Plotted average optical density (OD) at 450nm, against time in heart (A) and brain (B) of wild 

type (n=6) and EcsitN209I/N209I (n=6) samples.  Average slope for each genotype (C) reveals significant 

differences between wild type and EcsitN209I/N209I animals in both tissues, however, EcsitN209I/N209I in brain 

shows a similar level of activity to wild type hearts. Mean ± SEM, *p<0.05, ***p<0.001. 
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5.3.6. Seahorse Analysis of Mouse Embryonic Fibroblasts 

To determine if the loss of complex I protein levels and activity translated to an in vitro 

loss of electron transport chain function, mouse embryonic fibroblasts (MEFs) were 

cultured from wild type and EcsitN209I/N209I embryos and seahorse was performed to 

measure the response of the cells to a variety of metabolically active compounds.  

Basal rates of both oxygen consumption (OCR) and extra cellular acidification (ECAR) 

were initially measured for 5 cycles to determine the typical respiration rates of the cells 

without the introduction of any compounds to induce metabolic stress. Under basal 

conditions no significant differences were observed in either OCR (Figure 5.17-A) or in 

ECAR (Figure 5.17-B) in cultured MEFs.  

Following the basal measurements, oligomycin is added which inhibits the ATP synthase 

and blocks the electron transport chain. This test indicates whether there is an increased 

‘leakiness’ of the mitochondrial membrane. This is due to the fact that the electron 

transport chain is unable to continue to function as the H+ gradient builds up across the 

inner membrane without the activity of ATP synthase gradually transporting protons in 

order to power ATP synthesis. Again, no differences can be seen in either OCR or ECAR 

between wild type and EcsitN209I/N209I MEFs.  

To measure maximal oxygen consumption without the inhibitory effect of the H+ ion 

gradient across the mitochondrial inner membrane FCCP is added which collapses the 

gradient. Under these conditions a small but not statistically significant difference can 

be seen between wild type and EcsitN209I/N209I MEFs indicating that there may be small 

reduction in the electron transport chain function of these cells, potentially due to the 

loss of complex I protein.  

Finally, rotenone and antimycin A act as complete blocks in the electron transport chain 

by inhibiting ubiquinone and complex III and preventing the passage of electrons 

through the chain. Measurements taken at this point represent non-ETC oxygen 

consumption and can be compared to measurements taken under the influence of 

oligomycin to determine the oxygen consumption as a result of H+ ion leakage across 

the inner mitochondrial membrane. As with the measurements taken in the presence of 

oligomycin there are no differences in either OCR or ECAR between wild type and 

EcsitN209I/N209I MEFs.  
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Taken together these data suggest that the ECSIT N209I mutation has no effect on the 

ECAR of cultured MEFs, indicating that glycolysis levels are maintained at normal levels 

despite the loss of complex I protein. Results also demonstrate a small reduction in the 

maximal OCR of cultured EcsitN209I/N209I MEFs when compared to wild type controls 

which does not achieve statistical significance. Without any changes in basal or minimal 

oxygen consumption rates, these data suggest that these mitochondria do not have a 

significant structural defect and are capable of functioning under normal, ‘un-stressed’ 

conditions and may only contribute to a phenotype under stressed conditions. However, 

without statistical significance, further investigation is required to determine if this small 

effect is relevant to the phenotype observed in EcsitN209I/N209I animals.  
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Figure 5.17. Oxygen consumption rate (A) and extra cellular acidification rate (B) of cultured wild type 

(n=4) and EcsitN209I/N209I (n=4) mouse embryonic fibroblasts. Compounds to induce different respiration 

states are added to the media between measurements and oxygen consumption at each state is 

measured. Results show no significant changes in oxygen consumption between wild type and 

EcsitN209I/N209I MEFs in either oxygen consumption or extra cellular acidification rates. Mean ± SEM.  
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5.3.7. Seahorse Analysis of Isolated Neonatal Cardiomyocytes 

As relatively small, non-significant differences were seen in MEFs from wild type and 

EcsitN209I/N209I animals and given the tissue specific results seen in protein levels in 

addition to activity levels it would appear that tests on MEFs would not accurately 

represent the potential complex I deficiency seen in EcsitN209I/N209I cardiac tissue. To 

account for this seahorse measurements on cultured neonatal mouse cardiomyocytes 

were attempted to better investigate the observed in vivo defect. To begin with, 

neonatal cardiomyocytes were isolated and cultured only from wild type animals to 

validate the protocol and perform titrations of cell concentration and compounds for 

optimum seahorse results. Results (Figure 5.18) from these titrations showed a cell 

concentration of 100,000 cells/well was optimal to give a robust OCR curve without 

affecting oxygen partial pressure. For FCCP, a concentration of 4µM was selected as it 

gave a more robust response than any lower levels and higher concentrations gave 

negligible increase in OCR whilst increasing the likelihood of toxic effects. 



181 
 

 

Figure 5.18. Oxygen consumption rates of wild type neonatal cardiomyocytes under cell (A) and FCCP (B) 

titration conditions. Results indicate that 100K cells/well provides the best oxygen consumption curve and 

that 4µM FCCP gave a robust response. 

Despite these early successes in culturing and measuring oxygen consumption in wild 

type cardiomyocytes, it was not possible to obtain any results from EcsitN209I/N209I 

cardiomyocytes. When isolated EcsitN209I/N209I failed to thrive in tissue culture and 

showed none of the characteristic signs of spontaneous contraction and spreading as 

was seen in the wild type. Nonetheless, seahorse experiments were attempted and 

oxygen consumption curves showed no response of mutant cells to any of the 

compounds (oligomycin, FCCP, rotenone/antimycin A) added to the media during OCR 
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measurements. As a result, this approach was abandoned in favour of isolated 

mitochondria.  

5.3.8. Seahorse Analysis of Isolated Mitochondria 

Because of difficulties using both MEFs and cardiomyocytes, and to further investigate 

mitochondrial function in the relevant tissues, mitochondria from wild type and 

EcsitN209I/N209I heart and brain were isolated and seahorse analysis was performed. This 

assay determines if the defects in complex I assembly in multiple tissues result in an ex 

vivo loss of mitochondrial function or if mitochondria were capable of functioning 

relatively normally despite a reduction in complex I levels. For this assay, mitochondria 

were isolated from hearts and brains of wild type and EcsitN209I/N209I animals and plated 

on a seahorse XF24 plate. The seahorse then measures oxygen consumption of the 

mitochondria as various compounds are added to induce different mitochondrial 

respiration states.  

Mitochondria begin in state II (pseudo state IV) where substrate is available in the form 

of glutamate and malate but the absence of ADP forces the mitochondria into a low 

oxygen consumption state. Readings taken at this time (Figure 5.19) demonstrate no 

difference between any of the four groups tested. After adding ADP mitochondria 

increase their oxygen consumption as respiration increases into state III, and is limited 

only by the speed of the respiratory chain. Here it is apparent that mitochondria from 

EcsitN209I/N209I hearts have a deficiency in respiratory chain activity (Figure 5.19) as can 

be seen by the reduction in oxygen consumption compared to wild type heart 

mitochondria as well as both wild type and EcsitN209I/N209I brain mitochondria. The 

addition of oligomycin inhibits the ATP synthase and blocks respiration through the 

electron transport chain, resulting in a dramatic decrease in oxygen consumption. This 

is an artificial state IV (state IVo), as the rate of respiration is decreased by the presence 

of oligomycin and not by a lack of ADP in the substrate. At this point there are no 

differences between any of the mitochondrial groups tested. FCCP then uncouples 

oxygen consumption by the ETC from ATP production and allows for maximal oxygen 

consumption during an uncoupled state III (state IIIu). In state IIIu, mitochondria from 

EcsitN209I/N209I hearts show no significant changes in oxygen consumption from the state 

III rate measured previously, whilst wild type heart mitochondria show an increase in 
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oxygen consumption rate. This lack of increased O2 consumption demonstrates a lack of 

reserve capacity of the EcsitN209I/N209I heart mitochondria and is reflected in a significant 

difference between wild type and EcsitN209I/N209I heart mitochondria at this 

measurement, no significant differences were observed between wild type and 

EcsitN209I/N209I brain mitochondria. The final measurement takes place in the presence of 

antimycin a, which binds to and blocks complex III, preventing any oxygen consumption 

by the electron transport chain. At this point, oxygen consumption rates should be 0, 

however this is rarely the case due to incomplete binding, leakage and other cellular or 

mitochondrial processes. As with the state IVo, there are no significant differences 

between any of the groups measured.  

 

Figure 5.19. Seahorse oxygen consumption rate measurements from wild type and EcsitN209I/N209I heart 

and brain mitochondria. Compounds to induce different respiration states are added to the media 

between measurements and oxygen consumption at each state is measured. Significant differences can 

be seen between wild type and EcsitN209I/N209I heart mitochondria during state III and state IIIu respiration. 

No differences are seen between wild type and EcsitN209I/N209I brain mitochondria. Mean ± SEM, *p<0.05. 

Taken together these data demonstrate a loss of function of the electron transport chain 

of EcsitN209I/N209I heart mitochondria. However, the mitochondria do retain some residual 

activity that appears to be sufficient for low steady state respiration, but insufficient to 

increase respiration during periods of high demand. Furthermore, brain mitochondria 
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from both genotypes show no significant changes in respiration despite a decrease in 

complex I protein levels demonstrated previously.  

5.4. ECSIT 

Whilst it is apparent that complex I protein levels, activity and assembly are affected by 

the N209I mutation in ECSIT, it was also relevant to look at how the mutation affected 

the expression of ECSIT protein, as well as its interactions with known binding partners 

and complex I proteins. This may provide clues to the mechanism of ECSIT in complex I 

assembly and to how the N209I mutation affects this mechanism.  

5.4.1. ECSIT protein blots 

ECSIT is known to have two different isoforms in mouse tissue, a 50kDa cytosolic full 

length isoform, and a 45kDa mitochondrially localised isoform [231]. The 45kDa isoform 

is formed from the full length 50kDa isoform via the loss of a 5kDa N-terminal 

mitochondrial localisation signal (amino acids 1-48) that is cleaved upon transport into 

the mitochondria. As the N209I mutation is approximately 150 amino acids downstream 

of the N-terminal targeting sequence it is unlikely that it interferes with the importation 

machinery of ECSIT, but the processing of ECSIT was investigated to determine if there 

was any effect of the mutation on this process. Tissues tested were taken from male 

(n=3) and female (n=3) wild type and EcsitN209I/N209I animals at 16 weeks of age. 

Interestingly, both 50kDa and 45kDa ECSIT protein show increased levels in cardiac 

tissue of EcsitN209I/N209I animals compared to wild type controls (Figure 5.20). This could 

indicate a compensatory upregulation of ECSIT to compensate for its reduced capacity 

to produce fully assembled complex I. On further investigation however, I observed a 

third, previously undescribed band detected with the ECSIT antibody of approximately 

16kDa. This 16kDa fragment is almost completely absent from the cardiac tissue of 

EcsitN209I/N209I animals, whilst it is present in the wild type heart tissue (Figure 5.20). This 

upregulation of 50 and 45kDa ECSIT protein is unique to the heart, with no change in the 

protein levels of either isoform in brain, kidney, liver or skeletal muscle (Figure 5.21). In 

contrast to heart tissue, none of these tissues showed any presence of the 16kDa 

fragment of ECSIT in either wild type or EcsitN209I/N209I samples. Taken together these 

data suggest that heart tissue processes ECSIT protein in a different manner to other 
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tissues and this may explain why EcsitN209I/N209I animals are absent other major defects, 

and only display a significant cardiac phenotype.   

 

Figure 5.20. Quantification (A) and representative blots (B) or ECSIT protein, normalised to loading control 

VDAC. Results show an increase in both 50kDa and 45kDa ECSIT protein in EcsitN209I/N209I animals compared 

to wild type controls. In contrast, 16kDa ECSIT demonstrates a significant reduction in EcsitN209I/N209I 

animals, to the point where it is essentially undetectable in cardiac tissue from these animals. Mean ± 

SEM, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 5.21. Quantification and representative blots from Brain (A), Kidney (B), Liver (C) and skeletal 

muscle (D) of wild type and Ecsit-N209I/N209I animals. In contrast to results from heart tissue, none of the 

tissues tested show any increase of either 50 or 45kDa ECSIT protein isoforms and the 16kDa fragment 

seen in heart tissue was undetectable in any of the remaining tissues tested. Mean ± SEM. 
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5.4.2. ECSIT Protein in 2 Week Old Hearts 

I investigated whether or not the elevation or reduction of ECSIT protein preceded the 

development of the cardiac phenotype by immunoblotting proteins from 2-week-old 

hearts, where there is no overt sign of cardiomyopathy. 

Results (Figure 5.22) show a similar reduction in ECSIT protein in regards to the 

unconfirmed 16kDa fragment. However, 50 and 45kDa ECSIT protein isoforms do not 

show the same elevation that was seen in the 16-week hearts. This may be a factor of 

the age of the hearts, with older hearts accumulating these larger fragments with time 

as they are unable to undergo the normal degradation process due to the mutation, or 

build up in an attempt to improve complex I assembly efficiency. These data confirm 

that the absence of the 16kDa fragment precedes the development of the 

cardiomyopathy phenotype.  

