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Semantic-Aware Blocking for Entity Resolution
Qing Wang, Mingyuan Cui and Huizhi Liang

Abstract—In this paper we propose a semantic-aware blocking framework for entity resolution (ER). The proposed framework is built
using locality-sensitive hashing (LSH) techniques, which efficiently unifies both textual and semantic features into an ER blocking
process. In order to understand how similarity metrics may affect the effectiveness of ER blocking, we study the robustness of similarity
metrics and their properties in terms of LSH families. Then we present how the semantic similarity of records can be captured,
measured, and integrated with LSH techniques over multiple similarity spaces. In doing so, the proposed framework can support
efficient similarity searches on records in both textual and semantic similarity spaces, yielding ER blocking with improved quality. We
have evaluated the proposed framework over two real-world data sets, and compared it with the state-of-the-art blocking techniques.
Our experimental study shows that the combination of semantic similarity and textual similarity can considerably improve the quality of
blocking. Furthermore, due to the probabilistic nature of LSH, this semantic-aware blocking framework enables us to build fast and
reliable blocking for performing entity resolution tasks in a large-scale data environment.

Index Terms—Data matching, entity resolution, record linkage, deduplication, blocking, indexing, locality-sensitive hashing, semantic
features, semantic similarity, semantic hashing, taxonomy tree

F

1 INTRODUCTION

IMAGINE that, given a very large collection of publication
records from one or more data sets, such as Scopus1 and

PubMed2, how can we find records that actually refer to the
same publication? To answer questions like this, we need to
use entity resolution techniques. Entity resolution (ER) is the
process of identifying records that represent the same real-
world entity in one or more data sets. It is a well-known
problem that has been extensively investigated in the past
decades [11], [18], [22], [32].

Nevertheless, performing ER tasks over large data sets
is still computationally challenging. This is largely due to
the quadratic complexity O(n2) of pairwise comparisons,
i.e., each record needs to be compared with all others, for
the total number n of records. A common solution for this
problem is to use blocking [11], which groups records into
a set of possibly overlapping but small blocks, and only
records that potentially represent the same entity are placed
into the same block. Blocking leads to a time complexity
O(m2 × |B|) for the maximal size m of blocks and the
number |B| of blocks in the worst case. In doing so, a
relatively small subset of record pairs within the same
block can be efficiently identified for comparison, and the
performance of ER tasks can be drastically improved, e.g.,
at least four orders of magnitude faster in the case where
n = 106, m = 102 and |B| = 104. However, on the other
side of the coin, blocking may deteriorate the quality of ER
tasks if a significant number of records in different blocks
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indeed represent the same entity. In a nutshell, the desired
criteria for blocking techniques are two-fold:

(1) How to generate blocks efficiently? This requires us
to consider both time and space efficiency when con-
structing blocks, and trade-offs between these two.

(2) How to generate blocks of good quality? This re-
quires us to consider how blocks support ER tasks
to be performed efficiently and accurately, and trade-
offs between these two.

A number of blocking techniques have previously been
studied [12], [14], [22], [32], [35], [36], [39]. In general the
goal is to develop techniques that generate blocks such
that (i) all comparisons between records within a block will
have a certain minimum similarity with each other, and (ii)
the similarity between records in different blocks is below
this minimum similarity [12]. Nonetheless, many of these
techniques have the following limitations: (a) They are only
applicable to specific data sets, e.g., the standard blocking
method [18] uses blocking keys to group records, which
cannot handle records that are highly similar but have
different keys, such as “Qing Wang” and “Wang Qing”; (b)
They often still need to compute pairwise comparisons for
generating blocks, which is computational expensive, e.g.,
canopy clustering [32] has a time complexity O(n2) and is
inefficient for large data sets; (c) They are merely based on
textual similarity of records, while semantic information is
ignored. When a data set is dirty, i.e., containing a significant
amount of missing and erroneous data, blocking based on
textual similarity often yields poor results [11], e.g., two
publication records may have the exactly same title but are
semantically different because one is a conference article and
the other is a technical report.

In this paper, we propose a semantic-aware LSH block-
ing framework that can circumvent the above limitations.
Locality-sensitive hashing (LSH) is a popular technique used
for approximately finding nearest neighbors in a high di-
mensional space [20], [23]. The central idea is to ensure that
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REC TITLE AUTHORS PUBLISHER

r1 The cascade-correlation learning architecture E. Fahlman and C. Lebiere NISPS Proceedings
r2 Cascade correlation learning architecture E. Fahlman & C. Lebiere Neural Information Systems
r3 A genetic cascade correlation learning algorithm Proceedings on Neural Ntw.
r4 The cascade corelation learning architecture Fahlman, S., & Lebiere, C. TR
r5 Controlled growth of cascade correlation nets Technical Report (TR)
r6 The cascade-correlation learn architecture Lebiere, C. and Fahlman, S.

r1, r2 r1, r3 r1, r4 r1, r5 r1, r6 r2, r3 r2, r4 r2, r5 r2, r6 r3, r4 r3, r5 r3, r6 r4, r5 r4, r6 r5, r6

TS 0.88 0.70 0.90 0.40 0.85 0.60 0.80 0.40 0.85 0.70 0.40 0.60 0.40 0.85 0.40
SS 0.50 1.00 0.00 0.00 0.17 0.50 0.00 0.00 0.17 0.00 0.00 0.17 0.17 0.17 0.17

B1 : r1, r2, r4, r6 r3 r5 B2 : r1, r2, r3, r6 r4, r5, r6 B3 : r1, r2, r6 r4, r6 r3 r5

Fig. 1. Blocking with textual similarity (TS) and semantic similarity (SS): B1 based on textual similarity; B2 based on semantic similarity; B3 based
on both textual similarity and semantic similarity

the more similar two points are, the higher the probability is
that they are hashed into the same bucket. The reasons why
we use LSH for blocking are based on two observations.
First, blocking is intimately related to the nearest neighbor
search problem in similarity spaces [3]. Existing ER tech-
niques [11] are largely grounded on the assumption that
the more similar records are, the more likely they represent
the same entity. Although this observation is not universally
valid, it generally holds in practice [4]. Therefore, LSH is
well suited for searching similar records that may represent
the same entity with certain probability. Second, LSH readily
lends itself to fast blocking techniques over very large data
sets due to its probabilistic nature. The time complexity of
generating blocks can be decreased to O(n), which pro-
vides attractive scalability potential. In addition to time
efficiency, we also observe that leveraging LSH techniques
over multiple similarity spaces (e.g., textual similarity and
semantic similarity) may considerably improve the quality
of blocking, i.e., reducing redundant or unnecessary pairs in
blocks without loss of accuracy.

Example 1.1. Suppose that r1, r2 and r3 in Fig. 1 are conference
articles, r4 and r5 are technical reports, and r6 is semantically
ambiguous (e.g., could be a conference article, a technical report
or others). Based on the textual similarity of titles and authors,
{r1, r2, r4, r6} can be placed into the same block, which leads to
the set B1 of blocks. Based on their semantic similarity, we may
have the set B2 of blocks. In either case, the quality of blocks is
not satisfactory because neither r4 nor r3 should be in the same
block with r1 and r2. However, if we consider both textual and
semantic similarities, we would have the set B3 of blocks with
improved quality. From Fig. 1, we can see that B3 only has 4 pairs
of records to be compared for resolving these records, whereas B1

and B2 require to compare 6 and 9 pairs of records, respectively.

Contributions. We develop a semantic-aware blocking
framework for ER using LSH techniques, and show that
the robustness of similarity metrics plays a critical role in
handling the blocking problem for ER. In particular, the ro-
bustness of similarity metrics serves as a bridge between the
blocking problem and the nearest neighbor search problem.
In principle, the blocking problem and the nearest neighbor
search problem have different concerns. The former is con-
cerned with approximately grouping records in accordance
with how they refer to real-world entities, whereas the latter

is concerned with approximately finding similar records.
Since records that are close to each other in one similarity
space do not necessarily refer to the same real-world entity,
the effectiveness of searching nearest neighbors for blocking
relies on the robustness of the chosen similarity metrics.

