
RESEARCH ARTICLE

An in-vivo pilot study into the effects of FDG-

mNP in cancer in mice

Omer Aras1*, Gillian Pearce2, Adam J. Watkins3,4, Fuad Nurili1, Emin Ilker Medine1,5, Ozge

Kozgus Guldu5, Volkan Tekin5, Julian Wong6, Xianghong Ma4, Richard Ting7,

Perihan Unak5, Oguz Akin1

1 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of

America, 2 School of Engineering and Applied Sciences, Aston University, Birmingham, United Kingdom,

3 Aston Research Centre for Healthy Ageing, School of Life and Health Sciences, Aston University,

Birmingham, United Kingdom, 4 Division of Child Health, Obstetrics and Gynaecology, School of Medicine,

Queen’s Medical Centre, University of Nottingham, Nottingham, United Kingdom, 5 Department of Nuclear

Applications, Institute of Nuclear Sciences, Ege University, Izmir, Turkey, 6 Division of Vascular &

Endovascular Surgery, Department of Cardiac, Thoracic & Vascular Surgery, National University Heart

Centre, Singapore, Singapore, 7 Molecular Imaging Innovations Institute (MI3), Department of Radiology,

Weill Cornell Medicine, New York, New York, United States of America

* araso@mskcc.org

Abstract

Purpose

Previously, fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNPs) injected

into cancer cells in conjunction with the application of magnetic hyperthermia have shown

promise in new FDG-mNPs applications. The aim of this study was to determine potential

toxic or unwanted effects involving both tumour cells and normal tissue in other organs

when FDG-mNPs are administered intravenously or intratumourally in mice.

Materials and methods

FDG-mNPs were synthesized. A group of six prostate-tumour bearing mice were injected

with 23.42 mg/ml FDG-mNPs (intravenous injection, n = 3; intratumoural injection into the

prostate tumour, n = 3). Mice were euthanized and histological sampling of tissue was con-

ducted for the prostate tumour, as well as for lungs, lymph nodes, liver, kidneys, spleen, and

brain, at 1 hour (n = 2) and 7 days (n = 4) post-injection. A second group of two normal (non-

cancerous) mice received the same injection intravenously into the tail vein and were eutha-

nised at 3 and 6 months post-injection, respectively, to investigate if FDG-mNPs remained

in organs at those time points.

Results

In prostate-tumour bearing mice, FDG-mNPs concentrated in the prostate tumour, while rel-

atively small amounts were found in the organs of other tissues, particularly the spleen and

the liver; FDG-mNP concentrations decreased over time in all tissues. In normal mice, no

detrimental effects were found in either mouse at 3 or 6 months.
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Conclusion

Intravenous or intratumoural FDG-mNPs can be safely administered for effective cancer

cell destruction. Further research on the clinical utility of FDG-mNPs will be conducted by

applying hyperthermia in conjunction with FDG-mNPs in mice.

Introduction

The global cancer burden is growing and cancer now causes more deaths than all coronary

heart disease or all stroke. In 2012 there were 14.1 million newly diagnosed cancer cases (exc-

luding non-melanoma skin cancer) worldwide with 8.2 million cancer-related deaths [1]. In

spite of many years of research at high financial cost, a definitive treatment or cure for cancer

presently remains beyond our reach. Although treatments have been developed for cancer,

e.g., radiotherapy and chemotherapy, these are not without their problems and patients con-

tinue to suffer from detrimental side effects. Many of these side effects arise on account of the

highly toxic nature of the chemotherapeutic agents used in the course of the cancer treatment.

It has also been established that in the course of time, cancer cells could develop resistance to

chemotherapeutic agents used in the treatment of cancer [2, 3]. Furthermore, some types of

cancer appear to remain incurable with current radiotherapy and chemotherapy approaches

[4]. Clearly, there is scope and potential for new approaches to the treatment of cancer.

Cancer cells all appear to have one distinguishing feature, namely a higher metabolic rate.

On account of their fast reproductive rate, they consume glucose at a higher rate than normal

cells. This phenomenon is known as the Warburg effect. Cancer cells have a higher rate of glu-

cose uptake with respect to normal cells via the mechanism of glycolysis, which results in the

production of adenosine triphosphate through the process of oxidative phosphorylation. This

effect was lately demonstrated in many cancer types including neuroblastoma [5].

