
Realtime feature selection technique with
concept drift detection using Adaptive
MicroClusters for data stream mining
Article

Accepted Version

Creative Commons: AttributionNoncommercialNo Derivative Works 4.0

Hammoodi, M. S., Stahl, F. and Badii, A. (2018) Realtime
feature selection technique with concept drift detection using
Adaptive MicroClusters for data stream mining. Knowledge
Based Systems, 161. pp. 205239. ISSN 09507051 doi:
https://doi.org/10.1016/j.knosys.2018.08.007 Available at
http://centaur.reading.ac.uk/78678/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing .

To link to this article DOI: http://dx.doi.org/10.1016/j.knosys.2018.08.007

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement .

www.reading.ac.uk/centaur

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

CentAUR

Central Archive at the University of Reading

Reading’s research outputs online

Real-Time Feature Selection Technique with Concept Drift Detection using
Adaptive Micro-Clusters for Data Stream Mining

Mahmood Shakir Hammoodia,b, Frederic Stahla, Atta Badiia

aDepartment of Computer Science, University of Reading, PO Box 225, Whiteknights, Reading, RG6 6AY, UK
bDepartment of Computer Center, University of Babylon, Iraq

Abstract

Data streams are unbounded, sequential data instances that are generated with high Velocity. Classifying sequential
data instances is a very challenging problem in machine learning with applications in network intrusion detection, financial
markets and applications requiring real-time sensor-networks-based situation assessment. Data stream classification is
concerned with the automatic labelling of unseen instances from the stream in real-time. For this the classifier needs to
adapt to concept drifts and can only have a single pass through the data if the stream is fast moving. This research paper
presents work on a real-time pre-processing technique, in particular feature tracking. The feature tracking technique is
designed to improve Data Stream Mining (DSM) classification algorithms by enabling and optimising real-time feature
selection. The technique is based on tracking adaptive statistical summaries of the data and class label distributions,
known as Micro-Clusters. Currently the technique is able to detect concept drifts and identify which features have been
influential in the drift.

Keywords: Data Stream Mining, real-time Feature Selection, Concept Drift Detection

1. Introduction

Velocity in Big Data Analytics [1] refers to data that is
generated at ultra high speed and is live-streamed where-
upon the processing and storing of it in real-time (Data
Stream Mining, DSM) constitute significant challenges to
current computational capabilities [2]. Thus data stream
mining algorithms that are capable of learning over a single-
pass through the training data are necessary. The general
area of Data Stream Mining covered by this paper is Data
Stream Classification, which is the prediction of class la-
bels of new instances in the data stream in real-time. Po-
tential applications that need real-time data stream clas-
sification techniques are for data streams in the chemical
process industry [3], intrusion detection in telecommunica-
tions [4], etc. In order to keep as high a predictive accuracy
as possible, data stream classification techniques need not
only be able to learn incrementally but also be able to
adapt to concept drifts.

A concept drift occurs if the pattern encoded in the
data stream changes. DSM has developed various real-
time versions of established predictive data mining algo-
rithms that adapt to concept drift and keep the model
accurate over time, such as CVFDT [5] and G-eRules [6].
The benefit of classifier independent concept drift detec-

Email addresses: pre.mahmood.shakir@uobabylon.edu.iq,

m.s.h.hammoodi@pgr.reading.ac.uk (Mahmood Shakir
Hammoodi), F.T.Stahl@reading.ac.uk (Frederic Stahl),
atta.badii@reading.ac.uk (Atta Badii)

tion methods is that they give information about the dy-
namics of data generation [7]. Common drift detection
methods are for example ADaptive sliding WINdow (AD-
WIN) [8], Drift Detection Method (DDM) [9] and the
Early Drift Detection Method (EDDM)[10]. However, no
drift detection method devised to-date, can provide po-
tentially highly valuable insights as to which features are
involved in the concept drift. For example, if a feature is
contributing to a concept drift it can be assumed that the
feature may have become either more or less relevant to
the current concept. This causal responsibility theoretic
perspective of the evaluation of concept drift has inspired
the development of a real-time feature tracking method
based on feature contribution information for the purpose
of feature selection to identify features that have become
(more) relevant or irrelevant due to concept drift. Thus,
an approach for detecting causality of drifts, providing the
feature contribution information for the purpose of track-
ing features and identifying the relevant features for clas-
sification for the purpose of feature selection in real-time
has been developed in this research.

Common feature selection techniques are for example
Linear Discriminant Analysis (LDA), Canonical Correla-
tion Analysis (CCA), Multi-View CCA, Principal Com-
ponent Analysis (PCA) [11, 12], and Support Vector Ma-
chine (SVM) based techniques. These techniques can be
applied on a sample of the data stream before commenc-
ing the training and adaptation of a data stream classifier.
However, this would not account for changes in the rel-
evance of features for the classification task at hand due

Preprint submitted to Elsevier August 3, 2018

to concept drift which can be dealt with by re-running
the above methods to update the feature rankings in or-
der to accommodate any drifts. However, this can po-
tentially be an expensive procedure especially if there are
many dimensions in the data, but it also depends on the
user settings of how frequently this feature re-ranking is
performed. Hence, the rationale for a single-pass method
requiring the re-evaluation of only the features where the
classification relevance has changed since the last pass.

This research therefore describes a concept drift de-
tection method for data stream classification algorithms
with the feature tracking capability. This enables linking
features to concept drifts over a statistical sliding window
for feature selection purposes. The method only needs
to examine features that have potentially changed their
relevance and only when there is an indication that the
relevance of a feature may have changed. The proposed
method can be used with any learning algorithm either as
a real-time wrapper or a batch classifier or realised inside
a real-time adaptive classifier [13, 6]. Previous work of the
authors has developed a feature tracking technique [14],
however, the techniques was not used for feature selection
purposes as it suffered from over-fitting on noise and out-
liers. Thus the contributions of this paper are:

1. A new improved Concept Drift detection technique
with Feature Tracking capabilities.

2. A feature selection technique based upon the causal-
ity of drifts obtained through the developed Feature
Tracking method.

This paper is organised as follows: Section 2 describes
related works, Section 3 summarises the MC-NN classi-
fier whose data representation has been used and modified
for the real-time feature selection method presented here.
Section 4 introduces the drift detection method developed
in this research and Section 5 explains the developed fea-
ture tracking method. Section 6 takes these developments
forward to devise a real-time feature selection approach.
Section 7 provides an empirical evaluation of the developed
methods and concluding remarks are given in Section 8.

2. Related Work

2.1. Concept Drift Detection Techniques

A concept drift occurs if the pattern encoded in the
data stream changes over time. The gathered data changes
or shifts, after a stability period. Identifying a drift point
as distinct from noise or outlier, is the first and most chal-
lenging task for drift detection algorithms [15, 7]. Thus
analytics algorithms need to adapt. This issue of concept
drift needs to be considered in order to mine relevant data
with appropriate accuracy. At least four types of drift can
be identified; gradual, sudden, recurring, and incremental,
as well as noise and outliers which may occur in the data
stream [15, 7, 16, 17].

Outliers and noise are not concept drifts. Often it is
very difficult for concept drift detection methods to distin-
guish noise and outliers from real concept drift.

There exist standalone concept drift detection tech-
niques that can be used in combination with batch learn-
ing algorithms and a sliding window approach. For exam-
ple one of these techniques is CUmulative SUM (CUSUM)
[18]. CUSUM raises alarms when the mean µ of the input
data is significantly different from zero. CUSUM is con-
sidered to be ‘almost memoryless’, however, it can only
be applied in one statistical direction, i.e., detecting only
significant increases in feature values.

Another technique is the Drift Detection Method (DDM)
[9]. DDM computes error statistics based on two time
windows. A concept drift is triggered for sudden concept
drifts only, while gradual concept drifts are not detected
[19]. Early Drift Detection Method (EDDM) [10] is an ex-
tension of DDM, estimating distribution of the distances
among classification errors, however, the method is suscep-
tible to noise. The Exponential Weighted Moving Average
(EWMA) [20] is also similar to DDM, but the estimate of
the error rate is updated faster for each point in the data
stream. The ADaptive sliding WINdow (ADWIN) method
[8] makes use of a variable size sliding window, whereas the
size is dependent on observed changes. If there is a change
then the window size decreases, otherwise it increases. A
problem with ADWIN is that windows can become poten-
tially very large and thus the time to adapt a classifier may
increase.

However, we are not aware of any drift detection method
that also provides information as to the causes of the drift,
i.e. which features were involved in the genesis of the drift.

2.2. Feature Selection Techniques

Feature selection is used to reduce the dimensions of
data streams, aiming to retain only relevant features (i.e.
features highly correlated with class labels). This is be-
cause learning good classifiers can be achieved by removing
irrelevant features [21, 22].

Many techniques have been proposed for dimensional-
ity reduction such as Linear Discriminate Analysis (LDA),
Canonical Correlation Analysis (CCA), Multi-View CCA,
and Principal Component Analysis (PCA) [11, 12]. LDA
transforms two groups of class labels into two matrices to
be matched together. CCA is a statistical method which
aims to search a linear subspace in which the correlation
between two sets of class labels is maximised. Multi-View
CCA [11] is an extension of CCA which searches for a
pairwise correlation between all sets of class labels. PCA
aims to merge the different feature vectors in a low dimen-
sional space of eigenvectors which keeps their direction un-
changed when a linear transformation is applied to them.
A very popular mechanism to select relevant features for
a classification task is based on Information Gain measure
which is also used in building decision trees [23]. The as-
sumption is that the higher the Information Gain of an

2

attribute the more likely it is relevant for the classification
task.

The aforementioned feature selection techniques are by
no means an exhaustive list of techniques. However, they
all share a common placing in that they are typically ap-
plied before a classifier is induced. Thus these techniques
are not designed for data streams as they do not take into
consideration that the relevance of a feature for a classifi-
cation task may change over time. Thus, real-time feature
selection techniques are needed.

2.3. Data Stream Classification

Several methods have been proposed for predictive ana-
lytics on data streams. The most notable data stream clas-
sifier is probably the Hoeffding Tree family of algorithms.
The Hoeffding Tree algorithm by Domingos and Hulten
[13] introduces a decision tree incrementally in real-time.
The Hoeffding Tree was improved in terms of speed and
accuracy by proposing a Very Fast Decision Tree (VFDT)
[5]. Although achieving high accuracy using a small sam-
ple is the main advantage of these algorithms, concept drift
detection cannot be handled as a created sub-tree can only
expand from the child nodes onwards. A new version of
VFDT, termed CVFTD where C stands for Concept Drift
[5], was introduced. Broadly speaking, in CVFDT alter-
native sub-trees can be induced over time and if an al-
ternative sub-tree outperforms (i.e. in terms of accuracy)
the current active sub-tree, then the current sub-tree has
to be replaced with the alternative one. However, if sub-
trees are growing continuously, then a large amount of
memory is consumed, also CVFDT is susceptible to noise
and unable to handle recurring drifts [24]. Further data
stream classification algorithms have been proposed, such
as a Similarity Search Structure called the Rank Cover
Tree (RCT) [25], Online Data Stream Classification with
Limited Labels [26], Prototype-based Classification Model
[27], Adaptive Nearest Neighbour Classification for Data
Streams [28], Ensemble based Classification [29], VFDR
[30], Online Data Stream Classification with limited labels
[26], Prototype-based Classification Model [27], DBScan
[31], SFNClassifier [32], and G-eRules [6].

Although, most of these algorithms have a built-in con-
cept drift detection capability, none of them takes online
feature selection into consideration. If feature selection is
applied at all, then it is mostly at the beginning of the
data stream and it is assumed that the contribution of
each feature to the concept remains invariant over time.
However, this is an unrealistic assumption. The relevance
of features for the concept may change over time and thus
an online feature selection strategy may very well improve
the predictive accuracy of the classifier.

2.4. Data Stream Clustering

Clustering is the partitioning and grouping of a partic-
ular set of observations according to the similarities of their
characteristics. Several Data Stream Cluster Analysis al-
gorithms with minimum time and memory demands have

been proposed over the years. These algorithms typically
need only one pass through the data in order to adapt to
concept drifts. Some notable algorithms here are BIRCH
[33], CluStream [34], HPStream [35], E-Stream [36], Clus-
Tree [37], HUE-Stream [38], and MC-NN [39].

