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Long-Time Stability and Accuracy of the Ensemble Kalman–Bucy Filter for Fully
Observed Processes and Small Measurement Noise∗

Jana de Wiljes† , Sebastian Reich‡ , and Wilhelm Stannat§

Abstract. The ensemble Kalman filter has become a popular data assimilation technique in the geosciences.
However, little is known theoretically about its long term stability and accuracy. In this paper,
we investigate the behavior of an ensemble Kalman–Bucy filter applied to continuous-time filtering
problems. We derive mean field limiting equations as the ensemble size goes to infinity as well as
uniform-in-time accuracy and stability results for finite ensemble sizes. The later results require that
the process is fully observed and that the measurement noise is small. We also demonstrate that our
ensemble Kalman–Bucy filter is consistent with the classic Kalman–Bucy filter for linear systems
and Gaussian processes. We finally verify our theoretical findings for the Lorenz-63 system.

Key words. data assimilation, Kalman–Bucy filter, ensemble Kalman filter, stability, accuracy, asymptotic
behavior
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1. Introduction. In this paper, we consider the continuous-time filtering problem [Jaz70,
BC08] for diffusion processes of type

(1) dXt = f(Xt)dt+
√

2CdWt

and observations, Yt, given by

(2) dYt = h(Xt)dt+R1/2dBt.

Here Xt denotes the state variable of the Nx-dimensional diffusion process with Lipschitz-
continuous drift f : RNx → RNx and constant diffusion tensors D = CCT and C ∈ RNx×Nw .
The observations Yt are Ny-dimensional with forward map h : RNx → RNy and measurement
error covariance matrix R ∈ RNy×Ny . Finally, Wt ∈ RNw and Bt ∈ RNy denote independent

∗Received by the editors March 1, 2017; accepted for publication (in revised form) by E. Kostelich February 20,
2018; published electronically April 17, 2018.

http://www.siam.org/journals/siads/17-2/M111905.html
Funding: This research has been partially funded by Deutsche Forschungsgemeinschaft (DFG) through grant

CRC 1294 “Data Assimilation”, Project (A02) “Long-time stability and accuracy of ensemble transform filter algo-
rithms”.
†Universität Potsdam, Institut für Mathematik, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany (wiljes@

uni-potsdam.de).
‡Universität Potsdam, Institut für Mathematik, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam, Germany, and

University of Reading, Department of Mathematics and Statistics, Whiteknights, PO Box 220, Reading RG6 6AX,
UK (sreich@math.uni-potsdam.de).
§TU Berlin, Institut für Mathematik, Str. des 17. Juni 136, D-10623 Berlin, Germany (stannat@math.tu-berlin.

de).

1152

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/1

7/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 

http://www.siam.org/journals/siads/17-2/M111905.html
mailto:wiljes@uni-potsdam.de
mailto:wiljes@uni-potsdam.de
mailto:sreich@math.uni-potsdam.de
mailto:stannat@math.tu-berlin.de
mailto:stannat@math.tu-berlin.de


LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1153

Brownian motion of dimensions Nw and Ny, respectively. It is well known that the filtering
distribution πt, i.e., the conditional distribution in Xt for given observations Ys, s ∈ [0, t],
satisfies the Kushner–Zakai equation [Jaz70, BC08], which we write as an evolution equation
in the expectation values

(3) πt[g] =

∫
RNx

g(x)πt(x)dx

of smooth and bounded functions g : RNx → R, i.e.,

(4) dπt[g] = πt[f · ∇g]dt+ πt[∇ ·D∇g]dt+ (πt[gh]− πt[g]πt[h])TR−1 (dYt − πt[h]dt) .

In order to have a properly formulated filtering problem, we also have to specify the distribu-
tion at initial time t = 0.

Popular numerical methods for approximating solutions to (4) include direct finite-difference
or finite-element discretizations of (4) and sequential Monte Carlo methods, also called parti-
cle filters [BC08, DdFe01]. These methods lead to consistent approximations but are typically
restricted to low-dimensional problems. In recent years, particle filter methods have become
popular, which are applicable to higher-dimensional problems but are no longer consistent.
These include the ensemble Kalman filter (EnKF) [Eve06, LSZ15, RC15], which is now widely
used in the geosciences.

Abstractly spoken, particle filters are defined as follows. First, one defines M weighted
random variables Xi

t , called particles, which are i.i.d. at initial time t = 0 with distribution
π0, and weights wit ≥ 0 with wi0 = 1/M at initial time. A particle filter is then characterized
by appropriate evolution laws for the particles and the weights. Most known particle filters
lead to particles which remain identically distributed while no longer being independent,
so called interacting particle systems [Mor13]. If the weights are furthermore kept uniform
either through resampling or appropriately defined evolution equations, then expectation can
be taken with respect to the law πMt of the Mth particle and consistency of a particle filter
means that limM→∞ π

M
t [g]→ πt[g].

The classic bootstrap filter [AMGC02] uses (1) for the evolution of the particles and (2)
for the update of the weights in combination with an appropriate resampling strategy in order
to avoid the weights to degenerate. The EnKF, on the contrary, introduces modified evolution
equations for the particles which include the observations and keep the weights uniform in-
stead. Most available EnKF formulations are stated for discrete-in-time observations [Eve06].
While the robust behavior of EnKFs has been demonstrated for many applications primarily
arising from the geosciences, our theoretical understanding of their long-time stability and
accuracy is still rather limited. Large sample size limits have been, for example, investigated
in [GMT11, KM15] and it has been demonstrated that the EnKF converges to the classic
Kalman filter for linear systems (1), linear observations (2), and Gaussian initial conditions.
Using concepts from shadowing, [GTH13] showed that the EnKF is stable and accurate uni-
formly in time for hyperbolic dynamical systems provided the ensemble size is larger than the
dimension of the chaotic attractor. Stability and ergodicity of EnKFs have also been studied
in [TMK16]. The authors demonstrate that the extended system consisting of (1), (2), and
the filter algorithm possesses a unique ergodic invariant measure provided the existence of an
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1154 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

appropriate Lyapunov function can be guaranteed. While such ergodicity results of [MH12]
are important, they do not imply the accuracy of a filter. In fact, it is well known that EnKF
can diverge and techniques, such as ensemble inflation [Eve06], have been developed in order
to stabilize a filter. Furthermore, it has been rigorously demonstrated, for example, in [KLS14]
that a judicious choice of inflation can lead to uniform-in-time accurate state estimates. At
the same time, [KMT15] provides an example of catastrophic filter divergence, i.e., an expo-
nential blow-up of the ensemble systems, for a linear forward map h(x) = Hx with strongly
nonnormal operator H.

In this paper, we investigate a time-continuous EnKF formulation which is consistent with
the classic Kalman filter in the linear case and which is also stable and accurate uniformly in
time without additional ensemble inflation. In this first study, we will assume for simplicity
that the system is fully observable, i.e., h(x) = x in (2), and that the measurement errors are
small. These assumptions can be relaxed under appropriate assumptions on the stochastic
process (1) and the observation process (2), well known from the theory of classic Kalman
filter theory (i.e., observability and controlability) [Jaz70]. We will also investigate in future
work whether the proposed filter formulations can prevent catastrophic filter divergence for
strongly nonlinear and partially observed systems.

The specific ensemble Kalman–Bucy filter (EnKBF) formulation, which we will investigate
in this paper, is given by drawing M independent realizations (called particles or ensemble
members) Xi

0 ∼ π0, which then follow the system of differential equations

(5) dXi
t = f(Xi

t)dt+D(PMt )−1(Xi
t − x̄Mt )dt− 1

2
QMt R

−1 (h(Xi
t)dt+ h̄Mt dt− 2dYt

)
for t ≥ 0. These equations of motion for the particles are closed through the empirical
estimates

(6) x̄Mt =
1

M

M∑
i=1

Xi
t , PMt =

1

M − 1

M∑
i=1

(Xi
t − x̄Mt )(Xi

t − x̄Mt )T

and

(7) h̄Mt =
1

M

M∑
i=1

h(Xi
t), QMt =

1

M − 1

M∑
i=1

(Xi
t − x̄Mt )(h(Xi

t)− h̄Mt )T.

Finally, given a solution of (5), we define the empirical expectation values of a function g and
the empirical distribution π̂Mt by

(8) ḡMt := π̂Mt [g], π̂Mt (x) :=
1

M

M∑
i=1

δ(x−Xi
t) ,

respectively. Here δ(·) denotes the standard Dirac delta function. The formulation (5) has
been stated first in [BR10, BR12]. Alternative ensemble Kalman–Bucy formulations in-
clude stochastically perturbed formulations [Rei11, LSZ15, RC15] and the extended ensemble
Kalman–Bucy filter, whose exponential stability and propagation of chaos properties have
been studied in [DMKT16].
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1155

In case PMt is not invertible, which is surely the case for M ≤ Nx, the inverse of PMt
is replaced by its generalized inverse (PMt )+. This generalization is unproblematic from a
mathematical perspective since (PMt )+ gets multiplied by a vector which is in the range of
PMt , and we show that the equations are well-posed in section 2. At the same time it is known
that M � Nx often requires application of localization [Eve06, RC15] in order to obtain
a full rank approximation of the covariance matrix and to prevent filter divergence. The
impact of localization has been studied in [Ton17] from a rigorous mathematical perspective
for high-dimensional linear systems.

