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Abstract

With increasing growth of electricity consumption in developed and developing countries, the necessity of 

constructing and developing of power plants is inevitable. There are two main resources for electricity generation 

includes fossil and renewable energies which have some different characteristics such as manufacturing technology, 

environmental issues, accessibility and etc. In developing plans, it is important to consider and address the policy 

makers’ indicators such as environmental, social, economic and technical criteria. In this paper, an integrated multi 

response Taguchi-neural network-fuzzy best-worst method (FBWM) -TOPSIS approach is applied to find an 

optimal level of five different power plants including: gas, steam, combined cycle, wind and hydroelectric. Taguchi 

method is used to design combinations and calculate some of the signal to noise (S/N) ratios. Then, neural network 

is applied to estimate the rest of S/N ratios. Finally, FBWM and TOPSIS methods are used for weighing sub-

indicators and selecting the best combination, respectively. To illustrate the usefulness of the proposed approach, a 

case study on the development of power plants in Iran is considered and the results are discussed. According to the 

results, in general, small size power plants for fossil resources are preferable. In contrast, medium and larger size 

power plants for renewable resources are preferable.

Keywords: Power plants, Eco-efficiency, Taguchi method, Neural network, Fuzzy best worst method, TOPSIS

1. Introduction

With the growth in economic prosperity, population and energy consumption rate in developed and developing 

countries, energy demand for consumption in industrial, transportation, services and household sectors has grown 

significantly in recent years. Increase of energy demands cause new challenges and concerns for policy makers in 
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generating and supplying energy. Due to the existence of some limitations in using fossil resources such as 

environmental concerns and climate changes, policy makers are seeking renewable resources (Ruhl et al. 2012). In 

addition to the energy production costs, more criteria such as reliability, technology, social and political issues are 

important in future energy generation and supply.

 In Iran, demand for energy is increasing. Worn-out technology and low price of fossil energies have intensified the 

consumption of energy. The main and important use of energy resources are in electricity generation sector. In fact, 

the most important part of electricity industry is power generation in power plants. The shortages in generation 

capacity of the country's power plants have irreparable impacts on the economic, political and social structure of the 

society. Therefore, the issue of electricity power supply has become a strategic issue and finding the best 

combination of power plants plays a major role in countries energy managements.  In this regard, several researchers 

have evaluated and also ranked power generation alternatives in many studies using multi criteria decision making 

(MCDM) techniques, since it is clear that choosing the best alternative is a decision making problem (Kothari et al. 

2010). In literature, several MCDM techniques such as, VIseKriterijumska Optimizacija I Kompromisno Resenje 

(VIKOR) (Katal and Fazelpour, 2017), Multi-Objective Optimization on the basis of Ratio Analysis 

(MULTIMOORA) (Streimikiene et al, 2012), fuzzy TOPSIS (Çolak and Kaya, 2017), Analytic Hierarchy Process 

(AHP) (Amer and Daim, 2011, Emrouznejad and Marra, 2017), Decision-Making Trial and Evaluation Laboratory 

Model (DEMATEL) (Büyüközkan and Güleryüz, 2016) and etc have been used to choose the optimal energy 

alternatives.  Each energy resource has specific characteristics such as manufacturing technology, environmental 

issues, technical characteristics, availability, geographical distribution and etc. It is clear that the variety in the 

generation of electricity is very crucial and countries tend to construct different types of power plants for security in 

electricity generation simultaneously. Hence, in this research, a novel approach is proposed to find an optimal 

combination of various power plants (fossil and renewable) for electricity power generation. In fact, by considering 

the current and future country's program, as well as the advantages and disadvantages of each option, the main 

question in this article is that, what is the optimal combination of future power generation alternatives in a region 

respect to the environmental, economic, social and technical aspects. Policy makers are expecting that by selecting 

best combination of power plant alternatives, some important and critical evaluating sub-indicators values get closer 

to their optimal values and show less variety near their optimal solutions. 
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In this paper, an innovative integrated multi response Taguchi method, neural network, FBWM and TOPSIS are 

used to find the optimal combination of power plants. Briefly, respect to the factors and the number of their levels, 

Taguchi orthogonal arrays are used to design combinations and S/N ratios of designed combinations are calculated. 

The aim of Taguchi's method is to determine the best level of alternatives in order to minimize the variability of the 

solutions in the near of optimal solution. Then, the neural network is used to estimate all of S/N ratios for responses 

(criteria). Finally, a hybrid FBWM- TOPSIS is applied to find out the optimal combination of power plants in Gilan 

province of Iran. 

The rest of the article is as follows: In the second section, a brief review of literature is provided. The proposed 

methodology of this paper is presented in section 3. In section 4, the case study is introduced. Section 5 presents the 

results of the paper. Moreover, sensitivity analysis is performed in section 5. The recommendations for policy 

makers are suggested in section 6. Finally, in section 7 the conclusion is summarized and direction for future 

research is given.

2. Literature review

There are several studies for finding the best combination of power plants. In the literature, multiple criteria decision 

making (MCDM) techniques are widely used methods to evaluate energy resource alternatives. MCDM techniques 

provide systematic solutions to the problems that involving multiple and even conflicting criteria (Wu et al. 2018). 

Basically, two major issues should be considered in energy resource evaluation problem using MCDM technique 

including selection of an appropriate set of evaluation criteria and evaluation methodology. Regarding to the 

selection of evaluating methodology, various methods may lead to different results (Mardani et al., 2016). Various 

MCDM methods have been used in literature to evaluate different types of power plants. San Cristóbal (2011) 

evaluated the alternatives of power generation in Spain using AHP and VIKOR methods. The study showed that 

among different renewable energy projects, the best option for Spain is biomass energy. Atmaca and Basar (2012) 

determined the suitability of six kinds of natural gas, wind, geothermal, hydroelectric, coal/lignite and nuclear power 

plants using analytic network process (ANP). Chatzimouratidis and Pilavachi (2012) applied PROMATHEE 

technique to evaluate 10 fossil and renewable alternatives considering 12 evaluation criteria and 13 various 

scenarios. Zhang et al. (2015) presented an improved fuzzy MCDM methodology to evaluate clean electricity 

alternatives in Jiangsu province, China. In their study, photovoltaic energy was the best option, and wind, biomass 
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and nuclear power plants were in the next positions. By using AHP and additive ratio assessment (ARAS) methods, 

Štreimikienė et al. (2016) studied the Lithuanian electricity generation options and eventually concluded that nuclear 

power development was essential for power generation and the biomass power plant was the second choice for 

power generation. Also, several studies have investigated power plants evaluation in Iran (Arabi, 2014, 2016 and 

2017).

Regarding to the selection of evaluation criteria, various evaluation criteria may satisfy the preferences of different 

stakeholders (Zhang et al., 2015). Therefore, evaluation criteria selection plays a major role in energy resources 

decision-makings. Evaluation criteria used in literature are mostly associated to environmental, economical, 

technical and social aspects (Lee and Chang, 2018). For instance, Wu et al. (2018) applied five criteria of capital 

cost, operation & maintenance cost, electricity cost, pay-back period, and potential market as economical criterion, 

two criteria of land requirement and impact on ecosystem as environmental criterion, three criteria of employment, 

public acceptance and social benefits as social criterion and finally maturity, reliability, efficiency and resource 

availability as technical criterion to evaluate five types of hydropower, solar thermal, wind, solar PV and biomass 

power plants in China.  Also, Lee and Chang (2018) used 10 criteria of investment cost, O&M cost, electric cost as 

economic indicator, three criteria of efficiency, capacity factor and technical maturity as technical criterion, two 

criteria of GHG emission and land use as environmental indicator and two criteria of job creation and social 

acceptance as social indicator to evaluate five types of renewable energy resources. Table (1) demonstrates the 

methods and criteria used in literature to evaluate energy resource alternatives. 

----------------------[Table 1 about here] ---------------------

As it can be seen, in previous researches only priorities of different types of power plants have been determined. 

