
Cluster Detection by Lifting with

Application to Phylogenetics

Nebahat Bozkus

Submitted in accordance with the requirements

for the degree of Doctor of Philosophy

The University of Leeds

Department of Statistics

May 2018

iii

The candidate confirms that the work submitted is her own and that appropriate credit

has been given where reference has been made to the work of others. This copy has been

supplied on the understanding that it is copyright material and that no quotation from the

thesis may be published without proper acknowledgement.

c© 2018 The University of Leeds and Nebahat Bozkus

iv

v

I would like to dedicate this thesis to my mother Suzan Bozkuş and my
father Yaşar Bozkuş for their endless support in my life.

vi

vii

Acknowledgements

I would like to firstly thank my supervisor Dr. Stuart Barber. For four years, his guidance

and endless support in all the stages of my study have been priceless. I am also thankful

to the Ministry of National Education Turkey for funding my PhD study.

I am grateful to my mother Suzan Bozkuş, my father Yaşar Bozkuş and my siblings

Gökhan, Merve and Sefa for their endless love, support and encouragement during all

my life. I am specially thankful to my father for encouraging me to follow my dreams

even in his last minutes in this life. I would like to also thank Dr. Neveen Al Saeed for

being more than a friend in Leeds for me. Without having our breaks from the study, it

would not be easy to complete my PhD study. Finally, I would like to thank all my friends

and colleagues for their support and understanding.

viii

ix

Abstract

In this thesis, we propose a new algorithm which automatically detects the number of

clusters in a tree structure data set by denoising some generalized node values in the tree

using lifting “one coefficient at a time” (LOCAAT) algorithm introduced by Jansen et al.

(2001). Our algorithm can be applied to any multidimensional data set using compactness

value as a node value or to phylogenetic data sets, DNA sequences, using either compact-

ness value or dissimilarity score as a node value. Compactness value is defined as the

average distance from the centroid of each possible cluster in the tree, and the dissimilar-

ity score is the average number of loci, where at least one of them does not share the same

nucleotide between sequences under the node of interest.

For multidimensional data sets, we consider each node in the tree as a possible location

of a cluster after denoising the tree by LOCAAT. Thus, for each possible cluster, we check

how much departure we can allow from the centroid of the cluster to assign the objects

under the node of interest as a cluster. Then if a node and all its child nodes are denoised

less than or equal to the allowed amount of departure from the centroid of their clusters,

a cluster is located at this node. We also propose another version of our algorithm based

on non-decimated lifting (Knight & Nason, 2009) in which we generate a probability of

being clustered for each node. If a node and all its child nodes have a probability of being

clustered less than or equal to the probability of acceptance, θ ∈ [0, 1], a cluster is located

at this node. We provide a comparison study between our algorithms and some available

internal cluster validity indices (CVIs) in the literature using some artificial data sets and

a real data set. In addition, we compare the performance of each method using some

available external cluster validity scores.

For phylogenetic data sets, we check the performance of our algorithms and other

CVIs using both compactness value and dissimilarity score as a node value. To be able to

compute compactness value for a phylogenetic tree, we need to find the position of each

specie in Rp using multidimensional scaling (MDS), and then we can find which species

share the similar features using our algorithm. If we use the dissimilarity score as a node

value, we will cluster similar species together by finding how much difference we can

allow between species. We check the performance of our algorithms using some artificial

and a real data sets.

In the final part of our thesis, we propose a visualization tool for cophylogenetic data

sets. We only consider the associated two phylogenetic trees case, and we apply our

x

algorithm to both host and parasite trees separately to provide a summary of these data

sets. We check the performance of our algorithm using two well-known cophylogenetic

data sets.

Contents

Acknowledgements vii

Abstract ix

Contents xi

List of figures xv

List of tables xix

1 Introduction 1
1.1 Thesis overview . 2

2 Wavelets 5
2.1 Introduction . 5

2.2 Multiscale analysis . 6

2.2.1 Discrete Haar wavelets . 8

2.2.2 Matrix representation . 9

2.3 Haar wavelets . 11

2.3.1 Scaling and translation notation 11

2.3.2 Fine-scale approximation . 11

2.3.3 Computing coarser-scale c from finer-scale ones 12

2.3.4 The difference between scale approximations-wavelets 12

2.4 Multiresolution analysis . 13

2.4.1 Multiresolution analysis (MRA) 13

2.4.2 Projection notation . 14

2.4.3 The dilation equation and wavelet construction 14

2.5 Vanishing moments . 16

2.6 Daubechies’ compactly supported wavelets 16

2.7 The general (fast) discrete wavelet transform 19

2.7.1 The forward discrete wavelet transform 19

2.7.2 Filtering, dyadic decimation, downsampling 19

xi

xii Contents

2.7.3 Inverse discrete wavelet transform 20

2.8 Boundary condition . 21

2.9 Non-decimated wavelets . 22

2.9.1 The ε-decimated wavelet transform 22

2.9.2 Non-decimated (stationary) wavelet transform (NDWT) 22

2.10 Wavelet shrinkage . 24

2.10.1 The Oracle . 25

2.10.2 Universal thresholding . 26

2.10.3 Bayesian wavelet shrinkage . 27

2.10.4 Non-decimated wavelet shrinkage 29

2.11 Simulation study for wavelets . 30

3 Second generation wavelets: lifting 35

3.1 Introduction . 35

3.2 Lifting . 36

3.3 LOCAAT . 37

3.3.1 Forward transform of the LOCAAT 37

3.3.2 Reconstruction of the LOCAAT 39

3.3.3 The variance definition of lifting coefficients 40

3.3.4 Modification for multiple values at a single grid point 41

3.4 Example: LOCAAT on one dimensional data 41

3.4.1 Forward transform . 41

3.4.2 Reconstruction . 44

3.5 Adaptive lifting . 45

3.5.1 Introduction . 45

3.5.2 Adaptive LOCAAT algorithm 45

3.6 Non-decimated lifting . 46

3.6.1 Introduction . 46

3.6.2 The non-decimated lifting algorithm 47

3.6.3 Risk estimation of averaged estimator of g 48

3.7 Simulation study . 49

3.8 Lifting on multidimensional data . 51

3.8.1 Lifting in two dimensions . 52

3.8.2 Lifting in three or more dimensions 53

3.8.3 Modification for multiple values at a single node 54

3.9 Example: LOCAAT on tree structured data 55

3.9.1 Forward transform . 55

3.9.2 Reconstruction . 57

Contents xiii

4 Phylogenetic tree reconstruction 59
4.1 Introduction . 59

4.2 Phylogenetic reconstruction . 60

4.3 Phylogenetic reconstruction methods . 61

4.3.1 Parsimony methods . 61

4.3.2 Distance methods . 62

4.4 Evolutionary Models . 68

4.4.1 The Jukes-Cantor (JC) model 69

4.4.2 The Kimura model . 70

4.4.3 Felsenstein model . 70

4.4.4 The Hasegawa-Kishino-Yano (HKY) model 71

4.5 Probabilistic methods . 71

4.6 Discussion . 73

5 Automatic cluster detection by lifting 75
5.1 Introduction . 75

5.2 Agglomerative hierarchical clustering 76

5.3 Cluster validity indices . 78

5.3.1 Internal indices . 78

5.3.2 Model-based clustering (Mclust) 84

5.3.3 External scores . 85

5.4 Lifting the results of hierarchical clustering 90

5.4.1 Cluster selection by denoising of compactness 90

5.4.2 Dealing with outliers . 93

5.5 Simulation study . 94

5.5.1 Five-component normally distributed data with low variance . . . 96

5.5.2 Five-component normally distributed data with larger variation . . 100

5.5.3 Three-component concentric circle data 104

5.5.4 Six-component non-normally distributed data 108

5.6 Real data example . 112

5.7 Summary . 115

6 Generalisation of the threshold choice 117
6.1 Introduction . 117

6.2 A method of picking a threshold . 117

6.3 Automatic cluster detection by non-decimated lifting 120

6.4 Simulation study . 124

6.4.1 Five-component normally distributed data with low variance . . . 124

6.4.2 Five-component normally distributed data with larger variation . . 130

xiv Contents

6.4.3 Three-component concentric circle data 135

6.4.4 Six-component non-normally distributed data 140

6.5 Real data example . 145

6.6 Summary . 149

7 Lifting on phylogenetic trees 151
7.1 Introduction . 151

7.2 Finding number of clusters for phylogenetic data 151

7.3 Simulation study . 157

7.3.1 Finding base tree structure . 158

7.3.2 Generating sequences . 160

7.3.3 Simulation results . 161

7.4 Real data . 175

7.5 Applying Lifting to cophylogenetic data 178

7.5.1 Introduction to cophylogeny . 178

7.5.2 Application . 181

7.6 Summary . 186

8 Discussion 189

A Extra plots for Chapters 5 and 6 195
A.1 Five-component normally distributed data with low variance 196