Previous studies including experimental kinds have involved the investigation of the effi-

cacy of magnetic nanoparticles (mNPs) used in conjunction with chemotherapeutic drugs [6,

7]; several have also studied the effect of this approach on cancer destruction when hyperther-

mia is applied, showing higher efficacy depending on the temperature and duration of heating

[8]. This phenomenon is known as magnetic fluid hyperthermia, whereby the sensitisation of

the cancer cells prior to radiotherapy may increase cancer destruction [9–11]. These previous

studies frequently involved the use of iron oxide containing mNPs on account of their biocom-

patibility and low toxicity properties [9–13]. More recent studies have involved the application

of radiofrequency (RF) fields to magnetic nanoparticles that are bound on membrane recep-

tors. RF fields have been associated with dissipation of heat via mNPs, facilitating the destruc-

tion of tumour cells. The results indicate that cellular signalling mechanisms are involved in

cell apoptosis when the temperature of the cancer cell reaches 42˚C [14, 15].

In one of our previous in vitro studies [12], we synthesized fludeoxyglucose (FDG) conjugated

with iron oxide particles specifically as a Positron Emission Tomography-Magnetic Resonance

Imaging (PET-MRI) hybrid compound for potential multimodality medical applications. MCF 7

human breast cancer cells in this study had a higher metabolic rate than normal cells; as such they

were able to readily take up the glucose analogue present in our FDG-mNPs which produced

apoptotic effects on the cancer cells. Recently, another in vitro pilot study we conducted using a

neuroblastoma cell line showed that when FDG-mNPs were injected into these cancer cells and

when magnetic hyperthermia was applied, 89% of the cancer cells were destroyed [14, 16]. Safe

frequencies of hyperthermia for use in human tissues have been long established [5, 17, 18]. Thus,

the present study is an in vivo investigation aimed at discovering if there are potentially any toxic
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or unwanted effects involving both the tumour cells and other organs in mice when FDG-mNPs

are injected intravenously or intratumourally, without the application of hyperthermia.

Materials and methods

Synthesis of mNPs

Synthesis of mNPs was performed as previously described [12] and chemical structure is shown

in Fig 1. Briefly, 2 M FeCl3 (Fluka, Istanbul, Turkey) was combined with 80 mM Na2SO3 (Merck)

prior to the addition of 25% NH3 solution (Merck) under nitrogen gas. After 30 minutes heating

at 70 oC, the particles were washed with a water–ethanol (2:1) mixture and re-suspended in 80%

ethanol. The particles were mixed with tetraethyl orthosilicate for 12 hours at 40 oC and washed

with methanol prior to incubation with (3-aminopropyl) triethoxysilane (APTES, Sigma, USA)

12 hours at 60 oC with rapid stirring.

Separately, solutions of mannose triflate (Fluka, Istanbul, Turkey) and cysteamine (2-aminoe-

tanethiol; Sigma, Istanbul, Turkey) were prepared in water, mixed heated for 1 hour at 90 oC,

precipitated and dried overnight prior to dissolving in dimethyl formamide (Merck). Next, solu-

tions of Kryptofix (Merck), K2CO3 (Fluka, Istanbul, Turkey) dimethyl formamide (Merkc) and

NaF (Merck) were added to 1 ml of the prepared mannose triflate-cysteamine and heated for 20

minutes at 90 oC. The product was purified by sequential passing through a Dowex 50 cation

exchange resin column (Sigma, USA), Ambersep 900 quaternary ammonium anion exchange

resin (Fluka), Amberlite anion exchange resin (Sigma) and finally a C18 pre-cartridge (Sigma,

USA). The purified NaF substituted mannose triflate-cysteamine was mixed with the mNPs

prior to the addition of N-Hydroxysuccinimide (Merck) and mixing for 2 hours.

For the labelling of mNPs with indocyanine green (ICG), the mNPs were mixed with car-

bonyl diimidazole and N-Hydroxysuccinimide for 15 minutes at room temperature prior to

the addition of ICG solution (Sigma, USA) and a further 15 minutes mixing at room tempera-

ture. Finally, mercaptoethanol (Sigma, USA) was added to the reaction mixture for 2 hours at

room temperature prior to washing and storage in phosphate buffer saline (PBS) at 4 oC. ICG

labelled FDG-mNPs were checked for excitation and emission spectra at 780 nm 820 nm

respectively and eluted in 60% acetonitrile (in distilled water).

