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Abstract

Understanding the epidemiology of human influenza in Viet Nam is impor-

tant for developing local policies and also for understanding the dynamics of

influenza in tropical and subtropical southeast Asia. I have analysed an 18

year time-series of influenza-like-illness (ILI) surveillance data, and assessed

the relationship of this time-series with climate variables and with sentinel in-

fluenza virus surveillance data. I also conducted a study of influenza A/H1N1

transmission within households.

ILI notifications in Viet Nam show a latitudinal gradient, with seasonality in

the north but no seasonal pattern observed in low lying areas of central and

southern Viet Nam. Seasonality is however observed in the elevated provinces

of central Viet Nam, suggesting that the seasonal patterns are driven by cli-

mate. Principal component analysis finds that temperature and absolute hu-

midity (AH) are positively correlated and together explain around 59% of total

climatic variance, and that there is a strong latitudinal gradient in these vari-

ables. Regression tree analysis shows that provinces with strong seasonality

of AH have strong ILI seasonality. Although virological surveillance data are

limited, increases in ILI notifications are associated with an increase in the

proportion of upper respiratory tract swabs that are influenza positive. In a

prospective study of H1N1/2009 transmission in a household-based cohort, 11

of 59 household contacts were infected, giving a household secondary infection

risk of 18.6% (95%CI 10.7-30.4%), but 5 (45%) did not develop symptoms.

Virus genetic sequencing indicated that 10 of the 11 secondary cases (91%)

were probably infected within the household rather than from the community.

This research provides new insights into the seasonality and climatic determi-
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nants of ILI and influenza epidemiology in Viet Nam, and on the transmission

of influenza within households. The findings are valuable for national influenza

control policies and also add to the current state of knowledge of influenza epi-

demiology.
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Preface

This thesis is divided into two major sections. The first deals with my work

to test the hypothesis that there is a spatial pattern of influenza seasonality

in Viet Nam and that this pattern in driven by climatic factors. To achieve

this I first assessed the seasonal periodicity by province of routine notifica-

tions of influenza-like-illness (ILI) collected from 1993 to 2010. The results of

this analysis were then compared with the seasonality of a range of climate

variables over the same period in order to assess which climate variables are

most strongly associated with influenza seasonality in Viet Nam. Finally, I

assessed the extent to which ILI notification data matches influenza virological

surveillance data collected between 2006 and 2012. The second part of the

thesis reports the results of a sub-study of influenza A/H1N1/2009 conducted

in a prospective community cohort that was established to provide data on

the epidemiology of seasonal influenza in Vietnam. The cohort was running

when pandemic influenza A/H1N1/2009 emerged and therefore also provides

data on the epidemiology of pandemic influenza in Vietnam. Although the two

sections use different data sources and have their own aims, they link together

to build a fuller picture of the epidemiology of influenza in Viet Nam and also

add to the body of knowledge on the epidemiology of influenza in general.

The results of Chapters 3 and 4 are currently being prepared for publication

and the work presented in Chapter 7 was published in early 2014. Additional

data and methodological details, including the R script used for much of the

analysis, are available in Annexes. My role in the work presented in this thesis

included the preparation of research protocols and data collection instruments,

the submissions for ethical approvals, implementing the studies and supervising
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Chapter 1

General introduction

1.1 Influenza viruses

Influenza viruses are enveloped, single-stranded, negative-sense RNA viruses (100-120

nm in diameter) of the family Orthomyxoviridae. Influenza viruses are categorised sero-

logically and genetically into three types, named A, B, and C. Influenza B and C viruses

are predominantly human pathogens whilst type A naturally infects a wide range of birds

and mammals (Webster et al., 1992). Influenza A is the most important of the three

influenza types because it regularly causes large epidemics in human populations, and

occasionally causes a global outbreak (a pandemic) when a new subtype emerges to which

humans are immunologically näıve (Taubenberger and Morens, 2010). Like many RNA

viruses, influenza A viruses evolve rapidly, especially in regions (epitopes) of the surface

proteins that are recognised by the adaptive immune system, allowing the virus to repeat-

edly reinfect human populations. This evolution has been termed antigenic drift (Both

et al., 1983; Earn et al., 2002; Smith et al., 2004; Webster et al., 1992). Influenza B

evolves more slowly and is usually associated with milder disease, but influenza epidemics

are sometimes primarily driven by influenza B virus, especially in children (Paul Glezen

et al., 2013). Influenza C rarely causes disease in humans and is considered clinically

unimportant (Kamps et al., 2006).

Influenza A and B viruses have a segmented genome consisting of eight segments

of RNA coding for 11 proteins. On the surface of the influenza A viruses there are

three glycoproteins, the haemagglutinin (HA) and neuraminidase (NA), which are the

primary immunogenic proteins of influenza A viruses, and the M2 protein. HA mediates

binding of the virus to target cells and subsequent entry of the virion into the cells through

endocytosis. The head of the HA molecule binds to sialic acid molecules of glycoproteins

and glycolipids expressed on host cell membranes, and the binding affinity of HA variants
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to different sialic acid motifs is a critical factor determining the host range of influenza A

viruses (Matrosovich et al., 2004). Antibodies that bind to the receptor binding site of the

HA prevent virions from binding to cell surface receptors and therefore prevent infection.

These antibodies are the dominant mechanism of acquired immunity against influenza

A and are termed haemagglutination inhibiting (HI) antibodies since they prevent the

agglutination of erythrocytes in vitro. The maximum dilution (titer) of serum that inhibits

the agglutination of erythrocytes by influenza A viruses is the commonest used method

to assess the concentration of virus neutralising antibodies, and is termed the HI assay.

NA acts as an enzyme that cleaves the sialic acid from glycoprotein molecules to allow

the release of progeny virus from the surface of infected cells and to stop virions binding

to one another (McKimm-Breschkin, 2013). Neuraminidase inhibitors are a major class

of anti-influenza drug, which act by preventing the release of newly formed virions for the

infected cell, and include the drugs oseltamivir, zanamivir, and peramivir. The M2 protein

is an ion channel in the viral lipid membrane that allows a change in pH of the inside of

the virion once it enters the target cell, leading to uncoating of the virion and release of

RNA (Schnell and Chou, 2008). The M2 ion channel is the target of the other major class

of anti-influenza drugs, the M2 inhibitors (amantadine and rimantidine). However, the

utility of the M2 inhibitors is severely limited by the rapid and widespread development

of resistance conferring mutations. The matrix protein (M1) is a structural protein that

lies beneath the lipid envelope. The PA, PB1, and PB2, genes code for proteins that

are involved in RNA synthesis for progeny viruses during replication inside the host cell.

The nucleoprotein (NP) is structurally associated with the viral RNA and is necessary for

RNA replication. The non-structural protein (NS1) is involved in the evasion of the host

innate immune response, particularly the neutralisation of interferon-induced activities

(Hale et al., 2008). Influenza type A is categorised into subtypes based on the genetic and

antigenic characteristics of the HA and NA. There are currently 18 identified HA (H 1-18)

and 9 NA (NA 1-9) antigenic variants. Only three main subtypes of HA (H1, H3, and H2)

and 2 NA subtypes (N1 and N2) are known to have become fully adapted to humans and

cause major epidemics. The majority of HA and NA combinations have been identified in

aquatic birds, which are the primary natural reservoir of influenza A viruses, and which
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are thought to be the source of progenitor viruses or gene segments of pandemic influenza

A strains (Alexander, 2007). Zoonotic, non-human-adapted, influenza A viruses, such as

influenza (HPAI) subtypes H5N1 and H7N9, occasionally infect humans but, currently,

are not able to transmit efficiently between humans (Berg JM, Tymoczko JL, 2002; Gao

et al., 2013; Leung et al., 2007; Rott et al., 1996).

1.2 Influenza disease in humans

Influenza is one of the commonest infections of humans. Annually, seasonal influenza

viruses are estimated to infect 500-800 million people, resulting in 5 million severe cases

and 250,000-500,000 deaths (CDC, 2005). It has been estimated that in children under

5 years of age in 2008 there were 20 million cases of influenza-associated acute lower

respiratory tract infection and 1 million severe infections (Nair et al., 2010). In the United

States, it is estimated that between 5% and 20% of the population about 50 to 60 million

people are infected with influenza each year. Out of those, about 31 million come to see

doctor, and 200.000 are admitted to a hospital. This corresponds to an annual incidence of

67/100,000 for influenza hospitalisations. The annual attributable mortality for influenza

in the United States is estimated at around 36, (12/100,000 pop.) (Reichert et al., 2004;

Wilschut et al., 2006).

During epidemics the overall infection rate can range from 10-20% in the community

and can reach up to 50% in closed communities like schools and kindergartens (Heymann

and American Public Health Association, 2008). Data from recent prospective cohort

studies have found serologically defined infection rates of around 20% per season in the

community, of which the majority are subclinical or asymptomatic (Hayward et al., 2013;

Horby et al., 2012). However, the standard criteria for defining influenza infection based

on serology is the finding of a four-fold or greater rise in HI titer between acute and con-

valescent serum samples. This criterion is probably too strict for epidemiological studies,

since many individuals will have a less than four-fold increase in antibody titers in paired

samples, which cannot be fully explained by variability in the assay (Cauchemez et al.,

2012). As such, it is likely that the true influenza infection rate per season is often greater
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than 20% of the population.

Infection with influenza viruses can cause a broad range of illness, from asymptomatic

infection to various, mostly mild respiratory illnesses and, infrequently, fulminant viral

pneumonia and/or secondary bacterial pneumonia (Van-Tam and Sellwood, 2010). Whilst

the clinical syndrome of influenza is classically associated with upper respiratory tract

symptoms accompanied by fever, headache and myalgia; mild and subclinical infection is

very common and only a small proportion of all cases of influenza infection meet the classi-

cal case definition for Influenza-Like-Illness (ILI) (Hayward et al., 2013; Riley et al., 2011;

Thomas, 2014). Disease severity can vary greatly depending on the immunological at-

tributes of the population, the age and health status of individuals, and the pathogenicity

of the virus. (Clancy, 2008; Fukuyama and Kawaoka, 2011; Kamps et al., 2006). Clinical

attack rates are generally highest in individuals who have low concentrations of antibodies

against the HA protein (neutralising antibodies), with a titer of HI antibodies of 1:40 cor-

relating with a 50% protection against clinical influenza (Coudeville et al., 2010). Children

generally have the highest clinical attack rate since they are immunologically näıve. How-

ever, disease severity is also associated with non-HI related immunity (e.g. cell mediated

immunity), host vulnerability (e.g. age and co-morbidities), and the intrinsic virulence

of the influenza subtype (e.g. infection with H3N2 viruses is generally accepted to cause

more severe disease than infection with H1N1 viruses).

1.3 Immunity to influenza

The innate immune response is the first defence against influenza, with influenza virus

infection stimulating the production of interferon and pro-inflammatory cytokines (Couch

and Kasel, 1983). However, the NS1 and the PB1 proteins inhibit the production of

type I interferon, thereby counteracting a major component of the innate immune system

(Kreijtz et al., 2011). Following infection, a major component of acquired immunity is

the development of antibodies to the binding domain of the HA protein. These antibodies

inhibit the ability of influenza viruses to hemagglutinate red blood cells and are therefore

called hemagglutination inhibiting (HI) antibodies. HI antibodies prevent infection and
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are subtype specific. However, minor changes in the structure of the binding domain of the

HA protein can circumvent HI antibodies. The process of variation in the HA protein is

called antigenic drift (see earlier) and is the reason that people can be repeatedly infected

with influenza and influenza vaccines need to be updated regularly (Couch and Kasel,

1983; Kreijtz et al., 2011). Antibodies are also produced that are directed against non-HA

epitopes (e.g. neuraminidase antibodies) and antibodies have recently been identified that

recognise the stem region of the HA protein and can recognise multiple influenza subtypes

within the same HA group (Group 1 = H1, H2, H5, H6, H8, H9, H11, H12, H13, H16.

Group 2 = H3, H4, H7, H10, H14, H15). Cell mediated immunity also develops following

infection, and since it requires the presentation of virus antigens on the surface of T-

lymphocytes, it cannot prevent infection but can reduce viral replication and therefore

attenuate the duration and severity of infection. Since the internal proteins of influenza

viruses are more conserved than the external proteins, cell mediated immunity can cross

react to different subtypes of influenza, providing heterosubtypic immunity (Kreijtz et al.,

2011).

High risk groups for severe influenza-associated disease are defined by age group or by

the presence of certain chronic conditions (Mertz et al., 2013; Wilschut et al., 2006). The

elderly (over 65), and especially individuals over the age of 85, are at increased risk for

severe complications even in the absence underlying chronic disease. The influenza case

fatality rate in the over-65 age group is 11.3 times higher than in the 1-44 year age group,

and accounts for approximately 95% of all influenza-attributable deaths (Wilschut et al.,

2006; Zaman et al., 2009). The increased vulnerability to severe disease in the elderly

is thought to be due to age related declines in the functioning of innate and adaptive

immune responses. A range of chronic conditions, such as chronic heart disease, chronic

lung disease, and obesity, are risk factors for severe influenza-associated disease; the quality

of evidence is however generally low (Mertz et al., 2013). Woman in the last trimester of

pregnancy and within the first four weeks of the post-partum period are at increased risk

of severe pandemic influenza A/H1N1 (Mertz et al., 2013).
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1.4 Influenza epidemiology in humans

1.4.1 Transmission routes.

Influenza viruses can be transmitted from person to person by a variety of routes,

including large respiratory droplets, small air-borne particles (aerosols), and direct con-

tact. The relative contribution of each route remains unclear and may vary due to the

complex relationship between the environmental conditions, virus survival and transmis-

sion, and host susceptibility (Killingley and Nguyen-Van-Tam, 2013). The case for aerosol

transmission of influenza has been summarised by Tellier et al. (Tellier, 2009) and may

account for up to 50% of transmission events (Cowling et al., 2013). However, a review by

Brankston et al. concluded that the majority of transmission occurs over short distances

and that long distance aerosol transmission is uncommon (Brankston et al., 2007). Lowen

and Palese (Lowen and Palese, 2009) have proposed that the dominant mode of transmis-

sion may vary according to climatic conditions, with aerosol transmission predominating

in temperate regions, and direct contact predominating in tropical regions. Although this

hypothesis is not supported by the findings of Cowling et al. (2013).

1.4.2 Transmissibility.

The fundamental transmissibility of any infectious disease is hard to estimate outside

of experimental settings, so the basic reproduction number (R0, the average number of

secondary cases generated by one case in an entirely susceptible population) is usually

estimated from epidemic dynamic data. The peak R0 for seasonal influenza has been

estimated, using data from France, to be between 1.6 and 3, and the waning of immunity

to be the in the range of 3-8 years (Truscott et al., 2012). The R0 for pandemic influenza

H1N1/2009 has been estimated at between 1.2 and 2.3 (Boëlle et al., 2011). The mean

and median serial interval (or generation time) of seasonal influenza has been estimated

at 2.6 and 3 days respectively (Suess et al., 2010) and the estimated mean serial interval

of pandemic H1N1/2009 was 3 days (95 % CI 2.4-3.6) in a systematic review by Boëlle

et al. (2011). Numerous studies have confirmed that children have the highest infection

rates (Morgan et al., 2010). The high infection rates due to immunological naivety, and
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higher social contact rates amongst school age children means that children play a central

role in influenza transmission (Horby et al., 2011). In the early stages of an outbreak,

household transmission mainly occurs from children (Morgan et al., 2010) and children

are important in sustaining factor community transmission (Sugimoto et al., 2011). The

result of community transmission studies by Cowling et al. (2013) suggest that reducing

social contact frequency may not prevent household transmission that leads to cycles of

household-community transmission.

1.4.3 Epidemic behaviour.

Since influenza is readily transmissible from person to person and has a short serial

interval it causes clear epidemics, with a rapid increase in case numbers and a well-defined

epidemic curve. The seasonal timing of influenza epidemics is discussed in Chapter 2. As

discussed in section 1.2 above, influenza A viruses are antigenically variable, leading to

recurring epidemics when new variants emerge, and pandemics when novel subtypes occur.

1.5 Influenza in Southeast and East Asia

Until relatively recently, tropical countries were believed to have a low burden of sea-

sonal influenza, and this perception has contributed to the low levels of utilisation of

influenza vaccines in tropical and subtropical regions (Macroepidemiology of Influenza

Vaccination (MIV) Study Group, 2005). This was likely due to the paucity of studies

conducted in these regions, and the lack of specimen collection in national surveillance

systems. South China and south east Asia more generally has been considered an epicen-

tre for the emergence of novel influenza viruses that may cause pandemics (Shortridge and

Stuart-Harris, 1982), but most of the scientific investigation has focused on avian influenza

viruses. However, recent studies have demonstrated that influenza is a common cause of

respiratory illness in tropical countries (Simmerman and Uyeki, 2008) and hospitalisation

rates may even exceed those in temperate regions (Chiu et al., 2002). Data from 1982-

2004 showed that 22-46% of hospitalised patients were admitted because of respiratory

illness, of which influenza was detectable in up to 14% (Simmerman and Uyeki, 2008). In
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Thailand from 1993-2002, influenza burden has ranged from 64 to 91 hospitalized cases

per 100,000 population per year (Simmerman et al., 2004). Influenza also caused 10.4%

of total respiratory illnesses in population, of which, 52% were patients under the age of

15 (236/100,000 pop.) and over the age of 75 (375/100,000 pop). From 2005 to 2008, it is

estimated that more than 36,000 patients were admitted to hospitals per year and approx-

imately 300 patients died each year because of influenza in Thailand (Simmerman et al.,

2009). However, it is only in-hospital pneumonia deaths, which are likely to represent only

a small fraction (< 10%) of total influenza-related deaths. In Indonesia, Influenza A and

B have been recorded year-round, with up to 20% of ILI cases testing positive for influenza

virus and annual peaks during the rainy season, mainly caused by influenza A (Kosasih

et al., 2013). In Lao PDR, Khamphaphongphane et al. (2013) also found influenza activ-

ity year-round but with greater transmission during the second half of the year and the

virus subtypes changing each year. The aggregated result from ILI and influenza virus

surveillance conducted in 14 countries collected by FluNet via the Western Pacific Region

of the World Health Organization from 2006-2010 show that influenza is common in all

countries but with different patterns in different countries (Members of the Western Pacific

Region Global Influenza Surveillance and Response System, 2012). Seasonal cycles were

prominent in temperate countries in the northern and southern hemispheres, but less clear

patterns were seen in tropical countries (Members of the Western Pacific Region Global

Influenza Surveillance and Response System, 2012). There is evidence that a transmission

network exists within the Western Pacific Region, with dominant strains in one country

later becoming dominant in other countries of the region (Members of the Western Pacific

Region Global Influenza Surveillance and Response System, 2012).

In east and south east Asia, Hong Kong and Singapore have the longest running

influenza surveillance systems and the most influenza-centered research. Studies in Hong

Kong have shown that the hospitalisation rate of influenza is similar to the United States,

a representative temperate region (Viboud et al., 2006b; Wong et al., 2004, 2006). As

elsewhere, the highest morbidity and mortality is concentrated in children and the elderly

(Chiu et al., 2002; Wilschut et al., 2006). A study from Hong Kong, Guangzhou and

Singapore found influenza related mortality burden to be slightly higher for A/H1N1
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compared to A/H3N2, with Hong Kong having the highest influenza-associated mortality,

at 13.4 deaths per 100,000 population (Yang et al., 2011). An influenza study in Singapore

by Lee et al. (2009) found that most influenza epidemics between 1950 and 2000 were

associated with increases in all cause mortality. Similar results were obtained by Wu

et al. (2012) in Hong Kong, with an association between excess deaths and influenza

activity: with 95% of the excess deaths occurring in people aged 65 years or more. When

pandemic influenza H1N1/2009 emerged, it was initially unclear if the virus was more

virulent than seasonal influenza viruses. Studies by Cowling et al. (2010) found that

H1N1/2009 was similar to seasonal influenza in terms of household transmission and the

secondary household attack rate.

In addition to increased awareness of the importance of influenza as a cause of respira-

tory illness in east and south east Asia, this region is also of special interest as a source of

novel and drifted influenza A viruses. As well as the interest in east and south east Asia as

a source of influenza viruses of zoonotic origin (Shortridge and Stuart-Harris, 1982), there

has more recently been interest in the region as a source of antigenically drifted influenza

A strains, that seed annual epidemics in temperate regions (Nelson et al., 2007; Ram-

baut et al., 2008; Russell et al., 2008a). However, this hypothesis remains unproven, with

more recent analysis proposing a more complex global pattern of influenza virus migration

(Bahl et al., 2011) Influenza immunization is not common in the Western Pacific Region,

with 30% of 37 surveyed countries having no national influenza immunization policy or

recommendations, and only 50% having a well established national immunisation policy

(Dwyer et al., 2013). Those countries that did have a publicly funded programme only

purchased sufficient vaccine to immunise 25% or less of their population. The evidence

base to support decisions about the introduction of influenza vaccines in WHOs Western

Pacific Region is limited (Samaan et al., 2013).

1.6 Viet Nam

Viet Nam has a land area of 330,951 km2, making it the 65th largest in the world.

The country is elongated, with a length of 1,650 km, and is situated between 8◦ and 24◦
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from south to north, straddling different climate zones. The three main climate types

are: northern climate with four distinct seasons, winter temperatures occasionally falling

as low as 7◦C in Ha Noi and more rain in summer, East Truong Son (mountain) climate

with rain in autumn and winter and Southern climate very close to equatorial climates

with temperatures rarely dropping below 20◦C (Tam et al., 2004). Viet Nam is a narrow

country, with elevations ranging from 0 and 3,000 m from east to west. Viet Nam has a long

land border, with China to the north and Laos and Cambodia to the west. With a 2013

estimated population of 90 million, it is the third most populous country in Southeast Asia

after Indonesia and the Philippines, and 13th in the world. Thirty percent of the Viet Nam

population lives in urban areas and the population is concentrated in the agriculturally

productive and industrial zones of the Red River Delta in the north and the Mekong River

Delta in the south. The age distribution of the population is: 25% aged under 15 years,

68% aged 15-64 years, and 7% aged 65 years or more (GSO, 2012).

Viet Nam has experienced sustained economic growth in the last two decades (average

annual growth 7.1%) and recently transitioned from a low-income to a lower-middle income

country. The per capita gross national income in 2012 was estimated to be 1,749 USD,

and around 60% of the population have unskilled occupations in agriculture, fisheries,

and forestry. Around 13% of the population live on less than 1.25 USD per day (2008

Asian Development Bank estimate). After becoming a lower-middle income country, the

Vietnamese government’s investment in health has remained low at only 5 USD / resident

/ year: a lower position than other countries in the region (Malaysia, 63 USD, Thailand

44 USD, Laos 8 USD, Indonesia 7 USD). In the developed countries, healthcare costs are

approximately $2,000/person/year, and in some cases much higher (data report of the

Ministry of Health. Viet Nam). Nevertheless, Viet Nam has good health and development

indicators relative to its gross domestic product.

1.7 Influenza in Viet Nam

The clinical syndrome caused by influenza virus, typically referred to as influenza-like

illness (ILI), has been one of the many reportable diseases in Viet Nam since 1979. This
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routine reporting system only records the aggregated number of syndromic cases of ILI,

without retaining a case-based record. Prior to 2004 influenza was a low priority for

the Ministry of Health (MOH) and the research community in Viet Nam, with national

surveillance limited to routine monthly reporting, in which the disease was not confirmed,

typed, or subtyped by PCR or culture. After the SARS outbreak in Ha Noi in 2003 and

the highly pathogenic avian influenza H5N1 outbreak in 2004, influenza surveillance has

been strengthened in Viet Nam. Prior to 2003, the National Institute of Hygiene and

Epidemiology (NIHE) of Viet Nam had collaborated with Nagasaki University of Japan

to conduct influenza research in Ha Noi. The outcome of the research from 2001-2003

showed that only 2.5% of ILI patient in Ha Noi tested positive for influenza (Nguyen

et al., 2007). In 2006, a sentinel surveillance system for influenza was established in Viet

Nam which started with five sites and increased to fifteen sites across the country. The

data from 2006 to 2009 showed that, influenza accounted for about 21.9% of total ILI

consultation and that about 12.5% of all patient visiting the sentinel sites did so because

of ILI. The influenza positive rate of severe pneumonia was 4.8% (Nguyen et al., 2009).

More details are provided in chapter 5. In 2007, a household-based cohort study in a semi-

rural commune one hour away from Ha Noi was established, and details of the cohort are

described in chapter 6 which can be found in Horby et al. (2012).

1.8 Influenza control in Viet Nam

Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Viet Nam in

2004, the interest and investment in influenza control in Viet Nam has increased dramat-

ically. Since 2004 the Ministry of Health has organised a steering committee on influenza

pandemic preparedness. During the 2009 influenza pandemic, all of the medical and public

health systems of Viet Nam joined in this work. Infra-red thermal detection cameras were

set up at both major international airports. Only 0.15% of 760.000 screened passengers

showed symptoms of ILI and none of them had severe outcomes (Hien et al., 2010). Severe

acute respiratory infection (SARI) cases were investigated and quarantined. Specimens

were tested and molecularly typed on a rapid schedule to determine if the immigration of
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the virus into the country could be stopped. The SARI surveillance system is still func-

tioning but the major concerns now are H5N1 and H7N9. Viet Nam, like many countries,

has established a national stockpile of antiviral drugs, and is actively pursuing domestic

influenza vaccine production capability. Three projects on the development of domestic

influenza vaccine have been established in Viet Nam and they have all made progress with

vaccine development. The company Vabiotech has already completed pre-clinical studies,

and phase I, II, and III clinical trials for avian influenza A/H5N1 vaccine and is awaiting

registration and licensing. Vabiotech are also developing seasonal influenza vaccines using

cell based vaccine production (MDCK, microcarrier and PMK cell line). The IVAC, are

using a traditional egg based influenza vaccine production system when Polyvac and Pas-

teur Ho Chi Minh develop A/H1N1/2009 vaccine using Vero cell which is now at phase II.

All these influenza vaccine development projects have received support from the Ministry

of Science and Technology budget for R&D and/or the Ministry of Health (Ministry of

Health, 2013).
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Chapter 2

Introduction to the study of

the seasonality of influenza

2.1 Introduction

Whoever wishes to investigate medicine properly, should proceed thus: in the

first place to consider the seasons of the year, and what effects each of them

produces for they are not at all alike, but differ much from themselves in regard

to their changes.

The opening sentence of On Airs, Waters, and Places

By Hippocrates, 400 BC

The term ‘seasonal’ refers to an event occurring each year at a specific time of the year,

and is derived, via the old French term seison, from the Latin Satiō, meaning sowing or

planting. The seasonality of human diseases has been recognized since the very beginning

of modern medicine and Hippocrates wrote in “Of the Epidemics” that “The greatest and

most dangerous disease, and the one that proved fatal to the greatest number, was con-

sumption. With many persons it commenced during the winter” (Hippocrates) Study of

the seasonality of respiratory illnesses began even before the influenza virus was identified

in 1933 (Britten, 1932; Paul and Freese, 1933; Smith et al., 1933)

Seasonality can be described as a regular and predictable cycle occurring at a frequency

of one year or less, and although seasonality is a well-understood concept, for analytic

purposes seasonality must be quantitatively defined. There are two separate analytic

tasks, detecting seasonality and measuring the characteristics of seasonality. In the past

the detection of seasonality relied on subjective impressions, later progressing to plotting

data by time in the form of bar or line graphs. Statistical methods for detecting seasonality
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include time series analysis (Fourier transformation, wavelet transform)(Broutin et al.,

2005; Mi et al., 2005), regression analysis, and mathematician modelling (Dominici et al.,

2002; Held and Paul, 2012; Thompson et al., 2006; Yaari et al., 2013). As described in

Chapter 3, I chose the wavelet analysis method to detect and measure seasonality.

The last decade has seen a renewed interest in climatic factors that may be associ-

ated with influenza outbreaks or epidemics, but the key climatic factors that modulate

transmission are still under debate. The association between certain climatic factors and

influenza epidemics in temperate countries gives some improved predictability of epidemic

onset, but the occurrence of influenza as a winter phenomenon remains unchanged. In the

tropics however, the timing of influenza epidemics is much less predictable. Understanding

the drivers of influenza dynamics in these regions has recently become a research priority,

partially at least because phylogenetic studies have indicated that East Asia may play

a critical role in maintaining global influenza circulation (Bedford et al., 2010; Le et al.,

2013; Rambaut et al., 2008; Russell et al., 2008b). This chapter is informed by a literature

search. The term Influenza, Human [MeSH Terms] AND Periodicity [MeSH Terms] was

entered into PubMed (https://www.ncbi.nlm.nih.gov/pubmed), and the search was last

updated on the 16th March 2014. A total of 2057 records were retrieved and the titles

screened for relevance. 69 relevant articles were selected and the full abstracts reviewed.

The full text of the most relevant articles were downloaded, where possible.

2.2 Influenza seasonality in temperate areas

The seasonality of ILI and influenza in temperate regions is extremely well established,

as demonstrated by long term surveillance data in, for instance, the United Kingdom (see

figure 2.1) (Elliot and DM, 2006) the United States (CDC, 2013), France, and Australia

(see figure 2.2) (Altizer et al., 2006; Goldstein et al., 2011; Ohmit and Monto, 2006;

Viboud et al., 2006b, 2004a). Various longitudinal community based studies of respiratory

infections that were conducted from the 1920s (Hagerstown morbidity study) to the early

1980s (Houston and Tecumseh), and which included the New York and Seattle Flu Watch

programmes, the Cleveland and Houston Family Studies and the Tecumseh study, have
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also demonstrated the seasonality of influenza transmission in temperate regions (Monto,

1994). It is therefore undisputed that in temperate regions that are clear epidemics of

influenza each year that predictably occur in the colder winter months, although the

precise timing cannot be predicted (Dowell, 2001; Lowen et al., 2008; Park and Glass,

2007; Viboud et al., 2006b).

Out of season circulation of influenza does however occur, and occasionally full scale

influenza epidemics can occur outside of the traditional winter periods, most notably when

a novel influenza A strain circulated causing a pandemic (Chowell et al., 2011; Jakeman

and Sweet, 1996; Kelly et al., 2013; Kohn et al., 1995; Van-Tam and Sellwood, 2010). The

reasons for out of season influenza cases and epidemics are an interesting topic, but are

outside of the scope of this thesis and will not be discussed further here.

Figure 2.1: Clinical incidence of influenza-like illness in England and Wales.

Weekly incidence rates from 1967 to 2006. Source: (Elliot and DM, 2006)

2.3 Influenza seasonality in tropical and subtropical areas

It should first be noted that the terms tropical and subtropical are principally geo-

graphic rather than meteorological terms. The tropics are region of the earth’s surface

lying between particular circles of latitude. The Tropic of Cancer is defined as the most

northerly circle of latitude on the Earth at which the Sun may appear directly overhead
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Figure 2.2: Weekly number of influenza and pneumonia deaths per 10 million
populations from January 1972 to December 1997 in the United States, France,
and Australia (black line). The red line represents the epidemic threshold defined by a
seasonal regression. Source: (Viboud et al., 2004b)
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at its culmination (approximately 23◦27’N latitude). The Tropic of Capricorn is defined

as the southernmost circle latitudinal parallel at which the sun may be seen directly over-

head (approximately 23◦27’S latitude). The subtropics are the areas lying immediately

north and south of the tropics, bounded by latitude 35◦N and 35◦S and the Tropics of

Cancer and Capricorn respectively. Whilst the area bounded by the Tropics of Cancer

and Capricorn (the ‘tropics’) typically has year round high temperatures and periods of

high precipitation, climate is actually quite variable within the area, being determined by

altitude, proximity to water bodies and mountains, prevalent wind directions etc. Defini-

tions of climate zones need to be much more sophisticated than areas bounded simply by

latitudinal parallels and Figure 2.3 shows the Koppen-Geiger classification of climate, one

of the most widely used climate classifications.

Figure 2.3: World Map of the Köppen-Geiger Climate. Source: (Rubel and Kottek,
2010)

Since traditionally influenza surveillance has not been prioritised in tropical regions

to the extent it has in temperate regions, data are somewhat limited, but it is clear that
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influenza seasonality is more complex in tropical and subtropical regions than it in tem-

perate regions. In 2003 Shek and Lee summarised seven studies of influenza in tropical

countries but six of the seven studies covered five or less years of data, so the validity

of inferences on seasonality are limited so as the association with climate factors (Shek

and Lee, 2003). Indeed in 2006 Viboud et al. noted that data on influenza burden and

seasonality in tropical regions was inadequate and highlighted a need for more studies of

influenza in the tropics Viboud et al. (2006a). In 2007, Park and Glass (2007) specifically

looked at the seasonality of influenza A in east and southeast Asia and presented data

from Japan (1998-2005), Taiwan (1997-99 and 2001-2003), Hong Kong (1997-2005) and

Singapore (1972-1986, 1991-1993, 2000-2003). In Japan, which crosses the 35◦N paral-

lel that separates the subtropical and temperate regions, influenza A shows clear winter

seasonality, with peaks between December and March. The situation in China has been

confusing. The cities of Hong Kong and Shenzhen which lie in the subtropical region

show seasonality of influenza transmission but contrasting patterns have been reported.

The study Shenzhen (which use 5 year data of influenza confirmed) has been reported

to have significant annual cycles of influenza and ILI activity in July-August, but also

with a smaller second peak in March-April (Cheng et al., 2013). Whereas Hong Kong

and Guangzhou, which are situated close to Shenzen to the south and north respectively

and share a similar humid subtropical climate, experience dominant winter peaks of in-

fluenza activity. Since the data was limited in term of range (time-series of 5 and 3 year

respectably) and the method in the latter 2 studies were fitted Poisson regression and

modelling, the relationship between climate factors and disease pattern still unclear and

need further studies (Yang et al., 2011, 2009). However, influenza throughout China has

recently been studied in greater depth. Yu et al. with their 12 year time-series data

found that the strength of the annual periodicity increases with increasing latitude (go-

ing north), with influenza epidemics peaking in January-February in northern China and

April-June in southernmost China. Provinces in between experienced two peaks per year,

in January-February and June-August. The tropical and subtropical provinces of China

experienced influenza epidemics of longer duration and with a more variable timing of the

epidemic peak compared to the northern provinces (Yu et al., 2013). Singapore, which
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lies just north of the equator and has a truly tropical climate, has year-round influenza

activity with some evidence of two peaks per year, in April-July and November-January

(Tang et al., 2012). A systematic review of influenza in Africa by Gessner et al. identified

only 4 studies in sub-Saharan Africa that looked at seasonality over several years, and

these showed that influenza was seasonal in southern Africa (South Africa, Madagascar,

and Zambia) but non-seasonal in tropical Senegal (Gessner et al., 2011). In South Amer-

ica, Brazil is best studied, where seasonality and amplitude of peaks of pneumonia and

influenza mortality are highest in the southern areas, and decrease towards the equatorial

regions (Alonso et al., 2007; Moura et al., 2009)

Bloom-Feshbach et al. examined the peak timing and duration of influenza epidemic

activity (laboratory confirmed cases) in 77 sites in 40 countries spanning temperate, sub-

tropical and tropical areas (Bloom-Feshbach et al., 2013). As expected, influenza epidemic

activity was highly concentrated in winter months in the northern and southern temperate

regions (modes of February and July respectively). The timing of peak influenza epidemic

activity was more diverse in tropical sites, with semi-annual peaks identified in Manila,

Philippines; Singapore; Nakhon Phanom and Sa Keao, Thailand; Ha Noi, Viet Nam; and

Hong Kong, China (Figure 2.4). The semi-annual peaks tended to occur in winter and

summer. The duration of influenza epidemic activity was longer (median 6 months) in

tropical areas than in temperate areas (median 4 months). Baumgartner et al. reviewed

publicly available data on virologically confirmed influenza infection from 85 countries

and found that most of the temperate countries (40/47) and all of the subtropical coun-

tries (6/6) studied experienced a single annual influenza epidemic, compared to only 56%

(18/32) of tropical countries (Azziz Baumgartner et al., 2012).

In summary, tropical and subtropical areas do experience epidemics of influenza but

their timing is more variable than in temperate regions, can occur more than once a year,

and the epidemics are often of smaller amplitude and longer duration than in temperate

regions. There is also evidence that influenza epidemics occur at specific times of the

year in some tropical areas, with annual or semi-annual periodicity (seasonality) then the

approach to study seasonality of influenza in tropical and subtropical should not only focus

on timing of the epidemic.
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Figure 2.4: Global map of influenza peak timing and epidemic duration (n = 77
locations)
Colours illustrate timing of peak influenza activity, based on the bottom left key, while size
of the circles is proportional to epidemic duration. For independent observations for the
same location, an average was taken. For studies that did not provide enough information to
estimate duration, a triangle is shown. Circles filled out with more than one colour represent
locations experiencing semi-annual peaks of virus activity. Source: (Bloom-Feshbach et al.,
2013)

2.4 Possible determinants of the seasonality of respiratory

infections

Possible drivers of the seasonality of influenza infection have been reviewed in detail

by several authors (Altizer et al., 2006; Dowell, 2001; Grassly and Fraser, 2006; Tamerius

et al., 2010). In summary, three main classes of seasonally varying factors have been

proposed as the drivers of influenza epidemiology. Host contact behaviours; host suscep-

tibility; and pathogen survival outside of the host.

2.4.1 Host contact behaviours

Influenza is transmitted from person by direct contact, large respiratory droplets, by

airborne small particles (Tellier, 2009; Teunis et al., 2010). The frequency and duration

of contact between infectious and susceptible people may therefore affect the timing of

influenza epidemics (Lofgren et al., 2007). It has been proposed that there is more indoor

crowding in the winter in temperate regions and in the rainy season in tropical climates,

and that this facilitates influenza epidemics (Jordan, 1961; Murray et al., 2012; Willem

20



2. INTRODUCTION TO THE STUDY OF THE SEASONALITY OF
INFLUENZA

et al., 2012). Children are known to play an important role in influenza transmission and

the social mixing of children at school is thought to play a role in influenza transmission.

Social contact rates of children are lower during holiday periods (Eames et al., 2011; Hens

et al., 2009; Jackson et al., 2011) and there is empirical and simulated data to indicate

that school closure may reduce influenza transmission (Cauchemez et al., 2008). It is not

however established that school term times are an major determinant of the seasonality of

influenza (Tamerius et al., 2010). Te Beest et al. did not find that the Christmas school

holidays influenced influenza transmission in the Netherlands (te Beest et al., 2013).

2.4.2 Host susceptibility

Seasonal fluctuations in host immune functions have been suggested as drivers of the

seasonality of infectious diseases, mediated by concentrations of substances such as corti-

sone, melatonin, and vitamin D (Dowell, 2001). Vitamin D has acquired the most attention

(Cannell et al., 2006, 2008; Grant and Giovannucci, 2009; Juzeniene et al., 2010) Whilst

solar radiation is associated with influenza activity, variations in serum vitamin D concen-

trations and solar radiation are not as good predictors of influenza epidemiology as other

climate variables (humidity and temperature) (Shaman et al., 2011a,b, 2010; Tamerius

et al., 2013; Yu et al., 2013).

2.4.3 Pathogen survival outside of the host

Influenza can be transmitted by large respiratory droplets, airborne small particles

(aerosols) and by direct contact. The duration of survival of influenza viruses in the

environment is influenced by environmental conditions such as temperature, humidity and

concentration of ultraviolet light. These factors are discussed in greater detail in the

following sections.

2.5 Relative versus absolute humidity

The concept of humidity is central to the study of influenza seasonality and therefore

a brief introduction is provided here. Water in air can be in an invisible gas phase, known
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as water vapour, or in a visible liquid phase as small suspended droplets, visible as mist,

steam, or cloud. The higher the temperature of air, the more water vapour the air can

hold before the water vapour condenses (becomes liquid phase) i.e. as condensation, mist,

cloud, dew or frost. The maximum amount of water vapour a given volume of air can hold

at a given temperature before condensation occurs is known as the saturation level.

Absolute (or specific) humidity (AH) is simply the absolute mass of water vapour (in

grams) present in a given volume of air and water vapour mixture (g/m3). AH expressed

as g/m3 is also known as the vapour density. Absolute humidity takes no account of the

temperature of the air or the amount of water vapour the air could potentially hold. Ab-

solute humidity can also be expressed as the pressure exerted by the water vapour (in any

units of pressure e.g. kiloPascals, millibars, mmHg): this is the vapour pressure. Vapor

pressure can be converted to vapour density (g/m3) by the formula 2.1.

AH(g/m3) = C × eA/tK (2.1)

C = Constant 2.16679 gK/J

eA = Vapour pressure in Pa

tK = Temperature in Kelvin

Relative humidity (RH) is the amount of water vapour in the air relative to the amount

of water vapour that the air could maximally hold at a given temperature. Or in other

words, RH is the ratio of the current water vapour content of a given volume of air relative

to the maximum water vapour content of the volume of air at a given temperature (i.e.

when the air is saturated). RH is expressed as a percentage. As temperature decreases,

the saturation level reduces, so the relative humidity increases, even though the AH does

not change. RH is more closely related to how we feel humidity, since sweat can readily

evaporate from our skin if the relative humidity is low but cannot if the relative humidity

is high; so we feel warmer in higher relative humidity. RH is therefore more often used in
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weather forecasts and is the measure we are sensing when we say it is “humid”. AH can

be calculated from RH and temperature (see method section of Chapter 4).

2.6 Experimental studies of climatic determinants of in-

fluenza survival and transmission

Early experimental studies of the survival and transmission of influenza under varying

environmental conditions have been summarised by Tamerius et al. (Tamerius et al.,

2010). A common finding in these studies was that influenza virus viability increased with

decreasing relative humidity (Harper, 1961; Hemmes et al., 1960; Hood, 1963; Kingdon,

1960; Schaffer et al., 1976; Schulman and Kilbourne, 1963). In 2007 and 2008, Lowen et

al. revisited these experiments by studying the aerosol transmission of influenza virus in a

guinea pig model under difference environmental settings (relative humidities of 20%, 35%,

50%, 65% and 80%, and temperatures of 5◦C, 20◦C and 30◦C. They found transmission

to be most efficient at low relative humidity (20% and 35%) and low temperature (5◦C)

(Lowen et al., 2007). Outdoor RH is high during the winter in temperate regions, and

therefore does not fit the model, but indoor RH is low in the winter in places with indoor

heating (see Shaman and Kohn), so Lowen et al. hypothesize that low indoor RH in

the winter contributes to the winter peaks of influenza transmission. Since the initial

experiments demonstrated no transmission at a temperature of 30◦C and RH of 35%,

Lowen et al. conducted further experiments at high temperatures and found that at a

temperature of 30◦C and RHs of 20%, 50%, 65%, and 80%, aerosol transmission was

blocked, but contact transmission was not (Lowen et al., 2008). This has led Lowen and

Palese to hypothesize that in temperate regions aerosol transmission predominates whilst

in tropical regions transmission is by direct contact (Lowen and Palese, 2009). Shaman and

Kohn re-examined Lowen’s 2007 and 2008 data by calculating AH (vapour pressure) from

the RH and temperature, and found that AH was a better predictor of virus transmission

than either temperature or RH (Shaman and Kohn, 2009). As AH decreases, transmission

increases: an analysis which fits climate data better than Lowen’s analysis since outdoor

AH (unlike RH) is low in the winter. It is hypothesized that this relationship exists
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because low AH causes water to evaporate from expelled droplets, leading the formation

of smaller droplets that remain airborne for longer (therefore increasing transmission),

and that viruses in airborne particles remain viable for longer at low AH (Shaman and

Kohn, 2009). Several authors have explored the mechanism of the relationship between

humidity and influenza virus transmission/survival. Yang et al. figure out the important

of humidity in aerosol transmission because “it both induces droplet size transformation

and affects influenza A virus inactivation rates” (Yang et al., 2011, 2012; Yang and Marr,

2011). A theoretical study by Minhaz Ud-Dean looked at the impact of humidity to the

influenza virus envelope and proposed that virus envelop have certain characteristic that

determine the interaction with atmospheric under the hosts condition that finally create

seasonality in the temperate region. In tropical region, virus can survive longer then create

higher risk with aerosol borne epidemic (Minhaz Ud-Dean, 2010)

2.7 Observational studies of climate variables and influenza

transmission

The relationship between climate variables and influenza epidemics has been explored

through observational studies in many countries. A review by Shek et al. in 2003 suggested

that epidemic peaks in Singapore, India, Nigeria, Brazil and Senegal were associated with

the rainy season (Shek and Lee, 2003). However, Tang et al. recently summarized the

data from Singapore, and concluded that the results were conflicting, with some authors

finding no association with climate variables, whilst others report an association with

rainfall (Tang et al., 2012). Chan et al. studying 10 years of data on hospital admissions

in Hong Kong have reported that influenza A and B activity was associated with cold

temperatures and high relative humidity (>70%), this conflicts with the findings of others

that low relative humidity is associated with influenza transmission and survival (Chan

et al., 2009).