A notable development of these cluster analysis algo-
rithms is the aforementioned BIRCH which builds statisti-
cal summaries of the clusters and is able to learn incremen-
tally. These statistical summaries are also often referred
to as Micro-Clusters. However, BIRCH does not forget
concepts and thus its ability to adapt to concept drifts is
limited. An extension of BIRCH is the ClusTree algorithm
mentioned above, it implements a hierarchical data stream
clustering algorithm. Also the aforementioned CluStream
algorithm extends the Micro-Clusters with a time com-
ponent, enabling the algorithm to forget old and obsolete
concepts. A more recent extension of CluStream is the
MC-NN algorithm. MC-NN is also built on a further ex-
tension of the CluStream Micro-Clusters, it adds splitting
of Micro-Clusters to adapt to concept drift and uses these
Micro-Clusters primarily for parallel predictive analytics
in real-time. The research presented in this paper is in-
spired by the ability of MC-NN Micro-Clusters to adapt
to concept drift and has developed a new Micro-Cluster
structure. Thus MC-NN will be discussed in more detail
in Section 3.

Please note, none of the aforementioned techniques is
capable of tracking the causality of a concept drift which
could be very useful for real-time feature selection. At
the moment feature selection is typically ignored in data-
stream mining tasks or simply applied prior to starting
a workflow. The remainder of this paper discusses new
concept drift detection method that is able to track feature
involvement in concept drift. Furthermore a method is
then used to facilitate feature selection in real-time.

3. Micro-Cluster Nearest Neighbour (MC-NN)

This section summarises the previously mentioned MC-
NN approach [39]. MC-NN was originally developed for
predictive data stream analytics, however, the underlying
Micro-Cluster structure of MC-NN has been adapted and
extended in this research in order to develop a feature
tracker for online feature selection purposes. Thus MC-
NN is discussed in greater detail. Essentially there are
three operations to adapt MC-NN to concept drifts: (1)
absorption of data instances into nearest Micro-Clusters,
(2) splitting of Micro-Clusters with high variance and (3)
removal of obsolete Micro-Clusters.

3.1. The Structure of MC-NN Micro-Clusters

Micro-Clusters in MC-NN provide statistical summaries
of feature values over time stamps. In [39], the structure of
Micro-Clusters is: < CF2x, CF1x, CF1t, n, CL, ε,Θ, α,Ω >.
Details about the Micro-Cluster structure components are
listed in Table 1.

3

Table 1: The Structure of MC-NN Micro-Clusters.

Structure Description
Component
CF2x a vector with the sum of squares of the features
CF1x a vector with the sum of feature values
CF1t a vector with the sum of time stamps
n the number of data instances in the cluster
CL the majority class label of the cluster
ε the error count
Θ the error threshold for splitting the Micro-Cluster
α the initial time stamp
Ω a minimum (user defined) threshold for the

Micro-Cluster minimum participation

The components listed in Table 1 are used to compute
the centroid for a feature within a Micro-Cluster x:

centroid(x) =
CF1x

n
(1)

and the Variance of a feature within a Micro-Cluster:

V ariance[x] =

√(
CF2x

n

)
−
(
CF1x

n

)2
(2)

3.2. The Training or Absorbing Instances

Each Micro-Cluster is updated by adding a new in-
stance to its nearest Micro-Cluster’s centroid if it is within
the boundary (Variance) of the Micro-Cluster, (see Fig-
ure 1). The error ε is decremented by 1 if a new instance
matches the CL. Otherwise, if the nearest Micro-Cluster
does not match the CL, then the new instance is still added
to the nearest Micro-Cluster, however, the Micro-Cluster
error ε is incremented by one; also the error ε of the near-
est Micro-Cluster that matches the CL is incremented by
1. In the case that the data instance is outside the bound-
ary (Variance) of its nearest Micro-Cluster, then loosely
speaking, the instance builds a new Micro-Cluster.

Figure 1: An example of adding a new instance to the nearest Micro-
Cluster.

3.3. Splitting of a Micro-Cluster using Variance

MC-NN splits a Micro-Cluster in two new clusters once
the error count ε reaches Θ and the original Micro-Cluster
is removed in order to improve the fit to evolving data
streams. The new Micro-Clusters are placed about the
original Micro-Cluster feature that has the greatest V ariance
for a feature x (illustrated in Figure 2). The assumption

MC-NN makes here is that the feature with the highest
Variance is the most likely to contribute to mis-absorption.

Figure 2: Splitting of a Micro-Cluster according to the feature with
the highest Variance.

3.4. Death and Removal of a Micro-Cluster using Triangle
Numbers

MC-NN removes a Micro-Cluster (Micro-ClusterDeath)
if it has not participated recently in absorbing data in-
stances, which can be calculated from CF1t by measuring
the Triangle Number (Equation 3). The Triangle Number
gives more weight to recent Micro-Clusters than the older
ones. If the participation percentage of a Micro-Cluster is
lower than Ω then the Micro-Cluster is removed. The as-
sumption MC-NN makes is that older non-participating
Micro-Clusters reflect old and potentially obsolete con-
cepts.

Triangle Number ∆(T) = ((T 2 + T)/2) (3)

Figure 3: The process of calculating the Triangle Number for a
Micro-Cluster.

The process of calculating the Triangle Number is given
in Figure 3 and highlighted in an example in Figure 4.
Consider the Micro-Cluster in the example. It was cre-
ated at time stamp 2 and updated with instances at time
stamps 4 and 6, the current time stamp is 7 but here it was
not updated. On the right hand side of Figure 4 we have
depicted the calculations for the different steps involved in
the process depicted in Figure 3.

4

Figure 4: An Example of Triangle Number calculation. The shaded
areas signify the time stamps where the Micro-Cluster has partici-
pated in absorbing new instances for a particular time stamp

3.5. Taking MC-NN Forward to Develop a Real-time Fea-
ture Selection Method

Sections 4, 5 and 6 take some of MC-NN’s ideas forward
to facilitate real-time feature selection. The basic idea is
to monitor Micro-Cluster Split rates and Death rates in
order to detect concept drifts. It is expected that concept
drifts will cause a peak in splitting and removing of Micro-
Clusters. The Velocity and direction of movement of the
Micro-Clusters can be used as an indication as to which
features have changed and potentially contributed towards
a concept drift. Then, in turn, features that have shown
significant changes during a concept drift can be examined
separately for their relevance to the classification task.

For clarity we note the semantic distinctions in our us-
age of three terms relating to time and temporal referenc-
ing of a point or an interval in the timeline, namely ‘time’,
‘time window’, ‘time stamp’. In our analysis ‘time’ and
‘time window’ are regarded as equivalent references used
interchangeably to mean a duration of time as encapsulat-
ing a set of data instances with sequential time intervals
of fixed length. Whereas ‘time stamp’ is a means of in-
dexing time, i.e. provides a mark-up for, a particular data
instance at a particular point in time. For example assum-
ing a stream has generated 2000 sequential data instances
and each time window is of length 1000, then there would
be two time windows, time window 1 from time stamp 0
to 999 and time window 2 from time stamp 1000 to 1999.
This may be for example referred to in the paper as time
1 or time 2 meaning time window 1 and 2.

4. Real-Time Concept Drift Detection Technique
using Adaptive Micro-Clusters

The MC-NN algorithm aims to keep a recent and ac-
curate summary of the data stream using Micro-Clusters.
Significant changes to these summaries are used in this
research to detect concept drift.

4.1. Detecting Concept Drift using Adaptive Micro-Clusters

It is expected that during a concept drift the data dis-
tribution changes (causing larger Variance within Micro-
Clusters), but also it is expected that Micro-Clusters ab-
sorb more incorrect data instances (different class labels
than the Micro-Cluster). When new concepts arrive, MC-
NN adapts by applying Split (Micro-Cluster Splitting) and
Death (Micro-Cluster removal), as explained in Section 3.

Loosely speaking, regarding Split, two new Micro-Clusters
are generated from the original one when the error counter
reaches the error threshold due to false positive participa-
tion. Likewise some of the existing Micro-Clusters may
stop to participate as they become obsolete and are re-
moved. Both will result in a higher number of Splits and
Deaths over time. In this research we measure Split and
Death rates over time simply by using Equation 4 for each
time window. Here n is the number of instances in a time
window and i is the index of the current data instance
within the time window, starting with 1 within each time
window. Figure 5 illustrates an example of monitoring
a Split or Death rate. In this sense the calculation of
Split and Death is conducted gradually instance by in-
stance within a time window.

∑n
i=1(Number of Splits or Deathsi−Number of Splits or Deathsi−1)

n (4)

Figure 5: An example of Micro-Cluster Split and Death Rate.

The assumption is the larger both rates are, the more
likely it is a concept drift has happened. Using a window-
ing approach on the data stream, a running average of the
Split and Death rates are calculated separately, as well as
the Percentage Difference which is given by Equation 5.
In the equation i denotes the current time window.

Percentage Difference = |Ratei−Ratei−1|
(Ratei+Ratei−1)/2

∗ 100 (5)

If the Percentage Differences of both, the Split and
Death rates differ from the µ (of the current and previous
window) by 50% (default value), then this is considered as
a concept drift. In this work the default value of 50% has
been used for all experiments as it yielded accurate results
in most cases. However, the user may change this to a

5

different threshold. This is illustrated in Algorithm 1. A
worked example is presented in Section 4.2.

Algorithm 1 Detection of Drifts

Input: Micro-Cluster(s) Split and Death rates for current
and previous window
Output: Detection of Drifts

1: Calculate the µ of Split and Death rates over the cur-
rent and previous window

2: Calculate the Percentage Difference for both, Split and
Death rates

3: if new Split rate > µ (Split rate) AND new Death rate
> µ (Death rate) AND Percentage Difference (Split
rate) > 50% AND Percentage Difference (Death rate)
> 50% then

4: Concept Drift
5: reset MC(s)
6: else
7: No Concept Drift
8: end if

4.2. Worked Example

Split and Death rates of Micro-Clusters are as shown
below in Figure 6 for the seven time windows.

Figure 6: An example of Concept Drift Detection using the Micro-
Clusters Split and Death Rates.

Consider the Split and Death rates of window (W4),
which are equal to 0.3 and 0.04. This shows that the
Split and Death rates differ from the µ value (i.e., 0.22
and 0.028) by 50% as the Percentage Difference of Split
rate equals to 72.727, and the Percentage Difference of
Death rate equals to 85.714. This indicates that a drift
has occurred. After a concept drift is detected our method
identifies which features have been involved in the drift by
examining the Micro-Clusters change of Velocity, trajec-
tory and spread of data such as Variance or Inter Quartile
Range (IQR). This is described in Section 5.

5. Real-Time Feature Tracking Technique using Adap-
tive Micro-Clusters

The Velocity or Variance of a feature can be derived
from MC-NN Micro-Clusters and are calculated once a
drift is detected as described in Section 4. The Velocity

and Variance can then be analysed to identify features
that have been involved in the drift. This information
can be used for feature selection purposes which will be
explained in Section 6. The tracking of features is poten-
tially influenced by feature-bias, outlier and noise. Thus
our method incorporates approaches to counter these in-
fluences. The remainder of this section discusses in Section
5.1 how the proposed method addresses potential feature-
bias, in Section 5.2 it is explained how the method ad-
dresses the problem of noise, Section 5.3 then explains how
the features are tracked and outliers are taken into con-
sideration. The proposed method uses a different means
of measuring participation of Micro-Clusters than origi-
nal MC-NN, (explained in Section 5.3), which is compared
qualitatively in Section 5.3.6.

5.1. Minimising the Effect of Feature-Bias using Real-Time
Normalisation

Normalisation is applied to fit the data (i.e., each fea-
ture of a new training instance) to be almost distributed
in a pre-defined boundary such as [0,100]. Normalisation
is used to avoid feature-bias which can potentially lead to
mis-classifications as the relevant relations between target
class labels and features are considered by the classifier to
be more or less important than they actually are.

