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Introduction
Major depressive disorder (MDD) is estimated to have a lifetime 
prevalence of approximately 16%, with around 8% of adoles-
cents being affected by depression by the age of 16 years (Saluja 
et al., 2004). As recognition of MDD in adolescents has increased 
in recent years, more attention is directed to the aetiology and the 
consequences of early onset depression. Further, it has been sug-
gested that examining clinical symptoms as a continuum across 
symptom severity ranges may be more useful for identifying neu-
robiological signatures and risk markers (Insel et al., 2010).

Resting-state functional connectivity (RSFC) studies have 
revealed that individuals with depressive symptoms have abnor-
malities in key RSFC networks such as the salience network (SN) 
(Manoliu et al., 2014a; van Tol et al., 2013), the central executive 
network (CEN) (van Tol et al., 2013) and the default mode net-
work (DMN) (Bluhm et al., 2009; Greicius et al., 2007; Manoliu 
et al., 2014a; Northoff, 2016; Sheline et al., 2010).

The SN, which consists of regions such as the pregenual ante-
rior cingulate (pgACC), the insula and the amygdala, responds to 
salient stimuli, whereas the CEN, which involves regions such as 
the dorsolateral prefrontal cortex (dlPFC), dorsal medial prefron-
tal cortex (dmPFC) and the posterior parietal cortex, is involved 
in cognition for e.g. attention and working memory (Bressler and 
Menon, 2010). It has been suggested that the dysfunction in these 
networks in patients with MDD may be due to poor attentional 
control over emotional stimuli. Studies have found both increased 
and decreased SN and CEN RSFC in depression (Horn et  al., 
2010; Manoliu et  al., 2014b; Ramasubbu et  al., 2014; Sheline 

et al., 2010; Tahmasian et al., 2013; Ye et al., 2012). Consistent 
with this, a recent meta-analysis finds that in first-episode, drug-
naïve MDD patients, RSFC alterations were located mainly in 
the fronto-limbic system, including the dorsolateral prefrontal 
cortex and putamen, and in the DMN, namely the precuneus and 
superior/middle temporal gyrus (Zhong et al., 2016). The authors 
concluded that, as the fronto-limbic circuit and the DMN were 
each functionally altered, these two networks may contribute, 
respectively, to emotional dysregulation and maladaptive cogni-
tive patterns (Zhong et al., 2016).

Although few studies have examined RSFC in adolescents 
with depression, one study reports both increased RSFC between 
the amygdala and the precuneus and decreased connectivity 
between the SN and the amygdala and the hippocampus and 
brain stem, which also correlates with depression severity (Cullen 
et al., 2014). While Pannekoek et al. (2014) found both increased 
RSFC between the amygdala and the parietal cortex in MDD 
adolescents and decreased RSFC between the amygdala and 
regions such as the pgACC, frontal pole and the paracingulate 
gyrus, Clasen et al. (2014) also report that adolescents at familial 
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risk of depression have decreased RSFC between the prefrontal 
cortex and parts of the CEN, which also correlated with the par-
ent’s depression severity. Further Gabbay et al., 2013 found that 
functional connectivity between the striatum and midline struc-
tures, including the precuneus, posterior cingulate cortex, and 
dmPFC, correlated with MDD severity in 21 adolescents. 
However, distinct striatal RSFC patterns involving the pregenual 
ACC, subgenual ACC, supplementary motor area, and supramar-
ginal gyrus, were associated with anhedonia severity. Taken 
together, it has been suggested that an increase in vulnerability to 
depression may thus be underpinned by altered development in 
resting state networks in young people at risk. However this 
needs to be examined thoroughly using longitudinal designs. 
Recently, we investigated a group at risk for depression, i.e. ado-
lescents with depressive symptoms but no clinical diagnosis, and 
we also found decreased RSFC in key networks such as the SN 
the CEN and the DMN compared with healthy controls (Rzepa 
and McCabe, 2016), albeit with a small sample size in this study.

As it has been suggested that traditional diagnostic bounda-
ries are not entirely useful for capturing the fundamental underly-
ing mechanisms of psychiatric dysfunction (Insel et  al., 2010), 
our aim in this study was to examine, using a dimensional 
approach, how RSFC relates to symptoms like anhedonia and 
depression severity in a much larger sample of adolescents, in 
line with the research domain criteria (RDoC) approach. 
Consistent with this, a recent RSFC study examined a range of 
symptoms in patients with anxiety disorder and MDD and found 
that adding a dimensional approach to categorical provided a 
more complete mapping of psychopathology to neurobiology 
(Oathes et al., 2015).