The work of Alonso in Brazil has been an important contribution to the literature,

with a travelling wave of influenza from north to south identified, which Alonso et al.

have suggested is more likely to be a consequence of climate than population density or
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travel, since the north of Brazil is less densely populated than the south, and travel is

greatest between the large population centres in the south (Alonso et al., 2007). Other

studies that examined the seasonality of influenza in South America include a study in

northeast Brazil that identified annual epidemics occurring in the rainy season (Moura

et al., 2009), one in French Guiana, which concluded that influenza transmission was

associated with high rainfall and low AH (Mahamat et al., 2013), and one in Peru, but

this study was only of two years duration (Laguna-Torres et al., 2009).

Studies of climate associations with influenza activity in Africa are limited despite a

series of studies in 15 African countries (Katz et al., 2012b; Radin et al., 2012). Whilst

studies in Kenya, Uganda, Rwanda have suggested that influenza activity peaks in the

rainy season, these studies are of only 2 or three years duration and encompassed the 2009

pandemic, and therefore are not able to identify seasonal trends or climatic predictors

with any certainty (Katz et al., 2012a; Lutwama et al., 2012; Nyatanyi et al., 2012).

The association between climate variables and influenza epidemiology in temperate

regions has been best studied in the United States. In 2010 Shaman et al. examined the

timing of the onset of increased seasonal influenza activity over a 31 year period (1972-

2002) and found a strong association with a drop in AH, which was statistically stronger

than the association with RH, temperature and sunshine (Shaman et al., 2010). They

further found that a mathematical model based on AH alone could accurately reproduce

the spatial and temporal epidemiology of seasonal influenza in the United States. Barreca

and Shimshank also studied influenza mortality between 1973 and 2002 in the United

States and, like Shaman et al., found that AH was the best explanatory variable, after

controlling for temperature (Barreca and Shimshack, 2012). In addition however, Barreca

and Shimshank identified an AH threshold (6g/kg) above which there was no association

between AH and influenza associated mortality. Interestingly, the first assertion that AH

may be related to influenza transmission was in 1985 by Shoji (in Japanese), but this

paper was largely neglected, and the data were republished by Shoji in 2011 following the

work of Shaman on AH (Shoji et al., 2011).

A recent publication has looked at laboratory confirmed influenza infections from 2005

to 2011 across 30 Provinces of China, an area that spans temperate, subtropical and
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tropical climates. Yu et al. found no single climate variable explained the patterns of

influenza activity across the whole of China. Cold temperatures were associated with a

strong annual amplitude of influenza, whereas high rainfall was predictive of the timing

of spring epidemics, and low sunshine was associated with semi-annual cycles (Yu et al.,

2013).

Tamerius et al. have studied global climatic predictors of influenza seasonality using the

same influenza data set reported by Bloom-Feshbach et al., as discussed above (Tamerius

et al., 2013); (Bloom-Feshbach et al., 2013). The authors studied the association between

the timing (month) of peak influenza activity and monthly outdoor temperature, solar

radiation, AH, and rainfall at 78 sites, of which 39% were in the tropics. They did not

find a consistent relationship at the global level but identified two distinct patterns: in high

latitudes influenza peaks were associated with low temperature, solar radiation and AH,

whereas at low latitudes, influenza peaks were associated with high rainfall, AH and RH.

They therefore proposed that in temperate regions influenza epidemics occur in months

characterized by ‘cold-dry’ weather (AH < 11-12 g/kg and temp 18-21◦C), whereas in the

tropical regions influenza epidemics are precipitated by ‘humid-rainy’ weather (months

with average precipitation greater than 150 mm). The relationship between AH and

influenza peaks was found to be U-shaped, with the highest probabilities of influenza

peaks occurring at low and high values of AH. In general however, the model did not

perform well in low latitude regions.

2.8 Summary

In summary, in contrast with the clear pattern of influenza found in temperate areas,

knowledge on the seasonality of influenza in tropical and subtropical areas is still limited.

The limitations arise from either the length of data or study approach. Recent years have

seen great steps in the study of influenza in tropical/subtropical areas especially in China

and Hong Kong. This work has found a latitude gradient in influenza dynamics (Yu et al.,

2013) and highlighted the role of humidity in influenza transmission activity (Yang et al.,

2011, 2009). Other recent studies also describe seasonality in tropical areas which varies
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from country to country (Azziz Baumgartner et al., 2012; Bloom-Feshbach et al., 2013).

Researchers all over the world also try to explain the possible drivers of seasonality by

either using animal model or lab-experiment e.g. (Lowen et al., 2007; Shaman et al., 2010),

or time-series analysis with wavelet (Alonso et al., 2007; Viboud et al., 2006b; Yu et al.,

2013), or systematic review, reanalysis (Tamerius et al., 2013) which all lead to humidity

factor.

2.9 Methods for assessing the seasonality of influenza

As mentioned earlier, many countries in temperate regions have well-structured in-

fluenza surveillance data and influenza epidemics mostly occur regularly in well defined

seasons. However, in the tropics and subtropics, both ILI notifications and influenza vi-

rology surveillance data can exhibit less regular patterns, with the timing of peaks being

less predictable (Viboud et al., 2006b). In time-series analysis, a signal whose frequency

does not change over time is called stationary, and a signal whose frequency does change

over time is non-stationary. Contemporary statistical techniques such as wavelet analy-

sis may be usefully applied to problems of analysing non-stationary time series. Wavelet

analysis was first adopted in the field of climatology (Lau and Weng, 1995; Torrence and

Webster, 1999) and has only recently been introduced into the ecology of infectious dis-

eases such as measles (Grenfell et al., 2001), pertussis (Broutin et al., 2005), dengue fever

(Cazelles et al., 2005) and influenza (Viboud et al., 2006b). By decomposing a time series

into the various time-frequency spaces, wavelet analysis is more suitable for modelling

non-stationary seasonality of a time series than traditional Fourier analysis; therefore in

this study we used wavelet analysis to model the seasonal variation of ILI rates, climate

variables (Chapters 3 and 4) and virology surveillance data (Chapter 5).
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Chapter 3

Spatial patterns of ILI

seasonality in Viet Nam

3.1 Introduction

In this chapter, I describe my work to examine geographical patterns in the seasonality

of ILI notifications in Viet Nam. The primary rationale for this work is to describe

the seasonality of ILI in order to inform the design of influenza control programmes in

Viet Nam. Viet Nam is working towards the development of domestic influenza vaccine

production capacity (see Chapter 1), and knowledge of the periodicity and predictability of

influenza transmission is essential for designing an influenza immunization program. Since

it is necessary to update the influenza strains included in inactivated influenza vaccines

annually because of on-going antigenic changes in circulating influenza viruses (see Chapter

1), program design will need to consider the timing of selection of influenza vaccine strains.

This need to annually update influenza vaccines means that strains must be selected every

year and the selection process must be timed to permit the vaccine production cycle to

be completed in time to vaccinate the target population prior to the period of influenza

transmission. Whilst seasonal epidemiological dynamics are common to many vaccine-

preventable infectious diseases, the need to update influenza vaccines annually and re-

immunise the target population places a unique time constraint on influenza immunisation

programs. A secondary objective of this analysis is to assess if there are geographical

patterns of seasonality in Viet Nam that might be used to inform our understanding

of the climatic determinants of influenza transmission. As will be discussed in Chapter

4, there are substantial differences in climate between North and South Viet Nam, and

also an anecdotal belief that the seasonality of influenza epidemics is more marked in

the North than in the South of Viet Nam. The first step in exploring the association
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between influenza seasonality and climate in Viet Nam is to establish if there are systematic

geographic differences in influenza seasonality.

3.2 Objective

The objective of the work presented in this chapter is to describe the spatial patterns

of seasonality of ILI notifications in Viet Nam.

3.3 Materials and Methods

3.3.1 Data sources

Influenza-Like-Illness (ILI) notification data

“Influenza syndrome” is one of the 26 notifiable communicable diseases in Viet Nam

(see Annex 1 for details of the surveillance system in Viet Nam). The case definition

for “influenza syndrome” is: “Sudden onset of fever:39-40◦ C with severe headache or

body, muscle and joint pain and runny nose/ sore throat/ coughing” (Ministry of Health,

2010). The definition is a clinical definition with no requirement for laboratory diagnosis.

The number of notified cases of ‘influenza syndrome’ has been monitored by the national

surveillance system of the Ministry of Health by month and province since 1979, over

which period the case definition has not changed. Throughout this Chapter and Chapter

4, the term Influenza-Like-Illness (ILI) is referring to notifications of ‘Influenza Syndrome’.

It should be noted that this definition has some difference with the ILI case definition

used in the sentinel influenza surveillance system (see chapter 5), which follow the CDC

& WHO case definition. The number of notifications of ILI per province per month (the

notification rate) is the raw data for the analysis conducted in Chapters 3 and 4. Data were

independently double entered into Excel (Microsoft Office 2007) and then cross-checked by

“Excel file compare 2.4” (http://www.formulasoft.com/) and any discrepancies checked

against the original paper records and corrected as necessary. Final corrected datasets

were then read into R version 2.14.0 (R Foundation for Statistical Computing, Vienna,

Austria). Since reliable annual population estimates by province from 1980 to 2010 are not
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available, and since the objective of the analysis was to describe spatial patterns of annual

periodicity (seasonality) of ILI notification rates, rather than compare the incidence of ILI

notifications per person-time between provinces, we did not calculate notification rates

per person-time.

Geographic units of analysis

The province is the first level administrative unit in Viet Nam, below which there are

districts, and below them communes. There are roughly 10 (range from 5-27) districts per

province and 16 communes per district (range from 1 (an island) to 48) (Figure: 3.1).
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Figure 3.1: Number of districts per province. Each column is one province (63 in total).

The administrative delimitations of provinces in Viet Nam have changed substantially

since 1980. A number of provinces have split in to 2 (and one into 3) provinces on the

first of January 1990 (3 splits, including the one in three provinces), 1991 (1 split), 1992

(8 splits), 1997 (8 splits), 2004 (3 splits). On the first of August 2008 the province of Ha

Tay (originating from the split of the province of Ha Son Binh in 1992) merged with the
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province of Ha Noi. This is the sole merging event. The number of provinces in Viet Nam

thus increased from 40 to 44 in 1990, to 45 in 1991 to 53 in 1992 to 61 in 1997 and to 64 in

2004, and decreased to 63, the current number in 2008. Figure 3.2 and 3.3 shows the total

number of provinces and the merging and splitting of provinces over time. In this figure

the year in which a change in province numbers occurred are marked by vertical grey lines.

In order to establish a dataset of geographic units that could be analysed over the whole

study period, it was necessary to account for the merging and splitting of provinces. For

provinces that were merged we aggregate the two time-series into one. For province that

split into 2 new smaller provinces, we keep all cases in the province which have higher

population and left the other province blank data.

Population centroid of province

Population centroids (the latitude and longitude coordinates that mark the estimated

centre of population density) of provinces are required in order to allocate a specific latitude

value to each province and, in Chapter 4, to identify the climate station geographically

closest to the main population centre. Provincial population centroids were calculated

using each communes geographic centroid and population size to generate an average of the

commune centroids weighted by the commune population size. Commune level population

data were obtained directly from the decennial national Population and Housing Census in

2009 (see detail in central population and housing steering committee (2010)), conducted

by the General Statistic Office of Viet Nam (GSO;http://www.gso.gov.vn) (GSO, 2012).

These population centroids were used as the geographical coordinates of the time series.

(see R code in annex for more details of the methodology). The estimated province

population centroid was an average of 11.8 km away from the province geographic centroid.

This difference was greater in large provinces and provinces with mixed terrain (e.g Nghe

An, a coastal province with sparsely populated inland mountainous areas, has a difference

of 57.7 km), whereas small and flat provinces have a much smaller difference (e.g Hung

Yen and Thai Binh provinces had differences of 1.1 and 1.2 Km respectively) see Figure:

3.4.
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time (year)

Bac Lieu
Ca Mau
Kien Giang
Soc Trang
Hau Giang
Can Tho
Vinh Long
Tra Vinh
Ben Tre
Tien Giang
Dong Thap
Vung Tau − Ba Ria
An Giang
Long An
Tp. Ho Chi Minh
Dong Nai
Ninh Thuan
Binh Thuan
Tay Ninh
Binh Phuoc
Binh Duong
Lam Dong
Khanh Hoa
Phu Yen
Dak Nong
Dak Lak
Kon Tum
Gia Lai
Binh Dinh
Quang Ngai
Da Nang
Quang Nam
Thua Thien − Hue
Quang Tri
Quang Binh
Ha Tinh
Nghe An
Thanh Hoa
Ninh Binh
Ha Nam
Nam Dinh
Thai Binh
Hai Phong
Ha Noi
Hoa Binh
Hung Yen
Hai Duong
Quang Ninh
Son La
Bac Ninh
Bac Giang
Phu Tho
Vinh Phuc
Bac Kan
Thai Nguyen
Lang Son
Dien Bien
Lai Chau
Lao Cai
Yen Bai
Tuyen Quang
Ha Giang
Cao Bang

Minh Hai

Kien Giang

Hau Giang

Cuu Long
Ben Tre

Tien Giang
Dong Thap

Vung Tau − Ba Ria
An Giang
Long An

Tp. Ho Chi Minh
Dong Nai

Thuan Hai

Tay Ninh
Song Be

Lam Dong
Phu Khanh

Dack Lak

Gia Lai − Kon Tum

Nghia Binh

Q. Nam − Da Nang

Binh Tri Thien

Nghe Tinh
Thanh Hoa

Ha Nam Ninh

Thai Binh
Hai Phong

Ha Noi
Ha Son Binh

Hai Hung
Quang Ninh

Son La
Ha Bac

Vinh Phu

Bac Thai

Lang Son
Lai Chau

Hoang Lien Son

Ha Tuyen
Cao Bang

1980 1990 2000 2010

0
20

40
60

nu
m

be
r 

of
 p

ro
vi

nc
es

Figure 3.2: Changes to provinces between 1980 and 2010

32



3. SPATIAL PATTERNS OF ILI SEASONALITY IN VIET NAM

1980−1989 1990 1991

1992−1996 1997−2003 2004−2007

Figure 3.3: Map of changes to provinces between 1980 and 2010.
Provinces that underwent boundary changes in the following time period are marked in red.

The analysis presented in the Chapter is a time series analyses (to characterize period-

icity) in different localities (provinces). For such an analysis to be efficient we ideally need

long and numerous time series. However, given the history of administrative divisions in

Viet Nam (mostly splitting events), the duration and the number of the time series cannot

be optimized at the same time: the earlier we start the analysis the smaller the number of

provinces but the longer the time series they display. The picture is further complicated

by the fact that missing values are more numerous in the earlier years than the recent

years. Missing values can be linearly interpolated (linear interpolation uses the equation

of a straight line (y = mx + c) to fill in missing data points between two known points)

but the validity of the method decreases when the number of consecutive missing values to

interpolate increases. In order to select the starting year that optimizes the total amount

of information in the data set, we plotted the number of notification as a function of the

starting date. In doing so, the rule was to discard any time series that had more than a

given number of consecutive missing values, this number varying from 0 to the length of

the time series (this corresponds to the different lines on figure 3.10 panel B). In practice,
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Figure 3.4: Map of provincial population and geographic centroids.
Location of provincial population centroids (stars) versus geographic centroids (circles).
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more than 6 consecutive missing values render any interpolation very speculative.

Missing data

Time series with more than 3 consecutive missing values (i.e. one quarter of a year)

were discarded from the analysis. The remaining missing values were linearly interpolated

using the R function “approx”.

Transformation, detrending, centering and reducing

The ILI surveillance data have a number of quality issues due to under- and over-

reporting (confusion with other diseases), and changes in the surveillance system effort

over time. These issues limit the validity of any quantitative analyses (based on the actual

values of the notification). Given these facts, our strategy was to develop qualitative

analyses based on qualitative statistics such as periodicities which are less affected by the

potential biases mentioned above. The transformation presented here are prerequisite to

these qualitative analyses.

The variance of the time series can basically be decomposed between seasonality (i.e.

periodicity of one year), longer-term trends, and the remaining that we call ‘noise’. Since

our analysis focuses on the seasonality, a first step is to remove the long-term trend.

Another reason to detrend the time series is that we don’t know the cause of it, in particular

whether it has real biological value or weather it is simply due to changes in the efficiency

of the reporting system over time. The trend was estimated by lowess regression with a

smoother parameter of 0.1 (value selected after trying a range of values). The time series

were detrended by subtracting their estimated trends.

After detrending, the time series were centered and reduced. Centering refers to the

removal of the mean value, whereas reducing refers to the scaling by the standard deviation.

Centering and reducing of the time series thus produces so-called z-scores, i.e. time series

with means of 0 and standard deviations of 1, thus rendering qualitative comparison of

these time series possible. Centering and reducing is also referred to as ‘normalization’ of

the data since the data have a normal distribution after this process.

Finally, the time series were square-root transformed. Population dynamics time series
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such as epidemiological ones are typically characterized by a high number of small values

and a small number of high values. In order to stabilize the variance (i.e. rebalanced the

different values), a common practice is to square-root transform the data (a square-root

transformation is a power-transformation that is less stringent that the logarithm one).

Detection and management of outliers

Due to the volume and heterogeneity in the data aggregated for the whole country, it

is difficult to detect outliers. However, when the data are viewed by individual province,

potential outliers are clearer. Figure 3.13 shows the number of ILI notifications over time

from Tra Vinh Province (the raw data from every Province are shown in annex B). Possible

outliers are marked in red. These data points may be mistakes in the aggregation of data

at the province level not during data entry since data were double-entry-checked. Since

such outliers can substantially affect the analyses and in particular the wavelet spectra,

we sought to identify and check or discard outliers. To identify outliers in a systematic

and reproducible way, we considered, for each province, the square root transformed,

(lowess regression with smoothing parameter of 0.1) then scaled (i.e. subtracted by the

mean and divided by the standard deviation) Then we calculated the differences between

each consecutive values and these differences are expected to roughly follow a normal

distribution. And identified as outliers any values below the 1st percentile and above

the 99th percentile. Outliers will produce differences that are far away in the tails of

the distribution. Note that this automatic procedure successfully identify the outliers.

However some points identified by this procedure are evidently not outliers. Then, first,

this is still the best way we found to identify outliers, second, we identify very few “false”

outliers, and, third, identifying false outliers is not much a problem since outliers values

were then checked against with the original hard-copy records or other source (i.e province

data record). The value was then corrected if it had been entered incorrectly, or was

otherwise discarded. Those discarded was replaced by their linearly interpolated value.

False outliers will thus be replaced by a value that is very close to their original value.
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Time series components.

A time series can be characterized by 4 main statistics: the mean (M in equation 3.1),

the amplitude (A in equation 3.1), the period (T in equation 3.1) and the phase (ϕ in

equation 3.1, see also figure 3.5).

I(t) = M +A cos

(
2π

t

T
+ ϕ

)
(3.1)

Figure 3.5: Time-series components
Example of sin wave showing relation between difference components described in the text

Less technically and in the context of epidemiology, the mean refers for example to

the average incidence per year, the amplitude refers to the magnitude of the epidemics,

the period refers to how often epidemics occur (e.g. every year, every two years, etc., or

not periodic at all), and the phase refers to the timing of epidemics (i.e. the month of

the year the epidemics tend to occur). Note that in the case a time series made of two

periodic signals with different periods (e.g. annual plus multi-annual), then each signal

has a phase (i.e. a phase refers to a given period).

The coherence between two wavelets is equivalent to a linear correlation measure be-

tween them. It is constructed similarly and lives between 0 (no correlation) and 1 (perfect

correlation). It informs on when and around what period two time series are better linearly

correlated.
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Wavelet decomposition.

For the purpose of analysing periodicity we are treating the ILI notification as sig-

nal data a time varying continuous quantity. Signal data may appear ‘noisy’ if it is a

composition of multiple random and non-random components. Signal decomposition is

the application of methods to filter signal data in order to identify and separate under-

lying components. One of the most widely used signal decomposition tools is Fourier

transformation. Fourier transformation decomposes a signal into its component cycles

(a regular oscillation of amplitude) using sinusoidal functions. However, a major con-

straint of the basic Fourier transformation is that it assumes that the signal is station-

ary (i.e. statistics such as mean, variance, periodicity are constant in time) and does

not allow easy observation of changes over time in the cycle periodicity (the frequency

of oscillations). A signal whose frequency does not change over time is called station-

ary, and a signal whose frequency does change over time is non-stationary. Figure 3.6

is an example of a non-stationary signal, where the frequency of measles epidemics de-

creased after the introduction of measles vaccination. Instead of decomposing the signal

on sinusoids like Fourier decomposition, wavelet decomposition decomposes a signal as

wavelet basis functions. Wavelets are basically sinusoids with an envelope. For example

the Morlet wavelet classically used in ecology is a sine wave inserted into a Gaussian en-

velop (see figure 3.6). Being non-infinite, the decomposition will necessarily be local in

time and frequency. A wavelet can be slid to cover all the time periods and stretched

and compressed to cover of the period range. This locality in decomposition, make the

wavelet decomposition able to deal efficiently with non-stationary time series as often en-

countered in epidemiology. The method transforms a signal f(t) into a function W (a, b)

which illustrates the different frequency components at time (t) according to equation 3.2.

W (a, b) =
1√
a

∫ +∞

−∞
x(t)ϕ∗

(
t− b
a

)
dt =

∫ +∞

−∞
x(t)ϕ∗a,b(t)dt (3.2)

In which, the * is complex conjugate form. W (a, b) is wavelet coefficients when “a”

is the wavelet frequency (scale) and “b” is the difference time position. x(t) is formula of
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time t and ϕ is scaling function or the wavelet.

Figure 3.6: Wavelet transformation of a time-series
In which, “a” is frequency resolution (scale factor) and “b” is the shift coefficient. Signal is
multiplied with a wavelet function, then analysed the frequency at different times. This figure
only show one point of estimation. After the wavelet transform in coordinates W (ai, b) with
i =1, 2, 3 ... n we obtain the set of points in rows which show which frequency component
appears at the time “t”. When “b” changes with i =1, 2, 3 ... n we obtain a set of points in
columns. These values are expressed in the spectral method with the gradually bold colours
depending on the rule and frequency. Identifying the high frequency appearing at a time help
us determine the seasonality of epidemic. See Figure 3.7

The local (time specific) values are expressed in colour, where darker colours represent

a stronger frequency signal (based on the variance in the signal relative to all the other

signals). In wavelet analysis the relative strength of the frequency signal is termed the

power, and has an arbitrary scale. Since the power is represented as a spectrum of colours,

it is termed the power spectrum. Frequency signals cannot be detected with certainty at

the beginning and end of the time-series since there are insufficient comparison values

going beyond the time-series (termed edge-effects), therefore the Wavelet figure draws a

“cone of influence” in the region of the wavelet spectrum where edge-effects make the

data unreliable (Torrence and Compo, 1998). The longer the time series, the smaller
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the proportion of region that is affected by edge effects. As our time series has more

than 200 time points, edge-effects are unlikely to affect the interpretation of the data.

Wavelet analyses were performed by using the Morlet wavelet, classically used in ecology,

with a non-dimensional frequency (Cazelles et al., 2008, 2007). We used the “biwavelet” R

package to perform the wavelet analyses (Gouhier and Grinsted, 2013). A major advantage

of using the Morlet wavelet is that it is a complex one. The consequence of this property

is that the expression of the phase of the time series (i.e. its timing) is straightforward.

The use of the Morlet wavelet thus allows to calculate the phase at any point in time and

for any frequency of the signal.

Figure 3.7: Time-dependent spectral analysis of epidemiological time-series with
wavelets. Source: (Cazelles et al., 2008, 2007)
Continue from figure 3.6 for one point estimation. If the point has high power (a) then colour
code will be red and reverse with blue for low power. For n times of estimation, The wavelet
spectrum created where a band of high power (dark red) will indicate the range of coherence
or seasonal

To simplify, a local wavelet power spectrum is a matrix with a temporal and a frequency

dimensions. If we sum this spectrum over the temporal dimension we get a global wavelet

power spectrum, which is analogous to a Fourier spectrum. So Fourier decomposition can

be considered as a special case of wavelet decomposition. In our analysis, we will use

these global wavelet power spectra. In an extreme case, if sum the local wavelet power
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spectrum over the frequency dimension, we obtain back the original time series. And if we

do this summation only between two given frequency, we are filtering the time series. This

wavelet method has been successfully used to analyse a variety of non-stationary infectious

diseases time series data, starting with measles (Grenfell et al., 2001). We used wavelet

decomposition to explore the periodicity structure of all the times series (from both the

local and global power spectra), to filter them around the seasonal component (0.9 - 1.1

year band), and to compute the phase of the filtered time series. The maximum value of

the global power spectrum within the annual band (0.9 - 1.1 year) was used as a measure

of the strength of seasonality. Seasonality means the temporal structure over the period

of one year (as opposed to random noise) and should not be confused with amplitude,

as it sometimes is. Figure 3.8 shows that amplitude is a concept totally different from

seasonality: within each row the amplitudes are the same and yet the seasonalities are

totally different. There is only one other paper that quantifies seasonality of influenza this

way (Yu et al., 2013).

Figure 3.8: Seasonality versus amplitude
The first column shows perfectly seasonal signals (strictly structured in time) and the second
column shows totally random signals. The reality is between these two extremes. The first
row shows high amplitude signals and second row shows low amplitude ones
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3.4 Results

3.4.1 Data selection

Figure 3.9 shows the overall time series of ILI notifications by month from 1980 to

2010. In order to better visualise province specific patterns, the data are represented

in Figure 3.9 as a grid with provinces ordered in rows by the latitude of the population

centroid of each province, from north at the top to south at the bottom, and the number

of notifications each month colour coded from light yellow (lower number of notifications)

to dark red (higher number of notifications) with missing data represented by black.
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Figure 3.9: Raw ILI notification data
Monthly notifications range from 0 to 60000 per month and are colour coded from yellow (low)
to red (high). Black represents missing data.

Since a lot of data are missing early in the time series, we selected the optimal number

of provinces and the time frame as described in the methods. Figure 3.10 shows the

number of provinces available (A) and the number of non-missing data available (B) as a

function of year. The different lines (solid black and solid grey) show the effect of different

choices regarding the number of consecutive missing values that are accepted. In both

panels the bottom line shows the most stringent choice, i.e. For Panel A the bottom

line shows the number of time series that are included over time if any time series with
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a single missing value is removed from the data set. The next line shows what happens

when time series with 2 or more consecutive missing values are removed, and so on until

the upper-most line showing what happens when no time series is removed, regardless of

the number of consecutive missing values. In Panel B the bottom line shows the number

on non-missing data points included when any time series with a single missing value is

removed from the data set. The next line shows what happens when time series with at

2 or more consecutive missing values are removed etc.

The time period that optimizes the amount of information available in the data set,

in terms of (i) the number of time series (52 provinces), (ii) their length (216 months),

and (iii) the number of non-missing values, is from 1993-2010. Therefore we included time

series only from a point where there are no more than three consecutive missing months

of notifications. The province definition used in our analysis is thus the one of 1993.
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Figure 3.10: Selection of optimal time period for analysis

Effect of the year from which the analysis starts on the number of time series (A)
and the number of non-missing data; (B). On each panel, the different lines show the
number of consecutive missing values above which we discard the whole time series: from
1 (bottom-most line) to the length of the time series (top-most line). The lines in black
highlight the first 6 (i.e. from 1 to 6 consecutive missing values). The vertical dotted lines
materialize the province splitting events.
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Figure 3.11 shows the time series after selecting the optimal number of provinces

and the time period as described above. During the 18-year study period from 1993 to

2010, 26,023,574 cases of ILI were notified, ranging from 320,525 notifications in 1993 to

1,824,195 in 2009.
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Figure 3.11: Trimmed data
Panel A shows the selected 18 years of data represented as a grid with provinces ordered in rows
by the latitude of the population centroid of each province, from north at the top to south
at the bottom, and the number of notifications each month colour coded from light yellow
(lower number of notifications) to dark red (higher number of notifications) with missing data
represented by black. Panel B shows each individual provincial time series colour coded from
red (north) to blue (south). This colour code is also apply to other similar figure
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3.4.2 Data transformation, de-trending and normalisation

Figures 3.12 show the effect of data transformation, normalisation, and de-trending

on the data from one province. The results for each province individually are shown in

Annex B.
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Figure 3.12: Data transformation, detrending and normalisation
Panel A data after detrending and square root transformation. Panel B data after normalisa-
tion. Each individual provincial time-series is colour coded

3.4.3 Outliers

One hundred and thirty two outliers (1.17% of all data points) were detected and

checked. All outliers were checked against the hard copy data and since all were accurate

copies of the available hard copy data, they were discarded and each data point was then

interpolated from surrounding data. Figure 3.13 shows the outliers detected for province

and the time series after removal and re-interpolation of the outlying data points. See

Annex B for full pictures of all outlier of all provinces.
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Data with outlier (Panel A)
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Figure 3.13: Removing outliers, detrending, and normalising

Panel A raw data for Tra Vinh province with outliers marked. Panel B, data from
Tra Vinh province after removal of outliers, replacement of outliers by linear interpolation,
detrending and normalising Panel B.
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3.4.4 Longitudinal and elevation effects

Longitude and elevation have no clear effect on ILI (see figure: 3.16. This may be

related to the particular, almost linear, shape of the country as mentioned in chapter 1.

Viet Nam is long and narrow, with elevations from 0 to 3,000 m running mostly from an

east to west direction: latitude and altitude are two gradients that are almost orthogonal

(lying at right angles to one another).

3.4.5 Latitudinal pattern of ILI notification rates

Figure 3.14 shows the heat-map of the transformed time series for the 52 provinces

ranked from North to South by the latitude of the population centroid of each province.

ILI notifications in northern Viet Nam tend to peak in August, September, and October

whereas ILI notifications exhibit less variation throughout the year in southern Viet Nam.

The heat map therefore suggests that ILI notification is more seasonal in the northern

provinces of Viet Nam compared to the southern provinces. This is more formally tested

by the wavelet analysis (see also figure 3.15).

3.4.6 Quantifying the seasonality of ILI using wavelet analysis

Wavelet analysis of the dataset shows a clear pattern for most of northern province e.g

Hoa Binh in figure 3.15 (A) when a unclear pattern for most of southern province e.g Dong

Thap in panel B, and overall pattern in figure 3.16. Both local (see Annex B) and global

(figure 3.16) wavelet decompositions for the ILI time series of all the provinces showed a

consistent seasonality through time for the northern provinces. The strength of seasonality

in each province was quantified by the maximum value of the power between the 0.9 – 1.1

period band. In the rest of the Chapter I will refer to weak or strong seasonality according

to this power value. Figure 3.16 (B) shows that the non-northern provinces with high

strength of seasonality appear to be located in mountainous areas (figure 3.16 C). This
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Figure 3.14: Heat map of ILI notifications.

Each row of the matrix corresponds to a province (52 in total) and each column cor-
responds to a month from January 1993 to December 2010 (216 in total). The colour of each
cell shows the value of these notification z-scores, on a square-root scale for better visibility
(see the scale on the right). The rows of the matrix are arranged according to the latitude of
the population centroid of the province, as can be seen from the map on the left. On this
map, each line connecting to the matrix starts from the population centroid of the province.
On the top of the matrix is shown the time series of the detrended, centered and reduced
time series of ILI raw incidence for the province of Hoa Binh as an example. This province is
colourized in blue on the map. The red one at the bottom is for Ninh Thuan province in the
south.

suggests a role of climatic factors in explaining the observed latitudinal gradient in the

strength of ILI seasonality.
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Figure 3.15: Example of wavelet transform

Panel A: Hoa Binh province, Panel B: Dong Thap province.
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Figure 3.16: Strength of ILI seasonality.

Global wavelet power spectrum for the detrended, centered and reduced time series of
ILI raw incidence (A, one curve per province, 52 in total). The colours of the curves vary
as the value of the maximum power for a periods between 0.9 and 1.1 year. The same
colour code is used to plot the strength of seasonality on the first map (B). The second map
(C) shows elevations higher than 500 meters of altitude in dark grey. Panel (D). wavelet
transform around the band of 1 year period by latitude of provinces
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3.5 Discussion:

During the reshaping and cleaning process, the data were converted from a very noisy

dataset to one in which patterns are discernible. This process has now been automated

using an R script so that with new data or changes, we will be able to rerun the process

effortlessly. During the data selection process, we had to select the optimal cut-off year

for data analysis. Data before 1993 were omitted due to a large amount of missing data,

and if a time series had more than 3 consecutive missing data points, the earlier data

were omitted. However, before trimming the time series I spent much effort searching

other sources of data from the provinces themselves and from the Ministry of Health in

an attempt to fill in the gaps.

The results of latitude gradient’s effect on influenza-like illness force one to think about

its implications for influenza control, with particular reference to influenza immunisation.

In general, Viet Nam does not have a domestic supply of influenza vaccines for use during

seasonal spread or pandemic outbreaks, and a national candidate influenza vaccine supply

is still under development (Hoa et al., 2011). Imported influenza vaccine is not widely

used in Viet Nam since its cost is high compared to average incomes and the Vietnamese

people do not have much awareness of the availability and indications for its use. Globally,

influenza vaccine recommendations are provided two times per year, once from March to

April for the northern hemisphere season and once from August to September for the

southern hemisphere, and these recommendations are used by Viet Nam. The Viet Nam

Ministry of Health has produced recommendations on the use of influenza vaccines (Gupta

et al., 2012) but the recommendations are not based on a thorough analysis of the local

epidemiology of influenza in Viet Nam. Based on our results, it is feasible to provide

vaccine before the influenza season in the north of Viet Nam but decisions on the timing

of influenza immunisation in southern Viet Nam will be very difficult. One limitation of

this work is that the sensitivity and specificity of the ILI notification data as a marker of

influenza activity has not been established, and this is the subject of the analysis described

in chapter 5.

Our result on the seasonality of ILI incidence throughout the country is in agreement
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with what was found in Brazil by Alonso (Alonso et al., 2007), although Alonso et al.

studied pneumonia mortality patterns instead of influenza morbidity. Another difference

is that Viet Nam is located above the equator whereas Brazil is crossed by the equator. The

high power of seasonality found in the northern region of Viet Nam is similar to pattern of

timing of influenza epidemics found by Alonso in the southern region of Brazil, which has

a similar distance from equator. Alonso et al. (2007) looked at the timing and amplitude

of influenza epidemics and, as described in the methods section of this Chapter and in

Chapter 2, the amplitude can be affected by increases in awareness in the population or a

change in surveillance practices, but the seasonality power component in these cases stays

constant. Another advantage of our study is that the number of the spatial units used as

well as the duration of our study was greater compares to Alonso et al.

3.6 Conclusion

ILI in the northern region of Viet Nam has a clear seasonal pattern but it contrasts

to the southern region where seasonality is not detectable. This pattern correlates with

latitude and leads us to hypothesise that the seasonality of ILI in Viet Nam is driven

by climate factors, which also change dramatically by latitude in this long and narrow

country.
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Chapter 4

Climate association of

influenza-like illness in Viet

Nam

4.1 Introduction

In chapter 3, it was demonstrated that in Viet Nam there is a latitudinal gradient

in the seasonality of ILI notifications. Based on prior knowledge (see Chapter 2) it is

likely that seasonal changes in climatic variables are drivers of the observed periodicity

of ILI in Viet Nam. This hypothesis is supported by our finding that the seasonality

of ILI is more marked in areas of higher altitude in the southern areas of Viet Nam

compared to low altitude areas in southern Viet Nam. The observed spatial heterogeneity

of the strength of seasonality of ILI in Viet Nam offers an opportunity to assess which of

the proposed climate drivers of influenza are most strongly associated with this pattern.

Potential explanatory factors include absolute humidity, relative humidity, temperature

and sunshine (see chapter 2). Viet Nam is an appropriate country in which to test climate-

ILI associations since it is a long country spanning many latitudes, with a substantial

difference in climate between the north and south, over a small area (330,000 km2). North

Viet Nam experiences clear seasons, with cool winters and hot summers, and obvious

intermediate periods of spring and autumn. In contrast, south of Viet Nam is hot all year

round, with the seasons defined by the amount of rainfall. In this chapter I present my

work to formally test the strength of association between a range of climatic variables and

the seasonality of ILI notifications in Viet Nam.
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4.2 Materials and Methods

4.2.1 Data and transformations

Population centroids

These were calculated as described in Chapter 3.

Climate data

Monthly average climate variables from January 1993 to December 2010 were ob-

tained from the Viet Nam Institute of Meteorology, Hydrology & Environment (http:

//www.imh.ac.vn/). These data were originally obtained from the HydroMeteological

data centre (http://www.hymetdata.gov.vn/) in a hard copy report format. Data on 8

variables are collected at least once daily (normally the data are recorded 4 time a day or

continuously with data logger) on the ground at 250 meteorological stations. About 170

of the meteorological stations are surface stations, of which 122 are permanent. The other

stations are specialised stations established for specific objectives e.g. for air traffic control

or for agricultural purposes. Data on the exact coordinates of 68 Province stations with a

long time series and data on seven variables were obtained from the Viet Nam Institute of

Meteorology, Hydrology & Environment. The seven variables were monthly averages of:

daily minimum, average, and maximum temperatures (in degrees Celsius), absolute (g/L)

and relative (%) humidities. Total time of sunshine (h) and rainfall (mm) are aggregated

for the whole month. Where more than one measurement was taken per day, the daily

average was calculated. Monthly averages were calculated by averaging daily values i.e

average monthly maximum temperature is the average of the maximum daily temperature,

and average monthly temperature is the average of the average daily temperature. There

was one other variable that we considered but did not obtain which was wind speed, and

we believe that this variable does not relate much to ILI time series.

Each province was assigned to one unique climatic station. This station was selected

as the one closest to the population centroid of the province (Figure 4.1). These climate

datasets were then used for the assessment of the correlation between climatic data and

epidemiological data (see below) (seeR code in Annex D for more technical information).
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Figure 4.1: Location of meteorological stations
Position of 68 meteorological stations obtained for this study (panel A) and 47 selected for
coherence analysis (panel B)

Wavelet decomposition.

We used the same wavelet decomposition methods as described in chapter 3 to explore

the periodicity of all the climate time series. See Cazelles et al. (2008, 2007) for more

technical details.

Principal component analysis (PCA)

Principal component analysis (PCA) is a statistical technique that is commonly used

to identify patterns in data with high dimensions (Ringnér, 2008; Smith, 2002). PCA

identifies new variables (Principal Components) that best explain the variability in the

outcome measure. The PCA initially selects the single PC that explains the largest pro-

portion of the variance, and then selects the second PC, that is uncorrelated with the first

PC, which explains the next largest proportion of variability, and so on. The PCs can then

be expressed in terms of the original variables. In our data matrix, the outcome measure is

the strength (not the amplitude) of ILI seasonality and the explanatory variables are the

strength of seasonality of the seven climate factors; with the strength of seasonality quan-

tified by the maximum value of the global power spectrum within the annual band. We
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used the function “prcomp” in R (version 3.0) to perform principal components analysis

on the whole set of data matrix. See (Holland, 2008) for more technical details.

Tree regression.

In order to explore which climatic factors best explain the strength of ILI seasonality

as defined in chapter 3, we used tree regression. Tree regression is a method to make a

prediction model that can be represented as a decision tree (Loh, 2008). In tree regression

the data are partitioned at decision nodes such that the variability in the outcome variable

is minimised within each partition and maximised between partitions. Each of the terminal

nodes or leaves of the tree represents a cell of the partition, and has attached to it a simple

model which applies to all the data in that cell only. A point x belongs to a leaf if x falls

in the corresponding cell of the partition. To figure out which cell we are in, we start at

the root node of the tree, and ask a sequence of questions about the features. The interior

nodes are labelled with questions, and the edges or branches between them labelled by

the answers. Which question we ask next depends on the answers to previous questions.

Since each question refers to only a single attribute, and has a yes or no answer, e.g.

below or higher than 15 degree Celsius, out final result is robust to the specific ordering

of questions.

In order to account for the maximum number of climatic summary statistics we com-

puted the following statistics for each climatic variable: the mean, the minimum, and

maximum values, the range, the number of months below a given threshold (with the

threshold varying from the minimum to maximum value in increments of one), and the

strength of seasonality calculated from global wavelet power spectrum as explained in

chapter 3. This generated 534 climatic summary statistics that were used as explanatory

variables in a binary tree regression model with the strength of ILI seasonality as a de-

pendent variable. We used the “tree” R package to perform the tree regressions (Ripley,

2005).

56



4. CLIMATE ASSOCIATION OF INFLUENZA-LIKE ILLNESS IN VIET
NAM

Global extrapolation.

In order to extrapolate climate associations identified within Viet Nam to a global scale,

we obtained global climate data from the National Centers for Environmental Prediction

(NCEP) / National Centre for Atmospheric Research (NCAR) project (Kalnay et al.,

1996). The NCEP/NCAR project produces coarse spatial resolution (2.5 x 2.5 degree)

climatic grids globally with a daily temporal resolution. The data (Figure: 4.2 are derived

from several different sources and are integrated into a final database.

Figure 4.2: Sources of data for the NCEP/NCAR project.
Source: The NCEP/NCAR 40-Year Reanalysis Project (Kalnay et al., 1996)

Monthly mean data were obtained through Daniel Weiss over the 1993-2010 period for

3509 terrestrial pixels. Since data on absolute humidity were not available from NCEP/N-

CAR, absolute humidity was calculated from the relative humidity and the temperature,

as follows:

1. Derive the saturation vapour pressure (eS) (in mb) at temperature tC (in Celsius)
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using equation (10) from Bolton (Bolton, 1980).

eS = 6.112× e(17.67×tC)/(tC+243.5) (4.1)

2. The actual vapour pressure (eA) (in mb) was calculated by multiplying the rH (in

%) by eS from step 1:

eA = eS × rH

100
(4.2)

3. Absolute humidity (AH) in g/m3 was then calculated using the following equation:

AH =∼ 2.16674× eA

tK
(4.3)

Where the temperature in Kelvin (tK) was derived from Celsius: tK = tC + 273.15.

A constant was derived using the ideal gas law: constant = 18.01528 / 8.31446 = 2.16674

gK/J (where 18.01528 g is the molecular mass of water and 8.31446 J/mol K is the universal

gas constant)

On these global climatic variables we computed the same summary statistics as the

ones used in the regression tree. We then applied the decision rule of the regression tree

selected in Viet Nam to the global scale.
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4.3 Results

4.3.1 Geographic patterns of climate variables

Temperature

Patterns of seasonality in temperature are clear in both north and south Viet Nam but

the amplitude of the annual fluctuation in mean, maximum and minimum temperature is

clearly much greater in north Viet Nam compared to the south. In the north, temperatures

are much lower in the winter months than in the north, although summer temperatures

are slightly higher in the north, see (Figure: 4.3). The spatial variation in temperature is

also shown in figure 4.4 panel A

from Jan. to Dec.
lat

itu
de

average tem
perature

Figure 4.3: Average temperature by time and latitude. Time in months

Sunshine

Sunshine is strongly seasonal throughout the country but the north and south are out

of phase, with sunshine peaking in the summer in the north and in the winter in the south.

The mean sunshine is also higher in the south, with the minimum value in the south being

equal to the maximum value in the north. See panel B of figure 4.4.

Rainfall

Rainfall is seasonal throughout Viet Nam, with the rainfall being greatest in the sum-

mer months in both north and south but is greatest in the autumn months in central Viet

Nam. In central Viet Nam, the amplitude and the maximum value of the rainfall time
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series in much higher than in the north or the south. See panel C of figure 4.4.

Humidity

The signal for relative humidity is quite noisy, with patterns difficult to differentiate,

but a suggestion of a biannual cycle in the north, a summer peak in the south, and a

summer nadir in central Viet Nam (see figure 4.5). Relative humidity is strongly seasonal

in the south, with a peak in summer, but not at all in the north. In the centre, relative

humidity looks quite seasonal too with a peak in winter. There is however clear seasonality

of absolute humidity throughout Viet Nam, with AH peaking in the summer and lowest

in the winter. As is seen with temperature, the amplitude of the annual fluctuation of

AH is clearly much greater in north Viet Nam compared to south, with AH levels much

lower in the north than the South during the winter, but similarly high levels during the

summer. See panel D of figure 4.4.