We then explore semantic similarity for improving the
quality of blocking. There were several challenges in our
work: (1) how to find useful semantic information from
missing, inconsistent and noisy data; (2) how to develop
a metric for quantifying the semantic similarity among
records for the purpose of blocking; (3) how to incorporate
semantic similarity with textual similarity. We address these
challenges by detecting missing and inconsistent data pat-
terns, exploiting relationships between records and semantic
concepts in terms of taxonomy trees from domain knowl-
edge, and building semantic hashing families. In doing so,
we integrate both textual and semantic similarity features
into a unified LSH blocking method for ER.

We have evaluated our framework over two real-world
data sets. The experimental results show that integrating
semantic features and textual features into the blocking
process can significantly improve the quality of blocks,
particularly when data sets are imperfect (i.e., contain in-
accurate, incomplete or erroneous data). In such cases, the
sizes of blocks generally become smaller because seman-
tic features can effectively eliminate record pairs that are
textually similar but semantically dissimilar, which often
represent different entities in real-world applications. We
have also compared our framework with 12 state-of-the-
art blocking techniques, and it turns out that the semantic-
aware framework has the best blocking quality (i.e., the
highest FM values) over both data sets.

In this paper we are only concerned with blocking tech-
niques. Nonetheless, our blocking results can be used as
input to any ER algorithms for classifying records [11].

2 RELATED WORK

Studies on ER have been heavily carried out over the last
50 years [11], [18]. In practice, ER tasks are commonly
performed in two stages: (1) blocking – group records that
might represent the same entity into the same block; (2) clus-
tering – classify records into clusters such that each cluster
represents a distinct entity. In contrast to clustering, which
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Fig. 2. (a) Textual similarity space; (b) Semantic similarity space; (c) Combining similarity spaces (high, low and uncertain regions are highlighted
by dark, white and light colors, respectively)

is in search for exact solutions and often computationally
costly (i.e., trading-off efficiency for certainty and preci-
sion), blocking aims to be approximate and computationally
cheap (i.e., trading-off certainty and precision for efficiency).
Previously, blocking has been studied by many works [7],
[12], [14], [22], [26], [27], [32], [39]. These existing blocking
techniques nonetheless have some limitations as we have
discussed before, including: generating blocks inefficiently
over large data sets [14], [32], or filtering out true matches
that are textually dissimilar but semantically similar during
the blocking process [7], [12], [22], [26], [27], [39].

LSH was originally introduced for solving approximate
nearest neighbor search problem [20], [23]. Some variants
of LSH [5], [29], [34] have been proposed to improve the
quality of the original LSH, which offer different trade-
offs between time and space complexity. The entropy-based
LSH [34] and multi-probe LSH [29] both aimed to reduce
the number of hash tables required by the original LSH
while achieving the same accuracy. The LSH forest [5]
represents each hash table by a prefix tree and the number
of hash functions per hash table can be tuned in terms of
different distance metrics. In the context of ER, LSH has
been used in several works [24], [31], [39], e.g., HARRA [28]
was proposed as an iterative LSH-based ER method. All
these works are based on textual similarity, but our work
considers blocking in terms of not only textual similarity
but also semantic similarity. To detect near duplicate RDF
resources, a LSH-based approach was introduced in [24],
which measures semantic similarity based on the textual
representation of RDF metadata. Our work is different as
we measure semantic similarity in terms of the structural
relatedness of concepts in taxonomy trees and their is no
need to compare the textual similarity of these concepts.

Semantic technologies have important influences in a
variety of areas, such as improving search on the web
and semantic indexing in information retrieval [19], [33].
Taxonomical knowledge can be modelled using ontologies,
which have been extensively studied in the past, and used
in a wide range of applications [30], [38]. Previous studies
focused primarily on measuring semantic relatedness using
path-length and information content approaches [38]. Un-
like them, we are only interested in measuring semantic
similarity of records in terms of their likeliness of rep-
resenting the same entity. Therefore, we define semantic
similarity of records with respect to their semantic concepts
satisfying certain properties in a given taxonomy tree. This
allows us to generate binary signatures for LSH blocking
and preserve semantic similarity among records. To our

best of knowledge, little work has been done on leveraging
semantic similarity for blocking.

3 PROBLEM DEFINITION

Let R be a finite, non-empty set of records, each having a
finite number of attributes. In viewing that records are a
set of data points, a distance space (R, δ) can be defined for
records inR together with a distance metric δ : R×R 7→ [0, 1]
that satisfies the non-negativity, identity, symmetry and
triangle inequality properties as defined in [42].

Each distance metric δ corresponds to a similarity metric
sim such that δ(x, y) = 1 − sim(x, y), and (R, sim) is a
similarity space. A similarity metric sim is γ-robust over R
where γ ∈ [0, 1] if, for any two record pairs whose similarity
difference is greater than 1−γ, the record pair with a higher
similarity value is more likely to represent the same entity
than the other pair. Let E be a set of entities, e : R 7→ E be a
function that maps each record r ∈ R to an entity e(r) ∈ E
which it represents, and Pr[e(r1) = e(r′1)] be the probability
of e(r1) = e(r′1). Formally, the notion of γ-robust similarity
metric sim is defined as:

Pr[e(r1) = e(r′1)] ≥ Pr[e(r2) = e(r′2)] if (1)

sim(r1, r
′
1)− sim(r2, r

′
2) ≥ 1− γ.

Thus, the probability that two records represent the same
entity positively correlates with the similarity of the records
if the similarity increases or decreases more than 1− γ. The
greater γ is, the more robust a similarity metric sim can be
used for the ER blocking purpose.

Given a record r ∈ R, the other records r′ ∈ R whose
distances with r are at most k, i.e., δ(r, r′) ≤ k, are called
the k-distance neighbors of r in the distance space (R, δ). In
accordance with Equation 1, for each record r ∈ R, the
distance space (R, δ) is divided into three regions by two
distance values dl and dh with dl − dh ≥ γ: (1) high region:
records whose distances with r are not greater than dh have
a high probability of representing the same entity as r; (2)
low region: records whose distances with r are greater than
dl have a low probability of representing the same entity
as r; (3) uncertain region: records whose distances with r
are between dh and dl are ambiguous in the sense that the
probability of representing the same entity as r is uncertain.

The notion of k-distance neighbors can be further gen-
eralized to multiple similarity spaces. Let R be a set of
records, and [(R, δ1), . . . , (R, δn)], abbreviated as (R,~δ) for
~δ = [δ1, . . . , δn], be a number of distance spaces that R
associates with. Then given a record r ∈ R and a parameter
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vector ~k = [k1, . . . , kn] where ki ∈ [0, 1] (i = 1, . . . , n), all
the records r′ ∈ R whose distances with r are at most ~k (i.e.,
δi(r, r

′) ≤ ki in (R, δi) for every i) are called the ~k-distance
neighbors of r in multiple distance spaces (R,~δ).

Example 3.1. Fig. 2.(a)-(b) depicts the textual and semantic
spaces for the records in Fig. 1, respectively. Both r2 and r4 have
a high probability of being textually similar to r1 in Fig. 2.(a).
However, in terms of semantic similarity with r1 in Fig. 2.(b),
r2 retains a high probability while r4 has a low probability. When
considering both similarity spaces, as shown in Fig. 2.(c), we know
that r2 likely represents the same entity as r1 but it is unlikely for
r4 and r5 despite that r4 and r1 are textually similar with r1.

Let (R,~δ) be multiple similarity spaces. Then the blocking
problem over (R,~δ) is to determine a parameter vector ~dl
such that a set B of blocks is generated, in which only ~dl-
distance neighbors of a record r in R are placed into the
blocks that contain r. Intuitively, ~dl refers to the distance
values between low and uncertain regions in (R,~δ). The
optimization version of the blocking problem can be stated
in terms of the set P of all true matches (i.e., record pairs
that represent the same entity) and the set N of all true
non-matches (i.e., record pairs that represent two different
entities) with the objective as:

argminθB

∑
(r1,r2)∈N

θB(r1, r2)∑
r1 6=r2,r1∈R,r2∈R

θB(r1, r2)
(2)

such that

1−

∑
(r1,r2)∈P

θB(r1, r2)

|P |
≤ ε,

where |P |+ |N | = |R|2, θB is a blocking function that takes
two records as input, and returns 1 if there is at least one
block of B containing both records and 0 otherwise, and ε is
an error ratio indicating the percentage of true matches that
are lost in blocks B.