Three frequently used types of Normalisation are i.e.
Min-Max (see Equation 6), Decimal Scaling (see Equation
7), and Z-Score (see Equation 8) [40]. These have been
considered for inclusion in the proposed method.

x =
(
current value−min x

max x−min x

)
∗ (max range−min range) + min range (6)

x =
x

(10d)
(7)

x =
x− µ
σ

(8)

x is a feature value of the new data instance. Min-Max
is a simple Normalisation technique to fit the data in a
pre-defined boundary with a min range (default 0) and a
max range (default 100). Decimal Scaling moves the dec-
imal point of a feature value x depending on its maximum
absolute value whereby d equals to MAX(| y |) < 1 (i.e.,
the smallest value of a feature y). Lastly, Z-Score nor-
malises a feature value x according to its corresponding µ
and σ feature values.

In this research, Min-Max Normalisation technique was
used as minimum and maximum values of a feature x can
easily be reinitialised in real-time when new instances ar-
rive. Equation 6 is applied for every new data instance
as shown in Figure 7. The alternative techniques men-
tioned above rely on the standard deviation and the mean
and thus require the buffering of data before Normalisa-
tion can be applied. This is undesirable in real-time data
analytics. However, the Normalisation process described

6

Figure 7: Flowchart of Min-Max Normalisation.

here, Min-Max Normalisation, can be updated incremen-
tally instance by instance. Old instances cannot be re-
normalised as the original data values are not buffered but
absorbed in the statistics of a Micro-Cluster. This could
lead to Micro-Clusters not fitting the current concept well
anymore. However, this would also contribute to the de-
tection of the concept drift (Micro-Cluster Split) as the
Variance of the Micro-Cluster would increase and poten-
tially also the error count. Figure 8 shows an example of
Min-Max Normalisation in real-time.

Next the Micro-Cluster by which the normalised data
instance should be absorbed has to be determined. For
this the training task of MC-NN described in Section 3.1
is applied. However, before the data instance is absorbed
a Low Pass Filter (LPF) is applied to the Micro-Cluster
to minimise the effect of noise.

Figure 8: An Example of Min-Max Normalisation in real-time.

5.2. Minimising the Effect of Noise using Low Pass Filter
(LPF)

LPF is a filter that passes signals (i.e., the Velocity
of a feature) with a frequency lower than a certain cut-off
frequency α and attenuates signals with frequencies higher
than the cut-off frequency. LPF can be used to minimise
the effect of noise [41, 42]. However, there are some other
techniques proposed for the purpose of filtering such as the
Kalman filter and Grid-based filter which require buffering
of data before filtering [43]. Hence, in this work, LPF is
used as it can be calculated over a sliding window with-
out buffering of data. Each normalised feature of a new
training instance was filtered by LPF together with its
nearest Micro-Cluster using Equation 9 in order to im-
prove concept drift detection and feature tracking. This is
illustrated in Figure 9 showing a flowchart of LPF.

new filter[x] = α ∗ new value[x] + (1− α) ∗ old filter[x] (9)

The α threshold is set for 0.5 by default, as this value
yielded good results in most cases. However, the user may
change this to a different threshold.

7

Figure 9: Flowchart of Low Pass Filter.

Figure 10 shows an example of LPF. The centroid of
each filtered feature of a Micro-Cluster can be calculated.
Micro-Clusters with normalised and filtered features are
passed to the concept drift detection method which was
described in Section 4.

Figure 10: An Example of Low Pass Filter.

5.3. Real-Time Feature Tracking

This section describes real-time feature tracking mea-
suring the Velocity and spread of a feature using both
Variance and Inter Quartile Range (IQR) which can be
derived from the captured statistics of the Micro-Clusters.

5.3.1. Velocity of Features

Velocity can be tracked through an extension of the
MC-NN Micro-Cluster structure by: < CF1hx, nh >. Where
these components are equivalent to CF1x and n. How-
ever, the h denotes that these components are historical
summaries (taken from the previous time stamp). The Ve-
locity of a feature x can then be calculated using Equation
10. Figure 11 shows an example of feature Velocity with
a Micro-Cluster consisting of two features.

V elocity[x] =| CF1x

n
− CF1h,x

nh
| (10)

Figure 11: An Example of Feature Velocity.

5.3.2. Measuring of the Data Stream Spread using IQR

In original MC-NN the spread of the values absorbed in
a Micro-Cluster is measured using Variance. The spread
quantifies how varied the set of a feature’s values are.
However, the performance of Variance can be affected
negatively by outliers as they may significantly change
µ. Whereas, IQR is considered a more robust method
with respect to outliers [44, 45] compared with Variance.
The first version of the here presented feature tracker also
adopted Variance as a measure of the spread of a feature.
However, as expected it was observed that this approach
did not work very well due to its sensitivity to outliers.
Thus IQR was explored as an alternative to Variance in or-
der to obtain a more reliable measure of the Micro-Cluster
spread. The evaluation results presented in Section 7.2
compare the performance of the proposed feature tracker
as obtained using either Variance or IQR.

This section describes the new extension of the MC-NN
Micro-Cluster structure with IQR to split a Micro-Cluster.
IQR measures the spread of an ordered set of data (i.e.,
ascending order) by dividing it into quartiles such as Lower
Quartile (Q1), median , and Upper Quartile (Q3). Q1 and
Q3 are the middle numbers of the first and second half of
an ordered list of feature values, respectively; median is
the middle number of an ordered list of data values. IQR
is the difference between Q3 and Q1. This is applied for

8

the purpose of splitting a Micro-Cluster which is explained
in the next section.

5.3.3. Splitting of a Micro-Cluster using IQR

One purpose of using IQR in this research is to Split a
Micro-Cluster once its error count ε reaches Θ. The use of
ε and Θ was described in Section 3. This research prefers
IQR over Variance as it is more robust to outliers. The
assumption here is that the larger the IQR of a feature,
the greater the range of values that have been seen for
that feature and thus it may contribute to miss-absorption
of new data instances. The new Mirco-Clusters resulting
from the Split are generated with Q1 and Q3 quartiles.
The centroids of the new Micro-Clusters are replaced with
either Q1 or Q3 in all dimensions (features). In particular
one Micro-Cluster only uses Q1 values and the other only
uses Q3 values. This is shown for one dimension only in
Figure 12. The original Micro-Cluster is deleted after the
Split is performed.

Figure 12: Splitting of a Micro-Cluster with IQR.

Results presented in Section 7.2 compare a version of
our approach only using Variance and one using the pro-
posed IQR. The next section provides a worked example on
Micro-Cluster splitting for both using Variance and IQR.

5.3.4. Comparison of Splitting using IQR or Variance

This section compares splitting of a Micro-Cluster con-
taining an outlier using IQR and V ariance to demonstrate
that IQR is a more robust metric to Split Micro-Clusters
if there are outliers. For simplicity of this illustration the
Split along only one feature is observed.
Consider a feature’s values [x] = 1, 1, 1.2, 2.5, 2.8, 3, 4.6, 5, 3000,
and consider the value 3000 to be an outlier. Then centroid[x]
= µ = (1 + 1 + 1.2 + 2.5 + 2.8 + 3 + 4.6 + 5 + 3000)/9 =
335.6778.

• Splitting of x with IQR:
Median = 2.8,
Q1[x] = (1 + 1.2)/2 = 1.1,
Q3[x] = (4.6 + 5)/2 = 4.8,
IQR[x] = Q3 − Q1 = 3.7,
centroid[x] of a Negative Micro-Cluster = Q1[x] =
1.1,
centroid[x] of a Positive Micro-Cluster = Q3[x] =
4.8

• Splitting of x with V ariance:(
CF2x

n

)
= ((1 ∗ 1) + (1 ∗ 1) + (1.2 ∗ 1.2) + (2.5 ∗ 2.5) +

(2.8∗2.8)+(3∗3)+(4.6∗4.6)+(5∗5)+(3000∗3000))/9
= 1000008.077,(
CF1x

n

)2
= ((1 + 1 + 1.2 + 2.5 + 2.8 + 3 + 4.6 + 5 +

3000)/9)2 = 112679.5705,

V ariance[x] =

√(
CF2x

n

)
−
(
CF1x

n

)2
= 941.9815,

centroid[x] of a Negative Micro-Cluster = old centroid[x]
- V ariance[x] = 335.6778− 941.9815 = −606.3037,
centroid[x] of a Positive Micro-Cluster = old centroid[x]
+ V ariance[x] = 335.6778 + 941.9815 = 1277.6593.

In the example above it can be seen that the original
Micro-Cluster centroid is strongly influenced by the out-
lier. However, it can also be seen that the new centroids
after splitting using IQR are within the value range of
the feature’s values (excluding the outlier), whereas the
new centroids after splitting using Variance, as it is per-
formed in original MC-NN, are shifted towards the outlier
outside the original Micro-Cluster’s value range. Thus, in
this research IQR is used to perform Micro-Cluster splits
to mediate the influence of outliers.

To use the IQR, the feature data values need to be
sorted in an ascending order. To achieve this in a com-
putationally efficient manner, First-In-First-Out (FIFO)
principle combined with SkipList is used.

5.3.5. First-In-First-Out (FIFO) with SkipList

Firstly, in order to save the feature data values a First-
In-First-Out (FIFO) queue is applied where the oldest
entry of the queue is handled first. FIFO’s size can be set
by a user threshold which is less or equal to the size of the
statistical windows (time windows). FIFO keeps the most
recent data (i.e., feature’s data) and needs to be set to a
lowest possible size (i.e., less or equal to a window’s size)
which yields good results. In an initial unpublished feasi-
bility study it was found that a queue size of 1000 works
well in most cases in terms of computational efficiency and
accuracy. Thus a queue of size 1000 has been used in all ex-
periments presented in this paper. It was also observed in
most cases that even if the statistical window size is much
larger than 1000, that it is unlikely that more than 1000
instances are absorbed by a single Micro-Cluster. Thus
the potential loss of information due to a queue size limit
is also unlikely.

Second, for sorting the FIFO queue of a feature x, a
SkipList is used, which is a data structure that allows fast
search and insert O(log n) rather than O(n) operations by
updating a linked hierarchy of sub-sequences within an or-
dered sequence of elements [46, 47]. SkipList is superior
to alternative sorting algorithms in terms of computational
efficiency as indicated in [48]. Each node in a SkipList con-
sists of four directions (up, down, left, and right), as shown
in Figure 13. Skipping over fewer nodes than the previous
one with each consecutive sub-sequence is the main struc-
ture of a SkipList. Once splitting of a Micro-Cluster with

9

larger or maximum IQR is applied, the FIFO queue of
each feature x of a Micro-Cluster is then sent to a SkipList.

Figure 13: Real-Time sorting of the feature data values using a
SkipList.

In order to locate and update the position of Q1 and
Q3, Quartile Identifiers have been created, which are a
data structure connected with head and tail of a SkipList
as illustrated in Figure 13. A Quartile Identifier consists
of two nodes P and R, P is a pointer to either the value
or the value next to the left of the quartile Q1 or Q3, and
R is a pointer to the next value right of P . The index of P
and R is either 1 or 3, which denotes if the pointers refer
to Q1 or Q3 respectively. The Quartile Identifier skips
either to the left or right position after each insertion of
a new SkipList node, as shown in Algorithms 2, 3, and 4.
Quartile Identifier of Q1 is located in the middle of the
left half of median of the SkipList and connected with the
head of the SkipList indicated with letter H in Figure 13.
While the Quartile Identifier of Q3 is located in the middle
of the right half and connected with tail of the SkipList
indicated with letter T in Figure 13.

Given P and R of a Quartile Identifier and if the num-
ber of feature values left/right of the median is either even
or odd, then quartiles Q1 and Q3 can be calculated using
the following equations, where y refers to either Q1 and
Q3. If the number of feature values left/right of the me-
dian is even then Equation 11 is used and if it is odd then
Equation 12 is used.