A.2 Five-component normally distributed data with larger variation 197

A.3 Three-component concentric circle data 198

A.4 Six-component non-normally distributed data 198

Bibliography 199

List of figures

2.1 Wavelet coefficients plot for the DWT of y 10

2.2 MRA ladder plot for Doppler function 15

2.3 Haar wavelets . 16

2.4 Plots of the scaling function φ and the mother wavelet function ψ for

”Extremal-Phase“ family . 17

2.5 Plots of the scaling function φ and the mother wavelet function ψ for

”Least-Asymmetric“ family . 18

2.6 Bumps, Blocks, Heavisine and Doppler test functions 31

2.7 Box plot comparison for the wavelet simulation study using Blocks function 33

3.1 Scatter plot of one dimensional toy data 42

3.2 Piecewise polynomial (PPolynomial) test function 49

3.3 The comparison of PPolynomial function after adding different amount

of jitter . 50

3.4 The comparison of DJ functions after adding different amount of jitter . . 51

3.5 The dendrogram of the tree structured toy data given in Table 5.1 56

4.1 Unrooted tree of the toy DNA data set 61

4.2 Phylogenetic tree reconstruction by UPGMA 64

4.3 Four-point condition . 65

4.4 Phylogenetic tree reconstruction using neighbour-joining algorithm 68

4.5 Constructed tree via probabilistic methods 72

5.1 The dendrogram of the toy data in Table 5.1 77

5.2 An example of a complicated dendrogram 77

5.3 Illustration of the toy data in Table 5.1 with the results of our lifting method 93

5.4 Scatter plots of four simulated data sets from different data structures . . . 95

5.5 Box plot: the comparison of CVIs for the five-component normally dis-

tributed data with low variance . 97

5.6 Bar chart: the comparison of number of clusters for the five-component

normally distributed data with low variance 98

xv

xvi List of figures

5.7 A single realisation of the five-component normally distributed data with

low variance . 99

5.8 Box plot: the comparison of CVIs for the five-component normally dis-

tributed data with larger variation . 101

5.9 Bar chart: the comparison of number of clusters for the five-component

normally distributed data with larger variation 102

5.10 A single realisation of the five-component normally distributed data with

larger variation . 103

5.11 Box plot: the comparison of CVIs for the three-component concentric

circle data . 105

5.12 Bar chart: the comparison of number of clusters for the three-component

concentric circle data . 106

5.13 A single realisation of the three-component concentric circle data 107

5.14 Box plot: the comparison of CVIs for the six-component non-normally

distributed data . 109

5.15 Bar chart: the comparison of number of clusters for the six non-normally

distributed component data . 110

5.16 A single realisation of the six-component non-normally distributed data . 111

5.17 Pairs plots of scaled morphological features of crabs data. 112

5.18 Clustering crabs data by Lifting . 113

5.19 Pairs plots for different internal indices for crabs data 114

6.1 Illustration of the toy data in Table 5.1 with the results of our ALifting

method . 120

6.2 Illustration of the toy data in Table 5.1 with the results of our NLT algorithm123

6.3 Updated box plot: the comparison of CVIs for the five-component nor-

mally distributed data with low variance 126

6.4 The variation of λ for the five-component normally distributed data with

low variance . 127

6.5 Updated bar chart: the comparison of number of clusters for the five-

component normally distributed data with low variance 127

6.6 Updated results for a single realisation of the five-component normally

distributed data with low variance . 128

6.7 The dendrogram of our NLT algorithm for one realisation of the five-

component normally distributed data with low variance 129

6.8 Updated box plot: the comparison of CVIs for the five-component nor-

mally distributed data with larger variation 131

List of figures xvii

6.9 The variation of λ for the five-component normally distributed data with

larger variation . 132

6.10 Updated bar chart: the comparison of number of clusters for the five-

component normally distributed data with larger variation 132

6.11 Updated results for a single realisation of the five-component normally

distributed data with larger variation . 133

6.12 The dendrogram of our NLT algorithm for one realisation of the five-

component normally distributed data with larger variation 134

6.13 Updated box plot: the comparison of CVIs for the three-component con-

centric circle data . 136

6.14 The variation of λ for the three-component concentric circle data 137

6.15 Updated bar chart: the comparison of number of clusters for the three-

component concentric circle data . 137

6.16 Updated results for a single realisation of the three-component concentric

circle data . 138

6.17 The dendrogram of our NLT algorithm for one realisation of the three-

component concentric circle data . 139

6.18 Updated box plot: the comparison of CVIs for the six-component non-

normally distributed data . 141

6.19 Updated bar chart: the comparison of number of clusters for the six-

component non-normally distributed data 142

6.20 Updated results for a single realisation of the six-component non-

normally distributed data . 143

6.21 The dendrogram of our NLT algorithm for one realisation of the six-

component non-normally distributed data 144

6.22 The variation of λ for the six-component non-normally distributed data . . 144

6.23 The dendrogram of the crabs data including clustering pattern found by

ALifting and NLT . 146

6.24 Illustration of partitions found by different CVIs for the crabs data 148

7.1 Illustration of the toy phylogenetic data with the results of our ALifting

method . 156

7.2 The clustering scheme found for the toy phylogenetic data by our ALift-

ing method . 157

7.3 Simulation tree settings . 162

7.4 The comparison of number of clusters found by different methods for the

first base tree with no sub-populations 163

xviii List of figures

7.5 The comparison of clustering scheme found by different CVIs with

matching distances for the first base tree with no sub-populations 164

7.6 The comparison of clustering scheme found by different CVIs with phy-

logenetic distances for the first base tree with no sub-populations 165

7.7 The comparison of number of clusters found by different methods for the

second base tree with no sub-populations 166

7.8 The comparison of pairs plots for the simulated population with three

sub-populations . 167

7.9 The comparison of clustering scheme found by different CVIs with phy-

logenetic distances for the simulated population with three sub-populations 169

7.10 The comparison of clustering scheme found by different CVIs with

matching distances for the simulated population with three sub-populations 170

7.11 The comparison of pairs plots of the simulated population with three sub-

populations . 171

7.12 Box plot: the comparison of CVIs with phylogenetic distances for simu-

lated population with three sub-populations 173

7.13 Box plot: the comparison of CVIs with matching distances for the simu-

lated population with three sub-populations 174

7.14 The comparison of clustering scheme found by different CVIs with

matching distances for the HIV-1 data 176

7.15 The comparison of clustering scheme found by different CVIs with phy-

logenetic distances for the HIV-1 data 177

7.16 The illustration of coevolutionary events 179

7.17 Phylogenetic trees of pocket gophers (hosts, left) and their chewing lice

(parasites, right) with their interactions shown by blue dashed lines 182

7.18 Clustered pocket gophers (hosts, left) and their chewing lice (parasites,

right) by our Lifting algorithm . 183

7.19 Phylogenetic trees of deep sea clams (hosts, left) and their bacteria (para-

sites, right) with their interactions shown by blue dashed lines 184

7.20 Clustered deep sea clams (hosts, left) and their bacteria (parasites, right)

by our Lifting algorithm . 185

List of tables

2.1 Different wavelet transformations of Blocks function using “Extremal-

Phase” family . 31

2.2 Different wavelet transformations of Blocks function using “Least-

Asymmetric” family . 32

3.1 Comparison of wavelet transforms and lifting methods 50

3.2 The summary of the tree structured toy data given in Table 5.1 55

3.3 Lifting results for the tree structured toy data given in Table 5.1 57

4.1 Toy DNA data set with alignment process 61

5.1 Tree structured toy data . 76

5.2 Euclidean distance matrix for the toy data in Table 5.1 77

5.3 Clustering scheme for the toy data in Table 5.1 77

5.4 Structure of a contingency table . 85

5.5 Tabulated nij/n for the toy data in Table 5.4b 89

5.6 Hierarchical clustering results for the toy data in Table 5.1 92

5.7 The formula used to generate simulated data structures 95

5.8 The comparison of CVIs for the five-component normally distributed data

with low variance . 98

5.9 The comparison of CVIs for the five-component normally distributed data

with larger variation . 102

5.10 The comparison of CVIs for the three-component concentric circle data . 106

5.11 The comparison of CVIs for the six-component non-normally distributed

data . 110

5.12 The comparison of CVIs for crabs data 113

6.1 Tabulated results of our NLT algorithm for the toy data in Table 5.1 . . . 123

6.2 Updated results of the comparison of CVIs for the five-component nor-

mally distributed data with low variance 125

xix

xx List of tables

6.3 Updated results of the comparison of CVIs for the five-component nor-

mally distributed data with larger variation 130

6.4 Updated results of the comparison of CVIs for the three-component con-

centric circle data . 135

6.5 Updated results of the comparison of CVIs for the six-component non-

normally distributed data . 140

6.6 Updated results of the comparison of CVIs for crabs data 145

6.7 Tabulated number of objects in each cluster found by various methods in

terms of true clusters of the crabs data 147

7.1 A small example of DNA sequences . 152

7.2 Toy phylogenetic data . 155

7.3 Aligned species s3 and s9 . 155

7.4 Aligned species s6 and s10 . 156

7.5 Aligned species s6, s10 and s2 . 157

7.6 The comparison of CVIs with matching distances for the simulated pop-

ulation with three sub-populations . 168

7.7 The comparison of CVIs with phylogenetic distances for the simulated

population with three sub-populations 168

7.8 The comparison of different variance estimation settings 172

7.9 The range of λ for different versions of ALifting algorithm 172

7.10 The comparison of number of clusters found by different CVIs for the

HIV-1 data . 175

A.1 The comparison of CVIs for the five-component normally distributed data

with low variance (complete linkage, limit=50) 196

A.2 The comparison of CVIs for the five-component normally distributed data

with low variance (single linkage, limit=15) 196

A.3 The comparison of CVIs for the five-component normally distributed data

with larger variation (complete linkage, limit=50) 197

A.4 The comparison of CVIs for the five-component normally distributed data

with larger variation (single linkage, limit=15) 197

A.5 The comparison of CVIs for the three-component concentric circle data

(single linkage, limit=15) . 198

A.6 The comparison of CVIs for the six-component non-normally distributed

data (single linkage, limit=15) . 198

Chapter 1

Introduction

Clustering is a popular area in statistics. It helps to summarize a data set by finding

related groups of objects, so one of the common questions in the clustering literature is

how many clusters are in a data set. There are many available methods which attempt to

find the most suitable partitioning structure in terms of their own rules; however, none of

them captures the true components of all types of data structure with a high performance.

They generally struggle to partition a data set if it is uniquely shaped, or if different objects

from different groups are closely located. In addition, when we build a dendrogram of a

multidimensional data set, the available methods find the number of clusters, so we can cut

the dendrogram from any place which gives the number of clusters obtained by the method

of use. In this thesis, we discuss a new method which finds one of the best representative

clustering pattern and which finds the exact place of each cluster in a dendrogram.

Our proposed method is based on hierarchically built trees. It partitions the data set

using a denoising method. We know that all data sets are noise corrupted, and when

we hierarchically find the tree representation of a data set, each agglomeration step also

adds some extra noise to the tree. In hierarchical clustering, the tree is built by iteratively

merging the closest pair of objects at a time, and a new object to represent these merged

pairs is created. Thus, the distance between the new object and others is based on the

estimated distance from the objects at the previous stage which adds the extra noise to the

tree. We assume that we can find a better representative partitioning to any data set by

denoising some representative function values on all nodes in the tree.

In this study, we explore the behaviour of a recently developed wavelet-like method

called lifting (Sweldens, 1998) which is also known as second generation wavelets. It is

based on the wavelet transform, but it has fewer restrictions than the wavelet transform

which we discuss in detail in Chapter 3. It is applicable for more general data sets which

have a neighbourhood structure, and it estimates the function value of a particular point

in the space using the function values of the neighbours. Then the estimated values are

easily denoised using similar methods to those used in wavelet shrinkage, since the lifting

1

2 Chapter 1. Introduction

transform finds detail coefficients analagous to those obtained by the wavelet transform.

However, the lifting transform introduced by Sweldens (1998) can not deal with multi-

dimensional data sets. Jansen et al. (2001) later introduced the lifting “one coefficient at

a time” (LOCAAT) algorithm which can easily deal with many data structures including

multidimensional data points and networks. Our aim in this study is to denoise hierar-

chically built trees to find the clustering structures, so we use the LOCAAT algorithm on

networks (Jansen et al., 2009).

Finding related objects do not only attract the attention of statisticians, but it is also a

popular area in evolutionary studies. The relationship between related species is explained

by phylogenetic trees, which are binary trees. Thus, these trees take a form equivalent to

the trees we are interested in. We propose that we can easily apply our lifting-based

clustering algorithm to phylogenetic data sets which are the DNA sequences of related

species. The only difference in these data sets is the process of finding the distances

between sequences and the representative function values for each node on the tree.

Overall, we propose a new method which finds the exact place of a cluster in any

binary tree. We separately discuss how to apply our algorithm on any multidimensional

data sets and on phylogenetic data sets. We give a chapter by chapter review of this thesis

in the following section.

1.1 Thesis overview

In this thesis, we start with a brief introduction to the wavelet transform and wavelet

shrinkage methods in Chapter 2, then we discuss different versions of the lifting transform

in Chapter 3. After that we describe phylogenetic reconstruction methods in Chapter 4.

Then we propose our lifting-based clustering algorithm both for multidimensional and

phylogenetic data sets in Chapters 5 , 6 and 7.

In Chapter 2, we start our discussion of the wavelet transform by describing multiscale

analysis using Haar wavelets. Then, we detail Haar wavelets and multiresolution analysis.

Next to Haar wavelets, we also add a brief discussion of one of the well known wavelets

family, Daubechies’ compactly supported wavelets. Then we discuss the discrete wavelet

transform in detail. We also summarize another wavelet transform, the non-decimated

wavelet transform. Next, we describe different wavelet shrinkage methods, and we fin-

ish our discussion of wavelets by a small simulation study which compares the different

wavelet transforms with different wavelet shrinkage methods. Even though we do not

use wavelet transform directly in this thesis, giving a brief discussion on this topic will

help us easily understand the lifting transform which is the base of our clustering methods

introduced in Chapters 5 , 6 and 7.

In Chapter 3, we discuss the LOCAAT algorithm in detail. We start our discussion

1.1. Thesis overview 3

by reviewing how to find the lifting transform of one dimensional data sets by LOCAAT,

and we describe its working structure on a toy data set. Then we detail two different lift-

ing transformation methods which are based on LOCAAT: adaptive lifting (Nunes et al.,

2006) and non-decimated lifting (Knight & Nason, 2009). We compare the behaviour of

different lifting methods and different wavelet transformations using a simulation study

based on some popular wavelet test functions introduced by Donoho & Johnstone (1994)

(Blocks, Bumps, Doppler and Heavisine functions) and by Nason & Silverman (1994)

(piecewise polynomial function). Then we describe LOCAAT on multidimensional data

sets, and we complete the chapter with a tree-structured toy example, where we go through

each step of this transformation in detail.

In Chapter 4, we describe the phylogenetic reconstruction process by detailing two

different methods: parsimony and distance methods. Then we discuss some of basic evo-

lutionary models which help us to understand final phylogenetic reconstruction methods:

probabilistic methods. Reviewing different phylogenetic construction methods helps us

understand the structure of phylogenetic trees, and directs us to apply our algorithm to

phylogenetic trees in Chapter 7.

After detailing some methods which our clustering method is based on, we can start

introducing our method in Chapter 5. We start this chapter with a brief discussion of hier-

archical clustering, and we introduce some of the available internal cluster validity indices

(CVIs) and some of the similarity scores (external cluster validity scores) which help us to

check the performance of CVIs when we know the true partitioning of a data set. We also

describe another clustering method: mixture model-based clustering (Mclust; Fraley &

Raftery 2002). Even though we aim to compare the partitioning found by different meth-

ods using hierarchically built trees, it will be also interesting to explore the behaviour of

partitioning found by Mclust. Then we introduce how we find the clusters in a multidi-

mensional data set by denoising. We start our algorithm by finding the pairwise Euclidean

distances between different objects, then we build the dendrogram of the data set using

hierarchical clustering. Building the tree brings us joined pairs in each agglomeration step

with the edge lengths, and we need a function value for each node on the tree along with

the information we obtain from hierarchical clustering. We propose that we can denoise

the compactness value which is defined as the average distance from the centroid of each

cluster. If the denoised detail coefficients of a node and all its child nodes are less than or

equal to a small threshold, we can place a cluster at this node. In this way, we introduce

a new clustering method which finds the exact location of each cluster in a tree. After

introducing our clustering algorithm, we provide a simulation study, where we compare

the performance of our proposed method, Mclust and some of the available CVIs in the

literature in terms of various similarity scores. We generate four different data structures,

where two of them include components coming from normal distributions, and other two

4 Chapter 1. Introduction

data structures are more complex including uniquely shaped components. We also check

the performance of different methods on a real data set.