Given the evolution equations (5), one can derive associated evolution equations for the
ensemble mean, x̄Mt , and the ensemble covariance matrix, PMt . These are given by

(9) dx̄Mt = f̄Mt dt−QMt R−1(h̄Mt dt− dYt)

with f̄Mt = π̂Mt [f ] and

(10)

d

dt
PMt =

1

M − 1

M∑
i=1

{
(f(Xi

t)− f̄t)(Xi
t − x̄t)T + (Xi

t − x̄t)(f(Xi
t)− f̄t)T

}
+
{
D(PMt )+PMt + PMt (PMt )+D

}
−QMt R−1(QMt )T.

We will study the behavior of the EnKBF for fully observed processes, i.e., h(x) = x and
regular measurement error covariance matrix R in sections 2 and 3. More specifically, it is
shown in section 2 that strong solutions of (5) exist for all times and are unique. This result
implies that catastrophic filter divergence [KMT15] cannot arise under the setting considered
in this paper. Next, uniform-in-time stability and accuracy of (5) are proven in section 3 under
the additional assumption that R = εI, ε > 0, sufficiently small, and that M > Nx, i.e., the
empirical covariance matrix PMt is invertible. In sections 4 and 5, we return to the filtering
problem for general observation operator, h, and measurement error covariance matrix R. It
is demonstrated in section 4 that in the case of linear systems, (9) and (10) are consistent
with the classic Kalman–Bucy filtering equations [Jaz70].

Note that this does not imply that the empirical distribution of the extended EnKBF
is asymptotically normal. In fact, we will identify in section 5 its asymptotic distribution
for M → ∞. To this end we will prove in Theorem 16 that the ensemble Xi

t , 1 ≤ i ≤ M ,
converges as M → ∞ to independent solutions X̂i

t , i = 1, 2, 3, . . ., of the following McKean–
Vlasov equation:

(11) dX̂t = f(X̂t)dt+D(Pt)−1(X̂t − x̄t)dt−
1

2
QtR−1

(
h(X̂t)dt+ h̄tdt− 2dYt

)
,

with x̄t = π̂t[x], ht = π̂t[h],

(12) Pt = Cov (X̂t, X̂t), Qt = Cov (X̂t, h(X̂t)) .

Here π̂t denotes the distribution of X̂t.

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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1156 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

Using Itô’s formula, it is then easy to derive from (11) the weak formulation of the nonlinear
Fokker–Planck equation driving the distribution π̂t of X̂t

(13)

dπ̂t[g] = π̂t

[
∇g ·

{
fdt+DP−1t (x− π̂t[x])dt− 1

2
QtR−1(h(x)dt+ π̂t[h]dt− 2dYt)

}]
+ π̂t

[
1

2
∇ · QtR−1QT

t ∇g dt

]
.

Note the difference between (13) and the Kushner–Zakai equation (4).
Some numerical results, supporting our theoretical estimates, will be presented in section

6 using a stochastically perturbed Lorenz-63 system [Lor63, LSZ15].

2. Well-posedness of the ensemble Kalman–Bucy filter for fully observed processes.
In this section, we specify the problem setting which is investigated in detail in this paper.
We will also derive a first well-posedness result for the system (5)–(7) implying that the filter
is not subject to catastrophic filter divergence. More specifically, we assume that the process
is fully observed, i.e., h(x) = x, that the diffusion tensor D has full rank, and that the drift
function f is globally Lipschitz continuous. Since the ensemble size, M , will be fixed in this
section, we also drop the superscript M in (5). Hence (5) is replaced by

(14) dXi
t = f(Xi

t)dt+DP+
t (Xi

t − x̄t)dt−
1

2
PtR

−1 (Xi
tdt+ x̄tdt− 2dYt

)
,

i = 1, . . . ,M . The standard inner product in RNx will be denoted by 〈·, ·〉 and we recall that

(15) 〈a, b〉 = tr (baT).

Hence we quickly verify that

(16)
1

M − 1

M∑
i=1

〈Xi
t − x̄t, DP+

t (Xi
t − x̄t)〉 = tr (DP+

t Pt)

and

(17)
1

M − 1

M∑
i=1

〈Xi
t − x̄t, PtR−1(Xi

t − x̄t)〉 = tr (PtR
−1Pt) = ‖R−

1
2Pt‖2F.

Here ‖A‖F denotes the Frobenius norm of a matrix A. We also introduce the notation 〈A,B〉
= tr (BAT), i.e., ‖A‖2F = 〈A,A〉.

We now investigate the l2-norm of the ensemble deviations from the mean, i.e.,

(18) Vt =
1

M − 1

M∑
i=1

‖Xi
t − x̄t‖2,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1157

which satisfies the evolution equation

(19)

1

2

dVt
dt

=
1

M − 1

M∑
i=1

〈Xi
t − x̄t, f(Xi

t)− f̄t〉+
1

M − 1

M∑
i=1

〈Xi
t − x̄t, DP+

t (Xi
t − x̄t)〉

− 1

2ε

1

M − 1

M∑
i=1

〈Xi
t − x̄t, PtR−1(Xi

t − x̄t)〉

=
1

M − 1

M∑
i=1

〈Xi
t − x̄t, f(Xi

t)− f̄t〉+ tr (DP+
t Pt)−

1

2
‖R−

1
2Pt‖2F

=
1

M − 1

M∑
i=1

〈Xi
t − x̄t, f(Xi

t)− f(x̄t)〉+ tr (DP+
t Pt)−

1

2
‖R−

1
2Pt‖2F .

Here we have used

(20)
∑
i

〈Xi
t − x̄t, f(x̄t)− f̄t〉 = 0

and that the evolution equation (9) for the mean, x̄t, reduces to

(21) dx̄t = f̄tdt− PtR−1(x̄tdt− dYt)

in our setting.

Lemma 1. The Frobenius norm of Pt satisfies

(22)
1√
M
Vt ≤ ‖Pt‖F ≤ Vt .

Proof. We first note the following identity:

(23) ‖Pt‖2F =
1

(M − 1)2

∑
i,j

〈Xi
t − x̄t, X

j
t − x̄t〉2 .

For the proof of the upper bound it is now sufficient to observe that

(24)

1

(M − 1)2

∑
i,j

〈Xi
t − x̄t, X

j
t − x̄t〉2 ≤

1

(M − 1)2

∑
i,j

‖Xi
t − x̄t‖2‖X

j
t − x̄t‖2

=

(
1

M − 1

∑
i

‖Xi
t − x̄t‖2

)2

.

For the proof of the lower bound observe that

1

(M − 1)2

∑
i,j

〈Xi
t − x̄t, X

j
t − x̄t〉2 ≥

1

(M − 1)2

∑
i

‖Xi
t − x̄t‖4(25)

≥ 1

M

(
1

M − 1

∑
i

‖Xi
t − x̄t‖2

)2

.

This completes the proof.
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1158 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

Remark 2. We recall the standard relations between the Frobenius and the spectral norm
of a matrix A, i.e.,

(26) ‖A‖ ≤ ‖A‖F

and

(27) ‖A‖F ≤
√
Nx‖A‖ .

We are now ready to obtain uniform-in-time upper and lower bounds on Vt. First, we can
estimate the first term of (19) from above and from below as follows:

(28)
1

M − 1

∑
i

〈Xi
t − x̄t, f(Xi

t)− f(x̄t)〉 ≤ L+
1

M − 1

∑
i

‖Xi
t − x̄t‖2 = L+Vt

and

(29)
1

M − 1

∑
i

〈Xi
t − x̄t, f(Xi

t)− f(x̄t)〉 ≥ L−
1

M − 1

∑
i

‖Xi
t − x̄t‖2 = L−Vt,

respectively, where

(30) L+ := sup
x 6=y

〈f(x)− f(y), x− y〉
‖x− y‖2

L− := inf
x 6=y

〈f(x)− f(y), x− y〉
‖x− y‖2

are the upper and lower control on the “dissipativity” constant of f . We clearly have L+ ≤
‖f‖Lip and L− ≥ −‖f‖Lip for globally Lipschitz continuous f with Lipschitz constant ‖f‖Lip.
Provided Vt 6= 0, we also find that

(31) λmin(D) ≤ tr (DP+
t Pt) ≤ tr (D) .

Here, λmin(A) and λmax(A) denote the smallest and largest singular values of a matrix A,
respectively.

Finally, the third term in (19) can be estimated from above and from below using

(32) λmin(R−1)‖Pt‖2F = tr(Ptλ
min(R−1)Pt) ≤ tr(PtR

−1Pt) = ‖R−
1
2Pt‖2F

and
(33)

‖R−
1
2Pt‖2F = tr(PtR

−1Pt) ≤ tr(Ptλ
max(R−1)Pt) = λmax(R−1) tr(P 2

t ) = (λmin(R))−1‖Pt‖2F ,

which follow from the inequalities Ptλ
min(R−1)Pt ≤ PtR

−1Pt ≤ Ptλ
max(R−1)Pt, where ≤ is

meant in the sense of (symmetric) positive (semi-) definite matrices.
Inserting these estimates and the previous two identities into (19), we first obtain the

upper bound

(34)
1

2

dVt
dt
≤ L+Vt + tr (D)− λmin(R−1)

2M
V 2
t .
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1159

This implies that Vt ≤ max{V0, λmax(R)L+M+
√

(λmax(R)ML+)2 + 2λmax(R)M tr (D)} uni-
formly in t. Similarly, we obtain the lower bound

(35)
1

2

dVt
dt
≥ L−Vt + λmin(D)− λmax(R−1)

2
V 2
t ,

which implies that Vt ≥ min{V0, λmin(R)L−+

√
(λmin(R)L−)2 + 2λmin(R)λmin(D)} uniformly

in t and Vt > 0 provided V0 > 0.