 

Figure 5.22. Quantification (A) and representative blots (B) or ECSIT protein, normalised to loading control 

VDAC from wild type and EcsitN209I/N209I 2 week old cardiac tissue. Results show an increase in both 50kDa 

and 45kDa ECSIT protein in EcsitN209I/N209I animals compared to wild type controls. 16kDa ECSIT 

demonstrates a reduction in EcsitN209I/N209I animals as was seen in 16 week old cardiac tissue. Mean ± SEM. 
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5.4.3. NDUFAF1 protein blots 

NDUFAF1 is a binding partner of ECSIT, as part of the MCIA complex and the interaction 

of these two proteins is key to the assembly of complex I. As ECSIT protein levels were 

elevated in cardiac tissue it was prudent to investigate the protein levels of NDUFAF1 in 

at least the same tissue. However, commercial antibodies against NDUFAF1 proved to 

be unsuitable as no protein could be detected in cardiac tissue. To combat this an 

antibody against human NDUFAF1 was obtained from the lab of Dr Leo Nijtmans 

(Radboud University Medical Centre). Unfortunately, this antibody resulted in a large 

number of non-specific binding events and it is impossible to tell which band on the 

immunoblot membrane belongs to the NDUFAF1 protein. As a result it was not possible 

to quantify NDUFAF1 protein levels.   

  



189 
 

5.4.4. ACAD9 protein blots 

As with NDUFAF1, ACAD9 is a binding partner of ECSIT and another member of the MCIA 

complex. Immunoblots were performed to assess the ACAD9 protein levels in various 

tissues (Figure 5.23). Tissues tested were taken from male (n=3) and female (n=3) wild 

type and EcsitN209I/N209I animals at 16 weeks of age. Results show no significant changes 

in the ACAD9 protein levels in any of the tissues tested. These results were expected for 

the brain, kidney and liver, as no differences were seen in ECSIT protein levels in these 

tissues. However, as ECSIT protein levels were altered in cardiac tissue it may have been 

expected that ACAD9 would also show differential levels of protein expression in cardiac 

tissue. This may indicate that whilst ECSIT protein is not fully functional in complex I 

assembly its interaction with ACAD9 is unaffected.  

 

Figure 5.23. Quantification and representative blots of ACAD9 in wild type and EcsitN209I/N209I tissues. Heart 

(A), brain (B), kidney (C) and liver (D) show no differences in ACAD9 protein levels. Mean ± SEM. 
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5.4.5. Co-Immunoprecipitation with NDUFAF1 

To investigate the interaction of ECSIT protein with the known binding partner 

NDUFAF1, both full length proteins were cloned into expression vectors (pCMV6) to 

produce tagged proteins (ECSIT – His, NDUFAF1 – Myc). Site directed mutagenesis was 

used to introduce the N209I point mutation into the ECSIT ORF to produce the mutant 

protein. Wild type or N209I ECSIT was then co-transfected into HEK293T cells with the 

NDUFAF1 clone. Cell lysates were used for immunoprecipitation against one of the 

protein tags used and the products run on SDS-PAGE to determine if the proteins were 

interacting. Results (Figure 5.24) show that both wild type (lane 2) and mutant ECSIT 

(lane 3) as well as NDUFAF1 (lanes 2 and 3) were successfully expressed in HEK293T cells 

whilst untransfected (lane 1) cells show no expression of either protein. Furthermore, 

both proteins can be seen expressed as both a cytosolic (ECSIT – 50kDa, NDUFAF1 – 

42kDa) and mitochondrially localised (ECSIT – 45kDa, NDUFAF1 – 37kDa) isoforms. 

Immunoprecipitation against the His tag of wild type ECSIT (lane 4) shows that both 

isoforms of ECSIT as well as both isoforms of NDUFAF1 are pulled down, indicating that 

wild type ECSIT is interacting with NDUFAF1 in both the cytosol and the mitochondria. 

This is confirmed by the reverse reaction, of pulling down NDUFAF1 via its Myc tag, 

showing the same proteins precipitated (lane 6). Lanes 5 and 7 are empty vector controls 

confirming that the His tag alone is incapable of pulling down the Myc tagged NDUFAF1 

protein, and the Myc tag is incapable of pulling down the His tagged ECSIT. Lanes 8 and 

11 demonstrate the same experimental procedure using the mutant N209I form of the 

ECSIT protein instead of the wild type. This again shows that in both cases the ECSIT and 

NDUFAF1 proteins are interacting and capable of being co-immunoprecipitated. 

Ultimately, these data are important in telling us that the N209I mutation has no impact 

on the interaction of ECSIT with NDUFAF1 and that the two proteins interact not only in 

the mitochondria, but also in the cytosol as is demonstrated by the presence of both 

cytosolic isoforms in all of the co-immunoprecipitation lanes.  
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Figure 5.24. Immunoprecipitation of wild type and mutant ECSIT (His tagged) (45 and 50kDa) with full 

length wild type NDUFAF1 (Myc tagged) (42 and 37kDa). (A) shows combined channels with secondary 

antibodies against mouse (green – Myc) and rabbit (red – His). (B) and (C) show the separated channels 

demonstrating the anti-rabbit (Anti-His) and anti-mouse (Anti-Myc) secondary antibodies respectively. 1. 

Untransfected input lysate, 2. Wild type ECSIT(His) + wild type NDUFAF1(Myc) input lysate 3. ECSIT 

N209I(His) + wild type NDUFAF1(Myc) input lysate, 4. Wild type ECSIT(His) + wild type NDUFAF1(Myc) 

anti-His immunoprecipitation, 5. Empty AC-His vector + wild type NDUFAF1(Myc) anti-His 

immunoprecipitation, 6. Wild type ECSIT(His) + wild type NDUFAF1(Myc) anti-Myc immunoprecipitation, 

7. Wild type ECSIT(His) + empty entry(Myc) vector anti-Myc immunoprecipitation, 8. N209I ECSIT(His) + 

wild type NDUFAF1(Myc) anti-His immunoprecipitation, 9. Empty AC-His vector + wild type 

NDUFAF1(Myc) anti-His immunoprecipitation, 10. N209I ECSIT(His) + wild type NDUFAF1(Myc) anti-Myc 

immunoprecipitation, 11. N209I ECSIT + empty entry(Myc) vector anti-Myc immunoprecipitation.  
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5.4.6. Co-Immunoprecipitation with ACAD9 

As with NDUFAF1, ACAD9 is known to interact with ECSIT as part of the MCIA complex 

and the potential for the interaction to be destabilised or affected by the N209I 

mutation in the ECSIT protein was assessed to confirm whether or not this was the cause 

of the complex I deficiency. As previously, full length wild type and mutant ECSIT were 

cloned in the pCMV6-AC-His vector (Origene) to produce a His tagged ECSIT protein 

containing either the wild type asparagine or mutant isoleucine residue at position 209. 

Similarly, ACAD9 was expressed with a Myc tag in the pCMV6-ENTRY vector (Origene). 

Transfection of both vectors into HEK293T cells was performed and cell lysates assessed 

for the presence of the proteins by immunoblotting (Figure 5.25). Whereas ECSIT 

produces tagged proteins of 50 and 45kDa in size, ACAD9 is expressed as two protein 

isoforms of 69 (cytosolic) and 64 (mitochondrial) kDa. Successful transfection is 

confirmed in lanes 2 and 3 of figure 5.25, showing the presence of both ECSIT and both 

ACAD9 isoforms and the absence of either in lane 1 confirms a lack of contamination in 

the cell line. Lane 3 demonstrates that immunoprecipitation of the wild type ECSIT by 

anti-His antibody co-immunoprecipitates both isoforms of the Myc tagged ACAD9 

protein. The same is demonstrated in lane 6 by immunoprecipitation of the ACAD9 by 

anti-Myc antibody showing the presence of the 50 and 45kDa ECSIT isoforms, although 

the 50kDa isoform shows very minimal quantities. The same procedure with the mutant 

N209I ECSIT shows that the interaction in both ways is unaffected by the presence of 

the mutation. The absence of any ECSIT or ACAD9 in the empty vector controls lanes 5, 

7, 9 and 11 confirm that the interaction is a result of the protein:protein interaction of 

ECSIT with ACAD9 and not between the His and Myc tags, or cross specificity of the 

antibody used.  

Taken together, these data confirm that ECSIT and ACAD9 interact within the 

mitochondria, most likely as part of the MCIA complex. It also suggests that there is 

some interaction between the proteins in the cytosol although this is a very small 

proportion of the overall interaction visible. Introducing the N209I mutation into ECSIT 

has no effect on the interaction of the two proteins, suggesting it is not through the 

binding of ACAD9 that the ECSIT N209I mutation leads to complex I deficiency.  
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Figure 5.25. Immunoprecipitation of wild type and mutant ECSIT (His tagged) (45 and 50kDa) with full 

length wild type ACAD9 (Myc tagged) (69 and 64kDa). (A) shows combined channels with secondary 

antibodies against mouse (green – Myc) and rabbit (red – His). (B) and (C) show the separated channels 

demonstrating the anti-rabbit (Anti-His) and anti-mouse (Anti-Myc) secondary antibodies respectively. 1. 

Untransfected input lysate, 2. Wild type ECSIT(His) + wild type ACAD9(Myc) input lysate 3. ECSIT 

N209I(His) + wild type ACAD9(Myc) input lysate, 4. Wild type ECSIT(His) + wild type ACAD9(Myc) anti-His 

immunoprecipitation, 5. Empty AC-His vector + wild type ACAD9(Myc) anti-His immunoprecipitation, 6. 

Wild type ECSIT(His) + wild type ACAD9(Myc) anti-Myc immunoprecipitation, 7. Wild type ECSIT(His) + 

empty entry(Myc) vector anti-Myc immunoprecipitation, 8. N209I ECSIT(His) + wild type ACAD9(Myc) anti-

His immunoprecipitation, 9. Empty AC-His vector + wild type ACAD9(Myc) anti-His immunoprecipitation, 

10. N209I ECSIT(His) + wild type ACAD9(Myc) anti-Myc immunoprecipitation, 11. N209I ECSIT + empty 

entry(Myc) vector anti-Myc immunoprecipitation.  
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5.5. Complex I Assembly 

As ECSIT is a known complex I assembly factor, work was undertaken to determine which 

step in complex I assembly was primarily affected by the N209I mutation. To do this, 

mitochondria are isolated from tissue using gentle homogenisation and differential 

centrifugation. Isolated mitochondria can then be run on Native PAGE to separate the 

intact complexes and investigate the proteins that comprise these complexes. This is 

done both in first dimension as a semi-quantitative assessment, and in second 

dimension where complexes are then denatured, as a more qualitative assessment 

[294]. 

5.5.1. 1st Dimensional Blue Native PAGE 

First dimensional blue native polyacrylamide gel electrophoresis (BN-PAGE) was 

performed on mitochondria isolated from hearts of male (n=3) and female (n=3) wild 

type and EcsitN209I/N209I animals. These were probed using antibodies against complex I 

subunits, as well as ECSIT itself to determine the level of each protein within the fully 

assembled complex I. 

5.5.1.1. Complex I subunits 

Antibodies against each of the main complex I subunits were used to confirm their 

compatibility with native conditions, and to confirm that the isolation and gel 

electrophoresis was not destructive of the fully assembled complex I. Figure 5.26 shows 

the bands corresponding to the proteins incorporated into fully assembled complex I for 

each of the antibodies tested. NDUFV2 (N), S2 (Q), B11 (PD-a), B1 (PD-b), B8 (PD-c) and 

A10 (accessory) all confirm the reduction of fully assembled complex I seen in earlier 

denaturing blots (Section 5.3.2). NDUFC2 (PP) does not show any banding at the level of 

fully assembled complex I in either wild type or EcsitN209I/N209I heart mitochondria, 

possibly indicating an incompatibility with native conditions, or an inability of the 

antibody to bind to the epitope as it is hidden within the complex structure.  
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Figure 5.26. First dimensional BN-PAGE blots showing only fully assembled complex I in mitochondria 

isolated from hearts of wild type and EcsitN209I/N209I animals. Rest of blots is not shown as no other banding 

was seen.  

5.5.1.2. ECSIT 

First dimensional BN-PAGE of ECSIT (Figure 5.27) confirms the reduction of fully 

assembled complex I in EcsitN209I/N209I cardiac mitochondria, in comparison to wild type 

controls. This result is unexpected as the ECSIT antibody shows a band of fully assembled 

complex I in the wild type mitochondria, despite previous knowledge suggesting that 

ECSIT is not a constituent of fully assembled complex I. It also suggests that this may be 

the 16kDa fragment noted in cardiac western blots as both 45 and 50kDa ECSIT were 

significantly upregulated in previous experiments.  