Based on the previous literature, we selected seed regions that 
have been shown dysfunctional in depressed patients and in ado-
lescents at increased risk of depression in resting state: specifi-
cally, we selected seed regions based on Sheline et  al. (2010), 
which focused on the dorsal nexus (dmPFC) as a key region/hub 
involved in dysfunctional RSFC in depression in adults (Sheline 
et  al., 2010). As we are interested in RSFC and how it might 
relate to the symptoms of low mood and anhedonia, we also 
selected the nucleus accumbens seed as it is a key region involved 
in the salience network and reward processing. We also selected 
the pgACC seed from our recent study that found reduced pgACC 
activity during reward anticipation correlated with anhedonia in 
young people with depression symptoms (Rzepa et al., 2016a).

Materials and methods

Participants

We recruited from the general population adolescents (n = 86, 
aged 13–21 years, M = 18.09, SD = 1.89) (Sawyer et  al., 2018) 
with a range of depression symptoms in line with the RDoC 
approach. We did this by placing different adverts: an advert for 
young people with symptoms of depression and an advert for 
young people with no explicit mention of depression symptoms. 
Some participants had a depression diagnosis from their GP, a 
psychologist or a psychiatrist (n = 27), some were on antidepres-
sants (n = 14) or had a history of antidepressants (n = 6) (see Table 
S3). Therefore the adolescents recruited had a range of depres-
sion symptoms as can be seen from the Beck Depression 
Inventory (BDI) (Table 1). We also combined data from adoles-
cents (n = 16) who had high depression symptoms (high BDI and 
high Mood and Feelings Questionnaire (MFQ) designed for 
younger participants) from our previous paper (First et  al., 
1997)). We used the Structured Clinical Interview for DSM-IV 
Axis I Disorders Schedule (SCID) to exclude for any other psy-
chiatric history (Rzepa et al., 2016a). We excluded left-handed, 
pregnancy, any contraindications to MRI and any medications 
except for the contraceptive pill. The National and University 
Research Ethics Committees approved the study and written 
informed consent was obtained.

Depression and anhedonia questionnaires

The MFQ measures depression symptoms in adolescents. Scores 
on the short version of the MFQ range from 0 to 26, while scores 
on the long version range from 0 to 66. Higher scores on the 
MFQ suggest more severe depressive symptoms. Scoring a 12 or 
higher on the short version and a 27 or higher on the long version 
may indicate the presence of depression in the respondent. There 
are no prescribed cut-points for any version the MFQ since there 
is no single cut-point that is best for use in all circumstances. The 
BDI measures the severity of depression, from lack of depression 
to extreme clinical depression. On both of these scales greater 
depression severity = greater score. The Temporal Experience of 
Pleasure Scale (TEPS) designed to measure individual trait dis-
positions in both anticipatory and consummatory experiences of 
pleasure. High scores = high anticipatory and consummatory 

Table 1.  Demographics.

Measure Depression symptoms 
(n = 44) Mean (SD)

Healthy controls 
(n = 42) Mean (SD)

p-value

Age (years) 18.11 (1.84) 18.02 (1.94) .827
Gender F34, M10 F32, M10 .907
BMI 21.73 (2.24) 21.09 (2.41) .205
BDI 29.70 (12.69) 3.30 (4.1) <.001
FCPS 117.23 (25) 137.01 (19.18) <.001
SHAPS 30.8 (7.34) 21.21 (8) <.001
TEPS-A 36.25 (8.67) 48 (5.78) <.001
TEPS-C 30.61 (6.41) 36.76 (7) <.001

BDI: Beck Depression Inventory; BMI: body mass index; F: females; M: males; FCPS: Fawcett-Clarke Pleasure Scale; SHAPS: Snaith–Hamilton Pleasure Scale; TEPS-A: Tem-
poral Experience of Pleasure Scale, anticipatory subscale; TEPS-C: Temporal Experience of Pleasure Scale, consummatory subscale.
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pleasure. The Fawcett-Clark Pleasure Scale (FCPS) measures 
how participants rate imagined hedonic reactions to hypothetical 
pleasurable situations in the moment, low score = low hedonic 
capacity (Fawcett et  al., 1983). The Snaith-Hamilton Pleasure 
Scale (SHAPS) measures four domains of state hedonic experi-
ence: interest/pastimes, social interaction, sensory experience, 
and food/drink. Higher SHAPS total scores indicate greater 
pleasure capacity (Snaith, 1995).