Theorem 3. Assume that the drift term f in (1) is globally Lipschitz continuous and sat-
isfies a linear growth condition

(36) ‖f(x)‖ ≤ c̃1(1 + ‖x‖)

for an appropriate c̃1 > 0. Then the system (14) together with (6)–(7) possesses strong
solutions for all times t ≥ 0.

Proof. We can decompose the equations (14) into ordinary differential equations in Xi
t−x̄t,

i = 1, . . . ,M and (21) for the mean, x̄t. Since the l2-norm, Vt, remains bounded, the equations
in Xi

t − x̄t are well-posed. Furthermore, since ‖Pt‖ remains bounded as well, the combined
drift term in (21), written as

(37) dx̄t = f(x̄t)dt+ btdt− PtR−1(x̄tdt− dYt),

with bt = f̄t−f(x̄t), is Lipschitz continuous in x̄t and, hence, satisfies a linear growth condition,
i.e.,

(38) ‖f(x̄t) + bt − PtR−1x̄t‖ ≤ ‖f(x̄t)− PtR−1x̄t‖+ ‖f̄t − f(x̄t)‖ ≤ c̃2(1 + ‖x̄t‖)

for an appropriate c̃2 > 0, and, hence, strong solutions to (21) exist for all times [Øks00].

Remark 4. For the analysis of the asymptotic behavior of M →∞ the upper bound on Vt
is not sufficient, because it diverges as M →∞. However, since we need a control only locally
in time, we can use (34) to estimate 1

2
d
dtVt ≤ L+Vt + tr (D) which implies the upper bound

(39) Vt ≤ e2L+t

(
V0 +

tr (D)

L+

)
,

which becomes uniform in M (but, of course, not in t) if the particles at time t = 0 are chosen
with uniform upper bound on V0 = VM

0 .

3. Accuracy of the ensemble Kalman–Bucy filter for finite ensemble sizes and small
measurement noise. The goal of this section is to derive bounds on the estimation error

(40) et = Xref
t − x̄t,

where Xref
t denotes the reference trajectory of (1) which generated the data. We again restrict

the discussion to fully observed processes and globally Lipschitz-continuous drift functions f .
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1160 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

In addition, we assume the error covariance to be of the type R = εI with sufficiently small
ε > 0, implying

(41) dYt = Xref
t dt+

√
εdBt ,

and that PMt is invertible which necessitates that M > Nx. We drop the superscript M from
all relevant quantities throughout this section, as we are interested in the accuracy of the filter
for fixed ensemble size, M .

We find that the estimation error satisfies the evolution equation

(42) det = f(Xref
t )dt+

√
2CdWt − f̄tdt−

1

ε
Pt(etdt+ ε1/2dBt).

We introduce the squared estimation error norm Et = ‖et‖2/2 = 〈et, et〉/2. Then Ito’s formula
implies that

dEt = 〈f(Xref
t )− f̄t, Xref

t − x̄t〉dt−
1

ε
〈et, Ptet〉dt

+ 〈et,
√

2CdWt〉 −
1√
ε
〈et, PtdBt〉+ tr (D) dt+

1

2ε
tr(P 2

t ) dt ,(43)

which can be rewritten as

(44) dEt = Etdt+ dMt

with

Et = 〈Xref
t − x̄t, f(Xref

t )− f̄t〉 −
1

ε
〈et, Ptet〉+ tr (D) +

1

2ε
‖Pt‖2F(45)

and the martingale

Mt =

∫ t

0
〈es,−ε−1/2PsdBs +

√
2CdWs〉 , t ≥ 0 .

To make further progress we need bounds for the smallest and largest singular values
λmin
t = λmin(Pt) and λmax

t = λmax(Pt) of Pt, respectively. An upper bound for the largest
singular value has already been derived in section 2, since λmax

t = ‖Pt‖ ≤ ‖Pt‖F ≤ Vt. Since
Pt is assumed to be invertible, the explicit evolution equation for Pt reduces to

d

dt
Pt =

1

M − 1

∑
i

(f(Xi
t)− f̄(t))(Xi

t − x̄t)T + (Xi
t − x̄t)(f(Xi

t)− f̄(t))T + 2D − 1

ε
P 2
t .(46)

Next, we make use of the fact that Pt can be diagonalized, i.e., there are orthogonal matrices
Qt and diagonal matrices Λt such that

(47) Pt = QT
t ΛtQt.
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1161

While the orthogonal matrices Qt are, in general, only continuous in t, the diagonal matrix
of singular values can be chosen to be differentiable in t [Rel69]. As shown in [DE99], the
evolution equation for diagonal matrix of eigenvalues, Λt, is of the form

dΛt
dt

= diag (QtUtQ
T
t ) + 2diag (QtDQ

T
t )− 1

ε
Λ2
t(48)

with

(49) Ut :=
1

M − 1

∑
i

{
f(Xi

t)− f(x̄t)
}{

Xi
t − x̄t

}T
+
{
Xi
t − x̄t

}{
f(Xi

t)− f(x̄t)
}T

.

Here diag (A) denotes a diagonal matrix with diagonal entries equal to the diagonal of A.
More specifically, the diagonal entries of diag (QtUtQ

T
t ) are given by

(50)
(
diag (QtUtQ

T
t )
)
ii

= eTi QtUtQ
T
t ei,

where ei ∈ RNx denotes the ith basis vector in RNx .
Next, we derive the following estimate using the fact that f is globally Lipschitz continuous.

Then, given any unit vector v, it holds that

(51)

| 1

M − 1

∑
i

〈f(Xi
t)− f(x̄t), v〉〈Xi

t − x̄t, v〉|

≤

(
1

M − 1

∑
i

〈f(Xi
t)− f(x̄t), v〉2

) 1
2
(

1

M − 1

∑
i

〈Xi
t − x̄t, v〉2

) 1
2

≤ ‖f‖LipVt ≤ ‖f‖Lip
√
NxM‖Pt‖ ,

where we have used Vt ≤
√
NxM‖Pt‖.

Hence setting v = QT
t ei, we obtain

(52) |
(
diag (QtUtQ

T
t )
)
ii
| ≤ 2‖f‖Lip

√
NxM‖Pt‖ = 2‖f‖Lip

√
NxMλmax

t .

Since λmax
t = (Λt)ii for some index i, we hence deduce that

dλmax
t

dt
≤ 2‖f‖Lip

√
NxMλmax

t + 2λmax(D)− (λmax
t )2

ε
.(53)

This implies that

(54) λmax
t ≤ max

{
λmax
0 , ε‖f‖Lip

√
NxM +

√
ε2‖f‖2LipNxM + 2ελmax(D)

}
.

Hence we have shown the following lemma.

Lemma 5 (upper bound on spectral radius of Pt). There is a constant

(55) C1 = C1(‖f‖Lip,M,Nx, D, ε0)

such that λmax
0 ≤ C1ε

1/2 at initial time t = 0 implies λmax
t ≤ C1ε

1/2 for all times and all
ε ≤ ε0.
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1162 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

We now use our upper bound on λmax
t = ‖Pt‖2 from Lemma 5 in order to get the estimate

(56) |
(
diag (QtUtQ

T
t

)
)ii| ≤ 2L

√
NxMC1ε

1/2.

Hence, we deduce that

(57)
dλmin

t

dt
≥ −2‖f‖Lip

√
NxMC1ε

1/2 + 2λmin(D)− (λmin
t )2

ε

and

(58) λmin
t ≥ min{λmin

0 ,

√
2ελmin(D)− 2ε

3
2 ‖f‖Lip

√
NxMC1} ,

which implies the desired lower bound on λmin
t . Here λmin(D) denotes the smallest eigenvalue

of D. We now fix ε0 > 0 such that

(59) λmin(D)−
√
ε‖f‖Lip

√
NxMC1 > 0 .

Lemma 6 (lower bound on smallest singular value of Pt). There is a constant

(60) C2 = C2(‖f‖Lip,M,Nx, D, ε0)

such that λmin
0 ≥ C2ε

1/2 at initial time t = 0 implies λmin
t ≥ C2ε

1/2 for all t > 0 and all
ε ≤ ε0.

Remark 7. The upper and lower bounds for the largest and smallest, respectively, eigenvalue
of Pt depend on the ensemble size, M . This dependence can be eliminated for the price of the
estimates no longer being valid uniformly in time. We now derive such M -independent upper
and lower bounds. Let us assume that

(61) ‖f‖LipVs ≤ λmax(D)

for all s ∈ [0, t]. Such a bound can be found because of (39) and for ε sufficiently small,
i.e., ε ≤ εt. Then (53) implies that

(62) λmax
s ≤ 2 (λmax(D)ε)1/2

for all s ∈ [0, t] and all ε ≤ εt. Similarly, (57) implies that

(63) λmin
s ≥

(
2λmin(D)ε

)1/2
.