Our proposed method in Chapter 5 is semi-automatic because it includes an arbitrary

choice of a threshold to decide where clusters are located in a tree. However, we wish

to present an algorithm which automatically finds the location of each cluster by omit-

ting the arbitrary threshold choice step. In Chapter 6, we propose an updated version of

our algorithm which picks its own threshold. If the denoised compactness value of any

node and all its child nodes are less than or equal to the universal threshold, described

in Section 2.10.2, we can place a cluster at this node. In addition, we introduce another

version of our clustering algorithm based on the non-decimated lifting transform instead

of LOCAAT. This version of our algorithm provides a probability of being clustered at

each node on the tree. Then we complete the chapter by repeating the same comparative

study as the previous chapter by adding the results of our updated algorithm based on

LOCAAT and non-decimated lifting.

After completing the application of our algorithm to multidimensional data sets, we

discuss how we can find clusters in phylogenetic trees in Chapter 7. We start by find-

ing the pairwise distances between DNA sequences by counting the loci which do not

share the same nucleotide (matching distance), or we can find phylogenetic distances

using one of the evolutionary models described in Chapter 4. After finding distances be-

tween sequences, we can build a tree using hierarchical clustering, and we can use the

compactness value as a node value. However, to be able to find compactness value, a

multidimensional representation of each sequence must be found using multidimensional

scaling. For phylogenetic data sets, we also propose another node value, a dissimilarity

score. For each node, we compare all the species under the node of interest locus by

locus, and compute the average number of loci for which at least one species does not

have the same nucleotide as all the others. Our algorithm for phylogenetic data sets is

applied to three artificial data sets, where two of them include only mutation history (with

no sub-populations), and one of them includes both mutation and migration history (with

three sub-populations). We compare the performance of our proposed methods (based on

LOCAAT with manual and automatic threshold choices, and based on non-decimated lift-

ing transform), Mclust and other CVIs. In addition, we check the behaviour of different

distance methods and different function values. We also provide a comperative analysis

of a real data set. Finally, we check the behaviour of our clustering algorithm on cophy-

logenetic data sets. Our aim is to propose a visualization tool, so we do not propose a

test which looks for the different cophylogenetic events. We check the behaviour of our

algorithm using two real cophylogenetic data sets.

To conclude, we summarize our methods and findings in Chapter 8, and discuss some

potential further work.

Chapter 2

Wavelets

In Chapter 5, we propose a method based on lifting “one coefficient at a time” (LOCAAT)

algorithm (Jansen et al., 2001) to find exactly where clusterings happen in a dendrogram.

Lifting is a denoising method which has the wavelet theory behind it, so we briefly discuss

wavelet methods in statistics and some of the wavelet shrinkage methods in this chapter

before going through the details of lifting algorithm in Chapter 3. For further reading,

early studies from Daubechies (1992), Chui (1997), Mallat (1998) and Vidakovic (1999)

can be used. In addition, Nason (2008) also provides a summary of wavelets with its

application in R software. While the early studies provide the detailed theory of wavelets,

Nason (2008) provides more application and comments on results.

2.1 Introduction

Suppose that we have a function corrupted by noise, f(x), and we would like to estimate

the function g(x) by denoising the function f(x). One of the methods to find the de-

noised function, g(x), is wavelet shrinkage, introduced by Donoho & Johnstone (1994)

and Donoho et al. (1995). The general form of the model which is used in the wavelet-

based function estimation is

f(xi) = g(xi) + εi, (2.1)

where xi = i/n, εi ∼ N(0, σ2), and i = 1, . . . , n. The general idea in wavelet shrinkage is

to first get the wavelet transform of the observed data, f(xi), then wavelet coefficients are

denoised using one of the wavelet shrinkage methods. Finally, the inverse transformation

of the denoised wavelet coefficients are applied to find the estimate of g(x).

In this chapter, details of the wavelet transform and different wavelet shrinkage meth-

ods are described. Before discussing the discrete wavelet transform in detail, we look at

multiscale analysis in Section 2.2, Haar wavelets in Section 2.3, multiresolution anal-

ysis in Section 2.4, vanishing moments in Section 2.5, and another wavelet family,

Daubechies’ compactly supported wavelets in Section 2.6. After that we discuss the dis-

5

6 Chapter 2. Wavelets

crete wavelet transform (DWT) and boundary conditions in Sections 2.7 and 2.8, respec-

tively. In addition, we provide another transformation called the non-decimated wavelet

transform (NDWT) in Section 2.9. Then we discuss wavelet shrinkage methods in Sec-

tion 2.10. We start this section with a discussion of the ideal risk in the wavelet domain

in Section 2.10.1, and we continue with the universal thresholding in Section 2.10.2,

Bayesian wavelet shrinkage in Section 2.10.3 and the application of wavelet shrinkage

methods on wavelet coefficients obtained by the NDWT in Section 2.10.4. We finalize

the chapter with a simulation study where we compare the performance of the DWT and

the NDWT in terms of different shrinkage methods.

2.2 Multiscale analysis

In this section, we discuss multiscale analysis and the DWT using Haar wavelets described

in Section 2.3, and we deal with wavelet analysis of series, but we also consider the

wavelet analysis of functions in Section 2.3. Let us start by defining the discrete vector of

data

y = (y1, y2, . . . , yn)T , i = 1, 2, . . . , n,

where yi ∈ R, and n is a dyadic integer, 2J (J ≥ 0).

Multiscale information is obtained using the vector y, so detail coefficients for differ-

ent locations dk are

dk = y2k − y2k−1, (2.2)

where k = 1, 2, . . . , n/2. We would also like to know detail coefficients for different

scales, where the scale parameter is j = J − 1, . . . , 0, and j = J − 1 represents the finest

level. We can rewrite Equation (2.2) as dJ−1,k = y2k−y2k−1, giving detail coefficients for

the finest level. Thus, decreasing j means j goes from the finest level to coarser levels. To

find detail coefficients for coarser levels, we need scaled local averages at the finest level,

cj,k, which are defined as

cj,k = y2k + y2k−1, (2.3)

where k = 1, 2, . . . , n/2. We can also rewrite Equation (2.3) as cJ−1,k = y2k + y2k−1,

giving scaling coefficients for the finest level. Thus, detail coefficients for the remaining

levels are

dj,` = cj+1,2` − cj+1,2`−1, (2.4)

where j = J − 2, J − 3, . . . , 0, and ` = 1, . . . , n/2(J−j). Detail coefficients dJ−1,k
and dJ−2,k represent the ‘scale one’ and ‘scale two’ differences, respectively, and djk

represents the detail coefficient at kth location in jth level. Scaling coefficients for coarser

level j are

cj,` = cj+1,2` + cj+1,2`−1, (2.5)

2.2. Multiscale analysis 7

where j = J − 2, J − 3, . . . , 0, and ` = 1, . . . , n/2(J−j).

Example 2.2.1. Assume that we have a sequence y = (2, 3, 8, 10, 8, 2, 8, 2)T , where T

represents the transpose of a vector, and the length of the sequence is 8 (n = 8). We can

find the wavelet and scaling coefficients for the finest level using

dJ−1,k = y2k − y2k−1,

cJ−1,k = y2k + y2k−1,

where n = 2J and k = 1, . . . , n/2, so J = 3 and k = 1, . . . , 4. Hence, detail and scaling

coefficients for the finest level (J − 1 = 2) are

d2,k = (1, 2,−6,−6)T ,

c2,k = (5, 18, 10, 10)T .

We can also find detail and scaling coefficients for the following coarser level using

dJ−2,` = cJ−1,2` − cJ−1,2`−1,

cJ−2,` = cJ−1,2` + cJ−1,2`−1,

where ` = 1, . . . , n/4, so ` = 1, 2. Hence, detail and scaling coefficients for the following

coarser level (J − 2 = 1) are

d1,` = (13, 0)T ,

c1,` = (23, 20)T .

Using Equations (2.4) and (2.5), detail and scaling coefficients for the coarsest level are

found as

d0 = −3, c0 = 43.

After finding detail and scaling coefficients, we can represent output coefficients as a

vector of detail coefficients and the scaling coefficients at the coarsest level, so

d = (dJ−1,1, dJ−1,2, . . . , dJ−1,k, . . . , d1,1, d1,2, d0, c0)
T .

Thus, we can write detail coefficients in Example 2.2.1 as d =

(1, 2,−6,−6, 13, 0,−3, 43)T .

The algorithm which we described until now is called general pyramid algorithm,

and it is a kind of DWT algorithm, where coefficients dj,k and cj,k are called wavelet

coefficients and father wavelet coefficients, respectively. Before the detailed explanation

of DWT, we first look at what the inverse, sparsity and energy are for wavelets briefly.

8 Chapter 2. Wavelets

Inverse. As we see in Example 2.2.1, the original series is rebuilt using detail co-

efficients dj,k and c0. We can invert the transform using the combination of Equa-

tions (2.4) and (2.5), so the inversion can be done via Equations (2.6) and (2.7):

cj−1,2k = (cj−2,k + dj−2,k)/2, (2.6)

and

cj−1,2k−1 = (cj−2,k − dj−2,k)/2. (2.7)

Sparsity. When many of the elements are zero in a sequence, this sequence is called a

sparse set.

Energy. We would like the energy of the input (L2 norm of the vector y) to be equal

to the energy of the output in each resolution level (L2 norm of the wavelet coefficients).

For illustration, using the data from Example 2.2.1, ‖y‖2 =
∑n=8

i=1 y
2
i = 313, and ‖d‖2 =∑n=8

i=1 d
2
i = 2104. While the energy of the input and the output sequences need to be

equal, the energy of the output (wavelet coefficients) is nearly seven times larger than the

norm of the input. Thus, we need a transformation to make the energy of the both input

and output sequences equal.

2.2.1 Discrete Haar wavelets

To solve the energy problem, we can adapt Equations (2.2) and (2.3) to include a multi-

plier, α. Hence, Equation (2.2) becomes

dk = α(y2k − y2k−1),

and Equation (2.3) becomes

ck = α(y2k + y2k−1),

where k = 1, 2, . . . , n/2. We try to make the energy of the output (ck and dk) and the

input (y2k and y2k−1) equal. Thus, the norm of the output is

d2k + c2k = α2(y22k − 2y2ky2k−1 + y22k−1) + α2(y22k + 2y2ky2k−1 + y22k−1),

= 2α2(y22k + y22k−1).

The norm of the input is (y22k+y22k−1), so the norm of the output and the input are equalized

if 2α2 = 1. Hence, α = 1/
√

2. By this normalization step, wavelet coefficients and father

wavelet coefficients can be calculated using Equations (2.8) and (2.9), respectively:

dk = (y2k − y2k−1)/
√

2, (2.8)

ck = (y2k + y2k−1)/
√

2, (2.9)

2.2. Multiscale analysis 9

and we can generalize Equation (2.8) as

dk =
∞∑

`=−∞

g`y2k−`,

where

g` =

2−1/2, for ` = 0,

−2−1/2, for ` = 1,

0, otherwise.

Example 2.2.2. We can rearrange Example 2.2.1 using a normalization step. Wavelet

coefficients and father wavelet coefficients for the finest level can be written as

dJ−1,k = (y2k − y2k−1)/
√

2,

cJ−1,k = (y2k + y2k−1)/
√

2.

Thus, the new wavelet coefficients and father wavelet coefficients of vector y at the finest

level are

dj,k =

(√
2

2
,
√

2,−3
√

2,−3
√

2

)T

,

cj,k =

(
5
√

2

2
, 9
√

2, 5
√

2, 5
√

2

)T

,

where j = 2, and k = 1, . . . , 4. The normalized wavelet and father wavelet coefficients

for the coarser levels can be defined as

dj,` = (cj+1,2` − cj+1,2`−1)/
√

2,

cj,` = (cj+1,2` + cj+1,2`−1)/
√

2,

where j = J − 2, J − 1, . . . 0, and ` = 1, 2, . . . , n/2J−j . Thus, coefficients for the coarser

levels are

d1 = (6.5, 0)T , c1 = (11.5, 10)T ,

d0 =
−1.5

√
2

2
, c0 =

21.5
√

2

2
.