Overall design

The resting-state data were acquired before any other scans 
including the structural scan. Subjects were instructed to lie in 
dimmed light with their eyes open, think of nothing in particular, 
and not to fall asleep, similar to our previous studies (Cowdrey 
et  al., 2012; McCabe and Mishor, 2011; McCabe et  al., 2011; 
Rzepa et al., 2016b), and a method found to have higher reliabil-
ity than eyes closed (Patriat et al., 2013).

Image acquisition

A Siemens Magnetom Trio 3T whole body MRI scanner and a 
32-channel head coil were used. Multi-band accelerated echo pla-
nar imaging sequencing (Center for Magnetic Resonance Research, 
Minneapolis, MN) was used with an acceleration factor of 6 and 
iPAT acceleration factor of 2. T2*-weighted EPI slices were 
obtained every 0.7 s (TR = 0.7, TE = 0.03). Fifty-four transverse 
slices with in-plane resolution of 2.4 × 2.4 mm were attained and 
slice thickness was 2.4 mm. The matrix size was 96 × 96 and the 
field of view (FOV) were 230 × 230mm. Acquisition was per-
formed during resting-state scan, yielding 420 volumes in total. 
Sagittal 3D MPRAGE images were also acquired 1 × 1 × 1 
(TI = 0.9 s, TR=2.02, flip angle 9°, FOV = 250 × 250 mm).

fMRI data analysis

Pre-processing.  fMRI data pre-processing was carried out using 
FEAT (FMRI Expert Analysis Tool, Version 6.0, a part of FSL 
software), and included the following steps: non-brain removal 
(Smith, 2002), motion correction using MCFLIRT (Jenkinson 
and Smith, 2002), spatial smoothing using a Gaussian kernel of 
full-width at half maximum (FWHM) of 5 mm, grand mean 
intensity normalization of the entire 4D dataset by a single multi-
plicative factor and high pass temporal filtering (Gaussian-
weighted least-squares straight line fitting, with sigma = 64.0s). 
fMRI volumes were registered to the individual’s structural scan 
and the MNI-152 standard space image (Montreal Neurological 
Institute, Montreal, QC, Canada) using FMRIB’s Linear Image 
Registration Tool (FLIRT) (Jenkinson and Smith, 2002).

Time series extraction and higher level analysis.  To study 
resting-state functional connectivity, a seed-based correlation 
approach was used. Using the Harvard-Oxford subcortical struc-
tural atlas (Kennedy et  al., 1998) we created bilateral nucleus 
accumbens seeds as these are small structures and are not suitable 
for a region of interest (ROI) sphere. To maximize the exact cov-
erage, the masks of these seed regions were threshold by 20% to 
include voxels having at least 80% of probability of being in these 
particular regions. We also created seeds for the dmPFC (18 34 

29; –24 35 28) (6 mm sphere so as to not cross into other brain 
regions) coordinates from Sheline et  al., (2010) and pgACC 
(8 mm sphere with a centre at 0 38 0 so as to not cross into other 
brain regions). The dmPFC and pgACC seeds were created with 
Wake Forest University Pickatlas tool in SPM8 as in our previous 
study (McCabe et al., 2011).