In vivo analysis of ICG-conjugated FDG-mNP tissue distribution

All mice and experimental procedures were conducted using protocols approved by and in

accordance with the Weill Cornell Medical Center Institutional Animal Care and Use Com-

mittee and were consistent with the recommendations of the American Veterinary Medical

Association and the National Institutes of Health Guide for the Care and Use of Laboratory

Animals.

Six nude mice (female, weight 20–25 gram) with prostate tumours were used in group 1 by

injection of 1.0 × 106 of PC3 cells into right flank region subcutaneously. Tumours were mea-

sured weekly until volume exceeded>0.5 cm. Animals were anesthetized with gas isoflurane

at 2% concentration mixed with medical grade oxygen. Three mice were injected with FDG-

mNPs into the tail vein, and the remaining three were injected with FDG-mNPs intratumou-

rally directly into the prostate tumours itself, all with a concentration of 23.42 mg/ml (10 mg/

kg body weight). A biodistribution study of each mouse was performed in vivo by 4.7 T MRI

(T2� -4 gradient recalled echo weighted imaging) before and after 1 h and 24 h post injection.

Animals were euthanized by CO2 asphyxiation after scans were completed. Regions of interest

(ROIs) were drawn over the tumour, liver, spleen, right kidney, muscle and lymph node in the

right groin using OsiriX software (Pixmeo SARL, Bernex, Switzerland) and images were nor-

malized to the background (muscle) intensity for each mouse at each imaging time points.

FDG-mNP in cancer
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Fig 1. Chemical structure of FDG-mNP and disruption of cancer cell.

https://doi.org/10.1371/journal.pone.0202482.g001
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Samples were also taken from the left kidney, liver, lung, spleen, muscle and brain. The tumour

and organs (liver, spleen, lungs, liver, brain, muscle, and lymph node) were immersed fixed in

4% Paraformaldehyde for 24 hours, followed by embedding in paraffin. 5 micron sections

were stained for Haemotoxylin and Eosin (H&E) and Prussian blue.

Quantification of iron staining

The slides were digitally scanned with Pannoramic Flash (3DHistech, Hungary) and relevant

tissue areas were exported into tiff format. Quantification of iron staining was performed

using ImageJ/FIJI (NIH, Bethesda, Maryland, USA). A colour deconvolution algorithm was

used, with RGB vectors for the iron positive areas and counterstain/background stain created

from ROIs drawn from example images. Appropriate thresholds were then set for both iron

positive regions as well as the tissue area. All iron positive areas were normalized to the total

tissue area analyzed per region.

In vivo MRI

T2� MRI of the mice was carried out on the 300 MHz Bruker 4.7T Biospec scanners (Bruker

Biospin MRI GmbH, Ettlingen, Germany) equipped with 640 mT/m ID 115 mm gradient

(Resonance Research, Inc., Billerica, MA). RF excitation and acquisition was achieved by a cus-

tom-built quadrature birdcage resonator with an inner diameter (ID) of 32 mm (Stark Con-

trast MRI Coils Research Inc., Erlangen, Germany). The mice were anesthetized with 2%

isoflurane (Baxter Healthcare Corp., Deerfield, IL) gas in oxygen. Animal respiration was

monitored with a small animal physiological monitoring system (SA Instruments, Inc., Stony

Brook, New York, USA). Scout images along three orthogonal orientations were first acquired

for animal positioning. We used 3D Multiple Gradient Echo sequence (MGE) to acquire a

series of T2�-weighted images with increasing echo time (TE) values 3.3 ms, 7.5ms, 11.4ms

and 16.0 ms. Other acquisition parameters were repetition time (TR) 34 ms, field of view

(FOV) 30 × 35 × 100 mm with a voxel size of 0.23 × 0.21 × 0.20 mm^3, 3 averages.