Hence we have traded the M -dependent constants C1 and C2 in the previous two lemmas by
M -independent constants C̃1 = 2λmax(D)1/2 and C̃2 = λmin(D)1/2, respectively. However, the
estimates hold for ε ≤ εt only, where the upper bound εt = εt(‖f‖Lip, D) decreases in time.

The upper and lower bounds of the eigenvalues of Pt obtained in the previous two lemmas
hold with constants C1 and C2 independent of the driving Wiener processes. They only
depend on the initial conditions (which might be random), but we can impose deterministic
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1163

bounds on the spectral radius of the covariance matrix. Hence we can take expectations on
both sides of (44) in order to obtain the following integral inequality:
(64)

E [Et] ≤ E [E0] +

∫ t

0
E [Es] ds ≤ E [E0]

+

∫ t

0
E

[
tr (D) +NxC

2
1 + 2ε1/4‖f‖LipC1/2

1 (NxM)1/4E1/2
s − 2

C2 − ε1/2‖f‖Lip
ε1/2

Es

]
ds ,

where we used

(65)

〈f(Xref
t )− f̄t, Xref

t − x̄t〉 = 〈f(Xref
t )− f(x̄t), X

ref
t − x̄t〉+ 〈f(x̄t)− f̄t, Xref

t − x̄t〉

≤ 2L+Et +
√

2‖f‖LipV 1/2
t E

1/2
t

≤ 2‖f‖Lip
(
Et + ε1/4C

1/2
1 (MNx)1/4E

1/2
t

)
.

The next step is to close the right-hand side in E[Es]. To this end, we first derive the following
ω-wise estimate:

(66)

Es ≤

(
tr (D) +NxC

2
1 + 2ε1/4‖f‖LipC1/2

1 (NxM)1/4E1/2
s − 2

C2 − ε1/2‖f‖Lip
ε1/2

Es

)

≤ C3 + ε1/4C4E
1/2
s − 2

C2 − ε1/2‖f‖Lip
ε1/2

Es

≤
(
C3 + ε

C2
4

C2

)
−
C2 − 2ε1/2‖f‖Lip

ε1/2
Es

=: Φ (Es)

for C3 = tr (D) + NxC
2
1 , C4 = 2‖f‖LipC1/2

1 (NxM)1/4, and a linear function Φ(Es). Taking
expectations and using E [Φ(Es)] = Φ (E[Es]) we arrive at the integral inequality

(67) E [Et] ≤ E [E0] +

∫ t

0
Φ (E [Es]) ds,

and we can now apply the Gronwall lemma or comparison techniques for integral inequalities.
More precisely, let α = ε−1/2(C2 − 2ε1/2‖f‖Lip) > 0, then the time-dependent Ito’s-formula
implies that

(68) eαtE [Et] ≤ E [E0] +

∫ t

0
eαs
(
C3 + ε

C2
4

C2

)
ds

and, hence,

(69) E [Et] ≤ e−αtE [E0] + α−1K

with K := C3 + ε
C2

4
C2

. Note that α−1 = O(ε
1
2 ). Hence we have shown the following theorem.
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1164 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

Theorem 8 (estimation error). If the measurement error variance ε is chosen sufficiently
small, the initial ensemble is chosen such that P0 is invertible and the bounds of Lemmas 5
and 6 are satisfied at initial time, then the mean squared estimation error is of order ε1/2

asymptotically in time.

Using Markov’s inequality the above estimate on the measurement error now yields for
fixed t the following estimate:

(70) P [Et ≥ cεq] ≤
1

cεq
E [Et] = O

(
ε1/2−q

)
.

In particular, for any q ∈ (0, 1/2) the estimation error Et = ‖et‖2/2 is of order O (εq) with
probability close to one. Note that this does not imply that for a given realization of the
EnKBF, the estimation error Et will be small all the time, i.e., that supt≥0Et (or maxt∈[0,T ]Et)
is of order O (εq) with probability close to one. This latter statement requires a pathwise
control, i.e., a (locally) uniform in time control of Et, which we will derive in the next step.
To this end note that (44) together with the inequality (66) imply the pathwise estimate

(71)

Et ≤ e−αtE0 +
K

α
(1− e−αt) +

∫ t

0
e−α(t−s) dMs

= e−αtE0 +
K

α
(1− e−αt) + e−αtMt + α

∫ t

0
e−α(t−s)(Mt −Ms) ds ,

hence

(72) sup
t≤T

Et ≤
(
E0 +

K

α

)
+ sup

t≤T

(
e−αt|Mt|+ α

∫ t

0
e−α(t−s)|Mt −Ms| ds

)
.

In order to control the third term, first note that the quadratic variation of the martingale is
given as

(73) 〈M〉t =

∫ t

0
ε−1‖Pses‖2 + 2‖Ces‖2 dr ,

so that

(74) 〈M〉t − 〈M〉s =

∫ t

s
ε−1‖Prer‖2 + 2‖Cer‖2 dr ≤ (C1 + 2)

∫ t

s
Er dr .

In the following let LT,δ := sup0≤s<t≤T |Mt−Ms|/ (〈M〉t − 〈M〉s)
1
2
−δ for δ ∈ (0, 12). Theorem

5.1 in [BY82] now implies for any γ ≥ 1 that there exists a finite constant Cδ,γ such that

(75) E [(LT,δ)
γ ]

1
γ ≤ Cδ,γE

[
〈M〉δγT

] 1
γ
.

Combining the last estimate with Theorem 8 we obtain for γδ ≤ 1 that

(76) E [(LT,δ)
γ ]

1
γ ≤ Cδ,γE

[
〈M〉δγT

] 1
γ ≤ Cδ,γE [〈M〉T ]δ ≤ Cδ,γ(C1 + 2)δE

[∫ T

0
Et dt

]δ
≤ Cε

δ
2

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/1

7/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1165

for some constant C, depending on γ, δ, T , C1 and on the bound on the mean squared error
obtained in Theorem 8. We can therefore estimate

(77)

E

[
sup
t≤T

e−αt|Mt|+ α

∫ t

0
e−α(t−s)|Mt −Ms| ds

]

≤ E

[
sup
t≤T

(
e−αt〈M〉

1
2
−δ

t + α

∫ t

0
e−α(t−s) (〈M〉t − 〈M〉s)

1
2
−δ ds

)
LT,δ

]

≤ (C1 + 2)E

[
sup
t≤T

(
e−αtt

1
2
−δ + α

∫ t

0
e−α(t−s)(t− s)

1
2
−δ ds

)
sup
t≤T

E
1
2
−δ

t LT,δ

]

≤ (C1 + 2)
Γ
(
3
2 − δ

)
α

1
2
−δ

E

[
sup
t≤T

E
1
2
−δ

t LT,δ

]
.

Applying Young’s inequality with p = 1
1
2
−δ and q = 1

1
2
+δ

we can further estimate the right-hand

side from above by

(78) (C1 + 2)
Γ
(
3
2 − δ

)
α

1
2
−δ

E

[
sup
t≤T

E
1
2
−δ

t LT,δ

]
≤
(

1

2
− δ
)
E

[
sup
t≤T

Et

]
+

C

α
1−2δ
1+2δ

E

[
L

1
1
2+δ

T,δ

]
,

for some finite constant C depending on C2 and δ. Taking expectation in (72) and using (76)
to estimate the third term gives

(79)

E

[
sup
t≤T

Et

]
≤
(
E [E0] +

K

α

)
+

(
1

2
− δ
)
E

[
sup
t≤T

Et

]
+

C

α
1−2δ
1+2δ

E

[
L

1
1
2+δ

T,δ

]

≤
(
E [E0] +

K

α

)
+

(
1

2
− δ
)
E

[
sup
t≤T

Et

]
+

C

α
1−2δ
1+2δ

ε
δ

1+2δ

with some different constant C. Under the assumptions of Theorem 8, in particular E [E0] =

O
(
ε

1
2

)
, and thus α−1 = O

(
ε

1
2

)
for ε ≤ ε0, ε0 sufficiently small, we can now find for any

η ∈
(
0, 14
)

a finite constant C such that

(80) E

[
sup
t≤T

Et

]
≤ Cε

1
2
−η .