The climate in Viet Nam is very diverse, as revealed by the variability in seasonality

of the different climatic variables, the gradient of seasonality from south to north for

temperatures and absolute humidity, the out-of-phase sunshine between the north and the

south, and even a more complex pattern for the rainfall (which peaks in summer in the

south, in autumn in the centre and back to summer in the north). Such diversity on such a

small geographic area is unusual and makes Viet Nam a perfect country to explore the link

between infectious diseases epidemiology and climatic drivers. This is reinforced by the

fact that other factors that might potentially affect the epidemiology, such as population

demographics, are quite homogeneous throughout the country.
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Figure 4.4: Temporal and spatial patterns of climatic factors.
The colours of the lines represents the latitude of the meteorological station, as coded on the
map in figure 4.5.

4.3.2 Association between ILI seasonality and climatic variables

Principal components analysis

The principal components analysis (PCA) of the climatic variables reveals that tem-

perature and absolute humidity are positively correlated and together explain around 59%

of the total climatic variance (first PC axis, figure 4.6). Furthermore, and not surprisingly,

rainfall and relative humidity are positively correlated with each other and both negatively
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Figure 4.5: Variation of climatic variables in Viet Nam over one year
from month to month: minimum, average and maximum temperatures (◦C), absolute and
relative humidities (g/L and % respectively), amount of rainfall (mm) and number of hours of
sunshine. Each line corresponds to one climatic station (68 in total) and is an average over the
1993-2010 time period. The colours of the lines represent the latitude of the meteorological
station, as coded on the map. This latter shows the locations of the climatic stations (open
circles)
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correlated to sunshine. These three variables together explain 24% of the total climatic

variance (second PCA axis). We can see further in panel B that the first PCA component

has a variance that increases from south to north. No such trend is observed on the second

PCA component (not shown).

Indeed, PCA analysis is a way to characterise the climate from multiple variables to

a simple picture. What it shows is that temperature and absolute humidity are closely

correlated, and almost independently (orthogonal) from rainfall, relative humidity and

sunshine (as expected, rainfall and relative humidity are very correlated and both are

negatively correlated with sunshine). This PCA analysis shows that we can summarise

the climate very well with temperature (or absolute humidity), (explaining 59% of the total

variance), and with a variable reflecting relative humidity, rainfall and sunshine (24% of

the total variance). Furthermore, this analysis shows that there is a strong latitudinal

gradient in the amplitude of the first PC (more than twice as big in the north as in the

south). No clear longitudinal gradient was seen. Further, no clear gradient at all was

shown on the second PC. Since we also see a similar latitudinal gradient of seasonality

for the ILI epidemiology, it does suggest that there may be a link between variables of

the first PC and ILI seasonality. And this is what will be explored by the tree regression

analysis.

Regression tree analysis

The regression tree analysis shows that the strength of the seasonality of absolute

humidity is the climatic summary statistic that best explains the strength of ILI seasonality

(figure 3.16). This result is robust to the number of explanatory variables included into

the regression tree analysis, as well as to their order of introduction. The regression tree

analysis shows that provinces with weak seasonality in absolute humidity (annual power

below a value of 17.60) have weak ILI seasonality, and provinces with strong seasonality

of absolute humidity (annual power above 17.60) have strong ILI seasonality. Figure 4.7

shows that the relationship between the two seasonalities (ILI and AH) is non-linear in

shape, reinforcing the threshold identified by the tree regression.
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Figure 4.6: Latitudinal gradient of climate seasonality.
(A): principal component analysis (PCA) of the seven climatic variables of 4.5. Sh=sunshine;
Tx=Maximum temperature; Ta= Average temperature; Tn=Minimum temperature;
Rf=Rainfall; AH=Absolute humidity; rH=Relative humidity. The first two components ex-
plain more than 83% of the total variance. Each dot corresponds to a given month, for a
given climatic station. The colour of the dots varies according to the latitude of the climatic
stations, as shown on the map showing the locations of the climatic stations. (B): relationship
between the first component of the PCA (A) and the latitude of the climatic stations. The
latitude axis of the plot also corresponds to the map on the left.
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Figure 4.7: Regression tree analysis of relationship between ILI seasonality and
climate factors.
(A): regression tree of the maximum power between periods 0.9 and 1.1 year (seasonality
of ILI), using, for the explanatory variables, the characteristics of the climatic variables, as
described in the materials and methods section. The widths of the segments are proportional
to the number of provinces. The first node discriminates the provinces for which the annual
power of the absolute humidity is below (left, 36 provinces) and above (right, 16 provinces)
a threshold value of 17.60. Node (a) discriminates the provinces for which average relative
humidity is below 77% (left) and above (right) a threshold value of 51. Node (b) discriminates
the provinces for which the range of the absolute humidity is below (left) and above (right) a
threshold value of 14.46 g/L. Node (c) discriminates the provinces for which the annual power
of the relative humidity is below (left) and above (right) a threshold value of 11.63. Node
(d) discriminates the provinces for which the number of months per year with a maximal
temperature above 26◦C is below (left) and above (right) a threshold value of 13◦C. (B):
relationship between the seasonality of ILI and the seasonality of absolute humidity. Each dot
is a province (52 in total) and the vertical dash line shows the threshold of the first node on
the regression tree (A).

Absolute humidity and ILI: dynamics and phase

The tree regression analysis reveals a strong association between the strength of sea-

sonality of absolute humidity and the strength of seasonality of the ILI time series. Here

we look at whether there is a consistent phase difference between absolute humidity and

ILI, as has been shown in temperate countries of the world where both ILI and absolute

humidity are strongly seasonal. Since a phase and thus a phase difference can be efficiently

calculated only when the signal is substantially seasonal, we show the results separately

for the provinces with strong and weak seasonality (both in absolute humidity and ILI).

Figure 4.8 shows the seasonal dynamics of absolute humidity and ILI for the northern

(left) and southern (right) provinces, showing a much stronger seasonality of both abso-

lute humidity and ILI in the north than in the south, in accordance with the result of the
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tree regression. Further, what this figure shows is that absolute humidity and ILI seems

to be almost in phase. In order to investigate more the link (and possibly the causality)

between these two dynamics, we look at the phase difference between the two time series.

Figure 4.8 shows that the peak in absolute humidity leads the peak in ILI notification by

about one month. Further, as expected, the consistency of this phase difference is much

more marked in the provinces where the seasonality of both absolute humidity and ILI

are strong.

We use latitude at 19◦N to separate north from south. In the north, humidity seems

to peak earlier than ILI, but in the south the changes in absolute humidity and ILI are

smaller and the peaks are difficult to define (Figure 4.8). Figure 4.9 investigates the phase

difference between seasonal components of absolute humidity and ILI. As expected from

the fact that both ILI and absolute humidity seasonality are much more pronounced in the

north than in the south, the phase differences between the two variables are much more

consistent both in time and space in the north (left panel of figure 4.9) than in the south

(figure 4.5, right panel of figure 4.9). Despite some temporal and spatial variability on the

phase difference in the north, we observe an average lag of one month between absolute

humidity and ILI incidence.
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Figure 4.8: Seasonalities of ILI and absolute humidity.
Normalized notification rate (orange) and absolute humidity (blue) are shown for the north
(left) and the south (right) provinces of Viet Nam. The limit between north and south is
here arbitrarily defined at the latitude of 19◦N, but the results are robust to the definition
of this limit. The lines represent the median over the 18 years of the studied period and the
shaded areas represent the inter-quartile ranges. The numbers of provinces are 21 and 31 for
the north and the south, respectively, and the numbers of meteorological stations are 32 and
35 for the north and the south, respectively.
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Figure 4.9: Lag between ILI and absolute humidity.
Differences of phase angles between the time series of ILI and absolute humidity, filtered
around the 1-year period (a negative difference thus meaning that absolute humidity is ahead
of ILI). For better visibility, the left and right panels show the 16 and 36 provinces respectively
for which the annual power of ILI are respectively above and below the arbitrary threshold of
4 (see figure 4.5. The colour coding is the same as in figure 4.5)

4.3.3 Extrapolation to the global scale

Results from our analysis on Vietnamese data show that the strength of absolute

humidity seasonality is the variable that best explains the strength of ILI seasonality:

with strengths of absolute humidity seasonality below and above a threshold power of

17.60 predicting weak and strong ILI seasonality respectively. We retrieved from the

NCEP/NCAR project monthly time series of absolute humidity (1993 2010) from all the

3509 2.5 x 2.5 degree terrestrial pixels around the world. For each of these time series we

computed the strength of absolute humidity seasonality globally as explained in chapter 3

(figure 4.10 A) from which we predicted the strength of ILI seasonality from the decision

rule concluded from the tree regression (figure 4.10 B, strong in green, weak in red).

4.4 Discussion

Our study included time-series from 52 provinces over an 18 year period with a high

spatial (province level, ca 5000 km2) and temporal (monthly aggregated data) resolution

which to our knowledge makes this the highest resolution of data yet published in our

region. Furthermore, Viet Nam has good conditions in which to test hypotheses about

potential links between infectious diseases epidemiology and climatic drivers because its

high diversity of climate (with two batches of climatic variables orthogonal with each
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Figure 4.10: Global seasonality of absolute humidity.
(A): seasonality of monthly time series of absolute humidity calculated with a 2.5o x 2.5o

spatial resolution (see Materials and Methods). Colour code is the same as on figure 4.7B. (B):
discrimination between power above (green) and below (orange) the threshold value of 17.60
(see figure 4.7). From figure 4.7, green colour would predict strong seasonal ILI epidemiological
dynamics and orange colour would predict non-seasonal ILI epidemiological dynamics.
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other) on a small, long but narrow area (see chapter 1). Our study provides an advance

on the approach of Shaman et al 2010 who analysed the onset of epidemics in a temperate

country (USA) where the influenza dynamics are very seasonal (Shaman et al., 2010).

Two studies to date, from Brazil and China, have looked at the strength of seasonality

as we did (Alonso et al., 2007; Yu et al., 2013). Both of them found latitudinal gradients

of seasonality, but only Yu et al. (2013) tried to explain these gradients with climatic

variables. However, the authors did not include absolute humidity in their analysis.

The climatic data of Viet Nam show, on an area of moderate size (330,000 km2),

a great diversity of seasonality for the different climatic variables. Temperatures and

absolute humidity peak in the summer time with a gradient of amplitude from the south

to the north. Relative humidity has more seasonality in the south than in the north

with the peaks in the summer for the south. The gradient of its amplitude is in reverse

that increases from the north to the south. The peak in hours of sunshine shifts from

the winter time in the south to the summer time in the north. The amplitude of these

seasonality are similar in both the north and the south but the average is higher in the

south than in the north (peak value in the north is about the value as trough value in

the south). Rainfall seasonality is more complicated, with a peak shift from the summer

time in the south to the autumn in the centre and back to the summer time in the north.

This is an exceptional diversity of both amplitude and timing of the seasonalities of the

different climatic variables, which makes Viet Nam an ideal candidate country to test

the relationships between climatic variables and infectious diseases transmission. This is

confirmed by figure 4.7 which shows that the variability of absolute humidity seasonality

observed in Viet Nam is similar to the variability of absolute humidity seasonality seen

at a global scale. Such a diversity of climates in a small and highly populated area is an

asset compared to world-scale comparative studies, for which factors other than climate

(demography, behaviour, etc.) may vary substantially and act as confounding factors.

Our study is an independent epidemiological confirmation of the role of absolute hu-

midity in driving the epidemiology of influenza first identified by Shaman et al. (2010) and

Shoji et al. (2011). Actually, our results on the phase of the ILI and absolute humidity

(one month delay) do not contradict results of (Shaman et al., 2010) and (Tamerius et al.,
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2013) since we are not looking at the same thing, the onset of epidemics. Shaman et al

are studying time series in a temperate part of the world where influenza epidemiology

is very seasonal and to answer the question “what climatic factors trigger an epidemics

every year?”. The conclusion of Shaman et al. (2010) is that a drop in absolute humidity

triggers epidemics in the temperature region. Tamerius et al. (2013) identifies two types of

environmental conditions associated with epidemics: “cold-dry” and “humid-rainy”: “For

sites where monthly average specific humidity or temperature decreases below thresholds

of approximately 11-12 g/kg and 18-21◦C during the year, influenza activity peaks during

the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal

levels. For sites where specific humidity and temperature do not decrease below these

thresholds, seasonal influenza activity is more likely to peak in months when average pre-

cipitation totals are maximal and greater than 150 mm per month” (Shaman et al., 2010).

We are looking at time series in a tropical part of the world where the seasonality of in-

fluenza epidemiology appears to be highly variable. The question we ask is “what climatic

factors explain the observed gradient of seasonality in influenza epidemiology?” and the

result leads to absolute humidity seasonality.

Investigation of the relationships between climatic variables and influenza transmission

is usually done by testing each potential climatic variable in turn and comparing the fits.

An example is the reanalysis by Shaman and Kohn (2009) of the data of Lowen et al.

(2007), thereby proposing absolute humidity as a better predictor of influenza virus trans-

mission than relative humidity. Such investigations involve different tools such as linear

regression, generalised linear models, or even mathematical modelling. However, whatever

the framework, interactions and colinearities between potential explanatory variables are

rarely accounted for. This poses a problem given that the different climatic variables are

highly collinear (see for example figure PCA). This issue questions the validity of com-

paring different studies with different sets of potential explanatory variables and different

ways of dealing their interactions and colinearities. As an example, our analysis in Viet

Nam is very similar in spirit to the one recently published by Yu et al. (2013) in China.

Using generalised linear modelling they show that their observed latitudinal gradient of

influenza seasonality is best explained by temperature and hours of sunshine. However,
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their analysis did not test the effect of absolute humidity, which makes their result dif-

ficult to compare to our study, and also to previous work showing the effect of absolute

humidity (e.g. Shaman et al. (2010) in the United States). This calls for the grouping

of data from different sources as initiated by Tamerius et al. (2013). However the global

study of Tamerius et al. (2013) classified the dynamics of influenza epidemics as annual

or biannual, and did not look at the strength of seasonality as we and others have done

(Alonso et al., 2007; Yu et al., 2013). Tamerius et al. (2013). Whilst we could compare

our extrapolation, approximating biannual epidemics to less seasonal ones, with the anal-

ysis of Tamerius et al. (2013), the comparison may be a little stretched, and it would be

more robust to calculate the strength of influenza seasonality in Tamerius’s database and

compare this to our global extrapolations.

The presence of an association between absolute humidity and ILI in the sub-tropics

is a novel finding. The tree model that we used to investigate the relationships between

ILI seasonality and the climatic variable is a simple binary recursive partitioning method

and thus allows the detection of links between a response variable and a number of po-

tential explanatory variables when these latter can be numerous and when the shapes of

the relationships can be non-linear and very complicated. These properties allowed us to

test as many summary statistics of climatic time series as possible and to detect the most

explanatory ones. It also allowed to detect effects that are more threshold effects than

continuous ones. For this reason we think that this tree model technique is well suited to

the detection of the most relevant explanatory variables. The exact relationship between

explanatory variables and response variable can then be refined with other techniques

such as generalized linear or non-linear models. Our analysis revealed a very non-linear

relationship between the seasonality of ILI and the seasonality of absolute humidity that is

almost a threshold effect. Whether this threshold effect emerges from the non-linearity of

the transmission process (as in Dushoff et al. (2004)) or rather from the nonlinearity of the

effect of absolute humidity on virus transmission (as in Shaman and Kohn (2009)) would

require the development and analysis of a mathematical model of influenza transmission

in which the effect of the seasonality of the force of infection on the seasonality of the

incidence could be investigated controlling for all other factors (such as the amplitude or
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variance of the force of infection). This will be the focus of further study. The second

unusual observation is that in northern Viet Nam the correlation between ILI and abso-

lute humidity is positive (in that ILI peaks are associated with AH peaks with a lag of

one month), which contrasts with the negative correlation observed in temperate regions.

Clearly, we need to be careful interpreting this result because as mentioned above, our

data are ILI, not true influenza which may contribute only around 20% of the total cases

of ILI (see chapter 5 result) and (Nguyen et al., 2009).

A major limitation of our study is the fact that we do not work on influenza data

but on ILI data. This is particularly a limitation in the tropical countries where ILI does

not always correlate well with influenza (Khamphaphongphane et al., 2013; Nguyen et al.,

2009). Thus our results should be interpreted more in terms of respiratory disease than

specifically influenza. The next appropriate steps from here to understand the potential

climatic drivers of influenza transmission would thus be (i) analyses of confirmed influenza

cases as well as cases confirmed to be caused by other respiratory viruses, (ii) an analysis of

these different viruses epidemic dynamics to determine if immunological interference plays

a role, and (iii) the inclusion of climate variables and school-term into this combined system

to determine how strongly these extrinsic factors influence disease dynamics. For the first

step I have conducted the analysis presented in chapter 5 to examine the relationship

between ILI and influenza activities. A further limitation is that AH is influenced by air

pressure, and therefore the altitude of stations may have an affect, for which we were not

able to account. Even though we used population centroids to identify the meteorological

station closest to the main population centres, it is likely that data from one meteorological

station does not fully reflect the actual climate of the province.

For southern Viet Nam and the majority of central Viet Nam, climate-ILI associations

cannot be detected because of the weak seasonality of ILI case reporting. In this sense,

the ILI pattern in southern/central Viet Nam is similar to that of other tropical regions,

which exhibit either multiple peaks per year or unpredictable disease patterns. It is these

regions whose influenza dynamics have become of interest over the past decade due to the

possibility that low-level but long-term influenza persistence in tropical countries may cre-

ate optimal conditions for generating immune-escape variants that can spread worldwide
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(Adams and McHardy, 2011; Boni et al., 2006; Rambaut et al., 2008; Russell et al., 2008a;

Viboud et al., 2006a). Despite the importance of understanding the tropics and their role

in global influenza dynamics, high-quality influenza reporting time series in tropical Asia

remain rare with the exceptions of Hong Kong (Yu et al., 2013), Singapore (Doraisingham

et al., 1988), Thailand (Chittaganpitch et al., 2012) and recently Viet Nam.

Since our study is one of the first to quantify the seasonality of ILI and climate factors,

we did not have any prior expectations about the explanatory power of specific factors.

The finding of a single strong explanatory variable was surprising, as was the output of

our world map, which superficially appears to agree with published data (Bloom-Feshbach

et al., 2013; Tamerius et al., 2010, 2013) for many regions. This result also points out that

we need to run more investigations to understand the role of AH and other factors on ILI

in general and influenza in particular. One may comment when they see the global figure

that their country/region has seasonality which it is not shown in the map. However, the

data have 2.5◦× 2.5◦ spatial resolution, which may be too coarse for some relatively small

areas e.g some coastal area or even a country like Singapore or Brunei (less than 1◦ × 1◦

spatial resolution). That may cause some loss of detail since a large area (about 63756

km2) becomes one small square in the map, the seasonality of a specific region can be

diluted by nearby regions if it not large enough. This is probably the case in Southeast

Asia that is very insular, as well as in New Zealand or on the coast of Australia. Secondly,

aH is just one factor, the other factors that may not show strong effect in Viet Nam

setting but may play a certain level of significant in other country. A full model of factors

could help explain the difference showed in figure 4.10 and the seasonal observed world

wide. One another reason is the effect that may happen when a locality is highly linked

(by human movements) to another locality of a very different climatic set-up. In that

case, the influenza epidemiology may be very much influenced by distant climates. This is

probably what happens on the US west coast and in western African. However, even the

fit between our model prediction and actual data is not perfect, what is really surprising

is that, for most parts of the world, the fit is doing rather well. We have good agreement

at the global scale from just an extrapolation of what is observed in Viet Nam. This was

rather unexpected and can probably be explained by the rich diversity of climates in Viet
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Nam, that seems to represent a substantial proportion of the world’s diversity of climates.

The main finding from our time series analysis on subtropical and tropical Viet Nam

is that ILI seasonality is most closely associated with AH seasonality. The strength of AH

seasonality seems to correlate well with ILI seasonality in other parts of the world where

both climate and influenza data are available, but the most surprising fact about this

association, as can be seen in northern Viet Nam, is that AH and ILI can correlate either

positively (this study) or negatively (other studies). If positive AH-ILI associations are

seen in other tropical or sub-tropical climates, then we may have to revisit our analyses

of these climate associations to determine, if absolute humidity is controlled for, which

other climatic factors have the strongest effects on ILI of influenza incidence. Additionally,

we may want to consider that non-climatic factors may have an important influence on

influenza dynamics. This underscores the need for continued future studies on seasonal

patterns of influenza transmission in different regions of the world.

Finally, since ILI notification and influenza activity do not always correlate well in

the tropics, a critical area of future research must include the study of other respiratory

viruses in Viet Nam to understand the varying components that make up the ILI time

series signal presented here. In chapter 5, I examine the association between confirmed

influenza and ILI notifications.

4.5 Conclusion

Our analysis shows that in Viet Nam the strength of ILI seasonality is best explained

by the strength of AH seasonality. The nonlinear relationship between ILI and AH sea-

sonality could be due either to nonlinearity of the transmission dynamics or to a threshold

effect of AH on ILI transmissibility. A mathematical model will help to assess which hy-

pothesis is more likely. Validation of the global extrapolation of our results is required,

but nevertheless contributes to our under-standing of ILI seasonality around the world.
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Chapter 5

Synchrony of ILI and sentinel

virological surveillance data in

Viet Nam

5.1 Introduction

As mentioned in the previous chapter, influenza burden has been defined differently in

temperate and subtropical/tropical regions (Gleeson et al., 2005; Lee et al., 2009; Neuzil

et al., 2000; Nicholson et al., 2003; Wenger and Naumova, 2010; Wong et al., 2006; Yang

et al., 2008). In Viet Nam, influenza H1N1 was changed from a category B (dangerous) to

a category A (very dangerous) infectious disease Ministry of Health (2009), and the action

showed the importance of influenza surveillance, which reflects the World Health Organi-

zation (WHO) Global Agenda on Influenza (Stohr, 2003). The limitation of the routine

ILI surveillance system as described in chapters 2-4 is that it is based on non-specific symp-

toms, that are common in influenza infection but also infections caused other pathogens.

This reduces the reliability of using increased consultation rates for ILI as a signal for in-

fluenza epidemics. In addition, it has been reported that none of the ILI symptoms, except

for possibly fever, can reliably differentiate influenza infections from those caused by other

respiratory pathogens (Navarro-Maŕı et al., 2005). Sentinel site surveillance with labo-

ratory diagnostics can provide more accurate information about influenza virus activity

than syndromic surveillance, and it has been implemented in parallel with ILI surveillance

in many regions (Beckett et al., 2004; Jian et al., 2008; Meerhoff et al., 2004; Nguyen

et al., 2009; Paget et al., 2007; Torner et al., 2012; Yang et al., 2008; Zaman et al., 2009).

Clearly, sentinel surveillance with laboratory confirmation takes more time and requires

75



5. SYNCHRONY OF ILI AND SENTINEL VIROLOGICAL
SURVEILLANCE DATA IN VIET NAM

a larger budget, which makes it to be restricted in scale with relatively smaller numbers

of patients tested, and with the primary aim being the detection of genetic and antigenic

changes of circulating strains. Furthermore, in many regions of Viet Nam, there is no lab-

oratory surveillance at all, thus emphasizing the need for validated alternatives. Previous

studies on the predictability of influenza activity from clinical surveillance of ILI mainly

focused on the sensitivity and specificity of case definitions for ILI in laboratory-confirmed

influenza infection (Call et al., 2005; Monto et al., 2000; Ohmit and Monto, 2006; Thursky

et al., 2003). One method to test the predictive value of ILI for influenza activity is to

examine whether increases in ILI consultation rates in clinics precede or parallel increases

of virologically-confirmed influenza virus activity. In temperate regions, these two quan-

tities do correlate positively (Earn et al., 2002). However, in the tropics and subtropics,

influenza virological surveillance data seems to exhibit an irregular seasonality, with un-

predictable peaks appearing during winter to summer (Viboud et al., 2006b), while ILI

rates tend to be constant and sometimes flat. As a result, the same technique that I use

in chapter 2 and 3, the wavelet analysis, may be usefully applied to this problem. In this

chapter, we use data from the ILI sentinel surveillance system in Viet Nam as described

in Chapter 4, and the sentinel surveillance of virologically confirmed influenza activity as

described below. I attempt to quantify the synchrony between ILI consultation rates and

the virus activity.

5.2 Materials and methods

5.2.1 The Data

The data comes from Viet Nam’s sentinel influenza surveillance system, which is a

national network of sentinel hospitals. The number of reporting hospitals has however not

remained constantly each year. The system started with seven sentinel sites on January

1, 2006 and expanded to 15 sites by July 2007. The sentinel sites are outpatient clinics

located at two central referral hospitals in Hanoi (the North) and two in Ho Chi Minh City

(the South), two provincial hospitals, seven district hospitals and two urban polyclinics.

(Figure: 5.1) (Nguyen et al., 2009). Sites were selected to include adult and paediatric

76



5. SYNCHRONY OF ILI AND SENTINEL VIROLOGICAL
SURVEILLANCE DATA IN VIET NAM

patient populations in four major geographic (the north: 7 sites; the south: 4 sites; the

central coastal: 3 sites; the central highlands: 1 site) and different ecological regions

(temperate, tropical, highlands, Mekong River Delta and Red River Delta) of Viet Nam.

NIHE and the 3 other regional hygiene and epidemiology and Pasteur institutes in Viet

Nam provide epidemiological and laboratory diagnostic support to surveillance activities

at sentinel sites within their respective regional jurisdictions.

All specimens from the sentinels are sent to regional laboratories for testing and results

are administered overall by the National Institute of Hygiene and Epidemiology (NIHE),

MOH, Ha Noi.

seven sentinel sites on January 1, 2006 and expanded to 15 sites by July, 2007.The sentinel sites 
are outpatient clinics located at two central referral hospitals in Hanoi (North) and two in Ho Chi 
Minh City (South), two provincial hospitals, seven district hospitals and two urban polyclinics. (Fig. 
1) (Nguyen et al., 2009). Sites were selected to include adult and pediatric patient populations in 
four major geographic (North: seven sites; South: four sites; Central Coastal: three sites; Central 
Highlands: one site) and different ecologic regions (temperate, tropical, highlands, Mekong River 
Delta and Red River Delta) of Vietnam. NIHE and the three other regional hygiene and 
epidemiology and Pasteur institutes in Vietnam provide epidemiological and laboratory diagnostic 
support to surveillance activities at sentinel sites within their respective regional jurisdictions. 

All specimens from the sentinels are sent to regional laboratories for testing and result is 
administered overall by the National Institute of Hygiene and Epidemiology (NIHE), MOH, Hanoi.  

 

Fig.  1.  Map of Vietnam with national influenza surveillance system sites. 

Each sentinel site collected data each weekday on the total number of patient visits and the total 
number of visits for influenza-like illness (ILI), using the WHO case definition of: sudden onset of 
fever (temperature >38 °C) AND either sore throat or cough in the absence of other diagnoses 
(WHO, 1999). Demographic and epidemiologic data and a throat swab were collected at each site 
from the first two patients identified each day with ILI and illness onset <3 days earlier. Throat 
swab specimens were stored at each surveillance site at 4 °C and sent twice a week to a regional 
laboratory, where influenza testing was performed weekly or specimens were stored at −70 °C for 
later testing. All specimens were tested for influenza A, B, H1, H3 and H5 by conventional reverse 
transcription polymerase chain reaction (RT-PCR) or real time RT-PCR (rt RT-PCR) using primers, 
probes, and reagents recommended by the CDC and the WHO. Anonymous laboratory testing 
results and epidemiological data were entered into a database at NIHE. Specimens that tested 
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Figure 5.1: Location of national influenza surveillance system sites.

Each sentinel site collected data every weekday on the total number of patient visits

and the total number of visits for influenza-like illness ILI, using the WHO case definition

of: (1) sudden onset of fever (temperature >38◦C) , and (2) either sore throat or cough,

and (3) an absence of other diagnoses (WHO, 1999). Demographic and epidemiological

data and a throat swab were collected at each site from the first two patients identified

each day with ILI and illness onset fewer than three days earlier. Throat swab speci-

mens were stored at each surveillance site at 4◦C and sent twice a week to a regional
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laboratory, where influenza testing was performed weekly or specimens were stored at

−70◦C for later testing. All specimens were tested for influenza A, B, H1, H3 and H5

by conventional reverse transcription polymerase chain reaction (RT-PCR) or real time

RT-PCR (rt RT-PCR) using primers, probes, and reagents recommended by the CDC and

the WHO. Anonymous laboratory testing results and epidemiological data were entered

into a database at NIHE. Specimens that were tested positive for influenza by RT-PCR

at NIHE and approximately 30% of the influenza-positive specimens from the three other

regional laboratories were inoculated onto MDCK cell culture for influenza viral isolation

at NIHE’s influenza laboratory, a WHO designated National Influenza Centre. Influenza

A viral isolates that were not able to be subtyped and a subset of type A and B isolates

were sent to the CDC for confirmation and strain characterization. CDC characterized

a subset of influenza viruses isolated in Viet Nam by hemagglutination inhibition using

ferret antisera.

5.2.2 Analysis

Data were analysed by descriptive statistics using R and MATLAB. The number of

total patient visits and ILI cases and percentage of ILI cases testing positive for influenza

at each sentinel site were analysed over time. Data were compiled through weekly in-

fluenza virus identification in nasal-pharynx and throat systematic sampling (2 first ILI

consultations per day per site), and incidence of ILI consultation reporting by the same

site. In the analysis, data were presented by individual site but we also merged data from

sites in the same region to increase the power to detect patterns. Each sentinel site was

assigned a target number of patients to recruit, distributed into five age groups 0-4, 5-14,

15-24, 25-64 and older than 64 years. Since the population structure of subjects recruited

is based on quota sampling from the sentinel sites, it does not reflect the real population

structure. In the descriptive part of the results, the raw data are presented as well as the

results adjusted for age structure. I adjusted the positivity rate for each population age

group by multiplying the proportion of samples positive by the proportion of the total

population represented by that age group, and then summing the products to derive an

overall age-adjusted positivity rate.
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We used the wavelet transform as described in chapter 3 and 4. The coherence between

two time-series (ILI and positive rate) is used as an exploration of periodic structure of

all the times series. High coherence suggests the capability of one time series to predict

the other one (Grinsted et al., 2004). We then filtered the time series around the seasonal

component (0.9 – 1.1-year band), and computed the phase of the filtered time series. By

calculating the phase difference from wavelets calculated for two timeseries, we were able

to quantify the lag between the two (Grinsted et al., 2004).

5.3 Results

From January 1, 2006 through December 31, 2012, a total of 3,914,834 patient visits

were recorded at the 15 sentinel sites. Of these, 449,907 (11.5%) were patient visits for

ILI. Eight percent (37,744) of those with ILI were sampled and tested for influenza; 20.8%

(7849) of those tested were positive for influenza by RT-PCR. Fifty one percent of the

ILI cases tested for influenza were male. The median age of tested cases was 9 years

and the mean age was 17.6 years (range: 1 month–94 years). Sixty one percent of tested

cases and 63.8% of influenza-positive patients were among children aged <15 years old

(Table 5.3). The highest proportion of ILI cases that tested positive for influenza was

among persons aged 5–14 years (29.1%) and the lowest proportion was among persons

aged >64 years (11.5%). When adjusted for age of the sampled population compared

to the general Vietnamese population, the overall proportion of influenza positives was

20.4%. Influenza viruses circulated throughout Viet Nam during 2006–2012 with more

than 10% of ILI cases testing positive each month except for 7 of the 84 months during

the surveillance period (Oct 2006, Dec 2006, Sept 2007, Feb 2009, Jan-Feb 2010 and May

2011) (Figure: 5.3). Influenza A viruses, including influenza A subtypes, and influenza B

viruses peaked during different periods. After October 2009, A/H1N1 was fully replaced

by the A/H1N1/2009 pandemic virus and A/H1N1/2009 began circulating in a manner

similar to seasonal influenza (i.e. the previous 1977-lineage A/H1N1).
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Table 5.1: ILI surveillance data by year

Influenza-like illness
(ILI) surveillance

2006 2007 2008 2009 2010 2011 2012

Total sites 7 15 15 13 11 13 13
Total outpatient
consultations

688,960 489,373 649,096 774,209 560,247 425,480 327,469

Total ILI patients 123,460 60,806 74,716 88,711 42,139 41,418 18,657
Total ILI samples
tested

4,641 6,459 6,994 7,380 4,398 4,444 3,433

Total samples
influenza positive (%)

947 1,170 1,493 1,935 979 651 674
(20.4%) (18.1%) (21.4%) (26.2%) (22.3%) (14.7%) (19.6%)

Influenza  viruses  circulated  throughout   Vietnam  during 2006–2012 with more than 10% of ILI 
cases testing positive each month except for  7 of  the 84  months during the surveillance period 
(Oct 2006, Dec 2006, Sep 2007, Feb 2009, Jan-Feb 2010 and May 2011) (Fig. 2a). Influenza A 
viruses, including influenza A subtypes, and influenza B viruses peaked during different periods. 
After October 2009, A H1N1 was fully replace by AH1N1 09 Pandemic and A H1N1 P 09 acted as 
seasonal influenza which is similar to previous A H1N1. 

 

Table 1. ILI surveillance data by year  
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Figure 1: ILI sample collected by age group and year 

Table 2.Results of tested ILI samples, by influenza virus subtype from 2006 to 2012 
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Figure 5.2: ILI sample collected by age group and year

Table 5.2: Results of tested ILI samples, by influenza virus subtype from 2006 to 2012

RT-PCR results 2006 2007 2008 2009 2010 2011 2012 Total (%)

Negative 3,694 5,289 5,501 5,445 3,419 3,793 2,759 32,858 (79.2)
A/H1 574 16 643 63 0 0 0 1296 (3.1)

B 315 274 618 452 505 174 398 2989 (7.2)
A/not sub-typed 2 1 4 0 0 1 0 8 (0.02)

A/H3 56 876 225 717 379 20 267 2844 (6.9)
A/H3&B 0 3 1 7 1 0 0 15 (0.04)

A/H1N1pdm09 0 0 0 696 94 455 9 1466 (3.5)
A/H1N1pdm09 & B 0 0 0 0 0 1 0 5 (0.01)

Total Tested 4,641 6,459 6,994 7,380 4,398 4,444 3,433 44,208 (100)

80



5. SYNCHRONY OF ILI AND SENTINEL VIROLOGICAL
SURVEILLANCE DATA IN VIET NAM

Table 5.3: Distribution of ILI and tested cases by age

ILI
consultation

ILI
tested

%
tested

%
Positive

Population
2009

Adjusted
for popula-
tion

< 5 year 215,017 13,470 35.68 16.7% 7,034,144 1.37%
5-<15 year 84,101 9,459 25.06 29.1% 13,959,115 4.73%
15-<25 year 42,025 4,405 11.67 23.4% 17,396,769 4.74%
25-<65 year 79,170 9,228 24.45 18.1% 41,942,170 8.86%
65+ 29,566 1,187 3.14 11.5% 5,514,799 0.74%

Total 449,879 37,749 20.4%
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Figure 5.3: Proportion of swabs that are influenza positive by time (monthly)
The opacity around each line is 95% confidence interval of the proportion. In panel A of this
figure, the blue colour combines both A/H1N1 and A/H1N1/2009
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Figure 5.4: Number of sites and completeness of data collection, by week.
Each ◦ is equal to one week of data, the longer the break point the more missing data.

Individual hospital reports, missingness, and virological Confirmation Trends

Due to poor performance, some sites were closed during the project (table 5.1, figure

5.5 to 5.8 and figure 5.3) which makes their time-series less valuable. Missing values also

appear during the end and the beginning of the year due to budget constraints (figure

5.4). Despite these limitations in the data, we try to determine whether there is periodic

behaviour in the data with a one year cycle. Figures 5.5 to 5.8 show the PCR positive

proportion by site and by region. These figures show weekly PCR positivity rates, and

only rates greater than 25% are displayed, showing the times when positive rate were

higher than the average positive rate. Although highly qualitative, some patterns may be

seen in these figures, for each site in the north (with the exception of Kien Xuong), there

seems to be higher influenza activity from June to October during the period 2006 to

2008. When H1N1/2009 arrived in the summer of 2009, the picture of influenza activities

changed to an earlier onset, which somehow interrupted the previous seasonal pattern.

A similar picture, but with less certainty around the peak summer period, is seen in the

highland provinces (Buon Ma Thuot), in line with the findings from chapter 3 that highland

seasonal ILI patterns are similar to northern seasonal ILI patterns. The situation for sites

in central Viet Nam is different from the north and south, as influenza confirmation occurs

throughout the year. Southern Viet Nam shows a high proportion of influenza during the
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Figure 5.5: PCR positive proportion (>25%) by week for all northern sites.
Each ◦ is equal to one week of data. The size of the circle represents the proportion of samples
positive (only weeks for which the PCR positivity rate is higher than 25% are shown on the
graph. If the PCR% is lower than 25% then there is a blank white space in the graph). Grey
squares are missing data.
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Figure 5.6: PCR positive proportion (>25%) by week for all central sites.
Each ◦ is equal to one week of data. The size of the circle represents the proportion of samples
positive (only weeks for which the PCR positivity rate is higher than 25% are shown on the
graph. If the PCR% is lower than 25% then there is a blank white space in the graph). Grey
squares are missing data.
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Figure 5.7: PCR positive proportion (>25%) by week for all southern sites.
Each ◦ is equal to one week of data. The size of the circle represents the proportion of samples
positive (only weeks for which the PCR positivity rate is higher than 25% are shown on the
graph. If the PCR% is lower than 25% then there is a blank white space in the graph). Grey
squares are missing data.
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Figure 5.8: PCR positive proportion (>25%) by week for all region and all site.
Each ◦ is equal to one week of data. The size of the circle represents the proportion of samples
positive (only weeks for which the PCR positivity rate is higher than 25% are shown on the
graph. If the PCR% is lower than 25% then there is a blank white space in the graph). Grey
squares are missing data.
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rainy the season, from April to November.

5.3.1 Regions Reports and Virological Confirmation Trends.

Since the results from individual hospital are noisy and based on limited samples, the

aggregated data from all sites from one region are a better illustration of regional in-

fluenza dynamics. Figure 5.8 shows PCR positive confirmations for the northern, central,

and southern regions as well as the whole of Viet Nam. The northern data show a period

of more than one year with influenza shifting to later and later epidemic onsets until the

pandemic H1N1/2009 arrives, changing the pattern of epidemic dynamics. This is perhaps

one of the most important features of pandemic dynamics to study, but with only three

years of data prior to the pandemic, we cannot show with certainty that the epidemic dy-

namics significantly changed. Central Viet Nam and the highlands show influenza activity

throughout the year, and it is difficult to see any clear consistent pattern. Southern Viet

Nam shows a spring and early-summer epidemic pattern, but it is clear the H1N1/2009

pandemic interrupted the dynamics temporarily. The unusual feature of the dynamics in

the south is that they span both the dry and rainy season.

5.3.2 Do the data show influenza seasonality in Viet Nam?

We start with simple Fourier Analysis (see equation 5.1), see figure 5.9.

y = c0 +

8∑
k=1

ak sin(kωt) + bk cos(kωt) (5.1)

After fitting a standard Fourier series to the PCR positivity rates, allowing up to

eight terms, we find that the coefficients of the annual component of the Fourier series is

close to zero and statistically not significantly different from zero. The bars in this figure

show the 95% confidence intervals, and the numbers above the bars show the inferred

period (in months) that was closest to one year. Hence, the seasonal picture of influenza

dynamics is not straightforward, as the pattern is not as regular as the patterns we see

in temperate countries with wintertime influenza. Nevertheless, we can still attempt to

link the pattern of influenza positivity to ILI reporting (chapters 3 and 4) as the ILI
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reporting was not perfectly seasonal either, especially in southern Viet Nam. In southern

Viet Nam in particular, there is a possibility that neither influenza nor ILI are seasonal,

but nevertheless that they do correlate with each other.

Figure 5.9: Standard Fourier fit to PCR positive rate.
The numbers noted by the text above the bar show the exact values of the period (in months)
for the Fourier coefficients of terms that are closest to a frequency of 12 months. The left bars
show the ak coefficient (for sine) and the right bard show the bk coefficient (for cosine) (see
equation 5.1)

5.3.3 Synchrony between ILI consultation and PCR positive rate

Patterns of coherence were observed between ILI consultation rates and virus activity

at both the annual and semi-annual cycles (Figure 5.10). Those patterns were observed

in both northern and southern part of Viet Nam. The significant coherence at one year

cycle throughout the whole period but from 2010-2012 the semi-annual also have high

coherence.

Since the data are noisy with some missingness, as mentioned above, we applied a

detrending and transformation similar to what was done in chapter 3 and 4. This gives

us a result that ILI and influenza positive rate are coherent at the one-year age-band

(Figure 5.10). What we would like to analyse now is the lag between oscillation of ILI and
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Figure 5.10: Wavelet analysis for the weekly proportions of specimens positive
for influenza.
Panel A shows the coherence between ILI consultation after transform and detrend and PCR
positive rate in the northern sites. Panel B shows the same coherence for the southern sites.
The cone of influence (broken white line) indicate the region without edge effects. The power
values were coded from dark blue for low power to dark red for high power as shown in the
colour bar on the right.
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Table 5.4: Monthly averages of influenza isolation proportions and ILI consulta-
tion rates for whole country, 2006-2012

month % positive % ILI/all consultations

1 18.11 11.90
2 19.33 12.83
3 18.70 14.67
4 18.24 12.98
5 24.10 11.72
6 24.99 11.95
7 25.66 10.74
8 22.60 10.85
9 20.91 10.39

10 19.43 10.90
11 20.42 10.05
12 13.97 10.60

oscillations of influenza activity. Filtering the data using the power band of 0.9-1.1 years,

we calculate the phase difference. The result is shown in Figure 5.11.

We see a synchrony between ILI consultations and influenza positivity rates, that is

clearest from late 2007. The larger phase difference at the beginning and end of the times

series is probably a result of inconsistent data collection and/or drop out of sites. We

also conducted phase analysis by age group, by virus subtype and by region. Children

aged from 0-15 have higher phase difference at the beginning and end (up to half a year

of lag) than adults and age group 65+ have the smallest phase difference. Even if we did

transform and detrend data, the large phase difference of small children group make the

phase difference in all-age group. Take into account that the young children group mainly

come from National Paediatric hospital (account for about 3/4 of total ILI at first year), we

decided to remove data from the National Paediatric Hospital in Ha Noi data, where in the

first and second year they recorded a very large number of ILI consultations (from 4 clinics

in one hospital) which were unrelated to the sample collection site (only one clinic in the

hospital). The results are shown in Figure 5.12 and 5.13, which show the relationship more

clearly. The average phase difference between ILI consultation and positive proportion is

around 2 week (1.6-3.8). The ILI consultations increase first, followed by an increase in

the proportion of ILI cases that test influenza positive.
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5.4 Discussion

The overall positivity rate for all sites of influenza virus (types A and B) was signif-

icantly higher in the age group of 5-14 than in the other age groups (chi-square tests;

P<0.001). This was also been observed by other authors Reina et al. (2009); Torner et al.

(2012). Furthermore, several studies also found out that school and pre-school children

have an important role in transmitting infection to others (Cauchemez et al., 2008). The

results are also in agreement with the observed pattern of social contacts Viet Nam, which

show that the age group of 5-14 has higher contact activities compared to other groups

(Horby et al., 2011).

Unsurprisingly when H1N1/2009 arrived, the north, centre and highland seemed to be

affected more by the pandemic’s changing the near-term pattern of influenza transmission

in those regions; however, in the south, the period of influenza seemed to be unchanged.

To understand this behaviour will require a detailed analysis of a much longer time series

to determine (1) if there truly is a predictable regional pattern of influenza transmission

in Viet Nam, and (2) if these dynamics were potentially interrupted by the 2009 pan-

demic. The second important question we will need to investigate in the future is the

predictability of influenza by ILI trends in Viet Nam. The coherence analysis point out

that the oscillating patterns of these trends have some similarity, and as long as the phase

difference between ILI and influenza is a constant we will be able to predict one with the

other. This result support the study of Yang et al. in Hong Kong (Yang et al., 2008),

another subtropical climate that may exhibit similar influenza dynamics to northern Viet

Nam.

The major limitation of the data set relates to the short time frame, the limited

number of sites, and missing values due to some locations stopping acting as sentinel sites

due to budgetary limitations. In the sentinel data, the missing data points cannot be

interpolated in the same way as that for the routine data, which makes these data more

difficult to interpret. It is necessary to improve the mechanisms and support structures

for the influenza sentinel surveillance network in order to improve the quality, coverage

and sustainability of the system. A further issue is the oversampling of children, who
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are affected by a wide variety of respiratory viruses. In 2006, most of the ILI cases

reported from two paediatric hospitals might be caused by other viruses, which also caused

syndromes similar to ILI, but were not properly distinguished from ILI during the early

stages of sentinel reporting. We consider RSV as the most likely candidate virus that

could caused this difference. This issue was also discussed by Yang et al. (2008). After

2006, three out of four data sets obtained from paediatric sites were removed, and we

see that the coherence between ILI consultation and influenza positive rate is closer after

this period. However, this coherence changes again from the end of 2009 to the middle

of 2010, suggesting that H1N1/2009 virus might caused this effect. This result is not

surprising as other studies have noted that synchronous dynamics can be interrupted by

pandemic-like events that have large effects on host immunity (Finkelman et al., 2007).