Longitudinal analysis of mNP tissue bio-distribution

All mice and experimental procedures were conducted using protocols approved by, and in

accordance with, the UK Home Office Animal (Scientific Procedures) Act 1986 and local eth-

ics committee at Aston University. To determine the tissue persistence of our FDG-mNPs

over a prolonged period, we injected two, 3-week-old male NMRI mice intravenously with 8

mg / kg of our FDG-mNPs in 100 μl of sterile PBS. Both mice were maintained on standard

chow and water ad libitum for either 3 or 6 months post injection. Both mice showed no visi-

ble sign of ill health, were fully mobile and increased or maintained their body weight through-

out the study. After 3 or 6 months, mice were culled via cervical dislocation. Heart, kidneys,

lungs, liver, spleen, muscle and brain tissue were fixed for 48 hours in 10% neutral buffered

formalin (Sigma, UK) at 4o C prior to storage in 70% ethanol at 4o C. Tissues were processed

into paraffin wax prior to sectioning at 5 μm. Sections from all tissues were analysed for either

for (i) gross morphology by H&E staining (by utilising standard staining protocols) or for (ii)

levels of apoptosis using the APO-BrdU TUNNEL Assay Kit (Molecular Probes, Invitrogen,

UK). The H&E stained sections were imaged using a CETI Magnum-T microscope connected

to a Jenoptik ProgRes CF camera. The APO-BrdU TUNNEL stained sections were imaged on

a Leica Microstystems DMI 4000B microscope coupled to a Leica DFC360 FX camera. Fluo-

rescent images were obtained with filters adjusted for nuclear staining with Hoechst and for

apoptotic nuclei staining with an Alexa Fluor 448 dye-labelled anti BrdU antibody. Relative tis-

sue staining intensities were measured using Volocity imaging software (Perkin Elmer, USA).

FDG-mNP in cancer
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Results

Short-term impact of FDG-mNPs

Histology results for the mice in group 1, the prostate-cancer bearing mice, are shown in Fig 2.

Corresponding MRI images for the mice in group 1 are shown in Fig 3A and 3B. FDG-mNPs

Fig 2. Growth profiles of mice injected at 3 weeks of age with 8mk/kg ICG-conjugated FDG-mNPs (A). Representative

fluorescent images of kidney (B, D) and brain (C, E) tissue sections from 3 and 6 month old mice injected with ICG-

conjugated FDG-mNPs. Tissue intensity (arbitrary units) staining for ICG-conjugated FDG-mNPs normalised to

nuclear Hoechst signal in 3 and 6 month old mice (F). n = 1 mouse per treatment group. Images in B-E are at 10x

magnification. FDG: fluorodeoxyglucose; ICG: indocyanine; mNP: magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g002
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injected intratumourally were highly concentrated in the prostate tumour compared with non-

cancerous tissues in other organs. One hour post-injection, FDG-mNP concentrations were

shown to be high in the tumour itself and the concentration appeared to be lower in the periph-

ery of the tumour compared with more centrally (although we were comparing three mice and

such differences could possibly be accounted for by individual variations amongst the mice).

Results one hour post-injection also indicated that the concentration of FDG-mNP was greatest

in the mice injected intratumourally compared with the mice injected intravenously.

Histology results for the mice in group 2, the non-cancer containing mice injected intrave-

nously and euthanised at 3 and 6 months, respectively, are shown in Fig 4. We observed no

detectable impairment in mouse well-being or behaviour in response to FDG-mNPs in these

mice 3 and 6 months post-injection.

T2-weighted gradient echo imaging and multi-echo fast spin echo imaging showed that

FDG-mNPs selectively accumulated in tumours in prostate-tumour bearing mice, as evidenced

by a reduction in T2 values and signal decrease in T2-weighted images in various areas of the

tumour mass (s 5 and 6). ROI analysis of the MRI signal change in the tumour mass showed

approximately�11-fold signal reduction in mice receiving intratumoral FDG-mNPs when com-

pared against contralateral muscle background tissue (Fig 5). In addition to our observing MRI

signal reduction in the tumour mass, we also observed decreases in MRI signals in the liver and

spleen of mice injected with FDG-mNPs because of an iron oxide particle-induced T2 effect.

However, the reduction in MRI signal was lower in mice that received intravenous FDG-mNPs

compared with mice that received intratumoural FDG-mNPs (� 3% in the liver), suggesting that

Fig 3. MRI scans of tumorous hind limb of mice before and after intratumoural (A) and intravenous (B) application of FDG-mNPs. A:

The MRI scans of an animal before and after intratumoural injection of FDG-mNPs. T2-weighted gradient echo imaging and multi-

echo fast spin echo imaging on a pre-, hour 1st and 24th of injection. B: The MRI scans of an animal before and after intravenous

injection of FDG-mNPs. T2-weighted gradient echo imaging and multi-echo fast spin echo imaging on a pre-, hour 1st and 24th of

injection. FDG: fluorodeoxyglucose; mNP: magnetic nanoparticle; MRI: magnetic resonance imaging.