The mean time-course within the left and right seeds of each 
ROI (except for the pgACC, comprising only one medial seed) 
was calculated and used as a regressor in a general linear model. In 
addition, white matter signal, cerebrospinal fluid signal, six motion 
parameters (three translations and three rotations), and the global 
signal were used as nuisance regressors. We have obtained white 
matter and cerebrospinal fluid masks using FSL's FAST segmenta-
tion program. The resulting segmented images were then thresh-
olded to ensure 80% tissue type probability. For each individual, 
the general linear model was analysed by using the FMRI Expert 
Analysis Tool, version 5.4, part of FMRIB's Software Library 
(Smith et al., 2004). The resulting parameter estimate maps were 
then analysed using higher level 1 sample t-tests for group aver-
ages and between-samples t-tests for group differences. Clusters 
were determined by Z > 2.3 voxel-wise thresholding and a family-
wise error-corrected cluster significance threshold of P < 0.05 
(Worsley, 2001). From the results, we report only those that met 
the further correction for number of ROIs examined that gave 
P < 0.016 (i.e. P < 0.05 Bonferroni corrected for the three net-
works of interest: nucleus accumbens, dmPFC and pgACC 
(Davidson et  al., 2003)). The % BOLD signal change data was 
extracted from the regions of significant effect (Table S2) using the 
FSL tool Featquery (www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004) 
and using a dimensional approach was correlated with depression 
severity (BDI) and anhedonia (SHAPS, FCPS and TEPS) using 
Pearson correlations.

Results
Table 1 shows the demographics of the study population; there 
were no significant differences between the DS group and con-
trols for age, gender and BMI. Differences were present for 
depression: BDI, and anhedonia: SHAPS, FCPS, TEPS.

Main effects of stimuli on blood oxygen 
level-dependent responses

Table S2 reports the main effects, i.e. the brain regions that had 
RSFC with the seed regions (baseline) for the HC group only. 
Overall, the patterns of connectivity associated with each of the 
seed regions are consistent with RSFC experiments in previous 
studies (Bebko et  al., 2015; Clasen et  al., 2014; Cullen et  al., 
2014; Guo et al., 2015; Sheline et al., 2009, 2010). Table 2 pro-
vides a summary of brain regions where there was a significant 
difference in connectivity between the seeds and the whole brain 
in those with depression symptoms (DS) vs. no symptoms (HC). 
These data we extracted and used to examine correlations with 
depression and anhedonia symptoms.

RSFC and Anhedonia: TEPS-A.  There was a negative correla-
tion between RSFC of the right dmPFC seed and the ACC/parac-
ingulate gyrus with the TEPS anticipatory scale in all participants 
(r = –.281, p = .009) (Figure 1). Meaning that the higher the neural 

www.fmrib.ox.ac.uk/fsl
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activity the lower the ability to anticipate pleasure. There was no 
significant correlations when separated into the DS and HC 
groups (p > 0.05).

There was a positive correlation between RSFC of the right 
dmPFC seed and the left precuneus with the TEPS anticipatory 
scale in all participants (r = .365, p = .001, two-tailed). Meaning 
decreased connectivity correlated with anhedonia. The connec-
tivity was also significant in the HC group (r = –.446, p = .003, 
two-tailed) but not in the DS group (p > 0.05) (Figure 2).

There were no significant correlations between the anhedonia 
measures FCPS and SHAPS and RSFC.

RSFC and depression severity: BDI.  There was a positive cor-
relation between RSFC of the right dmPFC seed and the frontal 
pole and BDI in all participants (r = .31, p = .004, two-tailed). 
Meaning increased connectivity correlated with increased depres-
sion severity. However, this connectivity did not remain significant 
when separated into the DS and HC groups alone (p > 0.05).

There was a negative correlation between RSFC of the right 
dmPFC seed and the left precuneus and BDI in all participants 
(r = –.321, p = .003, two-tailed). Meaning decreased connectivity 

Table 2.  RSFC between seed regions and whole brain compared between DS and HC groups controlled for medication status and age.

Brain Region MNI Coordinates z-score Cluster size P value

  X Y Z  

Increased connectivity in DS vs. HC  
  R dmPFC seed  
Frontal Pole −32 32 12 4.11 485 <.001
ACC/Paracingulate −8 25 22 3.2 485 <.001
  L dmPFC seed  
Postcentral gyrus 54 −14 42 3.9 297 0.008
  L NAcc seed  
Precuneus −14 −60 34 3.86 238 0.008
Precuneus 6 −60 38 3.21 238 0.008
  pgACC seed  
Thalamus −2 −4 −4 4.27 655 <.001
Putamen −26 4 0 4.12 655 <.001
Caudate −10 8 16 3.8 655 <.001
NAcc 6 6 −2 3.51 655 <.001
Planum Temporale −60 −38 14 4.64 286 0.008
STG −66 −24 12 3.92 286 0.008