In particular,

(81) P

[
sup
t≤T

Et ≥ cεq
]
≤ 1

cεq
E

[
sup
t≤T

Et

]
= O

(
ε1/2−η−q

)
,

which implies that for any q ∈ (0, 1/2) the estimation error Et = ‖et‖2/2 is of order O (εq)
uniformly on [0, T ] with probability close to one.
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1166 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

4. Consistency of the ensemble Kalman–Bucy filter for linear systems. In this section,
we provide a detailed analysis of the EnKBF in the case of linear model dynamics, i.e., f(x) =
Ax+b, linear forward map, i.e. h(x) = Hx, full rank diffusion tensor, D, and initial ensemble,
Xi

0, chosen such that PM0 is invertible. Then the EnKBF (5) reduces to

(82) dXi
t = (AXi

t +b)dt+D(PMt )−1(Xi
t− x̄Mt )dt− 1

2
PMt HTR−1

(
HXi

tdt+Hx̄Mt dt− 2dYt
)
,

i = 1, . . . ,M , from which we can extract the equation for the empirical mean, x̄t,

(83) dx̄Mt = Ax̄Mt dt+ bdt− PMt HTR−1(Hx̄Mt dt− dYt)

and the equation for the empirical covariance matrix, as defined in (6),

(84)
d

dt
PMt = APMt + PMt AT + 2D − PMt HTR−1HPMt

provided PMt has full rank. These equations correspond exactly to the classic Kalman–Bucy
filter formulas for the mean and the covariance matrix [Jaz70]. However, while one would set
PM0 and x̄M0 equal to the mean and the covariance matrix, respectively, of the given initial
Gaussian distribution N(x̄0, P0) in the classic Kalman–Bucy filter formulation, the PMt and
x̄Mt arise in our context from sampling from the initial distribution, i.e., Xi

0 ∼ N(x̄0, P0).

Remark 9. It is well known that solutions to (84) have full rank for all t > 0 even if the
initial PM0 is singular. However, note that (84) holds true only if PM0 is nonsingular and that
the diffusion induced contribution in (84) needs to be replaced by D(PMt )+PMt otherwise. This
discrepancy between the Riccati equation for the classic Kalman–Bucy filter and the EnKBF
is caused by our interacting particle approximation to the diffusion term in (1).

We will now investigate the asymptotic behavior of the EnKBF in the large ensemble size
limit. More specifically, we will show that the empirical distribution of the EnKBF converges
under appropriate conditions towards a distribution with mean and covariance determined
by the Kalman–Bucy filtering equations. Note that this does not imply that the empirical
distribution of the EnKBF converges to the conditional distribution πt given by the solution
of the Kushner–Zakai equation (4), but by the nonlinear Fokker–Planck equation (13) instead
as we will show in section 5.

Let us first state the following a.s. result on the asymptotic behavior of PMt .

Proposition 10. Let π0 be the initial distribution on RNx with finite second moments and
invertible covariance matrix with entries

(85) P̄0(k, l) = π0[xkxl]− π0[xk]π0[xl] ,

1 ≤ k, l ≤ Nx. Let Xi
0, i = 1, 2, . . ., be i.i.d. (π0), and let P̄t be the solution of the Kalman–

Bucy filtering equation (99) with initial condition P̄0. Then there exists a constant

(86) C̃ = C̃

(
t, A,D,HTR−1H, max

0≤s≤t
‖P̄s‖F, sup

M≥2
VM
0

)
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1167

such that

(87) ‖PMt − P̄t‖2F ≤ etC̃‖PM0 − P̄0‖2F ,

where VM
0 is defined by (18) with t = 0.

Note that the strong law of large numbers implies that supM≥2 V
M
0 <∞ π0-a.s.

Proof. Using the dynamical equations (84) for PMt and (99) for P̄t (which, of course,
coincides with (84)), we immediately obtain that

(88)

1

2

d

dt
‖PMt − P̄t‖2F ≤ 〈A(PMt − P̄t), PMt − P̄t〉+ 〈

(
PMt − P̄t

)
AT, PMt − P̄t〉

− 〈PMt HTR−1HPMt − P̄tHTR−1HP̄t, P
M
t − P̄t〉 .

Using

(89)

〈PMt HTR−1HPMt − P̄tHTR−1HP̄t, P
M
t − P̄t〉

= 〈PMt HTR−1H
(
PMt − P̄t

)
, PMt − P̄t〉+ 〈

(
PMt − P̄t

)
HTR−1HP̄t, P

M
t − P̄t〉

≤ ‖HTR−1H‖F
(
‖PMt ‖F + ‖P̄t‖F

)
‖PMt − P̄t‖2F,

we arrive at the following differential inequality:

(90)
1

2

d

dt
‖PMt − P̄t‖2F ≤

(
2‖A‖F + ‖HTR−1H‖F

(
‖PMt ‖F + ‖P̄t‖F

))
‖PMt − P̄t‖2F .

Integrating up the last inequality w.r.t. time t yields
(91)

‖PMt − P̄t‖2F ≤ exp

(
4t‖A‖F + ‖HTR−1H‖F

∫ t

0

(
‖PMs ‖F + ‖P̄s‖F

)
ds

)
‖PM0 − P̄0‖2F .

In the next step we will need a uniform in M upper bound on ‖PMt ‖F that holds (locally)
uniform w.r.t. time t. To this end first note that (39) implies

(92) ‖PMt ‖F ≤ VM
t ≤ et‖A‖F

(
VM
0 +

tr (D)

‖A‖F

)
,

thereby using L+ ≤ ‖A‖F. Since the solution P̄t of (99) is continuous, hence, also locally
bounded, we can estimate the exponential in (91) from above by

2t

(
2‖A‖F + ‖R−1‖F‖H‖2F

(
et ‖A‖F

(
VM
0 +

tr (D)

‖A‖F

)
+ max

0≤s≤t
‖P̄s‖F

))
which implies the assertion.

We can now state our main result on the asymptotic consistency of the ensemble Kalman
filter.
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1168 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

Theorem 11. Suppose that Xi
0, i = 1, 2, 3, . . ., are i.i.d. (π0) where the initial distribution

π0 has finite second-order moments and invertible covariance matrix (85). Let P̄t be the
solution of the Kalman–Bucy filtering equation (99) with initial condition P̄0, and let x̄t be
the unique solution of

(93) dx̄t = Ax̄t dt+ bdt− P̄tHTR−1 (Hx̄t dt− dYt)

with initial condition x̄0 := π0[x]. Then limM→∞ x̄
M
t = x̄t in L2, in particular in probability,

for all t ≥ 0.

Proof. Since Xi
0 are i.i.d., the strong law of large numbers implies that limM→∞ P

M
0 = P̄0

π0-a.s. and in L2, since π0 has finite second moments, thus limM→∞ P
M
t = P̄t a.s. and in L2

for t ≥ 0 due to Proposition 10.

To see that x̄Mt converges towards the unique solution x̄t of (93) note that

(94)
d
(
x̄Mt − x̄t

)
= A

(
x̄Mt − x̄t

)
dt−

(
PMt HTR−1Hx̄Mt − P̄tHTR−1Hx̄t

)
dt

+
(
PMt − P̄t

)
HTR−1 dYt

and, consequently,
(95)

‖x̄Mt − x̄t‖ ≤ ‖x̄M0 − x̄0‖+

∫ t

0

(
‖A‖F + ‖HTR−1H‖F‖P̄s‖F

)
‖x̄Ms − x̄s‖ds

+

∫ t

0
‖HTR−1H‖F‖PMs − P̄s‖F‖x̄Ms ‖ds+

∥∥∥∥∫ t

0

(
PMs − P̄s

)
HTR−1 dYs

∥∥∥∥ .
Taking expectations we arrive at

(96)

E
[
‖x̄Mt − x̄t‖

]
≤ E

[
‖x̄M0 − x̄0‖

]
+

∫ t

0

(
‖A‖F + ‖H‖2F‖R−1‖F‖P̄s‖F

)
E
[
‖x̄Ms − x̄s‖

]
ds

+

∫ t

0
‖H‖2F‖R−1‖FE

[
‖PMs − P̄s‖F

]
‖x̄Ms ‖ ds

+ E
[∥∥∥∥∫ t

0

(
PMs − P̄s

)
HTR−1 dYs

∥∥∥∥] .
Using limM→∞ E

[
‖PMt − P̄t‖2F

]
= 0 it follows that

(97) lim
M→∞

E
[∥∥∥∥∫ t

0

(
PMs − P̄s

)
HTR−1 dYs

∥∥∥∥] = 0

by dominated convergence, and then Gronwall’s lemma implies that limM→∞ E
[
‖x̄Mt − x̄t‖

]
=

0.

Remark 12. It is well known that if (A,H) is observable, i.e., rank
[
HT,

(HA)T, . . . , (HANx−1)T
]

= Nx, and (A,C) is controllable, i.e., rank
[
C,AC, . . . , ANx−1C

]
= Nx, then there exists a unique positive definite solution P∞ of the matrix Riccati equation

(98) 0 = AP∞ + P∞A
T + 2D − P∞HTR−1HP∞ ,
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1169

and the solution Pt of the matrix Riccati equation

(99)
d

dt
Pt = APt + PtA

T + 2D − PtHTR−1HPt ,

converges for any initial condition P0 towards P∞ as t → ∞ with exponential rate λ < λ∗,
where

(100) λ∗ := inf{−Re(λ) | λ eigenvalue of A− P∞HTR−1H} .

(See [KS72, Theorem 4.11], and [OP96, Lemma 2.2].)
Now recall that we have assumed in sections 2 and 3 that h(x) = x, i.e., H = I, and that

D = CCT has full rank. In other words, we have assumed a restricted case of (nonlinear)
controllability and observability. It would be of interest to explore, in as far the conditions of
sections 2 and 3 can be relaxed while maintaining the well-posedness, stability, and accuracy
of the associated EnKBF.