 

Figure 5.27. First dimensional BN-PAGE blot of ECSIT demonstrating localisation of ECSIT protein with 

fully assembled complex I. 
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5.5.2. 2nd Dimensional Blue Native PAGE 

Second dimensional blue native PAGE allows for further understanding of the assembly 

process of complex I, by revealing the proteins involved in each sub-assembly and where 

the process may be getting ‘stuck’ as a result of the ECSIT N209I mutation. To investigate 

this, samples were first run under the native first dimensional conditions, before the gel 

slice was excised and treated with SDS to denature the proteins in the gel. The slice was 

run under denaturing conditions to separate the individual proteins from the fully 

assembled complex. Samples were taken from male wild type (n=3) and EcsitN209I/N209I 

(n=3) animals. As with the first dimensional BN-PAGE, antibodies against proteins in 

each of the complex I subassemblies were used to determine which, if any, the ECSIT 

N209I mutation had a great effect on. Mitochondria from both heart and brain of wild 

type and EcsitN209I/N209I animals were used to compare the assembly pathway in the 

affected heart tissue to that of the seemingly unaffected brain tissue.  

Results (Figure 5.28) show a reduction in most of the proteins at the level of complex I 

without the accumulation of any assembly intermediates, making it difficult to 

determine at which point in the assembly process is affected. NDUFS2, NDUFB8 and 

NDUFA10 show no differences between wild type and EcsitN209I/N209I mitochondria from 

heart, with the majority of these proteins being present in a band of a size corresponding 

to fully assembled complex I. NDUFS2, also shows some evidence of assembly 

intermediates with a size slightly smaller than fully assembled complex I, but again this 

is not different between the wild type and EcsitN209I/N209I heart samples. NDUFV2, 

NDUFC2 and NDUFB1 show a reduction or absence of the protein in complete complex 

I but do not show an accumulation of assembly intermediates, either because these are 

broken down rapidly, or do not accumulate as any that is produced is incorporated into 

complex I, albeit at a much lower total amount. Only NDUFB11 shows a change in the 

patterning of the blot, with an accumulation of a smaller assembly intermediate, with a 

modest reduction in the amount incorporated into complete complex I.  

Of the proteins investigated in heart tissue, only those with significant differences were 

investigated further in mitochondria from brain tissue. Of these 4 proteins, NDUFV2, 

NDUFC2 and NDUFB11 did not show the same reduction in complete complex I or an 

accumulation of any assembly intermediates as was seen in heart mitochondria. 
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NDUFB1 was undetectable in brain tissue, likely not due to an absence of the protein, 

but perhaps a reduction in the amount of complex I or a loss of effectiveness of the 

antibody.  

Overall these data show that the loss of ECSIT function in EcsitN209I/N209I animals is more 

profound in heart tissue than in the brain, and that not all of the subunits of complex I 

are affected. From the work of Guerrero-Castillo et al. (2016) [72] it is known that ECSIT 

is bound to proteins of the PP subassembly and potentially operates in its assembly. 

These data support that, with a difference seen in NDUFC2. However, the difference in 

the PD-a protein of NDUFB11 also suggests that ECSIT may play a role either in the 

assembly of the PD
 subunit or in the marrying of the two subunits together during 

complex I assembly.   

5.5.2.1. Complex I Subunits 

Results (Figure 5.28) show a reduction in most of the proteins at the level of complex I, 

without the accumulation of any assembly intermediates, thus making it difficult to 

determine which point in the assembly process is affected. NDUFS2, NDUFB8 and 

NDUFA10 show no differences between wild type and EcsitN209I/N209I mitochondria from 

heart, with the majority of these proteins being present in a band of a size corresponding 

to fully assembled complex I. NDUFS2, also shows some evidence of assembly 

intermediates with a size slightly smaller than fully assembled complex I, but again this 

is not different between the wild type and mutant heart samples.  

NDUFV2, NDUFC2 and NDUFB1 show a reduction or absence of the protein in complete 

complex I but do not show an accumulation of assembly intermediates. This is likely to 

be either because these are broken down rapidly, or do not accumulate as any that are 

produced are incorporated into complex I, albeit at a much lower total level. Only 

NDUFB11 shows a change in the patterning of the blot, with an accumulation of a 

smaller assembly intermediate, with a modest reduction in the amount incorporated 

into complete complex I.  

Of the proteins investigated in heart tissue, only those with overt differences were 

investigated further in mitochondria from brain tissue. Of these 4 proteins, NDUFV2, 

NDUFC2 and NDUFB11 did not show the same reduction in complete complex I or an 

accumulation of any assembly intermediates as was seen in heart mitochondria. 
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NDUFB1 was undetectable in brain tissue, which is unlikely to be due to an absence of 

the protein, but more likely a reduction in the amount of complex I or a loss of 

effectiveness of the antibody.  

Overall these data shows that the reduction of ECSIT function with regard to complex I 

assembly in EcsitN209I/N209I animals is more profound in heart tissue than in the brain, and 

that not all of the subunits of complex I are affected. From the work of Guerrero-Castillo 

et al. [72] it is known that ECSIT is bound to proteins of the PP subassembly and 

potentially operates in its assembly. These data support that, with a significant reduction 

difference seen in NDUFC2. However, the difference in the PD-a protein of NDUFB11 also 

suggests that ECSIT may play a role in either the assembly of the PD
 subunit or in the 

marrying of the two subunits together during complex I assembly.   
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Figure 5.28.  Representative 2nd dimensional BN-PAGE blots from wild type and EcsitN209I/N209I hearts and 

brains. Brain mitochondria were only run where a difference was seen in heart mitochondria. In each 

panel, the high molecular weight complexes are on the left and the low molecular weight on the right.  
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5.5.2.2. ECSIT 

Given the unexpected result in the first dimensional BN-PAGE of ECSIT it was prudent to 

run the 2nd dimensional blots to determine if the hypothesis about the first dimension 

was correct i.e. that it was the 16kDa fragment that was co-migrating with complex I. 

Mitochondria from wild type and EcsitN209I/N209I hearts and brains were run in the first 

dimension and then in the second dimension to determine which fragments of ECSIT 

were co-migrating with which complexes of the mitochondria.  

2D BN-PAGE blots from wild type and EcsitN209I/N209I hearts (Figure 5.29-A/B) show the 

presence of the 50kDa band of ECSIT sitting to the left hand side of the blot at a first 

dimensional size much larger than complex I. Indicating that the 50kDa fragment may 

be associated with a very large complex or structure, this could be in the form of a 

mitochondrial import machinery or ribosome.  

The 45kDa ECSIT band shows two patches, one small, to the right of the blot, which may 

be unbound ECSIT, free in the mitochondria, or may be a small protein complex such as 

MCIA. There are also signs of 45kDa ECSIT at a much larger size in the middle of the blot 

likely as part of a much larger complex, potentially as part of a complex I assembly 

intermediate. Importantly for both the 50 and 45 kDa fragments, no differences can be 

seen between wild type and EcsitN209I/N209I hearts.  

Where a difference is visible is the 16kDa fragment, as was seen with the standard SDS-

PAGE, the 16kDa fragment is reduced to the point where it is not visible in the 

EcsitN209I/N209I heart (Section 5.4.1). This blot also confirms that it is the 16kDa fragment 

that co-migrates with complex I, suggesting that it may form part of the complete 

complex.  

In the brain (Figure 5.29-C/D) 50kDa ECSIT appears as part of a large complex, as it does 

in heart tissue, however there is no evidence of either the 45 or 16 kDa fragments in 

either the wild type or EcsitN209I/N209I samples. This is in contrast to the SDS-PAGE of brain 

tissue where 45kDa ECSIT could be seen albeit at a reduced level, but is in line with the 

SDS-PAGE with respect to the 16kDa fragment that was not visible in brain tissue.  
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Figure 5.29. Second dimensional BN-PAGE in heart (A and B) and brain (C and D) of wild type and 

EcsitN209I/N209I animals. Proteins associated with large complexes lie to the left of the blot, and smaller or 

unbound proteins to the right. Heart shows the presence of 50 (1) and 45 kDa (2) ECSIT in both wild type 

and EcsitN209I/N209I blots whilst 16kDa (3) is only visible in the wild type. Brain shows only the presence of 

the 50kDa ECSIT (4).  
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5.6. Nature of 16kDa fragment 

The 16kDa fragment identified initially in SDS-PAGE and later in BN-PAGE appears to be 

key to complex I assembly in cardiac tissue. However, this may not be the case in all 

tissues, as even those without the presence of 16kDa in wild type blots show some 

degree of complex I assembly defect (kidney, liver and brain). To determine the nature 

of this protein fragment and provide clues as to how the N209I mutation may affect its 

formation I have attempted to isolate it for mass-spectrometric analysis. 

5.6.1. Immunoprecipitation 

Immunoprecipitation was performed using a variety of techniques in an attempt to find 

a method that successfully immunoprecipitated the 16kDa fragment of ECSIT so that it, 

as well as the 45 and 50 kDa fragments, could be sent for reliable mass-spectrometry.  

Initial immunoprecipitation used a method similar to that used for the co-

immunoprecipitations of ECSIT with ACAD9, TRAF6 and SMAD4 shown previously. 

Protein was isolated from wild type heart tissue in RIPA buffer and immunoprecipitated 

with anti-ECSIT antibody (Abcam) and protein G sepharose beads. Following western 

blot (Figure 5.30-A) however, no ECSIT protein could be seen indicating that the protein 

was not immunoprecipitated by the antibody under these conditions, despite all 

isoforms being visible in the original input protein. 

A second attempt was made using a milder incomplete RIPA buffer which should have 

reduced the chance of loss of binding affinity between the antibody and the protein 

(Figure 5.30-B). Results show the presence of both the 50 and 45 kDa isoforms in the 

input lane, however the 16kDa fragment is very faint and none of the isoforms are visible 

following immunoprecipitation. This may indicate that this lysis buffer is insufficient to 

liberate the 16kDa fragment from this tissue but given the failure of the 

immunoprecipitation there appears to be little chance of this protocol being successful.  

In a final attempt to immunoprecipitate ECSIT using the original Abcam antibody 

(Ab21288) immunoprecipitation was performed using a lysis buffer containing triton x-

100 instead of SDS and NP-40 as was described by Soler-López et al. (2011) [295] and 

recommended by the manufacturer as part of trouble shooting procedures. Results 

(Figure 5.30-C) show robust extraction of all isoforms of ECSIT as seen in the input lane, 
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however, immunoprecipitation was still unsuccessful with no protein visible in the IP 

lane. No control is shown.  

 

Figure 5.30. Western blots following immunoprecipitation using original Abcam ab21288 anti-ECSIT 

antibody with proteins extracted using RIPA (A), mild RIPA (B) and triton lysis buffer (C). Westerns of 

immunoprecipitations using alternative antibodies from Abcam (ab66380) (D) and Atlas (HPA042979) (E) 

show successful detection and immunoprecipitation of 50 and 45kDa ECSIT but not the 16kDa fragment 

of interest.  

As the ab21288 Abcam antibody appeared unsuitable for immunoprecipitation I decided 

to try the original RIPA protein extraction protocol with alternative antibodies to 

determine if mass-spec could be performed in this manner. Anti ECSIT antibodies from 
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Abcam (ab66380) (Figure 5.30-D) and Atlas (HPA042979) (Figure 5.30-E) both 

demonstrated an ability to detect and immunoprecipitate the larger fragments of ECSIT, 

but neither detected or was able to immunoprecipitate the 16kDa fragment.   

5.6.2. Mass Spec Results 

With the inability of the antibodies used to immunoprecipitate the 16kDa fragment of 

ECSIT I decided to attempt mass-spectrometry on gel slices taken from 2D BN-PAGE to 

provide the cleanest possible result and give an overview of the proteins in association 

with ECSIT at each position in the gel. Four fragments, 50kDa, 45kDa complex bound, 

45kDa unbound and 16kDa ECSIT, were excised from a 2D BN-PAGE run using wild type 

heart mitochondria and showing the presence of all 3 isoforms of ECSIT (Figure 5.31). 

 

Figure 5.31. Image of wild type 2nd dimensional BN-PAGE showing the 4 fragments excised from the gel 

and sent for mass-spec. 50kDa ECSIT (A), 45kDa complex bound ECSIT (B), 45kDa unbound ECSIT (C) and 

16kDa ECSIT (D). 

Mass spectrometric analysis (Appendix 1) failed to identify ECSIT in any of the gel 

fragments sent for sequencing. Although the presence of a large number of complex I 

proteins representing all sub-assemblies of complex I was confirmed in gel slice D, 

confirming the co-migration of this potential ECSIT fragment with complex I.  
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5.6.3. Validation of ECSIT antibody 

As it was not possible to confirm the nature of any of the ECSIT isoforms by mass-

spectrometry, confirmation that the antibody was detecting ECSIT protein reliably was 

tested by transfecting HEK293T cells with the His tagged ECSIT produced for the CO-IP 

experiments and running lysate on an SDS-PAGE gel. Following western blotting 

membranes were incubated with both the anti His antibody and the Abcam anti-ECSIT 

(ab21288) antibody used for the majority of experiments. Co-localisation of the two 

antibody signals confirmed the specificity of the ab21288 antibody (Figure 5.32). The 

results are confounded slightly by the presence of the native ECSIT protein in the 

HEK293T cells that were not transfected, and by the presence of what appears to be 

extra bands in the transfected cells. However, in reality these extra bands are the 

combination of both the untagged and tagged protein which will be 1kDa larger than 

the untagged protein due to the size of the 6x His tag. Unfortunately, as the 16kDa 

fragment of ECSIT is not produced in HEK293T cells it was not possible to determine if 

this was a specific antibody interaction or not.  