Thus, for Example 2.2.2, d = (

√
2

2
,
√

2,−3
√

2,−3
√

2, 6.5, 0,
−1.5

√
2

2
,
21.5
√

2

2
)T ,

and the norm of the input y equals to the norm of the output d. The plot of wavelet

coefficients by levels is given in Figure 2.1.

2.2.2 Matrix representation

Our output vector is calculated using an input vector with some basic steps which are

explained in Section 2.2.1. Thus, we can compute the output vector from the input vector

10 Chapter 2. Wavelets

Translate

R
es

ol
ut

io
n

Le
ve

l

2
1

0

0 1 2 3 4

Figure 2.1: Wavelet coefficients plot for the DWT of y. The resolution level axis represents

the level j. The finest and coarsest levels are at the bottom and top, respectively. The small

vertical lines on the plot represent the wavelet coefficients which are different from zero.

The translate axis represents the location parameter, k. Thus, the translate axis shows the

coefficients’ place in the original sequence.

by defining the matrix, W . Hence, for y = (2, 3, 8, 10, 8, 2, 8, 2)T , the vector which is

used in Example 2.2.2, W , is

W =

−1/
√
2 1/

√
2 0 0 0 0 0 0

0 0 −1/
√
2 1/

√
2 0 0 0 0

0 0 0 0 −1/
√
2 1/

√
2 0 0

0 0 0 0 0 0 −1/
√
2 1/

√
2

−1/2 −1/2 1/2 1/2 0 0 0 0

0 0 0 0 −1/2 −1/2 1/2 1/2

−
√
2/4 −

√
2/4 −

√
2/4 −

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

√
2/4

. (2.10)

It is easy to see that d = Wy. The matrix W is an orthogonal matrix, so

W TW = WW T = In,

where In is the identity matrix, and it can be shown that

‖d‖2 = dTd = (Wy)T (Wy) = yTW TWy = yT Iny = yTy = ‖y‖2. (2.11)

Thus, the length of the vector d is equal to the length of the vector y, and this relationship

is called Parseval’s relationship.

The matrix given in Equation (2.10) is unique for the Haar wavelet transformation, so

for other wavelets, the matrix W should be chosen for that wavelet transformation. Not

all wavelets are in orthogonal form; there are also some non-orthogonal wavelets.

2.3. Haar wavelets 11

We have done a discussion on DWT using Haar wavelets in this section, and we pro-

vide a detailed explanation on Haar wavelets in the following section.

2.3 Haar wavelets

2.3.1 Scaling and translation notation

We assume that p(x) is a known function, where x ∈ R. The dyadically scaled and

translated form of p(x) can be represented as pj,k(x), and for simplicity, we illustrate

function p(x) and pj,k(x) as p and pj,k, respectively. Thus,

pj,k = 2j/2p(2jx− k),

where j and k are integers, and pj,k has the same energy as p.

2.3.2 Fine-scale approximation

In Section 2.2, we only deal with discrete sequences, but in mathematics, wavelets gen-

erally work on functions. Assume we have a function f(x), where x ∈ [0, 1]. To find

the Haar wavelet transform of function f(x), we need to choose a starting point for the

finest-scale. Using the fixed finest-scale, we construct discrete series. While we obtain

the wavelet coefficients by doing some calculations using the connected pair of serial

elements in discrete wavelet transform, finding wavelet coefficients is different for the

Haar wavelets on function. We compute integrals of the function over connected pairs of

intervals.

The Haar father wavelet at scale 2J is φ(2Jx), where φ(x) is

φ(x) =

{
1, x ∈ [0, 1],

0, otherwise.

The father wavelet coefficients at the finest level, cJ,k, are

cJ,k =

∫ 1

0

f(x)2J/2φ(2Jx− k)dx. (2.12)

Scaling coefficients, cJ,k, can also be represented using the translation notation, so

cJ,k =

∫ 1

0

f(x)φJ,k(x)dx (2.13)

= 〈f, φJ,k〉, (2.14)

where

φJ,k(x) = 2J/2φ(2Jx− k).

12 Chapter 2. Wavelets

The notation which is given in Equation (2.14) is the inner product notation. To explain

the cJ,k, we should first note that

φJ,k(x) =

{
2J/2, x ∈ [2−Jk, 2−J(k + 1)],

0, otherwise.
(2.15)

It is seen that φJ,k(x) are constant over the interval IJ,k = [2−Jk, 2−J(k+ 1)] and zero for

other values. The interval of k changes when f(x) is defined on interval [0, 1], so in this

case, k changes between 0 and 2J − 1. Hence, father wavelet coefficient, cJ,k, are equal

to the integral of f(x) over the interval IJ,k, and the projects of the function f(x) on the

J th level can be written as

fJ(x) =
2J−1∑
k=0

cJ,kφJ,k(x). (2.16)

2.3.3 Computing coarser-scale c from finer-scale ones

We have discussed how we can find the father wavelet coefficients at the finest level, cJ,k,

but we do not know how to compute the father wavelet coefficients for the next coarser

level, cJ−1,k. Using Equation (2.12), we can compute cJ−1,k, and the interval for cJ−1,k
can be defined as [2−(J−1)k, 2−(J−1)(k + 1)] (see Equation (2.15)), so

cJ−1,k =

∫ 2−(J−1)(k+1)

2−(J−1)k

f(x)φJ−1,k(x)dx (2.17)

= 2−1/2(cJ,2k + cJ,2k+1). (2.18)

After taking the integral in Equation (2.17), we can define cJ−1,k using cJ,2k and cJ,2k+1.

Thus, the Haar wavelets can be written as

φ(y) = φ(2y) + φ(2y − 1). (2.19)

Equation (2.19) illustrates that how we change the scales from J − 1 to J . If we set

y = 2J−1x− k, Equation (2.19) will take the form

φ(2J−1x− k) = φ(2Jx− 2k) + φ(2Jx− (2k + 1)).

Thus, to find cJ−1,k, we can use the simple form given in Equation (2.18) instead of

computing the integral in Equation (2.13).

2.3.4 The difference between scale approximations-wavelets

Assume we have two different functions at two different levels, f0(x) and f1(x). Using

Equation (2.16), f0(x) = c0,0φ(x), and f1(x) is

f1(x) = c1,0φ1,0(x) + c1,1φ1,1(x)

= c1,02
1/2φ(2x) + c1,12

1/2φ(2x− 1).

2.4. Multiresolution analysis 13

While we go from finer-scale function f1(x) to coarser-scale function f0(x), we lose some

details, which are

f0(x)− f1(x) = c0,0φ(x)− c1,021/2φ(2x)− c1,121/2φ(2x− 1). (2.20)

We can rewrite Equation (2.20) using φ(x) defined in Equation (2.19) and cJ,k defined in

Equation (2.18), so c0,0 = (c1,0 + c1,1)/
√

2. Thus, a simplified version of Equation (2.20)

is

f0(x)− f1(x) = d0,0[φ(2x)− φ(2x− 1)]

= d0,0ψ(x), (2.21)

where d0,0 = (c1,1 − c1,0)/
√

2, and ψ(x) is the Haar mother wavelet defined by

ψ(x) = φ(2x)− φ(2x− 1)

=

1, if x ∈ [0, 1/2) ,

−1, if x ∈ [1/2, 1) ,

0, otherwise.

We know f0 is constant, so we can rewrite Equation (2.21) as

f1(x) = c0,0φ(x) + d0,0ψ(x). (2.22)

If we generalize Equation (2.22), it will take the form

fj+1(x) = fj(x) +
2j−1∑
k=0

dj,kψj,k(x)

=
2j−1∑
k=0

cj,kφj,k(x) +
2j−1∑
k=0

dj,kψj,k(x). (2.23)

2.4 Multiresolution analysis

2.4.1 Multiresolution analysis (MRA)

Let us define the space for functions with detail coefficients at level j on Vj . Functions in

these spaces may have detail coefficients in coarser levels, but these spaces also contain

detail coefficients in finer resolution levels. Thus, the parameter j represents the resolution

level. While increasing j symbolizes finer resolution levels, decreasing j means coarser

resolution levels. We can illustrate the relationship between the spaces as

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (2.24)

When j positively increases, we include a greater number of functions in the space. Al-

most all functions are included if j goes to positive infinity. However, if j negatively

14 Chapter 2. Wavelets

decreases, the number of functions included decreases, so we lose some details. If j goes

to negative infinity, we do not include any function.

If f(x) is a member of Vj , f(2x) is a member of the space Vj+1 because the variation

of function changes. This is called interscale linkage. However, shifting a function does

not affect the space of the function; for example, if f(x) is a member of V0, f(x − k) is

also a member of the same space (V0).

In Section 2.3, we discussed that we need father wavelet function φ(x) to construct

functions at different levels of detail. Thus, we can say that φ(x) is an essential feature of

V0, so in general, {φ(x− k)}k is an orthonormal basis for the space V0. Due to interscale

linkage,

{φj,k(x)}k∈Z is an orthonormal basis for Vj.

2.4.2 Projection notation

A function f(x) is projected into the space Vj by the projection operator Pj , so the pro-

jection is

fj(x) =
∑
k∈Z

cj,kφj,k(x) = Pjf,

where {φj,k(x)}k ∈ Vj , and the mother wavelet coefficients, cj,k, can be written as

cj,k =

∫ ∞
−∞

f(x)φj,k(x)dx

= 〈f, φj,k〉.

2.4.3 The dilation equation and wavelet construction

We presented function spaces in Equation (2.24). In this point, we can describe the dila-

tion equation as

φ(x) =
∑
n∈Z

hnφ1,n(x), (2.25)

where {φ1,k(x)} ∈ V1, and φ(x) ∈ V0. It is clearly seen that Equation (2.25) is the general

form of Equation (2.19) (h0 and h1 are equal and 1/
√

2 for Haar wavelets). To construct

the general MRA, we need the dilation equation, so it is an essential equation in wavelets.

Theorem 2.4.1. (Daubechies, 1992, p. 135) If {Vj}j∈Z with φ form MRA of L2(R), then

there exists an associated orthonormal wavelet basis {ψj,k(x) : j, k ∈ Z} for L2(R) such

that for j ∈ Z
Pj+1f = Pjf +

∑
k

〈f, ψj,k〉ψj,k(x). (2.26)

One possibility for the construction of the wavelet ψ(x) is

ψ̂(ω) = eiω/2m0(ω/2 + π)φ̂(ω/2),

2.4. Multiresolution analysis 15

(a) MRA ladder for Vj subspaces. (b) MRA ladder for Wj subspaces.

Figure 2.2: MRA ladder plot for Doppler function. The function is plotted by sub-

spaces. (a) and (b) illustrate the projection of the Doppler function on V0, V1, . . . , V9

and W0,W1,W2, . . . ,W9 subspaces from bottom to top, respectively, and the top lines in

both figures illustrate the original Doppler function.

where ψ̂ and φ̂ are the Fourier transforms of ψ and φ, respectively, where

m0(ω) =
1√
2

∑
n

hne
−inω, (2.27)

or equivalently

ψ(x) =
∑
n

(−1)1−nhnφ−1,n(x),

where ψ(x) is the mother wavelet. The coefficient (−1)1−nhn can be represented by gn.

The proof of Theorem 2.4.1 can be found in Daubechies (1992), and we need to note that

for the Haar wavelets, g0 = h1 = 1/
√

2, and g1 = −h0 = −1/
√

2.

We can represent a function in finer scale by summarizing Equations (2.23) and (2.26)

as

f(x) =
∑
k∈Z

cj0,kφj0,k(x) +
∞∑

j=j0

∑
k∈Z

dj,kψj,k(x). (2.28)

The first part of the function in Equation (2.28) is Pjf , the projection of the function, f at

level j, and the second part illustrates the details at all finer levels.

We can illustrate the shape of a function after MRA. MRA ladder of Doppler func-

tion, generated by Donoho & Johnstone (1994), is plotted for each subspace and for the

difference between subspaces and given in Figures 2.2a and 2.2b, respectively.

16 Chapter 2. Wavelets

2.5 Vanishing moments

A mother wavelet function ψ ∈ L2(R) has m vanishing moments under the condition of∫
x`ψ(x)dx = 0, ` = 0, . . . ,m− 1.

If a function hasm vanishing moments, coefficients of that function in those moments will

be zero. This means wavelet coefficients are zero or close to zero for a smooth function.

Other coefficients are non-zero, and these coefficients break the continuity.

If we have many zero wavelet coefficients, this means we have a sparse set of coeffi-

cients. Having a sparse set means we need to estimate just a few coefficients because just

a few coefficients are non-zero.

2.6 Daubechies’ compactly supported wavelets

Addition to the Haar wavelets, there are many other wavelets such as Shannon wavelets

(Chui, 1997), Meyer wavelets and Daubechies’ wavelets (Daubechies, 1992). In this

section, we briefly discuss Daubechies’ wavelets which is one of the well known ones.