Qy[x] = (Py +Ry)/2 (11)

Qy[x] = Py (12)

When adjusting the Quartile Identifiers in real-time there
are three cases to consider depending on whether the num-
ber of values of the feature is odd or even and also if the
number of values to the left and right of the median is
odd or even. For each of the three cases three further sce-
narios exist depending where the value is inserted in the
SkipList. These cases and scenarios are described below
including examples.

Case 1: After inserting the new value, the total number
of feature values in the SkipList is even and the number
of values left or right of the median is odd. In this
particular case Algorithm 2 is applied.

Algorithm 2 Adjusting Quartile Identifiers for lower and
upper quartiles (Q1 and Q3) in terms of Case 1

Input: new feature value f , nodes of a SkipList after
adding a new feature value f , previous Quartile Identifiers
P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value of P1 then
2: P1 and P3 remain at the same position
3: else
4: if f > value of P1 and f ≤ value of P3 then
5: Skip P1 to the next value right of P1
6: else
7: if f > value of P3 then
8: Skip P1 to the next value right of P1
9: Skip P3 to the next value right of P3

10: end if
11: end if
12: end if

Figure 14: An example of Quartile Identifiers update for Case 1 with
value inserted left of Q1.

In Figure 14, the number of nodes of the SkipList for
the feature is an even value (10 nodes) after adding the
new feature value 0.92, and the number of nodes of the first
and second half of a SkipList is an odd value (5 nodes).
The new value f ≤ value of P1, thus lines 1 and 2 in
Algorithm 2 are executed and Q1 and Q3 are computed, in
this scenario P1 and P3 remain unchanged. The Quartiles
are computed using Equation 12.

10

Figure 15: An example of Quartile Identifiers update for Case 1 with
value inserted between of Q1 and Q3.

In Figure 15, the number of nodes of the SkipList for
the feature is an even value (10 nodes) after adding the
new feature value 7.1, and the number of nodes of the first
and second half of a SkipList is an odd value (5 nodes).
The new value f > value of P1 and f ≤ value of P3,
thus lines 4 and 5 in Algorithm 2 are executed and Q1
and Q3 are computed. In this case P1 is skipped to the
next value right of P1 and P3 remains unchanged. The
Quartiles are computed using Equation 12.

Figure 16: An example of Quartile Identifiers update for Case 1 with
value inserted right of Q3.

In Figure 16, the number of nodes of the SkipList for
the feature is an even value (10 nodes) after adding the
new feature value 9.8, and the number of nodes of the first
and second half of a SkipList is an odd value (5 nodes).
The new value f > value of P3, thus lines 7 to 10 in
Algorithm 2 are executed and Q1 and Q3 are computed.
In this case P1 and P3 are skipped to the next value right
of P1 and P3 respectively. The Quartiles are computed
using Equation 12.

Case 2: After inserting the new value, the total number
of feature values in the SkipList is an odd value. In this
particular case Algorithm 3 is applied.

Algorithm 3 Adjusting Quartile Identifiers for lower and
upper quartiles (Q1 and Q3) in terms of Case 2

Input: new feature value f , nodes of a SkipList after
adding a new feature’s value f , previous Quartile Identi-
fiers P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value of P1 then
2: Skip P1 to the next value left of P1
3: else
4: if f > value of P1 and f ≤ value of P3 then
5: P1 and P3 remain at the same position
6: else
7: if f > value of P3 then
8: Skip P3 to the next value right of P3
9: end if

10: end if
11: end if

Figure 17: An example of Quartile Identifiers update for Case 2 with
value inserted left of Q1.

In Figure 17, the number of nodes of the SkipList for
the feature is an odd value (11 nodes) after adding the new
feature value 0.8. The new value f ≤ value of P1, thus
lines 1 and 2 in Algorithm 3 are executed and Q1 and Q3
are computed. In this case P1 is skipped to the next value
left of P1 and P3 remains unchanged. The Quartiles are
computed using Equation 12.

Figure 18: An example of the update for the Quartile Identifiers for
Case 2 with a value inserted between Q1 and Q3.

In Figure 18, the number of nodes of the SkipList for
the feature is an odd value (11 nodes) after adding the new
feature value of 7.9. The new value f > value of P1 and f ≤

11

value of P3, thus lines 4 and 5 in Algorithm 3 are exe-
cuted and Q1 and Q3 are computed. In this case P1 and
P3 remains unchanged. The Quartiles are computed using
Equation 12.

Figure 19: An example of Quartile Identifiers update for Case 2 with
value inserted right of Q3.

In Figure 19, the number of nodes of the SkipList for
the feature is an odd value (11 nodes) after adding the new
feature value 11.3. The new value f > value of P3, thus
lines 7 to 9 in Algorithm 3 are executed and Q1 and Q3
are computed. In this case P3 is skipped to the next value
right of P3 and P1 remains unchanged. The Quartiles are
computed using Equation 12.

Case 3: After inserting the new value, the total number
of feature values in the SkipList is even and the number
of values left or right of the median is even. In this
particular case Algorithm 4 is applied.

Algorithm 4 Adjusting Quartile identifiers for lower and
upper quartiles (Q1 and Q3) in terms of Case 3

Input: new feature value f , nodes of a SkipList after
adding a new feature value f , previous Quartile Identifiers
P1 and P3.
Output: updated Quartile Identifiers P1 and P3

1: if f ≤ value of P1 then
2: Skip P1 to the next value left of P1
3: Skip P3 to the next value left of P3
4: else
5: if f > value of P1 and f ≤ value of P3 then
6: Skip P3 to the next value left of P3
7: else
8: if f > value of P3 then
9: P1 and P3 remain at the same position

10: end if
11: end if
12: end if

Figure 20: An example of Quartile Identifiers update for Case 3 with
value inserted left of Q1.

In Figure 20, the number of nodes of the SkipList for
the feature is an even value (12 nodes) after adding the new
feature value of 0.91. The new value f ≤ value of P1,
thus lines 1 to 3 in Algorithm 4 are executed and Q1 and
Q3 are computed. In this case P1 and P3 are skipped
to the next value left of P1 and P3 respectively. The
Quartiles are computed using Equation 11.

Figure 21: An example of Quartile Identifiers update for Case 3 with
value inserted between Q1 and Q3.

In Figure 21, the number of nodes of the SkipList for
the feature is an even value (12 nodes) after adding the new
feature value of 2.9. The new value f > value of P1 and f ≤
value of P3, thus lines 5 and 6 in Algorithm 4 are exe-
cuted and Q1 and Q3 are computed. In this case P3 is
skipped going to the next value left of P3 and P1 remains
unchanged. The Quartiles are computed using Equation
11.

Figure 22: An example of Quartile Identifiers update for Case 3 with
value inserted right of Q3.

In Figure 22, the number of nodes of the SkipList for
the feature is an even value (12 nodes) after adding the new
feature value of 9.21. The new value f > value of P3,
thus lines 8 to 10 in Algorithm 4 are executed and Q1
and Q3 are computed. In this case P1 and P3 remain

12

unchanged. The Quartiles are computed using Equation
11.

5.3.6. Tracking and Removal of Micro-Clusters with False
Positive Participation

This section presents the proposed method for the re-
moval of a Micro-Cluster. This method consists of two
main tasks which are counting the number of false posi-
tive participations in the Micro-Cluster and measuring the
‘difference’ between the time stamps of the Micro-Cluster
(i.e., difference between the current time stamp and the
average of actual time stamps of the Micro-Cluster). Re-
garding false positive participation, a Micro-Cluster’s false
positive participation towards the absorption or training
task is tracked by counting the number of times that this
Micro-Cluster absorbs new instances which belong to a dif-
ferent class label than the actual class label of the Micro-
Cluster. The initial value of this counter is 0. The counter
is incremented by 1 if the particular Micro-Cluster ab-
sorbed a new instance incorrectly. Otherwise, it is decre-
mented by 1 if the particular Micro-Cluster absorbed the
new instances correctly (i.e., absorbs a new instance with
the same class label as the Micro-Cluster). This subtrac-
tion is applied only if the counter value is greater than 0.
Regarding measuring difference of time stamp of Micro-
Clusters. This is given by the Equation 13.

Difference of T ime Stamp = Tcurrent −
∑n

i=1(MC′s Actual T ime Stamp)

n (13)

Where n is a number of data instances absorbed by the
Micro-Cluster and

∑n
i=1(MC ′s Actual T ime Stamp) is

the sum of time stamps of all absorbed data instances of
this Micro-Cluster (also known as CF1t) and Tcurrent is
the current time stamp. The smaller this Difference is, the
more recently the Micro-Cluster has participated in ab-
sorbing data instances, as time stamps increase over time.
After each time stamp, the difference between time stamps
of each Micro-Cluster is calculated and the one with the
largest difference is identified (the Micro-Cluster that has
participated the least recently). If this Micro-Cluster also
has a record of incorrect absorptions (absorption counter
greater than 0), then the Micro-Cluster is removed. This
is because the Micro-Cluster is considered out-dated and
thus has potentially also incorrectly absorbed information.

This is a different method for estimating participa-
tion in this research compared with the Triangle Number
method used in original MC-NN as described in Section 3.
The reason for employing a different solution here is that
the original MC-NN Triangle Method does not take false
positive participation into account. Thus MC-NN may
falsely regard a Micro-Cluster that has recently absorbed
many false positive instances as relevant. In addition, the
here proposed method only requires two steps to calculate
the participation of a Micro-Cluster:

1. Calculate difference of time stamps.

2. Increment/decrement false positive counter.

The required steps for Triangle Number are outlined
in Figure 3 in Section 3.4). Thus there are many more
steps involved using the original method for calculating
Micro-Cluster participation, and this results in unneces-
sary computational overheads.

6. Real-Time Feature Selection Technique using
Adaptive Micro-Clusters

Three main tasks will be explained in this section which
are feature analysis, feature selection, and monitoring the
relevance of selected features. After detection of a con-
cept drift, the statistical information of the features (i.e.,
Velocity and IQR) is analysed to identify which features
were involved in the drift. Loosely speaking only features
that had a significant change of their statistical informa-
tion are re-examined for feature selection using Informa-
tion Gain in each statistical window. This is based on the
assumption that features that have not changed much are
also likely to have maintained a similar Information Gain
value. This can be used to reduce the computational cost
of feature selection by assuming that the Information Gain
has not changed for these features and thus re-calculating
the Information Gain is not needed. Loosely speaking the
method follows the following steps:

1. Detect Concept Drift

2. Use the Micro-Clusters statistical information (Ve-
locity and IQR) to identify features involvement in
the drift.

3. Re-calculate Information Gain only for features that
have been involved in the drift.

4. Re-rank features according to their Information Gain.

5. Use new Information Gain ranking to select features.

6.1. Feature Analysis and Feature Selection

Feature analysis is facilitated using historical data (i.e.
a statistical window between time-1 and point-of-drift time).
For the purpose of feature analysis, a counter is kept for
each feature of a Micro-Cluster. The counter is incre-
mented by 1 if the particular feature was the feature with
the highest IQR. In this paper this is referred to as the
history of maximum IQR. Using a windowing approach
over the data stream, a running average of Velocity rate is
calculated. A high Velocity rate combined with maximum
IQR during a concept drift indicates that the feature has
changed. The assumption here is that this particular fea-
ture may have changed its contribution towards the classi-
fication technique. Thus feature selection can be limited to
only examining features that have changed their Velocity
rate and IQR when there is a concept drift detected. Fea-
tures that have changed are temporarily regarded as irrel-
evant for the data mining task, as large statistical changes
have a similar effect as noise. However, the contributions
of these features towards the absorption in Micro-Clusters
may stabilise after the drift and thus these features are

13

re-examined in the following time window. This will be
explained in more details in the next section. From then
onwards only instances comprising the relevant features
are passed on to the classifier. This Feature Analysis and
Feature Selection method is described in Algorithm 5.