The H1N1/2009 virus did indeed have a high attack rate and induced significant immunity

in the population. We also noted an increase in ILI consultation rates due to the effect of

mass media around the time of the 2009 pandemic (Thai et al. unpublished data), which

requires further caution in interpretation of the results.

5.5 Conclusion

Our results indicate that ILI notification data in Viet Nam are associated with influenza

virus activity but with some uncertainty. It will be important to analyse longer time

series and to obtain high-quality reporting data to determine the association between ILI

notifications and influenza virus activity more precisely.
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Figure 5.11: Phase difference between ILI consultations and PCR positive rate,
by age. The red line is ILI consultations and the blue line is PCR positive proportion, all
filtered at power band of 0.9-1.1 year.
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Figure 5.12: Phase difference ILI consultations and PCR positive rate after re-
moval of National Paediatric Hospital. The red line is ILI consultations and the blue
line is PCR positive proportion, all filtered at power band of 0.9-1.1 year
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Figure 5.13: Graph of phase difference of ILI consultations and PCR positive rate.
Each ◦ is one value compute by take the difference between PCR positive rate phase and ILI
consultation phase by subtract directly. The smaller the value the better synchrony between
the two variables
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Chapter 6

Background to household

cohort study

6.1 The Ha Nam longitudinal community study

Reliable estimates of age and risk group specific infection and hospitalization rates are

needed in order to inform risk assessments and health policies. However, influenza infection

is often mild or even asymptomatic, so cases reported from hospitals are just the tip of an

iceberg. In addition, attendances at primary healthcare facilities are also biased, since only

a small proportion of all people with influenza infection seek healthcare, and, as shown

in chapter 5, only a minority of people seeking healthcare for ILI have an influenza PCR

positive respiratory sample. As such, healthcare centered influenza surveillance methods

cannot provide a complete picture of the epidemiology of influenza, and community based

studies are needed (Garske et al., 2009; Laurie et al., 2013). Studies of respiratory illnesses

in the community that have used active surveillance and serology have demonstrated that

influenza infection rates are often in the range of 10-20% per season, with only a small

proportion developing symptoms Horby (2014); Monto (1994). A recent study from the

UK on recent outbreaks of seasonal influenza and the 2009 H1N1 influenza pandemic

shows that just 23% of serologically identified infections caused symptoms, and only 17%

of people with PCR confirmed influenza infection were ill enough to consult their doctor

(Hayward et al., 2013).

In 2007, the NIHE-OUCRU collaboration established a community cohort in Thanh

Ha Commune, Thanh Liem District, Ha Nam province of north Viet Nam in order to study

the incidence and transmission of seasonal influenza at a household level (Horby et al.,

2012, 2011). Thanh Ha is a commune (the third administrative level in Viet Nam after

Province and District) that had 7,663 residents living in 2,127 households at the time
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of recruitment to the study. The community occupations are a mixture of agriculture

and trade, and the site was selected for the practical reasons of 1) being within one day

travelling distance of Hanoi (the capital); 2) the Provincial and District health teams were

willing to participate in the study; and 3) the Commune had suffered human cases of avian

influenza A/H5N1 in 2007 (see figure 6.1).

(a) Ha Noi and Ha Nam, the small green commune is
Thanh Ha where we set up the cohort

(b) The household of cohort by GPS
location

Figure 6.1: Position and size of Ha Nam cohort. The distance from Ha Nam cohort to
centre of Ha Noi is about 70 km

The basic overall design of the study is shown in figure 6.2, and with further details

provided below.

6.1.1 Subject identification, selection and recruitment

Agreement to approach the members of Thanh Ha community was reached after dis-

cussions with Provincial, District and Commune Preventive Medicine staff and with vil-

lage leaders, including representatives of the People’s Committee, Women’s Union, Youth

Union and Fatherland Front. An open meeting was also held with all villagers to ex-
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Baseline 
• Household questionnaire - composition, relationships, socioeconomic 
• Individual questionnaire - demographic, occupational, health 
• Contact diary 
• Blood 

Weekly active surveillance for Influenza-like-Illness 
Household composition 
ILI 

End of study period 
Blood 

Recruitment 
• Enumerate all households in Commune 
• Household selection using a random number table 
• Nearest adjacent house if refuse 

Serology 
T-cell responsiveness 
Extract and save DNA 

Serology 
T-cell responsiveness 

RT-PCR for influenza Throat & nose swab 
Seven day symptom diary 

Figure 6.2: Schematic diagram of the design of the Ha Nam household cohort
study

plain the study and answer questions. The village population register held by the local

authorities was the source document for the selection of households for inclusion in the

study. Households were randomly selected from the village population register using a

random number table. Those selected were visited by members of the study team, who

explained the study objectives, procedures, anticipated benefits and risks and answered

any questions. Since the unit of interest is the household, all permanent residents in the

household were required to participate. A household was not eligible for inclusion if any

members refused to participate. However, children would still be eligible if they decided

not to have a blood test as long as other elements of the study were agreed to report for

example influenza-like-illness and to provide a nasal swab. Written informed consent was

obtained from all participants. If a randomly selected household refused to participate,

next nearest household would be approached until a household was successfully recruited.
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6.1.2 Information sheet

All participants and individuals asked to provide consent on behalf of another individ-

ual (e.g. parents or relatives of deceased adults) were given an information sheet outlining

the study objectives, methods and the potential benefits and risks of participation. Chil-

dren aged 5-17 years were, in the presence of an adult with parental responsibility for the

child, provided an age-appropriate information sheet, and had the study explained by a

member of the research team.

6.1.3 Consent

Each subject was informed of the aims, methods, anticipated benefits and potential

risks of the study in a face-to-face meeting with a member of the study team. Participation

is entirely voluntary and all participants had a continuing right to withdraw at any time.

Children were defined in this study as persons aged less than 18 years. Children aged

5-17 years were, in the presence of an adult with parental responsibility for the child,

provided an age-appropriate information sheet, had the study explained by a member of

the research team and were asked to sign an assent form and their parent or legal guardian

were be asked to co-sign at the same time. Children aged less than 5 years may enter the

study if consent was obtained from a person who had parental responsibility for the child.

Adult subjects who were considered not to possess the capacity to fully understand the

study and the risks and benefits were not required to sign the consent form. However

their legal representative or someone with a qualifying relationship to them were asked to

sign the consent on the subject’s behalf after the aims of the study were fully explained.

A ‘qualifying relationship’ was defined as spouse, partner, parent, child, brother, sister,

grandparent, grandchild, child of a brother or sister, stepfather, stepmother, half-brother,

half-sister and friend of long standing. Consent was sought for storage and future testing

of biological specimens A copy of the consent form was given to the person who signed it.

6.1.4 Ethical review

The full study protocol was reviewed and approved by the Scientific and Ethical Com-

mittees of the National Institute for Hygiene and Epidemiology, Viet Nam and by the
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Oxford Tropical Research Ethical Committee, Oxford University, UK.

6.1.5 Enrolment

940 individuals from 270 households were recruited with a study base of 2,127 enumer-

ated households. Figure 6.1b shows the location of all the enrolled households. Figure 6.3

shows the age distribution of the cohort participants compared to that of Ha Nam province

and the national rural population. The age distribution in the cohort is significantly dif-

ferent (chi-square tests; both P<0.001) due to an over-representation of 10-19 years old

and an under-representation of 20-34 years old. The distribution of household sizes of the

cohort matches that of the Red River Delta rural population (chi- square goodness of fit

test: P =0.86). Table 6.1 shows the characteristics of the cohort subject.

Figure 6.3: The Ha Nam household characteristics.
Household sizes (A) and number of reported contacts per person per day (B). Source: Horby
et al. (2011)

6.1.6 Active surveillance for influenza

Households were actively followed up weekly by Village Health Workers (VHW) to de-

tect incident cases of Influenza-Like Illness (ILI) using the WHO and U.S. CDC definition

of ILI WHO (1999): an illness with an oral temperature of 38◦C or more AND either a

cough or a sore throat. Each household was provided with a thermometer for measuring

oral temperature. If any household member had an illness meeting the ILI case definition
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Table 6.1: Characteristics of Participants and Households at Recruitment, Ha
Nam, Viet Nam, 2007–2010. [Source: Horby et al. (2012)]

Characteristic No. of
Participants

Total No.
Assessed

%

Entire study population

Age, years

0–4 83 929 8.9

5–9 70 929 7.5

10–19 209 929 22.5

20–39 246 929 26.5

40–59 241 929 25.9

=60 80 929 8.6

Female sex 508 932 54.5

Chronic diseasea 5 869 0.6

Adults (age =18 years) 592

Caring for children at home or at work

Never 284 569 49.9

Sometimes 100 569 17.6

Most days 185 569 32.5

Current smoker 107 560 19.1

Cigarettes smoked per day

=5 49 103 47.6

6–10 45 103 43.7

11–20 9 103 8.7

Households 270

No. of people in the household

1 28 270 10.4

2 41 270 15.2

3 65 270 24.1

4 74 270 27.4

5 42 270 15.6

=6 20 270 7.4

Home crowding (>2 people per room) 46 237 19.4

School-aged children in household (5–17
years of age)

156 264 59.1

a There were 2 participants with chronic lung disease, 2 with chronic heart disease,
and 1 with chronic liver disease.
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they would be asked to complete a seven day illness diary and provide a combined nasal

and throat swab. During weekly follow up, household composition was re-ascertained.

Subjects who are lost to follow up for any reason (e.g. migration, voluntary withdrawal

or death) were censored and the period of active observation in days was calculated. If

new household members appeared (new born, new married, return from university, return

from military), they were informed of the study and asked to join in the same way as

existing members including the provision of written consent.

Figure 6.4: Training on taking nasal swabs.

Figure 6.5: Working with Village Health Workers in bleeding campaign.
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6.1.7 Twice yearly serology

As discussed in chapter 2, the timing of influenza epidemics in tropical and subtropical

regions is variable and may occur more than once per year, therefore the timing of cross

sectional bleeding was guided by influenza surveillance data from the cohort itself and from

the national sentinel surveillance system described in Chapter 5. All cohort members were

requested to provide a 5 ml blood in preservative-free sodium heparin tubes sample twice

per year for serological analysis of exposure to influenza.

6.1.8 Twice yearly re-census

In preparation for the six month serological surveys, a re-census of all participating

households is conducted.

6.1.9 Monitoring and quality assurance

Weekly team meetings are held every Wednesday between the Field Supervisor and the

VHWs to review work, record indicators of VHW activities and to identify problems. Every

week a random selection of a 2% sample of all households were selected for re-interview

by the field supervisor – to check the completeness and quality of the interviewing (Figure

6.5).

6.2 Laboratory procedures

6.2.1 Detection of influenza infection

Reverse – transcription polymerase chain reaction (RT-PCR) is used to detect influenza

RNA in the combined nasal and throat swabs.

6.2.2 Detecting antibodies

Subtype specific antibodies against influenza are detected by haemagglutination inhi-

bition (HI) assay. A fourfold or greater rise in antibody titers is considered to indicate

evidence of acute infection occurring sometime between the two samples being taken.
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6.2.3 Analysis

Incidence of influenza-like-illness, and symptomatic or asymptomatic influenza infec-

tion

Paired samples have been tested for antibodies to recently circulating strains of sea-

sonal influenza by standard HI assay. A person with a fourfold or greater rise in antibody

titer or a positive PCR result was considered to have laboratory evidence of influenza

infection during the study period. Persons with laboratory evidence of influenza infec-

tion and who reported influenza-like-illness (fever and/or cough and/or malaise and/or

myalgia) were considered to be symptomatic influenza cases. Persons with laboratory ev-

idence of influenza infection but not reporting influenza-like-illness were considered to be

asymptomatic influenza cases. Estimates of incidence rate with 95% confidence intervals

for influenza infection were calculated. Subjects who were lost to follow up for any rea-

son (e.g. migration, voluntary withdrawal or death) would be censored and the period of

active observation in days was calculated.

6.2.4 Pandemic H1N1 sub study

The Ha Nam cohort has provided valuable information on the burden of seasonal and

pandemic influenza burden in Viet Nam (Horby et al., 2012, 2011, 2010). In 2009 the novel

influenza subtype A/H1N1/2009 began to circulate globally and seemed likely to displace

other influenza sub-types. In the early stages of the circulation of H1N1/2009 there were

no robust population based data on the infection rates and the prevalence and clinical rele-

vance of cross-protective immune responses to H1N1/2009. Since all subjects in the cohort

had provided written informed consent to supply information, swabs and blood samples

for the purposes of studying the transmission of influenza and the immune responses to

infection, we had an ideal setting for studying the epidemiology of H1N1/2009. We there-

fore rapidly developed a study to be conducted within the cohort which is described in

detail in Chapter 7. In summary, the primary objective was to estimate the household

and community rate of clinical and sub-clinical H1N1/2009 infection and the profile of

viral shedding, and to explore how this is influenced by pre-existing humoral and cellular

immunity to seasonal influenza. Secondary objectives were 1) To estimate the incubation
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period, serial interval, and duration of viral shedding; 2) To track genetic evolution of the

virus within individuals and along chains of transmission; 3) To look for evidence of an

effect of oseltamivir treatment of index cases on the risk of secondary household cases.

6.3 Candidate’s role

I am the principal coordinator of the Ha Nam cohort, and contributed to write the

original protocol and case record forms, and prepared paperwork for ethical approval in

the UK and Viet Nam. I directly performed or supervised most aspects of the study

implementation in Viet Nam, including field staff training, the preparation of Standard

Operating Procedures, data management, and finances. I wrote the protocol for the

enhanced H1N1/2009 study and performed or supervised all aspects of the study imple-

mentation except for the laboratory work. Laboratory assays were conducted by trained

laboratory personnel under the supervision of Dr. Annette Fox.
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Chapter 7

Pandemic H1N1/2009

transmission and shedding

dynamics in households

7.1 Introduction

The infectiousness of influenza cases will depend on how much virus is shed, for how

long, and the degree to which symptoms are required for virus to transmitted. The

amount of transmission will also depend on contact susceptibility, the frequency and nature

of contact between infected and susceptible persons, and infection prevention practices

(Donnelly et al., 2011; Horby et al., 2011; Mathews et al., 2007). Quantification of these

parameters is needed to develop interventions that control transmission. In particular, the

impact of interventions that rely on case finding, such as quarantine and provision of masks

and antivirals to contacts, will depend on how much shedding and transmission occur in

the absence of symptoms. Other factors such as the duration of shedding in relation to

the duration of symptoms inform the duration of intervention required (Donnelly et al.,

2011).

Households are important sites of influenza transmission (Ferguson et al., 2006), and

provide valuable information about virus transmission and shedding dynamics because

contacts of index cases can often be observed before virus shedding and symptoms start.

The H1N1/2009 pandemic enabled investigations of transmission when pre-existing im-

munity was considered to be relatively low. Numerous case ascertainment design studies

were conducted whereby households are investigated following passive detection of cases

presenting to health care centres (Carcione et al., 2011; Cauchemez et al., 2009; France

106



7. PANDEMIC H1N1/2009 TRANSMISSION AND SHEDDING
DYNAMICS IN HOUSEHOLDS

et al., 2010; Komiya et al., 2010; Looker et al., 2010; Loustalot et al., 2011; Morgan et al.,

2010; Papenburg et al., 2010; Sikora et al., 2010) some of which required laboratory con-

firmation of secondary infection (Chang et al., 2011; Cowling et al., 2010; Lau et al.,

2010; Pebody et al., 2011; Simmerman et al., 2011; Suess et al., 2010, 2012). Estimates of

household secondary attack rate (SAR) or secondary infection risk (SIR) ranged from 3 to

38% for twelve studies that collected respiratory specimens (Lau et al., 2012). The factors

with the greatest influence on SIR included whether samples were collected to identify

asymptomatic infection; whether cases were detected via health systems or during out-

break investigation; and the proportion of index cases that were children. In all but a

few studies (Cowling et al., 2010; Lau et al., 2010; Papenburg et al., 2010) some contacts

used antiviral prophylaxis, which affects SIR (Calatayud et al., 2010; Carcione et al., 2011;

France et al., 2010; Komiya et al., 2010; Pebody et al., 2011; Suess et al., 2010). Few active

case finding studies were conducted and these were in school or school camp populations

during outbreaks (Calatayud et al., 2010; Loustalot et al., 2011; Sugimoto et al., 2011)

and either retrospective citepLoustalot2011, Sugimoto2011 or affected by school closure

and prophylaxis citepCalatayud2010. One household cohort study has been reported but

used paired pre- and post-season serology to detect infections (Klick et al., 2011).

The current study uses a cohort of initially uninfected households with active case

finding. This is considered to be the gold standard design for influenza household studies

and should provide a relatively representative and unbiased description of transmission and

shedding dynamics (Klick et al., 2012). The participants in this study had been enrolled

in the cohort since December 2007 and most had blood samples collected and tested by

serology just prior to the pandemic such that prior immune status and susceptibility could

be confirmed.

7.2 Material and Method

7.2.1 ILI surveillance and sample collection schedule

The investigations described here were conducted as part of an on-going household-

based influenza cohort study that has been described in detail in chapter 6 and in previous
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publications (Horby et al., 2012). In advance of the arrival of H1N1/2009 in Viet Nam,

systems were established for enhanced detection of H1N1/2009 cases in all cohort members.

The standard cohort procedure is to conduct weekly active surveillance for ILI in each

household and to take a nose and throat swab from the person with an ILI. All swab

samples from the cohort are batched and tested monthly. For the H1N1/2009 sub-study,

weekly active surveillance for ILI continued but all household members (not only the

person reporting an ILI) were asked to provide a nose and throat swab. The samples were

sent the same day (day 1) to NIHE for immediately testing by RT-PCR to provide results

within 48 hours. This process was needed in order to implement serial sampling of the

index cases from the earliest possible moment and to detect incident cases of infection in

household members. It was decided that rapid tests lacked the required sensitivity and

therefore RT-PCR was used.

All household members were swabbed daily according to the schedule in figure 7.1.

Samples collected on days 1, 5, 10, and 15 were tested to determine the need to continue

swabbing and health surveillance. Swabbing was continued for a period of two days beyond

each scheduled testing day in order to allow for the lag in return of results. Interim

specimens (e.g. days 2, 3, 4, 6, etc.) were stored and tested later as necessary to determine

the profile of viral shedding and for the detection of quasi species (a sub population with

similar mutations). Health workers examined all persons in suspected and confirmed

H1N1/2009 case households, including those without symptoms, each day for up to 15

days during the first pandemic wave (September December 2009). Examinations included

collection of nose- and throat- swabs for quantitative RT-PCR and full-genome sequencing;

mouth temperature measurement, scored on a 5-tier scale (36-36.9 = 1, 37-37.9 = 2, 38-38.9

= 3, 39-39.9 = 4, ≥40 = 5); and evaluation of symptoms (sore throat, nasal congestion,

runny nose, sneezing, dry cough, wet cough, headache, diarrhoea, myalgia, fever, and

wheeze), which were scored on a 3-tier scale (none = 0, mild = 1, or moderate/ severe =

2). A cough was defined as wet or productive if sputum or material from the bronchi was

expectorated. Participants were also asked if they took the day off work because of illness

or to care for another household member that was ill, and if they took oseltamivir.

ILI cases were asked to provide a 10 ml blood sample in a heparinized tube on day
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12 after illness onset for extraction of peripheral blood mono-nuclear cells (PBMC’s). All

other household members were asked to provide a 10 ml blood sample in a heparinized tube

on day 15 after illness onset in the index case for extraction of PBMC’s. These samples

were collected in order to document the acute cellular immune responses and to compare

the response in symptomatic cases to asymptomatic or sub-clinical infections. The overall

aim being to identify cross-reactive cellular immune responses that are associated with

attenuation of clinical illness. Blood samples were collected for serology in June 2009 and

April 2010. SWABBING SCHEDULE 

DAY 1 

2 

3 

4 

5 

6 

7 

DAY 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

DAY 1 

DAY 2 

DAY 3 

All day 1 sample negative = STOP 

Any day 1 +ve = continue 

Bleeding cases 

Bleeding all 

household members 

at day 15 

LIL 

All day 5 negative = STOP 

Any day 5 +ve = continue All day 10 negative = STOP 

Test immediately 

Store 

Figure 7.1: Swabbling schedule.
Methods for enhanced detection of H1N1/2009 in all cohort members.

7.2.2 Swab Collection

Separate flocked swabs (Copan, 25125 Brescia, Italy) were used to firmly swab the

entire posterior pharynx and tonsillar area and the nasal area at the level of the turbinates.

Nasal and throat swabs were combined in 1 tube containing 3 ml or viral transport media,

placed on ice and transferred to the laboratory within 24 hours where they were vortexed
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before aliquoting and storing the media at -80ºC.

7.2.3 Virology and serology

RNA was extracted from swab media using viral RNA extraction kits (Qiagen) and first

assessed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR), accord-

ing to WHO/USCDC protocols (CDC reference no. I-007-05, Accessed November 30, 2009,

at http://www.who.int/csr/resources/publications/swineflu/CDCRealtimeRTPCR_

SwineH1Assay-2009_20090430.pdf). Daily swabs from participants with confirmed in-

fection were then assessed in a quantitative RT-PCR assay, using primers that amplify

a 95 bp section of the M gene: forward 3’-GACAAGACCAATCCTGTCACCTCTG-5’,

reverse 3’AAGCGTCTACGCTGCAGTCC-5’, probe bp 190 5’TTCACGCTCACCGTGC-

CCAGTGAGC3’ (de Jong et al., 2005). The target sequence was cloned and quantified

using pico green to prepare a standard curve. Results were expressed as cDNA equivalent

copies of viral RNA as determined by comparison to standard curve. The limit of detec-

tion was 5 RNA copies/reaction. De novo sequencing using total RNAs extracted from

nose and throat swabs with cDNA equivalent influenza RNA copies >30000/ml (˜Ct <33)

was performed using 454 and Illumina (Illumina, San Diego, CA, USA) platforms (Gene

Bank Accession numbers for consensus sequences will be made available).

Sera were tested in haemagglutination inhibition (HI) assay as previously described

(Horby et al., 2012). A reference antigen supplied by WHO (A/California/7/2009(H1N1)-

like) was used with turkey erythrocytes. Titers were read as the reciprocal of the highest

serum dilution causing complete inhibition of agglutination, partial agglutination was not

scored as inhibition of agglutination. If there was no inhibition of HI at the highest serum

concentration (1:10 dilution) the titer was designated as 5.

7.2.4 Definitions and Analysis

Infection was defined as a positive influenza RT-PCR result on a nose and/or throat

swab regardless of the presence of symptoms. As not being routinely performed on acute

sera, serology was not considered in the definition of secondary infection. Nevertheless,

seroconversion was reported if there was a 4-fold or greater rise in HI titer between pre-
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and post-pandemic sera. Household secondary infection risk (SIR) was calculated as the

number of household contacts becoming a case within 1-8 days of symptom onset in the

index case divided by the number of household contacts. Serial interval was defined as the

number of days between symptom onset in the index case and the first secondary case.

Other secondary household cases were only included in the calculation of the serial interval

if their symptom onset occurred on the same day as the first secondary case. Children

were defined as those up to 15 years of age.

Continuous variables are presented as median and interquartile range and compared

using Rank sum test. Chi-squared or Fisher’s exact test were used for proportions. All

statistical tests were 2 sided, and probability less than 0.05 was considered significant.

Univariate and multivariate logistic regression was performed to determine factors associ-

ated with H1N1-2009 infection among contacts. Generalised estimating equations (GEE)

were used to account for household clustering in the logistic regression model. Predictor

variables included the age, sex and position in the house/family (mother, daughter, son,

father, other) of the contact and of the index case, number of people in the house and

index case viral load, symptom scores and antiviral treatment. Variables with a univariate

P value <0.10 were included in multivariate analysis. The Box-Tidwell test was used to

assess the assumption of linearity (Cauchemez et al., 2009; Papenburg et al., 2010).

7.3 Results

7.3.1 Index case house characteristics

Index cases were detected in 20 (7.4%) of 270 households (Table 7.1). Two households

had two separate index case episodes resulting in 22 index cases. The second episode in

each of these two households was excluded from the analysis of transmission. The house-

holds contained 81 people including the 22 index cases with the remaining 59 classified

as contacts. Households comprising four people were significantly more common than

amongst all 270 cohort households (p = 0.009). Accordingly, most index case households

comprised nuclear families with similar numbers of mothers, sons and daughters whereas

some households lacked fathers. 25% of sons and daughters were older than 15 years. The
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median age of people in index case households was 23.3 years (IQR 12.2-39.3) with signif-

icantly fewer in the youngest and oldest age categories compared to all 270 households in

the cohort. Pre-pandemic blood was collected from 69 (85%) of the index case household

members (Table S1). HI titres against A/H1N1/2009 like virus were <10 in all but one

individual, who had a titre of 1:20 and was not infected. None reported having received

influenza vaccination in the past.

Table 7.1: Composition of households in the cohort and those with an index case.

All houses
n (%)

Index houses
n (%)

p value

Houses 270 20 -
People 940 81 -
People per house 1 28 (10.4) 0 (0) -

2 41 (15.2) 1 (5) 0.327
3 65 (24.1) 4 (20) 0.792
4 74 (27.4) 11 (55) 0.009
5 42 (15.6) 3 (15) 1
≥6 20 (7.4) 1 (5) 1

Females 508 (54.5) 42 (51.9) 0.704

Position in the household Mother 250 (26.6) 20 (24.7) 0.756
/family Father 207 (22.0) 15 (18.5) 0.496

Daughter 204 (21.7) 20 (24.7) 0.494
Son 183 (19.5) 22 (27.2) 0.085

Other 83 (8.8) 3 (3.7) 0.116
Unknown 14 (1.5) 1 (1.2) 1

Age 0-4 83 (8.9) 2 (2.5) 0.049
5-9 70 (7.5) 10 (12.3) 0.107

10-19 209 (22.5) 25 (30.9) 0.066
20-39 246 (26.5) 25 (30.9) 0.323
40-59 241 (25.9) 17 (21.0) 0.386
≥60 80 (8.6) 1 (1.2) 0.021

Unknown 1 (1.2)

7.3.2 Secondary cases

Eleven of 59 contacts were infected, giving a household secondary infection risk (SIR)

of 18.6% (95%CI 10.7-30.4%). The secondary cases were from eight (40%) of the index

case households. Five households had one secondary case, three households had two and
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twelve households had none. Six of the secondary cases were symptomatic giving a house-

hold secondary confirmed influenza illness risk of 10.2% (95%CI 4.8-20.5%). Five were

asymptomatic, representing 45% of secondary infections. Four asymptomatically infected

contacts also had blood collected for serology, of which three seroconverted (Table S1).

The asymptomatic case that did not convert was an adult who had a 2-fold rise in titre,

and viral RNA detected in swabs on 5 consecutive days. Her two children had virolog-

ically confirmed infection and both seroconverted but one was also asymptomatic. Six

additional seroconverters were detected among 48 household members whose swabs re-

mained negative during the period of the household transmission study. None of these six

seroconverters reported ILI. In total, 69 people from index case households were assessed

by serology as well as RT-PCR on swabs. Of these, 39 (56%) had virologically confirmed

infection and/or seroconversion during the first pandemic wave (Table S1). Viral sequenc-

ing demonstrated that the genetic distance between haemagglutinin and neuraminidase

genes of viruses from the same household was around 3-4 times less than between viruses

from different households (Table 7.2). Analysis of virus genes indicated that 10 of 11

secondary cases were infected within the household giving an adjusted household SIR of

17.2% (95%CI 9.6-28.9%). One infected household contact, who was the index case’s

husband, was suspected to have acquired infection in the community because the genetic

distance between his virus and the index case’s virus (0.002969) was similar to that found

between households. Virus from his swabs was more closely related to viruses from another

household in the same village.

Table 7.2: Comparison of H1N1/2009 envelope gene sequence diversity within
households and individuals and between households.

Mean p-distancea (standard deviation)

Haemagglutinin Neuraminidase
Within an individual 0.00007215 (0.000161) 0.00004304 (0.000143)
Within a householdb 0.000509 (0.001107) 0.000608 (0.001322)
Between householdsb 0.002262 (0.001140) 0.002280 (0.000908)

a p-distance is the number of nucleotide substitutions divided by the number of nu-

cleotides calculated using Mega version 5.2. p-distance values were similar to d-distance

values, which correct for unmeasured nucleotide changes using the nucleotide substitution
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Kimura-2-parameter model.

b Only the first time point of each infected participant was used.

Demographic data for index and secondary cases are compared in Table 7.3. Fourteen

(64%) of 22 index cases were females and a higher proportion of females than males

were index cases. Only one index case was a father whereas around one third each were

mothers, daughter or sons. A high proportion of child daughters were index cases (54.5%).

Secondary cases comprised fairly even numbers of males and females, and the proportion

of male and female contacts with secondary infections was very similar. Similar to index

cases, none of the fathers was a secondary case, and the proportion of fathers that was

a case was significantly lower than for mothers, daughters and sons. Roughly half of

both index and secondary cases were adults although the proportion of children that were

cases was high compared to adults. The median age of index (14.9 years, IQR 9.7-36.7)

and secondary cases (16.9 years, IQR 9.6-34.6) was lower than for non-infected household

members (34.7 years, IQR 13.8-42.5).
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Table 7.3: Distribution of cases, contacts and secondary cases by age, gender and
position in the family.

All house members Contacts

N Any casea Index casea Secondary case
n (%) n (%) n/N (%)

Child 30 16 (53.3) 11 (36.7) 5/19 (26.3)
Adult 50 17 (34.0) 11 (22.0) 6/39 (15.4)b

Female 42 19 (45.2) 14 (33.3) 5/28 (17.9)
Male 39 14 (35.9) 8 (20.5) 6/31 (19.3)b

Mother 20 9 (45.0) 6 (30.0) 3/14 (21.4)
Father 15 1 (6.7)c 1 (6.7) 0/14 (0)

Child daughter 11 7 (63.6) 6 (54.5) 1/5 (20.0)
Adult daughter 9 3 (33.3) 2 (22.2) 1/7 (14.3)

Child son 18 9 (50.0) 5 (27.8) 4/13 (30.8)
Adult son 4 3 (75.0) 2 (50.0) 1/2 (50.0)

Other 3 1 (33.3) 0 (0.0) 1/3 (33.3)b

aThe denominator is the number of household members in each category; demographic

data was incomplete for 1 household member.

bHA and NA gene sequences indicate that one case may have been infected in the

community, who was an adult male whose position in the family is other.

cThe proportion of fathers with virologically-confirmed infection was significantly lower

(X2p= 0.021) compared to mothers (OR 11.45, 95% CI 1.25–104.60), daughters (OR 14.00.

95% CI 1.54–127.62) and sons (OR 16.80, 95% CI 1.87–150.94).

7.3.3 Virus RNA shedding and symptom dynamics

The median serial interval for symptomatic secondary cases was 2 days and ranged from

1 to 3 days (Figure.7.2A, Table 7.4). In households with only asymptomatic secondary

cases, viral RNA shedding was detected 1–5 days after symptom onset in the index case

(Table 7.4, Figure.7.2A). In 8 secondary cases the first day of viral shedding could be

determined absolutely because swabs from preceding days were negative (Figure.7.2A),

and in three of the six with symptoms shedding commenced the day before symptoms

(Figure.7.2B). The vast majority of cases tested on day 0 through 2 after onset shed

viral RNA (Figure.7.2B). Thereafter the proportion that shed virus RNA, and levels shed,
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declined. The Kaplan–Meier estimate for median time until viral RNA was undetectable

was 7 days (IQR 6-14 days, Figure. S1), and amongst 27 cases in whom the last shedding

day could be observed the median viral RNA shedding time was 6 days with no clear

difference in shedding times between symptomatic and asymptomatic cases (Table7.4,

Figure.7.2A & C). However, both peak and day 2 viral loads were higher in symptomatic

compared to asymptomatic cases. In most symptomatic cases viral RNA shedding peaked

at around the time that symptoms scores peaked on day 1 and 2 after onset (Figure.7.2B, C

& D). Amongst cases that had symptoms there were no clear differences in virus shedding

or symptom score between adults and children (Figure.7.3E & F), or between index and

secondary cases (Figure.7.2 C & I). However, three secondary cases had only a modest

elevation of mouth temperature while the other three had mouth temperatures above 38 °C

and classic ILI. None of the symptomatic cases required hospitalization.

Table 7.4: Virus shedding and transmission characteristics.

Index
(n = 18)

Secondary
(n = 6)

Asymptomatic
(n = 5)

Serial Interval NA 1, 1, 2, 2, 3, 3 1, 1, 1, 5
Shedding Daysa 6.0 (4.0-7.0) 6.5 (6.0-8.8) 6.0 (4.0-7.0)

Peak Log 10 Viral Load 7.0 (6.6-7.4) 7.2 (6.6-7.6) 6.1 (5.0-7.3)
Day 2 Log 10 Viral Load 5.6 (4.6-6.4) 6.4 (4.8-6.6) 4.7 (3.3-5.1)p=0.038

Results are presented as median and interquartile range in brackets or as values for
individuals.
a4 index cases, 1 secondary case and 1 asymptomatic case were excluded because
insufficient samples were collected to assess shedding time.

Viet Namese government policy during the first wave of the H1N1/2009 pandemic dic-

tated that all symptomatic cases should be given oral oseltamivir for 5 days. Accordingly

20 cases took oseltamivir for 5 days after symptoms developed, of whom 17 commenced

by day 2 after onset (timely) and three commenced 4 days after onset. Participants with

asymptomatic infection did not take oseltamivir. Cases that had timely treatment tended

to have more severe symptoms and higher viral loads until the day after onset but not

thereafter (Figure.7.3G & H). Kaplan–Meier estimates for time until viral RNA shedding

ceased were 7 days (IQR 6–7 days) for patients who took timely Oseltamivir and 14 days

(IQR 7–14 days) in those who took Oseltamivir late or did not take Oseltamivir (P < 0.001,
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Figure 7.2: Daily viral loads and symptoms in confirmed H1N1/09 cases from
index case households.
Panel A shows viral RNA shedding for each individual from index case households with
virologically-confirmed infection. Participants from the same household are shown in the
same colour and data is shown by day since onset in the index case to indicate the intervals
between infections. Panel B shows viral RNA levels by day since onset to demonstrate viral
RNA shedding dynamics. Each dot is an individual sample and the line shows the median.
Fractions above the x-axis represent the number with detectable viral RNA over the number
assessed. Panel C represents daily viral RNA levels for index cases (dark red, n = 20), symp-
tomatic secondary cases (red, n = 6) and asymptomatic secondary cases (green, n = 5). Data
is presented as box and whisker plots showing median lines, interquartile ranges (boxes) and
ranges (whiskers). All participants in each group were tested except where numbers are shown
above each bar. Panels D–I show either viral RNA shedding levels or symptom scores by day
of illness for the 28 symptomatic participants. Panel D demonstrates symptom dynamics with
dots representing values for individual participants and the line showing the median.
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Figure 7.3: Daily viral loads and symptoms in confirmed H1N1/09 cases from
index case households (continued).
Panels E and F compare adults and children. Panels G and H compare participants that took
Oseltamivir within 48 h of onset versus those who took it later or did not take it. Panel I
compares symptoms in index and secondary cases
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Figure. S1). Shedding persisted until day 13 after symptom onset in two cases from one

household (Figure.7.2A). Both commenced oseltamivir late. These two cases also had the

highest wheeze scores, oral temperature was above 38 °C for 5 days, and daily symptom

scores were relatively high. Viral sequencing did not reveal any mutations known to be

associated with virulence.

7.3.4 Risk factors for secondary infection

Secondary infection of household contacts was associated with index case wet cough

score and viral load in univariate analysis, although paradoxically the association with

viral load was negative (Table 7.5). Other index case symptoms and index case and

contact characteristics were not significant in univariate analysis (Table 7.5), however

numbers are small. Although contact age and number of people in the household were

not significant in univariate analysis, they were included in multivariate analysis because

several other studies demonstrated an association (Carcione et al., 2011; Chang et al.,

2011; France et al., 2010). In multivariate analysis (Table 7.6) infection of contacts was

positively associated with the index case wet cough score (OR 1.56, 95% CI 1.22–1.99)

and negatively associated with number of people in the household (OR 0.20, 95% CI 0.08–

0.48). The effect of contact age was small and not significant. The association between

index case viral load and contact infection was not maintained in multivariate analysis.
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Table 7.5: Univariate analysis of factors associated with transmission of H1N1-
2009 from index cases to household contacts during the first pandemic wave

Variable Contact status

Infected (11) Not infected
(47)

OR (CI 95%) p

Contact age 16.9 (9.6-34.6) 31.9 (13.9-41.9) 0.96 (0.92-1.01) 0.112
Female, n/N (%) 5/11 (45) 23/48 (48) 0.91 (0.20-4.05) 0.897

Index peak Log10 Viral load 6.4 (5.8-7.3) 7.0 (6.7-7.5) 0.33 (0.12-0.86) 0.02
wet cough score 8 (3-10) 4 (0-7) 1.36 (1.07-1.72) 0.012
sneeze score 6 (3-7) 6 (3-9) 0.85 (0.67-1.07) 0.226
running nose 5 (3-8) 3 (1-8) 1.09 (0.89-1.34) 0.443
dry cough 0 (0-10) 6 (0-9) 0.88 (0.75-1.04) 0.265
Oseltamivir, n/N (%) 9/11 (82) 36/48 (75) 1.50 (0.14-15.75) 0.735
age 13.2 (8.3-33.3) 12.4 (8.0-22.0) 1.01 (0.96-1.07) 0.585
Female, n/N (%) 8/11 (73) 25/48 (52) 2.45 (0.43-13.93) 0.311

House People/house 4 (3-4) 4 (4-5) 0.46 (0.17 - 1.29) 0.14
Child/house 2 (1-2) 2 (1-3) 0.62 (0.31-1.23) 0.168

Table 7.6: Risk factors for transmission of H1N1-2009 from index case to house-
hold contacts during the first pandemic wave.

Variable Contact statusa OR (CI 95%) p Adjusted p
Infected
(n = 11)

Not
infected
(n = 47)

OR
(CI 95%)

Contact age 16.9
(9.634.6)

31.9
(13.941.9)

0.96
(0.921.01)

0.112 0.94
(0.881.01)

0.115

Index Peak Log 10
Viral loadb

6.4
(5.87.3)

7.0
(6.77.5)

0.33
(0.120.86)

0.02 0.56
(0.142.23)

0.409

Index wet coughc 8 (310) 4 (07) 1.36
(1.071.72)

0.012 1.56
(1.221.99)

<0.001

People/house 4 (34) 4 (45) 0.46
(0.171.29)

0.14 0.20
(0.080.48)

<0.001

aResults are presented as median and interquartile range.
bMaximum Log 10 cDNA equivalent viral RNA copies/ml detected for each index case.
cSummed score for wet cough over the course of illness in the index case ranging
from 0 for no cough to 2 for moderate to severe cough.
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7.4 Discussion

The current study sought to systematically detect H1N1/2009 index cases within a ran-

dom household cohort and then intensively investigate viral RNA shedding and symptoms

in household members to obtain unbiased estimates of transmission. The vast major-

ity of household members appeared to be susceptible to infection based on pre-pandemic

H1N1/2009 HI and MN titres. Eleven household contacts were infected, but 5 (45%) did

not develop symptoms. Virus genetic sequencing indicated that 10 (91%) were probably

infected within the household rather than from the community, enabling a more precise

estimate of SIR. The majority of transmission involved mothers and children with a serial

interval of around 2 days. The study was not powered to identify small effects on trans-

mission but wet cough in the index case was found to have a significant effect. Studies

such as this are also essential to provide precise estimations of incubation period, duration

of virus shedding and relation of shedding to symptoms.

In the current study index and secondary cases were similar in terms of age, virus RNA

shedding and symptoms. In contrast, studies using case ascertainment designs report a

tendency for more severe symptoms and higher viral shedding for index cases (Cowling

et al., 2010; Suess et al., 2010) a bias that could lead to over-inflated SIR estimates.

Factors other than severity can also influence health care seeking, leading to bias in case

ascertainment studies. Surveys conducted in France and England during the H1N1/2009

pandemic found that the proportion of self-defined ILI cases that sought care was highest

for children and males aged below 25 years (Brooks-Pollock et al., 2011; Van Cauteren

et al., 2012).

The cohort study design used here facilitated confirmation of susceptibility to infec-

tion by serology on pre-pandemic sera. Nevertheless, some index case household members

may have had asymptomatic or mild infection before the index case was detected because

they seroconverted without ILI or detection of virologically confirmed infection during

investigation of the index case episode. This scenario would mean that fewer were sus-

ceptible. Virus genetic sequencing enabled discrimination of household from community

transmission and we demonstrated that one index case household member was infected in
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the community rather than in the household. The within and between household genetic

diversity is in agreement with other studies (Gubareva et al., 2002; Pascalis et al., 2012;

Poon et al., 2011; Teo et al., 2007) and the magnitude of sequence diversity within individ-

uals, households and between households was consistent with the study of Poon et al Poon

et al. (2011). Pascalis et al found evidence of changes in quasi-species dominance within

individuals (Pascalis et al., 2012), and we will perform further analysis of deep sequences

to describe quasi-species in future. The results demonstrate that intensive investigations

involving serology, virology and phylogenetics are required to obtain an accurate estimate

of transmission.

A notable feature of the current study was the predominance of females amongst

index cases, whereas most other H1N1/2009 transmission studies found that roughly half

of index cases were females. In relation, the number and proportion of fathers infected

was significantly lower than for mothers and children. Similarly, a study that assessed

household contacts of children identified by active case finding during a school camp

outbreak found significantly lower infection amongst fathers (France et al., 2010). These

findings are also reminiscent of cohort and other studies from the 1950s (Badger et al., 1953;

Buck, 1956) suggesting that the pattern of transmission between mothers and children,

with sparing of fathers may be a common phenomenon. Fathers in our study did not

appear to be less susceptible on the basis of serology implying that they may have less

exposure to infection, either via less contact with cases and/or more effective prevention of

infection upon exposure. During a survey in 2007, 43% of fathers in the cohort said they

cared for children compared to 55% for mothers (Horby et al., 2011). This small difference

is unlikely to account for the difference in proportion infected, but may not reflect care

patterns for sick children. During the school camp outbreak study described above, 66%

of the household contacts that cared for index cases were mothers, 24% were fathers and

3% were siblings (France et al., 2010).

A high proportion of child daughters were index cases. It is generally considered that

children are the main influenza transmitters because they have more contacts outside the

house, are more susceptible to infection and severity, and shed more virus (Viboud et al.,

2006b). We did not detect significant differences in virus RNA shedding or symptom
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scores between children and adults, similar to other studies (Loeb et al., 2012; Suess

et al., 2012). A systematic review also concluded that shedding duration of influenza

H1N1/2009 was no longer among children compared with adults, either between or within

studies (Fielding et al., 2014). Perhaps susceptibility to novel virus is more uniform in

accordance with the uniform absence of HI antibodies. It should also be noted that viral

RNA shedding may not reveal differences in shedding of viable virus, which is relatively

shorter in duration (Suess et al., 2012). Contact patterns could influence who is infected as

an index or household secondary case. A previous study of contact patterns for this cohort

demonstrated that children have the highest numbers of close contacts, both with peers

and parents (Horby et al., 2011), but did not differentiate by gender or position in the

family. Further verification of contact patterns for different family members, particularly

mothers versus fathers, is planned.

Virus RNA shedding dynamics correlated with symptom scores and were generally

consistent with reports elsewhere (Cowling et al., 2010; Lau et al., 2010; Suess et al., 2010,

2012). The duration of viral RNA shedding was within the 3–9 day range reported by

other studies of cases in the community (Fielding et al., 2014). The serial interval was

slightly shorter than in other studies but was based on a small number of secondary cases

while tertiary cases were excluded. As noted by Lau et al., serial interval estimates could

be shortened by correction for multiple chains of transmission (e.g., tertiary cases), and

serial interval estimates are not constant because they reflect a combination of the profile

of index cases, contact patterns within households, and incubation period (Lau et al.,

2012).