However in the case of this study, it is assumed that there are different levels for five types of power plants. As a 

result, each combination of different levels of considered power plants may have different impact on evaluation 

criteria. Indeed policy makers in order to put power generation in more secure position tend to establish various 

types (renewable and fossil) of power plants, but in different levels. In order to find the best and optimal 

combination of power plants levels, an integrated multi response Taguchi, neural network (NN), and hybrid FBWM-

TOPSIS approach has been used. 
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Taguchi method is one of the most powerful statistical methods of quality improvement. The aim of Taguchi's 

method is to determine the best level of factors in order to minimize the variability of the solutions in the near of 

optimal solution (Alizadeh and Yousefi, 2018). Indeed, it aims to improve the parameters setting to reduce deviation 

and variability in response indexes. Multi responses is an extension to the conventional single response Taguchi 

method which can deal with real world problems by considering several responses of manufacturers and customers, 

simultaneously and has mostly applied in literatures to find the best combination of industrial and manufacturing 

tools. For instance, Li et al., (2016) applied Taguchi method to find the best combination of cutting parameters with 

the objectives of energy efficiency and processing time. Sarikaya and Güllü (2015) applied Taguchi method to 

optimize machining parameters under minimum quantity lubrication cooling/lubrication condition. In Taguchi 

method, optimizing one response may deteriorate other responses, hence, engineering judgment is needed to 

determine the optimal levels of all factors. In addition, in the situations in that evaluation criteria are involved with 

features of ‘the larger/more is better’, ‘the nominal is the best’ and ‘the smaller/less is better’ Taguchi method is 

applicable. Also Taguchi method provides common values of signal to noise (S/N) ratios which makes the 

evaluations and comparisons more meaningful and easy.  However, by increasing the number of factors and their 

levels, the Taguchi method can lead to a huge number of alternatives. Considering all S/N ratios may lead to huge 

number of ratios may cause a lot of time and cost. Hence, only some of the S/N ratios are calculated, and the rest of 

the S/N ratios are estimated by the NN. NN method is able to estimate, classify, optimize and recognize some 

specific patterns in data. The capabilities of the NN and application in complex and nonlinear problems, make this 

method preferable to the regression method and many researchers have used NN in literatures. In summary, the NN 

method has been used in management (Kasiviswanathan et al., 2016), economics (Kordanuli et al., 2017), 

manufacturing (Conde et al., 2018), agriculture (Espinoza et al., 2016), banking (Kwon and Lee, 2015), pharmacy 

(Vasilakos et al., 2016), energy (Zeng et al., 2017), efficiency evaluations (Emrouznejad and Shale, 2009) and etc. 

After designing the options by Taguchi method and calculating S/N ratios by NN, in the last phase of the proposed 

integrated approach, this paper employs a hybrid FBWM and TOPSIS approach for finding the best combination of 

power plants. BWM is one of the latest MCDM techniques which was introduced by Rezaei (2015). The basis of 

this technique is to weigh the criteria by pairwise comparing such as AHP with two obvious advantages, less 

pairwise comparison and higher consistency ratio. Flexibility and simplicity of BWM led to use of this method in 

several researches. Shojaei et al. (2017) used an integrated approach of Taguchi loss function, VIKOR and BWM to 
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evaluate Iranian airports. Ahmed et al. (2017) applied BWM to determine the most important factors affecting the 

sustainable supply of gas. They found that two most important factors are economic and political factors. In Ren et 

al. (2017), BWM method was used to weight the sustainable technology alternatives for urban sewage sludge. Also, 

Gupta and Barua (2016) determined the best enablers among the 30 micro and intermediate economies alternatives 

by applying the BWM technique. 

In real world problems, human qualitative judgments are usually associated with ambiguity and intangibility of 

uncertain and vague information (Guo and Zhao, 2017). Moreover due to the dynamic nature of energy markets, 

power plants features and continues changes in stakeholder’s preferences, considering crisp values for decision 

makers’ judgments makes the evaluations unrealistic. In order to deal with the inherent ambiguity and uncertainty in 

human thinking, knowledge limitations of human being and to encounter the dynamic changes in stakeholder’s 

preferences, fuzzy numbers in reference pairwise comparison of BWM is applied which generates more convincing 

and realistic weights than conventional BWM. After obtaining weights of criteria by FBWM, TOPSIS method has 

been applied for final ranking.  TOPSIS is an MCDM technique which aims to seek optimal solution by identifying 

both positive ideal solution (PIS) as well as negative ideal solution (NIS). TOPSIS simultaneously considers the 

distances to both PIS and NIS, and a preference order is ranked according to their relative closeness, and a 

combination of these two distance measures (Akbaş and Bilgen, 2017; Karahalios, 2017). Indeed, TOPSIS ranks and 

evaluates alternatives according to the distance measures. A simple computation process which can be programmed 

in a spreadsheet, a scalar value that accounts for both the best and worst alternatives simultaneously, moderate 

mathematical calculations, ability to rank all alternatives by providing different scores and providing more realistic 

and accurate results than other MCDM techniques led this approach applicable in many MCDM studies including 

energy resource selection (Shih et al., 2007, Akkaya et al. 2015). For instance Štreimikienė et al. (2012) applied 

TOPSIS and MULTIMOORA to assess electricity production technologies. Çolak and Kaya (2017) applied a fuzzy 

MCDM approach including fuzzy AHP and TOPSIS in order to prioritize renewable energy resources in Turkey. 

The proposed hybrid MCDM approach in the last phase of integrated approach of this study enables policy makers 

to make a reasonable judgment. The hybrid FBWM-TOPSIS has two main advantages in comparison with other 

MCDM approaches:  First, the capability of taking into accounts both experts’ opinion and data in an integrated 

technique which leads to a more precise and reliable result. Second, there is no need to assign exact numerical 

values to decision makes reference comparisons which generates the weights more robust and steady in dealing with 

https://mruni.pure.elsevier.com/en/persons/dalia-streimikiene
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the ambiguity and uncertainty. The main contribution of this study is the application of the quality control tool 

(Taguchi method) to determine the best combination of power plants alternatives which has never encountered in 

any research before. This novel application could led to apply the Taguchi method in other fields such as 

determining the best combinations of health centers. Besides, by using Taguchi method’s S/N ratios, applying 

criteria with different features of ‘the larger/more is better’, ‘the nominal is the best’ and ‘the smaller/less is better’ 

is possible. Also the hybrid MCDM technique used in this study led to incorporate both policy makers’ preferences 

and data in decision making process which makes the results more reliable and meaningful. Additionally, the 

vagueness in the DMs preferences is considered in the decision making process. 

3. Methodology

In this paper, an integrated multi-response Taguchi, NN, FBWM and TOPSIS approach is presented to find 

optimum combination of power plants in Gilan province. The proposed approach is shown in Figure 1. Initially, 

respect to the factors and the number of their levels, an appropriate Taguchi orthogonal array is designed. 

Orthogonal arrays represent the minimum required combinations (experiments) to observe power plants effect on 

responses, then, S/N ratios of designed combination are calculated for measuring the effects of factor levels on 

responses. In addition, in order to obtain the factor levels effects on responses, calculated S/N ratios are used to train 

and test back propagation NN for estimating all S/N ratios. For sake of simplicity and applicability of data, 

estimated S/N ratios are normalized. Meanwhile, fuzzy weights of responses are obtained based on the experts’ 

preferences. Finally, normalized S/N ratios and fuzzy weights of responses are applied in a TOPSIS model to find 

out the optimal combination of power plants. 

---------------------- [Figure 1 about here] ----------------------

3.1. Taguchi method

The Taguchi experimental design method was introduced in 1960 by Professor Taguchi. In this statistical method, 

the purpose of designing experiments is to determine the optimal combination of factor levels with the least number 

of experiments and thus significantly reduce the time and cost of performing the required experiments. In the 

experimental design method, input variables are systematically shifted to observe and identify the effects of shifts on 
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the output parameters of the process. According to the levels and selected orthogonal arrays, the input variables are 

shifted during experiments to achieve optimal conditions. Due to the number of factors and their levels, different 

orthogonal arrays can be used in Taguchi method. In orthogonal arrays, the columns which indicate input factors and 

the rows which present minimum experiments should be performed to achieve the optimal combination. In this 

method, for the quantification of variations, a signal-to-noise ratio is used, and the experimental conditions with the 

highest signal-to-noise ratio are selected as optimal conditions. Based on the quality characteristics to be optimized, 

different S/N ratios can be chosen: nominal-the-best, larger-the-better, and smaller-the-better which are formulated 

as follows, respectively:

 
2

2/ 10 log( )yS N
s

            (Nominal the best response)        (1)

 2
1

1 1/ 10log( )
n

i i

S N
n y

         (Larger the better response) (2)

 2

1

1/ 10log( )
n

i
i

S N y
n 

   (Smaller the better response)
 (3)

Where  is the ith observed value of the response and n is the number of observations in a trial. The S/N ratio iy

represents the effect of control factor levels on response value. Since the high value of S/N ratio corresponds to the 

response’s better performance, hence, the optimal levels of the parameters are obtained from the combinations with 

the highest S/N ratios.