Algorithm 5 Feature Analysis and Feature Selection

Input: Micro-Clusters statistical information (Velocity
rate [features] and history of maximum IQR [features])
of a statistical window between time-1 and point-of-drift
time, and instance.
Output: Instance with relevant features

1: for each drift detection do
2: List V elocity rate[features] in order from low to

high
3: Identify median value of the ordered list V elocity

rate[features]
4: for each feature with Velocity rate ≥ median value

do
5: if feature has history of maximum IQR > 0

value then
6: instance⇐ delete irrelevant feature
7: end if
8: end for
9: end for

10: Classifier ⇐ instance with relevant feature(s)

6.2. Monitoring and Analysis of Temporarily Irrelevant
Features

The features (the ones that are temporarily regarded as
irrelevant) are monitored in the following statistical win-
dow to examine their relevance using Information Gain.
The assumption here is that the contribution of this par-
ticular feature towards the classification result may have
changed significantly. Thus checking relevance can be lim-
ited to examining only the features that have been tem-
porarily regarded as irrelevant. If a feature x′s Information
Gain is greater than µ of Information Gain between win-
dow at time-1 and at current time with Percentage Differ-
ence greater than 50% it is selected as relevant to a clas-
sifier. It should be noted here that Information Gain has
been chosen as feature selection metric, as it is a popular
metric for this purpose. Thus all experiments in the next
section have been obtained using this metric. However,
the user may decide to implement a different metric for
feature selection if appropriate for the particular applica-
tion. Likewise the Percentage Difference can be adjusted
by the user requirements. However, in the experiments
presented in the next section a Percentage Difference of
50% was used as it worked well in most cases. Figure 23
presents the aforementioned procedure in a flow chart for
more clarity and Figure 24 shows an example of the sta-
tistical information (i.e., Velocity rate and IQR as well as
Information Gain) of two features for six time windows.

Figure 23: Process of feature selection in real-time .

Figure 24: An example of feature analysis, feature selection, and
monitoring of temporarily irrelevant features. Assumed Information
Gains are indicated in italics and actual Information Gain calcula-
tions are not in italics.

Initially Information Gain is calculated for all features
at window W1. In this example it is assumed that both fea-
tures are initially relevant. Drift is detected at window W3,
consider the Velocity rate and history of maximum IQR of
feature 1 equal to 0.0123808211 and 23, concurrently. This
represents that feature 1 appears with maximum Velocity
rate and a history of maximum IQR compared with the
remaining features (in this case only feature 2). Thus fea-
ture 1 is temporarily regarded as irrelevant to the classi-
fier after W3. Information Gains of irrelevant features are
then calculated in every time window in order to monitor
if they return to being relevant. In this case feature 1 ap-
pears again with an Information Gain at W5 = 0.268502,
which differs from µ by 50%. This indicates that feature
1 became relevant again for classification tasks after W5.
Please note that the Information Gain of features that have
remained relevant are assumed not to have changed and
thus are only re-calculated if there is a drift detected. In
this example assumed Information Gains are indicated in
italics. For example for feature 2 there is only one Infor-

14

mation Gain calculation at the beginning in W1. However,
should there be another concept drift in the future and fea-
ture 2 appears with maximum Velocity rate and history of
maximum IQR, then its Information Gain is likely to have
changed and thus it would be re-calculated.

7. Experimental Evaluation

This section first provides information about the ex-
perimental setup and then presents an extensive empirical
evaluation of the proposed techniques.

7.1. Experimental Setup

The implementation of experiments were realised in
the Massive Online Analysis (MOA) framework [49]. Two
types of data were used, artificial data stream genera-
tors from the MOA framework and real datasets. The
reason for also using artificial datasets is because MOAs
data stream generators enable the introduction of differ-
ent kinds of concept drift deliberately and thus allow us to
evaluate against a ground truth in terms of concept drift.
The source code implemented for this paper has been made
available here1.

7.1.1. Artificial Datasets

The following artificial data stream generators were
used: SEA Generator , this data stream was introduced
in [50], it generates data comprising continuous attributes,
whereas the third attribute is irrelevant for distinguishing
between the class labels. The HyperPlane Generator
was also used, it creates a linearly separable model. It
slowly rotates in ‘D’ dimensions continuously changing the
linear decision boundary of the stream [51]. This constant
concept change makes it very difficult for data stream clas-
sifiers to keep a good classification accuracy and remain
computationally efficient. The final data stream genera-
tor used was the Random Tree Generator , which was
introduced in [13] and generates a stream based on a ran-
domly generated tree. New examples are generated by as-
signing uniformly distributed random values to features,
which then determine the class label using the random
tree. Nine datasets were generated using the aforemen-
tioned stream generators, each comprising three features,
two class labels and a concept drift. The concept drift
was always induced gradually half way through the stream
by both, inducing a concept drift through the MOA data
stream generators implemented methods and by swapping
features (sudden concept drift). Details about the concept
drift methods of the individual streams can be found in
various sources, notably [50, 51, 13]. The reason for induc-
ing concept drift by swapping features is that this enables
the testing as to which of the features has changed its con-
tribution to the underlying model. One would expect the

1https://github.com/mahmoodshakir/New-Micro-Cluster-
Nearest-Neighbour-MC-NN-for-Real-Time-Preprocessing-Technique

methods proposed here to identify the two swapped fea-
tures as the cause of the concept drift. For each of these
three datasets having concept drift, a second and third
version of the datasets has been generated which included
different levels of noise in order to validate the robustness
of the concept drift detection and feature tracking meth-
ods. The participation threshold Ω was set to 50 for each
experiment, which yielded good results in most cases [39].
The error threshold Θ was set to the best performing one
for each dataset. Table 2 shows an overview of the gen-
erated streams including the setting of the proposed tech-
nique and which features have been swapped. In the ex-
periments a window size equals to 10% of the total number
of instances. The expression Time t refers to a particular
time window. I.e. according to Table 2 time T=1 refers
to instances 1-1000, T=2 to instances 1001-2000, etc. Re-
garding the FIFO, it was set to 1000 instances, as this
setting yielded good results in terms of classification accu-
racy in most cases. The classification accuracy was calcu-
lated using the Prequential Testing method implemented
in MOA [52], which essentially calculates a running aver-
age of the classification accuracy.

Table 2: Setup of the artificial datasets. Drifts were generated
through individual data stream generators and by swapping features.

Dataset
Number of
Instances
Generated

Start of
Concept
Drift
by Generator

Window
Size

Θ
Index of
Swapped
Features

Start of
Swapped
Features

Percentage
of Noise

SEA 10,000 5000 1000 3 2 with 3 6000 -
SEA 10,000 5000 1000 34 2 with 3 6000 15
SEA 10,000 5000 1000 75 2 with 3 6000 25
HyperPlane 10,000 5000 1000 6 1 with 2 6000 -
HyperPlane 10,000 5000 1000 13 1 with 2 6000 15
HyperPlane 10,000 5000 1000 27 1 with 2 6000 25
RandomTree 10,000 5000 1000 644 1 with 2 6000 -
RandomTree 10,000 5000 1000 726 1 with 2 6000 15
RandomTree 10,000 5000 1000 685 1 with 2 6000 25

7.1.2. Real Datasets

Two sets of experiments were setup. One controlled
set of experiments to validate whether the method can
detect concept drifts and causality of concept drift on
real datasets correctly. For this features were swapped
to generate a known ground truth. Four real datasets
with continuous features were chosen randomly from the
UCI Machine Learning Repository [53]. Table 3 shows an
overview of real datasets including setting of the proposed
technique and which features were swapped. The second
set of experiments was uncontrolled, real data sets where
used and no features were swapped, in order to show that
the method presented in this paper is robust to more re-
alistic application scenarios. The proposed concept drift
detection method, feature tracking method and also fea-
ture selection method were applied. The robustness of the
method was measured by applying a Hoeffding tree clas-
sifier and classification accuracy was monitored over time.
Also a control group of experiments was setup, where only
a Hoeffding tree classifier was applied thus excluding any

15

of the techniques developed in this paper. The Hoeffd-
ing tree classifier has been chosen as it is one of the most
popular data stream classifiers and best performing clas-
sifier in the MOA framework [54]. However, our method
is independent of the classifier and the user may choose a
different classification method. Six real datasets with con-
tinuous features were chosen randomly from the UCI Ma-
chine Learning Repository [53]. Table 4 shows an overview
of real datasets including settings of the proposed tech-
nique. For both sets of experiments Ω (threshold for the
Micro-Cluster minimum participation) was set to 50 as
this yielded good results in most cases. Whereas Θ was
set to a relevant value that retrieves good results for each
individual dataset. The time window size and FIFO size
were chosen the same way as for the artificial data streams
(see Section 7.1.1).

Table 3: Setup of the real datasets for the controlled set of experi-
ments for concept drift detection and feature tracking.

Dataset
Number of
Instances

Number of
Features

Number of
Class Labels

Θ
Index of
Swapped Features

Time of
Swapping

Bank 41,188 10 2 1500 1 with 10 6
CoverType 581,012 10 7 12,000 6 and 7 with 8 and 9 3
Diabetes 768 8 2 37 1 with 2 4
KDDCUP 494,021 10 23 1000 2,3, and 4 with 8,9, and 10 4

Table 4: Setup of real datasets for the uncontrolled set of experiments
for concept drift detection, feature tracking and feature selection.

Real Dataset
Number of
Instances

Number of
Features

Number of
Class Labels

FIFO Size
(Maximum)

Θ

CoverType 581,012 54 7 1000 10,000
EEG Eye State 14,980 14 2 1000 200
Gesture Phase Segmentation 1,747 19 5 1000 56
Poker Hand 1,000,000 10 10 1000 51,000
Statlog (Landsat Satellite) 4,435 36 7 1000 28
Waveform (with noise) 5,000 40 3 1000 50

7.2. Results

The results presented as first in Section 7.2.1 analysed
the effect of noise, feature-bias and outliers on the detec-
tion of concept drift. This evaluation is based on original
MC-NN using the readily available Variance statistics of
the Micro-Clusters and Split and Death rate to detect con-
cept drift. Then in Section 7.2.2, the technique proposed
for concept drift detection in Section 4 is compared with
the results in Section 7.2.1 to evaluate the proposed feature
tracking method. Finally Section 7.2.3 applies the method
in combination with a data stream classifier for real-time
feature selection and measures the change in accuracy.

7.2.1. Real-Time Concept Drift Detection Technique

The Micro-Clusters Split and Death rates were used for
detecting drifts. For the experiments the default param-
eters stated in Table 2 of the technique were used. The
evaluation incorporated several levels of noise in the artifi-
cial data stream, as listed in Table 2 and the real datasets
are described in Table 3.

In Figures 25, 26, and 27 the Percentage Difference is
displayed up to 100%, however, this can be much higher

Figure 25: Results of Sea Data Stream Generator for drift detection
using Micro-Cluster Percentage Difference of Split and Death rate.

Figure 26: Results of HyperPlane Data Stream Generator for drift
detection using Micro-Cluster Percentage Difference of Split and
Death rate.

Figure 27: Results of Random Tree Data Stream Generator for
drift detection using Micro-Cluster Percentage Difference of Split
and Death rate.

than 100%. For readability of the figures a maximum of
100% difference is displayed. Displaying differences above
100% is not interesting as the concept drift detection was
triggered once a difference of at least 50% had been reached
for both Split and Death rates. This 100% cut-off is ap-
plied on all subsequent figures in this paper referring to
Percentage Differences of Split and Death rates. During
this time higher Split and Death rates are expected as the
set of Micro-Clusters adapts to the new concept, the fea-
ture swap. In the figures, it can be seen that the Split and
Death rates at the time of concept drift (after time 5) in-
crease as expected for all artificial data streams and noise

16

levels. The noise levels do not seem to affect the concept
drift detection considerably; however, for the RandomTree
generator with a noise level of 25%, at time window 10,
the algorithm did arrive at a false positive detection i.e.
detected a concept drift that was not there. This could
be an indication that the Micro-Clusters for RandomTree
became unstable due to noise. This is discussed further in
the next section where mechanisms to deal with noise are
incorporated in the feature tracking method.

Next the concept drift detection method was compared
with existing state-of-the-art drift detection methods CUSUM,
DDM, EDDM, EWMA, and ADWIN (see section 2 for
more details about these methods) on the same artificial
data streams. Table 5 shows the time when each of the
methods including the proposed method, detected a drift
and if it was detected on time. As it can be seen, the pro-
posed technique always detected the drift at the correct
time except for the RandomTree data stream with 25%
noise as has been discussed previously.