 

Figure 5.32. Immunoblots of transfected and un-transfected HEK293T cells showing the binding of both 

the anti-ECSIT (Abcam ab21288) and anti HIS antibodies binding to the tagged ECSIT protein at both 45 

and 50 kDa. (A) shows the combined channels (Red – Anti ECSIT, Green – Anti HIS). (B) shows only the red 

channel and (C) only the green. Native ECSIT protein is visible in the un-transfected cells in the red channel.   
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5.7. Discussion 

Results indicate a mild structural defect in EcsitN209I/N209I cardiac mitochondria with a 

tendency towards highly compacted and disorganised cristae, as well as a reduction in 

mitochondrial size. This may reflect a tendency of mitochondria to form more 

fragmented networks or may simply be an artefact of the way the TEM slides were cut, 

further investigation using TEM to image mitochondria from other tissues may help to 

determine if this is a valid result.  

Investigating nDNA:mtDNA ratio and mitochondrial inner and outer membrane proteins 

in cardiac showed mixed results. nDNA:mtDNA hinted at some differences between wild 

type and EcsitN209I/N209I mitochondria quantities but with limited successful results this 

method was abandoned for more robust methods. Inner and outer membrane proteins 

showed that there was no difference in total mitochondrial mass in cardiac tissue and 

as such this was not further investigated in other tissues where no phenotype was seen. 

Finally, the levels of the master regulator of mitochondrial proliferation, PGC1α, showed 

a slight upregulation in cardiac tissue, with no changes in other tissues measured. This 

result, when coupled with the two previous tests suggests that the cells of the heart are 

attempting to upregulate total mitochondrial mass through the action of PGC1α but the 

elevation of mitochondrial mass is impaired, either due to impaired synthesis, or 

increased degradation.  

This section also attempted to determine why a mutation in a ubiquitously expressed 

complex I assembly protein (ECSIT) appears to have such a devastating effect on cardiac 

tissue without devastating body wide phenotypes, as is typical with complex I deficiency.  

Firstly, these data demonstrate that whilst the phenotype seen in EcsitN209I/N209I animals 

is primarily cardiac, the loss of complex I protein level is more universal. The reduction 

in complex I varies significantly from tissue to tissue with an almost complete loss of 

complex I protein in heart and only mild reductions in kidney and brain. This alone hints 

at the cause of the tissue specific phenotype. This loss of NDUFB8 in heart tissue is also 

supported by the loss of a number of other complex I proteins in heart tissue. However 

not all proteins are reduced, indicating that the N209I mutation in ECSIT may affect 

different subassemblies of complex I to different degrees. Again, this loss of proteins in 

cardiac tissue is also seen in brain tissue, to only a mildly reduced level, hinting again at 
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a tissue specific level of activity of ECSIT in complex I assembly. Work was also 

undertaken to show that a loss of functional complex I protein precedes the cardiac 

phenotype observed. Secondly, it suggests two possibilities for the regulation of 

NDUFB8 protein levels, the first being that NDUFB8 levels are lost over time with the 

N209I mutation leading to cardiomyopathy, or secondly that NDUFB8 protein levels 

increase over time with the development of the cardiac tissue and the ECSIT N209I 

mutation inhibits this.  

To investigate the mechanism by which ECSIT is involved in complex I assembly, protein 

levels of ECSIT in multiple tissues were assessed. Initial results showed a surprising 

upregulation of both 50 and 45 kDa ECSIT in EcsitN209I/N209I hearts compared to wild 

types. No similar upregulation of these isoforms was seen in brain, kidney, liver or 

muscle. Furthermore, during this investigation a previously undescribed 16kDa fragment 

was identified by the antibody used in wild type cardiac tissue. This fragment was absent 

from EcsitN209I/N209I cardiac samples and was not identified in any of the other tissues 

tested, providing the first evidence of a potential tissue specific mechanism of ECSIT in 

complex I assembly. As with the complex I protein levels, ECSIT protein levels I cardiac 

tissue were also assessed in 2 week hearts to confirm that the upregulation of 50 and 

45 kDa ECSIT and the loss of the putative 16kDa fragment preceded the development of 

cardiomyopathy. As expected, 50 and 45kDa ECSIT protein is elevated above wild types 

in EcsitN209I/N209I hearts and there is a loss of 16kDa ECSIT in EcsitN209I/N209I hearts isolated 

from 2 week old animals. These data suggest that the loss of the 16kDa fragment 

precedes the onset of hypertrophy in .EcsitN209I/N209I animals. 

As ECSIT is known to be part of the MCIA complex, its binding to other members of this 

complex was assessed. The two key members of the MCIA complex that were assessed 

were NDUFAF1 and ACAD9. ACAD9 protein levels showed no differences in heart, 

kidney, liver or brain, but it was not possible to accurately measure NDUFAF1 due to a 

lack of reliable antibody. Further investigation focused on the use of Co-

immunoprecipitation using tagged proteins to determine if the interaction of ECSIT with 

ACAD9 and NDUFAF1 was affected by the N209I mutation. Results showed that the 

mutation had no effect on the interaction of these proteins, indicating that mutant ECSIT 
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is still capable of forming part of the MCIA complex and at least initiating complex I 

assembly.  

Complex I assembly itself was assessed by blue native PAGE which shows the formation 

of subcomplexes and the isoforms of each protein present in each subassembly. These 

data showed that EcsitN209I/N209I animals show a defect in complex I assembly in cardiac 

tissue but not in brain tissue. This defect is most apparent when looking at the PP and PD 

subunits especially the PD-a which demonstrated a shift towards unincorporated 

protein. Taken together these data support the work of Guerrero-Castillo et al. (2016) 

[72] which showed ECSIT is involved in the assembly of the membrane arm of complex 

I. BN-PAGE also demonstrated that the putative 16kDa ECSIT fragment is a constitutive 

part of fully assembled complex I. This may be as a result of a tissue specific cleavage of 

the protein during the complex I assembly process, although the reasons for having such 

a mechanism remain elusive.  

Finally, mass-spectrometry was employed to determine the nature of the 16kDa 

fragment seen in wild type hearts but absent from mutant hearts and other tissues 

examined. As ECSIT was not detected in any samples despite its presence being known 

at 45 and 50kDa sizes this leaves an open ended question that justifies further 

investigation.  Determining the nature of this fragment is of utmost importance to the 

project and could possibly be done through the use of cultured wild type cardiomyocytes 

transfected with a tagged protein and immunoprecipitated using an antibody against 

the tagged protein. Unfortunately, cardiomyocytes are not readily transfectable and 

given the lack of the 16kDa protein in other tissue types, it is unlikely other cell types 

would produce the required fragment.  

In summary, results from this leave us with a working hypothesis that ECSIT exists as 3 

potential proteins. A 50kDa cytosolic isoform that localizes to mitochondria when poly-

ubiquitinated and is imported following the cleavage of a 5kDa mitochondrial targeting 

sequence. This process leaves a 45kDa mitochondrially localised isoform that is present 

in most tissues and required for the production of complex I through the MCIA complex. 

To this point, there is evidence to support this mechanism across all tissues and cell 

types and that the mutation of ECSIT only mildly inhibits this assembly process resulting 

in mild reduction of functional complex I and no obvious phenotypes in tissues outside 
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the heart. However, the data obtained during this project suggests that this is also the 

point where heart tissue diverges from other tissues in the way complex I is assembled. 

It would appear that at this point the 45kDa ECSIT protein is cleaved in heart tissue 

allowing for the incorporation of the 16kDa fragment into complex I and the process to 

continue, resulting in fully assembled complex I. The N209I mutation of ECSIT seems to 

inhibit this cleavage process, resulting in a premature arrest of the complex I assembly 

process and an accumulation of both 45 and 50Kda ECSIT in cardiac tissue.  

This difference in heart tissue may be due to the increased energy demands of the heart 

and hence in this situation ECSIT acts not only as an assembly factor, but also as a 

supernumerary subunit to improve complex I efficiency, a role that is not required in 

other tissues.  
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Chapter 6: Mitochondrial Response to 

Complex I Dysfunction 
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6.1. Changes in Mitochondrial Network Dynamics 

Mitochondrial fusion and fission are the methods by which mitochondria form large 

dynamic networks in order to exchange DNA, ETC elements and maintain membrane 

potential (Δψm). Fusion is governed by the GTPases MFN1, MFN2 and OPA1 whilst fission 

is mainly centred on the protein DRP1, which has various phosphorylation sites that 

either inhibit (Ser637) or activate (Ser616) the mechanism of the protein. Under typical 

circumstances mitochondria form dynamic networks with balanced levels of fusion and 

fission resulting in a variety of mitochondrial network sizes. During periods of 

mitochondrial stress or dysfunction the balance between fusion and fission may become 

disturbed, leading to a shift, one way or the other, resulting in highly fragmented or 

inefficient networks that do not function normally. As a result, the levels of 

mitochondrial fusion and fission proteins were assessed to determine if this pathway 

was affected by the mutation in ECSIT. Samples analysed are from male (n=3) and female 

(n=3) wild type and EcsitN209I/N209I hearts at 16 weeks of age.  

 

Figure 6.1. Quantification and representative blots of total MFN2 protein in cardiac tissue of wild type 

and EcsitN209I/N209I animals. Results show a significant elevation of MFN2 in EcsitN209I/N209I animals 

suggesting an increase in mitochondrial fusion as a result of the ECSIT N209I mutation. Mean ± SEM, 

**p<0.01. 

Results here show an increased amount of MFN2 protein (Figure 6.1) in the hearts of 

EcsitN209I/N209I animals when normalised to the mitochondrial loading control VDAC. This 

may indicate a shift towards mitochondrial fusion and an increase in the amount of 
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mitochondria incorporated into large networks. In addition, the protein levels of OPA1 

(Figure 6.2) were assessed in the same samples as this protein works in tandem with 

MFN2 to cause mitochondrial fusion. It is noteworthy that OPA1 has 6 known isoforms 

in mouse tissue whilst only 3 were identifiable here, further investigation is required 

with additional techniques. Unfortunately, time restraints prevented this from being 

possible. Regardless, these three isoforms were quantified, and whilst there is no 

difference in levels between wild type and EcsitN209I/N209I animals in the smallest size 

band, the larger two do show a significant reduction in protein levels in EcsitN209I/N209I 

animals. This is suggestive of a reduction in fusion of the inner membrane.  

 

Figure 6.2. Quantification and representative blots of total OPA1 protein in cardiac tissue from wild type 

and EcsitN209I/N209I animals. Of the 6 known OPA1 isoforms in mouse, only 3 were identifiable and only 

these 3 were analysed. Of these 3 bands the first 2 show a significant reduction of protein levels in 

EcsitN209I/N209I hearts whilst the 86kDa band shows no significant changes.  The remaining 3 bands showed 

faint traces on the blot but could not be visualised without overexposing the 3 bands shown here. Mean 

± SEM, *p<0.05. 

Mitochondrial fission was assessed by measuring the phosphorylation of DRP1 (Figure 

6.3) at two known serine residues. Overall DRP1 levels were unchanged between wild 

type and EcsitN209I/N209I hearts indicating that if changes in the fission rate were apparent 

it must come from varying phosphorylation of the protein sites. Phosphorylation of the 

two serine residues have opposing roles, with serine 637 being inhibitory to the 
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activation of DRP1 whilst serine 616 is the activating site. Both residues show no 

significant alterations in the amount of phosphorylation that has occurred, indicating 

that mitochondrial fission shows no change in regulation.  

 

Figure 6.3. Quantification (A) and representative blots (B) of total DRP1, DRP1(P)Ser637 (inhibitory) and 

DRP1(P)Ser616 (activating). Results show no significant differences in the level of total protein or in the 

phosphorylation of either of the serine sites within DRP1. Mean ± SEM. 

Taken together these data hint at an increase in mitochondrial outer membrane fusion 

with an increase in MFN2 levels. However, fusion of the inner membrane is likely 

reduced due to a reduction in levels of long chain OPA1 isoforms. These results also 

indicate that there is not a cellular response leading to elevated mitochondrial fission as 

levels of the fission protein DRP1 show no changes in expression levels of 

phosphorylation of either activating or inhibitory residues.  

6.2. Regulation of Mitophagy in response to mitochondrial 

Dysfunction 

Mitophagy is the process by which dysfunctional mitochondria are removed from the 

cell through the action of PINK1, Parkin and autophagosomes. Typically, PINK1 

accumulates on the mitochondria and is broken down by being internalised and 

degraded. Where mitochondria are defective PINK1 accumulates on the outer 

membrane and marks mitochondria for degradation. Samples analysed are from male 

(n=3) and female (n=3) wild type and EcsitN209I/N209I hearts at 16 weeks of age.  Results 

below (Figure 6.4) show a significant elevation of PINK1 protein levels in the hearts of 

EcsitN209I/N209I animals indicating that there is an increase in defective mitochondria 

present in this tissue and PINK1 is accumulating as a result.  
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These data suggest that the mutation of ECSIT leads to a significant level of 

mitochondrial dysfunction leading to attempts by the cell to remove dysfunctional 

mitochondria via this mitophagy pathway.  