3.2. Neural network

An artificial neural network is inspired by the human neural network and tried to formulate the relationship between 

input and output data. The NN consists of a set of neurons and nodes that the neurons carry out the task of 

processing information and the processed information is transmitted as a weight in a relationship between neurons. 

The NN can be trained by adjusting the weight between these neurons. The aim of training the NN is to predict the 

output values. Based on the type of training, NNs are divided into two supervised and non-supervisor algorithms. In 

the supervised training algorithm, weights are continuously adjusting, so that the gap between the predicted value 

and the actual value is negligible. Among the training algorithms, back propagation neural networks (BPNN) are the 
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most widely used one for prediction outputs. The BPNN consists of three input layers, hidden layer and output layer. 

In Figure (2) a schematic diagram of a BPNN is presented. 

---------------------- [Figure 2 about here] ----------------------

The weights in the BPNN are determined through the Delta learning algorithm. Consider the equation (4): 

2

1 1

1 ( )
2

p k

pk pk
p k

Ep d O
 

 
(4)

where Ep is a learning error function for all network parameters and weights. and are desired output and pkd pkO

calculated output for the neuron, respectively. K shows number of artificial NN neurons and p shows number of thk

samples. In BPNN algorithm, in order to minimize the difference between actual and output data (training error), the 

weight of connection in NN is adjusted during the training process .To adjust the weights of NN with BPNN 

algorithm, data are re-processed from output layer to hidden layer. The weight in BPNN algorithm is determined in 

a relationship based on delta learning rule as follows:  

 p
ij j

ij

E
w Out

w



  



(5)

 
new old
ij ij ijw w w   (6)

 
is the output of neuron and µ is the training or convergence rate of NN that is fixed value between 0 and jOut thj

1. 

3.3. Fuzzy best worst method (FBWM)

BWM is the latest MCDM technique introduced by Rezaei (2015). The basis of this technique is to weigh the 

criteria by pairwise comparison. In BWM, by determining preference of the best criterion over other criteria and 

preference of all criteria on worst criterion by assigning a scale between 1 to 9, the weights of criteria will be 

specify. Guo and Zhao (2017) expressed “the human qualitative judgments (such as the 1–9 scale-based pairwise 

comparisons by decision-makers in BWM) usually hold the characteristics of ambiguity and intangibility, and the 

information of criteria in real world have the drawbacks of vague and uncertain”. So, they designed FBWM for 
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modeling the ambiguity and intangibility in human judgments. The steps of FBWM method is as follows (Guo and 

Zhao, 2017): 

1) Determine a set of criteria as 1 2{ , ,..., }nc c c

2)  Determine the best and the worst criterion by an expert or an experts team

3) Implement fuzzy reference comparison for the best criterion. The fuzzy preferences of best criterion over all 

criteria are determined using linguistic terms and transformation rules are shown in Table (2). The fuzzy best-to-

others vector is as where  represents the fuzzy preference of the best criterion B over 1 2( , , ..., )B B B BnA a a a   
Bja

criterion j , j = 1 , 2 , ···, n .  Note that (1,1,1)BBa 

---------------------- [Table 2 about here] ----------------------

4) Implement fuzzy reference comparison for the worst criterion. The fuzzy preferences of all criteria over worst 

criterion are determined using linguistic terms and transformation rules shown in Table (2). The fuzzy others-to-

worst vector is as where represents the fuzzy preference of the criterion j, j=1,…,n over 1 2( , , ..., )W w w nwA a a a    jWa

the worst criterion w. Note that (1,1,1)WWa 

5) Find the optimal weights * * *
1 2( , ,..., )nw w w

If the fuzzy preferences are  and , the goal is to find the optimal weights which minimize the absolute Bja jWa

maximum difference of the 
 
and . Considering , and  as triangular fuzzy | |B

Bj
j

w aw   | |j
jW

W

w
aw   jw Ww Bw

numbers, we use to present the fuzzy weight of criterion j. Also by assuming sum of weights ( , , )w w w
j j j jw l m u

equal to one and non-negativity constraints, the FBWM model expresses as follows (Guo and Zhao, 2017): 
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The model (7) can be re-written as follows:
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Where . By considering and supposing , the model ( , , )l m u    l m u    * * * * *( , , ),k k k k l   

(8) is transferred as follows:

* * *
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By solving model (9), the optimal fuzzy weights will be determine. After obtaining fuzzy weights, we use the graded 

mean integration representation (GMIR) to transform fuzzy weight of criterion to crisp weights. The GMIR formula 

is as follow:

4( )
6

i i i
i

l m uR a  
 (10)

In the last stage, it is needed to calculate the consistency ratio. Consistency ratio is employed to check how 

consistent a fuzzy comparison is. There is full consistency in fuzzy pairwise comparison vector while

. In case which inconsistency occurs. Inconsistency will reach to its maximum Bj jW BWa a a  Bj jW BWa a a 

value when both and are equal to .Considering the occurrence of the greatest inequality, according  Bja jWa BWa

to the equality relation, according to the equality relation  equation (11) obtained as jB B

j W W

ww w
w w w 

follows (Gou and Zhao, 2017):

( ) ( ) ( )BW BW BWa a a           (11)

Equation (11) can be rewritten as follows:

2 2(1 2 ) ( ) 0BW BW BWa a a         (12)

Where  and . For  the maximum fuzzy ( , , )l m u    ( , , )BW BW BW BWa l m u ( , , )BW BW BW BWa l m u

value cannot exceed 9/2. By using upper bound of in consistency index calculation, all the data affiliated to BWu

triangular fuzzy numbers can use this consistency index , meanwhile is represented a crisp value of . By BWa  

this considerations, in order to calculate the consistency ratio in FBWM we need to measure equation (13) for all 

.u
BW

2 2(1 2 ) ( ) 0BW BW BWu u u      (13)

Where  respectively (For more details see Guo and Zhao, 2017).  1, 3 / 2, 5 / 2, 7 / 2 9 / 2u and
BW



3.4. TOPSIS



ACCEPTED MANUSCRIPT

13

TOPSIS was introduced by Hwang and Yoon (1981). TOPSIS is an MCDM technique which aims to seek optimal 

solution by identifying both positive ideal solution (PIS) as well as negative ideal solution (NIS). TOPSIS 

simultaneously considers the distances to both PIS and NIS, and a preference order is ranked according to their 

relative closeness, and a combination of these two distance measures (Chauhan et al., 2017). Indeed TOPSIS ranks 

and evaluates alternatives according to the distance measures. A simple computation process which can be 

programmed in a spreadsheet, a scalar value that accounts for both the best and worst alternatives simultaneously, 

moderate mathematical calculations, ability to rank all alternatives by providing different scores and providing more 

realistic and accurate results than other MCDM techniques led this approach applicable in many MCDM studies 

including energy resource selection. The steps of TOPSIS are as follows:

Step 1: Form the decision matrix Aij consist of m alternatives and n criterion

 

11 12 1

21 22 2

1 2

...

...

...

n

n
ij

m m mn

a a a
a a a

A

a a a

 
 
 
 
 
 

   

Step2: Normalize the decision matrix through the equation (14):

2

1

ij
ij m

ij
i

a
r

a





(14)

Step 3: Obtain the weighted normalized matrix Vi by multiplying weights of criteria in normalized matrix

1 11 2 12 1

1 21 2 22 2

1 1 2 2

...

...
...