Table 5: Adaptation to concept drift using the initially proposed and
other state-of-the-art techniques.

Generator Technique
Number of

Drift
Detections

Times when
Drift Detected

Drift Detected

Sea

The Proposed Technique 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 5 and 8 Incorrectly
EDDM 2 5 and 8 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 1 5 Incorrectly

Sea with Noise 15

The Proposed Technique 1 6 Correctly
CUSUM 2 5 and 8 Incorrectly
DDM 1 5 Incorrectly
EDDM 2 1 and 4 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

Sea with Noise 25

The Proposed Technique 1 6 Correctly
CUSUM 2 5 and 6 Correctly
DDM 1 4 Incorrectly
EDDM 3 1,4, and 6 Correctly
EWMA 9 1 to 9 Correctly
ADWIN 3 4,5, and 8 Incorrectly

HyperPlane

The Proposed Technique 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 8 1 to 5 and 7 to 9 Incorrectly
ADWIN 3 2,5, and 9 Incorrectly

HyperPlane
with Noise 15

The Proposed Technique 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 2 5 and 7 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 2 and 5 Incorrectly

HyperPlane
with Noise 25

The Proposed Technique 1 6 Correctly
CUSUM 2 5 and 6 Correctly
DDM 2 5 and 6 Correctly
EDDM 2 4 and 7 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 3 2,5, and 8 Incorrectly

RandomTree

The Proposed Technique 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

RandomTree
with Noise 15

The Proposed Technique 1 6 Correctly
CUSUM 1 5 Incorrectly
DDM 1 5 Incorrectly
EDDM 1 5 Incorrectly
EWMA 9 1 to 9 Correctly
ADWIN 2 5 and 9 Incorrectly

RandomTree
with Noise 25

The Proposed Technique 2 6 and 10 Correctly
CUSUM 1 7 Incorrectly
DDM - - -
EDDM - - -
EWMA 9 1 to 9 Correctly
ADWIN - - -

If a method detects a drift falsely, then this would cause
unnecessary adaptation by the classifier to a non-existing

drift. This is referred to as a false positive. Correctly
detected drifts are referred to as true positives. The num-
ber of experiments (each with one actual drift) are shown
in Table 6. As there are 9 experiments, there is a to-
tal of 9 concept drifts to be detected. In the table it is
indicated how many true and false positives each method
detected. As can be seen, the proposed technique detected
all concept drifts and only had one false positive detection.
The best competitor in this regard, EWMA, detected 8
true positives, 1 less than the proposed method. However,
EWMA has a very high false positive number of 72, com-
pared with only 1 for the proposed method. Thus EWMA
is triggering frequent and unnecessary adaptation to con-
cept drift. Also the remaining competitors found fewer
true positives and a much higher number of false positives
compared with the proposed method.

Table 6: Summary of concept drift adaptation experiments referring
to Table 5.

Technique True Positives False Positives
The Proposed Technique 9 1
CUSUM 2 10
DDM 1 10
EDDM 1 12
EWMA 8 72
ADWIN 0 18
Total: 21 123

The method has also been applied on real datasets as
shown in Figure 28 where for each case 1 concept drift has
been introduced through the swapping of features as listed
in Table 3.

Figure 28: The results of real-dataset for drift detection using Micro-
Cluster Percentage Difference of Split and Death rate.

In Figure 28, it can be seen that the Split and Death
Percentage Differences at the time of concept drift in-
crease with Bank dataset, CoverType dataset, and KD-
DCUP dataset, indicating that the current set of Micro-
Clusters does not fit the concept encoded in the data any-
more. Whereas, in the figure, drift is not detected with
the Diabetes dataset. As these data streams are based
on real datasets it is believed that they potentially con-

17

tain feature-bias, noise and outliers and that these may be
the reasons for the proposed method not being able to de-
tect the concept drift. The next section will compare this
method with the new proposed feature tracking method,
which is more robust to feature-bias, noise and outliers.

7.2.2. Tracking Features using Variance and IQR

The evaluation was based on original MC-NN using the
readily available Variance statistics of the Micro-Clusters
and Split and Death rates to detect concept drift. This
section applies Normalisation and LPF in order to ad-
dress these effects and compares these results with those
from Section 7.2.1. Furthermore this section compares the
previously discussed approach for feature tracking based
on Variance combined with feature Velocity to the more
robust approach based on IQR combined with feature Ve-
locity. For the experiments the default parameters stated
in Table 2 (artificial datasets) of the technique were used
unless stated otherwise. Regarding the artificial datasets,
no Normalisation was applied as the data generators al-
ready produced normalised data.

Figure 29: The results of SEA data stream generator with a noise
level of 0% for tracking features using Micro-Clusters.

Figure 30: The results of SEA data stream generator with a noise
level of 15% for tracking features using Micro-Clusters.

Part (a) of Figures 29, 30, 31, 32, 33, 34, 35, 36, and 37
shows the results for using MC-NN with Variance and his-
tory of maximum Variance for concept drift detection and

Figure 31: The results of SEA data stream generator with a noise
level of 25% for tracking features using Micro-Clusters.

Figure 32: The results of HyperPlane data stream generator with a
noise level of 0% for tracking features using Micro-Clusters.

Figure 33: The results of HyperPlane data stream generator with a
noise level of 15% for tracking features using Micro-Clusters.

feature tracking, and part (b) of the figures shows the cor-
responding results for using MC-NN with IQR and history
of maximum IQR. Different figures correspond to different
data streams and noise levels. Regarding concept drift
detection, the same results as the previous section have
been achieved for both, using Variance and IQR. All con-
cept drifts were detected correctly, however, both meth-
ods also detected a false concept drift for time 10 of the
RandomTree generator at noise level 25%. However, it is

18

Figure 34: The results of HyperPlane data stream generator with a
noise level of 25% for tracking features using Micro-Clusters.

Figure 35: The results of Random Tree data stream generator with
a noise level of 0% for tracking features using Micro-Clusters.

Figure 36: The results of Random Tree data stream generator with
a noise level of 15% for tracking features using Micro-Clusters.

likely not to cause a degradation of classification accuracy,
as features are merely flagged up to the feature selection
method to have potentially changed their relevance but it
is then up to the feature selection method to evaluate these
features and decide if they should be included. If a concept
drift is detected, then the methods use the feature Velocity
and history of maximum Variance or IRQ respectively to
decide which features should be flagged up to be consid-
ered for inclusion or removal from the currently considered

Figure 37: The results of Random Tree data stream generator with
a noise level of 25% for tracking features using Micro-Clusters.

features. The results for this are depicted at the bottom
part in the aforementioned figures. As a reminder, the fea-
tures are ranked according to their velocities and the 50%
features with the highest Velocity are examined closer. As
there are 3 features in each stream, the 2 features with
the highest Velocity are always selected. These features
are then flagged up if they also appeared in the history
of maximum Variance or IQR in the previous time win-
dow. This has already been explained in greater detail in
Section 6.1. It is expected here that features that have
been swapped during the concept drift are more likely to
be flagged up for inclusion or removal from the currently
considered set of features.

Table 7: Summary of the experimental results with artificial datasets
generated with noise levels of 0%, 15% and 25%. The results are
reported for the Time 6 which is the time of swapped features.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

Sea with Noise 0% 2 2
Sea with Noise 15% 1 1
Sea with Noise 25% 1 1
HyperPlane with Noise 0% 1 1
HyperPlane with Noise 15% 1 1
HyperPlane with Noise 25% 1 1
RandomTree with Noise 0% 2 2
RandomTree with Noise 15% 1 2
RandomTree with Noise 25% 1 1* 2 + 2*
Total: 5 12 3 7

Table 7 summarises the feature tracking results pre-
sented in Figures 29 to 37. Numbers indicated with a * in-
dicate potentially false positives detections of features that
changed their relevance. Potentially in the preceding sen-
tence is to reflect the fact that in this case that there was
also an unexpected concept drift. However, it is not pos-
sible to verify with absolute certainty if the detection was

19

indeed a false positive. It can be seen that the here pre-
sented method based on maximum IQR achieves a much
higher true positive detection of features that changed.
However, it also has a higher number false positive detec-
tions compared with the method based on Variance. Now
the true positive figures are based on the fact the features
are known to have changed as they have been swapped at
the time of concept drift. However, considering the fact
that here the native method of each artificial stream gen-
erator has also been used for inducing a concept drift then
some of the false positive detections may very well be true
positives. Even if they were not true positives, it would
merely mean that they are flagged to the feature selec-
tion method to be reconsidered for inclusion or exclusion
of the feature set to be considered for adaptation. Loosely
speaking, correct true positive detection numbers are more
important than false positive detection numbers.

In order to remove the possibility of changing feature
relevance due to artificial concept drift generators, the fea-
ture tracking experiments on the artificial datasets were
re-conducted. This time no concept drift was introduced
apart from the swapping of the features. Thus the only
features that have changed their relevance must be the
swapped features. The results of these experiments are
displayed in Figures 38 to 46. As it can be seen, and as
expected, both methods have a lower false positive count
of flagging features that changed relevance. Again the pro-
posed method based on IQR performs best, it detected all
features that were swapped.

Figure 38: The results of SEA data stream generator with a noise
level of 0% for tracking features using Micro-Clusters.

Table 8 summarises the feature tracking results pre-
sented in Figures 38 to 46. Altogether there were 18 fea-
tures swapped so they have all potentially changed their
relevance and thus should be identified by the methods.
As it can be seen the method based on original MC-NN
with Variance identifies 4 features correctly and also re-
sulted in 3 false positives. The proposed method based on
IQR detected 16 features that potentially changed their
relevance correctly and resulted in 2 false positives. It can
be seen that the proposed method based on maximum IQR
achieves a much higher true positive detection of features

Figure 39: The results of SEA data stream generator with a noise
level of 15% for tracking features using Micro-Clusters.

Figure 40: The results of SEA data stream generator with a noise
level of 25% for tracking features using Micro-Clusters.

Figure 41: The results of HyperPlane data stream generator with a
noise level of 0% for tracking features using Micro-Clusters.

that changed with only 2 false positives. The true posi-
tive figures are based on features that are known to have
changed as they have been swapped at the time of concept
drift.

Next both approaches were tested on real datasets. For
the experiment the default parameters, (stated in Table 3)
of the technique were used unless stated otherwise. Real-
time Min and Max Normalisation and LPF were applied
to minimise the effect of feature-bias and noise, respec-

20

Figure 42: The results of HyperPlane data stream generator with a
noise level of 15% for tracking features using Micro-Clusters.

Figure 43: The results of HyperPlane data stream generator with a
noise level of 25% for tracking features using Micro-Clusters.

Figure 44: The results of Random Tree data stream generator with
a noise level of 0% for tracking features using Micro-Clusters.

tively. A random number of random feature pairs have
been selected to be swapped in order to validate whether
the feature tracking method can identify the changed fea-
tures.

Figures 47, 48, 49, and 50 visualise the results for con-
cept drift detection and feature tracking in the same way
as Figures 29 to 37 do for the artificial data streams. Again
part (a) of the figures refers to the method based on vari-
ance and part (b) of the figures refers to the method based

Figure 45: The results of Random Tree data stream generator with
a noise level of 15% for tracking features using Micro-Clusters.

Figure 46: The results of Random Tree data stream generator with
a noise level of 25% for tracking features using Micro-Clusters.

Figure 47: The results of Bank dataset with 10 features for tracking
features using Micro-Clusters.

21

Table 8: Summary of the experimental results with artificial datasets
generated with noise levels of 0%, 15% and 25%. The results are
reported for Time 6 which is the point at which features had been
swapped.

Generator
True
Positive
(Variance)

True
Positive
(IQR)

False
Positive
(Variance)

False
Positive
(IQR)

Sea with Noise 0% 1 2
Sea with Noise 15% 1 2
Sea with Noise 25% 2
HyperPlane with Noise 0% 1 1 1
HyperPlane with Noise 15% 2 1
HyperPlane with Noise 25% 1 2
RandomTree with Noise 0% 2
RandomTree with Noise 15% 2
RandomTree with Noise 25% 1 1* 2*
Total: 4 16 3 2

Figure 48: The results of CoverType dataset with 10 features for
tracking features using Micro-Clusters.