Decreased connectivity in DS vs. HC
  R dmPFC seed  
Cuneal cortex −2 −82 26 4.09 328 0.002
Precuneus −20 −78 24 2.88 328 0.002
Precuneus 8 −76 36 3.1 282 0.002
  L dmPFC seed  
ITG/MTG 58 −22 −26 4.14 407 <0.001
LOC 40 −84 8 4.03 388 0.001
  pgACC seed  
SFG/MFG −22 16 44 3.88 385 0.001
Postcentral gyrus −38 −22 60 3.98 269 0.013

All p-values Z > 2.3 voxel-wise thresholding and a family-wise error-corrected cluster significance threshold of P < 0.05, further Bonferroni corrected for number of ROIs 
gave P < 0.012 (i.e. P < 0.05 (Davidson et al., 2003). ACC: anterior cingulate cortex; dmPFC: dorsal medial prefrontal cortex; IFG: inferior frontal gyrus; IFG: inferior 
temporal gurus; LOC: lateral occipital cortex; MFG: medial frontal gyrus; NAcc: nucleus accumbens; pgACC: pregenual anterior cingulate cortex; SFG: superior frontal gyrus; 
STG: superior temporal gyrus.

Figure 1.  Negative correlation between RSFC of the right dmPFC seed 
and the ACC/paracingulate gyrus with TEPS anticipatory scale in all 
participants (r = –.281, p = .009, two-tailed).
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correlated with increased depression severity. Also, this connec-
tivity remained significant in the HC group (r = –.350, p = .023, 
two-tailed) but not in the DS group (p > 0.05) (Figure 3).

Discussion
The aim of our study was to investigate how RSFC was related to 
a range of depression and anhedonia symptoms in adolescents. 
We selected key regions of interest shown to be dysfunctional in 
previous studies of RSFC in adults with depression.

We found anticipatory anhedonia related to increased dmPFC 
RSFC with the ACC/paracingulate gyrus, a part of the SN, across 
all participants. The dmPFC is a key node of the CEN network 
that is recruited by cognitively demanding tasks including 

working memory, attention and response inhibition (Seeley et al., 
2007) (Garavan et al., 2002), and has been reported dysfunctional 
in individuals with depressive symptoms (Fonseka et al., 2016; 
Nixon et al., 2013; Sheline et al., 2010). Interestingly the ACC 
has been proposed as a bridge between attentional and emotional 
processing (Bush et al., 2000; Devinsky et al., 1995) that is also 
critical for self-regulation and adaptability (Zheng et al., 2017). 
Furthermore, the ACC has been highlighted as dysfunctional in 
depression during tasks and the resting state in adults (Sheline 
et  al., 2010; Zheng et  al., 2017) and adolescents (Pannekoek 
et al., 2014) and has been suggested as a predictor of treatment 
response in depression (Pizzagalli, 2011). Moreover, examining 
depressed adolescents (Gabbay et al., 2013) also found anhedo-
nia severity correlated with increased pgACC RSFC with the 
caudate, although in the latter study anhedonia was measured by 

Figure 2.  Positive correlation between RSFC of the right dmPFC seed and the left precuneus and TEPS anticipatory scale in (a) all participants 
(r = .365, p = .001, two-tailed), and (b) the HC group (r = –.446, p = .003, two-tailed) but not in the DS group (r = –.226, p = .104, two-tailed).

Figure 3.  Negative correlation between RSFC of the right dmPFC seed and the left precuneus and BDI in (a) all participants (r = –.321, p = .003), and 
(b) the HC group (r = –.350, p = .023) but not the DS group (r = –.248, p = .104).
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only two questions on the BDI and not with an anhedonia spe-
cific questionnaire as we have in our study. In our previous study 
examining young people with depression symptoms but no clini-
cal diagnosis we also found increased pgACC RSFC correlating 
with anhedonia, consistent with this finding, albeit with a small 
sample (Rzepa and McCabe, 2016). Therefore, we suggest that 
the increased connectivity between the dmPFC and part of the 
ACC/paracingulate gyrus in this much larger study shows, for the 
first time, how decreased ability to specifically anticipate pleas-
ure may serve as a mechanism for the emergence of anhedonia in 
young people.