Timely oseltamivir treatment of index cases was not significantly associated with in-

fection of contacts, as reported elsewhere (Carcione et al., 2011). However, cases that took

oseltamivir early tended to have higher viral RNA shedding and symptom scores at onset

compared to untreated or late-treated cases, whereas levels were similar or lower by day

2. Therefore, timely treatment may have helped to resolve shedding and symptoms.

Forty five percent of virologically confirmed household secondary cases did not develop

symptoms, higher than reported by others (Lau et al., 2010; Loeb et al., 2012; Papenburg

et al., 2010; Simmerman et al., 2011; Suess et al., 2012). One asymptomatic case did
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not seroconvert, which may indicate that viral RNA remained in the respiratory tract

without being internalized and eliciting an immune response. Contrary to expectations,

the duration of viral RNA shedding was similar for symptomatic cases and asymptomatic

cases, perhaps because asymptomatic cases did not take oseltamivir. In contrast Loeb et

al. reported a shorter duration of shedding in asymptomatic cases (Loeb et al., 2012).

The extent to which shedding without symptoms contributes to influenza transmission

is unclear (Patrozou and Mermel, 2009). A few studies have investigated transmission

during pre-symptomatic shedding in humans, but involve only a few index cases, rely

on recall, and can’t control for exposure (Gu et al., 2011; Hermes et al., 2011). One

study has demonstrated transmission before symptoms in ferrets (Roberts et al., 2012).

Virus emission is an important component of transmission and is related to both nasopha-

rangeal viral load and the mechanical processes of coughing and sneezing (Bischoff et al.,

2013). In the current study viral RNA shedding was lower in asymptomatic compared

to symptomatic cases, consistent with Loeb et al. (2012), but in contrast to Suess et al.

(2012). Household transmission was also associated with the amount of wet cough in the

index case, consistent with several other studies (Carcione et al., 2011; Chang et al., 2011;

Looker et al., 2010) and suggesting that transmission from symptomatic cases is more effi-

cient. However, virus emission has been reported to vary substantially between individuals

(Bischoff et al., 2013) and this could confound our interpretation of risk factors. Further

definition of the contribution of shedding without or before symptoms to transmission

is required to estimate the effectiveness of control measures such as case quarantine and

timely treatment.

The major limitations of the current study were the small number of index cases, and

the selection of households from just one commune. Although nearly 1000 people were

included in the cohort, the number of index cases could not be controlled and was not

sufficient to robustly assess risk factors for transmission, particularly factors with a lot of

variance such as viral load. Households were selected from one commune because we lacked

sufficient resources to maintain intensive surveillance in multiple sites, representative of

the population. Nevertheless, the commune was representative of a large proportion of the

population that reside within the semi-rural deltas. Studies are underway to investigate
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urban versus rural differences in transmission and contact patterns.

This cohort study avoided many of the limitations of other studies of A/H1N1/2009

transmission in households including case ascertainment bias, assumptions about immu-

nity/susceptibility and transmission within the household, and failure to detect asymp-

tomatic infection (Klick et al., 2012; Lau et al., 2012). Cohort studies are resource and

labour intensive but can provide more reliable estimates of SIR. The intensive assessment

of shedding and symptoms demonstrated that a substantial amount of shedding occurs

without symptoms but wet cough in the index case was associated with significantly in-

creased transmission.

7.5 Conclusion:

In this cohort of H1N1/2009 susceptible persons, virus sequencing was capable of

discriminating household from community transmission. Household transmission involved

mothers and children but rarely fathers. Asymptomatic or pre-symptomatic shedding was

common.

125



Chapter 8

General discussion and

concluding remarks

8.1 Contribution to knowledge on seasonal and pandemic

influenza

In general, the seasonal characteristics of influenza transmission in tropical and sub-

tropical areas is not well defined, and the seasonality of influenza in Viet Nam has not

previously been characterized. As discussed in Chapter 1, a good understanding of the

temporal and geographic patterns of influenza transmission is needed for the planning

of influenza immunisation programmes. As discussed in chapter 3, Viet Nam does not

yet recommend routine influenza vaccination in the national influenza control guidelines

(Ministry of Health, 2009). This is not because Viet Nam does not have access to vaccine,

but because the MoH does not yet have an evidence base to set the schedule. In addi-

tion, studies of the patterns of influenza transmission can provide new insights into the

environmental conditions that are favourable to effective transmission, thereby providing

an evidence base for prediction of the timing of epidemics and for prevention and control

measures. Whilst data on patterns and determinants of influenza transmission in tropical

and sub-tropical areas of south-east Asia are accumulating, they are still limited. The

work described in this thesis is therefore a significant contribution in this area.

Firstly, I have taken a large set of routine ILI notification data and through careful

filtering of background ‘noise’, shown patterns that were not initially apparent. Prior to

this analysis the routine ILI surveillance data were not well respected. Even people working

on the routine system did not have confidence in the value of the data. In chapter 3, I

have shown that important patterns do exist in the data, and for the first time it has been
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demonstrated that ILI is seasonal in the north of Viet Nam but this seasonality disappears

towards the south. In Chapter 5, I have explored the association between ILI notifications

and influenza virus activity. Characterising this relationship is critical if ILI notification

data are to be used to inform specific programmes to control respiratory pathogens such

as influenza, but also other important respiratory pathogens such as respiratory syncytial

virus. The work presented in chapter 5 is the first attempt to assess the relationship

between ILI notifications and influenza virus activity in Viet Nam, and although the

virological surveillance data are of limited extent, completeness and quality, and have

been complicated by the arrival of the pandemic in the middle of the surveillance period, I

was able to assess the relationship. I found evidence of synchrony between ILI notifications

and influenza virus activity, with a lag on about two weeks. However influenza viruses can

be detected throughout the year and the relationship between ILI and influenza activity

is undoubtedly complicated by other respiratory pathogens. Identifying clear seasonality

of ILI in north Viet Nam, and an association between ILI and influenza virus activity

throughout the country, is an important step towards utilising these surveillance sources

to inform public policy on immunisation. The work has also shown both the value and the

limitations of the surveillance data, and I believe that through revealing some weaknesses of

the systems, this work will result in strengthening of the surveillance system in Viet Nam.

Specifically, the collection of age data in the ILI notifications would aid interpretation

and whilst the number of sentinel sites for virological surveillance may be reduced due

to budget limitations it is vital that the quality of data is improved. Furthermore, the

results from chapter 5 also point out that future research must include the study of other

respiratory viruses in Viet Nam, to understand the varying components that make up the

ILI time series signal presented in chapter 3 and 4. In addition, the methods developed

and described in this thesis will be applied in the future to surveillance data, contributing

to quicker and improved analysis and interpretation of the data.

In chapter 4, I was able to assess the association between the seasonality of influenza

and the seasonality of a range of climate variables. Absolute humidity and temperature

were the variables that explained most of the variance in climate data, and in tree regres-

sion analysis, the seasonality of AH was the variable that best explained the seasonality of
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ILI notifications. Whilst this finding is in line with other work demonstrating the impor-

tance of AH, it is the first time that AH has been identified as an important variable in

a non-temperate region. Further work is needed to explain differences in our results com-

pared to others, who found the timing of influenza epidemics to be associated with declines

in AH, whereas we found that ILI peaks are associated with AH peaks (Bloom-Feshbach

et al., 2013; Tamerius et al., 2010, 2013). The results from chapter 3 and 4 have been pre-

sented in several international workshops, including Options for the Control of Influenza

VIII (http://optionsviii.controlinfluenza.com/), and the APACI Ha Noi workshop

(http://apaci.asia/activities/apaci-meetings/hanoi-vietnam-workshop-2013).

The study presented in chapter 7 is part of a larger program of work arising from the Ha

Nam cohort study, for which I have been the field supervisor since it began ((Cauchemez

et al., 2012; Horby et al., 2012, 2011; Powell et al., 2012; Thai et al., 2014)). The household

transmission study produced several interesting findings. Firstly, the household secondary

attack rate was within the range of other studies (Lau et al., 2012) but we found a high

proportion (5/11) of cases with virologically confirmed infection but no symptoms. Sec-

ondly, genetic analysis suggested that ten of the eleven secondary case acquired infection

from within the household, with only one acquiring infection from the community. The

high proportion of cases with viral shedding that were asymptomatic, and the high pro-

portion of second cases in the household that are acquired within the home suggests that

the isolation of clinical cases, school closure and social distancing measures may not be

very effective at preventing onward transmission. However, wet cough in the index case

was found to be associated with secondary transmission within the household, suggesting

that symptom severity is associated with transmission risk, although this finding does not

really improve understanding of the relative contribution of aerosol versus large respira-

tory droplets transmission since a cough can produce both small and large respiratory

droplets Cowling et al. (2013); Killingley and Nguyen-Van-Tam (2013). The data from

the cohort have shown that influenza infection rates in Viet Nam are comparable to tem-

perate regions, and perhaps even higher; that mild and asymptomatic influenza infection

is common; and that households are an important site for transmission.

In summary, although influenza epidemiology in Viet Nam is complex (and studying
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it is challenging due to limitations of the surveillance systems), the work presented here

represents significant progress in describing and explaining the epidemiology both at a

national level and at the household level.

8.2 Further research directions

Further work is required to reconcile the results of the climate analysis presented in

this thesis with the findings of other authors. We are planning to contact Cecile Viboud

and other relevant experts to see if a joint analysis of data will be possible, and also to

access the global data set published by Tamerius et al. (2013) to attempt to validate our

global extrapolation of the Viet Nam results. I also plan to work with others to develop

a meta-population mathematical model of influenza transmission in Viet Nam, which will

include sub-populations that are subject to different seasonal forcing parameters and a

transfer rate of infected individuals between sub-populations, representing travel within

Viet Nam. This model will be used to explore the potential impact of various immunisation

options whilst accounting for spatial differences in the dynamics of influenza activity in

Viet Nam. The Ha Nam cohort runs well, and will be continued in order to provide data

on population infection rates and immunological and clinical responses to exposure to new

influenza strains. The Ha Nam cohort has provided a bio-archive of respiratory and serum

samples which will be used to assess the role of other pathogens in respiratory illnesses in

this community. We have also collected a time and age stratified sample of residual serum

from four different hospital representing four different regions in Viet Nam. This will be

used to further explore the age and season specific incidence of influenza infection in Viet

Nam. Activities are also ongoing to improve the quality of the surveillance data. We have

developed a web-based system to collect timely ILI data and to automate the analyse of

the ILI time-series. All the regional public health institutes have agreed to participate and

re-enter all historic data, and all provinces have been trained in data entry. Agreement has

also been reached between my institute and Ha Noi medical university to work together

on a climate change project, which will provide access to detailed climate data from the

Viet Nam Institute of Meteorology, Hydrology and Environment.
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Laguna-Torres, V. A., Gómez, J., Ocaña, V., Aguilar, P., Saldarriaga, T., Chavez, E.,

Perez, J., Zamalloa, H., Forshey, B., Paz, I., Gomez, E., Ore, R., Chauca, G., Ortiz, E.,

Villaran, M., Vilcarromero, S., Rocha, C., Chincha, O., Jiménez, G., Villanueva, M.,
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COMMUNICABLE DISEASE SURVEILLANCE SYSTEM IN VIETNAM
The Vietnamese communicable disease surveillance system is running nationwide under the re-
sponsibility of the General Department of Preventive Medicine - Ministry of Health (GDPM; Cir-
cular No 48 /2010/TT-BYT of Ministry of Health; 31st December 2010). In 2013 there are 28 
communicable diseases under surveillance (see table 1). The list for disease surveillance is decided 
by MOH and can be changed depending on new developments or emergence of communicable 
diseases and the expanded program of immunization (EPI; table 2).

 
Table  1 .  Lis t  of  report able  communicable  diseases:  
 
A. List  of  communicable  diseases  that  need to  be  reported weekly  

No Name of Disease Group* Code by ICD-10  
1.  Cholera A A00 
2.  Typhoid B A01 
3.  Dengue B A90/A91 
4.  Viral Encephalitis B A83 
5.  Malaria B B50 
6.  Hand, Foot, and Mouth disease B B08.4 
7.  Meningococcal Meningitis B A39 
8.  Measles B B05 
9.  Influenza A(H5N1)  A J09 
10.  Severe respiratory infection caused by virus A  

11.  Dangerous emerging disease with unknown 
pathogen 

A  

 
B. List  of  communicable  diseases  that  need to  be  reported monthly  

No Name of Disease Group* Code by ICD-10  
1.  Cholera A A00 
2.  Typhoid B A01 
3.  Dysenteria B A03 
4.  Amebiasis B A06 
5.  Diarrhea B A09 
6.  Viral Encephalitis B A83 
7.  Dengue B A90/A91 
8.  Malaria B B50 
9.  Viral hepatitis B B15 
10.  Rabies B A82 
11.  Meningitis syndrome B A39 
12.  Varicella B B01 
13.  Diphtheria B A36 
14.  Pertussis B A37 
15.  Neonatal tetanus B A33 
16.  Other tetanus (not neonatal tetanus) B A35 
17.  AFP- polio suspected case A A80 
18.  Measles B B05 
19.  Mumps B B26 
20.  Rubella B B06 
21.  Influenza (seasonal) B J10,11 
22.  Influenza A(H5N1) A J09 
23.  Adenovirus pharyngoconjunctivitis (APC) B B30 
24.  Plague A A20 
25.  Anthrax B A22 
26.  Leptospirosis B A27 
27.  Hand, foot and mouth disease B B08.4 
28.  Streptococcosis suis  B B95 
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*Communicable diseases are classifi ed into three groups: A, B and C. Group A: Very dangerous, 
can spread rapidly, and has a high mortality rate or is caused by an unknown pathogen. Group B 
includes dangerous pathogens that can transmit quickly and can result in death. Group C includes 
less dangerous pathogens with either low transmission or rarely leads to death.

All administrational levels (from commune to national) are responsible for collecting surveillance 
data and writing reports. The reporting can be performed by fax, phone,or email.The data must 
be submitted to the upper levelin weekly or monthly reports, depending on the type of disease 
(see table 1). The surveillance reports include the following aggregated information per disease: 
the number of new patients, the number of deaths, the cumulativecase and death and intervention 
has been performed. In particularepidemics, case investigation reports can be submitted (eg: from 
district to NIHE provincial PMC).Although the majority of communicable diseases are recorded 
by the hospital system, the community network still plays an important role in early detection of 
diseases and outbreaks. When a potential outbreak is detected of a reportable disease, an alert goes 
out to the commune health centers (CHC) to raise awareness.

As shown in the fi gure of the reporting system, there are twodirections of reporting: reports and 
information exchange (including disease alerts). Weekly reports will be used for rapid response, 
usually for outbreak verifi cation and disease control. Rapid response teams are in charge of data 
analysis and reporting and to provide feedback to outbreak region. Monthly data is mostly used for 
annual reporting, and to calculate a threshold for outbreak. 

A weakness of the present surveillance system is identifying the different reportable diseases cor-
rectly, asmost are confi rmed clinicallyusing case defi nitions(see list of case defi nitions below). 
Without laboratoryconfi rmation, the case defi nition is not systematically applied to the whole health 
care system and is not standardized. Besides non-standard case defi nitions, also the quality of data 
provided by communes is often poor due to data entry errors. Sentinel surveillance projects can 
provide more accurate data of diseases like is done for infl uenza.Despite all the fl aws, the surveil-
lance system remains a crucial data source on the situation of communicable diseases in Vietnam. In 
the near future, a web-based surveillance system will be launched in order to support and improve 
surveillance activities.
List of case defi nitions of notifi able diseases.
1. Cholera
Multiple watery stools
Rice-water stool 
Vomiting (frequent)
Signs of rapid dehydration
2. Typhoid and paratyphoid fever
High fever 39-40oC for 3-5 days
Severe headache
Constipation or diarrhea
Abdominal distension and tenderness
3. Dysentery syndrome
Abdominal cramp
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Tenesmus
Multiple loose stools with blood and mucus
4. Diarrhoea
Loose stools ≥ 3 times per day
Very loose stools or watery stools
5. Viral meningitis
Sudden onset of high fever 39-40oC
Headache 
Disorderly movement
Confusion
6. Dengue fever, haemorrhagic dengue fever 
High fever above 38oC for 2-7 days
Headache, muscle and joint pain, periorbital pain
Congestion, skin rash
Signs of bleeding
Signs of shock
7. Viral hepatitis
Sudden onset of fatigue, malaise
Anorexia, nausea, abdominal discomfort, lower abdominal pain (upper right quadrant)
Jaundice, discolored stool, dark urine
8. Rabies
Pain along the nerve near the site of animal bite
Agitated
Afraid of water (hydrophobia), wind, light, noise
Increased salivation, diffi culty to swallow, delirium, convulsion
Rapid progression and death
9. Meningococcal Meningitis 
Sudden onset of high fever  
Severe headache
Nausea and vomiting
Stiff neck
Possiblehaemorrhagiclesions
10. Chickenpox/varicella 
Mild fever 
Begins with red lesions/rash, after few hours developing to shallow blisters, after 1-2 days becom-
ing yellow pustules.
Scattered lesions, predominantly on the scalp, different stages
Itching
11. Diphtheria
Sore throat/pharyngitis, infl ammation of tonsil or larynx

160



Red throat, dysphagia
Pseudomembrane in pharynx, tonsil, larynx, nose
Greyish white cover attached to mucous membrane, cause bleeding when peeled off   
12. Whooping cough
Persistent coughing more than 2 weeks
Paroxysmal cough, with episodes of cyanosis and ceasing breathing after a period of intense cough-
ing
‘Whoop’ sound with sharp intake of breath after a coughing episode
Vomit after coughing
After each episode of coughing, the child is extremely tired, sweating and breathing rapidly
13. Neonatal tetanus 
The newborn infant has normal breastfeeding (cry and suck) in the fi rst 2 days after birth
From the 3rd-28th days, inability to nurse (cannot take suck breastfeeding)
Spasm or convulsion when stimulated with light, noise or touch
Signs of spasm/convulsion: stiff jaws, convulsion in arms and legs, tightened lips, bending back 
(opisthotonos)
Death occurs after 7-14 days after acquired the disease
14. Other tetanus
Painful muscular contractions in the face, neck, trunk
Abdominal rigidity 
Generalized spasm occurs when induced by sensory stimuli
Typical features of the tetanic spasm are the position of opisthotonos and the facial expression 
known as “risussardonicus”
15. Acute Flaccid Paralysis (AFP)
Flaccid paralysis (fl accid muscles, muscle weakness or loss of movement ability) suddenly appear within 1 
week in children of less than 15 years old.
- Confi rmed poliomyelitis: is AFP with confi rmed isolated wild polio virus 
- Suspected poliomyelitis: is AFP but unable to obtain or test stool 
16. Suspected measles 
Fever, with at least one of the following symptoms: coughing, runny nose, conjunctivitis, rash
Confi rmed measles diagnosis:
- Confi rmed lab diagnosis: The suspected case has IgM (+) antibody or isolated measles virus 
- Confi rmed epidemiological diagnosis: The suspected case has epidemiological exposure with measles 
cases with confi rmed IgM (+) antibody during the incubation period of 7-14 days
Clinical diagnosis:no laboratory confi rmation.
17. Mumps
Fever, swelling and tenderness in one or multiple salivary glands. The skin is not red.
18. Infl uenza
Sudden onset of fever:39-40oC
Severe headache, body, muscle and joint pain
Runny nose, sore throat, coughing
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19. APC (Adenoviruspharyngoconjunctivitis)
Conjunctivitis (red eyes)
Pharyngitis 
Lymphadenopathy behind parotis and below jaws
20. Plague
Sudden onset of high fever
Headache, malaise
Bubonic plague: swollen lymph nodes, which are infl amed, red, tender, and often occur in the in-
guinal or axillary areas, or neck (cervical)
Pneumonic plague: Coughing with pus and blood, chest pain, diffi culty breathing
21. Anthrax
Cutaneous anthrax: initial itching of the affected site, followed by a lesion that becomes papular, 
then vesicular, developing in 2-6 days into a depressed black eschar. Moderate to severe and very 
extensive edema surrounds the eschar. 
Inhalation anthrax: Initial symptoms are similar to acute respiratory infl ammation with fever, 
cough, chest pain, diffi culty breathing, shock after 2-3 days leading to death.
Digestive/gastrointestinal anthrax: Nausea, vomit, anorexia, severe abdominal pain, accompa-
nied with fever, followed by signs of septicemia and death. 
22. Leptospirosis
Sudden onset of high fever, headache, chills, malaise, myalgia (specially in calves and thighs)
Conjunctivaleffusion
Renal failure
Arrhythmia
Jaundice 
Rash

Table 2. Extended Immunization Program (EPI) in Vietnam (see also Vaccination coverage map) 

Vaccine Target population Location 

Japanese encephalitis (JE) 12 months; + 2 weeks; 2 years High risk area 

Bacille Calmette-Guérin vaccine (BCG) birth National 

Oral polio vaccine (OPV) 2, 3, 4 months National 

Hepatitis B vaccine birth National 

Measles vaccine 9,18 months National 

Tetanus toxoid pregnant women; +1, +6 months; +1 year National 

Cholera 2-5 years High risk area 

Diphtheria, Tetanus and Pertussis (DTP) 2, 3, 4 months National 

Typhoid fever vaccine 3-10 years High risk area 

Haemophilus influenzae b (Hib) 1 2, 3, 4 months National 
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Figure. Data flow of surveillance reporting of communicable diseases to Ministry of Health level.  
Based on circular No 48 /2010/TT-BYT of Ministry of Health dated 31 December 2010 
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B. SUPPLEMENTARY FOR CHAPTER 3 AND 4
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Figure B.1: Raw data. Red dots show identified outliers with criterion f = 0.01. Little
maps show the populations’ centroids of the provinces (red dots).
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Figure B.2: Raw data, cont’d.
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Figure B.3: Raw data, cont’d.
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Figure B.4: Transformed data. Outliers (f = 0.01) are discarded, missing values linearly
interpolated, data square-root transformed before being detrended and scaled.
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Figure B.5: Transformed data, cont’d.
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Figure B.6: Transformed data, cont’d.
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Figure B.7: Wavelet transform. Outliers (f = 0.01) are discarded, missing values linearly
interpolated, data square-root transformed before being detrended and scaled.
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Figure B.8: Wavelet transform, cont’d.
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Figure B.9: Wavelet transform, cont’d.
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Appendix C

Ha Nam cohort supplementary

 

DDrr..  PPhhạạmm  QQuuaanngg  TThhááii  

DDrr..  PPeetteerr  HHoorrbbyy  DDrr..  HHooàànngg  XXuuâânn  TTùùnngg  

MMrrss  TTrrầầnn  TThhịị  TTuuyyếếtt  

MMrr  NNgguuyyễễnn  TTrríí  SSơơnn  

MMrrss    NNggôô  TThhịị  TThhủủyy  

MMrrss    PPhhạạmm  TThhịị  HHạạnnhh  

MMrrss  ĐĐỗỗ  TThhịị  TThhuu  

MMrrss  NNgguuyyễễnn  TThhịị  HHưươơnngg  

MMrrss  NNgguuyyễễnn  BBíícchh  TThhủủyy  

MMrrss  NNgguuyyễễnn  TThhịị  TTââmm  

MMrrss..JJuulliieett  BBrryyaanntt  
<<jjeebbrryyaanntt1133@@ggmmaaiill..

DDrr..ĐĐooàànn  TThhịị  NNggâânn  

MMrrss  LLêê  TThhịị  LLưưuu  

MMrrss  NNgguuyyễễnn  TThhịị  HHàà  

DDrr    NNgguuyyễễnn  TThhuu  HHàà  

Figure C.1: The Thanh Ha commune health worker
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Figure C.2: The OUCRU Ha Noi
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Figure S1 

Source: Journal of Infection  (DOI:10.1016/j.jinf.2014.01.008 ) 

 Terms and Conditions 

Figure C.3: KaplanMeier curves of time until cessation of viral RNA shedding in
virologically confirmed cases.
A P value is shown for the comparison of cases who took timely Oseltamivir (n = 17) versus
those who didn’t take Oseltamivir or who took Oseltamivir late (n = 16)
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Supplementary Table 1. HI and MN antibody titers in pre-pandemic, acute infection and post-pandemic sera 

for 81 people from index case households 

 HI titer a  MN titer a   

Participant Infection Status 

pre-

pandemic  

post-

pandemic 

pre-

pandemic  

post-

pandemic convert 

index 5 160 5 960 yes 

index 5 160 5 320 yes 

index 5 320 5 640 yes 

index 5 80 5 320 yes 

index 5 80 5 120 yes 

index 5 40 5 160 yes 

index 5 40 5 80 yes 

index 5 40 5 40 yes 

index 5 40 5 80 yes 

index 5 40 5 160 yes 

index 5 40 5 160 yes 

index 5 20 5 80 yes 

index 5 5 5 320 yes 

index 5 5 5 40 yes 

index 5 5 5 320 yes 

index 5 5 5 40 yes 

index - - - -  

index - - - -  

index - - - -  

index - - - -  

index 5 - 5 -  

index 5 - 5 -  

secondary 5 40 5 240 yes 

secondary  5 320 5 640 yes 

secondary  5 160 5 640 yes 
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secondary 5 40 5 160 yes 

secondary 5 - 5 -  

secondary 5 - 5 -  

secondary asymptomatic 5 10 5 10 no 

secondary asymptomatic 5 320 5 640 yes 

secondary asymptomatic 5 100 15 480 yes 

secondary asymptomatic 5 10 5 60 yes 

secondary asymptomatic 5 - 5 -  

RT-PCR negative 5 80 5 320 yes 

RT-PCR negative  40  120 yes 

RT-PCR negative 5 20 5 80 yes 

RT-PCR negative 5 5 5 80 yes 

RT-PCR negative 5 5 5 160 yes 

RT-PCR negative 5 5 5 120 yes 

RT-PCR negative 20 20 40 40 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5  - no 

RT-PCR negative 5 5 10 5 no 

RT-PCR negative 5 5 15 20 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 - 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 - 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 15 10 no 

RT-PCR negative 5 5 - 5 no 

RT-PCR negative 5 5 - - no 
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RT-PCR negative 5 5 - - no 

RT-PCR negative 5 5 - - no 

RT-PCR negative 5 5 20 20 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 8 5 no 

RT-PCR negative 5 5  - no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 5 no 

RT-PCR negative 5 5 5 10 no 

RT-PCR negative 5 5 - 5 no 

RT-PCR negative - 40 - -  

RT-PCR negative -- - - -  

RT-PCR negative - - - -  

RT-PCR negative 5 - - -  

RT-PCR negative - - - -  

RT-PCR negative - - - -  

RT-PCR negative - - - -  

RT-PCR negative - - - -  

RT-PCR negative 5 - - -  

RT-PCR negative 5 - - -  

RT-PCR negative 5 - - -  

a: reciprocal titers are presented as the mean of two measurements 
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Appendix D

R code

1 source("plot.biwavelet.r")

2 #tmp <- doXprovince(function(x)scaling(detrend(transform(interpolate(

discardoutliers(x,perc =.01)),function(x)sqrt(x)),ff=.1)),ili93)

3

4

5 countnbna <- function(data=ili ,rules=mergings) {

6 # This function counts the number of consecutive missing values per

7 # province , per starting year , as well as the total number of missing

8 # values.

9 # data : output of the "readili" function.

10 # rules: output of the "readmergings" function.

11 fct <- function(y) {

12 print(y)

13 out <- merge_ili(y,data ,rules)

14 return(sapply(unique(out$province),function(x) {

15 tmp <- subset(out ,province ==x,cases ,T)

16 return(c(max(c(0,consec.na(tmp))),

17 sum(!is.na(tmp))))

18 }))

19 }

20 time <- sort(unique(data$time))

21 time <- time[-length(time)] # We need to remove the last time.

22 return(list(time ,sapply(time ,fct)))

23 }

24

25

26 plot.nb.provinces <- function(data=start_yr_effect ,merg=mergings ,

27 multiple=F) {

28 # This function plots the number of provinces as a funtion of cutting year

29 # when the number of consecutive missing values for the exclusion of
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30 # provinces varies.

31 # data: output of the "countnbna" function.

32 # merg: output of the "readmergings" function.

33 # multiple: (boolean) says whether this graph is include in a

34 # multiple -panel one.

35 time <- data [[1]]

36 data <- data [[2]]

37 data <- lapply(data ,function(x)x[1,])

38 plot(time ,sapply(data ,function(x)sum(x<7)),type="n",

39 col="lightgrey",xlab="",

40 ylab="number of time series",ylim=c(0 ,63),axes=F)

41 if(!multiple) {axis (1); title(xlab="starting year")}

42 axis (2); box()

43 for(i in 8:( length(time)+1)) lines(time ,sapply(data ,function(x)

44 sum(x<i)),col="lightgrey")

45 for(i in 1:7) lines(time ,sapply(data ,function(x)sum(x<i)))

46 abline(v=c(unique(merg$dates) ,2008.042),lty=2)

47 }

48

49

50

51

52 plot.nb.data <- function(data=start_yr_effect ,merg=mergings) {

53 # This function plots the number of non -missing data as a funtion of

54 # cutting year when the number of consecutive missing values for the

55 # exclusion of provinces varies.

56 # data: output of the "countnbna" function.

57 # merg: output of the "readmergings" function.

58 time <- data [[1]]

59 data <- data [[2]]

60 timepoints <- length(time)

61 out <- sapply (1: timepoints ,function(y)sapply(data ,function(x)

62 sum(x[2,x[1,]<y])))

63 plot(time ,out[,1],type="n",xlab="starting year",ylim=c(0 ,12100),

64 ylab="number of non -missing data")

65 for(i in 8: timepoints) lines(time ,out[,i],col="lightgrey")

66 for(i in 1:7) lines(time ,out[,i])
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67 abline(v=c(unique(merg$dates) ,2008.042),lty=2)

68 }

69

70

71

72 plot.start.year.effect <- function(data=start_yr_effect ,merg=mergings ,

73 x1=.12,x2=.99,y1=.1,y3=.99,a=2010,l=-1.5) {

74 #pdf(" starting_year.pdf",width =2.75 , height =3.5, pointsize =8.5)

75 #plot.start.year.effect(x1=.12,x2=.99,y1=.1,y3=.99,a=1981 ,l= -1.5); dev.off

()

76 # data: output of the "countnbna" function.

77 # merg: output of the "readmergings" function.

78 y2 <- y1+(y3-y1)/2

79 opar <- par(plt=c(x1,x2,y2,y3))

80 plot.nb.provinces(data ,merg ,T)

81 mtext("(A)",at=a,line=l)

82 par(plt=c(x1 ,x2 ,y1 ,y2),new=T)

83 plot.nb.data(data ,merg)

84 mtext("(B)",at=a,line=l)

85 par(opar)

86 }

87

88

89 plot.split <- function(color="white") {

90 # This function plots the splitting history of provinces.

91 #pdf(" splits.pdf",width =3.5, height =6.33 , pointsize =8.5)

92 #par(plt=c(0 ,1 ,.055 ,.84)); plot.split(); dev.off()

93 require("ape") # for read.tree and plot.phylo

94 opar <- par(plt=c(0 ,1 ,.055 ,.84))

95 start <- 1980.042

96 end <- 2010.958

97 b <- 1992.042

98 e <- 2004.042

99 h <- 1997.042

100 k <- 2008.042

101 n <- 1991.042

102 q <- 1990.042
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103 a <- end - start

104 c <- end - b; d <- b - start;

105 f <- end - e; g <- e - start

106 i <- end - h; j <- h - start

107 l <- k - start; m <- l - c

108 o <- end - n; p <- n - start

109 r <- end - q; s <- q -start

110 t <- c - f; u <- c - i

111 v <- c - end + k

112 # This is the tree in Newick format:

113 tree <- paste(

114 "(Cao Bang:",a,

115 ",(Ha Giang:",c,",Tuyen Quang:",c,")Ha Tuyen:",d,

116 ",(Yen Bai:",c,",Lao Cai:",c,")Hoang Lien Son:",d,

117 ",(Lai Chau 2:",f,",Dien Bien:",f,")Lai Chau 1:",g,

118 ",Lang Son:",a,

119 ",(Thai Nguyen:",i,",Bac Kan:",i,")Bac Thai:",j,

120 ",(Vinh Phuc:",i,",Phu Tho:",i,")Vinh Phu:",j,

121 ",(Bac Giang:",i,",Bac Ninh:",i,")Ha Bac:",j,

122 ",Son La:",a,

123 ",Quang Ninh:",a,

124 ",(Hai Duong:",i,",Hung Yen:",i,")Hai Hung:",j,

125 ",(Hoa Binh:",c,",Ha Tay:",v,")Ha Son Binh:",d,

126 ",Ha Noi 2:",l,

127 ",Hai Phong:",a,

128 ",Thai Binh:",a,

129 " ,((Nam Dinh:",i,",Ha Nam:",i,")Nam Ha:",u,

130 ",Ninh Binh:",c,")Ha Nam Ninh:",d,

131 ",Thanh Hoa:",a,

132 ",(Nghe An:",o,",Ha Tinh:",o,")Nghe Tinh:",p,

133 ",(Quang Binh:",r,",Quang Tri:",r,",Thua Thien - Hue:",r,

134 ")Binh Tri Thien:",s,

135 ",(Quang Nam:",i,",Da Nang:",i,")Quang Nam - Da Nang:",j,

136 ",(Quang Ngai:",r,",Binh Dinh:",r,")Nghia Binh:",s,

137 ",(Gia Lai:",c,",Kon Tum:",c,")Gia Lai Kon Tum:",d,

138 ",(Dak Lak:",f,",Dak Nong:",f,")Dack Lak:",g,

139 ",(Phu Yen:",r,",Khanh Hoa:",r,")Phu Khanh:",s,
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140 ",Lam Dong:",a,

141 ",(Binh Duong:",i,",Binh Phuoc:",i,")Song Be:",j,

142 ",Tay Ninh:",a,

143 ",(Binh Thuan:",c,",Ninh Thuan:",c,")Thuan Hai:",d,

144 ",Dong Nai:",a,

145 ",Tp. Ho Chi Minh:",a,

146 ",Long An:",a,

147 ",An Giang:",a,

148 ",Vung Tau - Ba Ria:",a,

149 ",Dong Thap:",a,

150 ",Tien Giang:",a,

151 ",Ben Tre:",a,

152 ",(Tra Vinh:",c,",Vinh Long:",c,")Cuu Long:",d,

153 " ,((Can Tho 2:",f,",Hau Giang 2:",f,")Can Tho 1:",t,

154 ",Soc Trang:",c,")Hau Giang 1:",d,

155 ",Kien Giang:",a,

156 ",(Ca Mau:",i,",Bac Lieu:",i,")Minh Hai:",j,");",sep="")

157 tree <- read.tree(text=tree)

158 attr(tree ,"order") <- NULL

159 tree$edge <- tree$edge[nrow(tree$edge):1,]

160 tree$edge.length <- rev(tree$edge.length)

161 plot(tree ,show.tip.label=F,x.lim=c(-10,40),

162 y.lim=c(0,65),yaxs="i",lwd=.25, plot=F)

163 abline(v=c(10:12 ,17 ,24 ,28) +.042, col="lightgrey")

164 par(new=T)

165 plot(tree ,show.tip.label=F,x.lim=c(-10,40),

166 y.lim=c(0,65),yaxs="i",lwd =.25)

167 title(xlab="time (year)")

168 right <- rev(tree$tip.label)

169 right <- gsub("([A-Z])"," \\1",right)

170 right <- gsub("^ ","",right)

171 right <- gsub("[0-9]","",right)

172 right <- gsub("- "," - ",right)

173 text (31.3,c(1:43 ,44.5 ,46:64) ,right [-45],cex=.75,adj =0)

174 left <- c("Minh Hai","Kien Giang","Hau Giang","Cuu Long","Ben Tre",

175 "Tien Giang","Dong Thap","Vung Tau - Ba Ria","An Giang",

176 "Long An","Tp. Ho Chi Minh","Dong Nai","Thuan Hai",
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177 "Tay Ninh","Song Be","Lam Dong","Phu Khanh","Dack Lak",

178 "Gia Lai - Kon Tum","Nghia Binh","Q. Nam - Da Nang",

179 "Binh Tri Thien","Nghe Tinh","Thanh Hoa","Ha Nam Ninh",

180 "Thai Binh","Hai Phong","Ha Noi","Ha Son Binh","Hai Hung",

181 "Quang Ninh","Son La","Ha Bac","Vinh Phu","Bac Thai",

182 "Lang Son","Lai Chau","Hoang Lien Son","Ha Tuyen",

183 "Cao Bang")

184 text(-.2,c(1.5 ,3 ,4.75 ,7.5 ,9:16 ,17.5 ,19 ,20.5 ,22 ,23.5 ,25.5 ,27.5 ,29.5 ,

185 31.5 ,34 ,36.5 ,38 ,39.75 ,42:44 ,45.5 ,47.5 ,49 ,50 ,51.5 ,53.5 ,55.5 ,

186 57 ,58.5 ,60.5 ,62.5 ,64),left ,cex=.75,adj =1)

187 abline(v=0,col=color ,lwd =3)

188 segments (2008.042 -1980 ,44 ,2008.042 -1980 ,45)

189 segments (2008.042 -1980 ,44.5 ,end -1980 ,44.5)

190 axis(1,pretty (0:30) ,paste(pretty (1980:2010)))

191 par(plt=c(0,1,.84,1),new=T)

192 plot(c(1980 ,1990:1992 ,1997 ,2004 ,2008 ,2010) ,

193 c(40 ,44 ,45 ,53 ,61 ,64 ,63 ,63),type="n",ylim=c(0,65),

194 xlim=c(1970 ,2020) ,axes=F,ann=F)

195 abline(v=c(1990:1992 ,1997 ,2004 ,2008) +.042, col="lightgrey")

196 points(c(1980 ,1990:1992 ,1997 ,2004 ,2008 ,2010) ,

197 c(40 ,44 ,45 ,53 ,61 ,64 ,63 ,63),type="s")

198 axis(2,pos =1979.5)

199 title(ylab="number of provinces",line=-4)

200 par(opar)

201 }

202

203

204

205

206 plot_maps <- function () {

207 # This function plots the maps with the different provinces ’ definitions.

208 # provinces80 , provinces90 , provinces91 , provinces92 ,

209 # provinces97 , and provinces04 are output of the "mergeprovinces" function.

210 #pdf("maps.pdf",pointsize =8.5); plot_maps(); dev.off()

211 lwd <- .1

212 col1 <- "lightgrey"

213 col2 <- "red"
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214 x1 <- 0; x2 <- 1

215 y1 <- 0; y2 <- 1

216 x <- 104; y <- 15

217 width <- (x2 -x1)/3

218 height <- (y2-y1)/2

219 opar <- par(plt=c(x1,x1+width ,y1+height ,y1+2*height))

220 plot(provinces80_l,lwd=lwd ,col=col1)

221 a <- which(is.element(sapply (1: length(provinces80_l@polygons),

222 function(x)provinces80_l@polygons [[x]]@ID),

223 c("Binh Tri Thien","Nghia Binh","Phu Khanh")))

224 for(i in a) plot(provinces80_l[i],col=col2 ,add=T,lwd=lwd)

225 text(x,y,"1980 -1989")

226 par(plt=c(x1+width ,x1+2*width ,y1+height ,y1+2*height),new=T)

227 plot(provinces90_l,lwd=lwd ,col=col1)

228 a <- which(is.element(sapply (1: length(provinces90_l@polygons),

229 function(x)provinces90_l@polygons [[x]]@ID),

230 "Nghe Tinh"))

231 for(i in a) plot(provinces90_l[i],col=col2 ,add=T,lwd=lwd)

232 text(x,y,"1990")

233 par(plt=c(x1+2*width ,x1+3*width ,y1+height ,y1+2*height),new=T)

234 plot(provinces91_l,lwd=lwd ,col=col1)

235 a <- which(is.element(sapply (1: length(provinces91_l@polygons),

236 function(x)provinces91_l@polygons [[x]]@ID),c("Ha Tuyen",

237 "Hoang Lien Son","Ha Son Binh","Ha Nam Ninh",

238 "Gia Lai - Kon Tum","Thuan Hai","Cuu Long",

239 "Hau Giang")))

240 for(i in a) plot(provinces91_l[i],col=col2 ,add=T,lwd=lwd)

241 text(x,y,"1991")

242 opar <- par(plt=c(x1,x1+width ,y1,y1+height),new=T)

243 plot(provinces92_l,lwd=lwd ,col=col1)

244 a <- which(is.element(sapply (1: length(provinces92_l@polygons),

245 function(x)provinces92_l@polygons [[x]]@ID),c("Bac Thai",

246 "Vinh Phu","Ha Bac","Hai Hung","Nam Ha",

247 "Q. Nam - Da Nang","Song Be","Minh Hai")))

248 for(i in a) plot(provinces92_l[i],col=col2 ,add=T,lwd=lwd)

249 text(x,y,"1992 -1996")

250 opar <- par(plt=c(x1+width ,x1+2*width ,y1,y1+height),new=T)
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251 plot(provinces97_l,lwd=lwd ,col=col1)

252 a <- which(is.element(sapply (1: length(provinces97_l@polygons),

253 function(x)provinces97_l@polygons [[x]]@ID),

254 c("Lai Chau","Dack Lak","Can Tho")))

255 for(i in a) plot(provinces97_l[i],col=col2 ,add=T,lwd=lwd)

256 text(x,y,"1997 -2003")

257 opar <- par(plt=c(x1+2*width ,x1+3*width ,y1,y1+height),new=T)

258 plot(provinces04_l,lwd=lwd ,col=col1)

259 a <- which(is.element(sapply (1: length(provinces04_l@polygons),

260 function(x)provinces04_l@polygons [[x]]@ID),

261 c("Ha Tay","Ha Noi")))

262 for(i in a) plot(provinces04_l[i],col=col2 ,add=T,lwd=lwd)

263 text(x,y,"2004 -2007")

264 par(opar)

265 }

266

267

268

269

270 transform <- function(data=subset(ili93 ,province =="An Giang"),

271 transf=sqrt) {

272 # This function transforms the cases of one province.

273 # data : one province of the output of "readili" or "merge_ili".

274 # transf: the function used for the transformation.

275 data$cases <- with(data ,transf(cases))

276 return(data)

277 }

278

279

280 interpolate <- function(data=subset(ili93 ,province =="An Giang")) {

281 # This function linearly interpolates the missing values of one province.

282 # data: one province of the output of "readili" or "merge_ili".

283 data$cases <- with(data ,approx(time ,cases ,time ,rule =2)$y)

284 return(data)

285 }

286

287
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288 detrend <- function(data=interpolate (),ff=.1) {

289 # This function detrends the data with a lowess smoother.

290 # data: one province of the output of "readili" or "merge_ili".

291 # The cases of these data have to have no missing values.

292 # ff : the smoother parameter of the "lowess" function.

293 data$cases <- with(data ,cases -lowess(time ,cases ,f=ff)$y)

294 return(data)

295 }

296

297

298

299 scaling <- function(data=interpolate ()) {

300 # This functions scales the data (centers and reduces).

301 # data: one province of the output of "readili" or "merge_ili".

302 # The cases of these data have to have no missing values.

303 data$cases <- with(data ,scale(cases))

304 return(data)

305 }

306

307

308

309 outliers <- function(data=scaling(detrend(interpolate ())),perc =.01) {

310 # This function identifies outliers and return their index.

311 # data: one province of the output of "readili" or "merge_ili".

312 # The cases of these data have to have no missing values.

313 # It ’s better if it ’s also detrended and scaled.

314 # perc: the percentile above which to consider a data as an outlier.

315 foo <- diff(as.vector(data$cases))

316 perc <- perc/2

317 perc <- c(perc ,1-perc)

318 bar <- qnorm(perc ,mean(foo),sd(foo))

319 foo <- which(foo <bar [1] | foo >bar [2])

320 un <- which(diff(foo)==1)+1

321 # In case there are two outliers next to each other

322 deux <- which(diff(foo)==2)

323 return(c(foo[un],foo[deux]+1,foo[deux ]+2))

324 }
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325

326

327

328

329 plot1province <- function(data=subset(ili93 ,province =="An Giang"),

330 xlab=T,ylab=T,lwd=.5,perc =.01, wave=F) {

331 # This function plots the time series of 1 province.

332 # data: one province of the output of "readili" or "merge_ili".

333 a <- .04 # the margins we add to the y axis for the grey areas.

334 with(data ,{

335 min <- floor(min(unique(time)))

336 if(wave) {

337 require(biwavelet) # for "wt" function

338 tmp <- wt(with(data ,cbind(time ,cases)))

339 plot.biwavelet(tmp ,xlab="",ylab="")

340 if(xlab) title(xlab="time (year)")

341 if(ylab) title(ylab="period (year)")

342 } else {

343 max <- ceiling(max(unique(time)))

344 plot(time ,cases ,ann=F,type="n",xaxs="i")

345 if(xlab) title(xlab="time (year)")

346 if(ylab) title(ylab="incidence (ind.)")