4 SEMANTIC SIMILARITY

In this section we discuss semantic similarity between
records, i.e., how much two records are alike semantically.

4.1 Taxonomy Trees

In real-world applications, domain knowledge commonly
exists. It may be acquired from domain experts or from
existing ontologies, corpus, or thesaurus resources in a
knowledge base, such as Wikipedia [19] and WordNet [33].
Records in the ER process are often related to semantic
concepts in such knowledge bases. Thus, a collection of
taxonomy trees, which describe how the semantic concepts
of records are related, can be constructed either manually, or
derived from knowledge bases. We first define the notions
of concept and taxonomy tree [16], [40].

Definition 4.1. A (semantic) concept is an abstract set of
things. A taxonomy tree t consists of a set Ct of nodes, each
representing a concept, and a set of edges that represent a sub-
sumption relation between concepts in Ct.

Research 
Output (C0) 

Patent 
(C9) 

Journal 
(C3) 

Proceedings
(C4) 

Book 
(C5) 

Technical 
Report (C7) 

Thesis 
(C8) 

Publication 
(C1) 

Peer 
Reviewed (C2) 

Non-Peer 
Reviewed (C6) 

Fig. 3. A bibliographic taxonomy tree tbib

Conceptually, a partial order � exists between concepts
in a taxonomy tree, i.e., c1 � c2 means that the concept c1 is
subsumed by the concept c2. For each taxonomy tree, from
the root to a leaf, the concepts vary from being most general
to being more specific. We use child(c) to denote the set of
concepts represented by the child nodes of c, and any two
concepts in child(c) are not subsumed one by the other.

Example 4.1. Fig. 3 shows a taxonomy tree tbib from the biblio-
graphic domain, which has concepts in a hierarchical structure
in terms of the subsumption relation. Each node represents a
semantic concept in the bibliographic domain such as journal,
book and technical report, and each edge represents a subsump-
tion relationship between two semantic concepts, e.g., c3 � c1,
c4 � c1 and c5 � c1 because journals, conference proceedings
and books are considered as different types of publications.

4.2 Semantic Analysis

Due to various reasons, such as incomplete data or errors,
the semantics of a record may be ambiguous. In such cases,
the semantic interpretation of a record is a number of
possible concepts. Formally, we define the semantic inter-
pretation of records w.r.t. one or more taxonomy trees by a
semantic function.

Definition 4.2. Let R be a set of records, T be a set of taxonomy
trees with the set CT =

⋃
t∈T

Ct of nodes, and P(CT ) be the

powerset of CT . A semantic function ζ : R 7→ P(CT ) assigns
each r ∈ R with a subset of concepts in P(CT ) as its semantic
interpretation s.t. the following properties are satisfied:

(a) Specificity: ζ(r) contains a set of concepts that are as
specific as possible, i.e., ∀c, c′ ∈ ζ(r).c � c′ ⇒ c = c′;

(b) Isolation: ζ(r) generates a set of concepts that are related
to r without accessing any records in R− {r}.

Intuitively, the interpretation ζ(r) of each record r is a
set of concepts in taxonomy trees. In accordance with the
subsumption relationship represented by edges, if a concept
c is in ζ(r), then any other concept that subsumes c cannot
coexist in ζ(r). Thus, by the specificity property, only the
most specific concept remains in the interpretation. The
purpose of the isolation property is to ensure the efficiency
of a semantic function.

There are a variety of ways to define the semantic func-
tion for records in terms of taxonomy trees, such as mining
patterns, using meta-data, and leveraging relationships. The
following example illustrates that a semantic function can be
simply defined by analyzing values of an attribute.
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Example 4.2. For the records r1-r6 shown in Fig. 1, we may
analyze the values in the attribute PUBLISHER in terms of the
taxonomy tree depicted in Fig. 3, and obtain the following seman-
tic interpretation: ζ(r1) = {c4}, ζ(r2) = {c2}, ζ(r3) = {c4},
ζ(r4) = {c7}, ζ(r5) = {c7} and ζ(r6) = {c0}.

4.3 Similarity Metric

As previously studied [38], many approaches have been
proposed to measure the semantic relatedness of records.
For simplicity, we use a simple approach to derive the
semantic similarity of two records based on the semantic
similarity of their related concepts in taxonomy trees. Nev-
ertheless, other more sophisticated approaches may also be
used to measure semantic similarity within this framework.

Similarity between concepts. Given a set T of taxonomy
trees, each concept c in T corresponds to a subtree rooted at
c, which is denoted as t(c). Let leaf(c) be the set of concepts
represented by all leaves in t(c), and simS(c1, c2) denote the
semantic similarity of two concepts c1 and c2. One of the
important properties which we want to ensure for semantic
similarity between two concepts is as follows:

∀c1, c2 ∈ child(c) c1 6= c2 ⇒ simS(c1, c2) = 0. (3)

Example 4.3. Consider the taxonomy tree depicted in Fig. 3.
simS(c3, c5) should be zero since c3 represents journal articles
and c5 represents books.

Thus, in viewing that each concept can be alternatively
represented by a set of concepts in its leaves, we measure the
semantic similarity of two concepts c1 and c2 in accordance
with their leaves in t(c1) and t(c2), which is similar to
Jaccard similarity coefficient [11], i.e.,

simS(c1, c2) =
|leaf(c1) ∩ leaf(c2)|
|leaf(c1) ∪ leaf(c2)|

. (4)

This metric takes into account the subsumption relationship
among concepts. For three concepts c1, c2 and c3 satisfying
c3 � c2 � c1, we always have simS(c1, c3) ≤ simS(c2, c3)
and simS(c1, c3) ≤ simS(c1, c2).

Example 4.4. Consider the taxonomy tree depicted in Fig. 3
again. We have simS(c0, c1) = 5/6 because the intersection and
union of leaf(c0) and leaf(c1) are 5 and 6, respectively. Simi-
larly, we can obtain simS(c1, c2) = 3/5, simS(c0, c4) = 1/6
and simS(c2, c6) = 0.

Similarity between records. Semantic similarity between
records is measured on the basis of their related concepts.
More specifically, given two records r1 and r2, the semantic
similarity of r1 and r2 is defined as

simS(r1, r2) =
∑

(c1,c2)∈P (r1,r2)

|α(c1, c2)|
|β(r1, r2)|

·simS(c1, c2), (5)

where P (r1, r2) = {(c1, c2)|c1 ∈ ζ(r1), c2 ∈ ζ(r2), and c1 �
c2 ∨ c2 � c1holds} is a set of related concept pairs between
r1 and r2, α(c1, c2) = leaf(c1) ∪ leaf(c2) and β(r1, r2) =⋃
c1∈ζ(r1),c2∈ζ(r2)

α(c1, c2). Intuitively, |α(c1,c2)|
|β(r1,r2)| is the weight

of (c1, c2), which indicates the influence of the semantic
similarity from each pair (c1, c2) of related concepts on
the semantic similarity of (r1, r2). When two records r1

and r2 are both interpreted to exactly the same concept
in a taxonomy tree, i.e., ζ(r1) = {c1} and ζ(r2) = {c2},
the semantic similarity between the records coincides with
the semantic similarity between their related concepts, i.e.,
sim(r1, r2) = sim(c1, c2) holds.

We thus have the following two propositions. Proposi-
tion 4.1 states that if a record r is interpreted to all concepts
represented by the child nodes of a concept c, then it is equal
to being interpreted as c directly. Proposition 4.2 states that
the semantic similarity of two records is 0 iff their concepts
are not related, i.e., there is no path between their concepts.

Proposition 4.1. If ζ(r1) = {c} and ζ(r2) = child(c), then
simS(r1, r2) = 1.