The building of the orthogonal wavelets which are compactly supported is one of

the significant accomplishments in the wavelet theory, and these wavelets are the out-

come of the dilation in Equation (2.25). Daubechies (1992) extended the compactly sup-

port of Haar wavelets using more complicated filters. The assumption in these wavelets

is that mother wavelet function ψ has N (> 2) vanishing moments (
∫
x`ψ(x)dx = 0,

` = 0, . . . , N − 1), and Daubechies’ wavelets turn into Haar wavelets when N = 1 (see

Figure 2.3). We provide the comparison plots of scaling and mother wavelet functions for

different vanishing moments for “Extremal-Phase” family and “Least-Asymmetric” fam-

ily in Figures 2.4 and 2.5, respectively. Both figures illustrate that increasing vanishing

moments gives a better compression of signals.

0.0 0.2 0.4 0.6 0.8 1.0

0.
6

0.
8

1.
0

1.
2

1.
4

x

φ(x
)

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

x

ψ(
x)

Figure 2.3: Haar wavelets. φ: scaling function and ψ: mother wavelet function.

2.6. Daubechies’ compactly supported wavelets 17

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

N=2

x

φ(x
)

−1 0 1 2 3

−1
.0

0.
0

0.
5

1.
0

1.
5

N=2

x

ψ(
x)

0 1 2 3 4 5 6 7

0.
0

0.
5

1.
0

N=4

x

φ(x
)

−2 0 2 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

N=4

x

ψ(
x)

0 2 4 6 8 10

0.
0

0.
5

1.
0

N=6

x

φ(x
)

−5 0 5

−1
.0

−0
.5

0.
0

0.
5

1.
0

N=6

x

ψ(
x)

0 5 10 15

−0
.4

0.
0

0.
4

0.
8

N=9

x

φ(x
)

−15 −10 −5 0 5 10 15

−1
.0

−0
.5

0.
0

0.
5

N=9

x

ψ(
x)

Figure 2.4: Plots of the scaling function φ and the mother wavelet function ψ for

”Extremal-Phase“ family. Each plot is labelled with the number of vanishing moments,

N .

18 Chapter 2. Wavelets

0 1 2 3 4 5 6 7

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

N=4

x

φ(x
)

−2 0 2 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

N=4

x

ψ(
x)

0 2 4 6 8 10

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2 N=6

x

φ(x
)

−5 0 5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5 N=6

x

ψ(
x)

0 2 4 6 8 10 12

−0
.2

0.
2

0.
6

1.
0

N=7

x

φ(x
)

−5 0 5

−1
.0

−0
.5

0.
0

0.
5

1.
0

N=7

x

ψ(
x)

0 5 10 15

−0
.2

0.
2

0.
4

0.
6

0.
8

1.
0

N=9

x

φ(x
)

−15 −10 −5 0 5 10 15

−1
.0

−0
.5

0.
0

0.
5

1.
0

N=9

x

ψ(
x)

Figure 2.5: Plots of the scaling function φ and the mother wavelet function ψ for the

”Least-Asymmetric“ family. Each plot is labelled with the number of vanishing moments,

N .

2.7. The general (fast) discrete wavelet transform 19

2.7 The general (fast) discrete wavelet transform

2.7.1 The forward discrete wavelet transform

In Section 2.3, we discussed how to find Haar wavelet coefficients for coarser levels. In

this section, we work on computing wavelet coefficients at coarser levels in general form.

For a function f(x), we can compute father wavelet coefficients at level J − 1, using

cJ−1,k =

∫
R
f(x)φJ−1,k(x)dx, (2.29)

where {φJ−1,k(x)}k ∈ VJ−1.
To find φJ−1,k(x), we work with the dilation equation given in Equation (2.25). In

this way, we have an expression for father wavelet coefficients at level J − 1 in terms

of father wavelet coefficients at the finest level J , so we can find the general form of

Equation (2.25) as

φJ−1,k(x) =2(J−1)/2φ(2J−1x− k)

=
∑
n

hnφJ,n+2k(x). (2.30)

Now, let us find father wavelet coefficients by substituting Equation (2.30) into Equa-

tion (2.29), so

cJ−1,k =

∫
R
f(x)

∑
n

hnφJ,n+2k(x)dx

=
∑
n

hncJ,n+2k,

or

cJ−1,k =
∑
n

hn−2kcJ,n.

To find wavelet coefficients, we also follow the same steps, but we use mother wavelet

function instead of father wavelet function, so wavelet coefficients dj,k are

dj,k =

∫
f(x)ψj,k(x)dx, (2.31)

where j = 1, . . . , J . Thus, to find dJ−1,k, we use Equation (2.31) instead of using Equa-

tion (2.25), and after some calculations, we find

dJ−1,k =
∑
n

gn−2kcJ,n.

2.7.2 Filtering, dyadic decimation, downsampling

Another way to find mother wavelet coefficients at scale J − 1 is

c∗J−1,k =
∑
n

hn−kcJ,n,

20 Chapter 2. Wavelets

where c∗ is the standard convolution operation. We can compute father wavelet coeffi-

cients using dyadic decimation or downsampling operation, so cJ−1,k = c∗J−1,2k.

Dyadic decimation operators can be even or odd. In this point, we define even dyadic

decimation, and odd dyadic decimation is defined later in Section 2.9.1. Hence, even

dyadic decimation, D0, is

(D0x)` = x2`.

Father wavelet and wavelet coefficients can be found using even dyadic decimation oper-

ator, so

cJ−1 =D0HcJ , (2.32)

dJ−1 =D0GcJ , (2.33)

where H and G are ordinary filtering operation. For simplicity, in Equa-

tions (2.32) and (2.33), vector notation of father wavelet and wavelet coefficients is used

(cJ , cJ−1, dJ−1) instead of individual coefficients. We can find each vector of wavelet and

father wavelet coefficients using

dj =D0G(D0H)J−j−1cJ ,

cj =(D0H)J−jcJ ,

where j = 1, . . . , J − 1.

2.7.3 Inverse discrete wavelet transform

After completing the forward wavelet transform, we continue with the inverse wavelet

transform. The inverse transform is also discussed using Haar wavelets. In Section 2.3,

we saw that c0,0 = (c1,0 + c1,1)/
√

2, and d0,0 = (c1,0 − c1,1)/
√

2 using the Haar wavelet

transform. The general version of father and mother wavelet coefficients in coarser scales

are

cj−1,k = (cj,2k + cj,2k+1)/
√

2,

dj−1,k = (cj,2k+1 − cj,2k)/
√

2. (2.34)

Thus, we can write father and mother wavelet coefficients at coarser scales using father

wavelet coefficients at the following finer scale, but the problem is how we can reach cj,2k
and cj,2k+1. If we solve Equation (2.34), we obtain

cj,2k = (cj−1,k − dj−1,k)/
√

2,

cj,2k+1 = (cj−1,k + dj−1,k)/
√

2.

2.8. Boundary condition 21

The general form of the inverse relationship is

cj,n =
∑
k

hn−2kcj−1,k +
∑
k

gn−2kdj−1,k,

where hn and gn are the filters described in Equation (2.25) and in Theorem 2.4.1, respec-

tively.

We saw the matrix representation for Haar wavelet transform in Section 2.2.2. We

know that the matrix W is orthogonal, so W TW = In which means W−1 = W T . Thus,

W T can be easily found using the matrix W defined in Equation (2.10).

2.8 Boundary condition

Coefficients near boundaries in general create problems, so we need to deal with those

coefficients precisely. However, in Haar wavelets, we do not need to worry about this

problem. When we have a dyadic sequence, Haar filters generate another pair of dyadic

sequence using those dyadic sequences, so coefficients around boundaries do not make

any problem.

Nason (2008) explained the boundary condition by giving a simple example: Assume

that we have x0, . . . , x3 which is a dyadic decimation vector, and the first element of this

vector is
∑3

k=0 gkxk. The next coefficient is
∑3

k=0 gkxk+2 because of the even dyadic

decimation. We see that while the first coefficient is the combination of the first four

elements, the later one skips the first two elements from the right side each time. The

same issue is also occurred when we look at left side,
∑3

k=0 gkxk−2. As it is seen while

k = 2 and k = 3 cover observations x0 and x1, we skip observations x−2 and x−1 (when

k = 0 and k = 1, respectively). In this example, we just miss two observations, but for

greater vanishing moments, skipping some observations create problems.

There are some methods to deal with the boundary problem such as symmetric and

periodic end effect. For symmetric end effects, we assume f(−x) = f(x), and f(1−x) =

f(1 + x), where x ∈ [0, 1]. For example, for the above example, x−2 and x−1 are equal to

x2 and x1, respectively. Regarding the periodic end effect, we assume f(−x) = f(1−x).

Thus, f(−0.2), and f(1.2) are equal to f(0.8) and f(0.2), respectively.

Until now, we have described how to deal with the boundary problem by adjusting the

data set, but there is another way to cope with this problem: changing wavelets without

doing anything to data set. Boundary problems are generally occurred because of wavelet

coefficients at coarser resolution levels which are big or big and close to boundaries of the

defined data interval. One way to adapt wavelets which overlap the boundary of the data

set is changing wavelets to satisfy the orthogonality condition (Nason, 2008).

22 Chapter 2. Wavelets

2.9 Non-decimated wavelets

In previous sections, we have described the standard wavet transform, but there is also

another wavelet transform called non-decimated wavelet transform (NDWT; Nason &

Silverman, 1995). In this section, we provide a discussion on the NDWT using dyadic

decimation operators.

2.9.1 The ε-decimated wavelet transform

We described the even dyadic decimation operator D0 in Section 2.7.2, but we can also

use the odd dyadic decimation operator D1 which is defined as

(D1x)` = x2`+1.

Thus, mother and father wavelet coefficients can be defined as

dj = D1G(D1H)J−j−1cJ ,

cj = (D1H)J−jcJ ,

where j = 0, . . . , J − 1.

Either D0 or D1 can be used at each level, so if D1 is used to create the specific

orthogonal basis, the basis will be defined by one. However, if D0 is used, the basis will

be defined by zero. Each level can be represented by a sequence length of J , ε, to point

which dyadic operation is used, so

ε = εJ−1, εJ−2, . . . , ε0,

where

εj =

{
1, if D1 is used in level j,

0, if D0 is used in level j,

where j = 0, . . . , J − 1. We call this transformation as ε-decimated wavelet transform.

In the finest resolution level, after the first regular twist (i.e., setting xk+1 = xk and

x0 = x2J−1), we see the impact of D1, and then we apply D0 (i.e., D1 = D0S, where S is

the shift operator). The shift operator S is defined as (Sx)j = xj+1. From this definition,

we can write SD0 = D0S
2, and we can change the shift operator with H and G. To

apply the ε-decimated wavelet transform, we take the DWT of the original data using a

specific shifting operator. In addition, we should select an εwhich matches with a specific

selection of origin in respect of the described basis functions.

2.9.2 Non-decimated (stationary) wavelet transform (NDWT)

In some situations, we may need further information than the standard decimated DWT.

In Example 2.2.2, while we compute d2,1 = (y2 − y1)/
√

2 and d2,2 = (y4 − y3)/
√

2, we

2.9. Non-decimated wavelets 23

do not have a chance to inspect the difference between y3 and y2. If these values are very

different to each other, this will cause us to lose some information.

Using the steps from ε-decimated transformation, we shift the original sequence reg-

ularly, so our new sequence is (y8, y1, . . . , y7) which allows us to inspect the difference

between y3 and y2. We can find all possible details by shifting the sequence regularly, but

not to lose any information, we need to store wavelet coefficients which we obtain from

the original sequence and also from the shifted sequence together.

Using this method, we are able to get missing detail coefficients, but keeping both

information from the original sequence and the shifted sequence damages the orthogonal-

ity of the transform. In addition, it is unnecessary to store all these coefficients because

we can rebuild the original sequence using either the original wavelet coefficients or the

shifted coefficients.

Nason (2008) pointed out that the meaning of the NDWT is to hold both even and odd

decimation at each resolution level. To the transform, we start with the original sequence,

y1, . . . , yn, then we keep D0Gy and D1Gy. The length of even and odd filtered wavelet

coefficients are n/2, so the total number of wavelet coefficients at the finest resolution

level is 2× n/2 = n.

Father wavelet coefficients at the finest resolution level can be found in the same way,

but we use D0Hy and D1Hy operations. The length of father wavelet coefficients at the

finest resolution level is n/2, so in total, 2 × n/2 = n. We compute mother wavelet

coefficients using D0Gy and D1Gy, and father wavelet coefficients are computed using

D0Hy and D1Hy. If we continue in this way, at the resolution level j, we will have 2j

packets (groups of coefficients), and each packet includes 2−jn number of coefficients.