347 foo <- range(cases ,na.rm=T)

348 foo <- foo + diff(foo)*c(-a,a)

349 for(year in seq(min ,max ,2))

350 polygon(c(year ,year+1,year+1,year),rep(foo ,each =2),

351 col="lightgrey",border=NA)

352 points(time ,cases ,type="l",lwd=lwd)

353 sel <- outliers(scaling(detrend(

354 interpolate(data))),perc)

355 with(data ,points(time[sel],cases[sel],

356 col="red",pch =19))

357 box()

358 }

359 mtext(gsub(" [1,2]","",province [1]),

360 at=min ,adj=0,line =.1)

361 })
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362 }

363

364

365

366

367 discardoutliers <- function(data=subset(ili93 ,province =="An Giang"),

368 perc =.01) {

369 sel <- outliers(scaling(detrend(interpolate(data))),perc)

370 data$cases[sel] <- NA

371 return(data)

372 }

373

374

375 doXprovince <- function(fct1province ,data=ili93) {

376 # This function applies a function to the cases of all the provinces.

377 # data : output of "readili" or "merge_ili".

378 # fct1province: the function used for the transformation.

379 # Examples :

380 # doXprovince(function(x)transform(x,function(x)sqrt(x+1)))

381 # doXprovince(function(x)interpolate(x))

382 # doXprovince(function(x)detrend(interpolate(x),ff=.1))

383 # doXprovince(function(x)scaling(x))

384 # doXprovince(function(x)discardoutliers(x,perc =.01))

385 out <- lapply(unique(data$province),function(x)

386 fct1province(subset(data ,province ==x)))

387 return(do.call("rbind",out))

388 }

389

390

391

392 plotXprovinces <- function(data=ili93 ,x1=.06,x2=.99,y1=.045,

393 y2=.98, vspace =.04, hspace =.05, nbrow=8,nbcol=2,shp=provinces92_lh,

394 centroids=centroids93 ,lwd=.5,perc =0.01 , plotcent=T,wave=F) {

395 prov <- unique(data$province)

396 width <- (x2 -x1 -hspace*(nbcol -1))/nbcol

397 height <- (y2-y1-vspace*(nbrow -1))/nbrow

398 nbprov <- length(prov)
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399 opar <- par()

400 k <- 1

401 for(i in 1: nbrow) {for(j in 1: nbcol) {

402 p1 <- p2 <- pltpar <- c(x1+(j-1)*(width+hspace),

403 x1+j*width +(j-1)*hspace ,

404 y2-i*height -(i-1)*vspace ,

405 y2 -(i-1)*(height+vspace))

406 xint <- p1[2] - par("fin")[2]*

407 (pltpar [4]- pltpar [3])/(2*par("fin")[1])

408 p1[2] <- p2[1] <- xint

409 par(plt=p1 ,new=!(i<2 & j<2),mgp=c(1.5 ,.5 ,0))

410 if(k <= nbprov) {

411 plot1province(data=subset(data ,province ==prov[k]),

412 xlab=(i==nbrow)|(k== nbprov),ylab=j<2,

413 lwd ,perc ,wave)

414 par(plt=p2 ,new=T,mgp=c(1.5 ,.5 ,0))

415 map_1_province(gsub(" [1,2]","",prov[k]),shp ,

416 centroids ,plotcent)

417 }

418 k <- k + 1

419 }}

420 suppressWarnings(par(opar))

421 }

422

423

424

425 map_1_province <- function(prov="An Giang",shp=provinces92_lh ,

426 centroids=centroids93 ,plotcent=T) {

427 require(maptools)

428 plot(vietnam_light ,col="black")

429 plot(shp[names(shp)=="Kien Giang"],add=T,col="black")

430 if(plotcent) {

431 centroids$province <- gsub(" [1,2]","",centroids$province)

432 with(subset(centroids ,province ==prov),

433 points(longitude ,latitude ,pch=19,col="red"))

434 } else invisible(sapply(prov ,function(x)

435 plot(shp[names(shp)==x],add=T,col="red",border="red")))

191



D. R CODE

436 }

437

438

439

440

441 figure_incidences <- function(data=ili93 ,

442 x1=.06,x2=.99,y1=.045,y2=.98, vspace =.04, hspace =.025,

443 nbrow=8,nbcol=3,name="raw",thewidth=7, theheight=8,

444 shp=provinces92_lh ,centroids=centroids93 ,lwd=.5,

445 perc =.01, bylat=T,plotcent=F,wave=F) {

446 # Raw data:

447 #figure_incidences ()

448 # Transformed data:

449 #figure_incidences(doXprovince(function(x)scaling(detrend(transform(

interpolate(discardoutliers(x,perc =.01)),function(x)sqrt(x)),ff=.1)),

ili93),name=" transformed",perc =0)

450 # Wavelets on transformed data:

451 #figure_incidences(doXprovince(function(x)scaling(detrend(transform(

interpolate(discardoutliers(x,perc =.01)),function(x)sqrt(x)),ff=.1)),

ili93),name=" waves",perc=0,wave=T)

452 if(bylat) {

453 data <- merge(data ,centroids ,"province")

454 data <- data[with(data ,order(latitude ,time)) ,]

455 provinces <- centroids[order(centroids$latitude),

456 "province"]

457 } else provinces <- sort(unique(data$province))

458 provperpage <- nbrow*nbcol

459 nbprov <- length(provinces)

460 starts <- seq(1,nbprov ,nbrow*nbcol)

461 nbpages <- length(starts)

462 supp <- nbprov %% provperpage

463 if(supp >0) {

464 for(i in 1:( nbpages -1)) {

465 pdf(paste(name ,i,".pdf",sep=""),width=thewidth ,

466 height=theheight ,pointsize =8.5)

467 plotXprovinces(data ,x1,x2,y1,y2,vspace ,hspace ,

468 nbrow ,nbcol ,shp ,centroids ,lwd ,perc ,
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469 plotcent ,wave)

470 dev.off()

471 provinces <- provinces [-(1: provperpage)]

472 data <- data[with(data ,is.element(province ,

473 provinces)),]

474 }

475 ncol <- min(supp ,nbcol)

476 nrow <- (supp -1)%/%nbcol + 1

477 width <- (x2 -x1 -hspace*(nbcol -1))/nbcol

478 newwidth <- thewidth*(1-(nbcol - ncol)*(width+hspace))

479 height <- (y2-y1-vspace*(nbrow -1))/nbrow

480 newheight <- theheight*(1-(nbrow -nrow)*(height+vspace))

481 x1 <- x1*thewidth/newwidth

482 x2 <- 1-(1-x2)*thewidth/newwidth

483 hspace <- hspace*thewidth/newwidth

484 y1 <- y1*theheight/newheight

485 y2 <- 1-(1-y2)*theheight/newheight

486 vspace <- vspace*theheight/newheight

487 pdf(paste(name ,nbpages ,".pdf",sep=""),width=newwidth ,

488 height=newheight ,pointsize =8.5)

489 plotXprovinces(data ,x1,x2,y1,y2,vspace ,hspace ,nrow ,ncol ,

490 shp ,centroids ,lwd ,perc ,plotcent ,wave)

491 dev.off()

492 } else for(i in 1:( nbpages)) {

493 pdf(paste(name ,i,".pdf",sep=""),width=7,height=8,

494 pointsize =8.5)

495 plotXprovinces(data ,x1,x2,y1,y2,vspace ,hspace ,nbrow ,nbcol ,

496 shp ,centroids ,lwd ,perc ,plotcent ,wave)

497 dev.off()

498 provinces <- provinces [-(1: provperpage)]

499 data <- data[with(data ,is.element(province ,provinces)) ,]

500 }

501 }

502

503

504

505 heatmap2 <- function(data=ili93 ,centroids=centroids93 ,
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506 provinces=provinces92_lh ,ff=.1,perc =.01, col1="blue",hl=T,x1=0,x2=.84,

507 x3=.92,x4=.935, y00 =.015,y0=.195,y1=.245,y2=.755,y3=.81,y4=.99,

508 ts="Hoa Binh",clr=F,nbcolors =12,expo =.5) {

509 # Compared to "heatmap", this function has 2 example time series: one for

the North , one

510 # for the south.

511 # pdf(" figure_1b.pdf",width=5,height =3.25 , pointsize =8.5); heatmap2 (); dev.

off()

512 # jet.colors <- colorRampPalette(c("#00007F","blue " ,"#007 FFF","cyan",

513 # "#7 FFF7F","yellow ","# FF7F00","red","#7 F0000"))

514 # colors = jet.colors(nbcolors)

515 colors <- rev(heat.colors(nbcolors))

516 data <- doXprovince(function(x)scaling(detrend(transform(

517 interpolate(discardoutliers(x,perc)),

518 function(x)sqrt(x)),ff)),data)

519 # Ordering the data by latitude:

520 data <- merge(data ,centroids ,"province")

521 data <- data[with(data ,order(latitude ,time)) ,]

522 prov_names <- gsub(" [1,2]","",unique(data$province))

523 ts <- which(prov_names ==ts)

524 ts2 <- which(prov_names=="Ninh Thuan")

525 # The time vector:

526 time <- unique(data$time)

527 # Putting the incidence data into a 2x2 matrix:

528 data2 <- with(data ,split(cases ,province))

529 incidences <- as.matrix(as.data.frame(data2))

530 ind <- sapply(unique(data$province),function(x)

531 which(names(data2)==x))

532 incidences <- incidences[,ind]

533 nbprov <- ncol(incidences)

534 # The heatmap:

535 xint <- x1 + par("fin")[2]*(y2-y1)/(2*par("fin")[1])

536 opar <- par(plt=c(xint ,x2,y1,y2))

537 # We may want to remove the big value due to Ho Chi Minh:

538 # incidences[incidences ==max(incidences)] <- 5.493404

539 #incidences[incidences <(-5)] <- -5

540 #incidences[incidences >5] <- 5
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541 incidences2 <- sign(incidences)*abs(incidences)^expo

542 image(time ,1:nbprov ,incidences2 ,col=colors ,axes=F,

543 ann=F)

544 # xlab="time (year)",ylab ="")

545 # The axes:

546 ats <- seq(floor(min(time)),ceiling(max(time)) ,2)

547 axis(1,ats ,paste(ats))

548 axis(3,ats ,paste(ats))

549 axis (4); box()

550 mtext("provinces",4,line =1.5)

551 # The map of Vietnam:

552 par(plt=c(x1 ,xint ,y1 ,y2),new=T)

553 plot(provinces ,yaxs="i",col="lightgrey")

554 # if(hl) {

555 # plot(provinces[names(provinces)=="Hoa Binh"],add=T,col=col1 ,border=

col1)

556 # plot(provinces[names(provinces)==" Ninh Thuan"],add=T,col="red",

border ="red")

557 # }

558 # The lines:

559 x <- c(.5, nbprov +.5)

560 y <- bbox(provinces)[2,]

561 model <- lm(y~x)

562 Y2 <- predict(model ,data.frame(x=1: nbprov))

563 centroids <- centroids[order(centroids$latitude) ,]

564 Y1 <- centroids$latitude

565 X1 <- centroids$longitude

566 X2 <- diff(bbox(provinces)[1,])*.07+ bbox(provinces)[1,2]

567 segments(X1,Y1,X2,Y2,lwd =.5)

568 if(hl) {

569 segments(X1[ts],Y1[ts],X2,Y2[ts],col=col1 ,lwd =1.5)

570 segments(X1[ts2],Y1[ts2],X2,Y2[ts2],col="red",lwd =1.5)

571 plot(provinces[names(provinces)=="Hoa Binh"],

572 add=T,col=col1 ,border=col1)

573 plot(provinces[names(provinces)=="Ninh Thuan"],

574 add=T,col="red",border="red")

575 }
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576 # The scale:

577 par(plt=c(x3 ,x4 ,y1 ,y2),new=T)

578 thescale <-seq(min(incidences2 ,na.rm=T),

579 max(incidences2 ,na.rm=T),le =100)

580 image(1,thescale ,matrix(thescale ,nrow=1,byrow=T),col=colors ,

581 axes=F,ann=F)

582 mtext("incidence z-scores",4,line =1.5); box()

583 # axis (4)

584 aaa <- pretty(c(floor(incidences),ceiling(incidences)) ,30)

585 axis(4,sign(aaa)*abs(aaa)^expo ,paste(aaa))

586 # Adding the time series of a selected province:

587 if(y3 <y4) {

588 par(plt=c(xint ,x2 ,y3 ,y4),new=T,xaxs="i")

589 if(clr) {

590 hoabinh <- incidences[,ts]

591 l <- length(hoabinh)

592 a <- approx (1:l,hoabinh ,seq(1,l,le=1e5))

593 with(a,plot(x,y,col=colors[

594 as.numeric(cut(y,seq(min(incidences ,na.rm=T),

595 max(incidences ,na.rm=T),le=nbcolors +1)))],pch=".",

596 axes=F,ann=F))

597 } else {

598 plot(incidences[,ts],type="l",axes=F,ann=F,col=col1)

599 # lines(incidences[,ts2],col="red")

600 }

601 axis(2,line =.5)

602 mtext("z-scores",2,line =2)

603 par(plt=c(xint ,x2 ,y00 ,y0),new=T,xaxs="i")

604 plot(incidences[,ts2],type="l",axes=F,ann=F,col="red")

605 axis(2,line =.5)

606 mtext("z-scores",2,line =2)

607 }

608 # Back to initial graphic parameter values

609 par(opar)

610 #return(incidences)

611 invisible(prov_names)

612 }
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613

614

615

616 correlations <- function(n=11,col="Spectral",lag=F,below=T) {

617 require(RColorBrewer)

618 # data <- doXprovince(function(x)scaling(detrend(transform(interpolate(

discardoutliers(x ,.01)),function(x)sqrt(x)) ,.1)),ili93)

619 meteo <- subset(meteo ,year >1992)

620 fit <- find_station ()

621 fit[,1] <- as.character(fit[,1])

622 fit[,2] <- as.character(fit[,2])

623 fct <- function(x) {

624 aa <- subset(data ,province ==fit[x,1],c("year","month","cases"))

625 bb <- subset(meteo ,station ==fit[x,2],c("year","month","aH"))

626 cc <- merge(aa,bb)

627 aa <- cc[,3]

628 bb <- cc[,4]

629 if(lag) return(cor.test(aa[-1],bb[-length(bb)]))

630 else return(cor.test(aa,bb))

631 }

632 power <- data.frame(province=names(out),power=max_power(out ,c(.9 ,1.1),

max)$power)

633 out <- lapply (1: nrow(fit),function(x)fct(x))

634 power <- merge(fit ,power ,sort=F)$power

635

636 # latitudes <- merge(fit ,centroids ,sort=F)$latitude

637 colors <- rev(brewer.pal(n,col))

638 colors <- colors[as.numeric(cut(power ,n))]

639

640 m1 <- unlist(lapply(out ,function(x)return(x$estimate)))

641 m2 <- unlist(lapply(out ,function(x)return(x$p.value)))

642

643 out <- data.frame(m1 ,m2 ,colors ,power)

644 out <- out[order(out$power) ,]

645 with(out ,{

646 if(below) sel <- power <= 4

647 else sel <- power > 4
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648 plot(log10(m2),out$m1,type="n",xlim=c(-13,0),ylim=c(-.4,.6))

649 points(log10(m2[sel]),out$m1[sel])

650 })

651 }

652

653

654

655 fig_ILI_aH <- function(data=ili93 ,ff=.1,perc =.01,aH=meteo ,

656 centroids=centroids93 ,stat=stations ,low=0,up=30,

657 ylim_ili=c(-1,1),ylim_aH=c(15 ,35),left=T) {

658 m <- 1:13

659 col1 <- rgb (1 ,.55 ,0 ,.2)

660 col2 <- "orange"

661 col3 <- rgb (0 ,0,1,.125)

662 col4 <- "deepskyblue"

663 # ILI:

664 data <- doXprovince(function(x)scaling(detrend(transform(

665 interpolate(discardoutliers(x,perc)),

666 function(x)sqrt(x)),ff)),data)

667 data <- subset(data ,is.element(province ,

668 subset(centroids ,latitude >low & latitude <=up,province ,T)))

669 print(length(unique(data$province)))

670 foo <- with(data ,tapply(cases ,month ,quantile ,c(.25 ,.5 ,.75)))

671 lower_ili <- sapply(foo ,function(x)x[1])

672 media_ili <- sapply(foo ,function(x)x[2])

673 upper_ili <- sapply(foo ,function(x)x[3])

674 lower_ili <- c(lower_ili ,lower_ili [1])

675 media_ili <- c(media_ili ,media_ili [1])

676 upper_ili <- c(upper_ili ,upper_ili [1])

677 # aH:

678 bar <- subset(aH ,year >1992 & is.element(station ,

679 subset(stat ,latitude >low & latitude <=up,station ,T)))

680 print(length(unique(bar$station)))

681 foo <- with(bar ,tapply(aH ,month ,quantile ,c(.25 ,.5 ,.75),na.rm=T))

682 lower_aH <- sapply(foo ,function(x)x[1])

683 media_aH <- sapply(foo ,function(x)x[2])

684 upper_aH <- sapply(foo ,function(x)x[3])
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685 lower_aH <- c(lower_aH ,lower_aH[1])

686 media_aH <- c(media_aH ,media_aH[1])

687 upper_aH <- c(upper_aH ,upper_aH[1])

688 # plot ILI:

689 plot(rep(m,3),c(lower_ili ,media_ili ,upper_ili),type="n",axes=F,

690 ylim=ylim_ili ,xlab="months of the year",ylab="")

691 axis(1,seq(2,12,2),c("Feb.","Apr.","Jun.","Aug.","Oct.","Dec."))

692 if(left) {

693 axis (2)

694 mtext("normalized incidence" ,2,1.25)

695 } else {

696 axis (4)

697 mtext("normalized incidence" ,4,1.25)

698 }

699 polygon(c(m,rev(m)),c(lower_ili ,rev(upper_ili)),col=col1 ,border=col1)

700 lines(m,media_ili ,col=col2)

701 # plot aH:

702 par(new=T)

703 plot(rep(m,3),c(lower_aH,media_aH,upper_aH),type="n",

704 axes=F,ann=F,ylim=ylim_aH)

705 if(left) {

706 axis (4)

707 mtext("absolute humidity (g/L)" ,4,1.25)

708 } else {

709 axis (2)

710 # mtext(" absolute humidity (g/L)" ,2 ,1.25)

711 }

712 polygon(c(m,rev(m)),c(lower_aH ,rev(upper_aH)),col=col3 ,border=col3)

713 lines(m,media_aH ,col=col4)

714 box()

715 }

716

717

718

719

720 fig_ILI_aH2 <- function(data=ili93 ,ff=.1,perc =.01,aH=meteo ,

721 centroids=centroids93 ,stat=stations ,thresh =16,
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722 ylim_ili=c( -1.5 ,1.5),ylim_aH=c(15 ,35)) {

723 x1 <- .07; x4 <- .93

724 y1 <- .185; y2 <- .98

725 hspace <- .115

726 # For a PNG figure:

727 x1 <- .07; x4 <- .93

728 y1 <- .19; y2 <- .97

729 hspace <- .108

730 width <- (x4 -x1 -hspace)/2

731 x2 <- x1 + width

732 x3 <- x4 - width

733 opar <- par(plt=c(x1,x2,y1,y2))

734 fig_ILI_aH(data ,ff ,perc ,aH ,centroids ,stat ,low=thresh ,up=30,

735 ylim_ili ,ylim_aH)

736 par(plt=c(x3 ,x4 ,y1 ,y2),new=T)

737 fig_ILI_aH(data ,ff ,perc ,aH ,centroids ,stat ,low=0,up=thresh ,

738 ylim_ili ,ylim_aH,left=F)

739 par(opar)

740 }

741

742

743

744

745 heatmap_filtered <- function(data ,centroids=centroids93 ,

746 provinces=provinces92_lh ,ff=.1,perc =.01, col1="blue",hl=T,x1=0,x2=.84,

747 x3=.92,x4=.935, y00 =.015,y0=.195,y1=.245,y2=.755,y3=.81,y4=.99,

748 ts="Hoa Binh",clr=F,nbcolors =12,expo =.5) {

749 colors <- rev(heat.colors(nbcolors))

750 # The time vector:

751 time <- data$time

752 # Ordering the data by latitude:

753 data <- data$filtered_ts[,with(centroids93 ,

754 as.character(province[order(latitude)]))]

755 prov_names <- gsub(" [1,2]","",names(data))

756 ts <- which(prov_names ==ts)

757 ts2 <- which(prov_names=="Ninh Thuan")

758 nbprov <- ncol(data)
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759 # The heatmap:

760 xint <- x1 + par("fin")[2]*(y2-y1)/(2*par("fin")[1])

761 opar <- par(plt=c(xint ,x2,y1,y2))

762 image(time ,1:nbprov ,as.matrix(data),col=colors ,axes=F,ann=F)

763 incidences <- incidences2 <- data

764 # The axes:

765 ats <- seq(floor(min(time)),ceiling(max(time)) ,2)

766 axis(1,ats ,paste(ats))

767 axis(3,ats ,paste(ats))

768 axis (4); box()

769 mtext("provinces",4,line =1.5)

770 # The map of Vietnam:

771 par(plt=c(x1 ,xint ,y1 ,y2),new=T)

772 plot(provinces ,yaxs="i",col="lightgrey")

773 # The lines:

774 x <- c(.5, nbprov +.5)

775 y <- bbox(provinces)[2,]

776 model <- lm(y~x)

777 Y2 <- predict(model ,data.frame(x=1: nbprov))

778 centroids <- centroids[order(centroids$latitude) ,]

779 Y1 <- centroids$latitude

780 X1 <- centroids$longitude

781 X2 <- diff(bbox(provinces)[1,])*.07+ bbox(provinces)[1,2]

782 segments(X1,Y1,X2,Y2,lwd =.5)

783 if(hl) {

784 segments(X1[ts],Y1[ts],X2,Y2[ts],col=col1 ,lwd =1.5)

785 segments(X1[ts2],Y1[ts2],X2,Y2[ts2],col="red",lwd =1.5)

786 plot(provinces[names(provinces)=="Hoa Binh"],

787 add=T,col=col1 ,border=col1)

788 plot(provinces[names(provinces)=="Ninh Thuan"],add=T,

789 col="red",border="red")

790 }

791 # The scale:

792 par(plt=c(x3 ,x4 ,y1 ,y2),new=T)

793 thescale <-seq(min(incidences2 ,na.rm=T),

794 max(incidences2 ,na.rm=T),le =100)

795 image(1,thescale ,matrix(thescale ,nrow=1,byrow=T),col=colors ,
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796 axes=F,ann=F)

797 mtext("incidence z-scores",4,line =1.5); box()

798 axis (4)

799 # Adding the time series of a selected province:

800 if(y3 <y4) {

801 par(plt=c(xint ,x2 ,y3 ,y4),new=T,xaxs="i")

802 if(clr) {

803 hoabinh <- incidences[,ts]

804 l <- length(hoabinh)

805 a <- approx (1:l,hoabinh ,seq(1,l,le=1e5))

806 with(a,plot(x,y,col=colors[

807 as.numeric(cut(y,seq(min(incidences ,na.rm=T),

808 max(incidences ,na.rm=T),le=nbcolors +1)))],pch=".",

809 axes=F,ann=F))

810 } else {

811 mx <- max(abs(incidences[,ts]))

812 plot(incidences[,ts],type="l",

813 axes=F,ann=F,col=col1 ,ylim=c(-mx,mx))

814 }

815 axis(2,line =.5)

816 mtext("z-scores",2,line =2)

817 par(plt=c(xint ,x2 ,y00 ,y0),new=T,xaxs="i")

818 plot(incidences[,ts2],type="l",axes=F,ann=F,col="red",

819 ylim=c(-mx ,mx))

820 axis(2,line =.5)

821 mtext("z-scores",2,line =2)

822 }

823 # Back to initial graphic parameter values

824 par(opar)

825 invisible(prov_names)

826 }

827

828

829

830 wavelet_all <- function(data=doXprovince(function(x)scaling(detrend(

831 transform(interpolate(discardoutliers(x,perc =.01)),

832 function(x)sqrt(x)),ff=.1)),ili93),s0=NULL) {
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833 # This function calculates the wavelet transform for all the provinces.

834 require(biwavelet) # for "wt" function.

835 provinces <- unique(data$province)

836 nbprov <- length(provinces)

837 if(is.null(s0)) w <- wt(with(subset(data ,province == province [1]),

838 cbind(time ,cases)))

839 else w <- wt(with(subset(data ,province == province [1]),

840 cbind(time ,cases)),s0=s0)

841 wa <- array(NA,dim=c(nbprov ,nrow(w$wave),ncol(w$wave)))

842 wa[1,,]=w$wave

843 if(is.null(s0)) for(i in 2: nbprov) {

844 w <- wt(with(subset(data ,province == provinces[i]),

845 cbind(time ,cases)))

846 wa[i,,] <- w$wave

847 } else for(i in 2: nbprov) {

848 w <- wt(with(subset(data ,province == provinces[i]),

849 cbind(time ,cases)),s0=s0)

850 wa[i,,] <- w$wave

851 }

852 return(list(wa=wa,provinces=provinces))

853 }

854

855

856

857 distcalc <- function(object) {

858 # This function calculates the distances between the wavelet transforms of

859 # all the provinces.

860 # object: output of "wavelet_all".

861 require(biwavelet) # for "wclust" function.

862 return(list(distances=wclust(object$wa),

863 provinces=object$provinces))

864 }

865

866

867

868 clustcalc <- function(object ,method="ward") {

869 # This function does a hierarchical clustering of the provinces based on
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870 # the matrix of distances between their wavelet spectra.

871 # object: output of "distcalc ".

872 clusters <- hclust(object$distances$dist.mat ,method)

873 clusters$labels <- object$provinces

874 return(clusters)

875 }

876

877

878

879 plotclust <- function(object) {

880 # This function plots the hierarchy of provinces calculated from the

881 # similarities between their wavelet spectra.

882 # object: output of "clustcalc ".

883 plot(object ,sub="",main="",ylab="dissimilarity",hang=-1)

884 }

885

886

887

888 plotonmap <- function(object ,k=3,shp=provinces92_lh) {

889 # object: output of "clustcalc ".

890 require(sp)

891 out <- cutree(object ,k)

892 provnames <- gsub(" [1,2]","",names(out))

893 plot(shp)

894 for(i in 1: length(out))

895 plot(shp[names(shp)== provnames[i]],add=T,col=out[i]+1)

896 }

897

898

899

900 global_spect_calc <- function(data=doXprovince(function(x)scaling(detrend(

transform(interpolate(discardoutliers(x,perc =.01)),function(x)sqrt(x)),

ff=.1)),ili93),dj=1/100, upperPeriod =3,space="province",var="cases") {

901 # This function calculates the global spectrum of a set "data" of

902 # provinces.

903 require(ondelettes) ## for "morlet" and "waveglobal"

904 names(data) <- gsub(space ,"province",names(data))
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905 names(data) <- gsub(var ,"cases",names(data))

906 provinces <- unique(data$province)

907 wavelet_transformed <- lapply(provinces ,function(x)

908 morlet(subset(data ,province ==x,cases ,T),dt=1/12,dj=dj,

909 lowerPeriod =.1, upperPeriod=upperPeriod ,pad =2^8))

910 periods <- wavelet_transformed [[1]]$fourier*

911 wavelet_transformed [[1]]$scale

912 globals <- lapply(wavelet_transformed ,function(x)

913 return(data.frame(periods=periods ,globwave=waveglobal(x))))

914 names(globals) <- provinces

915 return(globals)

916 }

917

918

919

920 filtered_phase_calc <- function(data=doXprovince(function(x)scaling(detrend

(transform(interpolate(discardoutliers(x,perc =.01)),function(x)sqrt(x))

,ff=.1)),ili93),var1="province",var2="cases",dj=1/100, upperPeriod =3,

space="province",filt_lwr=.9,filt_upp =1.1) {

921 # This function returns the time series and the phases of the filtered

922 # signals.

923 require(ondelettes) ## for "morlet" and "wavefilter"

924 provinces <- unique(data[,var1])

925 tmp <- lapply(provinces ,function(x)

926 wavefilter(morlet(data[data[,var1 ]==x,var2],dt=1/12,dj=dj ,

927 lowerPeriod =.1, upperPeriod=upperPeriod ,pad =2^8) ,filt_lwr ,

928 filt_upp))

929 thelengths <- sapply(tmp ,function(x)length(x$ts))

930 sel <- !(thelengths <max(thelengths))

931 tmp <- tmp[sel]

932 filtered_ts <- as.data.frame(sapply(tmp ,function(x)x$ts))

933 filtered_phase <- as.data.frame(sapply(tmp ,function(x)x$phase))

934 names(filtered_ts) <- names(filtered_phase) <- provinces[sel]

935 return(list(time=unique(data$time),filtered_ts=filtered_ts,

936 filtered_phase=filtered_phase))

937 }

938
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939

940

941

942 calc_filtered_phase_aH <- function () {

943 # This function filters and calculates the phase of the absolute humidity:

944 meteo <- subset(meteo ,year >1992 ,T)

945 meteo$time <- with(meteo ,year+month/12-1/24)

946 out <- filtered_phase_calc(meteo ,var1="station",var2="aH")

947 sel <- !sapply(out$filtered_ts,function(x)any(is.na(x)))

948 out$filtered_ts <- out$filtered_ts[sel]

949 out$filtered_phase <- out$filtered_phase[sel]

950 return(out)

951 }

952

953

954

955 angle_transf <- function(data) {

956 # This function transforms a vector "data" of phase angles from

957 # [-pi ,+pi] to [-pi ,+ infty].

958 # data is a vector of phase angles , typically an output of the "angle"

function

959 zz <- which ((diff(data) <0) >0)+1

960 data[zz[which(diff(zz)==1)]] <- NA

961 tmp <- data >0

962 tmp[is.na(tmp)] <- TRUE

963 tmp <- diff(tmp)

964 tmp <- which(tmp <0)

965 end <- length(data)

966 for(i in 1: length(tmp))

967 data[(tmp[i]+1):end] <- data[(tmp[i]+1):end] + 2*pi

968 return(data)

969 }

970

971

972

973 dff <- function () {

974 # This function calculates the phase angles of the ILI and the
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975 # corresponding absolute humidity for each province.

976 aH <- calc_filtered_phase_aH()$filtered_phase

977 ili <- filtered_phase_calc(data)$filtered_phase

978 interf <- find_station(stat=stations[

979 is.element(stations$station ,names(aH)) ,])

980 sel <- as.character(merge(data.frame(province=names(ili)),

981 interf ,sort=F)[,2])

982 aH <- aH[,sel]

983 return(list(aH,ili))

984 }

985

986

987

988

989 plot_phase_diff6 <- function(n=11,col="Spectral",thresh =3) {

990 #pdf(" figure_7b.pdf",width =4.5, height =5.4, pointsize =8.5); plot_phase_diff6(

thresh =4); dev.off()

991 # For a PDF figure of chapter 4.

992 x1 <- .07; x4 <- .93

993 y1 <- .075; y6 <- .98

994 hspace <- .115

995 width <- (x4 -x1 -hspace)/2

996 x2 <- x1 + width

997 x3 <- x4 - width

998 vspace <- .1

999 height <- (y6-y1 -2*vspace)/3

1000 y2 <- y1 + height

1001 y3 <- y2 + vspace

1002 y4 <- y3 + height

1003 y5 <- y4 + vspace

1004

1005 require(RColorBrewer)

1006 colors <- rev(brewer.pal(n,col))

1007 xx <- dff()

1008 provnames <- names(xx [[2]])

1009 phase_abshum <- as.data.frame(lapply(xx[[1]] ,

1010 function(x)angle_transf(x)))
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1011 phase_ili <- as.data.frame(lapply(xx[[2]] ,

1012 function(x)angle_transf(x)))

1013 thediff <- phase_ili - phase_abshum

1014 thediff <- thediff %%(2*pi)

1015 fct <- function(x){

1016 sel <- x > pi

1017 sel[is.na(sel)] <- F

1018 x[sel] <- x[sel] - 2*pi

1019 return(x)

1020 }

1021 thediff <- as.data.frame(lapply(thediff ,fct))

1022 names(thediff) <- provnames

1023 col <- data.frame(province=names(out),

1024 maxpower=max_power(out ,c(.9 ,1.1),max)$power)

1025 col <- merge(data.frame(province=names(thediff)),col ,sort=F)[,2]

1026 thediff <- thediff[,order(col)]

1027 col <- sort(col)

1028 times <- unique(data$time)

1029 index <- as.numeric(cut(col ,n))

1030 # Left panel

1031 opar <- par(plt=c(x1,x2,y5,y6))

1032 sel <- col >thresh

1033 print(sum(sel))

1034 index2 <- rep(index[sel],each=length(times))

1035 thediff2 <- thediff[,sel]

1036 plot(rep(times ,ncol(thediff2)),unlist(thediff2),type="n",

1037 xlab="time (year)",

1038 ylab="phase difference (radians)",axes=F)

1039 # abline(h=c(-pi ,-2*pi/3,-pi/3,0,pi/3,2*pi/3,pi),col=" lightgrey ")

1040 abline(h=c(-pi ,-5*pi/6,-2*pi/3,-pi/2,-pi/3,-pi/6,0,

1041 pi/6,pi/3,pi/2,2*pi/3,5*pi/6,pi),col="lightgrey")

1042 points(rep(times ,ncol(thediff2)),unlist(thediff2),pch=19,

1043 col=colors[index2],cex =.25)

1044 axis (1)

1045 axis(2,c(-pi,-pi/2,0,pi/2,pi),expression(-pi,-pi/2,0,pi/2,pi))

1046 axis(4,c(-pi ,-2*pi/3,-pi/3,0,pi/3,2*pi/3,pi),

1047 c("-6","-4","-2","0","2","4","6"))
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1048 box()

1049 # Right panel

1050 par(plt=c(x3 ,x4 ,y5 ,y6),new=T)

1051 sel <- col <= thresh

1052 print(sum(sel))

1053 index2 <- rep(index[sel],each=length(times))

1054 thediff2 <- thediff[,sel]

1055 plot(rep(times ,ncol(thediff2)),unlist(thediff2),type="n",

1056 xlab="time (year)",

1057 axes=F,ylab="lag (months)")

1058 abline(h=c(-pi ,-5*pi/6,-2*pi/3,-pi/2,-pi/3,-pi/6,0,

1059 pi/6,pi/3,pi/2,2*pi/3,5*pi/6,pi),col="lightgrey")

1060 points(rep(times ,ncol(thediff2)),unlist(thediff2),pch=19,

1061 col=colors[index2],cex =.25)

1062 axis (1)

1063 axis(2,c(-pi ,-2*pi/3,-pi/3,0,pi/3,2*pi/3,pi),

1064 c("-6","-4","-2","0","2","4","6"))

1065 axis(4,c(-pi,-pi/2,0,pi/2,pi),expression(-pi,-pi/2,0,pi/2,pi))

1066 box()

1067 mtext("phase difference (radians)" ,4,1.25)

1068 #

1069 par(plt=c(x1 ,x2 ,y3 ,y4),new=T)

1070 correlations(n=11,col="Spectral",lag=F,below=F)

1071 par(plt=c(x3 ,x4 ,y3 ,y4),new=T)

1072 correlations(n=11,col="Spectral",lag=F,below=T)

1073 #

1074 par(plt=c(x1 ,x2 ,y1 ,y2),new=T)

1075 correlations(n=11,col="Spectral",lag=T,below=F)

1076 par(plt=c(x3 ,x4 ,y1 ,y2),new=T)

1077 correlations(n=11,col="Spectral",lag=T,below=T)

1078 # End

1079 par(opar)

1080 invisible(thediff)

1081 }

1082

1083

1084 plot_phases <- function(out) {

209



D. R CODE

1085 # "out" is an output of the "filtered_phase_calc" function.

1086 with(out ,{

1087 nbprov <- ncol(out$filtered_ts)

1088 plot(rep(time ,nbprov),unlist(filtered_ts),type="n")

1089 for(i in 1: nbprov)

1090 lines(time ,filtered_ts[,i],col=rgb(0,0,0,.1))

1091 })

1092 }

1093

1094

1095

1096 fig_glob_power1 <- function(out ,n=11,col="Spectral") {

1097 # This functions draws the global power with a color that reflects the

1098 # latitutde.

1099 # out is an output of "global_spect_calc".

1100 require(RColorBrewer)

1101 colors <- brewer.pal(n,col)

1102 x <- unlist(lapply(out ,function(x)x$periods))

1103 y <- unlist(lapply(out ,function(x)x$globwave))

1104 plot(x,y,type="n",xlab="period (year)",ylab="power",

1105 axes=F,xlim=c(0,max(x)))

1106 axis (1); axis (2)

1107 index <- as.numeric(cut(with(centroids93 ,

1108 latitude[match(names(out),province)]),n))

1109 for(i in 1: length(out))

1110 with(out[[i]],lines(periods ,globwave ,col=colors[index[i]]))

1111 }

1112

1113

1114

1115

1116 fig_glob_power2 <- function(out ,n=11,col="Spectral",rge=c(.9 ,1.1),fct=max)

{

1117 # This function draws the global power with a colors that reflects the

1118 # maximum power at 1 year.

1119 # out is an output of "global_spect_calc".

1120 require(RColorBrewer)
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1121 colors <- rev(brewer.pal(n,col))

1122 x <- unlist(lapply(out ,function(x)x$periods))

1123 y <- unlist(lapply(out ,function(x)x$globwave))

1124 plot(x,y,type="n",xlab="period (year)",ylab="power",

1125 axes=F,xlim=c(0,max(x)))

1126 axis (1); axis (2)

1127 mxpwr <- max_power(out ,rge ,fct)$power

1128 index <- as.numeric(cut(mxpwr ,n))

1129 for(i in 1: length(out))

1130 with(out[[i]],lines(periods ,globwave ,col=colors[index[i]]))

1131 }

1132

1133

1134

1135

1136 map_lat2 <- function(out ,prov=provinces92_lh ,n=11,col="Spectral",

1137 rge=c(.9 ,1.1),fct=max) {

1138 # This function draws the map of vietnam with the color of the provinces

1139 # reflecting the seasonality (i.e. maximum power around the period of 1

year).

1140 # out is an output of "global_spect_calc".

1141 require(RColorBrewer)

1142 colors <- rev(brewer.pal(n,col))

1143 pwr <- max_power(out ,rge ,fct)

1144 mxpwr <- pwr$power

1145 provpwr <- as.character(pwr$province)

1146 provpwr <- gsub(" 1","",provpwr)

1147 provpwr <- gsub(" 2","",provpwr)

1148 provmap <- sapply(prov@polygons ,function(x)x@ID)

1149 index <- as.numeric(cut(mxpwr[match(provmap ,provpwr)],n))

1150 colors <- colors[index]

1151 plot(prov ,yaxs="i",col=colors)

1152 }

1153

1154

1155

1156
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1157 map_lat1 <- function(prov=provinces92_lh ,n=11,col="Spectral") {

1158 # This function draws the map of vietnam the the color of the provinces

1159 # reflecting the latitude.

1160 require(RColorBrewer)

1161 colors <- brewer.pal(n,col)

1162 a <- gsub(" 1","",centroids93$province)

1163 a <- gsub(" 2","",a)

1164 index <- as.numeric(cut(with(centroids93 ,

1165 latitude[match(sapply(prov@polygons ,

1166 function(x)x@ID),a)]),n))

1167 colors <- colors[index]

1168 plot(prov ,yaxs="i",col=colors)

1169 }

1170

1171

1172

1173

1174 power_map <- function(out ,x1=.1,x2=.9,y1=.1,y2=.9,eps=0) {

1175 #pdf(" figure_2.pdf",width=3,height=2, pointsize =8.5); power_map(out ,x1=.11,

x2=1,y1=.17,y2=.99,eps =.07); dev.off()

1176 xint <- x2 - par("fin")[2]*(y2-y1)/(2*par("fin")[1])

1177 # The power

1178 opar <- par(plt=c(x1,xint+eps ,y1,y2))

1179 fig_glob_power2(out)

1180 # The map

1181 par(plt=c(xint ,x2 ,y1 ,y2),new=T)

1182 map_lat2(out)

1183 par(opar)

1184 }

1185

1186

1187

1188 power_map2 <- function(out ,x1=.09,x2=1,y1=.17,y2=.99,eps=.04, eps2 =.04) {

1189 #pdf(" figure_2.pdf",width =3.7, height=2, pointsize =8.5); power_map2(out ,x1

=.09,x2=1,y1=.17,y2=.99,eps=.04, eps2 =.04); dev.off()

1190 xxxx <- par("fin")[2]*(y2-y1)/(2*par("fin")[1])

1191 xint <- x2 - 2*xxxx
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1192 ll <- -.75

1193 # The power

1194 opar <- par(plt=c(x1,x2 -2*xxxx+eps+eps2 ,y1,y2))

1195 fig_glob_power2(out)

1196 mtext("(A)",at=-.35,line=ll)

1197 # The map with the power

1198 par(plt=c(x2 -2*xxxx+eps2 ,x2 -xxxx+eps2 ,y1 ,y2),new=T)

1199 map_lat2(out)

1200 mtext("(B)",at=101.3 , line=ll)

1201 # The map with the elevations:

1202 par(plt=c(x2 -xxxx ,x2 ,y1 ,y2),new=T)

1203 x <- 500 ## This is the elevation.