...

n n

n n
ij

m m n mn

w r w r w r
w r w r w r

V

w r w r w r

 
 
 
 
 
 

  

Step 4: Determine PIS A* and NIS A- as follow:

 * * *
1 2* { max( | 1, 2,..., ) | , min( | 1, 2,..., ) | } { , ,..., },ij ij nA v i m j J v i m j J v v v      

1 2{ min( | 1, 2,..., ) | , max( | 1, 2,..., ) | } { , ,..., },ij ij nA v i m j J v i m j J v v v   
      

Where,
 { 1,2,..., | }J j n j associated with positive criteria  

{ 1,2,..., | }J j n j associated with negative criteria  
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Step 5: Calculate the distance of alternatives from PIS and NIS using equations (15) and (16), respectively:

* * 2

1
( )

m

i ij j
j

S v v


  (15)

2

1
( )

m

i ij j
j

S v v 



  (16)

 Step 6: Calculate the relative closeness to the ideal solution using expression (17):

*
*

i
i

i i

sC
s s






(17)

 Step 7: rank the alternatives based on the values from highest value to lowest value.*
iC

3.5. The proposed approach

Development a set of various power generation alternatives is very important for developing countries such Iran. In 

order to find out the optimal combination of power plants, this paper utilized an integrated approach with the 

following steps:

 Step 1) Select a proper orthogonal array respect to the number of factors and their levels. For designing 

experiments, Taguchi proposed 18 main orthogonal arrays. In this step, if the suitable arrays do not exist among 18 

proposed main arrays, the closest suitable array will be selected after measuring the degree of freedom which can be 

calculated using the following equation.

,

{ [( ( ) with (j) level)*(j-1)]}+1
i j

DF numbers of factor i  (18)

Step 2) In this step according to the responses quality characteristics such as ‘the nominal is the best’, ‘the larger is 

the better’ and ‘the smaller is the better’, the S/N ratios will be calculated using (1), (2) or (3). S/N ratios quantify 

the effect of shifting factors on responses parameters, and it should be noted that higher values of S/N ratios are 

desired.

Step 3) Design a BPNN to estimate all S/N ratios. After calculating S/N ratios of designed orthogonal arrays, a 

BPNN is designed to obtain all S/N ratios. In the BPNN, the factors are considered as input layer and responses are 

considered as the output layer. The number of hidden layers is also between 1 and 3, which is usually found with 

trial and error. The accuracy of estimated data is measured using mean square error (MSE). The network with lower 

MSE is optimal to estimate data.
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Step 4) Normalize the S/N ratios. After estimating all S/N ratios, in order to deal with different scales and to 

simplify the calculations, the S/N ratios will be normalized using the following formula:

 
   

min , 1, 2,..,
, 1, 2,...,

max , 1, 2,.., min , 1, 2,..,
ij ij

ij
ij ij

X X i m
Z for j n

X i m X i m

 
 

  
(19)

Where is the jth response of ith  trial, and is the normalized value of S/N ratios.ijX ijZ

Step 5) Calculate the responses’ weights using the FBWM method. The weights of responses are considered in the 

TOPSIS. In this step, the best and the worst criteria are determined by the experts based on their policy. Also, policy 

makers determine a preference linguistic terms of the best criteria over all criteria and all criteria over the worst 

criterion. After obtaining weights using FBWM, the consistency index shows whether obtained weights have high 

consistency or not. It should be noted that the values close to zero are desirable for consistency ratio.

Step 6) In this step the score of all alternatives are calculated using TOPSIS method. In fact, this step is to find the 

score of alternatives. It is obvious that the alternative with the highest score is the optimal solution. The proposed 

approach is also shown in Figure (1). 

4. An application in Power Industry

According to Iran's power industry annual statistics, in 2015, Iran constructed 11 new power plants and the nominal 

power capacity of Iran reached 74103 Megawatt which shows 1.3% growth compared with the last years 

(http://amar.tavanir.org.ir). In Iran, electricity demand is mostly based on fossil fuels and the 93% of installed 

capacity of power plant in Iran is dedicated to gas, combined cycle and steam power plants. To produce the 

electricity in Iran, about 58424 million cubic meters of gas, 6083 million liters of gasoil and 6946 million liters of 

oil fuel have been burned in 2015 (http://amar.tavanir.org.ir). It seems that in last decade the criteria of accessibility 

to the energy and capital costs are widely considered as important sub-indicators. Also, environment, fossil resource 

constraints and socio-political issues have been considered less important. Iran in terms of different sources of 

energy is one of the richest countries in the world. It has extensive oil and gas fossil resources in addition to a high 

renewable energy potential such as wind, geothermal, solar and etc. 

In Iran, the existence of suitable sun shining in most areas and in most seasons, existence of ups and downs on the 

river's route, having high potential wind areas and geothermal energy production capabilities have provided a 

suitable opportunity to expansion and use of new and clean energies. By considering tangible engineering 
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capabilities in constructing hydroelectric power plants, the utilization of hydroelectricity has become a priority in the 

construction of new power plants. Meanwhile, the use of wind and geothermal energy as well as thermal energy 

from solar energy is almost economic. However, solar and photovoltaic power plants will not be economical for the 

next few years, but the development of researches and technology for their construction is strongly important due to 

the enormous potential of solar energy in Iran. In Iran, 7% of nominal electricity capacity is generated from 

renewable sources of hydro, wind, solar and nuclear electricity which is equal to 12910 MW, but according to the 

Ministry of Energy, it is predicted that on the horizon of 2020, renewable energy generation capacity will increase 

up to 5000 MW (http://amar.tavanir.org.ir). 

There are some potential provinces for developing of new power plants in Iran. Among them, Gilan province has 

always been the first opt of authorities. Gilan province has some advantages such as existence of about 50 

permanent rivers, locating in the boundaries of only two different north and south air streams of Alborz Mountain 

range and high intensity sun shining in the southern areas of province near 7 month of year. Therefore, investors 

tend to invest on developing power generation units especially renewable ones. At the moment, six power plants, 

three fossil fuels and three renewable energy plants are producing a total of 2816 MW of electricity in Gilan  

(http://amar.tavanir.org.ir). According to the country development plan for the Gilan province, 700 to 1000 MW of 

electricity power should be added to current capacity of supplying the province and in the case of surplus, electricity 

will be transferred to the neighboring provinces. Policy makers tend to use five types of gas, wind, hydroelectric, 

combined cycle and steam power plants to produce this volume of energy. Table (3) shows five alternatives and 

their production levels. According to the Table (3) for each power plant three levels (Small, Medium and Large) 

have been assigned. 

---------------------- [Table 3 about here] ----------------------

4.1. Evaluating criteria

Establishing proper criteria plays an important role in reflecting the stakeholder’s preferences and the potential to 

rank alternatives. . In this section, four main categories of, environmental, economic, social and technical indicators 

are considered to evaluate alternatives. Moreover sub-indicators associated to categories based on the availability of 

data specific to the region and considering major stakeholder’s perspective are identified. In the other words, among 

several evaluation criteria used in the literature, policy makers opted some of them which are the interest of all 
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major stakeholders, however due to the data limitation just six of them have been employed. Data are provided using 

(http://amar.tavanir.org.ir), (http://isn.moe.gov.ir/getattachment) and (https://www.eia.gov). In this study, six sub-

indicators of power generation, capital costs, operation and maintenance (O&M) costs, job, greenhouse gas emission 

and prime cost of electricity are considered for selecting the best combination of power plants. Table (4) presents 

four indicators, six sub-indicators, scales and the values of sub-indicators for each power plant It should be noted 

that, sub-indicators have different scales, however by using the Taguchi method they will be converted to a common 

value. Moreover, in normalizing step criteria will be scale less. Sub-indicators definitions are as follow: 

Environmental indicator

Greenhouse emission: Greenhouse gases consist of NOX, CO2, SO2, SO3, CO and CH which contributes to 

greenhouse effect and global warming by absorbing infrared radiations. Greenhouse effects on environment and 

global warming are very important. So, greenhouse emission is considered as a critical criterion in this research. 

Different fossil power plants respect to their size and types of the consumption fuel have different greenhouse gases 

emission and renewable power plants release no greenhouse gases to the environment. Although studies have shown 

renewable energy such as wind power plants still emit GHG to the environment, but due to the low and negligible 

amount of their release, it is not considered in the study evaluations. The amount of greenhouse releases to the 

atmosphere per KWH for each fossil power plant is presented in Table (4).