https://doi.org/10.1371/journal.pone.0202482.g003

Fig 4. Representative Haemotoxylin and Eosin stained sections from mice injected with ICG-conjugated FDG-mNPs at a concentration of 8mk/kg. Sections show

representative images of brain (A), heart (B), kidney (C), liver (D), lung (E), spleen (F) and muscle (G) in a 3 month old mouse. Sections also show representative images

of brain (H), heart (I), kidney (J), liver (K), lung (L), spleen (M) and muscle (N) in a 6 month old mouse. All images are at 10x magnification. FDG: fluorodeoxyglucose;

ICG: indocyanine; mNP: magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g004
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the liver uptake of the nanoparticles was probably a normal biodistribution of FDG-mNPs (Fig

6). To further confirm the distribution of FDG-mNPs in normal and tumour tissues, Prussian

blue staining was done on tissue sections obtained from these mice that received FDG-mNPs

intravenously or intratumourally (Fig 7). Our results showed FDG-mNPs (labelled with the blue

dye) were taken up by normal cells in other organs especially in the spleen, but over time this

concentration appeared to decrease in these cells (as in the prostate tumour cells also). In mice

injected intravenously, most of the FDG-mNPs appeared to have decreased in the tissues of the

normal cells at 7 days post-injection; while the FDG-mNPs appeared to concentrate in the

spleen, these are relatively small amounts (Fig 8).

Long-term impact of FGD-mNPs

Throughout the experiment, there was no detectable impairment in mouse wellbeing. Both the

3 and 6 month mice displayed good condition of coat and no recorded weight loss for up to 6

months (Fig 2A). Tissue sections were analysed for levels of retained FDG-mNPs using fluo-

rescent microscopy (Fig 2B–2E). We observed that any detectable staining present within the

samples was not above that of background auto-fluorescence and that tissues from both the 3

and 6 month old mice displayed comparable staining intensities when compared with each

other (Fig 2F). We also conducted analyses for levels of apoptosis within all tissues samples

Fig 5. Illustration of signal intensity relative to muscle in tumour and in normal organs (liver, spleen, kidney and node) after intravenous injection of FDG-

mNPs. FDG: fluorodeoxyglucose; mNP: magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g005
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and observed no significant or differential levels of apoptosis in any of the samples (data not

shown). Histological analysis of brain, heart, kidney, liver, lung, muscle and spleen tissues

revealed typical morphology and no overt sign of tissue damage or cellular damage (Fig 4).

Discussion

Our previous in vitro study indicated that magnetic hyperthermia, when applied to an in vitro

cell neuroblastoma cancer line injected with FDG-mNPs, could be used to destroy cancer cells

[14]. However, since a relatively large concentration of FDG-mNPs was used in that in vitro

study, it was necessary to investigate the effects of FDG-mNPs when used without magnetic

hyperthermia and when smaller concentrations are used in vivo. Our current study involved

mice with prostate cancer and normal mice, all of which were injected with a therapeutic con-

centration of FDG-mNP corresponding to that which would be used in humans (the concen-

tration was scaled for body mass and blood volume in the mice).

Our results show that FDG-mNPs do little to no damage to the tumour tissue when used

alone without magnetic heating. Moreover, further analysis in the prostate-cancer bearing

mice shows that there is relatively little FDG-mNPs remaining in the tissues of the liver, lungs

or kidneys, muscle or brain of the mice when FDG-mNPs were injected intravenously or intra-

tumourally. The highest concentration of FDG-mNPs appeared to be in the tumour of the

Fig 6. Illustration of signal intensity relative to muscle in tumour and in normal organs (liver, spleen, kidney and node) after intratumoural of FDG-mNPs.

FDG: fluorodeoxyglucose; mNP: magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g006
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mice injected intratumourally, and this concentration decreased over time from 1 hour post-

injection to 7 days (when the mice were euthanised). It seems that in some instances the nor-

mal spleen takes up FDG-mNP (although this is still a relatively small amount compared to the

uptake by the tumour when injected intratumourally) on account of its proliferant vascularity.