Thus, each resolution level includes 2−jn × 2j = n wavelet coefficients (j = 1, . . . , J ,

where n = 2J). In total, we have J resolution levels, so we have J × n coefficients after

the NDWT.

In the NDWT, the ordering of coefficients is also important. There are two different

ordering methods: time order and packet order. The non-decimated coefficients in time

order are

(y2 − y1), (y3 − y2), (y4 − y3), . . . , (y8 − y7), (y1 − y8).

Time-ordered data is beneficial in time series analysis because we keep the data order

same with the original data.

We can also use packet-ordered data in our analysis. In each resolution level, we

have two different packets to produce wavelet coefficients: even decimationD0G and odd

decimation D1G packets. Even decimation packets, D0G are

(y2 − y1), (y4 − y3), (y6 − y5), (y8 − y7),

24 Chapter 2. Wavelets

and odd decimation packets, D1G are

(y3 − y2), (y5 − y4), (y7 − y6), (y1 − y8).

Thus, packet-ordered data is helpful in nonparametric regression analysis because every

group of coefficients matches with a specific kind of basis element. In addition, it is

appropriate to put into use qualifications to all packets. It is also appropriate to integrate

packets easily to build estimators.

By this point, we have discussed how to find the wavelet transform of a function, and

how to get the inverse wavelet transform. To denoise a function, the forward wavelet

transform is followed by a denoising stage, where we apply one of the wavelet shrinkage

methods. Then we find the inverse transform using the denoised detail coefficients. Thus,

we discuss the idea of the wavelet shrinkage and some of the wavelet shrinkage methods

in the following section.

2.10 Wavelet shrinkage

We can write the model, given in Equation (2.1), after wavelet transform as

d = d∗ + e,

where d = (dJ−1,1, . . . , dJ−1,k, dJ−2,1, . . . , d0, c0)
T = Wf(x), d∗ =

(d∗J−1,1, . . . , d
∗
J−1,k, d

∗
J−2,1, . . . , d

∗
0, c0)

T = Wg(x), e = (e1, . . . , en)T = Wε, and

W is an orthogonal matrix, where the matrix for the Haar wavelet is defined in

Equation (2.10).

Characteristics of the discrete wavelet-transformed model can be summarized in three

points. Firstly, d∗ is a sparse vector for some functions. Secondly, in terms of the Parse-

val’s relationship defined in Equation (2.11), the energy (
∑

i g(xi)
2) of the function g is

equal to
∑

j,k d
∗
j,k

2, where {d∗j,k} are wavelet coefficients. The energy of the function g

can be represented with fewer coefficients without losing any information because of the

sparsity of wavelet coefficients. After the wavelet transform, the noise is still white noise

(e ∼ N(0, σ2In) independently) because the noise is expanded to all wavelet coefficients.

If the empirical wavelet coefficients, {dj,k}, are large, these coefficients include orig-

inal signals and some noise, but if {dj,k} are small enough, those coefficients only con-

tain noise. Thus, to find an appropriate estimate for {d∗j,k}, d̂∗, we need to use one of

the wavelet shrinkage methods which remove small coefficients in {dj,k} when they are

smaller than a threshold, λ. Donoho & Johnstone (1994) introduced two different thresh-

2.10. Wavelet shrinkage 25

olding methods: hard (ηH) and soft (ηS) thresholdings, and these can be defined as

d̂∗ = ηH(d, λ)

= dI{|d| > λ},
d̂∗ = ηS(d, λ)

= sgn(d)(|d| − λ)I{|d| > λ},

where d, I and λ represent the empirical wavelet coefficients, the indicator function and

the threshold, respectively. There are many other wavelet shrinkage methods such as

Bayesian wavelet shrinkage, discussed in Section 2.10.3.

To evaluate the accuracy of our estimate, we create an error measure between the

estimate ĝ(x) and the true function g(x), and we choose the estimate ĝ which minimizes

this error measure. The most preferred error measure is the integrated squared error (ISE),

defined as

M̂ =
1

n

n∑
i=1

[ĝ(xi)− g(xi)]
2 .

The error term between the true function g and its estimate ĝ relies on the specific error

vector ε, so our interest is the mean integrated squared error (MISE), M = E(M̂).

2.10.1 The Oracle

Mean integrated squared error (risk) from the function domain is equal to the MISE in

wavelet domain (from the Perseval’s relation). Thus,

M̂ =
∑
j,k

[
d̂∗j,k − d∗j,k

]2
. (2.35)

Equation (2.35) tells that we can obtain MISE for each coefficient.

We decide which coefficients we keep and which ones we delete using hard thresh-

olding. As we discussed earlier, we delete noisy coefficients, {dj,k}, less than a threshold,

λ. The MISE for one coefficient is

M(d̂∗, d∗) = E
[
(d̂∗ − d∗)2

]
=

{
E(e)2 = σ2 if |d| > λ

= d∗2 if |d| < λ.
(2.36)

Equation (2.36) shows that if d� σ, we will expect the first choice is true (|d| > λ), and

this can be obtained by picking a small λ. However, if d � σ, we will expect that the

second choice is true (|d∗| < λ), and in this case, we need to pick a large λ. The threshold

is chosen as σ to minimize the MISE, but we generally do not know σ which means the

optimal risk is unreachable.

Let suppose that there is an oracle, and it explains which of the di are around zero.

In this case, the oracle tells us whether to delete the ith coefficient or keep it. Thus,

26 Chapter 2. Wavelets

d∗i = di∂i, where ∂i = 0 or 1 (from the oracle). If we accept the oracle, it makes us

choose the smallest d∗2 or σ2 for each coefficient. When we use the oracle, Donoho &

Johnstone (1994) formed the ideal risk to be

Mideal =
∑
j,k

min(|d∗j,k|2, σ2).

We usually do not know {∂i}, so we do not have an oracle. In this case, Donoho &

Johnstone (1994) showed that if we do wavelet shrinkage using soft thresholding, and if

we choose the threshold as σ
√

2 log(n) (which is called universal threshold), then the

resulting risk Muniversal is

Muniversal ≤ (2 log(n) + 1)(σ2 +Mideal). (2.37)

2.10.2 Universal thresholding

Donoho & Johnstone (1994) defined the universal threshold as

λu = σ
√

2 log(n).

In real studies, σ (noise level) is estimated by σ̂ because the magnitude of the noise is not

known.

The universal thresholding risk is given in Equation (2.37), but the usage of the uni-

versal threshold, λu, has another explanation. Vidakovic (1999) stated this interpretation

by recalling a theorem by Pickands (1967).

Theorem 2.10.1. LetX1, X2, . . . , Xn be a stationary Gaussian process such that E[Xi] =

0, E[X2
i] = 1, and E[XiXi+k] = γ(k). Let X(n) = maxi∈{1,...,n}{Xi}. If limk→∞ γ(k) =

0, then X(n)/
√

2 log(n)→ 1, almost surely, when n→∞.

In addition, Vidakovic (1999) pointed out that if random variables Xi ∼ N(0, 1)

independently (i = 1, . . . , n), then for large n, it can be shown that

P(|X(n)| >
√
c log(n)) ≈

√
2

nc/2−1
√
cπ log(n)

. (2.38)

Thus, the universal threshold is

λu = σ̂
√

2 log(n). (2.39)

The number 2 is specifically chosen in Equation (2.39). If c ≤ 0 in Equation (2.38),

the right hand side of that equation is likely to be zero. Nason (2008) summarized its

meaning in wavelet shrinkage terminology as the largest wavelet coefficients, containing

only Gaussian noise, is not greater than the threshold with a high probability.

2.10. Wavelet shrinkage 27

There are different methods to estimate σ, and these estimations are generally based

on wavelet coefficients at the finest resolution level. The finest resolution level involves

the 50% of the coefficients which mainly just holds noise, so the signal is not present in

that level. This means that signal-to-noise ratio (SNR) is low in that level, where SNR is

defined as the ratio of standard deviation of signals and noises.

A regular estimator of σ is

s =

√√√√ 1

n/2− 1

n/2∑
i=1

[
dJ−1,i − d̄J−1

]2
, (2.40)

where dJ−1,i and d̄J−1 are the detail coefficients at the finest resolution level and their

mean, respectively. Donoho & Johnstone (1994) offered another estimation method for

σ. In terms of their method, the estimate of σ, σ̂, can be computed using the median

absolute deviation (MAD) of wavelet coefficients at the finest resolution level. Hence, the

MAD can be computed by

MAD[dJ−1] = b×MEDIAN
[∣∣d˜J−1 −MEDIAN

(
d˜J−1)∣∣] , (2.41)

where d˜J−1 is the vector of detail coefficients at the finest resolution level connected to

the multiresolution subspace WJ−1, and b is a correction term which reduces the bias on

σ̂. If a data set comes from Gaussian distribution, the correction term, b, is set at 1.4826.

Nason (2008) commented on the suggestion of Donoho & Johnstone (1994) as at the

finest resolution level, functions which create problems in practice do not have much

signal, so many coefficients just include noise in that level. Thus, we need to carefully

estimate σ using the coefficients at the finest resolution level. Since the MAD estimator is

robust, having some large signal coefficients at the finest resolution level does not make a

great difference to the estimator σ̂.

Usually, the wavelet shrinkage oversmooths as a result of using the universal thresh-

olding. This is a property of VisuShrink, which is a combination of the universal threshold

and soft thresholding policy. Nason (2008) explained the results of oversmoothing: it im-

plies that significant number of true wavelet coefficients are removed or modified, and

just a few basis functions are used to build the estimate. However, oversmoothing does

not always mean that the estimate is very smooth.

2.10.3 Bayesian wavelet shrinkage

In this section, we focus on empirical Bayesian thresholding (EBayes) which was intro-

duced by Johnstone & Silverman (2005). Assume that

Di = d∗i + ei,

28 Chapter 2. Wavelets

where i = 1, . . . , n and ei ∼ N(0, 1), and the unknown coefficients, d∗i , are generally

zeroes. Thus, one possible Di are the wavelet coefficients in a certain resolution level,

and we continue the discussion on this shrinkage method assuming Di to be wavelet

coefficients. We do all derivations under the condition of Di ∼ N(d∗i , 1), and if the

variance is different than one (σ2 6= 1), we normalize the data by σ. After finding the

estimates, we multiply the results by σ.

In Bayesian thresholding, the sparsity is formed by choosing an appropriate prior

distribution of d∗i , and a common choice for the prior distribution of independent d∗i is

fprior(d
∗) = (1− ω)δ0(d

∗) + ωγ(d∗), (2.42)

where ω and γ are the mixing weight and a fixed symmetric density, respectively.

In Bayesian thresholding, one method to find the estimate of d∗, d̂∗(d;ω), is defined

to be the median of the posterior distribution. Thus, we need to find the posterior dis-

tribution. Assume that the prior distribution of d∗ is the one given in Equation (2.42)

and D ∼ N(d∗, 1), so we can find the posterior distribution of d∗ conditional on D,

f(d∗|D = d), where d̂∗(d;ω) is a monotonic function of d, and d̂∗(d;ω) = 0, if and only

if |d| ≤ t(ω), where threshold t(ω) > 0.

The posterior median estimation method is an exact Bayesian process if Di are inde-

pendent, but if there is dependence between Di, we can miss some information. Then we

can find the estimate of d∗, d̃∗(d;ω), using the mean of the posterior distribution.

An important feature of the empirical Bayesian approach is the selection of the mixing

weight ω or in other words, threshold t(ω). The estimation of ω can be obtained using the

marginal maximum likelihood method under the assumption of independence of Di, and

the marginal density of Di can be defined as

(1− ω)ϕ(d) + ωg(d),

where g = γ ? ϕ (? indicates convolution), and ϕ stands for the standard normal distribu-

tion. By maximizing the marginal log-likelihood, we can obtain the marginal maximum

likelihood estimator, ω̂, of ω. Thus, the marginal log-likelihood is

`(ω) =
n∑

i=1

log{(1− ω)ϕ(Di) + ωg(Di)}.

We restrict ω to satisfy the threshold inequality, t(ω) ≤
√

2 log(n). We know that√
2 log(n) is the universal threshold, defined in Equation (2.39), so the empirical

Bayesian threshold can not be greater than the universal threshold.

Since we define the threshold as the posterior median, we first need to define the

posterior distribution. Let

θ(d) =
g(d)

ϕ(d)
− 1.

2.10. Wavelet shrinkage 29

The posterior probability ωpost(d) = P (d∗ 6= 0|D = d) is defined as

ωpost(d) =
ωg(d)

ωg(d) + (1− ω)ϕ(d)

=
1 + θ(d)

ω−1 + θ(d)
.