Figure 49: The results of Diabetes dataset with 8 features for track-
ing features using Micro-Clusters.

Figure 50: The results of KDDCUP dataset with 10 features for
tracking features using Micro-Clusters.

on IQR. Regarding drift detection in Figures 47, 48, 49,
and 50, it can be seen that the Split and Death rates at the
time of concept drift increase (i.e., time when the features
are swapped), indicating that the current set of Micro-
Clusters does not fit the concept encoded in the data any-
more and a concept drift is detected correctly for every
dataset and method examined in the figures. Please note
there are further concept drifts detected at different times
than the features were swapped, which could be due to the
fact that real data was used and thus there may be con-
cept drifts that are not known. This is one of the reasons
why the method was also evaluated on artificial datasets
earlier in this section, as the ground truth for the artificial
datasets was known. At this stage it is assumed that high
Split and Death rates other than during the time when
features were swapped are due to natural concept drift.
As the ground truth for the concept drift is known only at
the time of feature swapping, the evaluation of correct fea-
ture tracking was focussed on the time of feature swapping
only.

Regarding the results for the Bank dataset in Figure
47, both methods identify a concept drift correctly at the
time the features were swapped (in this case 2 features).
The method based on IQR is superior to the method based
on Variance, as it identified both swapped features cor-
rectly, whereas the method based on Variance did not
identify any correctly. A similar result can be observed
for the Diabetes dataset (see Figure 49), both methods
identify a concept drift correctly at the time the features
were swapped. Again the method based IQR is superior

22

to the method based on Variance, as it identified 1 of the
swapped features correctly, whereas the method based on
Variance did not identify any correctly. Regarding the
results for the CoverType dataset (see Figure 48), again
the method based on IQR was superior by identifying 2
of the swapped features (in this case 4 features) correctly
whereas the method based on Variance did not identify
any correctly, because a drift was not detected. For the
dataset based on KDDCUP (see Figure 50) 6 features were
swapped and again the method based on IQR was superior
by identifying 4 features correctly and the method based
on Variance only identifying 3 features correctly.

These results are summarised in Table 9. It can be seen
that the method based on IQR generally achieves a much
higher number of true positive identification of changed
features compared with the method based on Variance.
Also the method using IQR has a lower false positive num-
ber than the method using Variance.

Numbers indicated with a * in Table 9 indicate poten-
tially false positives detections of features that changed
their relevance. Potentially means in this case that there
was also an unexpected concept drift, hence it is not pos-
sible to verify with absolute certainty if the detection was
indeed a false positive.

Table 9: Summary of the experimental results with real datasets.
The results are reported for the time of drift onset (Table 3) which
is the time at which features were swapped.

Dataset
True Positive
(Variance)

True Positive
(IQR)

False Positive
(Variance)

False Positive
(IQR)

Bank 2 2
CoverType 2 1
Diabetes 1
KDDCUP 2 4 2 + 2* 2*
Total: 2 9 6 3

Experiments have been conduced in a controlled en-
vironment on artificial datasets and in a less controlled
environment on real datasets. Both methods based on
IQR and Variance have been evaluated and compared on
all test cases. It was observed that the method based on
IQR identified all known concept drifts correctly whereas
the method based on Variance did miss one known concept
drift of a real data stream. Furthermore, it was found that
the method based on IQR identified more changed features
correctly compared with the method based on Variance.
Loosely speaking the method based on IQR has shown to
be superior to the method based on Variance in all re-
spects. Thus the method based on IQR has been chosen
to evaluate the real-time feature selection strategy in the
next section.

7.2.3. Real-Time Feature Selection

In the previous sections the paper examined the capa-
bility of the developed method to identify concept drifts
and to track whether features have undergone a significant
change. The purpose was to use this method to re-examine
the relevance of the features for the classification task. It

has been found that the method based on IQR preformed
best in all respects. Thus the experiments in this section
are conducted with the method based on IQR. This sec-
tion evaluates the use of the method as feature selection
technique as described in Section 6. The method is ap-
plied on a couple of real datasets with a larger number
of features than in the previous more controlled experi-
ments, with no known ground truth, to evaluate the effect
of the methods in real scenarios. Information about the
datasets can be found in Table 4 in Section 7.1.2. It should
be noted that the CoverType dataset has been re-used for
the experiments here under uncontrolled conditions. This
time all 54 features were included. It is expected that this
original version of CoverType is more challenging for data
mining algorithms to induce good models compared with
the reduced version used earlier in the controlled experi-
ments in Section 7.2.2. The data stream classifier chosen
to be used with the developed method was the Hoeffding
Tree [13]. The reason for choosing the Hoeffding Tree was
due to its popularity and the fact that it is considered to
be one of the most accurate data stream classifiers [55, 52].
The Hoeffding Tree classifier is training and updating in-
crementally instance by instance. From the start of the
experiments all features are considered relevant, and the
proposed method may at any time during the experiment
detect a concept drift and flag features as relevant or ir-
relevant after a drift has been detected. Thus at any time
during the experiment the Hoeffding Tree classifier selects
only the feature values of relevant features and accord-
ingly uses only the currently relevant features for training
and incrementally updating the model. Figure 51 shows
the accuracy differences over time the method achieved
using IQR for real-time feature selection in comparison
with applying the Hoeffding Tree classifier as standalone
method. As it can be seen in the figure, Hoeffding Trees
using the proposed method generally achieved a better ac-
curacy over time. Only during a few time windows the
method achieved a marginally lower accuracy.

23

Figure 51: The results of real-time feature selection with uncontrolled
datasets using Micro-Clusters.

Table 10 summarises the results for the experiments de-
picted in Figure 51. It states the average accuracy achieved
with and without using the proposed real-time feature se-
lection method. It also indicates at which time window
features and how many features have been re-evaluated
for inclusion or removal from the current feature set con-
sidered by the Hoeffding Tree. As can be seen the method
actively re-evaluated features for inclusion in the tree at
various times and achieved on average a higher accuracy
compared with standalone Hoeffding Trees (not employing
the proposed real-time feature selection method).

Table 10: Summary of the results for the experiments using real
datasets with Hoeffding tree classifier.

Real Dataset

OverallAccuracy
Average
(with Real-Time
Feature Selection)

OverallAccuracy
Average
(without Real-Time
Feature Selection)

Time of
Applying
Real-Time
Feature Selection

Number of
Features
Flagged

CoverType 79.81 79.19 (2 to 4) and (6 to 7) 1
EEG Eye State 83.68 81.49 (3 to 5) and (7 to 10) 1
Gesture Phase Segmentation 80.23 72.18 (4 to 7) and (9 to 10) 1
Poker Hand 51.75 51.02 8 and 10 5
Statlog (Landsat Satellite) 81.63 80.68 (5 to 6) and (8 to 10) 5
Waveform (with noise) 80.68 80.26 2 to 10 1

Loosely speaking the results show that the proposed
real-time feature selection method indeed improves the ac-
curacy of data stream classifiers.

8. Discussion and Conclusions

This paper has investigated the problem of real-time
feature selection. At present the focus of data stream
mining lies in the development of data mining algorithms
rather than on pre-processing methods. Thus at present
there are no developments for truly real-time feature se-
lection given a data streaming input space. This is im-
portant as features may potentially change their relevance
for data mining tasks based on certain measures of rele-
vance such as Information Gain. Thus the three objectives
of this paper were to develop a real-time pre-processing
method that could (a) detect a concept drift, (b) identify
features that were involved in a concept drift and thus
potentially changed their relevance and (c) build and val-
idate a real-time feature selection method based on the
aforementioned developments. The starting point for this
research was the MC-NN classifier. This research was
not concerned with the classification capabilities of MC-
NN but in the behaviour of its underlying model during
concept drift. The MC-NN model is based on adaptive
statistical Micro-Cluster summaries of the absorbed data
stream instances that can Split into new Micro-Clusters,
change their size/position in the feature space or be re-
moved (Micro-Cluster death) in order to adapt to concept
drift. The research proposed in this work was based on two
hypotheses on the behaviour of MC-NN in this regard:

(1) The Split and Death rates are expected to increase
during a concept drift and thus could be used as a measure
to detect concept drift in real-time; and (2) the direction
of the Micro-Cluster movement in feature space during
concept drift and their Velocity indicate which features
are involved in the concept drift. This could be used as
a measure if the relevance of a feature for a data mining
task has changed.

MC-NN originally used variance as a statistical mea-
sure to Split the Micro-Cluster. During this research it was
expected that variance as an indirect measure for concept
drift adaptation would be susceptible to potential outliers
and noise. Thus an alternative method has been explored
for adapting micro-clusters based on IQR. Both methods
have been evaluated with respect to hypothesis 1 and 2
on artificial data streams and real datasets. In addition
for both methods a Low Pass Filter (LPF) was also in-
corporated to filter out noise and normalisation to reduce
feature bias. The original MC-NN did not make use of
LPF or normalisation. The evaluation of the proposed
method initially focused on the approach based on the al-
ready available MC-NN statistical measure, namely Vari-
ance. Thus the method was evaluated on artificial data
streams and real datasets with artificially induced concept
drifts. It was observed that the method did detect con-
cept drifts very for the artificial data streams compared
with competing alternative concept drift detection meth-
ods. It achieved a very high true positive detection num-
ber and resulted in only one false positive detection. For
the real datasets the method detected all but one arti-

24

ficially induced concept drift correctly but also detected
further concept drifts. These drifts may have been natural
and thus previously unknown concept drifts. Thus in the
next step of the evaluation LPF, Normalisation and IQR
were used as an alternative measure for feature splitting
and concept drift detection. To allow a fair comparison,
LPF and Normalisation were applied on both methods
based on variance and the method based on IQR. Both
versions of the method were compared with regards to
concept drift detection and feature tracking for the ar-
tificial data streams and the real datasets (with induced
concept drift). For the artificial data streams all induced
concept drifts were detected correctly by both versions of
the method and for the real datasets one concept drift was
missed but only by the method based on variance. Re-
garding feature tracking, the method based on IQR clearly
outperformed the method based on Variance. The method
based on IQR achieved a high true positive identification
of features that were actually features involved in concept
drift and a low number of false positive identifications.
Thus the method based on variance was considered not
suitable for feature tracking and the next step of the eval-
uation focussed only on the method based on IQR for fea-
ture selection. Here the method for feature selection was
tested based on feature tracking using IQR. The evalu-
ation was conducted in an uncontrolled environment on
6 case studies with data streams based on real datasets.
Thus the ground truth for feature relevance and concept
drift were not known. Hence the impact of the method
on the classification accuracy over time was measured and
also the extent to which the method actually identified
features with changing relevance. The data stream clas-
sification method chosen was the popular Hoeffding Tree
algorithm. The results showed that the method detected
various concept drifts throughout the streams and identi-
fied features for re-evaluation for their relevance. It was
also shown that the classifier achieved a higher average
accuracy when using the proposed method compared with
not using the method. Overall the research represents a
first attempt to resolve real-time feature selection for data
stream mining tasks. It has been shown that the method
can indeed identify concept drift, track features and iden-
tify features that may have changed their relevance for the
data mining task in real-time. It has also been shown that
the proposed method can improve the accuracy of data
stream classification tasks.

References

[1] M. Ebbers, A. Abdel-Gayed, V. B. Budhi, F. Dolot, V. Ka-
mat, R. Picone, J. Trevelin, et al., Addressing Data Volume,
Velocity, and Variety with IBM InfoSphere Streams V3. 0, IBM
Redbooks, 2013.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Mod-
els and issues in data stream systems, in: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, ACM, 2002, pp. 1–16.

[3] P. Kadlec, B. Gabrys, S. Strandt, Data-driven soft sensors in

the process industry, Computers & Chemical Engineering 33 (4)
(2009) 795–814.

[4] A. Jadhav, P. Jadhav, P. Kulkarni, A novel approach for the
design of network intrusion detection system (nids), in: Sen-
sor Network Security Technology and Privacy Communication
System (SNS & PCS), 2013 International Conference on, IEEE,
2013, pp. 22–27.