 

Figure 6.4. Quantification and representative blots of PINK1 in wild type and EcsitN209I/N209I heart tissue. 

Results demonstrate a significant increase in PINK1 protein in EcsitN209I/N209I hearts indicating an increase 

in mitophagy. Mean ± SEM, ***p<0.001. 

6.3. Regulation of Mitochondrial Unfolded Protein Response 

The mitochondrial unfolded protein response is upregulated as a reaction to the 

accumulation of unfolded proteins in the mitochondria. In the case of EcsitN209I/N209I 

hearts it might be expected that this response is activated to deal with the accumulation 

of complex I assembly intermediates that are not incorporated into functional complex 

I and may inhibit other mitochondrial processes by remaining in the inter membrane 

space (IMS). Samples analysed are from male (n=3) and female (n=3) wild type and 

EcsitN209I/N209I tissues at 16 weeks of age. 

Protein levels of key UPRmt proteases and chaperones were assessed for any significant 

alterations to protein levels in the cardiac tissue of EcsitN209I/N209I animals when 

compared to wild types. Results (Figure 6.5) show an elevation of the proteases CLPP as 

well as LONP1 indicating that there is an increase in protease activity in response to the 

accumulation of complex I assembly intermediates. In addition, the chaperone protein 

HSP60 also shows a significant elevation in EcsitN209I/N209I hearts in comparison to wild 
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types. Of the proteins assessed, only the chaperone GRP75 does not show any elevation 

in EcsitN209I/N209I animals.  

To contrast this these same proteins were measured in brain tissue (Figure 6.6) to show 

that the activation of the UPRmt corresponds to the blockage in complex I assembly seen 

in heart and not just as a result of mutant ECSIT being present in mitochondria. Results 

from brain show no significant changes in the levels of the 4 proteins measured (CLPP, 

LONP1, HSP60 and GRP75) thus confirming that it is not mutant ECSIT that activates the 

UPRmt but the accumulation of misfolded complex I assembly intermediates.  

In addition to the protein levels of these key chaperones and proteases, the 

phosphorylation of the translation initiation factor EIF2α was assessed (Figure 6.7). This 

protein is phosphorylated by PKR to suppress protein translation in response to the 

accumulation of misfolded proteins. Results do not show a significant increase in the 

phosphorylation levels of EIF2α in EcsitN209I/N209I heart tissue. 

Whilst the list of proteins assessed here is not exhaustive, and does not include the 

transcription factors CLPP or CEBPβ that are responsible for initiation, these data 

suggest that there is activation of some arms of the UPRmt.  

 

Figure 6.5. Quantification (A) and representative blots (B) in heart of the proteases CLPP and LONP1 and 

the chaperones HSP60 and GRP75 which are known to be part of the UPRmt. Results show significant 

elevation of CLPP, LONP1 and HSP60, suggesting a robust activation of the UPRmt in response to the 

accumulation of assembly intermediates created by the loss of ECSIT function in cardiac tissue. Mean ± 

SEM, *p<0.05, ****p<0.0001. 
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Figure 6.6. Quantification (A) and representative blots (B) in brain of the proteases CLPP and LONP1 and 

the chaperones HSP60 and GRP75 which are known to be part of the UPRmt. In contrast to heart tissue, 

results in brain show no significant changes in the expression of any of the UPRmt proteins measured here. 

Mean ± SEM. 

 

Figure 6.7. Quantification and representative blots of total and phosphorylated EIF2α in wild type and 

EcsitN209i/N209I hearts. Results show no change in overall EIF2α protein levels or in the level of 

phosphorylation of the protein. Mean ± SEM.  
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6.4. Regulation of Reactive Oxygen Species Production Following 

Complex I Dysfunction 

Reactive oxygen species (ROS) are produced as a by-product of oxidative 

phosphorylation during normal mitochondrial function. However, defects in the 

electron transport chain can lead to elevated levels of ROS created by the mitochondria 

which normal anti-oxidant mechanisms are unable to cope with. In situations like this 

ROS leads to mitochondrial and cellular damage and ultimately to cell death and 

inflammation. Due to previous difficulties in culturing neonatal cardiomyocytes it was 

difficult to measure superoxide or H2O2 species production in vitro and it was decided 

to measure the concentration of 4-hydroxynonenal (4-HNE) in cardiac tissue of wild type 

and EcsitN209I/N209I animals instead. 4-HNE is the product of lipid peroxidation by ROS and 

unlike most ROS it is long lived, meaning measurements in ex vivo tissues are possible. 

Samples analysed are from male (n=3) and female (n=3) wild type and EcsitN209I/N209I 

hearts at 16 weeks of age.   

Results from this assay (Figure 6.8) show a reduction in cardiac levels of 4-HNE and by 

proxy a corresponding reduction in ROS produced by the mitochondria. This result is 

perhaps unsurprising given the large reduction in the levels of intact complex I seen in 

cardiac tissue without a corresponding elevation of complex III. As complex I and III are 

the main sites of ROS production in the mitochondria an overall reduction in the ROS 

producing sites would logically result in reduced ROS despite mitochondrial dysfunction.  

 

Figure 6.8. Cardiac 4-hydroxynonenal levels in cardiac tissue from wild type and EcsitN20I/N209I animals. 

Results indicate a reduction in 4-HNE levels and correspondingly it can be assumed that ROS production 

is decreased too. Mean ± SEM, **p<0.01. 
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6.5. Energy Insufficiency of Tissue with Complex I Dysfunction 

The idea of the failing heart being an energy starved organ is well established with 

reduction in ATP and PCr levels being reported in patients as well as animal models [101, 

106, 108]. To determine if this was the case in EcsitN209I/N209I animals both ADP:ATP ratio 

and AMPK activation were assessed. Samples analysed are from male (n=3) and female 

(n=3) wild type and EcsitN209I/N209I hearts at 16 weeks of age. 

6.5.1. ADP:ATP Ratio 

The ADP:ATP ratio was assessed in freeze clamped hearts collected from both wild type 

and EcsitN209I/N209I animals by enzylight™ ADP/ATP ratio assay kit. This kit allows for first 

the measurement of ATP as it reacts with the D-luciferin substrate and then, following 

the conversion of ADP to ATP, for the indirect measurement of ADP concentration.  

Results (Figure 6.9) show no significant changes in the concentration of ATP or ADP 

between wild type and EcsitN209I/N209I animals. However, the ratio of ADP to ATP shows 

a small but significant elevation in EcsitN209I/N209I animals. This increase in [ADP] relative 

to [ATP] suggests increased turnover of ATP in the myocardium which is temporarily 

elevating ADP levels whilst they await conversion back to ATP. This result alone does not 

provide a clear picture of what is going on in the cardiac tissue regarding energy 

insufficiency as there are no changes in ATP levels and without PCr readings it is 

impossible to draw a meaningful conclusion. 

 

Figure 6.9. Luminescence readings of [ATP] and [ADP] as well as ADP/ATP ratio in wild type and 

EcsitN209I/N209I animals.  Results show no significant differences in [ATP] or [ADP] but do demonstrate a 

small elevation in ADP/ATP which in itself is difficult to interpret. Mean ± SEM, *p<0.05. 
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Further limitations with this result come from the fact that ATP may be readily converted 

to ADP once the sample has been taken or indeed following lysis in solution, therefore 

artificially increasing [ADP] whilst diminishing the [ATP]. This fact may explain the 

unexpected ratio of ADP:ATP in these samples. Typically [ATP] would be expected to be 

maintained at around 10mmolL-1 whilst [ADP] would be around 50µmolL-1, 3 orders of 

magnitude lower than [ATP] and the opposite of what is observed in this assay. With this 

in mind, the results from this assay will not be taken into consideration when drawing 

conclusions.  

6.5.2. AMPK Phosphorylation 

As a less direct but potentially more readily measurable metric of energy insufficiency 

of the heart, the phosphorylation levels of AMPK can be measured. AMPK is 

phosphorylated by an upstream kinase (AMPK kinase) in response to high AMP levels 

which occur when [ADP] is elevated and [ATP] reduced. Activated AMPK is then 

responsible for remodelling the energy supply systems of the cell to focus them towards 

ATP production.  

AMPK activation levels (Figure 6.10) in EcsitN209I/N209I animals show a surprising decrease 

in comparison to wild type in heart tissue. This result is opposed to that of the ADP/ATP 

ratio which, whilst difficult to interpret and inconclusive, suggested that there may be a 

slight elevation of [ADP] in the hearts of EcsitN209I/N209I animals.  
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Figure 6.10. Quantification and representative blots of total and phosphorylated AMPK in wild type and 

EcsitN209I/N209I cardiac tissue collected by clamp freezing. Contrary to expectations results show a marked 

decrease in AMPK phosphorylation levels in EcsitN209I/N209I samples when compared to wild types, 

suggesting that [AMP] concentration is high and by association so too is [ATP]. Mean ± SEM, *p<0.05. 
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6.6. Discussion 

The aim of this chapter was to determine which downstream pathways may be activated 

in response to the mutation of Ecsit and may be responsible for the development of the 

cardiac phenotype as the previous chapter had demonstrated that the OXPHOS 

deficiency preceded the development of cardiomyopathy.  

Results from this chapter are mixed and provide an incomplete picture of the 

downstream effects of the N209I mutation in ECSIT that warrants further investigation. 

Firstly, the balance of mitochondrial fusion and fission seems to be shifted slightly in 

favour of fusion, with an elevation of MFN2 which is responsible for outer membrane 

fusion. However, this is not consistent as the inner membrane fusion protein shows a 

reduction in the level of isoforms typically associated with inner membrane fusion. 

There are also no changes in the activation of fission proteins.  

Mitophagy appears to be moderately upregulated which may be a response to 

dysfunctional mitochondrial subunits or may be the indirect result or unfolded protein 

response activation which was also seen. UPRmt activation is apparent due to the 

increased protein levels of the proteases CLPP and LONP1 and the chaperone HSP60 in 

heart tissue. This same activation pattern was not seen in brain tissue suggesting that it 

is the result of the complex I assembly defect that was only seen in heart in the previous 

chapter. However, it is of note that surgical models of ischemia/reperfusion injury in rats 

also demonstrate an activation of the UPRer which shares some components with the 

UPRmt. This may suggest that the activation seen here is not a direct result of misfolded 

mitochondrial protein, but is part of the normal response to cardiomyopathy [296].  

The first in a series of unexpected results was the reduction in the production of reactive 

oxygen species as measured indirectly by 4-HNE levels. Further reflection on this would 

suggest the initial expectation was misguided, as complex I is a key site of ROS 

production and with a reduction in functional complex I, logic would dictate that ROS 

should display a similar reduction.  

Finally, energy insufficiency was assessed as it is well associated with heart failure. This 

result however provided the second surprise as ADP/ATP ratio appeared only slightly 

elevated and it was difficult to draw meaningful conclusions as [ATP] was unchanged. It 
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is noteworthy that this result is suspect simply due to limitations of the assay. This assay 

is primarily designed for assessing viability of cell populations in culture and reliably 

measuring [ATP] in tissue samples presents a great number of challenges, not least 

maintaining ATP throughout the sample collection and measurement process as it may 

be quickly converted to ADP once the lysis of tissue is performed.      

In addition AMPK activation levels were significantly reduced, suggesting that [AMP] and 

by association [ATP] was high in these hearts, indicating no presence of energy 

insufficiency although as a single measurement further evidence would be beneficial. 
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Chapter 7: Discussion of Results 
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7.1. Summary of Results 

Throughout the experiments performed to this point, a unifying goal has been to 

determine how the mutation of Ecsit ultimately leads to cardiomyopathy through a 

complex I dysfunction without the presence of other obvious phenotypes.  

Initial phenotyping took place in a mixed background of C57BL/6J and C3H.Pde6b+ with 

the mutation lying in a C57BL6/J region of the genome. Through whole genome 

sequencing a mutation in Ecsit was identified and confirmed by Sanger and pyro 

sequencing. The mutation is an asparagine to isoleucine change at residue 209 of the 

ECSIT protein with protein prediction software indicating that the mutation would have 

a deleterious or disease causing effect on the protein structure or function.  Sequence 

homology to human ECSIT protein suggested that this mutation would lie in a putative 

pentatricopeptide (PPR) with a potential role in processing RNA, although no evidence 

exists for this function in ECSIT. With a putative function in RNA processing, as well as 

the assembly of complex I, it is possible to envisage a role for ECSIT in the regulation of 

expression of complex I subunits. This may take the form of negative regulation wherein 

ECSIT, or a fragment of it, is re-tasked as a signalling protein following successful 

complex I assembly. This new signalling peptide could then act directly on the expression 

of complex I proteins or indirectly, perhaps via PGC1α. 