Proposition 4.2. simS(r1, r2) = 0 iff P (r1, r2) = ∅.

Example 4.5. Based on the semantic interpretation of the records
r1-r6 in Section 4.2, and the taxonomy tree depicted in Fig. 3,
we have simS(r1, r2) = 1/2 because ζ(r1) = {c4}, ζ(r2) =
{c3, c4}, P (r1, r2) = {(c4, c3), (c4, c3)}, simS(c4, c3) = 0,
simS(c4, c4) = 1 and thus simS(r1, r2) = ( 2

2 · 0) + ( 1
2 ·

1) = 1/2. Similarly, we can obtain simS(r3, r2) = 1/2,
simS(r1, r3) = 1, simS(r1, r5) = 0, simS(r2, r6) = 1/3
and simS(r1, r6) = simS(r5, r6) = 1/6.

4.4 Semantic Hashing

In order to efficiently analyze the semantic similarity of
records, we need to convert the semantic interpretation of
each record (i.e., a set of semantic concepts in taxonomy
trees) into a binary vector, called semhash signature, and
such semhash signatures should approximately preserve the
semantic similarity between records. For this, we develop
semhash functions in the following.

Given a set R of records that are interpreted in terms
of taxonomy trees T and CR =

∑
r∈R

ζ(r), a family of

semhash functions is defined in one-to-one correspondence
with a subset C ⊆ CT of concepts (i.e., semantic features of
interest) in T such that the following conditions are satisfied:

(1) Disjointness: ∀c1, c2 ∈ C (c1 6� c2 ∧ c2 6� c1)
(concepts in C are pairwise disjoint);

(2) Completeness: ∀c1 ∈ CR (leaf(c1) ⊆ C) (all concepts
that are related to records in R are in C);

(3) Non-emptiness: ∀c1 ∈ C∃c2 ∈ CR (c1 � c2) (each
concept in C is related to at least one record in R).

Each concept ci ∈ C corresponds to a semhash function gi
that takes a record r as input and produces 0 or 1 as output,
where 1 (resp. 0) indicates that r is related (resp. not related)
to ci. In doing so, we obtain the semantic signature G(r) =
[g1(r), g2(r), . . . , gn(r)] for each record r ∈ R after applying
the semhash functions G = {g1, . . . , gn}, and a semantic
signature matrix for all records. Algorithm 1 describes the
details of generating semhash signatures, which takes time
O(|R|+ |CT |) in the worse case.
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Input: a set R of records and a set T of taxonomy trees
Output: a semantic signature matrix M for R

(1) Select a subset C of concepts in T for semhash
functions G = {g1, . . . , g|C|};
(1.1) For each c ∈

∑
r∈R

ζ(r), add leaf(c) into C ;

(2) For each r ∈ R, check the concepts in ζ(r) w.r.t.
ci (i = 1, . . . , |C|) and do the following:

gi(r) =

{
1 if ∃c ∈ ζ(r).ci � c holds;
0 otherwise.

Algorithm 1: Generating semhash signatures

In accordance with the definition of semhash function,
we have the following proposition.

Proposition 4.3. Let G = {g1, . . . , gn} be the set of semhash
functions chosen for R, and simJ(v1, v2) be the Jaccard similar-
ity coefficient between two vectors v1 and v2 of the same length.
Then for any r1, r

′
1, r2, r

′
2 ∈ R, we have simJ(G(r1), G(r′1)) ≥

simJ(G(r2), G(r′2)) iff simS(r1, r
′
1) ≥ simS(r2, r

′
2).

Note that, it is possible to combine semhash and min-
hash functions [8] for generating semantic signatures. This
depends on how many semantic features are considered. In
practice, the number of semantic features is often relatively
small. Hence, we can use semhash functions to generate
semantic signatures directly.

5 SEMANTIC-AWARE LSH BLOCKING

In this section we propose a semantic-aware LSH blocking
framework, which incorporates semantic features into the
existing LSH techniques for ER blocking. Let d1 < d2 be two
distance values of a distance metric δ, and p1 and p2 be two
probabilities. Then a family H of functions is (d1, d2, p1, p2)-
sensitive over (R, δ) if, for any r1, r2 ∈ R and any h ∈ H ,
the following conditions are satisfied: (1) if δ(r1, r2) ≤ d1,
then Pr[h(r1) = h(r2)] ≥ p1; (2) if δ(r1, r2) ≥ d2, then
Pr[h(r1) = h(r2)] ≤ p2, where Pr[h(r1) = h(r2)] is the
probability of h(r1) = h(r2) [23]. Although a LSH family
can be established for any distance space (R, δ) [9], two
problems still remain:

(1) How does the robustness of a similarity metric affect
the effectiveness of LSH for blocking?

(2) How can LSH families for textual and semantic
distance spaces be integrated in an efficient way?

By Equation 1 and the notion of LSH family, we have
the following proposition that answers the first question.
Intuitively, it states that, for a distance metric that is γ-
robust, and two pairs of records from R whose difference
between the similarity values is at least γ, the probability of
hashing each pair into the same value correlates positively
to the likelihood of representing the same entity by the pair.

Proposition 5.1. Let H be a (d1, d2, p1, p2)-sensitive family
over (R, δ) and δ is γ-robust. Then for any r1, r2, r

′
1, r
′
2 ∈ R

and each h ∈ H , whenever δ(r1, r
′
1) ≤ d1, δ(r2, r

′
2) ≥ d2 and

d2 − d1 ≥ 1− γ hold, we have

Pr[e(r1) = e(r′1)] ≥ Pr[e(r2) = e(r′2)] if (6)

Pr[h(r1) = h(r′1)] ≥ Pr[h(r2) = h(r′2)].

For the second question, we will discuss it in Section 5.2.

5.1 LSH with Minhash Signatures
To measure the textual similarity of two records, a com-
monly used LSH technique is minhash functions [8]. Given
a set R of records, there are three main steps.

(1) Shingling: convert each record into a binary vector
in accordance with some selected attributes A of R.
Thus, a set {a1, . . . am} of q-grams [11] from the
values of A in all records is first collected, then each
record r is represented as a binary vector [v1, . . . , vm]
such that if a q-gram ai (i ∈ [1,m]) occurs in r, then
the value of vi is set to 1; otherwise it is 0.

(2) Minhashing: generate a signature vector (i.e., so-
called minhash signature) for each record using
minhash functions. For this, a number of min-
hash functions h1, h2, . . . , hn are used, where n is
much smaller than m, yielding a signature vector
[h1(r), h2(r), . . . , hn(r)] for each record r. In doing
so, records have small signatures that approximately
preserve textual similarity between them.

(3) Amplifying: control the locality sensitivity by dividing
the minhash functions h1, h2, . . . , hn into a number
l of hash tables of equal size k where l · k = n.
Since records whose minhash signatures agree in
one of such hash tables are placed into the same
block, this turns a (d1, d2, p1, p2)-sensitive family into
a (d1, d2, 1− (1−pk1)l, 1− (1−pk2)l)-sensitive family.

The following proposition states that such a LSH fam-
ily with minhash functions can ensure that two textually
identical records can always be hashed into the same block.
Meanwhile, two records that are textually dissimilar may
still be hashed into the same block although the probability
could be low, e.g., “deduplication” and “entity resolution”
are textually dissimilar but refer to the same problem.

Proposition 5.2. Let Ht be a LSH family with minhash func-
tions. Then, for any r1, r2 ∈ R and h ∈ Ht, we have:

(1) if simJ(r1, r2) = 1, then Pr[h(r1) = h(r2)] = 1, and
(2) if simJ(r1, r2) = 0, then Pr[h(r1) = h(r2)] ≥ 0.

5.2 Integrating Semhash Signatures
How should we develop a LSH blocking method that com-
bines textual and semantic similarity spaces for improving
the quality of blocks? Before exploring possible solutions, it
is important to note that textual and semantic features are
different in at least two aspects.