1204 plot(vietnam_light ,yaxs="i")

1205 colors = rev(c("#8C510A","#DFC27D"))

1206 colors = c("lightgrey","darkgrey")

1207 image(altitudes ,add=T,col = colors ,breaks=c(0,x ,3500))

1208 plot(vietnam_light ,add=T)

1209 contour(altitudes ,levels=x,add=T,drawlabels=F,lwd =.5)

1210 mtext("(C)",at=101.3 , line=ll)

1211 par(opar)

1212 }

1213

1214

1215

1216

1217 figure_meteo1 <- function(v="Ta",n=9,col="YlOrRd",latmin ,latmax) {

1218 require(RColorBrewer)

1219 yylab <- data.frame(Tm="minimal temperature ( C )",

1220 Ta="average temperature ( C )",

1221 Tx="maximal temperature ( C )",aH="absolute humidity (g/L)",

1222 rH="relative humidity (%)",Rf="rainfall (mm)",

1223 Sh="sunshine (hours)")

1224 temperature <- c("Tm","Ta","Tx")

1225 colors <- rev(brewer.pal(n,col))#[-1])

1226 meteo <- subset(meteo ,year >=1993)

1227 temprange <- range(meteo[,temperature],na.rm=T)

1228 meteo <- with(meteo ,tapply(meteo[,v],list(month ,station),mean))

213



D. R CODE

1229 meteo <- rbind(meteo ,meteo [1,])

1230 months <- 1:13

1231 nbcol <- ncol(meteo)

1232 if(is.element(v,temperature))

1233 plot(rep(months ,nbcol),as.vector(meteo),type="n",axes=F,

1234 xlab="",ylab=yylab[,v],ylim=temprange)

1235 else plot(rep(months ,nbcol),as.vector(meteo),type="n",axes=F,

1236 xlab="",ylab=yylab[,v])

1237 # axis(1,seq(1,12,2),c("Jan","Mar","May","Jul","Sep","Nov"))

1238 # axis(1,c(1,4,7,10),c("Jan","April","July","October "))

1239 axis(1,c(1,4,7,10,13),c("Jan.","Apr.","Jul.","Oct.","Jan."),

1240 lwd=0,tick=F)

1241 axis (1,1:13,F)

1242 axis (2)

1243 a <- match(colnames(meteo),stations$station)

1244 meteo <- meteo[,!is.na(a)]

1245 nbcol <- ncol(meteo)

1246 a <- match(colnames(meteo),stations$station)

1247 a <- stations[a,"latitude"]

1248 # a <- c(latmin ,latmax ,a)

1249 colors <- colors[as.numeric(cut(a,n))]# -1))]

1250 # colors <- colors [ -(1:2)]

1251 for(i in 1: nbcol) lines(months ,meteo[,i],col=colors[i])

1252 }

1253

1254

1255

1256

1257 figure_meteoX <- function(n=9,col="YlOrRd",x1=.1,x2=.99,y1=.1,y2=.99,

1258 nrw=4,ncl=2,hspace =.01, vspace =.01) {

1259 #pdf(" figure_3.pdf",width=4,height=6, pointsize =8.5); figure_meteoX(n=11,col

=" Spectral",x1=.08,x2=.99,y1=.04,y2=1,nrw=4,ncl=2,hspace =.1, vspace =.03)

; dev.off()

1260 x <- raster_lat_grad()

1261 latmin <- x@extent@ymin

1262 latmax <- x@extent@ymax

1263 xrange <- x2 - x1
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1264 width <- (xrange - (ncl -1)*hspace)/ncl

1265 yrange <- y2 - y1

1266 height <- (yrange - (nrw -1)*vspace)/nrw

1267 opar <- par()

1268 variables <- c("Tx","Sh","Ta","Rf","Tm","rH","aH")

1269 j <- 0

1270 plot(1,type="n",ann=F,axes=F)

1271 for(r in 1:(nrw -1)) {

1272 for(c in 1:ncl) {

1273 par(plt=c(x1+(c-1)*(width+hspace),

1274 x1+c*width+(c-1)*hspace ,

1275 y1+(r-1)*(height+vspace),

1276 y1+r*height +(r-1)*vspace),

1277 new=T)

1278 j <- j+1

1279 figure_meteo1(variables[j],n,col ,latmin ,latmax)

1280 # mtext ("(A)",line =0.2,at= -1.4)

1281 }

1282 }

1283 r <- nrw

1284 c <- 1

1285 eps <- .075

1286 par(plt=c(x1+(c-1)*(width+hspace),

1287 x1+c*width+c(c-1)*hspace ,

1288 y1+(r-1)*(height+vspace)-eps ,

1289 y1+r*height +(r-1)*vspace),new=T)

1290 x <- raster_lat_grad()

1291 plot(vietnam_light)

1292 image(x,add=T,col=brewer.pal(n,col))

1293 plot(vietnam_light ,add=T)

1294 with(stations ,points(longitude ,latitude))

1295 c <- ncl

1296 par(plt=c(x1+(c-1)*(width+hspace),

1297 x1+c*width+c(c-1)*hspace ,

1298 y1+(r-1)*(height+vspace),

1299 y1+r*height +(r-1)*vspace),new=T)

1300 figure_meteo1(variables [7],n,col ,latmin ,latmax)
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1301 par(opar)

1302 }

1303

1304

1305

1306

1307 raster_lat_grad <- function(n=9,colors="YlOrRd") {

1308 require(raster)

1309 # require(RColorBrewer)

1310 # colors <- rev(brewer.pal(n,colors)[-1])

1311 x <- raster(xmn=102,xmx=110,ymn=8,ymx =24)

1312 projection(x) <- projection(altitudes)

1313 values(x) <- matrix(rep(seq(8,24,le=180) ,360),ncol =360)

1314 x <- crop(x,extent(vietnam_light))

1315 x <- rasterize(vietnam_light ,x,mask=T)

1316 # plot(vietnam_light)

1317 # image(x,add=T,col=colors)

1318 # plot(vietnam_light ,add=T)

1319 return(x)

1320 }

1321

1322

1323

1324 figure_meteo_pca0 <- function(n=11,col="Spectral") {

1325 require(RColorBrewer)

1326 meteo <- subset(meteo ,year >=1993)

1327 meteo <- na.exclude(meteo)

1328 pca <- prcomp(subset(meteo ,

1329 sel=c("Ta","Tx","Tm","Rf","rH","Sh","aH")),scale=T)

1330 x <- as.data.frame(pca$x)

1331 limits <- range(with(x,c(PC1 ,PC2)))

1332 limits <- c(-1,1)*rep(max(abs(limits)) ,2)

1333 colors <- rev(brewer.pal(n,col))

1334 a <- match(meteo$station ,stations$station)

1335 a <- stations[a,"latitude"]

1336 colors <- colors[as.numeric(cut(a,n))]

1337 a <- x[,c("PC1","PC2")]
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1338 shuffle <- sample (1: nrow(a))

1339 a <- a[shuffle ,]

1340 colors <- colors[shuffle]

1341 importance <- round (100*summary(pca)$importance [2 ,1:2])

1342 with(a,plot(PC1 ,PC2 ,xlim=limits ,ylim=limits ,

1343 xlab=paste0("PC1 (",importance [1],

1344 "% of variance)"),

1345 ylab=paste0("PC2 (",importance [2],

1346 "% of variance)"),col=colors))

1347 var <- 10*pca$rotation [ ,1:2]

1348 for(i in 1:7) arrows(0,0,var[i,1],var[i,2] ,.1)

1349 return(pca)

1350 }

1351

1352

1353

1354 figure_meteo_pca <- function(n=11,col="Spectral",width =2.75, height =4.1,

1355 x1=0,x2=.98,y1=.005,y2=.98,eps =.03) {

1356 #figure_meteo_pca(width =2.75 , height =4.1,x1=0,x2=.98,y1=.005 ,y2=.98,eps =.03)

1357 require(RColorBrewer)

1358 require(plotrix)

1359 pdf("figure_4.pdf",width ,height ,pointsize =8.5)

1360 xmid <- x1+(x2-x1)/3

1361 yheight <- width*(x2 -xmid)/height

1362 # The map of Vietnam:

1363 par(plt=c(x1 ,xmid ,y1 ,y1+yheight -eps))

1364 x <- raster_lat_grad()

1365 plot(vietnam_light ,xaxs="i",yaxs="i")

1366 image(x,add=T,col=brewer.pal(n,col))

1367 plot(vietnam_light ,add=T)

1368 with(stations ,points(longitude ,latitude))

1369 meteo <- subset(meteo ,year >=1993)

1370 meteo <- na.exclude(meteo)

1371 pca <- prcomp(subset(meteo ,

1372 sel=c("Ta","Tx","Tm","Rf","rH","Sh","aH")),scale=T)

1373 x <- as.data.frame(pca$x)

1374 limits <- range(with(x,c(PC1 ,PC2)))
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1375 limits <- c(-1,1)*rep(max(abs(limits)) ,2)

1376 colors <- rev(brewer.pal(n,col))

1377 a <- match(meteo$station ,stations$station)

1378 latitudes <- stations[a,"latitude"]

1379 colors <- colors[as.numeric(cut(latitudes ,n))]

1380 a <- x[,c("PC1","PC2")]

1381 shuffle <- sample (1: nrow(a))

1382 a <- a[shuffle ,]

1383 colors <- colors[shuffle]

1384 latitudes <- latitudes[shuffle]

1385 importance <- round (100*summary(pca)$importance [2 ,1:2])

1386 # Plot of the PC1 as a function of latitude:

1387 par(plt=c(xmid ,x2 ,y1 ,y1+yheight -eps),new=T)

1388 with(a,plot(PC1 ,latitudes ,xlim=limits ,yaxs="i",

1389 ylim=bbox(vietnam_light)[2,],ann=F,axes=F,col=colors))

1390 axis(4,line=-3)

1391 mtext("latitude" ,4,-1.5)

1392 axis(3,at=c(-10,-5,0,5))

1393 mtext("(B)",at=-14,line =1)

1394 # Plot of the PC1 and PC2:

1395 par(plt=c(xmid ,x2 ,y2 -yheight ,y2),new=T)

1396 with(a,plot(PC1 ,PC2 ,xlim=limits ,ylim=limits ,

1397 xlab=paste0("PC1 (",importance [1],

1398 "% of variance)"),

1399 ylab=paste0("PC2 (",importance [2],

1400 "% of variance)"),col=colors))

1401 f <- 15

1402 var <- f*pca$rotation [ ,1:2]

1403 for(i in 1:7) arrows(0,0,var[i,1],var[i,2] ,.1)

1404 draw.circle(0,0,f*.25,lty=2,border="grey")

1405 draw.circle(0,0,f*.5,lty=2,border="grey")

1406 draw.circle(0,0,f*.75,lty=2,border="grey")

1407 draw.circle(0,0,f*1,lty=2,border="grey")

1408 abline(v=0,lty=2,col="grey")

1409 abline(h=0,lty=2,col="grey")

1410 txt <- c("Ta","Tx","Tn","Rf","rH","Sh","aH")

1411 for(i in c(1:4 ,6 ,7)) text(var[i,1],var[i,2],txt[i],
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1412 pos=4,offset =.3)

1413 text(var[5,1],var [5 ,2]+.1, txt[5],pos=2,offset =.4)

1414 mtext("(A)",at=-14,line =-.5)

1415 dev.off()

1416 # return(list(a,latitudes))

1417 }

1418

1419

1420

1421

1422 max_power <- function(out ,rge=c(.9 ,1.1),fct=max) {

1423 # out: output of function "global_spect_calc".

1424 # rge: a two -value vector giving the range of periods over which to apply

function "fct".

1425 thenames <- names(out)

1426 if(length(rge) <2) {

1427 out <- sapply(out ,function(x)max(x$globwave))

1428 }

1429 else out <- sapply(out ,function(x) {

1430 p <- x$periods

1431 sel <- p>=rge [1] & p<=rge [2]

1432 return(fct(x$globwave[sel]))

1433 })

1434 return(data.frame(province=thenames ,power=out))

1435 }

1436

1437

1438

1439 fig_lat_power <- function(data=doXprovince(function(x)scaling(detrend(

transform(interpolate(discardoutliers(x,perc =.01)),function(x)sqrt(x)),

ff=.1)),ili93),dj=1/100, upperPeriod =3,rge ,fct=sum) {

1440 # out: output of function "global_spect_calc".

1441 # rge: a two -value vector giving the range of periods over which to apply

function "fct".

1442 out <- global_spect_calc(data ,dj ,upperPeriod)

1443 pwr <- max_power(out ,rge ,fct=sum)

1444 pwr <- merge(centroids93 ,pwr)
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1445 with(pwr ,plot(latitude ,power))

1446 }

1447

1448

1449

1450 meteo_pca <- function(yr =1993) {

1451 # This function returns the PCA component of the climatic stations from

1452 # year yr.

1453 tmp <- na.exclude(subset(meteo ,year >=yr))

1454 pca <- prcomp(tmp[,c("Ta","Tx","Tm","Rf","rH","Sh","aH")],scale=T)

1455 pc <- pca$x

1456 out <- as.data.frame(sapply (1: ncol(pc),function(x)

1457 tapply(pc[,x],tmp$station ,mean)))

1458 out$station <- rownames(out)

1459 names(out) <- gsub("V","PC",names(out))

1460 out <- na.exclude(out)

1461 rownames(out) <- NULL

1462 return(out)

1463 }

1464

1465

1466

1467 meteo_min_max <- function(yr =1993) {

1468 # This function returns the minimum and maximum of the averages of the

1469 # monthly climatic data from year yr.

1470 tmp <- na.exclude(subset(meteo ,year >=yr))

1471 vars <- c("Tm","Ta","Tx","Rf","rH","Sh","aH")

1472 # mins <- sapply(c("Tm","Rf","rH","Sh","aH"),function(x)

1473 mins <- sapply(vars ,function(x)

1474 apply(tapply(tmp[,x],

1475 list(tmp$year ,tmp$station),min),2,mean ,na.rm=T))

1476 colnames(mins) <- paste0(colnames(mins),"_min")

1477 # maxs <- sapply(c("Tx","Rf","rH","Sh","aH"),function(x)

1478 maxs <- sapply(vars ,function(x)

1479 apply(tapply(tmp[,x],

1480 list(tmp$year ,tmp$station),max),2,mean ,na.rm=T))

1481 colnames(maxs) <- paste0(colnames(maxs),"_max")
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1482 # means <- sapply(c("Ta","Rf","rH","Sh","aH"),function(x)

1483 means <- sapply(vars ,function(x)

1484 apply(tapply(tmp[,x],

1485 list(tmp$year ,tmp$station),mean),2,mean ,na.rm=T))

1486 colnames(means) <- paste0(colnames(means),"_mean")

1487 out <- as.data.frame(cbind(mins ,maxs ,means))

1488 out$station <- rownames(out)

1489 rownames(out) <- NULL

1490 out <- na.exclude(out)

1491 return(out)

1492 }

1493

1494

1495 max_power <- function(out ,rge=c(.9 ,1.1),fct=max) {

1496 # out: output of function "global_spect_calc".

1497 # rge: a two -value vector giving the range of periods over which to apply

1498 # function "fct".

1499 thenames <- names(out)

1500 if(length(rge) <2) {

1501 out <- sapply(out ,function(x)max(x$globwave))

1502 }

1503 else out <- sapply(out ,function(x) {

1504 p <- x$periods

1505 sel <- p>=rge [1] & p<=rge [2]

1506 return(fct(x$globwave[sel]))

1507 })

1508 return(data.frame(province=thenames ,power=out))

1509 }

1510

1511

1512

1513 meteo_power <- function(data=meteo ,yr=1993 ,rge=c(.9 ,1.1),fct=max) {

1514 # This functions calculates the power of the annual component of the

1515 # climatic variables.

1516 variable <- "Ta"

1517 data <- subset(data ,year >=yr)

1518 data <- data[order(data$year ,data$month),]
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1519 # Scaling the climatic variables:

1520 for(i in unique(data$station)) {

1521 tmp <- subset(data ,station ==i)

1522 tmp <- apply(tmp[,4:10],2, scale)

1523 data[data$station ==i ,4:10] <- tmp

1524 }

1525 a <- global_spect_calc(data ,space="station",var=variable ,

1526 upperPeriod =2)

1527 a <- max_power(a,rge ,fct)

1528 names(a) <- gsub("power",paste0(variable ,"_pwr"),names(a))

1529 variable <- c("Tx","Tm","Rf","rH","Sh","aH")

1530 for(i in variable) {

1531 tmp <- global_spect_calc(data=subset(data ,year >=yr),

1532 space="station",var=i,upperPeriod =2)

1533 tmp <- max_power(tmp ,rge ,fct)

1534 names(tmp) <- gsub("power",paste0(i,"_pwr"),names(tmp))

1535 a <- merge(a,tmp)

1536 }

1537 rownames(a) <- NULL

1538 # a <- na.exclude(a)

1539 names(a) <- gsub("province","station",names(a))

1540 return(a)

1541 }

1542

1543

1544

1545 meteo_thresh <- function(yr=1993 ,var="Ta",lower=T,le=10) {

1546 # This function finds the number of month below or above a given threshold

1547 # for all the stations , for a given station.

1548 meteo <- subset(meteo ,year >=yr)

1549 if(lower) {

1550 fct <- function(x,thresh) sum(x<thresh)

1551 x <- "l"

1552 }

1553 else {

1554 fct <- function(x,thresh) sum(x>thresh)

1555 x <- "u"
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1556 }

1557 tmp <- meteo[,var]

1558 values <- round(seq(min(tmp ,na.rm=T),max(tmp ,na.rm=T),le=le))

1559 out <- sapply(values ,function(y)

1560 tapply(tmp ,meteo$station ,function(x)fct(x,y)))

1561 out <- as.data.frame(out)

1562 names(out) <- paste0(var ,"_",x,"_",values)

1563 return(out)

1564 }

1565

1566

1567

1568 meteo_thresh_all <- function(yr=1993 ,le=50) {

1569 out <- meteo_thresh(yr ,"Tm",T,le)

1570 out <- cbind(out ,meteo_thresh(yr ,"Tx",F,le))

1571 out <- cbind(out ,meteo_thresh(yr ,"Rf",T,le))

1572 out <- cbind(out ,meteo_thresh(yr ,"Rf",F,le))

1573 out <- cbind(out ,meteo_thresh(yr ,"rH",T,le))

1574 out <- cbind(out ,meteo_thresh(yr ,"rH",F,le))

1575 out <- cbind(out ,meteo_thresh(yr ,"Sh",T,le))

1576 out <- cbind(out ,meteo_thresh(yr ,"Sh",F,le))

1577 out <- cbind(out ,meteo_thresh(yr ,"aH",T,le))

1578 out <- cbind(out ,meteo_thresh(yr ,"aH",F,le))

1579 out$station <- rownames(out)

1580 rownames(out) <- NULL

1581 return(out)

1582 }

1583

1584

1585

1586 find_station <- function(provinces=centroids93 ,stat=stations) {

1587 # This function finds the stations that are the closest to each province:

1588 require(gmt)

1589 find1 <- function(lat ,long ,clim_stat) {

1590 nb <- nrow(clim_stat)

1591 station_names <- clim_stat$station

1592 latitudes <- clim_stat$latitude
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1593 longitudes <- clim_stat$longitude

1594 distances <- sapply (1:nb ,function(x)

1595 geodist(lat ,long ,latitudes[x],longitudes[x]))

1596 return(station_names[distances ==min(distances)])

1597 }

1598 return(data.frame(province=provinces$province ,

1599 station=sapply (1: nrow(provinces),function(x)

1600 find1(provinces[x,"latitude"],

1601 provinces[x,"longitude"],stat))))

1602 }

1603

1604

1605

1606

1607 clim_nbmonths <- function(data=meteo ,yr=1993, var="Ta",thresh =20) {

1608 # This function finds the number of months that a given climatic variable

1609 # spends below a given threshold.

1610 data <- subset(data ,year >=yr)

1611 thestations <- unique(data$station)

1612 fct <- function(x)

1613 return(sum(data[data$station ==x,var]>thresh))

1614 nb <- sapply(thestations ,fct)

1615 out <- data.frame(thestations ,nb)

1616 names(out) <- c("station",paste0(var ,"_nb"))

1617 return(out)

1618 }

1619

1620

1621 clim_nbmonths2 <- function(data1=ili_climate ,data=subset(meteo ,year >=1993) ,

var="Ta",thresh =20) {

1622 # data1 is an output of the function "combined_data".

1623 thestations <- unique(data$station)

1624 fct <- function(x)

1625 return(sum(data[data$station ==x,var]>thresh))

1626 nb <- sapply(thestations ,fct)

1627 out <- data.frame(station=thestations ,nb=nb)

1628 out <- merge(out ,data1)
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1629 out <- out[,c("nb","power")]

1630 with(out ,plot(nb,power ,xlim=c(0 ,250)))

1631 invisible(out)

1632 }

1633

1634

1635

1636 combined_data <- function () {

1637 # This function combines ILI and climatic data.

1638 out <- global_spect_calc(upperPeriod =2)

1639 power <- max_power(out)

1640 stations <- find_station ()

1641 # meteoPCA <- meteo_pca()

1642 meteominmax <- meteo_min_max()

1643 meteopower <- meteo_power()

1644 meteothresh <- meteo_thresh_all()

1645 out <- merge(stations ,power)

1646 # out <- merge(out ,meteoPCA)

1647 out <- merge(out ,meteominmax)

1648 out$T_amp <- with(out ,Tx_max -Tm_min)

1649 out$Rf_amp <- with(out ,Rf_max -Rf_min)

1650 out$rH_amp <- with(out ,rH_max -rH_min)

1651 out$Sh_amp <- with(out ,Sh_max -Sh_min)

1652 out$aH_amp <- with(out ,aH_max -aH_min)

1653 out <- merge(out ,meteopower)

1654 out <- merge(out ,meteothresh)

1655 return(out)

1656 }

1657

1658

1659

1660 figure5 <- function(eps1=0,eps2=0,eps3=0,eps4=0,eps5=0,eps6=0,eps7=0,eps8

=0,eps9=0,eps10=0,x1=.1,x2=1,y1=.1,y2=1,hspace =.1) {

1661 #pdf(" figure_5.pdf",width=4,height =1.9, pointsize =8.5); figure5(eps1 =.085,

eps2 =.035, eps3 =.07, eps4 =.011, eps5 =.02, eps6 =.014, eps7 =.058, eps8 =.015,

eps9 =.045, eps10 =.01,x1=.08,x2=.98,y1=.175,y2=.92, hspace =.1); dev.off()

1662 require(tree)
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1663 # a <- combined_data()

1664 #this function to create tree regression in chapter 4

1665 width <- (x2 -x1 -hspace)/2

1666 opar <- par(plt=c(x1,x1+width ,y1,y2))

1667 plot(1,type="n",

1668 xlim=range(modelout$yval),

1669 # xlim=c(0,8),

1670 ylim=range(modelout$y),axes=F,

1671 xlab="seasonlity of ILI (power)",ylab="deviance")

1672 axis (1); axis (2)

1673 size <- modelout$n/7.5

1674 marc <- "butt"

1675 segments (2.664609 - eps1 ,190.03569 ,5.822562+ eps2 ,190.03569 ,

1676 lwd=size[9],lend=marc)

1677 segments (2.664609 ,190.03569 ,2.664609 ,84.44272 , lwd=size [11],

1678 lend=marc)

1679 segments (5.822562 ,190.03569 ,5.822562 ,84.44272 , lwd=size [10],

1680 lend=marc)

1681 segments (2.423463 - eps3 ,84.44272 ,3.870341+ eps4 ,84.44272 ,

1682 lwd=size [11], lend=marc)

1683 segments (4.909161 - eps5 ,84.44272 ,7.192664+ eps6 ,84.44272 ,

1684 lwd=size [10], lend=marc)

1685 segments (2.423463 ,84.44272 ,2.423463 ,73.97544 , lwd=size[7],lend=marc)

1686 segments (3.870341 ,84.44272 ,3.870341 ,73.97544 , lwd=size[4],lend=marc)

1687 segments (4.909161 ,84.44272 ,4.909161 ,65.67093 , lwd=size[6],lend=marc)

1688 segments (7.192664 ,84.44272 ,7.192664 ,65.67093 , lwd=size[5],lend=marc)

1689 segments (2.211870 - eps7 ,73.97544 ,3.481424+ eps8 ,73.97544 ,

1690 lwd=size[7],lend=marc)

1691 segments (2.211870 ,73.97544 ,2.211870 ,67.25974 , lwd=size[8],lend=marc)

1692 segments (3.481424 ,73.97544 ,3.481424 ,67.25974 , lwd=size[2],lend=marc)

1693 segments (2.023522 - eps9 ,67.25974 ,2.965262+ eps10 ,67.25974 ,

1694 lwd=size[8],lend=marc)

1695 segments (2.023522 ,67.25974 ,2.023522 ,63.71225 , lwd=size[1],lend=marc)

1696 segments (2.965262 ,67.25974 ,2.965262 ,63.71225 , lwd=size[3],lend=marc)

1697 text (2.43,92,"a")

1698 text (2.2,82,"b")

1699 text (2.02,74,"c")
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1700 text (6,90.5,"d")

1701 xxx <- (5.822562+2.664609)/2

1702 mtext(expression(paste("power of aH < 17.60")),at=xxx ,line =-.1)

1703 bbb <- 5

1704 segments(xxx ,190.03569 -bbb ,xxx ,190.03569+ bbb ,lwd=2)

1705 mtext("(A)",at=1)

1706 # Panel (B):

1707 par(plt=c(x1+width+hspace ,x2 ,y1 ,y2),new=T)

1708 require(RColorBrewer)

1709 colors <- brewer.pal(11,"Spectral")

1710 yyy <- global_aH_power@data@values

1711 marc <- as.numeric(cut(a$aH_pwr ,seq(min(yyy ,na.rm=T),max(yyy ,na.rm=T),

le=12)))

1712 print("ok")

1713 colors <- colors[marc]

1714 with(a,plot(aH_pwr ,power ,axes=F,

1715 xlab="seasonality of abs. humidity (power)",

1716 ylab="seasonality of ILI (power)",col=colors))

1717 axis (1); axis (2)

1718 abline(v=17.6, lty =2)

1719 mtext("(B)",at=6)

1720 par(opar)

1721 }

1722

1723

1724

1725 world_humidity <- function () {

1726 require(maptools) ## for "readShapePoly"

1727 require(raster) ## for "raster", "rotate", and "rasterize"

1728 require(maps) ## for "map"

1729 world <- readShapePoly("/home/choisy/Bureau/Travail/GIS/DIVA/World/

countries.shp")

1730 first <- raster("ah_monthly_mean_1993_2010. tif",band =1)

1731 first <- rotate(first)

1732 first <- rasterize(world ,first ,mask=T)

1733 sel <- is.na(first@data@values)

1734 fct <- function(x) {
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1735 out <- raster("ah_monthly_mean_1993_2010. tif",band=x)

1736 out <- rotate(out)

1737 # out@data@values[which(sel)] <- NA

1738 a <- rasterize(world ,out ,mask=T)

1739 }

1740 nb <- 216

1741 out <- lapply (1:nb ,fct)

1742 #return(out)

1743 b <- sapply(out ,function(x)x@data@values)

1744 b <- na.exclude(b)

1745 b <- as.data.frame(t(b))

1746 b <- sapply(b,maxpower)

1747 c <- rep(NA ,length(first@data@values))

1748 c[!sel] <- b

1749 out <- out [[1]]

1750 out@data@values <- c

1751 return(out)

1752 #map(" world",ylim=c(-55,83))

1753 #image(global_aH_power ,add=T,col=rev(terrain.colors (255)))

1754 #map(" world",add=T)

1755 }

1756

1757

1758

1759 global_map <- function () {

1760 #pdf(" figure_6a.pdf",width =5.41 , height =2.25 , pointsize =8.5); global_map();

dev.off()

1761 require(maps) ## for "map"

1762 require(RColorBrewer) ## for "brewer.pal"

1763 # colors <- rev(terrain.colors (255))

1764 colors <- brewer.pal(11,"Spectral")

1765 world <- map("world",plot=F)

1766 opar <- par(plt=c(0,.9,0,1))

1767 plot(world ,ylim=c(-52,80),xlim=c( -167.5 ,180),type="n",axes=F,ann=F)

1768 image(global_aH_power ,add=T,col=colors)

1769 lines(world)

1770 text(-176,81,"(A)")
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1771 par(plt=c(.915 ,.935 ,.1 ,.9),new=T)

1772 x <- global_aH_power@data@values

1773 xval <- seq(min(x,na.rm=T),max(x,na.rm=T),le =1000)

1774 scale <- t(matrix(rep(xval ,100),ncol =100))

1775 image (1:100 ,xval ,scale ,col=colors ,axes=F,ann=F)

1776 axis (4); box()

1777 mtext("seasonality of absolute humidity (power)",4,line =1.5)

1778 par(opar)

1779 }

1780

1781

1782 global_map2 <- function () {

1783 #pdf(" figure_6b.pdf",width =5.41 , height =2.25 , pointsize =8.5); global_map2();

dev.off()

1784 require(maps) ## for "map"

1785 require(RColorBrewer) ## for "brewer.pal"

1786 # colors <- rev(terrain.colors (255))

1787 colors <- rev(brewer.pal(11,"Spectral")[c(3,9)])

1788 world <- map("world",plot=F)

1789 opar <- par(plt=c(0,.9,0,1))

1790 plot(world ,ylim=c(-52,80),xlim=c( -167.5 ,180),type="n",axes=F,ann=F)

1791 x <- global_aH_power@data@values

1792 global_aH_power@data@values <- x<16

1793 image(global_aH_power ,add=T,col=colors)

1794 lines(world)

1795 text(-176,81,"(B)")

1796 # par(plt=c(.915 ,.935 ,.1 ,.9),new=T)

1797 # xval <- seq(min(x,na.rm=T),max(x,na.rm=T),le =1000)

1798 # scale <- t(matrix(rep(xval ,100),ncol =100))

1799 # image (1:100 ,xval ,scale ,col=colors ,axes=F,ann=F)

1800 # axis (4); box()

1801 # mtext(" seasonality of absolute humidity (power)",4,line =1.5)

1802 ###

1803 par(cex =1.5)

1804 wit(subset(tamerius ,periodicity =="annual"),points(longitude ,latitude ,

pch=17,col="yellow"))

229



D. R CODE

1805 with(subset(tamerius ,periodicity =="annual"),points(longitude ,latitude ,

pch=2))

1806 with(subset(tamerius ,periodicity =="biannual"),points(longitude ,latitude

,pch=19,col="blue"))

1807 with(subset(tamerius ,periodicity =="biannual"),points(longitude ,latitude

))

1808 par(opar)

1809 }

1810

1811 maxpower <- function(abs_hum) {

1812 # This function calculates the maximum power around the period of 1 year.

1813 # abs_hum is a time series of monthly averages of absolute humidity.

1814 # This time series is calculated from relative humidity and average

1815 # temperature by function "".

1816 # The wavelet transformations are made thanks to the functions pasted below

.

1817 require(ondelettes)

1818 # Scaling the data:

1819 data <- scale(abs_hum)

1820 # Calculating the wavelet transform using Morlet wavelet:

1821 data <- morlet(data ,dt=1/12,dj=1/100,

1822 lowerPeriod =.1, upperPeriod =3,pad =2^8)

1823 periods <- with(data ,fourier*scale)

1824 # Calculating the global wavelet power:

1825 global_wave <- waveglobal(data)

1826 # Filtering between period .9 and 1.1 year:

1827 selection <- periods >.9 & periods <1.1

1828 # Returning the max power of the global wavelet around the period of 1 year

:

1829 return(max(global_wave[selection ]))

1830 }

1831

1832

1833

1834

1835 aha <- function () {

1836 sel <- 11:20
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1837 foo <- NULL

1838 for(i in 1:( length(sel))) {

1839 tmp <- anova(lm(out[,c(3,c(sel[-i],sel[i]))]))

1840 foo <- rbind(foo ,tmp[nrow(tmp) -1,])

1841 }

1842 return(foo)

1843 }

1844

1845

1846 ## The end ##

1847

1848 ###########################################################################

1 plot.biwavelet <- function (x, ncol = 64, xlab = "Time", ylab = "Period",

sig.level = 0.95,

2 plot.cb = FALSE , plot.phase = FALSE , type = c("power.norm",

3 "power", "wavelet", "phase"), plot.coi = TRUE , plot.sig = TRUE ,

4 bw = FALSE , legend.loc = NULL , legend.horiz = FALSE , arrow.size = 0.08,

5 arrow.lwd = 2, arrow.cutoff = 0.9, xlim = NULL , ylim = NULL ,

6 xtick = TRUE , ytick = TRUE , form = "%Y",lwdcoi=1,lwdsig=1, ...)

7 {

8 if (bw) {

9 bw.colors <- colorRampPalette(c("black", "white"))

10 fill.colors = bw.colors(ncol)

11 }

12 else {

13 jet.colors <- colorRampPalette(c("#00007F", "blue", "#007 FFF",

14 "cyan", "#7 FFF7F", "yellow", "#FF7F00", "red", "#7 F0000"))

15 fill.colors = jet.colors(ncol)

16 }

17 yrange = ylim

18 y.ticks = 2^( floor(log2(min(x$period , yrange))):floor(log2(max(x$period

,

19 yrange))))

20 types = c("power.norm", "power", "wavelet", "phase")

21 type = match.arg(tolower(type), types)

22 if (type == "power.norm") {
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23 if (x$type == "xwt") {

24 zvals = log2(abs(x$wave/(x$d1.sigma * x$d2.sigma)))

25 zlims = range(c(-1, 1) * max(zvals))

26 zvals[zvals < zlims [1]] = zlims [1]

27 locs = pretty(range(zvals), n = 5)

28 leg.lab = 2^locs

29 }

30 else if (x$type == "wtc") {

31 zvals = x$rsq

32 zlims = range(zvals)

33 zvals[zvals < zlims [1]] = zlims [1]

34 locs = pretty(range(zvals), n = 5)

35 leg.lab = locs

36 }

37 else {

38 zvals = log2(abs(x$power/x$sigma2))

39 zlims = range(c(-1, 1) * max(zvals))

40 zvals[zvals < zlims [1]] = zlims [1]

41 locs = pretty(range(zvals), n = 5)

42 leg.lab = 2^locs

43 }

44 }

45 else if (type == "power") {

46 zvals = log2(x$power)

47 zlims = range(c(-1, 1) * max(zvals))

48 zvals[zvals < zlims [1]] = zlims [1]

49 locs = pretty(range(zvals), n = 5)

50 leg.lab = 2^locs

51 }

52 else if (type == "wavelet") {

53 zvals = (Re(x$wave))

54 zlims = range(zvals)

55 locs = pretty(range(zvals), n = 5)

56 leg.lab = locs

57 }

58 else if (type == "phase") {

59 zvals = x$phase
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60 zlims = c(-pi , pi)

61 locs = pretty(range(zvals), n = 5)

62 leg.lab = locs

63 }

64 else {

65 stop("type must be power , power.norm , wavelet or phase")

66 }

67 if (is.null(xlim))

68 xlim = range(x$t)

69 yvals = log2(x$period)

70 if (is.null(ylim))

71 ylim = range(yvals)

72 else ylim = log2(ylim)

73 image(x$t, yvals , t(zvals), zlim = zlims , xlim = xlim , ylim = rev(ylim)

,

74 xlab = xlab , ylab = ylab , yaxt = "n", xaxt = "n", col = fill.colors

,

75 ...)

76 box()

77 if (class(x$xaxis) == "Date") {

78 xlocs = pretty(x$t) + 1

79 if (xtick)

80 lab = format(x$xaxis[xlocs], form)

81 else lab = NA

82 axis(side = 1, at = xlocs , labels = lab)

83 }

84 else {

85 xlocs = axTicks (1)

86 if (xtick)

87 xticklab = xlocs

88 else xticklab = NA

89 axis(side = 1, at = xlocs , labels = xticklab)

90 }

91 axis.locs = axTicks (2)

92 if (ytick)

93 yticklab = format (2^ axis.locs , dig = 1)

94 else yticklab = NA
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95 axis(2, at = axis.locs , labels = yticklab)

96 if (plot.cb) {

97 image.plot(x$t, yvals , t(zvals), zlim = zlims , ylim = rev(range(

yvals)),

98 xlab = xlab , ylab = ylab , col = fill.colors , smallplot = legend

.loc ,

99 horizontal = legend.horiz , legend.only = TRUE , axis.args = list

(at = locs ,

100 labels = format(leg.lab , dig = 2)), xpd = NA)

101 box()

102 }

103 if (plot.coi) {

104 # lines(x$t, log2(x$coi), lty = 1, lwd = lwdcoi , col = "white")

105 polygon(c(.75*x$t[1],x$t ,1.25*tail(x$t,1)),c(3,log2(x$coi) ,3),col=rgb

(1,1,1,.75),border="white")

106 box()

107 }

108 if (plot.sig & length(x$signif) > 1) {

109 if (x$type %in% c("wt", "xwt")) {

110 contour(x$t, yvals , t(x$signif), level = sig.level ,

111 col = "black", lwd = lwdsig , add = TRUE , drawlabels = FALSE

)

112 }

113 else {

114 contour(x$t, yvals , t(x$signif), nlevel = 1, col = "black",

115 lwd = lwdsig , add = TRUE , drawlabels = FALSE)

116 }

117 }

118 if (plot.phase) {

119 a = x$phase

120 locs = which(zvals < quantile(zvals , arrow.cutoff))

121 a[locs] = NA

122 x.ind = seq(max(floor(x$dt/2), 1), length(x$t), length.out = 40)

123 y.ind = seq(max(floor(1/2), 1), length(x$period), length.out = 50)

124 phase.plot(x$t[x.ind], log2(x$period[y.ind]), a[y.ind ,

125 x.ind], arrow.size = arrow.size , arrow.lwd = arrow.lwd)

126 }
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127 }

1 analysis <- function(T,RH) {

2 # This function calculates the maximum power of the absolute humidity in

one

3 # locality from time series of average temperature and relative humidity.

4 # T : is a vector of monthly averages of daily average temperature in

5 # Celcius degree from Jan. 1993 to Dec. 2010.

6 # RH : is a vector of monthly averages of daily average values of relative

7 # humidity in percentage from Jan. 1993 to Dec. 2010.

8 # Calculating absolute humidity:

9 abs_hum <- VP_calc(T,RH)

10 # Returning the maximum power around the period of one year:

11 return(maxpower(abs_hum))

12 }

13

14

15 VP_calc <- function(T,RH) {

16 # This function calculates the absolute humidity from the relative humidity

17 # and the temperature , using the C l a u s i u s C l a p e y r o n relation cited in

18 # Shaman & Kohn (2009).

19 # T : temperature in Celcius degree.

20 # RH : relative humidity in percentage.

21 esT0 <- 6.11 #(mb)

22 T0 <- 273.15 #(K)

23 # Latent heat of evaporation for water:

24 L <- 2257000 #(J/kg)

25 # Gaz constant for water vapor:

26 Rv <- 461.5 #(J/( k g K ))

27 T <- T + T0 # Converting temperatures from Celcius to Kelvin.

28 # Shaman et al (2009) ’s formula:

29 esT <- esT0*exp((L/Rv -T0)*(1/T0 -1/T))

30 e <- esT*RH/100

31 # Returning the output:

32 return(e)

33 }

34
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35

36

37 maxpower <- function(abs_hum) {

38 # This function calculates the maximum power around the period of 1 year.

39 # abs_hum is a time series of monthly averages of absolute humidity.

40 # This time series is calculated from relative humidity and average

41 # temperature by function "".

42 # The wavelet transformations are made thanks to the functions pasted below

.

43 # Scaling the data:

44 data <- scale(abs_hum)

45 # Calculating the wavelet transform using Morlet wavelet:

46 data <- morlet(data ,dt=1/12,dj=1/100,

47 lowerPeriod =.1, upperPeriod =3,pad =2^8)

48 periods <- with(data ,fourier*scale)

49 # Calculating the global wavelet power:

50 global_wave <- waveglobal(data)

51 # Filtering between period .9 and 1.1 year:

52 selection <- periods >.9 & periods <1.1

53 # Returning the max power of the global wavelet around the period of 1 year

:

54 return(max(global_wave[selection ]))

55 }

56

57

58 #

###########################################################################

59 # Below is a number of functions used from wavelet analysis:

60

61

62 wavepower <- function(object ,time ,from ,to) {

63 # This function calculates the power of a wavelet decomposition.

64 if(is.list(object)) object <- object$wave

65 else if(!is.matrix(object)) stop(paste(

66 "’object should be either a matrix or a list as",

67 "outputed by a wavelet decomposition function ’"))
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68 if(!(missing(time) | missing(from) | missing(to)))

69 object <- object[,time >=from & time <to]

70 return(abs(object)^2)

71 }

72

73

74

75 waveglobal <- function(object ,time ,from ,to) {

76 # This function calculates the global power spectrum of a wavelet.

77 if(missing(time) | missing(from) | missing(to))

78 return(var(object$y)*apply(wavepower(object),1,mean))

79 else {

80 time <- object$time

81 variance <- var(object$ts[time >=from & time <to])

82 power <- wavepower(object ,time ,from ,to)

83 return(variance*apply(power ,1,mean))

84 }

85 }

86

87

88

89 morlet <- function(y,dt,dj=.25, lowerPeriod ,upperPeriod ,pad ,ko=6,linear=T) {

90 # This function performs a Morlet wavelet transform of the time series y

91 # over the time period defined by lowerPeriod and upperPeriod.

92

93 # Arguments:

94 # y : input time series signal.

95 # dt : sampling rate (e.g. 1/12 for monthy data and time unit

96 # expressed in year.

97 # dj : frequency resolution (i.e. inverse of the number of

98 # sub -octaves in case of base 2 or the inverse of the number

99 # of sub -scales within 1 Fourier factor year).

100 # lowerPeriod : lower period of the decomposition.

101 # upperPeriod : upper period of the decomposition.

102 # pad : in case of zero padding (it must be a power of two).

103 # ko : non -dimensional frequency of the Morlet mother wavelet.

104
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105 # Value:

106 # wave : wavelet transform matrix.

107 # period : the vector of "Fourier" periods (in time units)

108 # that corresponds to the scales.

109 # scale : the vector of scale indices.

110 # coi : the "cone -of -influence", which is a vector of n_y points

111 # that contains the limit of the region where the wavelet

112 # transform is influenced by edge effects.

113 # fourier : the Fourier factor corresponding to the ko argument.

114

115 # General parameters:

116 eps1 <- .49999 # for the base 2.

117 eps2 <- 1e-5 # for the cone of influence.

118 fourier_factor <- (4*pi)/(ko+sqrt (2+ko^2))

119 if(missing(lowerPeriod)) so <- 2*dt

120 else so <- lowerPeriod/fourier_factor

121 # Length of the time series before padding:

122 n1 <- length(y)

123 # Zero padding:

124 if(pad ==0) {

125 # Pad with zeros to the nearest power of 2 to N:

126 base2 <- trunc(log2(n1)+eps1)

127 x <- c(y,rep(0,2^( base2 +1)-n1))

128 pad <- length(x)

129 }

130 else if(pad >0) {

131 # Pad with zeros with a specified length of the new time series:

132 base2 <- log2(pad)

133 if (base2 %%1) stop("pad must be a power of two")

134 else {

135 if(pad <n1) warning("pad is too low: no padding")

136 x <- c(y,rep(0,max(0,2^( base2)-n1)))

137 }

138 }

139 # Length of the time series after padding:

140 n <- length(x)

141 # Creating the vector of scales:
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142 if(linear) {

143 # Linear repartition of scales:

144 fo <- min(upperPeriod/fourier_factor ,n*dt)

145 scale <- seq(so ,fo ,dj)

146 }

147 else {

148 # Power of 2 repartition of scales:

149 # The largest possible number of scales:

150 largestNumberofScales <- trunc(log2(n*dt/so)/dj)

151 # The current number of scales:

152 currentNumberofScales <- trunc(log2(upperPeriod/so)/dj)

153 # If upperPeriod is too long

154 j1 <- min(currentNumberofScales ,largestNumberofScales)

155 scale <- so*2^((0: j1)*dj)

156 }

157 # Creating the vector of angular frequencies (phases) (equation 5):

158 k <- 1: trunc(n/2)

159 k <- k*((2*pi)/(n*dt))

160 k <- c(0,k,-k[floor((n-1)/2):1])

161 ventana <- length(k)

162 # Fourier transform of the time series (equation 3):

163 f <- fft(x)

164 # Calculating the matrix of wavelet transform:

165 wave <- lapply(scale ,function(x) {

166 # The daughter Morlet wavelet for the specified scale (table 1):

167 daughter <- pi^( -0.25)*(k>0)*exp(-(x*k-ko)^2/2)

168 # Normalisation (equation 6):

169 daughter <- sqrt(x*k[2]*ventana)*daughter

170 # Fourier inverse transform (equation 4):

171 # Note that the FFT of a (complex) Morlet wavelet is real , thus its

172 # conjugate is equal to itself. Note also that because of the

173 # normalization of the FFT in the R fft function , we need to divide

174 # the result by the length of the fft (see help(fft)).

175 return(fft(f*daughter ,inverse=T)/length(f*daughter))

176 })

177 wave <- matrix(unlist(wave),byrow=T,nrow=length(wave))

178 # Caculating the cone of influence:
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179 coi <- fourier_factor*dt*c(eps2 ,1:((n1+1)/2-1),

180 rev ((1:(n1/2-1))),eps2)/sqrt (2)

181 # Give the output after getting rid of the padded zeros:

182 return(list(wave=wave[,1:n1],scale=scale ,coi=coi ,

183 fourier=fourier_factor ,y=y,dt=dt ,dj=dj ,pad=pad ,

184 lowP=lowerPeriod ,upP=upperPeriod ,ko=ko,linear=linear))

185 }

240



Appendix E

Supplementary research paper

Title: Influenza Infection Rates, Measurement Errors and the Interpretation of Paired

Serology

Author(s): Simon Cauchemez*, Peter Horby, Annette Fox, Le Quynh Mai, Le Thi

Thanh, Pham Quang Thai, Le Nguyen Minh Hoa, Nguyen Tran Hien, Neil M. Fergu-

son.

Journal/Publisher: PLOS Pathogens

Type of publication: Major article

Stage of publication: Published

Academic peer-reviewed: Yes

Copyright: Permission obtained from the publisher.

Candidate’s role: I conceived of the study and supervised the collection and collation

of all the data. I prepared the data for analysis. I am taken part in wrote the first and all

subsequent drafts of the manuscript and responded to all reviewers comments.

Candidate’s signature:

Date: 25 April 2014

Full Name: Pham Quang Thai

241



E. SUPPLEMENTARY RESEARCH PAPER

Supervisor or senior author’s signature to confirm Candidates role:

242



Influenza Infection Rates, Measurement Errors and the
Interpretation of Paired Serology
Simon Cauchemez1*, Peter Horby2, Annette Fox2, Le Quynh Mai3, Le Thi Thanh3, Pham Quang Thai3,

Le Nguyen Minh Hoa2, Nguyen Tran Hien3, Neil M. Ferguson1

1 MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom, 2 Oxford

University Clinical Research Unit - Wellcome Trust Major Overseas Programme, Hanoi, Vietnam, 3 National Institute of Hygiene and Epidemiology, Hanoi, Vietnam

Abstract

Serological studies are the gold standard method to estimate influenza infection attack rates (ARs) in human populations. In
a common protocol, blood samples are collected before and after the epidemic in a cohort of individuals; and a rise in
haemagglutination-inhibition (HI) antibody titers during the epidemic is considered as a marker of infection. Because of
inherent measurement errors, a 2-fold rise is usually considered as insufficient evidence for infection and seroconversion is
therefore typically defined as a 4-fold rise or more. Here, we revisit this widely accepted 70-year old criterion. We develop a
Markov chain Monte Carlo data augmentation model to quantify measurement errors and reconstruct the distribution of
latent true serological status in a Vietnamese 3-year serological cohort, in which replicate measurements were available. We
estimate that the 1-sided probability of a 2-fold error is 9.3% (95% Credible Interval, CI: 3.3%, 17.6%) when antibody titer is
below 10 but is 20.2% (95% CI: 15.9%, 24.0%) otherwise. After correction for measurement errors, we find that the
proportion of individuals with 2-fold rises in antibody titers was too large to be explained by measurement errors alone.
Estimates of ARs vary greatly depending on whether those individuals are included in the definition of the infected
population. A simulation study shows that our method is unbiased. The 4-fold rise case definition is relevant when aiming at
a specific diagnostic for individual cases, but the justification is less obvious when the objective is to estimate ARs. In
particular, it may lead to large underestimates of ARs. Determining which biological phenomenon contributes most to 2-
fold rises in antibody titers is essential to assess bias with the traditional case definition and offer improved estimates of
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Introduction

Each year, seasonal influenza is responsible for about three to

five millions severe illnesses and about 250,000 to 500,000 deaths

worldwide [1]. These epidemics can generate important economic

losses due to high levels of worker absenteeism as well as a

saturation of emergency services at the peak of the epidemic [1]. In

addition, avian or swine influenza viruses occasionally adapt to

humans and generate influenza pandemics like in 1918, 1957,

1968 and 2009, sometimes with catastrophic consequences like in

1918, when 20 to 50 million people died worldwide.