5. Asymptotic limiting equations for the extended EnKBF. In this section, we will
derive the non-Markovian stochastic differential equation (11) with (12) of McKean–Vlasov
type. We first have to show now that (11) is well-posed. To this end we assume that f , h
are globally Lipschitz continuous and that the initial condition X̂0 has finite second moments
with invertible covariance matrix P0. Recall that—given Xt = Xref

t —the observation process
Yt can be interpreted as Brownian motion with covariance operator R and drift term h(Xref

t ),
so that we can solve (11) uniquely up to the first time τ where Pτ becomes singular. Clearly,
τ > 0 a.s. (w.r.t. the distribution of {Ys}). Using Itô’s formula, it is then straightforward to
see that the distribution π̂t of X̂t indeed satisfies the nonlinear Fokker–Planck equation (13)
(up to time τ).

5.1. Lower bounds on λmin(Pt) and well-posedness of (11). We will prove in Lemma
15 a strictly positive lower bound on the smallest eigenvalue λmin(Pt) of Pt locally uniformly
w.r.t. t, a.s. w.r.t. the distribution of {Ys}, under appropriate assumptions on the coefficients
f, h,D, and R. This implies, in particular, that Pt will stay invertible for all t, a.s. and yields
existence and uniqueness of a strong solution of (11) for all times t (for typical observation
{Ys}). On the other hand, using the algebraic identity

(101) (PMs )−1 − P−1s = (PMs )−1
(
Ps − PMs

)
P−1s ,

we also obtain the following control:

(102) ‖(PMs )−1 − P−1s ‖2 ≤ C(t)2‖Ps − PMs ‖2 , s ≤ t ,

for the distance between the inverse covariance matrix of the EnKBF and Pt. Here, C(t) is a
joint upper bound of ‖P−1s ‖2 and ‖(PMs )−1‖2 (uniform in M) for s ≤ t.

To this end let us first state the dynamical equations for the mean x̄t and the covariance
matrix Pt (analogous to (9) and (10) for the EnKBF):

(103) dx̄t = f̄t dt−QtR−1
(
h̄t dt− dYt

)
, t < τ ,
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1170 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

with f̄t = E
[
f(X̂t)

]
and

(104)
d

dt
Pt = E

[
(f(X̂t)− f̄t)(X̂t − x̄t)T + (X̂t − x̄t)(f(X̂t)− f̄t)T

]
+ 2D −QtR−1QT

t , t < τ .

Lemma 13. We have that

(105)
1√
Nx

E
[
‖X̂t − x̄t‖2

]
≤ ‖Pt‖F ≤ E

[
‖X̂t − x̄t‖2

]
, t ≤ τ .

Proof. Similar to the proof of Lemma 1, we have the following.

Upper bound:

(106)

‖Pt‖2F =
∑
k,l

E
[(
X̂t − x̄t

)
(k)
(
X̂t − x̄t

)
(l)
]2

≤
∑
k,l

E
[(
X̂t − x̄t

)2
(k)

]
E
[(
X̂t − x̄t

)2
(l)

]
= E

[
‖X̂t − x̄t‖2

]2
.

Lower bound:

(107) ‖Pt‖2F =
∑
k,l

E
[(
X̂t − x̄t

)
(k)
(
X̂t − x̄t

)
(l)

]2
≥
∑
k

E
[(
X̂t − x̄t

)2
(k)

]2
.

Lemma 14. For all t < τ there exists some finite constant C4(t)—independent of {Ys}—
such that

(108) sup
0≤s≤t

E
[
‖X̂s − x̄s‖2

]
≤ C4(t) .

Proof. The difference X̂t − x̄t satisfies the ordinary differential equation

(109)
d

dt

(
X̂t − x̄t

)
=
(
f(X̂t)− f̄t

)
+DP−1t

(
X̂t − x̄t

)
− 1

2
QtR−1

(
h(X̂t)− h̄t

)
up to time τ so that for t < τ

(110)

d

dt
E
[
‖X̂t − x̄t‖2

]
= 2E

[
〈f(X̂t)− x̄t, X̂t − x̄t〉

]
+ 2E

[
〈DP−1t

(
X̂t − x̄t

)
, X̂t − x̄t〉

]
− E

[
〈QtR−1

(
h(X̂t)− h̄t

)
, X̂t − x̄t〉

]
≤ 2L+E

[
‖X̂t − x̄t‖2

]
+ 2 tr (D),

thereby using

(111) E
[
〈QtR−1

(
h(X̂t)− h̄t

)
, X̂t − x̄t〉

]
= ‖R−1/2QT

t ‖2F ≥ 0 .
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1171

This implies the same bound

(112) Var (X̂t) := E
[
‖X̂t − x̄t‖2

]
≤ e2L+t

(
E
[
‖X̂0 − x̄0‖2

]
+

tr (D)

L+

)
as stated in Remark 4 for the EnKBF for h(x) = x; therefore,

(113) sup
0≤s≤t

Var (X̂s) = sup
0≤s≤t

E
[
‖X̂s − x̄s‖2

]
≤ C4(t)

for some finite constant C4(t) depending on t. Note that C4(t) clearly is independent of
{Ys}.

Lemma 15. Let ‖f‖2Lip < 2λmin(D)‖R−1‖F‖h‖2Lip. If

(114) λmin(P0) ≥ κ− :=
2λmin(D)‖R−1‖F‖h‖2Lip − ‖f‖2Lip

2‖R−1‖2F‖h‖4LipC4(t)
,

where C4(t) is the upper bound (108) obtained in Lemma 14, then λmin(Ps) ≥ κ− for all
s < τ ∧ t. In particular, τ > t.

Proof. We will use the representation λmin(Pt) = inf‖v‖=1〈Ptv, v〉. So fix v with ‖v‖ = 1.
Then

(115)
d

dt
〈Ptv, v〉 = 2E

[
〈f(X̂t)− f̄t, v〉〈X̂t − x̄t, v〉

]
+ 2〈Dv, v〉 − 〈R−1QT

t v,QT
t v〉 .

Using

(116) 〈Ptv, v〉 = E
[
〈X̂t − x̄t, v〉2

]
and

(117)

〈R−1QT
t v,QT

t v〉 = 〈R−1E
[
(h(X̂t)− h̄t)〈X̂t − x̄t, v〉

]
,E
[
(h(X̂t)− h̄t)〈X̂t − x̄t, v〉

]
〉

≤ ‖R−1‖FE
[
‖h(X̂t)− h̄t‖2

]
E
[
〈X̂ − x̄t, v〉2

]
≤ ‖R−1‖F‖h‖2Lip Var

(
X̂t

)
〈Ptv, v〉 ,

we can estimate
(118)

d

dt
〈Ptv, v〉 ≥ −2‖f‖Lip Var(X̂t)

1
2 ‖v‖〈Ptv, v〉

1
2 + 2〈Dv, v〉 − ‖h‖2Lip‖R−1‖FVar(X̂t)〈Ptv, v〉

≥ −2‖f‖LipC4(t)
1/2〈Ptv, v〉

1
2 + 2〈Dv, v〉 − ‖h‖2Lip‖R−1‖FC4(t)〈Ptv, v〉

≥ 2λmin(D)−
‖f‖2Lip

‖R−1‖F‖h‖2Lip
− 2‖h‖2Lip‖R−1‖FC4(t)〈Ptv, v〉 .

Now λmin(P0) ≥ κ− implies that 〈P0v, v〉 ≥ κ− and thus 〈Psv, v〉 ≥ κ− for all s < τ ∧ t. Hence
λmin(Ps) ≥ κ− > 0 for all s < τ ∧ t so that τ > t, since otherwise lims↑τ λ

min(Ps) = 0.

The lower bound on λmin(Pt), locally uniformly w.r.t. t, implies that the coefficients of
(11) are globally Lipschitz on bounded time-intervals, which gives existence and uniqueness
of strong solutions by standard results for all t, a.s. (w.r.t. the distribution of {Ys}).
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1172 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

5.2. Convergence of the extended EnKBF to the solution of (11). We are now ready
to state our main result on the asymptotic behavior of the extended EnKBF.

Theorem 16. Assume that ‖f‖2Lip < 2λmin(D)‖R−1‖F‖h‖2Lip. Let π0 be a distribution on

RNx with finite support and invertible covariance matrix P0 satisfying λmin(P0) ≥ κ−, where
κ− is as in Lemma 15. Let X̂i

t be solutions of the mean-field process (11) with initial conditions
X̂i

0 = Xi
0 and Xi

0 are i.i.d. (π0), so that the solutions X̂i
t to the mean field processes are i.i.d.,

too. Then

(119) lim
M→∞

E

[
1

M

M∑
i=1

‖Xi
t − X̂i

t‖2
]

= 0 .

In particular,

(120) lim
M→∞

1

M

M∑
i=1

g(Xi
t)− π̂t[g] = 0

in L2(P), hence in probability, for any Lipschitz continuous function g. Here, the expectation
is taken also w.r.t. the distribution of {Ys}.

Remark 17. The last theorem implies by general theory that the empirical distribution π̂Mt ,
defined in (8), of the extended EnKBF with M ensemble members converges weakly towards
the distribution π̂t of the mean field process (11) in probability w.r.t. the distribution of {Ys}.