[5] G. Hulten, L. Spencer, P. Domingos, Mining time-changing data
streams, in: Proceedings of the seventh ACM SIGKDD inter-
national conference on Knowledge discovery and data mining,
ACM, 2001, pp. 97–106.

[6] T. Le, F. Stahl, J. B. Gomes, M. M. Gaber, G. Di Fatta,
Computationally efficient rule-based classification for continu-
ous streaming data, in: Research and Development in Intelligent
Systems XXXI, Springer, 2014, pp. 21–34.

[7] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, A. Bouchachia,
A survey on concept drift adaptation, ACM Computing Surveys
(CSUR) 46 (4) (2014) 44.

[8] A. Bifet, R. Gavalda, Learning from time-changing data with
adaptive windowing., in: SDM, Vol. 7, SIAM, 2007, p. 2007.

[9] J. Gama, P. Medas, G. Castillo, P. Rodrigues, Learning with
drift detection, in: Advances in artificial intelligence–SBIA
2004, Springer, 2004, pp. 286–295.

[10] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A. Bifet,
R. Gavalda, R. Morales-Bueno, Early drift detection method,
in: Fourth international workshop on knowledge discovery from
data streams, Vol. 6, 2006, pp. 77–86.

[11] G. Lee, A. Singanamalli, H. Wang, M. D. Feldman, S. R. Mas-
ter, N. N. Shih, E. Spangler, T. Rebbeck, J. E. Tomaszewski,
A. Madabhushi, Supervised multi-view canonical correlation
analysis (smvcca): integrating histologic and proteomic features
for predicting recurrent prostate cancer, IEEE transactions on
medical imaging 34 (1) (2015) 284–297.

[12] U. Ahsan, I. Essa, Clustering social event images using ker-
nel canonical correlation analysis, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops, 2014, pp. 800–805.

[13] P. Domingos, G. Hulten, Mining high-speed data streams, in:
Proceedings of the sixth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, ACM, 2000, pp.
71–80.

[14] M. Hammoodi, F. Stahl, M. Tennant, A. Badii, Towards real-
time feature tracking technique using adaptive micro-clusters,
in: Proceedings of the BCS SGAI Workshop on Data Stream
Mining Techniques and Applications, 2016.

[15] R. J. C. Bose, W. M. Van Der Aalst, I. Žliobaitė, M. Pech-
enizkiy, Dealing with concept drifts in process mining, IEEE
transactions on neural networks and learning systems 25 (1)
(2014) 154–171.

[16] D. Brzeziński, Mining data streams with concept drift, Ph.D.
thesis, Masters thesis, Poznan University of Technology (2010).

[17] C. C. Aggarwal, P. S. Yu, Outlier detection for high dimensional
data, in: ACM Sigmod Record, Vol. 30, ACM, 2001, pp. 37–46.

[18] E. Page, Continuous inspection schemes, Biometrika 41 (1/2)
(1954) 100–115.

[19] P. B. Dongre, L. G. Malik, Stream data classification and adapt-
ing to gradual concept drift, International Journal 2 (3).

[20] G. J. Ross, N. M. Adams, D. K. Tasoulis, D. J. Hand, Expo-
nentially weighted moving average charts for detecting concept
drift, Pattern Recognition Letters 33 (2) (2012) 191–198.

[21] J. Tang, S. Alelyani, H. Liu, Feature selection for classifica-
tion: A review, Data Classification: Algorithms and Applica-
tions (2014) 37.

[22] D. Lavanya, D. K. U. Rani, Analysis of feature selection with
classification: Breast cancer datasets, Indian Journal of Com-
puter Science and Engineering (IJCSE) 2 (5) (2011) 756–763.

[23] J. Han, J. Pei, M. Kamber, Data mining: concepts and tech-
niques, Elsevier, 2011.

[24] W. Yi, F. Teng, J. Xu, Noval stream data mining framework
under the background of big data, Cybernetics and Information
Technologies 16 (5) (2016) 69–77.

25

[25] M. E. Houle, M. Nett, Rank-based similarity search: Reduc-
ing the dimensional dependence, IEEE transactions on pattern
analysis and machine intelligence 37 (1) (2015) 136–150.

[26] H. Loo, M. Marsono, Online data stream classification with
incremental semi-supervised learning, in: Proceedings of the
Second ACM IKDD Conference on Data Sciences, ACM, 2015,
pp. 132–133.

[27] J. Shao, Z. Ahmadi, S. Kramer, Prototype-based learning on
concept-drifting data streams, in: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2014, pp. 412–421.

[28] Y.-N. Law, C. Zaniolo, An adaptive nearest neighbor classifi-
cation algorithm for data streams, in: Knowledge Discovery in
Databases: PKDD 2005, Springer, 2005, pp. 108–120.

[29] H. Wang, W. Fan, P. S. Yu, J. Han, Mining concept-drifting
data streams using ensemble classifiers, in: Proceedings of the
ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2003, pp. 226–235.

[30] J. Gama, P. Kosina, et al., Learning decision rules from data
streams, in: IJCAI Proceedings-International Joint Conference
on Artificial Intelligence, Vol. 22, 2011, p. 1255.

[31] M. A. Khan, A. Khan, M. N. Khan, S. Anwar, A novel learn-
ing method to classify data streams in the internet of things,
in: Software Engineering Conference (NSEC), 2014 National,
IEEE, 2014, pp. 61–66.

[32] J. P. Barddal, H. M. Gomes, F. Enembreck, Sfnclassifier: a
scale-free social network method to handle concept drift, in:
Proceedings of the 29th Annual ACM Symposium on Applied
Computing, ACM, 2014, pp. 786–791.

[33] T. Zhang, R. Ramakrishnan, M. Livny, Birch: an efficient data
clustering method for very large databases, in: ACM Sigmod
Record, Vol. 25, ACM, 1996, pp. 103–114.

[34] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, A framework for
clustering evolving data streams, in: Proceedings of the 29th
international conference on Very large data bases-Volume 29,
VLDB Endowment, 2003, pp. 81–92.

[35] C. C. Aggarwal, J. Han, J. Wang, P. S. Yu, A framework for
projected clustering of high dimensional data streams, in: Pro-
ceedings of the Thirtieth international conference on Very large
data bases-Volume 30, VLDB Endowment, 2004, pp. 852–863.

[36] K. Udommanetanakit, T. Rakthanmanon, K. Waiyamai, E-
stream: Evolution-based technique for stream clustering, in:
Advanced Data Mining and Applications, Springer, 2007, pp.
605–615.

[37] P. Kranen, I. Assent, C. Baldauf, T. Seidl, Self-adaptive any-
time stream clustering, in: Data Mining, 2009. ICDM’09. Ninth
IEEE International Conference on, IEEE, 2009, pp. 249–258.

[38] W. Meesuksabai, T. Kangkachit, K. Waiyamai, Hue-stream:
Evolution-based clustering technique for heterogeneous data
streams with uncertainty, in: Advanced Data Mining and Ap-
plications, Springer, 2011, pp. 27–40.

[39] M. Tennant, F. Stahl, O. Rana, J. B. Gomes, Scalable real-
time classification of data streams with concept drift, Future
Generation Computer Systems.

[40] E. Ogasawara, L. C. Martinez, D. De Oliveira, G. Zimbrão,
G. L. Pappa, M. Mattoso, Adaptive normalization: A novel
data normalization approach for non-stationary time series, in:
The 2010 International Joint Conference on Neural Networks
(IJCNN), IEEE, 2010, pp. 1–8.

[41] O. Schall, A. Belyaev, H.-P. Seidel, Robust filtering of noisy
scattered point data, in: Proceedings Eurographics/IEEE
VGTC Symposium Point-Based Graphics, 2005., IEEE, 2005,
pp. 71–144.

[42] R. E. Rosenholtz, A. Zakhor, Iterative procedures for reduction
of blocking effects in transform image coding, in: Electronic
Imaging’91, San Jose, CA, International Society for Optics and
Photonics, 1991, pp. 116–126.

[43] M. S. Arulampalam, S. Maskell, N. Gordon, T. Clapp, A tuto-
rial on particle filters for online nonlinear/non-gaussian bayesian
tracking, IEEE Transactions on signal processing 50 (2) (2002)
174–188.

[44] L. Sunitha, M. BalRaju, J. Sasikiran, E. V. Ramana, Automatic
outlier identification in data mining using iqr in real-time data,
International Journal of Advanced Research in Computer and
Communication Engineering 3 (6) (2014) 7255–7257.

[45] C. Leys, C. Ley, O. Klein, P. Bernard, L. Licata, Detecting
outliers: Do not use standard deviation around the mean, use
absolute deviation around the median, Journal of Experimental
Social Psychology 49 (4) (2013) 764–766.

[46] D. De Gregorio, L. Di Stefano, Skimap: An efficient
mapping framework for robot navigation, arXiv preprint
arXiv:1704.05832.

[47] N. Shavit, I. Lotan, Skiplist-based concurrent priority queues,
in: Parallel and Distributed Processing Symposium, 2000.
IPDPS 2000. Proceedings. 14th International, IEEE, 2000, pp.
263–268.

[48] Y.-C. Hu, A. Perrig, D. B. Johnson, Efficient security mecha-
nisms for routing protocolsa., in: NDSS, 2003.

[49] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Moa: Massive
online analysis, Journal of Machine Learning Research 11 (May)
(2010) 1601–1604.

[50] W. N. Street, Y. Kim, A streaming ensemble algorithm (sea) for
large-scale classification, in: Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery and
data mining, ACM, 2001, pp. 377–382.

[51] D. Brzezinski, J. Stefanowski, Reacting to different types of
concept drift: The accuracy updated ensemble algorithm, IEEE
Transactions on Neural Networks and Learning Systems 25 (1)
(2014) 81–94.

[52] A. Bifet, E. Frank, Sentiment knowledge discovery in twitter
streaming data, in: International conference on discovery sci-
ence, Springer, 2010, pp. 1–15.

[53] M. Lichman, UCI machine learning repository (2013).
URL http://archive.ics.uci.edu/ml

[54] D. Marrón, J. Read, A. Bifet, N. Navarro, Data stream classifi-
cation using random feature functions and novel method com-
binations, Journal of Systems and Software 127 (2017) 195–204.

[55] A. Bifet, G. Holmes, B. Pfahringer, R. Kirkby, R. Gavaldà, New
ensemble methods for evolving data streams, in: Proceedings of
the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2009, pp. 139–148.

26

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Concept Drift Detection Techniques
	Feature Selection Techniques
	Data Stream Classification
	Data Stream Clustering

	Micro-Cluster Nearest Neighbour (MC-NN)
	The Structure of MC-NN Micro-Clusters
	The Training or Absorbing Instances
	Splitting of a Micro-Cluster using Variance
	Death and Removal of a Micro-Cluster using Triangle Numbers
	Taking MC-NN Forward to Develop a Real-time Feature Selection Method

	Real-Time Concept Drift Detection Technique using Adaptive Micro-Clusters
	Detecting Concept Drift using Adaptive Micro-Clusters
	Worked Example

	Real-Time Feature Tracking Technique using Adaptive Micro-Clusters
	Minimising the Effect of Feature-Bias using Real-Time Normalisation
	Minimising the Effect of Noise using Low Pass Filter (LPF)
	Real-Time Feature Tracking
	Velocity of Features
	Measuring of the Data Stream Spread using IQR
	Splitting of a Micro-Cluster using IQR
	Comparison of Splitting using IQR or Variance
	First-In-First-Out (FIFO) with SkipList
	Tracking and Removal of Micro-Clusters with False Positive Participation

	Real-Time Feature Selection Technique using Adaptive Micro-Clusters
	Feature Analysis and Feature Selection
	Monitoring and Analysis of Temporarily Irrelevant Features

	Experimental Evaluation
	Experimental Setup
	Artificial Datasets
	Real Datasets

	Results
	Real-Time Concept Drift Detection Technique
	Tracking Features using Variance and IQR
	Real-Time Feature Selection

	Discussion and Conclusions