Economic indicators

Capital costs:  Capital costs include all the costs of purchasing land, constructing buildings and the costs of turbines 

purchasing and installation. The capital costs depend on the capacity and type of power plant, but it is usually higher 

in renewable rather than fossil power plants.

Operation and Maintenance costs:  Costs of energy production operations, manpower costs, fixing and 

maintenance costs of facilities are form the operation and maintenance (O&M) costs. Due to the high cost of fossil 

fuels, the O&M costs of fossil units are greater than renewable power plants. 

Prime price: Prime price is the proxy of final price of power generation. Amount of power generation, capital costs 

and maintenance costs are influencing the prime price. Generally, with the increase in power generation, prime price 

get reduced, since some fixed price can be compensate by generating more electricity. The values of prime price in 

Rials per KW electricity for different power plants are presented in Table (4).

http://amar.tavanir.org.ir
http://isn.moe.gov.ir/getattachment
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Social indicator

Job: The manpower required to set up and operate the power plants is called the amount of job created. In 

developing countries, creating jobs also has impact on social acceptability. Obviously, larger power plants create 

more jobs than smaller ones. Created jobs are associated to the all processes of maintaining and operating power 

plants. The amount of jobs created per 1 Gigabyte hour for different power plants are presented in Table (4). 

Technical indicator

Power generation: The index of power generating capacity measures the average amount of electricity generated 

per year. It happens rarely that a power plant generates the power in full capacity. In fossil power plants, fixing and 

maintenance time and, in the case of renewable plants, climatic conditions are the most important factors affecting 

power generation process. Power generation is the multiplying of efficiency to the possible time to generate 

electricity in a year and it is expresses in MWH. The efficiency values for each power plant are presented in Table 

(4).

---------------------- [Table 4 about here] ----------------------

In summary, in this paper, six criteria of power generation, greenhouse emission, prime price, capital costs, 

operation and maintenance costs and job considered as responses. Then, by using experts’ preferences in FBWM 

model, the weights of criteria are determined. Finally, the effect on alternatives on the response sub-indicators will 

be measured using S/N ratio and the scores obtained from implementing FBWM-TOPSIS will determine optimal 

combination of power plants. 

5. Results and Discussion

In this section, the proposed approach is implemented for finding the best combination of power plants’ alternatives 

in Gilan province. The steps are as follows:

Step1: After specifying feasible power plants and their level, an appropriate orthogonal array will be selected. In this 

paper, five types of power plant are considered as factors. Each power plant has three levels which are shown in 

Table (3). Calculating the degree of freedom shows that at least 11 experiments are needed to observe the factors 

effect on responses. Eventually, an orthogonal L27 array is calculated. It means that 27 different combinations are 

required to observe each combination effects on responses. Table (5) represents 27 combinations of designed array.
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---------------------- [Table 5 about here] ----------------------

Step 2: According to the criteria characteristics, in this step, S/N ratios of 27 designed combinations will be 

calculated. Responses of power generation and job are “larger the better” characteristics and greenhouse gas 

emission, prime price, capital costs and O&M costs are the “smaller the better” characteristics. S/N ratios will be 

calculated for larger the better and smaller the better characteristics using equations (2) and (3), respectively. The 

results of calculated S/N ratios are shown in Table (5). As presented in the Table (5), responses which satisfy 

characteristic feature more have higher S/N ratio values. For example, in the first row of Table (5) which related to 

A1B1C1D1E1 combination, capital costs, O&M costs and greenhouse gas emission responses which have “smaller the 

better” characteristic have higher S/N ratio values rather than other combinations. Since A1B1C1D1E1 need less 

capital costs, O&M costs and/or produces less greenhouse gases. However, in prime price index which also has 

“smaller the better” characteristic, A1B1C1D1E1 has poor performance in term of S/N ratio. In responses with “larger 

the better” characteristics such as job and power generation, A1B1C1D1E1 obtain the minimum S/N ratios since make 

low job and/or generate less electricity power among all combinations. Also, the calculated S/N ratios are the inputs 

of next step. Training of BPNN will be done using calculated S/N ratios.

Step 3: After calculating S/N ratios of designed orthogonal array, calculated S/N ratios are applied to train BPNN. 

After training NN, In order to obtain more consistent and real results, all of S/N ratios are estimated. So, we re-

evaluated S/N ratios for all combination including designed orthogonal array combinations. Then, estimated data are 

applied in evaluations. For sake of simplicity, the designed BPNN is run for each response, separately. In designed 

BPNN, number of neurons in input layer is adjusted to number of factors, five, and number of neuron in output layer 

is set to each responses. Also, number of hidden layers and neurons in hidden layers are obtained by trial and error. 

Actually, to prevent of too much trial and error setting for each index and to achieve best evaluation, different 

structures are designed to estimate prime price S/N ratios. Since prime price S/N ratios are too close to each other, 

hence, they are very sensitive to the NN results. Therefore, we tried to design the best structure of NN for estimating 

the prime price data and applied designed structure for estimating of other results. Properties of designed BPNN are 

presented in Table (6). Estimated S/N ratios are provided in Table (7). As can be seen, MSE values are very low and 

acceptable which means that estimated values are almost accurate.

---------------------- [Tables 6 and 7 about here] ----------------------
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Step 4: In this step, estimated S/N ratios in later step are normalized using (19). Normalized data are scale less and 

presented in Table (8). Equation (19) assigns 1 to highest S/N ratio value and 0 to lowest one for each index. As 

mentioned before, estimated values are applied in evaluation. So, as shown in the Table (8), for example, although 

A1B1C1D1E1 indicates the highest S/N ratio in capital cost sub-indicator of Table (4), but due to the normalizing 

estimated S/N ratios, does not take the value of 1 in Table (8). Also, since in this step, the data are normalized, 

hence, it is not necessary to normalize data in second step of the TOPSIS method.

---------------------- [Table 8 about here] ----------------------

Step 5: In this step, the weights of criteria are determined. This step is including five sub-steps that have explained 

in the methodology. According to the FBWM steps, first, the best and the worst criteria should be determined. In 

order to determine the best and the worst criteria, an expert team of power plant industry gathered and incorporated 

team preferences in decision making. According to the expert team opinions, power generation and job criteria are 

considered as the best and worst criteria, respectively. Then, linguistic preference of best criterion over all criteria 

and preference of all criteria over worst criterion are determined using fuzzy numbers. The linguistic terms for fuzzy 

preferences of the best criterion over all the criteria and all criteria over worst criterion have been shown in Table 

(9). It should be noted that linguistic terms are assigned based on expert team opinion, too. Table (10) presents the 

final weights of each response. Power generation has the highest weight among responses and then, capital costs and 

greenhouse emissions have second and third importance, respectively. The consistency ratio is 0.0558 which is very 

close to zero. Therefore, it can be concluded that the FBWM model presents high comparison consistency.  

---------------------- [Tables 9 and 10 about here] ----------------------

Step 6: In this step, TOPSIS method is applied to identify and obtain the best combination of power plants. In fact, 

by using the obtained weights from FBWM and estimated data, TOPSIS method measures the scores of all 

alternatives. Higher score represent the optimal combination among all combinations. A summary of TOPSIS model 

results are shown in Table (11). Based on the scores calculated, the combination of A1B3C1D2E1 is the optimal 

combination. The score of A1B3C1D2E1 is 0.5983. This combination is related to 80 MW gas, 200 MW steam, 300 

MW combined cycle, 130 MW wind and 200 MW hydroelectric power plants. 

---------------------- [Tables 11 about here] ----------------------
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The optimal solution is consistent with reality of Gilan. Gas power plants due to the fast operating capability are 

considered as subsidiary power generation alternatives. But due to short life and low efficiency defects, they cannot 

be considered as strategic alternatives. Regarding to the steam power plants features such as less greenhouse gas 

emission, longer life and higher efficiency than gas power plants, they are suitable for Gilan province. In the case of 

combined cycle power plants, larger power plants require higher investment, generate higher greenhouse gases and 

are not suitable for the geographic conditions of the province with dispersed population. But the flexibility of the 

combined cycle power plants in extensibility has made it possible to take steps to develop these types of power 

plants if needed. Creating large dams for power generation requires special areas and consideration for under-

watering valuable land in the area. In addition to that, the time period of constructing large dames is not consistent 

with Sixth Developing Plan; so smaller type of hydroelectric power plants is desirable. And eventually, the best 

option for power generation is wind power, which the government is serious about increasing the use of this type of 

power plant. But this is possible by reducing the cost of building and installing wind turbines and connecting with 

the world's wind industry.