(1) Textual and semantic features are not equally sen-
sitive for identifying entities: (i) two records of the
same entity may have dissimilar textual representa-
tion but they are often semantically related with each
other, and (ii) two records whose textual representa-
tions are highly similar (e.g., records that have the
same title) are more likely to refer to the same entity
than two records whose semantic interpretations are
highly similar (e.g., records that are both journals).

(2) The dimensionality of semantic features is often rel-
atively small (i.e., range from several to hundreds),
while the dimensionality of their textual features can
be very large, e.g., 17, 576 for 3-grams and 456, 976
for 4-grams if only 26 characters are used.
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Fig. 4. An illustration of the semantic-aware LSH framework with minhash and semhash signatures

We need to cater for these differences when incorporat-
ing textual and semantic similarities into the LSH blocking.
Therefore, we propose the semantic-aware LSH blocking by
augmenting a LSH family for textual similarity with a w-
way semantic hash function. The key ideas are as follows.
Assume that, for a semhash function g ∈ G, the probability
of having the value 1 for a randomly chosen record is
pv , i.e., pv = Pr[g(r) = 1], and the probability that two
randomly chosen records r1 and r2 have the same value
in g is pe, i.e., pe = Pr[g(r1) = g(r2)]. We may assume
Pr[g(r1) = g(r2)] =

∑
gi∈G

Pr[gi(r1) = gi(r2)]/|G| if |G| is

sufficiently large. A LSH family Hg for semantic similarity
is a set of hash functions, each hg ∈ Hg being determined
by a semhash function g uniformly chosen at random from
G such that, hg yields true for two records r1 and r2 if both
records have the value 1 for g, and yields false otherwise.
The probability that two records have the true value for a
hash function hg ∈ F is thus pv ·pe. Based on Hg , two types
of w-way semantic hash functions can be constructed:

(1) A w-way AND function h[w,∧] is built upon w ran-
domly chosen functions {hg1, . . . , hgw} from Hg

such that h[w,∧](r1, r2) = true iff hg1(r1, r2)∧
· · · ∧ hgw(r1, r2) = true;

(2) A w-way OR function h[w,∨] is built upon w ran-
domly chosen functions {hg1, . . . , hgw} from Hg

such that h[w,∨](r1, r2) = true iff hg1(r1, r2)∨
· · · ∨ hgw(r1, r2) = true.

Let s′ = pv · pe, l be the number of hash tables, and k
be the number of hash functions in each hash table. Then
the probability that two records with the textual similarity
s and the semantic similarity s′ are placed into the same
block is 1 − (1 − sk · p)l, where p indicates the probability
that the augmented w-way semantic hash function for the
two records returns true, and is defined as:

p =

{
(s′)w if µ = ∧;

1− (1− s′)w if µ = ∨.

The following proposition states that, for any two
records that are semantically dissimilar, regardless of their
textual similarity, the collision probability of these two
records in a semantic-aware LSH family is always 0.

Proposition 5.3. LetHts be a semantic-aware LSH family. Then,
for any r1, r2 ∈ R and h ∈ Hts, we have:

(1) if simS(r1, r2) = 0, then Pr[h(r1) = h(r2)] = 0, and
(2) if simJ(r1, r2) = 1, then Pr[h(r1) = h(r2)] ≤ 1.
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Fig. 5. The collision probability of a w-way semantic hash function under
different semantic similarities s′, where w = 1, 2, . . . , 15 and µ ∈ {∧,∨}

Fig. 4.(a) provides a high-level illustration of the pro-
posed semantic-aware LSH blocking framework. Given a
set of records and several taxonomy trees as input, minhash
and semhash functions first generate minhash and semhash
signatures in terms of the textual and semantic similarities
among these records, respectively. Then, a number of blocks
are generated by combining the minhash and semhash
signatures. The quality of blocks can thus be improved by
leveraging both textual and semantic features.

Example 5.1. Consider our running example with the records
r1-r6 in Fig. 1 and the taxonomy trees tbib in Fig. 3. Suppose
that the minhash and semhash signatures of the records w.r.t.
tbib are presented in Fig. 4.(b), where one hash table of the LSH
family is constituted by h11, h12 and h13, and a 1-way OR
semantic function is built upon h22. According to the hash table
[h11, h12, h13], the records r1, r2, r4 and r6 are textually similar,
and would be hashed into the same block if only considering
textual similarity. However, when taking into account the 1-way
OR semantic function, we would have that r4 is not semantically
similar to r1, r2 and r6, and cannot be placed into the same blocks
with these records. Nevertheless, r1, r2 and r6 will be hashed into
the same block because they are both textually and semantically
similar (i.e., their values are the same in [h11, h12, h13] and their
values equal to 1 in h22).

5.3 Parameter Tuning
The parameter tuning of our semantic-aware blocking
method is primarily based on the similarity of records. For
this, we first need to select a list {A1, . . . , An} of attributes
used for ER blocking and similarity functions fi such that
fi(r1.Ai, r2.Ai) ∈ [0, 1] where 1 ≤ i ≤ n, and r1.Ai and
r2.Ai refer to the values of Ai in the records r1 and r2,
respectively. The selection of attributes and their similarity
functions is a general requirement for any ER methods
and has been well studied in previous works [11], [26].
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Thus, below we focus on discussing the parameters that are
specific to our method: (1) the number l of hash tables, (2) the
size k of hash tables (i.e., the number of minhash functions
per hash table), and (3) a w-way semantic hash function.

Generally, there are three steps for tuning the parame-
ters: (i) determine two similarity thresholds sh and sl w.r.t.
a desired error ratio ε, which correspond to the distance
values dh and dl previously discussed in Section 3 (i.e.,
sh = 1− dh and sl = 1− dl); (ii) determine the parameters
l and k based on sl and sh, and their desired collision prob-
abilities pl and ph; (iii) determine the parameter w based on
the quality of semantic features. For Step (i), we first need to
learn the probability density function fs(x) of true matches
over textual similarity from the training dataset. Then, by∫ sh
0 fs(x)d = ε, sh can be automatically determined given

a desired ε. Similarly, sl may be determined so that records
whose textual similarity is lower than sl are considered to
be in different blocks. For Step (ii), the desired probabilities
of sl and sh need to be decided. That is, the probability of
finding records whose textual similarity is greater than sh
is at least ph and the probability of finding records whose
textual similarity is less than sl is at most pl. Since the
probability of placing two records with a similarity s into
one block is 1 − (1 − sk)l, l and k can be automatically
determined based on the conditions l ≤ log1−skh

(1 − ph)
and l ≥ log1−skl

(1 − pl). For Step (iii), if the semantic
features are noisy, uncertain (i.e., semantic features of some
records are missing) or heterogeneous (different records of
the same entities may have different semantic features), a
w-way OR semantic function is preferred; otherwise, a w-
way AND semantic function may be chosen. The purpose
of adding a w-way semantic hash function is to filter out
true non-matches whose semantic similarities are less than
certain degree. Fig. 5 shows that the choice of the parameter
w amplifies the collision probability of semantically similar
records such that increasing w in a w-way AND function
lowers the probability and increasing w in a w-way OR
function increases the probability.

Note that, these parameters can be determined based
on a small training dataset. Nonetheless, the performance
of our method may be affected, which depends on how
close the similarity distribution of records in the training
dataset is to the similarity distribution of records in an entire
dataset.

6 EXPERIMENTS

We have implemented our semantic-aware LSH blocking
framework to investigate the following three questions:

(1) Blocking parameters: How effectively the parameters
of the semantic-aware LSH blocking can be de-
termined, in relating to the similarity distribution
of a training data set, and desired error ratio and
collision probabilities?

(2) Blocking quality: Can the semantic-aware LSH block-
ing yield blocks with better quality, in comparison to
the LSH blocking only over textual similarity space?
What are the effects of the incorporated semantic
hash functions on blocking quality under different
settings of w and µ? How do the proposed LSH

blocking methods perform in comparison with the
state-of-the-art blocking techniques?

(3) Blocking efficiency and scalability: How efficiently will
the semantic-aware LSH blocking be used for ER?
Does it support good scalability for constructing
blocks?