We now know the posterior probability, so we can define the posterior mean and posterior

median easily. Let

f1(d
∗|D = d) = f(d∗|D = d, d∗ 6= 0),

so the posterior density is

fpost(d
∗|D = d) = (1− ωpost)δ0(d

∗) + ωpostf1(d
∗|d).

Then the posterior mean d̃∗(d;ω) is ωpostd
∗
1(d), where d∗1(d) is the mean of the density

f1(·|d).

Lastly, we need to define the posterior median. Let

F̃1(d
∗|d) =

∫ ∞
d∗

f1(v|d)dv.

If d > 0, d̂∗(d;ω) is

d̂∗(d;ω) = 0, if ωpost(d)F̃1(0|d) ≤ 1/2,

F̃1(d̂
∗(d;ω)|d) = {2ωpost(d)}−1, otherwise.

The median is zero when ωpost(d) ≤ 1/2, and under this condition, there is no need to

compute F̃1(0|d).

If d < 0, d̂∗(−d;ω) = −d̂∗(d;ω) which is called antisymmetry property.

2.10.4 Non-decimated wavelet shrinkage

We discussed another wavelet transformation, non-decimated wavelet transform (NDWT)

in Section 2.9, so we discuss how to apply wavelet shrinkage to non-decimated wavelet

transformed data sets in this section.

Translation invariant wavelet shrinkage

The non-decimated wavelet transform (NDWT) is also known as Translation-invariant

(TI) transform, where the wavelet transform of n cyclic shifts of the original data is taken.

Coifman & Donoho (1995) introduced the TI smoothing algorithm which denoises a few

cyclic shifts of the data instead of all cyclic shifts and obtains a result close to the one

achieved from all cyclic shifts. Nason (2008) explained this algorithm using a small

example. Let’s say 50 shifts are done to the wavelet basis, and for each shift, wavelet

30 Chapter 2. Wavelets

shrinkage is accomplished, then the data are shifted back. Lastly, the mean of the whole

shift-denoise-unshift estimates is taken. This method is called ‘cycle spinning’, and the

example includes 50 cycle spins. If the number of the cycle spin is n (length of the data),

this is called full cycle spinning which is the basis of the TI denoising.

The TI is not a wavelet shrinkage technique, but it can be considered as a model

averaging method. For each cycle spin, there is a wavelet shrinkage, but there is just one

model which explains the data at a certain shift. For every spin, there is one model, so we

take the average of all models to reach the result.

Using the NDWT, we increase the possibility of getting a basis which represents the

data sparsely. If we use a single basis (if we use just one packet), we might not obtain the

best representation of the signal. This is because of the arrangement problem between the

signal quality and the wavelet basis function.

In the NDWT, we have n wavelet coefficients in all resolution levels as we explained

before in Section 2.9. To compute σ, we use the coefficients at the finest resolution level.

The estimate of σ depends more on wavelet coefficients in the NDWT; however, there

is correlation between coefficients in this transformation method (it does not matter if

the noise is independent). Here, we also work with the universal threshold,
√

2 log(n)

because non-decimated coefficients can be thought as n different bases, and each base is

supposed to be thresholded using the universal thresholding method. Nevertheless, this is

not an optimal way because we do a sort of multiple hypothesis testing here.

Basis selection

In TI denoising with basis averaging, we get the average of all shifted wavelets, but instead

of doing this, we can try to select one basis which works well from shifted wavelets. To

understand the importance of this choice, every estimate can be compared with the true

function, then the results of different basis choices can be seen. Instead of choosing

the best one, we can also choose several which perform well, and we can average them

(Nason, 2008).

2.11 Simulation study for wavelets

In this section, we carry out a simulation study where we compare the performance of the

DWT and NDWT with different shrinkage methods (universal thresholding and EBayes)

using the average mean squared error (AMSE). We also provide box plots of mean squared

error (MSE) which help us to see how much variation found by different methods.

To test the performance of wavelet shrinkage methods, Donoho & Johnstone (1994)

introduced four different functions: Bumps, Blocks, HeaviSine and Doppler functions,

illustrated in Figure 2.6. In this simulation study, we use Blocks function. The estimate

2.11. Simulation study for wavelets 31

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60
x

Bu
mp

s
0.0 0.2 0.4 0.6 0.8 1.0

−5
0

5
10

15
20

x

Bl
oc

ks

0.0 0.2 0.4 0.6 0.8 1.0

−1
5

−1
0

−5
0

5
10

He
av

isi
ne

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

Do
pp

ler

Figure 2.6: Bumps, Blocks, Heavisine and Doppler test functions.

Vanishing moments

1 5 10

Wavelet Thresholding Thresholding type Thresholding type Thresholding type

Transform method Hard Soft Hard Soft Hard Soft

DWT
Universal 84 665 446 1405 520 1736

EBayes 92 280 311

NDWT
Universal 35 418 204 1161 281 1457

EBayes 54 199 244

Table 2.1: Different wavelet transformations of Blocks function using “Extremal-Phase”

family. AMSE of hard and soft thresholded wavelet and non-decimated wavelet coef-

ficients when we use universal thresholding, and wavelet coefficients after EBayes are

given for different vanishing moments. Results are multiplied by 1000.

of variance is found by MAD using the wavelet coefficients at the finest resolution level,

and the signal-noise-ratio (SNR) is fixed at 8. In addition, we apply basis averaging in the

NDWT. For each function, we apply 1000 replicates.

In Table 2.1, AMSE are given for the DWT and NDWT using Daubechies’ family

sets as “Extremal-Phase” family of wavelets. We compare the DWT and NDWT using

two different thresholding methods: universal (both soft and hard) and EBayes (with pos-

terior median) thresholdings, and we also check their behaviours for different vanishing

moments. The DWT and NDWT results show that AMSE for hard-thresholding is always

lower than for soft-thresholding for all vanishing moments. Hard or soft thresholding

does not have any effect on EBayes approach. If we compare results for different van-

ishing moments, AMSE of the NDWT is always lower than AMSE of the DWT in both

universal and EBayes thresholdings. Overall, the smallest AMSE is found by the NDWT

32 Chapter 2. Wavelets

Vanishing moments

4 7 10

Wavelet Thresholding Thresholding type Thresholding type Thresholding type

Transform method Hard Soft Hard Soft Hard Soft

DWT
Universal 358 1256 344 1223 450 1371

EBayes 222 239 275

NDWT
Universal 126 899 166 1036 196 1106

EBayes 143 169 188

Table 2.2: Different wavelet transformations of Blocks function using “Least-

Asymmetric” family. AMSE of hard and soft thresholded wavelet and non-decimated

wavelet coefficients when we use universal thresholding, and wavelet coefficients after

EBayes thresholding are given for different vanishing moments. Results are multiplied by

1000.

with hard-thresholding when the number of vanishing moments is 1.

We do the equivalent comparison as in Table 2.1 using Daubechies’ “Least-

Asymmetric” family of wavelets; results are summarized in Table 2.2. In this case, we

also notice that AMSE for hard-thresholding for both the DWT and NDWT using the

universal thresholding are always lower than the soft-thresholding ones for all vanish-

ing moments. While EBayes thresholding gives the lowest AMSE for the DWT, AMSE

of EBayes and hard universal thresholdings are close to each other for the NDWT. For

4 and 7 vanishing moments in NDWT, hard universal thresholding gives slightly lower

AMSE than EBayes threholding. Overall, the smallest AMSE is found by the NDWT

with hard-thresholding when the number of vanishing moments is 4.

As an illustration, box plots are drawn, and given in Figure 2.7. For each Daubechies’

family, we present two groups of box plots. One group presents the MSE of the DWT and

NDWT with hard universal and EBayes thresholding for different vanishing moments,

and the same comparison study with soft universal thresolding is illustrated in the second

group of box plots. These box plots clearly show the difference between different wavelet

transformation methods with different wavelet shrinkage methods.

Overall, when vanishing moments increase, we generally obtain higher AMSE in both

the DWT and the NDWT with any shrinkage methods and types. Soft-thresholding al-

ways finds higher AMSE than hard-thresholding, and in almost all cases, the NDWT with

EBayes thresholding returns the smallest AMSE. Thus, the performance of the NDWT

with EBayes thresholding is generally higher than the DWT with any thresholding method

or the NDWT with universal thresholding.

2.11. Simulation study for wavelets 33

●●●●●●

●

●
●
●
●
●●

●

●
●
●●

●

●
●
●

●

●●

●

●
●

●

●
●

●

●

●●
●●●

●

●●●●
●
●
●●●

●●

●

●

●

●●●
●
●●

●

●
●

●

●

●●●

●

●●●

●

●●

●
●

●

●
●●●●●●
●
●
●●●

●

●●●●●●

●●
●
●●

●

●
●●
●
●
●
●

●●●●●●
●●●●●●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●●
●

0.
0

0.
2

0.
4

0.
6

0.
8

(a) “Extremal-Phase” family with hard-

thresholding.

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●
●●

●

●●

●●

●
●

●●
●

●
●
●

●

●
●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●●

●

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

(b) “Least-Asymmetric” family with hard-

thresholding.

●●●●

●●

●

●
●

●

●●

●

●●

●

●

●

●●●

●

●
●

●●●●●

●

●●●●●●●●●

●●

●

●

●

●●●●
●●●

●●

●

●

●●●

●

●●●

●

●●

●●

●

●

●●●

●●●

●
●
●

●

●

●

●

●

●

●
●

●
●

●●●●●●●●●●●●

●

●●

●●
●

●

●

●

●

●

●●●

●

●●●

0.
0

0.
5

1.
0

1.
5

2.
0

(c) “Extremal-Phase” family with soft-

thresholding.

●

●

●

●

●

●
●

●

●

●
●●

●

●

●●

●
●

●
●
●

●

●

●●
●

●

●

●●

●
●

●

●

●
●●
●
●
●

●

●●

●

●

●●●

●
●

●

●
●

●

●
●
●

●●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●●

●●

●

0.
5

1.
0

1.
5

(d) “Least-Asymmetric” family with soft-

thresholding.

Figure 2.7: Box plot comparison for the wavelet simulation study using Blocks function.

The vertical axis shows MSE. First 3, second 3, third 3 and last 3 plots are for the fol-

lowing approaches: DWT with universal thresholding, DWT with EBayes thresholding,

NDWT with universal thresholding and NDWT with EBayes thresholding, respectively.

(a) and (c): each box plot in each group is plotted with vanishing moments 1, 5 and 10,

respectively. (b) and (d): each box plot in each group is plotted with vanishing moments

4, 7 and 10, respectively.

34 Chapter 2. Wavelets

Chapter 3

Second generation wavelets: lifting

3.1 Introduction

Wavelet shrinkage is a method to estimate a function from noise-corrupted data. The

general form of the model used in wavelet-based function estimation is

f(xi) = g(xi) + εi, (3.1)

where our interest is in g(x), and we assume that xi = i/n, εi ∼ N(0, σ2), and i =

1, . . . , n. The general idea in wavelet shrinkage is to first get the wavelet transform of the

observed data, and then the wavelet coefficients of g(x) are estimated using a shrinkage

method. Finally, the inverse wavelet transformation is used to get the estimate of g(x).

Details of each step were described in Chapter 2.

Lifting (second generation wavelets) is an extension of the standard wavelet trans-

form. Lifting deals with irregularly spaced data, and there is no limitation on the number

of data points. One feature of lifting is that it is carried out “in-place” which means during

the transformation, we can change the old data to the new coefficients. However, in the

discrete wavelet transformation, we store new coefficients at each stage. Another differ-

ence between lifting and the wavelet transform is the split process. While the wavelet

transform splits the data into two sets (scaling and wavelet coefficients) at each level, the

researcher decides the number of scaling and wavelet coefficients in lifting. A well known

lifting method is “one coefficient at a time” (LOCAAT) proposed by Jansen et al. (2001).

In this method, while one group includes just one coefficient which will be lifted, another

group includes the rest of the coefficients. Hence, the lifting algorithm finds some coeffi-

cients which behave in a similar fashion to wavelet coefficients, so we can easily denoise

the lifted coefficients using one of the wavelet shrinkage methods.