In proposed approach and in the BWM process, the weights of criteria are obtained by incorporating pairwise 

comparison and incorporating fuzziness of the decision making process. By taking into the account of the obtained 

weights in TOPSIS method the optimal solution of this paper is meaningful and reliable. In fact, the optimal solution 

A1B3C1D2E1 has closest distance from ideal solution and farthest distance from negative ideal solution. We believe 

that the precision of the proposed decision-making technique is increased by including decision maker’s preferences 

and data simultaneously.

5.1. Sensitivity analysis

In this section a sensitivity analysis is performed in two scenarios. In the first scenario, the linguistic preferences of 

policy makers have been changed to observe the impact of criteria weights on decision-making. Moreover in the 

second scenario, SAW (Simple Additive Weighting) method is used instead of TOPSIS to observe the impact of 

using different MCDM methods on final rankings. In the following, the results of applying each scenario has been 

discussed in summary.

In the first scenario, the preferences of policy makers have been changed. Hence, greenhouse gas emission and job 

sub-indicators considered as the best and the worst criteria respectively. Also new linguistic preference of best 
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criterion over all criteria and preference of all criteria over worst criterion are determined using fuzzy numbers 

which are presented in the Table (12).

---------------------- [Tables 12 about here] ----------------------

 At last, new obtained weights are incorporated into the TOPSIS method to observe the impact the weights in 

decision making process. According to the first scenario results, A1B2C1D2E2 with the score of 0.6983 is ranked the 

first followed by A1B1C1D3E2 with the score of 0.6941. This combination relates to the 80 MW gas, 160 MW steam, 

300 MW combined cycle, 130 MW wind and 240 MW hydroelectric power plants respectively. With the increase in 

the weight of greenhouse gas emission criteria, smaller size of fossil power plants and larger or medium size of 

renewable power plants are desirable to establish.  

In the second scenario, scores have just been calculated by using FBWM-SAW method. According to the second 

scenario, combination of A1B2C1D2E2 with the score of 0.71 is ranked first. In other words, in the case that we 

consider subjectivity of policy makers in alternatives evaluations more, 80 MW gas, 160 MW steam, 300 MW 

combined cycle, 130 MW wind and 240 MW hydroelectric power plants are desirable.    

6. Recommendations for policy remarks

It is clear that three sub-indicators of power generation, job and prime cost have large value for the big power plants. 

So, these sub-indicators have positive impacts on selecting the large size power plants in the optimal combination. In 

contrast, the other three sub-indicators capital costs, O&M costs and greenhouse emission encourage the smaller 

power plants to be considered as an optimal one. For example, in optimal combination, the high power generation of 

combined cycle in larger units is neutralized with the greenhouse gas emission and high capital costs. In fact, 

smaller units of combined cycle are closer to the ideal solution and they are suitable alternatives. So the smaller unit 

of combined cycle has been preferred. In the case of renewable energy, since greenhouse gas emissions criterion has 

less important in the decision making process, power generation and capital costs criteria have the most effect in 

decision making process. 

The results show that the combination of A1B2C3D2B2 has the lowest score among all combinations. This 

combination is related to 80 MW gas, 160 MW steam, 380 MW combined cycle, 130 MW wind and 240 MW 

hydroelectric power plants. As mentioned before, larger unit of combined cycle is not preferable. Also, due to the 

advantages of larger wind power plants in generating low price power and creating job, smaller size of wind power 
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plants are not suitable for constructing in Gilan. Since the capacity levels of gas power plants are close to each other 

(80, 100 and 120 MW), so, the type of gas power plant is not more important in selection the best combination. 

The last step of the proposed approach can be recalculated using other MCDM techniques such data envelopment 

analysis (Emrouznejad and Yang 2018), principal component analysis and so on. However, proposed hybrid 

FWBM-TOPSIS method by taking into account of expert opinion in weighting enable policy makers to make a 

precise decision. Also, in this flexible method, we can change the input information and investigate the system 

responses. For instance, we can test other capacity levels of power plants or change the important factors and study 

the optimal combination.

7. Summary and Conclusion 

Considering the increasing energy consumption in Iran, it is important to select an optimal combination of power 

plants for qualitative and quantitative development of electricity supply. Due to the existence of limitation and 

environmental pollution of fossil fuels, authorities tend to construct and develop renewable power plants alongside 

the existing power plants. However, some of the weaknesses of renewable power plants such as high capital costs, 

and low security in the generation of sustainable energy, have been caused that the authorities do not have a strategic 

view at these plants and consider a combination of fossil and renewable power plants for development. In this paper, 

an integrated framework of the multi-response Taguchi, NN and the hybrid FBWM-TOPSIS methods was used to 

select the optimal combination of power plants in Gilan province. This study considered three types of fossil gas, 

combined cycle and steam power plants along with two types of conventional renewable wind and hydroelectric 

power plants. Also, six sub-indicators power generation, job, prime price, capital costs, greenhouse gas emissions 

and O&M costs were considered for choosing the best combination of power plants in Gilan. The results indicate the 

combination of A1B3C1D2E1 with the score of 0.5983 as the optimal combination. This combination is related to 80 

MW gas, 200 MW steam, 300 MW combined cycle, 130 MW wind and 200 MW hydroelectric power plants. The 

novelty of this study is integration of these individual methods to find an optimal combination of power plants. The 

multi response Taguchi, which was originally introduced for off-line quality control improvement, has not applied 

for selecting the best combination of power plants. For future studies, final phase of the proposed approach can be 

implemented by other MCDM techniques such as PCA, VIKOR, DEA and etc. Also, due to the existence 

uncertainty in NN results, our framework can be extended by using some uncertain approaches such as fuzzy or 

stochastic fields.  
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Figure 1. Proposed framework to select optimal combination

Select a proper Taguchi orthogonal array 
respect to the number of power plants and their 

levels (design of experiments)

Measure the S/N ratios of designed 
combinations

Estimation of all indexes S/N 
ratios using designed neural 

network

Normalize all estimated S/N ratios 
using equation (19)

Calculate the TOPSIS score of all 
combinations 

Find the optimal combination 
based on calculated TOPSIS 

scores

Employ a BPNN to estimate 
all S/N ratios

Obtain the weights of 
responses using FBWM
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Figure 2. BPNN with one hidden layer
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Table 1: Summary of the literature review of power plants selection

Author Methods Environmenta
l Factors

Economic 
Factors

Social 
Factors

Technical 
Factors

Power Plants 
Type

Lee and Chang 
(2018)

Weighted Sum 
Method,
TOPSIS
VIKOR

ELECTRE

Land use
GHG emission

Investment cost
O&M Cost
Electric cost

Social 
acceptance

Job

Efficiency
Capacity factor

Technical 
maturity

Hydroelectric
Solar PV

Wind
Biomass

Geothermal

Wu et al. (2018)

Cumulative 
Prospect 
theory

Fuzzy set 
theory

Land use
Impact on 
ecosystem

Capital cost
O&M Cost
Electric cost

Payback period
Potential market

Social 
acceptance

Job
Social benefit

maturity
reliability
efficiency

resource reserve

hydroelectric
Solar PV

Wind
Biomass

Solar thermal 
power

Katal and 
Fazelpour (2018) VIKOR Land use

CO2 Emission
Cost of 

generation
Efficiency

Power 
generation

Gas
Combined heat 

and power
Hydroelectric

wind

Amer and Daim 
(2011) AHP

Land use
Stress on eco-

system
Emission

Capital cost
O & M cost

Electricity cost
R&D Cost

Social 
acceptance

Job
Social benefit

Maturity
Reliability
Efficiency

Availability
Resource 
available

Wind
Solar PV

Solar thermal 
power

Biomass

Çolak and Kaya 
(2017)