We also found depression severity related to increased dmPFC 
RSFC with the frontal pole. The frontal pole has been found 
active during tasks that require cognitive effort or attention 
(Corbetta and Shulman, 2002) and is thought important for exec-
utive function and stimulus and goal-directed behaviour (Burgess 
et al., 2007; Orr et al., 2015). Our finding is somewhat consistent 
with that of Zhou et  al. (2010), who reported increased RSFC 
associated with the lateral prefrontal cortices that also correlated 
with depressive episode duration and depression severity in 
depressed adult patients (mean age 38–40 years). The authors 
suggested that such dysfunctional network activity in areas 
involved in emotion, attention and memory may underpin nega-
tive bias, one of the main characteristics of depression. Therefore 
our results extend this idea by reporting on a younger sample, i.e. 
adolescents. Further, our result of dmPFC-frontal pole connectiv-
ity being related to depression severity and not anhedonia per-
haps indicates a mechanism for altered negative rather than 
positive processing. Of course, it could also be related to an 
imbalance between positive and negative processing given our 
findings of altered dmPFC connectivity with other brain regions 
correlating with anhedonia.

Consistent with this, we also found decreased dmPFC RSFC 
with the precuneus, which correlated with anticipatory anhedonia 
and depression severity. The precuneus is a part of the DMN 
(Ralchle and Snyder, 2007), and thought to be involved in self-
referential thoughts and rumination in depression (Burkhouse 
et al., 2017; Zhu et al., 2012). During rest or internally focused 
cognitions, activation of the CEN (including the dmPFC) 
decreases while DMN activation increases (Fox et  al., 2005; 
Grady et  al., 2010; Raichle et  al., 2001). Furthermore, studies 
have shown that RSFC between the CEN and the DMN is altered 
in MDD (Hamilton et al., 2011; Manoliu et al., 2014a; Sheline 
et  al., 2010), which has been suggested as being related to 
patients’ difficulties to disengage from negative thoughts 
(Manoliu et al., 2014a). A recent study found that those at high 
risk of depression due to a family history had decreased negative 
DMN-CEN connectivity (Posner et al., 2016), which the authors 
proposed as a possible indicator of risk for depression, although 
they did not report any relationship between network activity and 
depression symptoms in their study, whereas a recent study in 
healthy adolescents found decreased RSFC between the subgen-
ual ACC and dmPFC, posterior cingulate, angular gyrus and mid-
dle temporal gyrus associated with higher depressive symptoms 
over time (Strikwerda-Brown et al., 2014). The authors suggested 
that reduced functional connectivity between key limbic and pre-
frontal regions may serve as a risk marker for greater depressive 
symptoms later in life. Interestingly, studies report causal influ-
ences of the SN in modulating the activity of the DMN and CEN 
(Bonnelle et al., 2012; Rilling et al., 2008; Sridharan et al., 2008); 

therefore, although speculative, the increased dmPFC- SN RSFC 
in this study might be causing the decreased RSFC we find with 
the DMN. Further studies are needed to test this directly. Our 
results are also consistent with the recent meta-analysis that 
describes a model of altered RSFC in mainly the fronto-limbic 
system and DMN (Zhong et al., 2016). Our results support this 
model in that these networks may contribute to emotional dys-
regulation, but we also extend the findings by showing how fron-
tal cortex RSFC is related to anhedonia, whereas the DMN RSFC 
is related to both depression severity and anhedonia.

Of note, correlations between RSFC and symptoms were sig-
nificant across the entire sample and in some cases in the HC 
group alone; none were significant in the DS group only. This 
suggests that the findings could be driven by the HC group (effect 
size r was also greater in the HC correlation alone than in the 
combined correlation) and that the relationship between brain FC 
and mood and pleasure are less aligned when symptoms become 
more severe. Furthermore the anhedonia questionnaire TEPS 
was designed to measure individual trait dispositions in both 
anticipatory and consummatory experiences of pleasure, which 
might explain how it was more easily mapped onto neural RSFC 
in our sample of adolescents with a range of symptoms compared 
with both the FCPS and the SHAPS, which measure state effects.

In conclusion, our findings show for the first time increased 
dmPFC RSFC with the SN and frontal pole, but also decreased 
dmPFC RSFC with the DMN correlating with depression sever-
ity and anhedonia in adolescents, lending further evidence to the 
importance of these networks as possible biomarkers for risk for 
depression.
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