Remark 18. The conditions of Theorem 16 are satisfied for fully observed processes h(x) =
x, measurement error covariance matrix R = εI, ε > 0 sufficiently small, and full rank
diffusion tensor D, i.e., for the filtering setting considered in sections 2 and 3.

Proof of Theorem 16. Itô’s formula implies that
(121)

d

(
1

M

M∑
i=1

‖∆Xi
t‖2
)

=
2

M

M∑
i=1

〈f(Xi
t)− f(X̂i

t),∆X
i
t〉 dt

+
2

M

M∑
i=1

〈D
(
(PMt )−1

(
Xi
t − x̄Mt

)
− P−1t

(
X̂i
t − x̄t

))
,∆Xi

t〉dt

− 1

M

M∑
i=1

〈QMt R−1
(
h(Xi

t) + h̄Mt
)
−QtR−1

(
h(X̂i

t) + h̄t
)
,∆Xi

t〉dt

+
2

M

M∑
i=1

〈
(
QMt −Qt

)
R−1 dYt,∆X

i
t , 〉

+
1

M
tr
( (
QMt −Qt

)
R−1

(
QMt −Qt

)T )
dt

= I + · · ·+ V ,

with the abbreviation ∆Xi
t = Xi

t − X̂i
t . Our aim is to estimate the right-hand side of (121)

in terms of 1
M

∑M
i=1 ‖Xi

t − X̂i
t‖2 and then to apply the Gronwall inequality. This requires,
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LONG-TIME BEHAVIOR OF THE ENSEMBLE KALMAN FILTER 1173

in particular, controlling the stochastic integral IV w.r.t. the observation {Ys}. Using the
decomposition dYt = h(Xref

t ) dt+R1/2dBt we can split up the stochastic integral IV into

(122)

2

M

M∑
i=1

〈
(
QMt −Qt

)
R−1dYt,∆X

i
t〉 =

2

M

M∑
i=1

〈
(
QMt −Qt

)
R−1h

(
Xref
t

)
,∆Xi

t〉dt

+
2

M

M∑
i=1

〈
(
QMt −Qt

)
R−1/2dBt,∆X

i
t〉

= IV a+ IV b .

We can now estimate the right-hand side of the above equation for t ≤ T from above as
follows:

(123)

d

(
1

M

M∑
i=1

‖Xi
t − X̂i

t‖2
)
≤ UM (t)

(
1

M

M∑
i=1

‖Xi
t − X̂i

t‖2 +RM (t)

)
dt

+
2

M

M∑
i=1

〈
(
QMt −Qt

)
R−1/2dBt, X

i
t − X̂i

t〉,

thereby keeping the stochastic integral IV b. Here,

(124)

UM (t) = CT

(
1 +

∥∥∥h(Xref
0:T

)∥∥∥2
∞

+
1

M

M∑
i=1

‖X̂i
t‖2
)

×

(
1 +

1

M

M∑
i=1

‖Xi
t − x̄Mt ‖2 +

1

M

M∑
i=1

‖X̂i
t − x̄t‖2

)
,

with some finite constant CT , and a remainder RM (t) that converges to zero in Lp(P) as
M →∞ for all finite p.

Indeed, this is obvious for term I, using that f is globally Lipschitz, for terms III, IVa, and
V using (133) in Lemma 19 in the appendix and for term II it follows from (131) in Lemma
19 in the appendix in combination with (102).

Applying Itô’s product formula to the process e−
∫ t
0 UM (s)ds 1

M

∑M
i=1 ‖Xi

t − X̂i
t‖2 and taking

expectations w.r.t. the distribution of {Ys}, we arrive at the following estimate:

(125) E

[
e−
∫ t
0 UM (s)ds 1

M

M∑
i=1

‖Xi
t − X̂i

t‖2
]
≤ CTE

[∫ t

0
e−
∫ s
0 UM (r)drUM (s)RM (s)ds

]

for t ≤ T . Since UMRM is bounded by some finite constant plus some power of 1
M

∑M
i=1 ‖X̂i

t‖2
and the latter one has some finite exponential moment by Lemma 21, it follows that

(126) lim
M→∞

E

[
e−αT

∫ t
0

1
M

∑M
i=1 ‖X̂i

s‖2ds 1

M

M∑
i=1

‖Xi
t − X̂i

t‖2
]

= 0 , t ≤ T ,

c© 2018 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d 

08
/1

7/
18

 to
 1

34
.2

25
.1

09
.1

20
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

C
C

B
Y

 li
ce

ns
e 



1174 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

for some αT > 0. Now, using Lemma 21 again, we also may now conclude that
(127)

lim
M→∞

E

[
1

M

M∑
i=1

‖Xi
t − X̂i

t‖

]2
≤ sup

M≥2
E
[
eαT

∫ t
0

1
M

∑M
i=1 ‖X̂i

s‖2ds
]

× lim
M→∞

E

[
e−αT

∫ t
0

1
M

∑M
i=1 ‖X̂i

s‖2ds 1

M

M∑
i=1

‖Xi
t − X̂i

t‖2
]

= 0

for all t ≤ T .

6. Numerical example. We consider the stochastically perturbed Lorenz-63 system [Lor63,
LSZ15], which leads to Nx = 3, D = C = I3, and drift term given by

(128) f(x) =

 10(x2 − x1)
(28− x3)x1 − x2
x1x2 − 8

3x3

 ,

where x = (x1, x2, x3)
T. Solutions of the Lorenz-63 system diverge exponentially fast and

filtering is required in order to track a reference solution. Although (128) is only locally
Lipschitz continuous, the results from this paper are likely to be applicable to the Lorenz-63
system due to the existence of a Lyapunov function.

We apply the EnKBF with ensemble size M = 4 for values of the measurement error
variances ε ∈ {10−1, . . . , 10−4, 10−5}. The stochastic evolution equations of the EnKBF are
solved by the following modified Euler-Maruyama scheme
(129)

Xi
n+1 = Xi

n + ∆tf(Xi
n) + ∆t(PMn )−1(Xi

n− x̄Mn )− 1

2
PMn

(
PMn +

ε

∆t
I3

)−1(
Xi
n + x̄in − 2

∆Yn
∆t

)
with step-size ∆t = 0.00005 over a total of 107 time-steps. Note that

(130)
(
PMn +

ε

∆t
I3

)−1
≈ ∆t

ε
I3

for ∆t sufficiently small and the modification is introduced for numerical stability reasons.
See [AKIR14] for more details.

The results can be found in Figures 1 and 2. The numerical results are in agreement
with our theoretical findings, which predicted an O(ε1/2) behavior of these quantities. While
this scaling holds for the time-averaged mean squared error and the time-averaged largest
eigenvalue of PMt for the whole range of considered values of ε, the time-averaged smallest
eigenvalue truncates slightly off for the larger values of ε. We can also see that there is a gap
between the smallest and largest eigenvalues of PMt on average.

We repeated the experiment for ensemble sizes of M = 2 and M = 3, in which case PMt is
singular. We still find that the time-averaged mean squared error is roughly of O(ε1/2). See
Figure 3. The results are in line with those obtained in [GTH13] for hyperbolic dynamical
systems. We will further investigate the theoretical properties of the EnKBF under singular
PMt in a separate paper.
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Figure 1. Reference trajectory (left panel) and time-averaged mean squared error as a function of the
measurement error variance ε (right panel).
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Figure 2. Time-averaged largest (left panel) and smallest (right panel) eigenvalues of Pt as a function of
the measurement error variance ε

7. Conclusions. In this paper, we have taken the first steps towards an understanding of
the long-time behavior of the EnKBF and have derived limiting mean-field equations. Natural
extensions include partially observed processes and configurations which lead to singular em-
pirical covariance matrices PMt . We also plan to extend our analysis to other ensemble filter
algorithms, such as the stochastically perturbed EnKBF and the ensemble transform particle
filter. See, for example, [RC15] for more details.

Appendix: Supplement to the proof of Theorem 16. The purpose of this appendix is
to provide two lemmata on the control of ‖PMt − Pt‖F and on the existence of exponential
moments of

∫ t
0

1
M

∑M
i=1 ‖X̂i

s‖2ds used in the proof of Theorem 16.
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Figure 3. Time-averaged mean squared error as a function of the measurement error variance ε for ensemble
sizes M = 2 (left panel) and M = 3 (right panel).

Lemma 19. We have that

(131) ‖PMt − Pt‖F ≤ 2Σ(t)

(
1

M − 1

∑
i

‖Xi
t − X̂i

t‖2
) 1

2

+RM (t)

with limM→∞RM (t) = 0 a.s. and in L1(P). Here

(132) Σ(t) :=

(
1

M − 1

∑
i

‖Xi
t − x̄Mt ‖2

) 1
2

+

(
1

M − 1

∑
i

‖X̂i
t − x̄t‖2

) 1
2

.

Similarly,

(133) ‖QMt −Qt‖F ≤ 2(1 + ‖h‖Lip)Σ(t)

(
1

M − 1

∑
i

‖Xi
t − X̂i

t‖2
) 1

2

+ SM (t)

with limM→∞ SM (t) = 0 a.s. and in L1(P).