Fuzzy AHP
Fuzzy 

TOPSIS

Land use
GHG emission
Environmental 

damage
Need of waste 

disposal
Other 

environmental 
effects

Service period
Payback period
Availability of 

fund
Contribution to 

economy
Affordability

levelised energy 
cost

Maturity
Reliability
Efficiency
Production 

capacity
Installed 
capacity

hydroelectric
Solar
Wind

Biomass
Geothermal
Hydrogen

Wave

Kobak and  
Dagdeviren 

(2014)
ANP

Land use
Ecological 
damages

Global effects

Economic value
O&M cost

Implementation 
cost

Investment cost

Human well-
being

Job creation
Social 

resistance

Immaturity
Technical 
feasibility
Reliability
Security

Wind
Biomass

Geothermal
Solar

Hydroelectric

Štreimikienė, et 
al. (2016)

AHP
ARAS

Contribution to 
the energy 

balance
Effects on 

climate change
Treatment of 

waste 
compliance 

with condition

Economic 
efficiency

Production cost
Technology 

completiveness
Value of 

technology

Influence on 
social welfare
Influence on 
development

Public 
acceptance

Reliability
Technology's 

innovativeness
Technology's 
rated capacity

Nuclear
Hydroelectric

Wind
Geothermal

Biomass
Gas

Zhang et al. 
(2015)

Fuzzy 
measure

Shapely value
Land use

CO2 emissions
Investment cost

Economic 
sustainability

Job
Technology 

readiness level
Safety

Solar PV
Wind

Biomass
Nuclear

Chatzimouratidis 
and Pilvaci 

(2012)
PROMETHEE

Land use
GHG emission
Radioactivity

Ecosystem 
equilibrum
Particulate 

matter

Job
Social 

acceptance
Reserves to 

production ratio

Hydroelectric
Wind

Geothermal
Biomass

Gas
Oil

Coal
Combined cycle

Nuclear

This study

Multi response 
Taguchi
neural 

network
Fuzzy BWM

TOPSIS

GHG Emission
Capital cost
O&M Cost
Prime price

Job Power 
generation

Gas
Steam

Combined cycle
Wind

Hydroelectric
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Table 2. Transformation rules of linguistic variables of decision-makers
Linguistic Terms Abbreviation Membership function

Equally importance (EI) (1,1,1)
Weakly important (WI) (2/3,1,3/2)
Fairly Important (FI) (3/2,2,5/2)
Very important (VI) (5/2,3,7/2)

Absolutely important (AI) (7/2,4,9/2)
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Table 3. Considered parameters and levels
Level (MW)

Power plants types
1 2 3

Gas, A 80 100 120

Steam, B 120 160 200

Combined cycle, C 300 340 380

Wind, D 100 130 160

Hydroelectric, E 200 240 280
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Table 4. Indicators, sub-indicators and their values for different power plants 
Power plant type

Indicator Sub-indicator Scale
Gas Steam Combined 

Cycle Wind Hydroelectric

Environmental Greenhouse emission gr/KWH 852.403 814.821 472.322 0 0
Capital costs U.S. Dollar/KWH 450 1040 800 2020 2150
O&M costs U.S. Dollar/KW 25 40 30 50 55Economical
Prime price IRR*/KW 348 357 321 467 384

Social Jobs Man/GBH 0.108 0.114 0.103 0.314 0.251
Technical Power generated Yearly Efficiency 0.166** 0.197 0.382 0.321 0.215

*Iranian Rials

**Power generating for 80 MW gas power plant type= 80*24*365*0.166=116332.8 MWH
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Table 5. S/N ratios for L27 orthogonal array
L27 Taguchi orthogonal array S/N ratios

Gas Steam Combined 
cycle Wind

Hydro
electri

c
Capital Costs O&M Job Prime Price Power 

generation
Greenhouse gas 

emission

1 1 1 1 1 -168.9286 -138.776 50.15712 -13.5272 124.6294 -117.4486

1 1 1 1 2 -169.4850 -139.237 50.65509 -13.5192 125.0051 -117.4486

1 1 1 1 3 -170.0078 -139.674 51.12605 -13.5156 125.3653 -117.4486

1 2 2 2 1 -170.0868 -139.948 51.36403 -13.4408 127.1298 -118.7657

1 2 2 2 2 -170.5756 -140.352 51.79899 -13.432 127.4131 -118.7657

1 2 2 2 3 -171.0383 -140.738 52.21320 -13.428 127.6874 -118.7657

1 3 3 3 1 -171.1085 -140.981 52.42353 -13.4073 128.1637 -119.9091

1 3 3 3 2 -171.5444 -141.341 52.80963 -13.3981 129.4669 -119.9091

1 3 3 3 3 -171.9595 -141.686 53.17930 -13.3939 129.6842 -119.9091

2 1 2 3 1 -170.4268 -140.163 51.86572 -13.4426 127.2979 -117.8706

2 1 2 3 2 -170.8973 -140.558 52.27684 -13.4338 127.5759 -117.8706

2 1 2 3 3 -171.3437 -140.935 52.66937 -13.4298 127.8452 -117.8706

2 2 3 1 1 -169.9294 -140.001 51.12605 -13.4785 127.4251 -119.1296

2 2 3 1 2 -170.4269 -140.402 51.57278 -13.4701 127.6991 -119.1296

2 2 3 1 3 -170.8974 -140.786 51.99766 -13.4662 127.9646 -119.1296

2 3 1 2 1 -170.0176 -139.896 51.29332 -13.3904 126.9921 -118.4549

2 3 1 2 2 -170.5102 -140.302 51.73175 -13.3811 127.2799 -118.4549

2 3 1 2 3 -170.9763 -140.690 52.14910 -13.3768 127.5584 -118.4549

3 1 3 2 1 -170.2755 -140.214 51.6185 -13.4544 127.5876 -119.2692

3 1 3 2 2 -170.7541 -140.606 52.0412 -13.4458 127.8566 -119.2692

3 1 3 2 3 -171.2077 -140.981 52.44428 -13.4418 128.1175 -119.2692

3 2 1 3 1 -170.3603 -140.112 51.79899 -13.4372 127.1629 -118.6058

3 2 1 3 2 -170.8343 -140.508 52.21320 -13.4283 127.4451 -118.6058

3 2 1 3 3 -171.2838 -140.888 52.60856 -13.4243 127.7185 -118.6058

3 3 2 1 1 -169.8590 -139.948 51.07766 -13.4654 127.292 -119.7691

3 3 2 1 2 -170.3604 -140.352 51.52683 -13.4569 127.5702 -119.7691

3 3 2 1 3 -170.8344 -140.738 51.95390 -13.453 127.8397 -119.7691
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Table 6. Properties of designed BPNN

Responses Structure MSE (Training) MSE (Test)
Prime price 2.87E-05 3.84E-06

O&M 6.95E-07 7.10E-04

Power generation 2.96E-05 6.83E-05

Greenhouse gas emission 9.85E-09 3.87E-10

Capital costs 3.67E-06 4.21E-07
Job

5-4-1

1.50E-02 5.9E-04
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Table 7. Estimated S/N ratios
L27 Taguchi orthogonal array Estimated S/N ratios