Further phenotyping on incipient congenic animals obtained by 5 back-crosses to the 

C3H.de6b+ strain confirmed a cardiomyopathy in homozygous mutant animals. The 

phenotype was assessed by histology and echocardiography and was observed from 

roughly 4 weeks of age in EcsitN209I/N209I animals.  This cardiomyopathy had 

characteristics of both hypertrophic (increased wall thickness, hypertrophy of 

cardiomyocytes) and dilated cardiomyopathy (increased left ventricular volume). This 

cross-over between the two main cardiomyopathy types may represent an attempt to 

remodel the heart tissue in response to an initial development of one of these 

conditions. Further histological analysis with more consistent tissue collection 

techniques may allow for this question to be answered. However, it is my opinion that 

this is most likely a hypertrophic cardiomyopathy given the prevalence of this condition 

in association with mitochondrial disease and the overwhelming size and weight of the 

heart muscle seems unlikely to be a tissue response to dilated cardiomyopathy. 
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EcsitN209I/N209I animals also displayed some changes in body fat deposition, with 

homozygous animals displaying a reduced body weight from as early as 6 weeks of age 

and a reduced adiposity that was apparent from 14 weeks of age. This result may be 

directly related to the increase in triglyceride metabolism indicated by the clinical 

chemistry results. Decreased triglyceride as well as elevated glycerol and ketone bodies, 

in addition to changes in glucose and fructosamine concentrations, hint at a change in 

metabolism in EcsitN209I/N209I animals. Both of these results are suggestive of an increase 

in metabolism of their respective substrates, free fatty acids and glucose, without 

indicating a shift in the primary substrate being used, as might be expected with a failing 

heart shifting towards glucose metabolism. Clinical chemistry also revealed an increase 

in plasma concentrations of urea, creatinine and potassium, highly suggestive of kidney 

dysfunction. Whilst the presence of a kidney phenotype is not in question, whether it is 

a primary or secondary phenotype remains to be determined. Kidney disease has a well-

established link with hypertension [297] whilst HCM is more typically associated with 

hypotension [298]. However, some evidence exists to suggest that hypotension is a risk 

factor for chronic kidney disease [299] but it would seem more likely that the kidney 

failure is a direct result of the mitochondrial dysfunction and requires further 

investigation. It is interesting to note that the EcsitN209I/N209I samples seem to segregate 

into two groups, those with creatinine that is slightly elevated (18-25µmol/l) and those 

with a higher elevation of creatinine (30-40µmol/l). This stratification of the creatinine 

concentration in plasma may be a symptom of the mixed genetic background that these 

animals exhibit, despite being incipient congenic animals on the C3H.Pde6b+ 

background. We know from prior experience with kidney disease mutants that have 

arisen from the Harwell Ageing Screen that the C3H.Pde6b+ background exhibits an 

increased susceptibility to the development of kidney disease whilst the C57BL/6J seems 

to confer some protection (data unpublished). It is therefore conceivable that this 

stratification is influenced by a region of the genome that maintains a C57BL/6J nature 

in a proportion of these animals. It would be possible to further characterise this in the 

congenic EcsitN209I/N209I animals on both a C57BL/6J and C3H.Pde6b+ background.  

Results in chapter 2 focused on the potential roles of both the toll like receptor response 

and the morphogenetic protein pathway in the development of cardiomyopathy seen in 

the EcsitN209I/N209I animals. Results pertaining to the activity of ECSIT in the TLR pathway 
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indicate that it’s interaction with the binding partner TRAF6 is unaffected by the N209I 

mutation and that the inflammatory response may actually demonstrate a mild 

impairment in EcsitN209I/N209I animals, suggesting that this pathway is unlikely to lead to 

increased inflammation and subsequent cardiomyopathy. The data to support this 

decrease in activation is limited as the activation of JNK showed a trend but did not reach 

significance, it is possible that further repeats would achieve significance. 

As for the BMP pathway no signs of impairment were demonstrated at all. The fact that 

knockouts are embryonic lethal due to a significant impairment of this pathway is 

suggestive that this pathway is unhindered by the N209I mutation. Furthermore, 

impairment of this pathway could be expected to cause reduced viability of 

EcsitN209I/N209I embryos, as is the case for Ecsit-/-. However, a reduction in the number of 

EcsitN209I/N209I animals at weaning was not seen, suggesting that the BMP pathway is not 

significantly impaired. The key metric in this section is the expression of embryonic Tlx2 

which is lost in its entirety when Ecsit is knocked out but only shows a 50% reduction in 

EcsitN209I/N209I animals in comparison to wild types, although this result is not statistically 

significant. This reduction seems to be insufficient to significantly affect the viability of 

EcsitN209I/N209I embryos through the BMP pathway.  

The focus of this work was the role of ECSIT in complex I assembly, as this appeared as 

the most likely candidate to be affected by the N209I mutation. Initial work showed that 

mitochondria from EcsitN209I/N209I hearts showed some level of structural abnormalities, 

with the presence of hyper condensed, disorganised cristae as well as a small reduction 

in mitochondrial cross sectional area of both interfibrillar and perinuclear mitochondria. 

Protein and mtDNA levels did not demonstrate a change in the overall abundance of 

mitochondria in heart tissue although the level of PGC1α, the master regulator of 

mitochondrial biogenesis, was slightly elevated in heart tissue. This result may indicate 

that whilst there is an upregulation of the pathway that drives mitochondrial biogenesis, 

the mutation of ECSIT either inhibits the actual process or results in the production of 

defective mitochondria or mitochondrial subunits that are quickly eliminated by either 

mitophagy or the mitochondrial unfolded protein response.  

Analysis of complex I protein levels confirmed that there was a significant reduction in 

complex I levels in heart as well as in other tissues: brain, kidney, liver. The extent of 



227 
 

reduction varies considerably between tissues with the brain showing only a small 

reduction of around 25% whilst the heart shows a >95% reduction in NDUFB8 protein 

levels. This reduction in complex I protein level is not reflected across all proteins of 

complex I, with a more robust reduction in membrane arm proteins than in matrix arm 

proteins. Some proteins (NDUFS3 and MT-ND1) showed no significant reduction at all in 

heart tissue, potentially indicating that the control of expression of these proteins exists 

outside of that of the majority of complex I proteins. This would make sense for the 

mitochondrially encoded MT-ND1 as it is controlled and expressed entirely within the 

mitochondria, however the nuclear encoded NDUFS3 is nuclear encoded would logically 

follow the same regulatory controls as other nuclear encoded mitochondrial OXPHOS 

proteins. In the brain a greater number of proteins showed no significant changes in 

levels (NDUFV2, NDUFS3, NDUFA8) and of those that do, there is an overall smaller 

reduction in their levels. This may indicate that there is some sort of hierarchy to the 

regulation of these proteins, with the reduction in levels of lower levelled proteins 

(NDUFV2, NDUFS3 etc.) only occurring when higher level proteins are reduced below a 

certain threshold. However, this may also reflect the fact that some of these proteins 

are essential to the assembly of complex I (MT-ND1), or are required early in the 

assembly process, and others are at least partially disposable, or required later in the 

assembly process. This would mean that when stressed cellular processes focus on the 

essential building blocks first, maintaining them at close to normal levels where possible.   

Results also demonstrated that, whilst protein levels are reduced in a number of tissues, 

the activity of complex I does not necessarily follow suit in these tissues. Comparing 

heart and brain using in-gel activity and seahorse analysis of isolated mitochondria 

revealed that complex I activity and mitochondrial respiration were severely impacted 

by the presence of the N209I mutation in heart tissue. However, this was not true for 

complex I or mitochondria isolated from brain tissue, which showed comparable levels 

in wild type and EcsitN209I/N209I mitochondria in both assays. Whilst further investigation 

of other tissues is desirable, these data alone support the hypothesis that there are 

tissue specific differences in the complex I assembly process, and in particular the 

stage(s) controlled by ECSIT.  
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Protein levels of ECSIT tell a slightly different, and unexpected, story. ECSIT exists as a 

cytosolic (50kDa) and mitochondrial (45kDa) form in mouse tissues and the levels of 

these two protein products was upregulated in the cardiac tissue of EcsitN209I/N209I 

animals compared to wild types. Interestingly this pattern of regulation was not 

repeated in any other tissue tested, in fact, no differences could be seen at all in other 

tissues, suggesting why the main outcome of the mutation was cardiomyopathy with 

little effect observed in other tissues. Of most interest was the identification of a 

previously undescribed ~16kDa fragment in wild type heart tissue, which was absent 

from EcsitN209I/N209I hearts as well as all other wild type and EcsitN209I/N209I tissues. It is 

conceivable that this fragment is a portion of ECSIT produced by the cleavage of the 

45kDa ECSIT as part of the normal assembly process for complex I. If this is the case then 

it may be that the N209I mutation inhibits the cleavage, leading to an accumulation of 

the larger 45 and 50kDa ECSIT isoforms. Without identifying a specific protease 

responsible for this hypothetical cleavage it is difficult to determine how the N209I 

mutation might affect the cleavage of 45kDa ECSIT. However, if cleavage was to occur 

at this residue it would result in two products roughly 19 and 46 kDa in size. Although 

neither of these is the exact 16kDa size seen on the western blots it is possible that 

further cleavage of one of these two products occurs or that the size on the western blot 

is not does not reflect an accurate size of the protein product.  

Investigation of ETC and ECSIT protein levels in two week old hearts confirmed that the 

changes in the levels of these proteins precede the cardiomyopathy phenotype and are 

not an artefact of the phenotype. Interestingly, the levels of 45 and 50kDa ECSIT did not 

show increased levels in these 2 week old hearts whilst there was a reduction in the 

16kDa fragment. This probably indicates that these larger ECSIT proteins have not had 

time to accumulate in the mitochondria or cytosol yet and that this accumulation is a 

gradual process. The accumulation of these larger fragments may be a contributing 

factor to the development of cardiomyopathy, further investigation across more time 

points may reveal if this is the case.  

In addition to the alterations in ECSIT protein levels, data in this section also 

demonstrated that the mutation of ECSIT protein had no impact on the interaction 
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between ECSIT and other proteins of the MCIA complex such as NDUFAF1 and ACAD9, 

which also showed no changes in protein levels in any tissues tested.  

To assess complex I assembly, first and second dimensional blue-native PAGE was 

performed on mitochondria extracts from heart and brain of wild type and EcsitN209I/N209I 

animals. This revealed that EcsitN209I/N209I animals had some defects in some aspects of 

complex I assembly in heart tissue, but not in brain tissue. These defects are mainly 

related to the assembly of the membrane arm of complex I although some loss of other 

subunits was also seen. Interestingly, none of the same defects were seen in 

mitochondria isolated from brain tissue of the same animals. This further supports the 

hypothesis that complex I assembly is not a universal process but has tissue specific 

intricacies that result in an altered process and differential levels of complex I in tissues 

where an assembly factor mutation is present.  

Taken together, these data suggest that the N209I mutation of ECSIT has no impact on 

the formation of the protein’s previously described larger fragments (50 and 45kDa) or 

on the interaction between ECSIT and the MCIA proteins NDUFAF1 and ACAD9. There 

are two salient facts to remember when arguing a case for the importance of the 16kDa 

ECSIT protein. Firstly, that complex I assembly and activity in brain tissue are unaltered 

and those tissues tested that did show complex I protein level differences are less 

severely affected than heart tissue. The second is that the formation of the MCIA 

complex appears to be unaffected by the presence of the N209I mutation in ECSIT, 

reflected by the normal interaction of ECSIT with both NDUFAF1 and ACAD9, and by the 

normal protein expression of ACAD9 in the tissues tested. Taken together this suggests 

that the MCIA complex functions as expected in ECSITN209I/N209I animals and if we accept 

this as true then the mechanism for the defect seen in cardiac tissue must lie elsewhere, 

potentially in the presence of the 16kDa fragment identified in wild type heart tissue.  

From this work, I have developed the following working hypothesis based on existing 

knowledge and experimental results described to this point. In wild type animals ECSIT 

is expressed as full length 50kDa protein in all tissues and according to demand is poly-

ubiquitinated and targeted to mitochondria where it is imported and the mitochondrial 

targeting sequence cleaved, leaving a 45kDa ECSIT protein. Once localised to the 

mitochondria ECSIT forms part of the MCIA complex along with NDUFAF1 and ACAD9. 
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To this point, the N209I mutation of ECSIT has little to no impact on the activity of the 

protein. The MCIA complex is then involved in the assembly of the membrane arm of 

complex I through an, as yet unknown, mechanism. Following this, the mutation of ECSIT 

must impact complex I assembly as there are small differences seen in liver, kidney and 

brain. However, this role is different to that seen in the heart, as the defect in heart is 

considerably greater than in these other tissues. It is conceivable that whilst the MCIA 

complex forms correctly and functions in complex I assembly, that its efficacy is reduced 

by a small degree due to a reduced binding affinity or structural change that leads to a 

reduction in complex I activity.  