Our implementation code is written in Java. The exper-
iments were conducted on a server with 128 GBytes of
main memory and two 6-core Intel Xeon CPUs running
at 2.4 GHz. Nonetheless, for the data sets we used in our
experiments, up to 8 GBytes of memory were required.

Data sets. We used two real-world data sets in our exper-
iments: Cora3 and NC Voter [13]. The Cora data set con-
tains 1,879 machine learning publications, which is publicly
available, as well as its ground truth. The NC Voter data set
is a large voter registration data set from North Carolina,
USA. It contains more than 2 million records about voters’
information, such as first name, last name, gender and race.
We have extracted 292,892 records from the original data
set, in which 30,000 records with the ground truth labels
were used for the experiments on blocking quality, while
the whole set of records was used for the experiments on
blocking efficiency. The reason why we used 30,000 records
for the experiments on blocking quality is to facilitate the
comparison with the state-of-the-art blocking techniques
discussed in Christen’s survey paper [12]. When using the
whole set of records of NC Voter, some of these state-of-
the-art blocking techniques, e.g., threshold based string-map
blocking [25], were prohibitively slow to generate the blocks
in our experiment environment.

Evaluation measures. We used four common measures to
evaluate the quality of blocking: Pair Completeness (PC),
Pair quality (PQ), Reduction Ratio (RR) and F-Measure (FM)
[12], [17], [26]. Let B be the set of blocks generated by
applying a blocking method over records in R, P (S) =
{(t1, t2)|t1, t2 ∈ S, t1 6= t2}, Γ be a set of distinct pairs in
B (i.e., |Γ| = |

⋃
b∈B

P (b)|/2), Γtp be a set of distinct pairs in

Γ that represent the same entity, Γm be a collection of all
(possibly redundant) pairs in B (i.e., |Γm| =

∑
b∈B

|b|×(|b|−1)
2 ),

Ω be a set of all distinct pairs in the entire data set (i.e.,
|Ω| = |P (D)|/2), and Ωtp be a set of record pairs in Ω

that represent the same entity. Then we have: PC= |Γtp|
|Ωtp| ,

PQ= |Γtp|
|Γ| , RR=1− |Γ||Ω| and FM= 2×PC×PQ

PC+PQ . PC measures the
degree to which blocks retain true matches, PQ measures
the percentage of true matches in the pairs of the blocks, RR
measures the degree to which blocks reduce pair compar-
isons, and FM is the harmonic mean of PC and PQ.

6.1 Blocking Parameters

We calculated the Jaccard similarity distribution of the exact
values and q-grams with q=2, 3, 4 of true matches in the two
data sets. The textual similarity distributions of the Cora
and NC Voter data sets are shown in the upper-left and
upper-right subgraphs of Fig. 6, respectively. The textual
similarity distribution of the Cora data set was measured

3. http://www.cs.umass.edu/∼mccallum/
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Fig. 6. The textual similarity distribution under different q values, and the collision probability under different k and l values

TABLE 1
An example of patterns based on missing values in three attributes

journal, booktitle and institution from Cora

Patterns Attributes Conceptsjournal booktitle institution
1 NOT NULL NOT NULL NOT NULL C3, C4, C6

2 NOT NULL NOT NULL NULL C3, C4

3 NOT NULL NULL NOT NULL C3, C6

4 NOT NULL NULL NULL C3

5 NULL NOT NULL NOT NULL C4, C7, C8

6 NULL NOT NULL NULL C4

7 NULL NULL NOT NULL C7, C8

8 NULL NULL NULL C1

using the values of two attributes authors and title of the
publication records, while the textual similarity distribution
of the NC Voter data set was obtained according to the
values of two attributes first name and last name of the voter
records. Following the principle of deciding γ-robustness of
similarity metrics, we set q = 4 for the Cora data set, and
q = 2 for the NC Voter data set.

The parameters k and l for the Cora data set were de-
termined in terms of the collision probabilities shown in the
lower-left subgraph of Fig. 6 and an error ratio ε = 5%. By∫ sh
0 fs(x)d = ε as discussed previously, we have sh = 0.3.

Then l and k were tuned such that the collision probability
of records whose textual similarity is greater than 0.3 is
at least 40% under the error ratio 5%, and on the other
hand, to control the percentage of true non-matches in the
same block, we chose sl = 0.2 such that any records whose
textual similarity is less than 0.2 should only have less than
10% probability of being placed into the same block. The
distance between sl = 0.2 and sh = 0.3, together with the
required probabilities, determines k ≥ 4 and l ≥ 63 for
the Cora data set. Considering the time and space efficiency
of generating blocks, we chose k = 4 and l = 63. Our
experimental results confirm that these parameters yield the
desired results (i.e., the PQ value is best and the PC value is
close to the best among k = 1, . . . , 6, as will be illustrated
in Fig. 9). Analogously, we chose k = 9 and l = 15 for the
NC Voter data set. Because most of matches whose textual
similarity is greater than 0.8, the choice of k = 9 and l = 15

leads to at least 90% probability of placing two records
with 0.8 textual similarity into the same block. The collision
probabilities for k = 4, 5, 6, 7, 8, 9 and l = 15 are depicted
in the lower-right subgraph of Fig. 6.

6.2 Semantic Features
In our experiments over the Cora data set, we used the
bibliographic taxonomy tree shown in Fig. 3 and a semantic
function based on patterns of missing values to define the
semantic interpretation of records. As a result, we have 5 bit
semantic signature for each record in Cora. Table 1 presents
an example of such patterns, which consider missing values
in three attributes journal, booktitle and institution of Cora.
In practice, missing values may just be empty strings and
not necessarily be NULL. But for convenience of expression,
we use NULL and NOT NULL refer to missing values and
non-missing values, respectively. Take the second pattern in
Table 1 for example, it describes that if a record has values
in journal and booktitle but the value of institution is missing,
then this record is related to the concepts C3 and C4 in tbib.
The set of patterns described in Table 1 is also complete in
the sense that every record in Cora can be specified by one
of the patterns.

For the NC Voter data set, we built a taxonomy tree upon
the meta-data for race and gender, and defined a semantic
function based on the values in the attributes race and
gender, which have uncertain values like ‘u’. As a result,
we have a 12 bit semantic signature for each record in NC
Voter. Due to the existence of uncertain semantic features,
performing the semantic-aware LSH blocking is a trade-off
decision between PC, and the other two measures (i.e., PQ
and RR). The general idea is to increase the PQ and RR
values as much as possible, while maintaining the decrease
of the PC value within a tolerable range. The details are
further discussed in the rest of this section, along with
the comparison on blocking quality under different w-way
semantic hash functions.

6.3 Blocking Quality
We have conducted experiments to evaluate the quality of
blocking from four aspects: (1) comparison of using different
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Fig. 7. Experimental results for using different semantic hash functions over the Cora data set (H11: [w=2, µ = ∧]; H12: [w=1, µ = ∧ or µ = ∨];
H13: [w=2, µ = ∨]; H14: [w=3, µ = ∨]; H15: [w=4, µ = ∨]), where w indicates the number of randomly chosen hash functions, µ indicates the way
of constructing these hash functions, k = 4 and l = 63
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Fig. 8. Experimental results for using different semantic hash functions over the NC Voter data set (H21: [w=1, µ = ∧ or µ = ∨]; H22: [w=3, µ = ∨];
H23: [w=5, µ = ∨]; H24: [w=7, µ = ∨]; H25: [w=9, µ = ∨]), where w indicates the number of randomly chosen hash functions, µ indicates the way
of constructing these hash functions, k = 9 and l = 15

semantic hash functions; (2) comparison of using basic LSH
and semantic-aware LSH; (3) comparison of using different
taxonomy trees; (4) comparison with existing blocking tech-
niques.

6.3.1 Comparison of Semantic Hash Functions
We evaluated the effects of using different semantic hash
functions on the quality of blocking. Fig. 7 and Fig. 8 present
the results of incorporating five different semantic hash
functions into the LSH blocking for textual similarity over
the Cora and NC Voter data sets, respectively.