Gas Steam Combined 
cycle

Win
d

Hydroele
ctric Capital Costs O&M Job Prime 

Price
Power 

generation
Greenhouse 
gas emission

1 1 1 1 1 -168.928 -138.776 50.1617 -13.5248 124.6295 -117.4486

1 1 1 1 2 -169.485 -139.237 50.6568 -13.5208 125.0053 -117.4486

1 1 1 1 3 -170.007 -139.727 51.6416 -13.5138 125.3653 -117.4486

1 2 2 2 1 -170.087 -139.949 51.3400 -13.4401 127.1133 -118.7657

1 2 2 2 2 -170.577 -140.352 51.7744 -13.4276 127.4104 -118.7657

1 2 2 2 3 -171.038 -140.738 52.2398 -13.4250 127.6893 -118.7657

1 3 3 3 1 -171.108 -140.980 52.4056 -13.4073 128.1637 -119.9091

1 3 3 3 2 -171.545 -141.34 52.8570 -13.3973 129.4642 -119.9091

1 3 3 3 3 -171.960 -141.686 53.0636 -13.3926 129.6840 -119.9091

2 1 2 3 1 -170.422 -140.163 51.7472 -13.4410 127.2925 -117.8706

2 1 2 3 2 -170.898 -140.558 52.2387 -13.4385 127.5677 -117.8706

2 1 2 3 3 -171.344 -140.934 52.6686 -13.4284 127.8461 -117.8706

2 2 3 1 1 -169.930 -140.000 51.1308 -13.4801 127.4260 -119.1296

2 2 3 1 2 -170.426 -140.402 51.6037 -13.4744 127.6998 -119.1296

2 2 3 1 3 -170.896 -140.787 52.0663 -13.4687 127.9636 -119.1296

2 3 1 2 1 -170.018 -139.895 51.2735 -13.3929 126.9931 -118.4549

2 3 1 2 2 -170.514 -140.302 51.6897 -13.3828 127.2835 -118.4549

2 3 1 2 3 -170.977 -140.690 52.1622 -13.3783 127.5557 -118.4549

3 1 3 2 1 -170.277 -140.215 51.7046 -13.4520 127.5867 -119.2692

3 1 3 2 2 -170.755 -140.608 52.1482 -13.4463 127.8561 -119.2692

3 1 3 2 3 -171.208 -140.981 52.4493 -13.4396 128.1171 -119.2692

3 2 1 3 1 -170.362 -140.113 51.6697 -13.4356 127.1783 -118.6057

3 2 1 3 2 -170.840 -140.510 52.1620 -13.4308 127.4432 -118.6057

3 2 1 3 3 -171.284 -140.887 52.6117 -13.4234 127.7186 -118.6057

3 3 2 1 1 -169.859 -139.948 51.0562 -13.4523 127.2864 -119.7694

3 3 2 1 2 -170.362 -140.352 51.5219 -13.4423 127.5693 -119.7694

3 3 2 1 3 -170.835 -140.738 52.0029 -13.4404 127.8416 -119.7694
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Table 8. Normalized S/N ratios
L27 Taguchi orthogonal array Normalized S/N ratios

Gas Steam Combined 
cycle Wind Hydroelectric Capital 

Costs O&M Job Prime 
Price

Power 
generation

Greenhouse 
gas emission

1 1 1 1 1 0.9999970 1 0 0.003975 0.000308 1

1 1 1 1 2 0.8166100 0.844116 0.170613 0.030642 0.074354 1

1 1 1 1 3 0.6441113 0.678063 0.509976 0.077837 0.145578 1

1 2 2 2 1 0.6178111 0.602990 0.406039 0.575031 0.491408 0.4647053

1 2 2 2 2 0.4561226 0.466495 0.555741 0.658972 0.550181 0.4647054

1 2 2 2 3 0.3039193 0.335810 0.716141 0.676745 0.605348 0.4647054

1 3 3 3 1 0.2809600 0.253763 0.773255 0.795772 0.69922 1.22597E-07

1 3 3 3 2 0.1366917 0.131882 0.92882 0.863257 0.956516 1.22598E-07

1 3 3 3 3 0 0.617811 0.60299 0.406039 0.575031 0.4914082

2 1 2 3 1 0.5071772 0.530531 0.546373 0.568985 0.526856 0.8284850

2 1 2 3 2 0.3501959 0.396873 0.715738 0.585874 0.581297 0.8284850

2 1 2 3 3 0.2031446 0.269386 0.863899 0.653708 0.636383 0.8284850

2 2 3 1 1 0.669700 0.585693 0.33395 0.304867 0.55326 0.3168158

2 2 3 1 2 0.5061004 0.449568 0.496915 0.343718 0.607436 0.3168158

2 2 3 1 3 0.3508661 0.319407 0.65635 0.382007 0.659616 0.3168158

2 3 1 2 1 0.6406221 0.621138 0.383129 0.893237 0.467625 0.5910048

2 3 1 2 2 0.4769068 0.483479 0.526549 0.961217 0.525076 0.5910048

2 3 1 2 3 0.3242819 0.352011 0.689369 0.991929 0.578936 0.5910048

3 1 3 2 1 0.5551361 0.512920 0.531688 0.494977 0.585055 0.2600670

3 1 3 2 2 0.3973192 0.379772 0.68456 0.532958 0.63836 0.2600670

3 1 3 2 3 0.2479967 0.253412 0.788312 0.578097 0.689989 0.2600670

3 2 1 3 1 0.5271229 0.547574 0.51965 0.605085 0.504258 0.5297139

3 2 1 3 2 0.3695255 0.413002 0.689314 0.637567 0.556663 0.5297139

3 2 1 3 3 0.2228717 0.285383 0.844279 0.687334 0.611159 0.5297140

3 3 2 1 1 0.6929814 0.603243 0.308241 0.49271 0.525644 0.0568003

3 3 2 1 2 0.5270097 0.466596 0.468735 0.560346 0.581608 0.0568003

3 3 2 1 3 0.3710931 0.335990 0.634496 0.572769 0.635488 0.0568003
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Table 9. The linguistic terms for experts team fuzzy preferences of the best criterion over all the criteria and 
all criteria over worst criterion

Criteria Prime 
price

O&M 
cost

Power 
generation

Greenhouse 
emission

Capital 
costs Job

Best criterion (Power generation) FI VI EI WI WI AI
Worst criterion (Job) WI WI AI FI VI EI
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Table 10. The weights of responses
Criteria Weight

Power generation 0.2896
Capital cost 0.2079
O&M cost 0.0882

Prime price 0.1331
Greenhouse gas emission 0.1993

Job 0.0818
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Table 11. TOPSIS scores of some alternatives
Alternatives 

Number
Combination Score Alternatives 

Number
Combination Score

1 1 1 1 1 1 0.4780 127 2 2 3 1 1 0.5029
3 1 1 1 1 3 0.4673 130 2 2 3 2 1 0.4596
5 1 1 1 2 2 0.5135 133 2 2 3 3 1 0.4478
12 1 1 2 1 3 0.4725 137 2 3 1 1 2 0.5680
15 1 1 2 2 3 0.4862 142 2 3 1 3 1 0.4652
18 1 1 2 3 3 0.5766 146 2 3 2 1 2 0.4308
22 1 1 3 2 1 0.4715 150 2 3 2 2 3 0.5082
26 1 1 3 3 2 0.4498 155 2 3 3 1 2 0.4354
29 1 2 1 1 2 0.5000 160 2 3 3 3 1 0.4597
31 1 2 1 2 1 0.5384 163 3 1 1 1 1 0.4784
35 1 2 1 3 2 0.5818 169 3 1 1 3 1 0.5447
37 1 2 2 1 1 0.4868 171 3 1 1 3 3 0.5182
40 1 2 2 2 1 0.5221 175 3 1 2 2 1 0.5297
45 1 2 2 3 3 0.5102 179 3 1 2 3 2 0.5529
50 1 2 3 2 2 0.4226 182 3 1 3 1 2 0.5829
54 1 2 3 3 3 0.5158 186 3 1 3 2 3 0.4868
58 1 3 1 2 1 0.5983 188 3 1 3 3 2 0.4417
63 1 3 1 3 3 0.5233 194 3 2 1 2 2 0.5760
67 1 3 2 2 2 0.4684 197 3 2 1 3 2 0.5161
71 1 3 2 3 2 0.4871 200 3 2 2 1 2 0.5509
76 1 3 3 2 1 0.4716 204 3 2 2 2 3 0.4992
80 1 3 3 3 2 0.5263 206 3 2 2 3 1 0.4266
82 2 1 1 1 1 0.4778 209 3 2 3 1 2 0.5019
88 2 1 1 3 1 0.5447 213 3 2 3 2 3 0.5100
93 2 1 2 1 3 0.4734 217 3 3 1 1 1 0.5193
97 2 1 2 3 1 0.5822 222 3 3 1 2 3 0.5215
105 2 1 3 2 3 0.4592 226 3 3 2 1 1 0.4675
110 2 2 1 1 2 0.4930 234 3 3 2 3 3 0.5093
113 2 2 1 2 2 0.5814 237 3 3 3 1 3 0.4961
117 2 2 1 3 3 0.5446 241 3 3 3 3 1 0.4553
121 2 2 2 2 2 0.5061 243 3 3 3 3 3 0.5123
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Table 12. The linguistic terms for experts team fuzzy preferences in sensitivity analysis

Criteria Prime 
price

O&M 
cost

Power 
generation

Greenhouse 
emission

Capital 
costs Job

Best criterion (Greenhouse 
emission) FI VI WI EI FI AI

Worst criterion (Job) FI WI VI AI VI EI