Appropriate assessment of the epidemiological characteristics of

the influenza virus is important to guide control policies. In

particular, this requires being able to track the number of

influenza cases with severe clinical outcomes (i.e. the tip of the

severity pyramid) as well as the total number of people infected by

an influenza virus (i.e. the base of the severity pyramid). For

example, the case fatality ratio (proportion of influenza cases who

die) is a key measure of severity that informs decision making

during influenza pandemics, and takes the number of influenza

related death as numerator and the number of influenza cases as

denominator. Estimates of infection attack rates are also essential

for characterizing the spread of the virus in human populations in

order to predict epidemic trajectory, the potential impact of

control measures such as social distancing measures, and the

likelihood and magnitude of subsequent epidemics arising from

continued circulation of the same virus [2,3].

Although it is usually possible to estimate the number of severe

influenza cases from sentinel surveillance (e.g. based on data

collected at medical practices, clinics or hospitals), it is much harder

to estimate the total number of people infected by an influenza virus.

First, a substantial proportion of influenza infections are asymp-

tomatic [4,5]. Second, among those with symptoms, only a

proportion seek healthcare; and this proportion may vary from

season to season or even during the course of an epidemic. Last,

Influenza-Like-Illness (ILI) symptoms are not specific to influenza.

So, a substantial proportion of patients consulting for ILI may not

have been infected by an influenza virus.

Serological studies have become the gold standard approach for

estimating influenza infection attack rates due to the difficulty of
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estimating infection rates by other means. Although cross-sectional

serological surveys can provide valuable and timely information,

paired blood samples collected before and after an epidemic in a

cohort of individuals is the optimal approach for precisely assessing

infection rates. The haemagglutination-inhibition (HI) assay

remains the most commonly used approach for detecting

serological evidence of recent influenza infection [6–12]. The

assay detects the presence of antibodies that prevent the

haemagglutinin protein of the influenza virus from agglutinating

red blood cells [13,14]. For each serum sample, antibody titers are

expressed as the reciprocal of the highest serum dilution that can

still prevent a fixed concentration of virus from agglutinating red

blood cells. A rise in antibody titers between the first and second

blood is taken as a marker of infection. However, because the

procedure is susceptible to measurement errors, a 2 fold rise (that

is a 1-dilution increase) is usually considered as insufficient

evidence for infection. Seroconversion is therefore typically

defined as a 4-fold rise (i.e. a 2-dilutions increase) or more in

antibody titers. This ad-hoc rule became established when these

methods were first developed and is now widely adopted [15,16].

In the meantime, however, statistical methods for addressing

measurement errors have made substantial progress. In particular,

there is now an extensive body of literature on methods to ensure

that the presence of measurement errors does not bias estimates of

key parameters of interest. Given these developments, it is timely

to revisit the way serological data are interpreted.

Central to the traditional approach to analyzing serological data

is the belief that data about 2-fold rises provide no information

since such increases can be caused by frequent measurement

errors. This concern about measurement errors is certainly

relevant when trying to make specific diagnoses for individual

cases. For example, one may be averse to the risk of false positives;

but less so to the risk of false negatives. However, estimating

infection attack rates at the population level is a very different aim

from setting up a specific diagnostic tool, and may benefit from a

different use of the data.

First, it is important to note that estimating infection attack rates

is not just a matter of specificity (i.e. ensuring that subjects

satisfying the diagnostic definition of infection were indeed

infected by an influenza virus) but also a matter of sensitivity (i.e.

ensuring that all subjects infected are diagnosed as such). An

approach that favours specificity over sensitivity may lead to

underestimating infection attack rates.

A second important observation is that, even in a context of

frequent 2-fold errors, data about 2-fold rises may still be

informative. Consider for example a situation where all individuals

exhibit a 2-fold rise during the season: such a pattern cannot be

explained by measurement error alone since measurement errors

are made both at baseline and post-epidemic and should be about

equally distributed provided the sample size is sufficiently large.

Here, we explore how modern statistics for the analysis of data

with measurement errors can change and improve our interpre-

tation of serology. We present a new method to quantify errors in

the measurement of antibody titers and to estimate the true

distribution of paired serological measurements corrected for

measurement errors. The methodology is applied to data collected

in a cohort study conducted in Vietnam between 2007 and 2009.

Results

Measurement errors
We estimate that the 1-sided probability of a 2-fold error was

9.3% (95% CI: 3.3%, 17.6%) when the true antibody titer was

below detection levels, rising to 20.2% (95% CI: 15.9%, 24.0%)

otherwise (posterior probability that latter larger than former:

98.7%). There was a satisfying fit of the model to replicate

measurement data (Figure 1). The model where measurement

errors were independent of true antibody titers failed to fit the data

(Figure S2 and Supplementary Material).

Distribution of true paired serology
Figure 2 summarizes the distribution of paired serology,

corrected for measurement errors for the different seasons (2008,

Spring 2009, Autumn 2009) and subtypes (H1N1, H3N2 and B).

A range of observations can be made.

The first observation concerns 2-fold rises in antibody titers

between baseline and post serology (yellow bars). Such increases

are usually ignored in analyses because 2-fold errors are common.

In some instances, like for example subtypes H3N2 and B in 2008

and H1N1pdm09 in Autumn 2009, 2-fold rises appeared

negligible and at levels that could be generated by measurement

errors alone, since 0 was within the 95% CI of the estimated

proportion of subjects having a 2-fold rise (Figures 2B, 2C, 2G). In

other instances, however, the proportion of individuals experienc-

ing a 2-fold rise ranged from 20% to 33% with lower bounds of

the 95% CIs above 0 (range: 7%–23%), indicating that these rises

cannot be solely explained by measurement errors. Assuming that

most of these 2-fold rises were due to infection, our estimate of

infection attack rates AR§2f :r: for H1N1 in 2008 and H1N1,

H3N2 and B in Spring 2009 would be dramatically higher than

traditional estimate AR§4f :r: based on 4-fold rises or more

(Figure 3A). So, even if only a proportion of the 2-fold rises were

due to influenza infections, the traditional estimate AR§4f :r: might

still represent a substantial underestimate of the true infection

attack rates

The fact that AR§2f :r: and AR§4f :r: were very similar for

H3N2 and B in 2008 and virtually identical for H1N1pdm09 in

Autumn 2009 (Figure 3A) highlights important heterogeneities in

the way antibody titers increase by season/subtype (Figure 3B).

For example, for H1N1pdm09 in Autumn 2009, almost all those

experiencing a rise in antibody titers exhibited a 4-fold rise or

more; but for H1N1 in 2008, most of those experiencing a rise

only had a 2-fold increase. The absence of a simple linear

relationship between AR§4f :r: and the proportion of 2-fold rises

Author Summary

Each year, seasonal influenza is responsible for about three
to five million severe illnesses and about 250,000 to
500,000 deaths worldwide. In order to assess the burden of
disease and guide control policies, it is important to
quantify the proportion of people infected by an influenza
virus each year. Since infection usually leaves a ‘‘signature’’
in the blood of infected individuals (namely a rise in
antibodies), a standard protocol consists in collecting
blood samples in a cohort of subjects and determining the
proportion of those who experienced such rise. However,
because of inherent measurement errors, only large rises
are accounted for in the standard 4-fold rise case
definition. Here, we revisit this 70 year old and widely
accepted and applied criterion. We present innovative
statistical techniques to better capture the impact of
measurement errors and improve our interpretation of the
data. Our analysis suggests that the number of people
infected by an influenza virus each year might be
substantially larger than previously thought, with impor-
tant implications for our understanding of the transmission
and evolution of influenza – and the nature of infection.
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suggests that the standard approach of inflating AR§4f :r: by a

fixed proportion (generally equal to the proportion of PCR

positive cases who do not seroconvert; around 10–20%) to get

corrected estimates of infection attack rates may be inappropriate.

Rather, corrections might have to be applied on a season-to-

season and subtype-to-subtype basis.

The last notable observation is that decay in antibody titers is

observed. For example, 30% (95% CI: 22, 36) of individuals

exhibited a decay for subtype H3N2 in 2008.

PCR positive cases
Figure 4 shows the observed rise in antibody titers for PCR

positive cases. Twenty seven percent of these cases experienced no

rise or only a 2-fold rise in titer during the season. This again

suggests that the case definition of a 4-fold rise or more may

underestimate attack rates by at least 27%. PCR positive cases with

low baseline titers experienced an average increase significantly

larger than those with higher baseline titers (p = 0.026) (Figure 4)

[17,18].

Cross-reactivity between subtypes
Simulations were run to test the hypothesis of an absence of

cross-reactivity between subtypes H1N1, H3N2 and B in 2008 and

Spring 2009 (see Supplementary Material). We found that there

was good adequacy between the data and patterns that would be

obtained in the absence of cross-reactivity. The hypothesis of an

absence of cross-reactivity could therefore not be rejected (Figure

S3).

Model fitting
Figure 5 compares the distribution of observed paired serology

as observed in the data (black point) and as predicted by the

model. Model fit was satisfactory.

Figure 1. Fit of the model to data on replicate measurements. Observed (red point) and expected (mean: blue point/95% CI: blue bar)
number of pairs (observed AT level, replicate AT level). Pairs are sorted by panel according to the number of dilution difference between the
observed and the replicate measurement.
doi:10.1371/journal.ppat.1003061.g001
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Figure 2. Distribution of paired serology, corrected for measurement errors as a function of season (2008, Spring 2009, Autumn
2009) and subtype (H1N1, H3N2 and B) (in Autumn 2009, subtyping was only conducted for H1N1pdm09). In each panel, individuals
are sorted by baseline AT levels on the y-axis. For a given baseline, the grey bar indicates the expected proportion of individuals with post AT level
equal to baseline AT level; the yellow bar indicates the proportion with a 2 fold rise (2f.r.); the red bar indicates the proportion with a 4 fold rise or
more (4f.r.+); the green bar indicates the proportion with a decay. The black thin lines give the 95% CI. The legend gives the mean [95% CI]. A: H1N1,
2008. B: H3N2, 2008. C: B, 2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring 2009. G: H1N1pdm09, Autumn 2009.
doi:10.1371/journal.ppat.1003061.g002
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Simulation study
In a simulation study, we found that estimates of parameters

characterizing measurement errors were unbiased (Table 1), as

well as those characterizing the selection process (Table S2). We

also found that estimates of the proportion of subjects with an

antibody titer increase (empirical absolute bias: 0.1%), of the

proportion of subjects with an antibody titer decay (empirical

absolute bias: 0.0%) and of the probabilities characterizing

Figure 3. Increases in antibody titers. A: Posterior distribution of the percentage of subjects with a 4 fold rise or more in AT (pink) and with a 2
fold rise or more in AT (blue) for the different subtypes and the different seasons (2008 (08), Spring 2009 (S09), Autumn 2009 (A09)). B: Posterior
distribution of the percentage of subjects with a 2 fold rise in AT among those with a rise in AT. Boxplots give percentiles 2.5%, 25%, 50%, 75%, 97.5%
of the distribution.
doi:10.1371/journal.ppat.1003061.g003

The Interpretation of Influenza Paired Serology

PLOS Pathogens | www.plospathogens.org 5 December 2012 | Volume 8 | Issue 12 | e1003061

247



jointly baseline antibody titers and the change in antibody titers

during a season (empirical absolute bias: 0.0%) were unbiased

(Figure 6).

Age-specific patterns
Our statistical model describes the distribution of paired

serology across all subjects. However, since we infer true paired

serology for each individual, it is possible to reconstruct a

posteriori the distribution of true paired serology for the

different age groups. The age-specific distributions for true

paired serology are presented in Figure S4. Interesting

differences can be noticed between age groups. For example

and consistent with the literature, for H1N1pdm09 in Autumn

2009, the proportion of 4-fold rises falls from 39% (95% CI:

37%, 39%) in ,18 y.o. to 15% (95% CI: 15%,16%) in 18–

48 y.o. and 8% (95% CI: 7,9) in .48 y.o. For H3N2 in 2009,

the decay in antibody titers was more important among

,18 y.o. (53%; 95% CI: 38%, 65%) than among older age

groups (25%, 95% CI 19%, 30% for 18–48 y.o. and 18%, 95%

CI 12, 22 for .48 y.o.). For H3N2 in Spring 2009, although the

proportions of 4-fold rises were similar across age groups, our

analysis suggests that the proportion of 2-fold rises may have

been higher among ,18 y.o (43%, 95% CI: 23, 58) than in

other age groups (30%, 95% CI 17%, 41% for 18–48 y.o. and

27%, 95% CI 13, 38 for .48 y.o.). We find that, for each age

group, there is a satisfying adequacy between the observed

distribution of paired serology and that predicted by the model

(Figure S5).

Discussion

In this paper, we have revisited the traditional interpretation of

paired serological measurements of influenza antibody titers. Until

now, data on 2-fold rises have been largely ignored because of the

belief that measurement errors made them unreliable. Although

this may be a valid concern if the aim is to get a specific diagnosis

for individual cases, we argue that this is less so when the objective

is to interpret antibody titer variations at the population level. We

have shown that it is possible to quantify measurement errors, and

to reconstruct the distribution of paired serology corrected for

measurement errors. Our method gave unbiased estimates in a

simulation study.

After correction for measurement errors for the Vietnamese

data examined here, we found that for some seasons and subtypes

the proportions of individuals with 2-fold rises in antibody titers

was too large to be explained by measurement errors alone.

Estimates of infection attack rates varied greatly depending on

whether or not 2-fold rises were included. It is therefore important

to determine the biological phenomenon that could cause such

increases, in particular whether they are caused by exposure to

influenza viruses.

A first hypothesis is that 2-fold titer increases are caused by

infection by an influenza virus. In support of this hypothesis, it is

clear that a proportion of virologically- or RT-PCR- confirmed

influenza cases do not achieve a 4-fold rise in HI titer. This

proportion was 27% in our dataset, similar to a large cohort of

confirmed pandemic cases in the US [19]. However, past work has

shown this proportion to be as high as 77% in people who have

Figure 4. Distribution of observed increase in PCR positive cases as a function of baseline. Individuals with a low antibody titer baseline
(0–1) are in blue; those with a higher baseline (2–4) are in red.
doi:10.1371/journal.ppat.1003061.g004
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Figure 5. Model adequacy to the data. Distribution of ‘‘observed’’ paired serology as predicted by the model (color bars) and as observed in the
data (black point) as a function of season (2008, Spring 2009, Autumn 2009) and subtype (H1N1, H3N2 and B). In each panel, individuals are sorted by
baseline AT levels on the y-axis. For a given baseline, the grey bar indicates the expected proportion of individuals with post AT level equal to
baseline AT level; the yellow bar indicates the proportion with a 2 fold rise (2f.r.); the red bar indicates the proportion with a 4 fold rise or more (4f.r.+);
the green bar indicates the proportion with a decay. The black thin lines give the 95% CI. The legend gives the mean [95% CI]. A: H1N1, 2008. B:
H3N2, 2008. C: B, 2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring 2009. G: H1N1pdm09, Autumn 2009.
doi:10.1371/journal.ppat.1003061.g005
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high pre-existing antibody titers [17], or as low as 10% in patients

seeking medical care for pandemic H1N1 infection in 2009 [20]. It

is clear that antibody titer changes following infection vary

between individuals and are affected by factors including pre-

existing titer and timing of serum collection. In particular, since

there is an upper limit to antibody concentrations, individuals with

high pre-existing titers are limited in their ability to generate 4-fold

rises and may produce only a 2-fold titer increase in response to

infection [15]. However, the analysis performed here shows that 2

fold titer changes are common even among individuals with low

pre-existing titers. Antibody concentrations reach a peak 4–7

weeks after infection and then decay over a period of around six

months to a plateau that is maintained for several years [21].

Although the profile of HA antibody decay is not well

characterised, the probability of detecting 2- or 4- fold rises will

vary with the interval following infection. However, in our data the

longest interval between the peak transmission period and blood

sampling was in season 3, when the proportion of 2-fold titer rises

was lowest.

A second hypothesis is that 2-fold rises correspond to infection

which is attenuated by mucosal or serological antibodies to

homologous or heterologous strains, or by innate or cell mediated

immunity. Antibody responses to inactivated influenza vaccines

clearly demonstrate the potential for antigenic stimulation without

active infection and the phenomenon of boosting of immunity in

exposed yet uninfected individuals is well documented for other

viruses (e.g. varicella zoster [22]).

A third hypothesis is that 2-fold rises are an artefact unrelated to

influenza infection or exposure. Seasonal variation in titres

independent of infection might result from the presence of non-

specific inhibitors of agglutinination. For example, this could

happen if the circulation of other viruses boosted the immune

system, leading to small increases in all antibody titers. In such a

scenario, one might expect the effect to be similar on the different

subtypes. However, in 2007, a large proportion of individuals

exhibited 2-fold increases for H1N1 but not for H3N2 or B,

suggesting that this hypothesis is not strongly supported by the

data.

Figure 6. Performance of the method to reconstruct the true
distribution of paired serology. Eighty datasets are simulated with
known parameters (see Methods). A: Estimated percentage of subjects
with an increase in antibody titers as a function of the true percentage
in the simulated dataset. B: Estimated percentage of subjects with a
decay in antibody titers as a function of the true percentage in the
simulated dataset. C: Estimated probabilities characterizing jointly
baseline AT level and the change in AT level during the epidemic _
similar to those presented in Figure 1 _ as a function of the true
probability in the simulated dataset.
doi:10.1371/journal.ppat.1003061.g006

Table 1. Performance of the method to estimate parameters
characterizing measurement errors.

p0 p1 e

Simulation value 9.0% 20.0% 0.50%

Mean estimate (SD) 9.5% (4.1%) 19.8% (2.3%) 0.065% (0.21%)

p0: probability of a 1-sided 1-dilution error if true AT level is = 0.
p1: probability of a 1-sided 1-dilution error if true AT level is .0.
e: probability that measurement goes wrong and that observed AT level is
Uniformly drawn in (0,…,K).
Eighty datasets are simulated with known parameters (see Methods). The table
gives the simulation value of parameters and the mean (standard deviation) of
estimates.
doi:10.1371/journal.ppat.1003061.t001
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It is also important to understand why 2-fold titers changes were

prominent during some seasonal influenza epidemics but not

during the pandemic. One possibility may be that there was

greater antigenic mismatch for some seasonal strains because of

unrecognised co-circulation of different influenza strains from

those used as antigens in the HI assay. In this situation, anti-HA

antibodies generated by infection have lower avidity for the HA of

the assay virus. Conversely, original antigenic sin, where an

infection results in an anamnestic response and the generation of

antibodies directed towards an earlier infecting strain, might also

explain 2-fold titer rises in response to infection [17]. In all these

scenarios however, 2-fold increases would still represent infection

by an influenza virus.

It is unlikely that 2-fold increases represent cross-reactivity of HI

antibodies to strains of one subtype with strains of other subtypes.

This is confirmed by our analysis that did not reject the hypothesis

of an absence of cross-reactivity between subtypes.

It is therefore important for future work to determine if 2-fold

titer increases represent infection, antigenic stimulation (attenuat-

ed infection), or artefact. If influenza infection rates are higher

than currently recognised this might change our understanding of

influenza transmission and of intra-host and inter-host immune

mediated evolutionary pressures, and may have implications for

the feasibility of control measures.

In the dataset examined here, 2-fold increases exceeded 4-fold

increases for H1N1 in 2008 and H1N1, H3N2 and B in Spring

2009. There was no clear pattern with respect to subtype or strain.

The seasonal H1N1 strain circulating in 2008 (A/Brisbane/59/

2007) was antigenically distinct from those circulating previously

(A/Solomon Islands/03/2006 and A/New Caledonia/20/1999-

like), but this strain continued to circulate in Spring 2009. The

seasonal H3N2 strain circulating in Spring 2009 (A/Perth/16/

2009) was antigenically distinct from the 2007/8 strain (A/

Brisbane/10/2007). H3N2 A/Perth/16/2009-like viruses have

been difficult to propagate and we had difficulty propagating

sufficient virus for the HI assays using A/Perth/16/2009-like

viruses isolated from the cohort during the Spring 2009 season.

We therefore used a virus isolated from a patient in Hanoi by the

National Influenza Center, and propagated in eggs followed by

MDCK cells (TX265M2E1) for undertaking HI testing of sera

collected in Spring 2009. It is possible that the propagation in eggs

this virus underwent might have resulted in some antigenic

change, resulting in lower titers in the HI assay. National influenza

surveillance data indicates that both influenza B lineages -

Yamagata and Victoria- co-circulated during the study period,

with the Yamagata lineage dominating in 2007 and 2008 and the

Victoria lineage in 2009. For all HI assays, we used the same

influenza B virus, which was isolated in 2008 and was

characterized antigenically as Yamagata lineage-like, as with all

influenza B viruses isolated from the cohort in 2008. While

Yamagata viruses dominated the influenza B samples we collected

in 2007 and 2008, the Victoria lineage was predominant in 2009.

This may be a factor explaining the lower influenza B titer

increases seen in that year. If heterogeneities in the proportion of

2-fold titer rises are largely attributable to a poor match between

assay antigen and infecting virus, future seroprevalence and

seroincidence surveys will need to use a greater diversity of

antigens than typically used currently.

There are often strong age-related patterns in influenza

serology. Ideally, we would therefore like to fit our statistical

model independently for each age group. However, simulation

studies indicate that the relatively small number of observations

per age group would lead to relatively inaccurate estimates. We

have therefore opted for an intermediate estimation strategy. Our

statistical model fits a single distribution of true paired serology to

all subjects; but since we infer true paired serology for each

individual, we can reconstruct a posteriori the distribution of true

paired serology for the different age groups. Even with such a

conservative approach (i.e. it favours scenarios where the different

age groups exhibit similar distributions), we were able to detect

clear age-related patterns. In particular, it indicated that age may

be another factor that influences the occurrence of a 2-fold rise.

Larger sample sizes will be needed to investigate this possibility

further.

The presence of relatively large proportions of individuals

experiencing a 2-fold increase in antibody titers is not a peculiarity

of the Vietnamese data examined here. Similar shifts were

observed on data gathered by Cowling et al, with micro-

neutralization assays for 2009 H1N1pdm09 influenza and on HI

assays for seasonal influenza [23] (Figure S6).

It is well known that there may be substantial within- and

between- laboratory variability in HI assays as well as in other

serological assays such as virus neutralisation (VN) [24]. The level

of intra-laboratory variations may depend on both the laboratory

and the type of assay used [24]. Here, we have introduced an

approach that allows controlling for within-laboratory variations.

The only additional data needed compared with standard

serological surveys is that replicate measurements are performed

for a subset of subjects. These replicate measurements allow

within-laboratory quantification of variation in assay performance.

With this information, it is then possible to reconstruct the

distribution of paired serology that is corrected for the estimated

level of within-laboratory variations. Although our approach gives

a better control on within-laboratory variation, it does not address

the problem of between-laboratory variation. The use of standards

in bioassays is critical for minimising the impact of the latter

problem [24].

To conclude, while a 4-fold titer increase may be a highly

specific diagnostic of infection by an influenza virus for individual

cases, this criterion is less justifiable when the objective is to

estimate community ARs. Our work shows that requiring a 4-fold

titer increase may lead to ARs being substantially underestimated.

More research is needed to determine what proportion of 2-fold

rises are causally linked to exposure to influenza, and what

proportion may be caused by other mechanisms. It will be

important to determine whether the high proportion of 2-fold titer

increases seen in the settings of Vietnam and Hong Kong [23] are

also observed in other (e.g. temperate climate) settings.

Materials and Methods

Data
Samples were collected from a household-based cohort of 940

participants in 270 households in a single community in semi-rural

northern Vietnam as previously described [5]. None of the

participants had ever received influenza immunisation. Partici-

pants were under weekly active surveillance by village health

workers for influenza-like-illness (ILI) and in the event of an ILI

were asked to provide a nose and throat swab for detection of

influenza RNA by reverse-transcription polymerase chain reac-

tion. Participants were also asked to provide serial blood samples

at times when national influenza surveillance data indicated that

influenza circulation was minimal. The samples described here

were collected over a period of three consecutive influenza

seasons, from December 2007 through April 2010. The bleeding

times were 1st–7th December 2007 (bleed 1), 9th–15th December

2008 (bleed 2), 2nd–4th June 2009 (bleed 3), and on the 3rd April

2010 (bleed 4). This provided three sets of paired samples either
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side of an influenza transmission season: 548 paired samples for

season 1 (2008), 501 paired samples for season 2 (Spring 2009),

and 540 paired samples for season 3 (Autumn 2009). In season 1,

the influenza A virus strains detected in the cohort through ILI

surveillance were A/H1N1/Brisbane/59/2007-like and A/

H3N2/Brisbane/10/2007-like; in season 2, they were A/H1N1/

Brisbane/59/2007-like and A/H3N2/Perth/16/2009-like; and in

season 3, it was A/H1N1/California/7/2009-like. There was co-

circulation of influenza B Yamagata lineage and Victoria lineage

in both season 1 and season 2, with a predominance of Yamagata

lineage in season 1 and Victoria lineage in season 2.

Laboratory methods
Nasal and oropharangeal swabs were assessed by real-time

reverse-transcriptase polymerase chain reaction (RT-PCR), ac-

cording to WHO/USCDC protocols [25]. Influenza hemagglu-

tination inhibition (HI) assays were performed according to

standard protocols [WHO 2011 manual]. The seasonal influenza

A viruses used were isolated from participants’ swabs or from

swabs taken from patients presenting in Ha Noi in the same season

and propagated in embryonated hen’s eggs or in MDCK cells. A

reference antigen supplied by WHO (A/H1N1/California/7/

2009-like) was used to assess season 3/pandemic sera. A single

influenza B virus isolated from a participant during 2008 was used

to assess serum for both the first and second seasons. The virus had

a titer of 320 with B/Wisconsin/1/2010 (Yamagata) reference

antisera and of ,10 with B/Brisbane/60/2008 (Victoria) antisera.

Each virus was first assessed for haemagglutination of erythrocytes

from chickens, guinea pigs and turkeys then titrated with optimal

erythrocytes. Serum was treated with receptor destroying enzyme

(Denka Seiken, Japan) then heat inactivated and adsorbed against

packed erythrocytes. Eight 2-fold dilutions of serum were made

starting from 1:10 and incubated with 4 HA units/25 ml of virus.

Appropriate erythrocytes were added and plates read when

control cells had settled. Virus, serum and positive controls were

included in each assay. Pre- and post-season sera were tested in

pairs. Each serum was tested in a single dilution series. The HI

titre was read as the reciprocal of the highest serum dilution

causing complete inhibition of RBC agglutination, partial agglu-

tination was not scored as inhibition of agglutination. If there was

no inhibition of HI at the highest serum concentration (1:10

dilution) the titer was designated as 5. Only one sample had a titer

.1280 and this was not adjusted. Replicate HI assay measure-

ments were performed on a subset of samples from patients that

seroconverted (i.e. 4-fold rise in titer) as well as some others that

had titers $20 in both pre and post-season sera.

Statistical analysis
A less technical description of statistical methods is given for

non-specialists in Box 1 and Figure 7.

Notation. Antibody titers (AT) are discrete measurements

that can take a finite number of values. In our dataset, they can

take 9 values: a0 = 10, a1 = 20, a2 = 40,…, a8 = 2560, with the

general form being at = 10|2t for t = 0,…,K (K = 8). For simplicity,

in the rest of the paper, antibody titers are labelled by integer t. For

example, AT level t = 0 corresponds to antibody titers a0 = 10.

We denote Ob
i,y,s,O

p
i,y,s

n o
the ‘‘observed’’ AT levels measured at

baseline (b) and post epidemic (p) in individual i, during season y

( = 2008, Spring 2009, Autumn 2009) and for subtype s ( = H1N1,

H3N2, B). In addition, for a subset of the blood samples, a replicate

measurement of antibody titers was performed. We denote the

replicate measurement for individual i, during season y and for

subtype s (with j = b for baseline and j = p for post epidemic serology)

by R
j
i,y,s R

j
i,y,s~NA if no replicate measurement was performed.

Measurement errors mean that observed and replicate AT levels

may be different from the true (but unobserved) AT levels that we

denote by T
j
i,y,s.

Hierarchical structure of the statistical model. We build

a 3-level Bayesian hierarchical model to characterize measurement

errors together with the underlying true distribution of baseline and

post-epidemic serology. The model is defined by the following equation:

P O
j
i,y,s,R

j
i,y,s,T

j
i,y,s

n o
i,y,s,j

,h

� �
~

P
i,y,sf g

py,s Tb
i,y,s,T

p
i,y,s

n o
Dh

� �
M Oi,y,s,Ri,y,sDTi,y,s,h
� �� �

P hð Þ

where h is the parameter vector of the model.

The first level py,s Tb
i,y,s,T

p
i,y,s

n o
Dh

� �
of the model characterises

the underlying true distribution of baseline and post-epidemic

serology for each season and subtype. The second level

M Oi,y,s,Ri,y,sDTi,y,s,h
� �

characterises measurement errors: given

true AT levels Ti,y,s, it gives the probability to measure Oi,y,s,Ri,y,s

for the observed and replicate serology. The third level specifies our

priors on model parameters. Each of those levels is described below,

with more technical details given in the Supplementary Material.

Model for the underlying true serology. We consider the

most general model for the joint distribution of true paired

serology. For an individual i, during season y and for subtype s,

each pair of serology measurements Tb
i,y,s,T

p
i,y,s

n o
is drawn from a

Multinomial distribution

Multinomial 1, py,s tb,tp

� �� 	
tb~0:::K;tp~0:::Kf g

� �

where py,s tb,tp

� �
is the probability that Tb

i,y,s~tb,T
p
i,y,s~tp

n o
. We

estimate these probabilities from the data.

Model for measurement errors. The quantity of antibod-

ies in the blood of a subject can be thought of as a continuous

variable. However, observations (i.e. AT titers) are discrete. We

build a model of measurement errors that accounts for the

continuous nature of the underlying biological variable. As

mentioned earlier, AT measurements can take K values

T = 0,…, K, corresponding to dilution levels of the HI assay. If

the true (discrete) AT level is T, we assume that the continuous

(unobserved) true quantity of antibodies in the blood, CT , is

uniformly distributed in the interval T ; Tz1½ ½. Conditional on the

true quantity of antibodies CT , we introduce a function f(.) that

indicates how far off from CT the observation can be:

f CODCTð Þ~
cT z1

2
1{DCO{CT Dð ÞcT if DCO{CT Dƒ1

0 if DCO{CT Dw1

(

Conditional on true AT level T and on the titration not going

wrong, the probability that the observed AT level is O is given by:

g1 ODTð Þ~
ðTz1

CT ~T

ðhmax Oð Þ

CO~hmin Oð Þ
f CODCTð ÞdCT dCO

where hmin Oð Þ~O for O.0 and hmin 0ð Þ~{?; hmax Oð Þ~Oz1
for O,K and hmax Kð Þ~? (NB: boundaries 0 and K are treated

as special cases since data are truncated at those levels).

(1)
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The probability of a 1-dilution (2-fold) error on one side (e.g. on

the left) is 1= 2 cTz2ð Þð Þ.When the true AT level is not on the

boundary 0 or K, the 2-sided probability of a 1-dilution error is

1= cTz2ð Þ.
The joint probability for the pair observed O,replicate Rf g is:

g2 O,RjTð Þ~ðTz1

CT ~T

ðhmax Oð Þ

CO~hmin Oð Þ

ðhmax Rð Þ

CR~hmin Rð Þ
f COjCTð Þf CRjCTð ÞdCT dCOdCR

We also assume that there is a probability e that the titration goes

wrong and the resulting titre measurement is an integer uniformly

drawn from 0 to K. Conditional on true AT levels T, the probability

distribution for O is therefore:

gO ODTð Þ~ 1{eð Þg1 ODTð Þz e

Kz1

and the joint probability for the pair observed O,replicate Rf g is:

gR O,RjTð Þ~ 1{eð Þ2g2 O,RjTð Þz

e

Kz1
g1 OjTð Þzg1 RjTð Þð Þz e

Kz1

� �2

Prior model. For each season y and subtype s, we assume

that the set of probabilities py,s tb,tp

� �� 	
characterizing true paired

serology has a Dirichlet prior distribution Dirichlet ay,s

� 	� �
,

where hyperparameter ay,s has a uniform hyperprior distribution

on [0, 1000] (see Supplementary Material). The Dirichlet

distribution is the conjugate prior of the multinomial distribution.

Other parameters of the model have uniform priors.

Data augmentation and inference. True AT levels

Tb
i,y,s,T

p
i,y,s

n o
i,y,s

are considered as augmented data and a Markov

chain Monte Carlo (MCMC) sampling algorithm is used to explore

the joint distribution of augmented data and parameters [26]. At

each iteration of the MCMC, the following updates, which are

detailed in the Supplementary Material, are implemented:

– Update 1: For each subject i, season y, subtype s, independence

sampler for true AT levels Tb
i,y,s,T

p
i,y,s

n o
;

– Update 2: For each season y and subtype s, Gibbs sampler for

the probability distribution of paired serology py,s tb,tp

� �� 	
tb~0:::K ;tp~0:::Kf g;

– Update 3: For each season y and subtype s, Metropolis-

Hastings update of hyperparameter ay,s;

– Update 4: Metropolis-Hastings update of parameters charac-

terizing measurement errors.

Information on measurement errors is contained in the data

from the subset of individuals for whom a replicate measurement

was performed. If update 4 (on measurement error parameters)

was run on the full likelihood, the inference would suffer a

‘‘feedback’’ problem, with estimates of measurement errors being

potentially largely driven by the larger (yet poorly informative)

subset of individuals for whom no replicate measurements are

available. We therefore use a standard strategy to circumvent this

problem that consists in only using the contribution of individuals

with replicate measurements in update 4 (see for example, function

‘‘cut’’ in WinBugs) [27–29]. Technical details are given in the

Supplementary Material.

Selection of subjects for whom replicate measurements

were performed. The subjects for whom replicate measure-

ments were performed were not selected at random (Table S1).

For example, those that had low antibody titers at baseline and

post epidemic were never selected. To correct for this selection

bias we model the selection process and make estimation of

parameters characterizing measurement errors conditional on

those individuals being selected. Technical details are given in the

Supplementary Material.

Simulation study. In order to assess the performance of the

method to quantify measurement errors and reconstruct the true

distribution of paired serology, a simulation study is implemented.

Eighty datasets with a structure similar to ours (i.e. same number

of subtype/season, same number of observed paired serology per

subtype/season) are simulated from the posterior mean of the

parameters and the distribution of the true paired serology. The

selection of subjects for whom replicate measurements are

performed is simulated as in our model. We then applied our

statistical model to each of the simulated datasets and assessed the

bias on parameters quantifying measurement errors and on the

true distribution of paired serology.

Ethics statement

The research was approved by the institutional review board of

the National Institute of Hygiene and Epidemiology, Vietnam; the

Oxford Tropical Research Ethics Committee, University of

Oxford, UK; and the Ethics Committee of the London School

Box 1. Less-technical description of the
statistical method

In this box, we provide a less-technical description of the
statistical method to give non-specialists an intuition of
how it works. Readers should refer to the methods section
for a technically rigorous description. From observed and
replicate measurements of baseline and post epidemic
ATs, our aim is to i) quantify measurement errors and ii)
derive the true distribution of paired serology, that is, for
example, to be able to estimate the true (i.e. after
correction for measurement errors) proportion of subjects
with ATs 10 at baseline and 40 post epidemic. For the sake
of clarity, in this box, we restrict to the study of baseline
ATs; but extending the approach to the joint analysis of
baseline and post epidemic ATs is straightforward. We
consider a toy dataset with 5 subjects with observed and
replicate measurements for baseline ATs (Figure 7, panel
A). Because of measurement errors, true baseline ATs are
unknown (Figure 7, panel A). The statistical procedure is
iterative. At iteration 1 (Figure 7, panel B), we start by
initiating the model parameters and true ATs with arbitrary
values (steps a and b). We can then derive the distribution
of true ATs (step c) and calculate the probability
(‘likelihood’) of the observed and replicate ATs given this
initial set of parameters and characterisation of true ATs
(step d). We are then running an iterative procedure called
Markov chain Monte Carlo (MCMC) sampling. At each
iteration (Figure 7, panel C) we are proposing new values
for model parameters (step a) and for the true ATs of
subjects (step b) in an attempt to improve the likelihood.
After a certain number of iterations, parameters converge
to the posterior distribution. This distribution gives likely
values of parameters and also informs on uncertainty
about those parameters. From the large sample of
parameter values generated through 150,000 iterations
of the MCMC procedure, we can calculate the posterior
mean and 95% Credible Intervals (CI) of the parameters.
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of Hygiene and Tropical Medicine, UK. All participants provided

written informed consent.

Supporting Information

Figure S1 Fit of the model where measurement errors
are independent of true antibody titers to data on
replicate measurements. Observed (red point) and expected

(mean: blue point/95% CI: blue bar) number of pairs {observed

AT level, replicate AT level}. Pairs are sorted by panel according

to the number of dilution difference between the observed and the

replicate measurement.

(EPS)

Figure S2 Adequacy of model where measurement
errors are independent of true antibody titers to the
data. Distribution of ‘‘observed’’ paired serology as predicted by

the model (color bars) and as observed in the data (black point) as a

function of season (2008, Spring 2009, Autumn 2009) and subtype

(H1N1, H3N2 and B). In each panel, individuals are sorted by

baseline AT levels on the y-axis. For a given baseline, the grey bar

indicates the expected proportion of individuals with post AT level

equal to baseline AT level; the yellow bar indicates the proportion

with a 2 fold rise (2f.r.); the red bar indicates the proportion with a

4 fold rise or more (4f.r.+); the green bar indicates the proportion

with a decay. The black thin lines give the 95% CI. The legend

gives the mean [95% CI]. A: H1N1, 2008. B: H3N2, 2008. C: B,

2008. D: H1N1, Spring 2009. E: H3N2, Spring 2009. F: B, Spring

2009. G: H1N1pdm09, Autumn 2009.

(EPS)

Figure S3 Testing the absence of cross-reactivity be-
tween subtypes. For each year and each subtype, individuals

were partitioned between those with no increase in titers (coded 0),

those with a 1-dilution increase (coded 1) and those with a 2

dilution or more increase (coded 2). The population was then

partitioned in 27 groups according to outcome for triplet H1N1-

H3N2-B. For example triplet 1-0-0 consists of individuals with a 1-

dilution increase for H1N1 but no increase for H3N2 and B; 1-2-0

are individuals with a 1-dilution increase for H1N1, 2-dilution

increase for H3 but no increase for B etc. Red points show the

mean posterior distribution for triplet H1N1-H3N2-B, corrected

for measurement errors. The boxplots in the figure show the

distribution that would be obtained if there was no cross-reactivity

between subtypes.

(EPS)

Figure S4 Age-specific distribution of paired serology,
corrected for measurement errors as a function of
season (2008, Spring 2009, Autumn 2009) and subtype
(H1N1, H3N2 and B) (in Autumn 2009, subtyping was
only conducted for H1N1pdm09). In each panel, individuals

are sorted by baseline AT levels on the y-axis. For a given baseline,

the grey bar indicates the expected proportion of individuals with

Figure 7. Less technical description of the statistical method. This figure illustrates the description of the method that is made in Box 1.
doi:10.1371/journal.ppat.1003061.g007
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post AT level equal to baseline AT level; the yellow bar indicates

the proportion with a 2 fold rise (2f.r.); the red bar indicates the

proportion with a 4 fold rise or more (4f.r.+); the green bar

indicates the proportion with a decay. The black thin lines give the

95% CI. The legend gives the mean [95% CI]. A: H1, 2008,

,18 y.o. B: H3, 2008, ,18 y.o. C: B, Spring 2009, ,18 y.o. D:

H1, 2008, ,18 y.o. E: H3, Spring 2009, ,18 y.o. F: B, Spring

2009, ,18 y.o. G: H1pdm, Autumn 2009, ,18 y.o. H: H1, 2008,

18–48 y.o. I: H3, 2008, 18–48 y.o. J: B, Spring 2009, 18–48 y.o.

K: H1, 2008, 18–48 y.o. L: H3, Spring 2009, 18–48 y.o. M: B,

Spring 2009, 18–48 y.o. N: H1pdm, Autumn 2009, 18–48 y.o. O:

H1, 2008, .48 y.o. P: H3, 2008, .48 y.o. Q: B, Spring 2009,

.48 y.o. R: H1, 2008, .48 y.o. S: H3, Spring 2009, .48 y.o. T:

B, Spring 2009, .48 y.o. U: H1pdm, Autumn 2009, .48 y.o.

(EPS)

Figure S5 Model adequacy to age-specific data. Distri-

bution of ‘‘observed’’ paired serology as predicted by the model

(color bars) and as observed in the data (black point) as a function

of season (2008, Spring 2009, Autumn 2009), subtype (H1N1,

H3N2 and B) and age group (,18 y.o., 18–48 y.o., .48 y.o.). In

each panel, individuals are sorted by baseline AT levels on the y-

axis. For a given baseline, the grey bar indicates the expected

proportion of individuals with post AT level equal to baseline AT

level; the yellow bar indicates the proportion with a 2 fold rise

(2f.r.); the red bar indicates the proportion with a 4 fold rise or

more (4f.r.+); the green bar indicates the proportion with a decay.

The black thin lines give the 95% CI. The legend gives the mean

[95% CI]. A: H1, 2008, ,18 y.o. B: H3, 2008, ,18 y.o. C: B,

Spring 2009, ,18 y.o. D: H1, 2008, ,18 y.o. E: H3, Spring

2009, ,18 y.o. F: B, Spring 2009, ,18 y.o. G: H1pdm, Autumn

2009, ,18 y.o. H: H1, 2008, 18–48 y.o. I: H3, 2008, 18–48 y.o.

J: B, Spring 2009, 18–48 y.o. K: H1, 2008, 18–48 y.o. L: H3,

Spring 2009, 18–48 y.o. M: B, Spring 2009, 18–48 y.o. N:

H1pdm, Autumn 2009, 18–48 y.o. O: H1, 2008, .48 y.o. P: H3,

2008, .48 y.o. Q: B, Spring 2009, .48 y.o. R: H1, 2008,

.48 y.o. S: H3, Spring 2009, .48 y.o. T: B, Spring 2009,

.48 y.o. U: H1pdm, Autumn 2009, .48 y.o.

(EPS)

Figure S6 Distribution of observed paired serology in
[23]. A: HI assay for seasonal H1N1 influenza (2009). B: Micro-

neutralization assay for pandemic H1N1 influenza (2009). C: HI

assay for pandemic A(H1N1)pdm09 influenza (2009).

(EPS)

Table S1 Probability (numerator/denominator) that
replicate measurements are performed during 2008
and Spring 2009 seasons, for subtype H1N1, as a
function of observed serology at baseline and post
epidemic. The colors indicate how we model the probability of

selection. Yellow cells correspond to cells for which we assume that

the probability of selection is null. The probabilities associated to

the 4 other colors are estimated from the data (gS1: orange ; gS2:

red; gS3: light green; gS4: green). See Supplementary Material for

details.

(DOCX)

Table S2 Performance of the method to estimate
parameters characterizing how subjects with duplicate
measurements were selected. Those parameters are defined

in Table S1 (see also section 1 of Supplementary Material). Eighty

datasets are simulated with known parameters (see Methods). The

table gives the simulation value of parameters and the mean

(standard deviation) of estimates.

(DOCX)

Text S1 Technical details on the model, the estimation
procedure, sensitivity analyses, and the test for the
hypothesis of cross-reactivity between subtypes.
(DOCX)
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