However, it is also noted that the mice, both prostate-cancer bearing mice and normal mice,

appeared to be healthy in outward appearance behaviour and movement, although no formal

testing of cognitive function etc. was undertaken as part of this study. Locally, intratumorally

injected nanoparticles with concentrations ranging from a few mg ml−1 to a few hundreds of

mg ml−1 have been studied in the several in vivo experiments which are available in the litera-

ture [19]. More importantly, several studies have been shown cytotoxic analysis of iron

Fig 7. Histological analyses of tumour, muscle, liver and spleen after intratumoural and intravenous injections of FGD-mNPs. FDG: fluorodeoxyglucose; mNP:

magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g007
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particles in mice, rats and humans and demonstrating mild to tolerable side effects up to con-

centrations of 4,000 mg Fe kg−1 [20]. In a prospective phase I trial of locally recurrent prostate

cancer patients, Johannsen et al. studied the morbidity and quality of life during thermother-

apy after intraprostatic injection of iron oxide NPs. The authors showed that iron oxide NP

deposits were detectable in the prostate one year after the thermal therapy but interestingly no

systemic toxicity was observed at a median follow-up at 17.5 months. The authors concluded

that interstitial heating using magnetic nanoparticles was feasible and well tolerated in patients

with locally recurrent prostate cancer [21].

Given the results presented in this study, we feel it would be necessary to optimise the time

for a future clinical application of magnetic coil heating in relation to the time at which the

FDG-mNP is injected to minimise the heating of FDG-mNP taken up by normal tissues and

to ensure the dissipation of FDG-mNP into normal tissues.This will be the subject of further

research, involving intravenous and intratumoural applications.

We also note that there is a need for optimisation of the concentration of FDG-mNP used

in the treatment of different cancer types and this will be the subject of further research. Our

next step will involve injecting the FDG-mNPs (a) intratumourally into the prostate gland of a

mouse together with the application of magnetic hyperthemic heating to the prostate gland of

the mouse. Although the direct intratumoural injection of FDG-mNPs has obvious advantages

(e.g., with a local injection, the applied magnetic hyperthermia could likewise be targeted

locally to a given area of the body containing the cancer) the intravenous route of application

Fig 8. Histological analyses of tumour, muscle, liver and spleen after intravenous injections of FGD-mNPs after 1 hr and 7 days.

FDG: fluorodeoxyglucose; mNP: magnetic nanoparticle.

https://doi.org/10.1371/journal.pone.0202482.g008

FDG-mNP in cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0202482 August 20, 2018 12 / 15

https://doi.org/10.1371/journal.pone.0202482.g008
https://doi.org/10.1371/journal.pone.0202482


also gives other potential advantages relating to treatment. In instances where cancer has

metastasized to other areas of the body, the intravenous route avails the FDG-mNPs to wider

uptake by widely distributed cancer cells. In this way, widespread cancer cells (even those too

small to be detected using current imaging techniques e.g. PET, MRI) could readily uptake the

FDG-mNPs, such that magnetic hyperthermia could then be applied whole body, thus poten-

tially leading to the destruction of these widespread metastases.

The results of the previous in vitro studies and the results of this current in vivo study pre-

sented in this paper will be used to further research of FDG-mNPs by applying hyperthermia

to mice injected with FDG-mNPs at the concentrations indicated in this current in vivo pilot

study. We note that our quantitative results regarding the uptake of FDG-mNPs by tissue

(including the prostate tumour) are based on % of iron uptake by the tissue, and that the data

obtained in this pilot study have been based on results obtained from a small number of mice.

However, we nevertheless feel that this approach concerning the uptake of FDG-mNPs in can-

cer cells (and the subsequent application of magnetic heating to the FDG-mNPs taken up by

cancer cells) is worthy of further investigation.

Conclusions

The results of our in vivo pilot study involving the uptake of FDG-mNPs by cancerous tissue

and normal tissue in mice indicate that:

➢ The FDG-mNPs are rapidly taken up (both by the intravenous route and when directly

injected into the tumour) by the cancer cells in all three groups of cancerous tissue in mice.

➢ That little FDG-mNPs are taken up by non-cancerous tissues.

➢ That over time the concentration of FDF-mNPs in both cancerous and non-cancerous tis-

sue appears to decrease over time.

➢ That there are no observable detrimental effects in the mice injected with the FDG-mNPs

over the times periods used in our study.

➢ That our results are worthy of further study, and that this technique of injecting FDG-

mNPs into cells—directly or by intravenous injection coupled with hyperthermic tech-

niques (magnetic heating coil application)—may produce an effective method of cancer cell

destruction, which could potentially have clinical applications.
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