Remark 20. Note that the factor Σ(t) is locally bounded in t due to Lemma 14 and an
appropriate generalization of Lemma 4.
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Proof of Lemma 19. First, note that we can decompose

(134)

PMt − Pt =
1

M − 1

M∑
i=1

(
Xi
t − x̄Mt

) (
Xi
t − x̄Mt

)T − E
[(
X̂t − x̄t

)(
X̂t − x̄t

)T]

=
1

M − 1

M∑
i=1

(
Xi
t − x̄Mt −

(
X̂i
t − x̄t

)) (
Xi
t − x̄Mt

)T
+

1

M − 1

M∑
i=1

(
X̂i
t − x̄t

)(
Xi
t − x̄Mt −

(
X̂i
t − x̄t

))T
+

1

M − 1

M∑
i=1

(
X̂i
t − x̄t

)(
X̂i
t − x̄t

)T
− E

[(
X̂t − x̄t

)(
X̂t − x̄t

)T]
= I + II + III.

In particular, ‖PMt − Pt‖F ≤ ‖I‖F + ‖II‖F + ‖III‖F. Term I can be estimated from above by
(135)

‖I‖F ≤

(
1

M − 1

M∑
i=1

‖Xi
t − x̄Mt −

(
X̂i
t − x̄t

)
‖2
)1/2(

1

M − 1

M∑
i=1

‖Xi
t − x̄Mt ‖2

)1/2

≤

( 1

M − 1

M∑
i=1

‖Xi
t − X̂i

t‖2
)1/2

+

√
M

M − 1
‖xMt − x̄t‖

( 1

M − 1

M∑
i=1

‖Xi
t − x̄Mt ‖2

)1/2

≤

2

(
1

M − 1

M∑
i=1

‖Xi
t − X̂i

t‖2
)1/2

+

√
M

M − 1

∥∥∥∥∥ 1

M

M∑
i=1

X̂i
t − E

[
X̂i
t

]∥∥∥∥∥


×

(
1

M − 1

M∑
i=1

‖Xi
t − x̄Mt ‖2

)1/2

.

Similarly,

(136)

‖II‖F ≤

2

(
1

M − 1

M∑
i=1

‖Xi
t − X̂i

t‖2
)1/2

+

√
M

M − 1

∥∥∥∥∥ 1

M

M∑
i=1

X̂i
t − E

[
X̂i
t

]∥∥∥∥∥


×

(
1

M − 1

M∑
i=1

‖X̂i
t − x̄t‖2

)1/2

.

Finally,
(137)

‖III‖F =

∥∥∥∥∥ 1

M

M∑
i=1

(
X̂i
t(X̂

i
t)

T − E
[
X̂i
t(X̂

i
t)

T
])

+
1

M(M − 1)

(
X̂i
t − x̄t

)(
X̂i
t − x̄t

)T∥∥∥∥∥
F

≤

∥∥∥∥∥ 1

M

M∑
i=1

(
X̂i
t(X̂

i
t)

T − E
[
X̂i
t(X̂

i
t)

T
])∥∥∥∥∥

F

+
1

M

∥∥∥∥∥ 1

M − 1

M∑
i=1

(
X̂i
t − x̄t

)(
X̂i
t − x̄t

)T∥∥∥∥∥
F

.
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Adding up all terms we arrive at the estimate

(138) ‖PMt − Pt‖F ≤ 2Σ(t)

(
1

M − 1

M∑
i=1

‖Xi
t − X̂i

t‖2
)1/2

+RM (t)

with the remainder

(139) RM (t) = Σ(t)

√
M

M − 1

∥∥∥∥∥ 1

M

M∑
i=1

X̂i
t − E

[
X̂i
t

]∥∥∥∥∥+ ‖III‖F .

The strong law of large numbers now implies that limM→∞RM (t) = 0 in a.s. and in L1(P).
The proof of the second estimate is done similarly.

Lemma 21. Let X̂i
t , 1 ≤ i ≤ M , M ≥ 2, be the solution of (11) with initial conditions

i.i.d. (π0) and suppose that π0 has bounded support contained in a ball with radius K. Then
for all T > 0 there exist δ0 > 0 and κ0 > 0 depending on T , but independent of M , such that

(140) E
[
eδ0

∫ t
0

1
M

∑M
i=1 ‖X̂i

s‖2ds
]
≤ e2κ0

(
K2

M
+‖h(Xref

0:T )‖2∞
)
< +∞ ∀ t ≤ T .

Here, the expectation is taken also w.r.t. the distribution of {Ys}.

Proof. First, note that Itô’s formula and (11) imply that

(141)

d

(
1

M

M∑
i=1

‖X̂i
t‖2
)

=
2

M

M∑
i=1

〈f
(
X̂i
t

)
, X̂i

t〉dt+
2

M

M∑
i=1

〈DP−1t
(
X̂i
t − x̄t,

)
, X̂i

t〉dt

− 1

M

M∑
i=1

〈QtR−1h
(
X̂i
t

)
, X̂i

t〉dt−
1

M

M∑
i=1

〈QtR−1h̄t, X̂i
t〉dt

+
2

M

M∑
i=1

〈X̂i
t ,QtR−1dYt〉+

1

M
tr
(
QtR−1Qt

)
dt .

Using Lipschitz continuity of f and h and the Lemmata 14 and 15, the right-hand side can
be estimated from above for t ≤ T by

(142) C(T )

(
1 +

1

M

M∑
i=1

‖X̂i
t‖2
)

+
2

M

M∑
i=1

〈X̂i
t ,QtR−1dYt〉

for some uniform constant C(T ). Since dYt = h
(
Xref
t

)
dt+R−1/2dBt we can further estimate

from above for t ≤ T

(143) C(T )

(
1 +

∥∥∥h(Xref
t

)∥∥∥2 +
1

M

M∑
i=1

‖X̂i
t‖2
)

+
2

M

M∑
i=1

〈X̂i
t ,QtR−1/2dBt〉
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for some possibly different constant C(T ). Itô’s product rule now implies for α := 1 + C(T )
and t ≤ T

(144)

d

(
e−αt

1

M

M∑
i=1

‖X̂i
t‖2
)
≤ e−αtC(T )

(
1 +

∥∥∥h(Xref
t

)∥∥∥2) dt− e−αt
(

1

M

M∑
i=1

‖X̂i
t‖2
)

dt

+ e−αt
2

M

M∑
i=1

〈X̂i
t ,QtR−1/2dBt〉 ,

which implies that

(145)

∫ t

0
e−αs

1

M

M∑
i=1

‖X̂i
s‖2ds ≤

1

M

M∑
i=1

‖X̂i
0‖2 + C(T )

(
1 +

∥∥∥h(Xref
0:T

)∥∥∥2
∞

)

+

∫ t

0
e−αs

2

M

M∑
i=1

〈X̂i
s,QtR−1/2dBs〉 .

To simplify notation in the following, let

(146) Mt :=

∫ t

0
e−αs

2

M

M∑
i=1

〈X̂i
s,QtR−1/2dBs〉

and observe that the quadratic variation 〈M〉t can be estimated from above by

(147)

〈M〉t =
4

M2

M∑
i=1

∫ t

0
e−2αs‖R−1/2QTs X̂i

s‖2ds

≤
4‖R−1/2‖2F‖h‖2LipC(T )2

M

∫ t

0
e−αs

1

M

M∑
i=1

‖X̂i
s‖2ds ,

using

(148) ‖Qs‖2F ≤ ‖h‖2LipE
[
‖X̂s − x̄s‖2

]
≤ ‖h‖2LipC(T )2

and Lemma 14. The assumption on the initial condition now implies for δ > 0

(149)

E
[
eδ
∫ t
0 e
−αs 1

M

∑M
i=1 ‖X̂i

s‖2 ds
]
≤ eδ

(
K2

M
+C(T )

(
1+‖h(Xref

0:T )‖2∞
))
E
[
eδMt

]
≤ eδ

(
K2

M
+C(T )

(
1+‖h(Xref

0:T )‖2∞
))
E
[
e2δ

2〈M〉t
]1/2

≤ eδ
(
K2

M
+C(T )

(
1+‖h(Xref

0:T )‖2∞
))

× E

[
e2δ

4‖R−1/2‖2F‖h‖
2
LipC(T )2

M
δ
∫ t
0 e
−αs 1

M

∑M
i=1 ‖X̂i

s‖2ds

]1/2
,
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1180 JANA DE WILJES, SEBASTIAN REICH, AND WILHELM STANNAT

thereby using the inequality

(150)
E
[
eδMt

]
= E

[
e

1
2(2δMt−2δ2〈M〉t)e

1
2(2δ2〈M〉t)

]
≤ E

[
e2δMt−2δ2〈M〉t

]1/2
E
[
e2δ

2〈M〉t
]1/2

= E
[
e2δ

2〈M〉t
]1/2

.

Hence for δ0 > 0 with

(151) δ0
8‖R−1/2‖2F‖h‖2LipC(T )2

M
< 1

it follows that
(152)

E
[
eδ0

∫ t
0 e
−αs 1

M

∑M
i=1 ‖X̂i

s‖2ds
]
≤ e2δ0

(
K2

M
+C(T )

(
1+‖h(Xref

0:T )‖2∞
))
< e

2κ0
(
K2

M
+‖h(Xref

0:T )‖2∞
)
< +∞

for a suitable κ0 > 0.
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