However, in the heart the role for ECSIT in complex I assembly differs, with a role for the 

16kDa fragment identified in wild type heart. It is possible that this only exists in heart 

tissue due to a modification of this process that is not required in less energy demanding 

tissues. It would seem likely that this product is produced by cleavage of the 45kDa 

fragment, which may create multiple fragments, although this cannot currently be 

confirmed. Data suggests that this 16kDa fragment forms a constitutive part of complex 

I and it may be assumed that in this manner ECSIT-16kDa behaves as an accessory 

subunit of complex I in a tissue specific manner. Whilst it is unclear why ECSIT-16kDa is 

only an accessory subunit in heart, or why loss of it would lead to reduced complex I 

levels in heart when it is not required in other tissues, there is a relationship between 

complex I activity levels and ECSIT-16kDa presence in heart tissue. Further work should 

focus on confirming the identity of the ECSIT-16kDa fragment and determining its 

sequence and role in complex I assembly. 

Following on from the identified defect of complex I assembly in heart tissue, work 

focused on identifying the downstream effects of complex I deficiency in an attempt to 

understand how the complex I deficiency results in cardiomyopathy. Mitochondrial 

fusion and fission exist in a delicate balance able to respond to alterations in 

mitochondrial function and eliminate defective subunits. In EcsitN209I/N209I animals, the 

fusion/fission mechanism appears to be slightly disturbed, with an elevation of the outer 

membrane fusion protein MFN2 but a reduction in long isoforms of OPA1 and no change 

in DRP1 activation. Ultimately, this process warrants further investigation, potentially 
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through the quantification of mitochondrial network dynamics rather than controlling 

proteins.  

Elevation of PINK1 protein levels suggest that mitophagy is elevated in EcsitN209I/N209I 

hearts which may be a result of a change in mitochondrial fusion/fission dynamics or a 

result of the inability of the UPRmt to cope with an accumulation of misfolded 

mitochondrial proteins. The UPRmt is seemingly robustly activated, indicating that it 

recognises the accumulation of misfolded complex I proteins and that the mutation of 

ECSIT does not impair the UPRmt response, which may have been a possibility given that 

ECSIT activates JNK2, a key activator of the UPRmt. As such it may be possible that the 

disruption of mitochondrial network dynamics feed directly in to the increase in 

mitophagy or that the accumulation of misfolded proteins simply accumulate too fast 

for the UPRmt to cope.  

Finally, there was an expectation that reactive oxygen species would be elevated and 

that there would be a substantial energy insufficiency in the heart of EcsitN209I/N209I 

animals. However, neither of these mechanisms were observed, with 4-HNE (as a 

measure of ROS) significantly reduced and AMPK activation also reduced. In hindsight, 

the reduction of ROS is not an unexpected result due to complex I being a significant site 

of ROS production. If the mechanism of complex I was impaired via a mutation of a key 

protein then it might make sense that ROS would accumulate due to defective electron 

transport. The actual mechanism is a reduction in total complex I abundance, which 

reduces the sites for ROS production and accordingly, reduces ROS levels. When taken 

into consideration, this result is in line with what would be expected given what is known 

about ECSIT’s role in complex I assembly. However, the reduction of AMPK is unexpected 

and more difficult to explain. AMPK is typically activated in response to an elevation of 

[AMP], which would be expected with the loss of [ATP] that typically accompanies 

mitochondrial deficiency. The most likely explanation is that the measurements were 

taken at a point preceding a measureable change in [ATP], as this is maintained at or 

close to normal levels by the buffering capacity of phosphocreatine until late stage 

disease. The confounding issue for this explanation is that AMPK activation is not 

maintained at or close to normal levels but are in fact reduced in EcsitN209I/N209I hearts, 
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suggesting that [AMP] is lower than in wild type controls, and therefore [ATP] is higher 

than controls.  

In summary, the N209I mutation in ECSIT results in a severe cardiomyopathy with some 

changes in glucose and fatty acid metabolism as well as mild kidney impairment and a 

reduction in weight, lean mass and fat mass of EcsitN209I/N209I animals. The TLR and BMP 

pathways appear mostly unaffected by the mutation, indicating that this region of ECSIT 

is either not key to the function of these pathways, or the change of this amino acid is 

tolerated. The mutation of ECSIT results in a defect in complex I assembly in multiple 

tissues with varying degrees of severity in various tissues. The effect on complex I 

assembly is most severe in heart tissue and this may be a result of an altered function 

or processing of ECSIT protein in this tissue. It is possible that, instead of functioning only 

as an assembly factor, a portion of ECSIT also acts as an accessory subunit of complex I 

in heart tissue and that the N209I mutation impairs this role, leading to a greater loss of 

complex I function and a severe cardiomyopathy.  

7.2. Implications for the Field of Mitochondrial Dysfunction Research 

Diagnosis of mitochondrial disease is typically performed on a muscle or skin biopsy to 

determine the mitochondrial function and biochemical basis of the disease [300]. The 

research I have undertaken as part of this thesis suggests that this method may obscure 

the diagnosis of a proportion of mitochondrial diseases due to tissue specific differences 

in mitochondrial function and behaviour. Whilst whole genome screening is becoming 

more prevalent [301] this relies on a complete understanding of the proteins, and 

therefore genes, involved in mitochondrial function to determine appropriate 

candidates.  

Furthermore, much work on the structure and function of complex I and assembly 

factors involved takes place in cardiac tissue from various species due to the relative 

abundance of mitochondria. The work I have completed so far suggests that this 

research should be diversified to determine how mitochondrial assembly processes are 

undertaken in other tissues and cell types. The possibility exists that there are many 

differences in mitochondrial complexes and/or their assembly, even from one cell type 

to another within the same tissue. Through a better understanding of these differences, 

it may be possible to develop better tailored therapies which are capable of targeting 
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specific cell or tissue types in order to restore function to defective mitochondria where 

it is most needed.  
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7.3. Future Work 

The work completed so far has raised many questions, which I have been unable to 

answer given the limitations of time and a suitable in vitro experimental system. First 

amongst these is the question of whether or not the 16kDa fragment is a portion of the 

ECSIT protein or whether it is an off target binding event of the antibody that only occurs 

in heart tissue. Given that ECSIT has limited sequence homology to any other known 

proteins it would be unexpected for this to be an off target binding event, however the 

possibility cannot be eliminated by this fact alone.  

If this were an off target binding of the antibody then there are two possible 

explanations for the results seen so far. Firstly, this may represent a cardiac specific 

protein that is reduced in expression in EcsitN209I/N209I hearts due to the development of 

the cardiomyopathy phenotype. An argument against this is that it is also reduced in 2-

week old heart tissue, before the onset of cardiomyopathy, and hence is not lost due to 

cardiomyopathy but precedes it. Secondly, this may be a mitochondrial protein that is 

reduced due to a loss of ECSIT function in mitochondria, similar to the way a number of 

complex I proteins that were tested were reduced. However, if this were the case it 

would represent an interesting discovery in itself as this protein was not detected in 

other tissues, suggesting that this may be a tissue specific mitochondrial protein.  

Future work could also focus on the tissue specificity of the complex I assembly defect 

and on identifying the metabolic cause of the alterations to glucose and fatty acid levels 

seen in plasma.  

It would also be desirable to look at the 2D BN-PAGE results in more detail, either 

through further 2D BN-PAGE experiments in a variety of tissues or by using complexome 

analysis to analyse multiple tissues or complexes at once and reduce the associated time 

and labour costs.  

It would also be potentially interesting to use an inducible or conditional Ecsit knockout 

mouse to investigate the development of the cardiomyopathy phenotype in more detail. 

Ultimately, this work could be validated by screening HCM patient populations for 

mutations in ECSIT, thereby confirming that loss of ECSIT function results in a tissue 

specific mitochondrial disease.  
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7.3.1. Identification of 16kDa Fragment 

To identify the 16kDa protein fragment seen in wild type and absent from EcsitN209I/N209I 

cardiac tissue a number of approaches were attempted, these include co-

immunoprecipitation using the original antibody as well as two antibodies raised against 

slightly different epitopes. The original antibody proved to be unsuitable for use in co-

immunoprecipitation experiments in any of the conditions tested despite previous 

publications suggesting it was. Other antibodies used were able to pull down the larger 

45 and 50kDa fragments of ECSIT through CO-IP but did not recognise the 16kDa 

fragment seen with the original Abcam antibody, making identification by co-IP and 

mass-spec impossible. Another possibility is to use the HIS tagged ECSIT protein cloned 

for other co-immunoprecipitation experiments and pull down using the anti-his 

antibody which is already known to be suitable for CO-IP. However, the 16kDa protein 

was not seen as part of these other CO-IP experiments suggesting that either the HIS tag 

is cleaved from the protein and is therefore undetectable, the 16kDa fragment is not 

produced in HEK293T cells that were used in these experiments, or that the 16kDa 

protein is definitely not a fragment of ECSIT.  

To determine which of these explanations is correct, it would be necessary to culture a 

cardiomyocyte cell line such as HL-1 [302], silence the native ECSIT protein expression 

by a method such as siRNA and transfect with the tagged HIS-ECSIT construct. This would 

potentially allow for the expression of all three (50, 45 and 16 kDa) fragments of ECSIT 

and would by-pass the need for a reliable antibody as the anti-HIS antibody used 

previously would be suitable. HL-1 cells have transfection efficiencies up to roughly 80% 

with cationic lipid based transfection systems such as lipofectamine or jetPRIME, 

although they are notoriously difficult to optimise by this method. Higher efficiencies 

can be obtained with adenovirus methods.  

Using a cardiac specific inducible knockout of Ecsit is unlikely to provide any useful 

information about the 16kDa fragment as loss of ECSIT protein could still lead to a loss 

of the 16kDa fragment, even if it is not an ECSIT protein fragment, just as is seen in 

EcsitN209I/N209I animals. 
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7.3.2. Reliable measurements of ROS and energy insufficiency 

Work so far measured ROS production indirectly by assessing the product of lipid 

peroxidation by ROS, 4-HNE. This method appears to be robust and gives reliable, 

repeatable measures. However, this is not a direct measurement of ROS production and 

there may be differences that are not detected as a result. A more direct measurement 

could be the use of amplex red to measure H2O2 production or mitoSOX™ Red to 

measure mitochondrial superoxide production. The limitation with both of these 

techniques is they are unsuitable for use with tissue lysates and given the difficulties 

with the culture of primary neonatal cardiomyocytes from EcsitN209I/N209I mice these 

techniques were considered inviable and hence the 4-HNE method was used. If 

cardiomyocyte culture could be optimised to allow for the measurement of ROS levels 

on EcsitN209I/N209I samples then either of these could be a viable option to support the 

results seen from the 4-HNE assay.  

In addition to ROS production measurements, energy sufficiency measurements were 

also measured via a proxy (AMPK phosphorylation) as ADP and ATP measurements 

proved difficult in tissue lysate. A more reliable method for the assessment of energy 

sufficiency would be the measurement of PCr:ATP ratio in live animals. This is possible 

using phosphorous-31 magnetic resonance spectroscopy (31P-MRS) on the in vivo mouse 

heart. This technique allows for assessment of both phosphocreatine and ATP levels in 

the contracting heart in order to determine the myocardial energy status [303]. This 

technique was not attempted due to a lack of access to the appropriate facilities and 

expertise, but could be done through an appropriate collaboration.   

7.3.3. Further investigation of tissue differences 

Significant differences can be seen in the complex I protein levels and activity between 

various tissues. Work to this point has shown that complex I protein levels are reduced 

to various levels in heart, kidney, liver, brain and muscle. However, comparison of 

tissues in more detail has been limited to heart and brain which represented the two 

extremes of this spectrum. Interestingly the level of complex I protein reduction does 

not represent the level of mitochondrial deficiency seen in these tissues suggesting that 

there may be a threshold level of complex I total protein that must be reached before 

any defect in mitochondrial dysfunction is seen. Investigating the mitochondrial function 
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of each of the tissues in this spectrum may reveal important information about the 

possibility of this ‘threshold’. 

Many of the Seahorse results presented so far have used isolated mitochondria to 

determine ETC function. The isolation of mitochondria by differential centrifugation is 

imperfect and only isolates a proportion of the total mitochondrial pool. This results in 

an incomplete representation of the total mitochondrial pool as the isolation 

preferentially selects certain mitochondrial populations over others and results in 

increased fragmentation of those that are isolated successfully [304]. Repeating 

experiments on permeabilised primary cells from wild type and EcsitN209I/N209I animals 

would provide a more complete and reliable picture of the mitochondrial function in 

those tissues in question. The issue with this approach is selecting which cell type to 

assess, as many of those tissues measured thus far contain multiple cell types, each with 

their own metabolic demands and intricacies. Furthermore, this approach was 

attempted with cardiomyocytes with limited success. Successfully culturing 

cardiomyocytes would also allow for a XF mito fuel flex test to be performed to 

determine if wild type and EcsitN209I/N209I cardiomyocytes have differing preferences for 

metabolic fuels. The XF mito fuel flex test is a form of Seahorse assay that provide 

cultured cells with various metabolic fuels (glucose, glutamine and fatty acid oxidation). 

Further Seahorse analysis in the form of sequential impairment of each complex of the 

electron transport chain could also reveal if the mitochondrial dysfunction is entirely a 

result of complex I deficiency or if other complexes are also under (or over) performing, 

despite no changes in protein levels. Furthermore, if this experiment could be 

performed in primary cells from wild type and EcsitN209I/N209I animals then the 

mitochondrial function as well as metabolism of a variety of different substrates 

(glutamine, fatty acids) can be assessed to determine if EcsitN209I/N209I animals 

preferentially metabolise certain substrates due to the complex I assembly defect in 

certain tissues. 