For both data sets, the PC values decrease when w
increases in the case µ = ∧, while the PC values increase
when w increases in the case µ = ∨. This is consistent with
the collision probability of semantic hash functions shown
in Fig. 5. For the PQ values, the two data sets have different
results in terms of the semantic hash functions used in our
experiments, which were due to the different characteristics
of the data sets, including their textual similarity distribu-
tions shown in Fig. 6 and semantic features. For the Cora
data set, the PQ values always increase when w increases
and µ = ∧, and decrease when w increases and µ = ∨.
This indicates that records with higher degrees of semantic
similarities mostly refer to true matches. For the NC Voter
data set, however, due to the significant amount of uncertain
values in race and gender, using semantic hash functions to
find records with higher semantic similarity may also lead
to the addition of non-matches into the same blocks, thus
decreasing the PQ values. The RR values have the same
trends in both data sets, i.e., slightly decreasing when the
collision probabilities of finding semantically similar records
increase. The RR values for the NC Voter data set also
indicate that RR is not an informative measure when a data
set is large and relatively clean. From the FM values in Fig.
7 and Fig. 8, we can conclude that, for both data sets, the
overall performance of PC and PQ goes stable when µ = ∨

and w is greater than 50% of the total number of semantic
signatures.

6.3.2 Comparison of LSH and SA-LSH
We conducted an experiment to compare the blocking qual-
ity of using the LSH blocking that only considers textual
similarity (written as LSH) and using the semantic-aware
LSH blocking (written as SA-LSH). Fig. 9 show the blocking
results of using LSH and SA-LSH methods over the Cora
and NC Voter data sets, respectively. For the SA-LSH meth-
ods in Fig. 9, we used the lowest threshold for semantic
similarity, i.e., two records are semantically similar if their
semantic similarity is greater than 1/5 in the Cora data set
(resp. 1/12 in the NC Voter data set).

In Fig. 9 (a), the PC values of LSH increase to 97% and
above when k increases to 3, and the PC values of SA-
LSH increase correspondingly but are lower than the PC
values of LSH. The gap between the PC values of LSH
and SA-LSH is correlated with the degree of noisiness in
semantic features. For example, by Fig. 9 (a), we know
that the semantic features of the Cora data set are noisy.
This is because some records in Cora do not comply with
any patterns in Table 1. In Fig. 9 (d), the PC values of
LSH and SA-LSH are the same. This is due to the fact
that the semantic features of the NC voter data set is not
noisy, although they may contain uncertain values. Fig. 9 (b)
and Fig. 9 (e) show that SA-LSH methods can considerably
improve the PQ values of LSH in both data sets, where Fig.
9 (b) uses a 0-1 scale and Fig. 9 (e) uses a 0-0.4 scale. For
the Cora data set, both LSH and SA-LSH methods have the
highest PQ value at k = 4. This is because the PC values
reach almost 1 at k = 4, and increasing k leads to reducing
true matches within the same blocks. For the NC Voter
data set, the SA-LSH methods always have the higher PQ
values when the k value increases. This is because that their
corresponding PC values are far below 1. We choose k = 4
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(f) Reduction Ratio (RR)

Fig. 9. Experimental results for comparing LSH and SA-LSH: (a)-(c) over the Cora data set, and (d)-(f) over the NC Voter data set, where LSH refers
to basic LSH only over textual similarity space, and SA-LSH refers to semantic-aware LSH over textual and semantic similarity spaces
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Fig. 10. Three variants of the bibliographic taxonomy tree tbib: (a) t(bib,1) (left), (b) t(bib,2) (center), and (c) t(bib,3) (right)

and l = 63 in Fig. 9 (a)-(c), and k = 9 and l = 15 in Fig.
9 (d)-(f), which experimentally verified the validity of our
choices on blocking parameters as discussed in Section 6.2.
For both data sets, SA-LSH methods have higher RR values
than the corresponding LSH methods. This is because SA-
LSH methods can eliminate pairs that are textually similar
but semantically dissimilar, whereas LSH methods fail to
filter out these pairs. Nevertheless, because the NC Voter
data set is large and relatively clean, the gap of the RR values
between LSH and SA-LSH is not obvious.

6.3.3 Comparison of Taxonomy Trees
To investigate the impacts of taxonomy trees on blocking
results, we conducted an experiment that takes into account
the variants of taxonomy trees, and compares their blocking
results. In particular, our focus was on examining how the
structural changes on a taxonomy tree (e.g., missing con-
cepts) may affect the quality of blocks. The experiment was
performed over the Cora data set with the same parameter
setting as described in Section 6.3.2, and we have used three
variants of taxonomy trees as described in Fig. 10.

Table 2 describes the impacts of applying SA-LSH on
the blocking results generated by LSH when using different
taxonomy trees t(bib,i) (i = 1, 2, 3). We can see that the PC
values always decrease and the PQ, RR and FM values al-
ways increase after incorporating semantic features into the
LSH blocking process. Nevertheless, for these three variants
(i.e., t(bib,1) removes Peer Reviewed and Non-Peer Reviewed
from tbib, t(bib,2) misses Book from tbib, and t(bib,3) misses
Journal from tbib), the decrease of the PC values is less than

TABLE 2
Experimental results for comparing the impact on blocks over Cora

using different taxonomy trees

Taxonomy trees
tbib t(bib,1) t(bib,2) t(bib,3)

PC -3.55±0.59 -3.32±0.30 -3.05±0.18 -3.02±0.21
PQ +24.75±3.91 +23.52±2.40 +23.23±2.80 +14.01±1.48
RR +2.24±0.54 +2.20±0.24 +2.07±0.31 +1.41±0.19
FM +16.26±3.42 +15.82±1.72 +15.40±2.17 +9.29±1.16

the decrease of the PC value using tbib. This is because the
records that are originally related to missing concepts have
been changed to relate with their parent concepts, which
increases the semantic relatedness among records and helps
capture true matches that were not semantically related in
tbib. In addition to this, the three variants of tbib also have
different impacts on PQ. For t(bib,1), it has a better PQ value
than t(bib,2) and t(bib,3). This is because some records in
Cora cannot be clearly identified as peer-reviewed or non-
peer-reviewed based on patterns of missing information, so
removing Peer Reviewed and Non-Peer Reviewed only slightly
decreases PQ. For t(bib,2) and t(bib,3), because the number
of records originally related to Book is much smaller than
the number of records originally related to Journal in tbib,
the PQ value of t(bib,2) is thus better than the PQ value of
t(bib,3). Compared with the results of only applying LSH,
the RR values of applying SA-LSH with t(bib,i) (i = 1, 2, 3)
generally increase. However, the degree of increases varies
in terms of missing concepts. In the case of more missing
concepts, more records become semantically related through
the parent concepts of missing concepts, regardless whether
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TABLE 3
The state-of-the-art blocking techniques used in our comparison

Blocking technique Abbrev. No. of parameter settings Time (sec) No. of candidate pairs
Cora NC Voter NC Voter (the best-performing setting for FM)

Traditional blocking [18] TBlo 1 1 0.9088 15,272
Array based sorted neighbourhood [21], [22] SorA 5 5 1.0097 29,999
Inverted index based sorted neighbourhood [10] SorII 5 5 1.1828 58,549
Adaptive sorted neighbourhood [41] ASor 8 8 2.4507 15,272
Q-gram based indexing [6] QGr 4 4 4.9046 15,288
Threshold based canopy clustering [32] CaTh 8 8 13.7577 15,333
Nearest neighbour based canopy clustering [10] CaNN 8 8 70.3243 151,804
Threshold based string-map blocking [25] StMT 32 30 2197.4365 132,896
Nearest neighbour based string-map blocking [1] StMNN 32 32 1662.5243 84,002
Suffix-array based blocking [2] SuA 6 6 1.7224 23,305
Suffix-array based blocking using all sub-strings [2] SuAS 6 6 2.2947 36,876
Robust suffix-array blocking [15] RSuA 48 48 3.6113 23,305
Locality-sensitive-hashing based blocking LSH 1 1 2.340 5,110
Semantic-aware locality-sensitive-hashing SA-LSH 1 1 3.872 3,565
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(d) Reduction Ratio (RR)

Fig. 11. Experimental results for comparing LSH and SA-LSH (k=9, l=15) with the state-of-the-art blocking techniques.

or not they represent the same entities.

6.3.4 Comparison to State-of-the-Art

We conducted an experiment to compare the quality of our
proposed blocking methods with the state-of-the-art block-
ing techniques discussed in Christen’s survey paper [12].
Table 3 depicts these state-of-the-art blocking techniques,
their abbreviations, the number of parameter settings that
were evaluated over the data sets, and the average time
taken for building blocks over NC Voter.

Following the experimental setup in [12], we used a
total of 163 parameter settings for Cora and 161 parameter
settings for NC Voter. The reason why NC Voter has a less
number of parameter settings than Cora is that 2 of the
163 parameter settings (i.e., StMT with the string similarity
bigram, thresholds {0.95/0.85, 0.9/0.8}, the grid size 1000
and mapping dimension 15) failed to generate any blocking
results over the NC Voter data set, but worked well over the
Cora data set. More specifically, a blocking key on authors
and title was defined for the Cora data set, and similarly, a
blocking key on first name and last name was defined for the
NC Voter data set. For SorA and SorII, the window size was
set to {2, 3, 5, 7, 10}. For ASor, RSuA, StMT and StMNN, the
string similarity functions Jaro-Winkler, bigram, edit-distance
and longest common substring [12] were used. For ASor,
RSuA and QGr, similarity thresholds were set to {0.8.0.9}.

For SuA, SuAS and RSuA, the minimum suffix length and
maximum block size were set to {3, 5} and {5, 10, 20},
respectively. For all blocking techniques using q-grams, q
was set to {2, 3}. For CaTh and CaNN, the Jaccard and TF-
IDF cosine similarities were used, in combination with the
thresholds {0.9/0.8, 0.8/0.7} for CaTh and {5/10, 10/20}
for CaNN. For StMT and StMNN, the grid size was set to
{100, 1000}, and the mapping dimension to {15, 20}. The
thresholds were set to {0.95/0.85, 0.9/0.8} for CaTh and
{5/10, 10/20} for CaNN. All blocking techniques presented
in Table 3 were implemented in Python.

Fig. 11 describes the experimental results of comparing
LSH and SA-LSH with the blocking techniques listed in
Table 3. For each blocking technique, the result with the
best-performing parameter setting is presented. We can see
that the FM values of LSH and SA-LSH are much better
than the others. The PQ values of LSH and SA-LSH are
higher than the others over both data sets, while a number of
blocking techniques such as CaNN, StMT and StMNN have
very low PQ values (less than 1%) for the NC Voter data set.
For the PC values, although LSH and SA-LSH performed
much better than the others over the Cora data set, their PC
values were slightly lower over the NC Voter data set. The
RR values of all blocking techniques are quite close.

We have conducted an experiment to verify how ef-
fectively using semantic features can improve the LSH
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blocking in comparison with the meta-blocking method
introduced in [37]. Four pruning algorithms (i.e., WEP, CEP,
WNP, and CNP) and five weighting schemes (i.e., ARCS,
CBS, ECBS, JS, and EJS) have been proposed in [37], and the
authors have implemented them in Java. Fig. 12 presents
the experimental results, where the result of each pruning
algorithm is taken from a weighting scheme with the highest
FM* value, and the parameter settings for SA-LSH are the
same as in Fig. 11. Note that, PQ*= |Γtp|

|Γm| is used in [37], which
is different from PQ used by us and some others [12], [26],
and accordingly, FM*= 2×PC×PQ∗

PC+PQ∗ . From Fig. 12, we can see
that WNP+JS and WEP+ARCS have the highest FM* values
for the Cora and NC Voter data sets, respectively. Thus,
the meta-blocking method performs better than SA-LSH in
terms of FM* values. Nevertheless, our experiments show
that SA-LSH has the highest PC value over Cora, and has the
same highest PC value with several combinations of prune
algorithms and weighting schemes over NC Voter.

6.4 Blocking Efficiency and Scalability
We have also performed experiments to explore: (a) the
efficiency of the LSH and SA-LSH methods in comparison
with other blocking techniques; (b) the scalability of the LSH
and SA-LSH methods in terms of the increasing numbers of
records in data sets. For the task (a), we used the same NC
Voter data subset as used in Section 6.3, which has 3,000
records. For the task (b), in addition to using the NC Voter
data subset in Section 6.3 and the full NC Voter data set with
292,892 records as test data sets, we also created another
six test data sets of different sizes which contain 10,000,
50,000, 100,000, 150,000, 200,000 and 240,000 records from
the full NC Voter data set, respectively. Then we ran our
experiments five times for each test data set, and took their
average runtime used in the blocking process.

In Table 3, the blocking time and number of candidate
pairs for each blocking technique were taken from the best-
performing result in the sense that its FM value is the
highest one among the results in all parameter settings. We
can see that the times vary significantly amongst the state-
of-the-art blocking techniques (i.e., from 0.9088 seconds for
TBlo to 2197.4365 seconds for StMT). The best-performing
results for both StMT and StMNN have the longest time to
build blocks. In comparison with these, the blocking times of
LSH and SA-LSH are 2.340 and 3.872 seconds, respectively,
which include the time for constructing the taxonomy tree
and building the semantic function (i.e., mappings from the
records in the NC Voter data set to the related concepts in
the taxonomy tree).

Fig. 13 presents the PC, PQ, RR and scalability results
of LSH and SA-LSH, in which the horizontal axis indicates
the sizes of data sets, and SF in Fig. 13 (d) refers to the
process of building the semantic function, including the
construction of the taxonomy tree. From Fig. 13 (a)-(c), we
can see that LSH and SA-LSH have almost same PC values,
which again indicates that the semantic features of these NC
Voter data sets are not noisy. Nevertheless, the PQ values
vary in different data sets, and the PQ values of SA-LSH are
always significantly higher than the PQ values of LSH. For
the RR values, both LSH and SA-LSH have the value 0.9999
over all data sets. Fig. 13 (d) presents the times required by
LSH and SA-LSH over data sets of different sizes, and their

corresponding times of constructing the taxonomy tree and
building the semantic function. Three dashed lines are the
trendlines added for indicating their scalability.

7 CONCLUSION

In this paper we have developed the semantic-aware LSH
blocking framework that takes into account both textual
and semantic similarities in the ER blocking process. Our
experimental results show that semantic information can be
leveraged to improve the blocking quality, and the integra-
tion of textual similarity and semantic similarity with the
LSH technique provides us an efficient and scalable blocking
technique for ER with improved quality.

In the future, we plan to extend our methods to han-
dling heterogenous data sets by leveraging context infor-
mation and knowledge reasoning tools within a network
environment. In particular, we will investigate the mining
and learning methods for discovering semantic features.
This task is important for increasing the applicability and
efficiency of our proposed semantic-aware LSH blocking
framework to real-world ER problems. We envision devel-
oping knowledge bases for given ER tasks, which contain
the semantic features discovered through the mining and
learning process.
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(a) Cora data set

Method Initial blocks Final blocks
PC PQ* Weight PC PQ* FM*

WEP

0.999 0.0497

JS 0.867 0.749 0.803
CEP EJS 0.188 0.933 0.313
WNP JS 0.921 0.368 0.526
CNP CBS 0.193 0.515 0.281
SA-LSH – 0.969 0.148 0.257

(b) NC Voter data set

Method Initial blocks Final blocks
PC PQ* Weight PC PQ* FM*

WEP

0.847 0.150

ARCS 0.800 0.504 0.618
CEP ARCS 0.847 0.152 0.258
WNP ARCS 0.842 0.111 0.196
CNP JS 0.802 0.244 0.374
SA-LSH – 0.847 0.360 0.505

Fig. 12. Experimental results for comparing SA-LSH and the meta-blocking method over: (a) Cora (left) and (b) NC Voter (right).
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Fig. 13. The PC, PQ, RR and time performance of LSH and SA-LSH (k=9, l=15) over the NC Voter data sets of different sizes.
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