7.3.4. Changes in Cardiac Metabolism 

The clinical chemistry results shown in section 3.8.1 hint at a change in the metabolism 

of certain substrates, with an increase in metabolism of both glucose and fatty acids. 

Assessing the levels of a variety of metabolites to give an overall picture of the so-called 
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‘metabolome’ could reveal which metabolic pathways are differentially regulated and 

provide further avenues of investigation regarding the link between cardiomyopathy 

and mitochondrial dysfunction.  

This assessment may be performed using a variety of NMR spectroscopy and mass-spec 

techniques that can identify a great number of metabolites from tissue extracts and 

determine the levels of these metabolites. By comparing wild type and EcsitN209I/N209I 

results we could determine which metabolic pathways are activated and which are 

suppressed in the hearts (or other tissues) of EcsitN209I/N209I animals.  

This work is already underway through a collaboration with Dr. Jules Griffin at the 

University of Cambridge and will form part of a future publication. 

7.3.5. Complexome Analysis 

Complexome analysis is the assessment of constituent proteins of complexes by mass 

spectrometry. For mitochondria, and in particular complex I analysis, this first involves 

isolating mitochondria and isolating mitochondrial complexes, sub-assemblies and 

proteins by blue native PAGE. Following blue native PAGE, gels are cut into 60 evenly 

sized slices and each slice is de-stained, trypsinised and analysed to determine the 

constituent proteins in each complex or subassembly. This provides results similar to the 

2D BN-PAGE performed in chapter 5.5.2 but with a more complete overview that do not 

rely on the affinity of antibodies. This technique has been employed to determine the 

assembly pathway of complex I and could be used to determine in greater detail the 

effect on complex I assembly of the ECSIT N209I mutation.  

This method might also be useful to determine if the 16kDa protein fragment identified 

is ECSIT by looking for ECSIT peptides as a constituent portion of fully assembled 

complex I. As my data already shows that the only fragment associated with complete 

complex I is the 16kDa fragment tryptic peptides in complex I must come from this 

fragment. 

7.3.6. Knockout Mice 

As constitutive knockouts of Ecsit are embryonically lethal it is not possible to study a 

total loss of ECSIT function in a mouse model. However, using an inducible tissue specific 

conditional model it may be possible to investigate the development of cardiomyopathy 
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by looking at the development of complex I dysfunction following knockout of the gene. 

This method would also allow for the investigation of ECSIT protein half-life and to 

determine the requirement for ECSIT in adult hearts that are already fully grown. With 

ECSIT known to be involved in development through the BMP pathway it remains a 

possibility that the requirement for ECSIT in the heart is a developmental one. It is well 

documented that foetal cardiac metabolism is focused on glucose metabolism, shifting 

to fatty acid metabolism sometime after birth and that heart failure is typically 

associated with a return to this foetal metabolic profile [305, 306]. We can speculate 

that ECSIT, through its link with both embryonic development and mitochondrial 

function, has a role in this metabolic switch and that the mutation of ECSIT impairs this 

role, leading to a continued preference of the heart for glucose metabolism. Whilst this 

is purely speculation without any supporting evidence, it would be an interesting avenue 

of investigation given what is known about ECSIT. 

7.3.7. Rescue of Phenotype 

EcsitN209I/N209I mice develop a cardiomyopathy phenotype that develops gradually from 

around 4 weeks of age and is ultimately fatal between 16 and 18 weeks of age. It may 

be possible to replace the defective gene using a bacterial artificial chromosome (BAC) 

which expresses the ECSIT gene, replacing the defective protein in EcsitN209I/N209I animals. 

As transgenic BAC mice would express the functional protein from birth this experiment 

would determine if rescue was possible before the development of the phenotype. Of 

more interest would be to return functional ECSIT to the cardiac tissue, or whole body 

after the cardiomyopathy development has already begun. This could be achieved by 

administering AAV9 virus expressing the wild type gene allowing for the replacement of 

the protein at any point during an animals life span [307]. This could be attempted as a 

time course, with proof of principal potentially taking place in new born animals and 

further experiments taking place at 4, 8, 12 and 16 weeks to determine if the 

replacement of ECSIT can rescue not only complex I activity but also the cardiomyopathy 

phenotype after the cellular and tissue changes have already occurred. 

  



240 
 

7.4. Concluding Remarks 

The use of ENU mutagenesis has led to the identified a novel mouse model of 

hypertrophic cardiomyopathy resulting from a point mutation (N209I) in the gene Ecsit, 

a complex I assembly factor.  The mutation leads to a significant reduction in complex I 

assembly in cardiac tissue whilst only minimally affecting tissues such as brain, kidney 

and liver.  ECSIT protein is also known to be involved in both the toll-like receptor 

response and the bone morphogenetic protein pathway, however, data I have 

generated suggest that these pathways are either unaffected or only minimally affected 

by this mutation and are not involved in disease pathogenesis.  

The working hypothesis I have established based on the data described in this thesis 

suggests that ECSIT protein is involved in complex I assembly in a tissue specific manner 

and whilst it is required in all tissues, its role in cardiac tissue differs significantly and it 

is only this role that is significantly affected by the N209I mutation.  

In conclusion, the EcsitN209I mutation represents a novel model of cardiomyopathy as 

well as a useful tool for investigating the currently poorly understood role of complex I 

assembly factors in the process of complex I assembly and how this process may differ 

on a tissue by tissue basis. 
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9.1. Appendix 1 

Mass spec results from the 4 gel slices isolated in 2D BN-PAGE showing the proteins 

identified in each gel slice.  

Slice A Slice B Slice C Slice D 

ALDH6A1  ABAT  ACAA2  ABCB8  

ATP5A1  ABCB8  ACAD10  ACADVL  

ATP5B  ACAA2  ACADL  ACOT13  

DBT  ACAD10  ACADM  ACTB  

DLST  ACAD11  ACADS  AIFM1  

DSP  ACAD9  ACADVL  APOO  

HELZ2  ACADL  ACAT1  ATP2A2  

HSPA9  ACADM  ACO2  ATP5A1  

IMMT  ACADVL  ACOT2  ATP5B  

KRT1  ACAT1  ACOT9  ATP5C1  

KRT10  ACO2  ACOX3  ATP5D  

KRT13  ACOT9  ACSL1  ATP5E  

KRT2  ACOX1  ACSS1  ATP5F1  

KRT42  ACSL1  ACTB  ATP5H  

KRT5  ACTB  ACTC1  ATP5J  

KRT6B  ACTR3  ADHFE1  ATP5J2  

KRT73  ADSSL1  AFG1L  ATP5L  

KRT76  AFG3L2  AFG3L2  ATP5O  

KRT77  AGK  AGK  BDH1  

KRT79  AHSG  AIFM1  CASQ2  

KRT82  AIFM1  ANXA2  CCSMST1  

SAMM50  ALB  APMAP  CHCHD3  

  ALDH2  ATP2A2  CHCHD4  

  ALDH5A1  ATP5A1  CKMT2  

  ALDH6A1  ATP5B  COL10A1  

  ANXA2  BCAT2  COX4I1  

  APOH  BCKDHA  COX5A  

  ART3  BCL2L13  COX5B  

  ATP1A1  BDH1  COX7A1  

  ATP1B1  BSG  COX7A2L  

  ATP2A2  BZW2  CPT1B  

  ATP5A1  CASQ2  CPT2  

  ATP5B  CKM  CRAT  

  ATP5C1  CKMT2  CS  

  ATP5H  COQ6  CSPG4  

  ATP5O  COQ8A  CYB5B  

  BCKDHA  CPT2  CYC1  

  BCL2L13  CRAT  DIAPH3  

  BDH1  CS  DSP  



258 
 

  CASQ2  D2HGDH  EPB42  

  CKMT2  DECR1  FABP5  

  COQ8A  DLD  FAM162A  

  COX4I1  DNAJA2  FECH  

  COX7A1  DNAJA4  GNB4  

  CPT1B  DSP  GOT2  

  CPT2  ECI1  GPX4  

  CRAT  EEF1A1  HADH  

  CS  EHD1  HADHA  

  CYC1  EHD2  HADHB  

  DECR1  EHD4  HBA  

  DES  ENO1  HBB-B1  

  DLST  ENO3  HSPA5  

  DSG1B  ETFA  HSPA9  

  DSP  ETFB  HSPD1  

  ECHS1  ETFDH  IDH2  

  EEF1A1  FABP5  IMMT  

  EEF1A2  FARS2  KIF24  

  EHD2  FH  KRT1  

  ENO3  FLAD1  KRT10  

  EPHX1  FLOT2  KRT14  

  FH  GC  KRT2  

  GK  GCDH  KRT42  

  GLUD1  GNAS  KRT5  

  GOT2  GOT2  KRT6A  

  HADHA  GRSF1  KRT73  

  HADHB  HADH  KRT76  

  HBB-B1  HADHA  KRT79  

  HK1  HADHB  MB  

  HK2  HBB-B1  MDH2  

  HSD17B4  HIBADH  MGST3  

  HSPA14  HK1  MPC2  

  HSPA5  HK2  MPV17  

  HSPA8  HNRNPM  MRPL12  

  HSPA9  HSD17B4  MRPL17  

  HSPD1  HSPA5  MRPL20  

  IDH2  HSPA9  MRPL23  

  IDH3A  HSPD1  MRPL43  

  IDH3G  HTRA1  MRPL49  

  IMMT  IARS2  MRPS10  

  JUP  IDH1  MRPS23  

  KIF27  IDH2  MRPS28  

  KRT1  IDH3G  MTCO2  

  KRT10  IFT20  MTND3  

  KRT14  JUP  NDUFA1  

  KRT16  KRT1  NDUFA10  
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  KRT17  KRT10  NDUFA11  

  KRT2  KRT14  NDUFA12  

  KRT31  KRT2  NDUFA13  

  KRT34  KRT42  NDUFA2  

  KRT35  KRT5  NDUFA3  

  KRT42  KRT6A  NDUFA4  

  KRT5  KRT71  NDUFA5  

  KRT6A  KRT79  NDUFA6  

  KRT75  KYAT3  NDUFA7  

  KRT76  L2HGDH  NDUFA8  

  KRT77  LEG1  NDUFAF3  

  KRT79  LRIG3  NDUFB11  

  KRT81  LRP6  NDUFB3  

  KRT85  MDH2  NDUFB4  

  LONP1  MGST3  NDUFB5  

  LRPPRC  MRM3  NDUFB6  

  MCCC2  MRPL37  NDUFB7  

  MDH2  MRPS30  NDUFB8  

  MFGE8  MTOR  NDUFC2  

  MGST3  NADK2  NDUFS1  

  MLYCD  NAGA  NDUFS2  

  MRC1  NCEH1  NDUFS4  

  MRPS30  NDRG2  NDUFS5  

  MTCH2  NDUFS2  NDUFS6  

  MTCO1  NFS1  NDUFS7  

  MTCO2  NNT  NDUFS8  

  MT-CO3  OAT  NDUFV1  

  NCEH1  OXCT1  NDUFV2  

  NDUFS2  OXSM  NES  

  NDUFV1  PA2G4  NME2  

  NNT  PAFAH1B1  NME3  

  OGDH  PDHA1  NPPA  

  OPA1  PDHB  OPA1  

  PDHX  PDIA6  PCCA  

  PLEC  PDK1  PDHA1  

  PMPCB  PDK2  PDHB  

  PRDX1  PDK4  PHB  

  PRX  PGK1  PHB2  

  RPS27A  PMPCB  PRDX2  

  SAMM50  PRDX2  PRDX5  

  SDHA  RPS27A  RICTOR  

  SERPINH1  SAMM50  RPS27A  

  SFN  SCCPDH  RTN2  

  SLC25A12  SDHA  SAMM50  

  SLC25A3  SDHB  SCCPDH  

  SLC25A4  SEMA4D  SDHA  
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  SLC25A5  SEPSECS  SDHC  

  SLC30A9  SERINC3  SLC25A11  

  SLC4A1  SERPINH1  SLC25A12  

  SPRR2B  SLC25A12  SLC25A3  

  STEAP3  SLC25A13  SLC25A4  

  SUCLA2  SLC25A3  SLC25A5  

  TGM3  SLC25A4  SLC4A1  

  TKTL1  SLC25A46  SUCLA2  

  TRIM72  SLC25A5  TMEM11  

  TUFM  SLC2A4  TMEM160  

  UQCRC1  SQOR  TMEM186  

  UQCRC2  SUCLA2  TMEM242  

  UQCRFS1  SUCLG2  TOMM22  

  VAT1  TIMM44  TUFM  

  VDAC2  TM9SF2  UQCR10  

  VDAC3  TM9SF3  UQCRB  

    TMEM143  UQCRC1  

    TMX4  UQCRC2  

    TNPO2  UQCRFS1  

    TOMM70  UQCRQ  

    TPP1  USMG5  

    TRMU  VDAC2  

    TUBA1B    

    TUFM    

    TXNDC5    

    UQCRC1    

    UQCRC2    

    VDAC2    

    YARS2    

 