Later in Chapter 5, we will propose a new algorithm based on lifting on multidi-

mensional data which finds the clustering pattern in a dendrogram, so it is important to

understand the working structure of lifting. Thus, in this chapter, we provide a detailed

35

36 Chapter 3. Second generation wavelets: lifting

discussion on the second generation wavelets (lifting). We start our discussion on lifting

by describing the general idea behind it in Section 3.2. Then in Section 3.3, the LOCAAT

algorithm is summarized in detail. First, the algorithm is explained, and then possible

modifications of the algorithm if there is more than one signal in the same grid point are

discussed. Finally, an application of the algorithm to a toy example is given. Then we

provide a brief discussion on other lifting transformation methods called adaptive and

non-decimated lifting transforms in Sections 3.5 and 3.6, respectively. Note that we will

not use adaptive lifting in our proposed methods in later chapters, but to see the difference

between different lifting methods, it is important to briefly describe this method. This

chapter continues with a simulation study in Section 3.7. In this simulation, a comparison

between discrete wavelet transform (DWT), non-decimated wavelet transform (NDWT),

LOCAAT, adaptive lifting and non-decimated lifting is done in terms of denoising per-

formance on the piecewise polynomial and Donoho and Johnstone (DJ) test functions.

Sections 3.2 to 3.7 include details of lifting in one dimension, and we discuss lifting in

multiple dimensions in Section 3.8, including lifting on networks which is the base of our

proposed algorithm in Chapter 5. Section 3.9 closes the chapter with a detailed example

to show how the lifting algorithm works on networks.

3.2 Lifting

Lifting is a recent mathematical method which allows us to apply the wavelet transform

to more general data sets. One of the most important properties of lifting is its application

to irregularly spaced data sets. The lifting algorithm was first introduced by Sweldens

(1998) and includes three steps: split, predict and update.

1. Split: The observed data f(xi) are split into two groups: evenly and odd indexed

sets.

2. Predict: Odd-indexed data are estimated using the evenly-indexed data. Then the

detail vector (prediction error) is created. This vector is the difference between

the odd-indexed data (observed function values) and estimated values for the same

positions.

3. Update: The evenly-indexed data values are updated using a linear combination of

the observed values for the evenly-indexed data points and the detail vector.

This procedure is repeated, but the user defines how many repetitions are done, effectively

choosing the number of non-lifted points. In many applications, the number of non-lifted

points is chosen as 2 which is a recommended choice by Nunes & Nason (2004), and we

denote the number of non-lifted points by r. Then the signal f is obtained using the rest

3.3. LOCAAT 37

of the updated observations (scaling coefficients) and detail coefficients which are found

during the process. Thus, first n − r entries of signal f represent detail coefficients, and

last r entries of signal f represent scaling coefficients.

While the evenly and odd-indexed split works in one dimension, this method does not

work in more than one dimension. For two dimensional data sets, Jansen et al. (2001)

proposed the LOCAAT algorithm. In terms of the one coefficient at a time process, ob-

servations are still split into two groups, but one group includes just one coefficient which

is predicted using its neighbours.

3.3 LOCAAT

In this section, first the LOCAAT algorithm which was proposed by Jansen et al. (2001)

is described, and then the modification method for multiple observations at one value of

x introduced by Nunes et al. (2006) is summarized.

3.3.1 Forward transform of the LOCAAT

In this section, we describe the LOCAAT algorithm in one dimension. Assume that we

have a function, f(x), which is observed at n irregularly spaced data points, xi ∈ R,

where i = 1, . . . , n, and let fi = f(xi). Hence, we try to estimate the function g at

location xi using the function values fi which are corrupted by noise. To do this, we use

the LOCAAT algorithm.

Analogously to the wavelet transform, we suppose that the initial function has the

form of

f(x) =
n∑

k=1

cn,kφn,k(x),

where φn,k represent the scaling functions which are defined as

φn,k(xi) = δi,k,

where i, k = 1, . . . , n. Thus, f(xi) =
∑n

k=1 cn,kδi,k = cn,i which means that the initial

scaling coefficients are taken to be the observed function values.

We discussed in Chapter 2 that the signal f can be written using a combination of

wavelet functions and scaling functions, so using this idea, the assumption in lifting is

f(x) =
n∑

k=r+1

djkψjk(x) +
∑
k′∈Sr

cr,k′φr,k′(x),

where djk is the detail coefficient for the point jk which is defined later in Equation (3.6), r

is the number of non-lifted data points, ψjk are wavelet functions with zero integral, and Sr

is the space for non-lifted data points, where Sr ⊂ {1, . . . , n}\{jk}, and k = r+1, . . . , n.

Thus, we form the signal f using the LOCAAT algorithm.

38 Chapter 3. Second generation wavelets: lifting

Before starting the lifting transformation, the data points are sorted into increasing

order (xi < xi+1). Then we define intervals with widths I (integrated initial scaling

functions) by taking the endpoints as the midpoints between initial data points:

In,1 =
x2 − x1

2
× 2 = x2 − x1,

In,j =
xj+1 + xj

2
− xj + xj−1

2
=
xj+1 − xj−1

2
,

In,n =
xn − xn−1

2
× 2 = xn − xn−1,

(3.2)

where j ∈ {2, . . . , n− 1}, and In,i is the interval width for ith location in resolution level

n.

As shown in Equation (3.2), the first and last interval widths are defined differently

than other interval widths because we do not have information for the previous and later

points for the first and last points, respectively. Thus, we multiply the width of the first

and the last intervals by two.

After defining I , we can start the lifting transformation. The first lifting step is the

choice of lifted point, jn. The point which has the minimum scaling function integral at

the finest level is the one which is lifted:

jn = arg min`∈{1,...,n}In,`. (3.3)

We use interval widths in Equation (3.2) which represent our integrated scaling functions,

so we lift the point which has the narrowest interval. By choosing the smaller integral

values, we pick the region which is the most densely sampled, so we lose little information

when we remove the point after the update stage. The first coefficient to be lifted is the

one in the finest level, then in later stages, we eliminate details in coarser levels.

After choosing the lifted point, we determine its set of neighbours Jn = {jn−1, jn+1}
(the first order neighbours). Neighbours are used to predict the value of the function at

the point jn using simple regression techniques, so

yn,jn =
∑
i∈Jn

ani cn,i, (3.4)

where ani are prediction weights obtained from the regression process such as linear in-

terpolation, and
∑

i∈Jn a
n
i = 1. If the lifted point has one neighbour, then the prediction

weight is equal to one (ani = 1). However, if the lifted point has two neighbours, then we

define

ani =

xjn − xjn−1
xjn+1 − xjn−1

, where i = jn − 1

1− xjn − xjn−1
xjn+1 − xjn−1

, where i = jn + 1.
(3.5)

After choosing the lifted point and defining its neighbours, we can find the detail coeffi-

cient for the point jn, djn , which is

djn = cn,jn − yn,jn , (3.6)

3.3. LOCAAT 39

or if there is one neighbour,

djn = cn,jn − cn,i. (3.7)

The update stage only has an effect on scaling coefficients for the neighbouring points.

However, we also need to update the interval widths of the neighbouring points. These

updates can be done using

In−1,i = In,i + ani In,jn , (3.8)

where i ∈ Jn, so we update the interval widths for each neighbouring point.

After updating the interval widths, we can update the scaling coefficients of the neigh-

bours:

cn−1,i = cn,i + bni djn , (3.9)

where i ∈ Jn, and we can find weights bni using the formula

bni =
In,jnIn−1,i∑
`∈Jn I

2
n−1,`

. (3.10)

After prediction and update stages, we remove the lifted point, jn, and the process is

repeated. At stage k, k = n− 1, n− 2, . . . , r + 1, we

• choose the lifted point, jk (minimum interval width),

• predict the lifted point,

• update interval widths for neighbours,

• update scaling coefficients for neighbours (predicted neighbours can not be updated,

so the next closer neighbour should be updated instead of the predicted one).

We also present pseudo code for the forward LOCAAT transform in Algorithm 1.

3.3.2 Reconstruction of the LOCAAT

The forward lifting transformation is followed by the inverse transformation, so the in-

verse transformation is described in this section. In forward transform, first we do predic-

tion, and then we update neighbours:

Prediction step : djk = ck,jk −
∑

i∈Jk a
k
i ck,i,

Update step : ck−1,i = ck,i + bki djk ,
(3.11)

where k = n, n − 1, . . . , r + 1. For inverse transformation, we go backward, so first we

update neighbours, and then we do the prediction. For k = r + 1, r + 2, . . . , n,

Update step : ck,i = ck−1,i − bki djk ,

Prediction step : ck,jk = djk +
∑

i∈Jk a
k
i ck,i.

(3.12)

Thus, we invert the transform by reversing the order of the forward transform. We also

provide a pseudo code for the inverse LOCAAT transform in Algorithm 2.

40 Chapter 3. Second generation wavelets: lifting

Algorithm 1 Forward transform of the LOCAAT algorithm.

1: Input: Function values, f(x) and grid points, x.

2: Sort the data: xi < xi+1

3: Decide number of non-lifted points, r

4: Find the interval widths, In
5: Forward transform:
6: for k = n to r + 1 do
7: Choose the lifted point, jk = arg mink∈{1,...,k} Ik

8: Set neighbourhood space, Jk
9: Prediction step: djk = ck,jk −

∑
i∈Jk a

k
i ck,i

10: Update interval widths: Ik−1,i = Ik,i + aki Ik,jk , where i ∈ Jk
11: Find weights, bki =

Ik,jkIk−1,i∑
`∈Jk I

2
k−1,`

, where i ∈ Jk

12: Update neighbours’ function values: ck−1,i = ck,i + bki djk , where i ∈ Jk
13: Remove xjk
14: end for
15: Output: r, n, and list of jk, Jk, ak, bk djk , and ck−1, where k = n, n− 1, . . . , r + 1.

Algorithm 2 Inverse transform of the LOCAAT algorithm.
1: Input: Output values of forward LOCAAT transform in Algorithm 1.

2: Reconstruction:
3: for k = r + 1 to n do
4: Update step: ck,i = ck−1,i − bki djk , where i ∈ Jk
5: Prediction step: ck,jk = djk +

∑
i∈Jk a

k
i ck,i

6: end for
7: Output: c which is the estimate of g(x).

3.3.3 The variance definition of lifting coefficients

We assume that function values f(xs) are independent random variables with variance

Zs. The variance of the detail coefficients in kth level, djk , shown in Equation (3.6) can

be defined as
var(djk) = Zjk +

∑
i∈Jk

(
aki
)2
Zi,

cov(djk , ck,i) = −akiZi,
(3.13)

where i ∈ Jk, and the variance term for the updated scaling coefficients of the neighbours,

ck−1,i, shown in Equation (3.9) can be defined as

var(ck−1,i) = Zi + (bki)2 var (djk) + 2bki cov (ck,i, djk) = (1− 2aki b
k
i)Zi + (bki)2 var(djk). (3.14)

Since var(djk) and var(ck−1,i) are applicable for a single lifting step, we update initial

variance Zs for the lifted point jk and its ith neighbours (i ∈ Jk) after each lifting stage.

3.4. Example: LOCAAT on one dimensional data 41

Thus, Zjk = var(djk) and Zi = var(ck−1,i).

3.3.4 Modification for multiple values at a single grid point

If a data set has multiple observations at a single grid point, the lifting algorithm needs

some modifications. If we do not modify the algorithm, we will have some zero integrals

for scaling functions. Thus, we first remove the point with zero integral, but in reality,

that point does not have zero integral. Nunes et al. (2006) introduced a method to deal

with multiple values for a single grid point, so we summarize their method in this section.

If the removed point has multiple observations, they treat them as coming from different

grid points, and they calculate detail coefficients for each point by taking the difference

between the observation and the prediction curve. To create one detail coefficient from

these multiple detail coefficients, they take the mean of the detail coefficients. They also

suggested that we can take the minimum of detail coefficients. If neighbours of the re-

moved point have repeated observations, they estimate the prediction curve using all the

observations for neighbours which can be easily done using polynomial regression. To

update neighbours, they also use Equation (3.9). After the update stage, the number of

multiple observations stays stable. After completing the lifting stage, if there are multiple

scaling coefficients for non-lifted points, the mean of the scaling coefficients can be used

in the inverse transform. Thus, we have the mean of the detail and scaling coefficients for

the grid points which have multiple data points at the end of the forward transformation.

Hence, when we apply the inverse transformation, we have one observation (mean of the

original function values) at each grid point.

3.4 Example: LOCAAT on one dimensional data

3.4.1 Forward transform

In this section, a toy example in one-dimensional space is used to illustrate the mechanics

of the lifting algorithm. Let x = (0.1, 0.1, 0.3, 0.75, 0.5, 0.9)T and y = (1, 3, 2, 4, 5, 6)T ,

where T represents the transpose: an illustrative plot of this small data set is given in

Figure 3.1. There are five different x values, so the length of the data set is n = 5. We

take the initial function as our initial scaling coefficients, so cn = c5 = ((1, 3), 2, 4, 5, 6)T .

Note that grid points, x, are irregularly spaced, and there are two observations at x =

0.1 which are illustrated as (1, 3). Before starting the forward transform, we sort the

data increasingly in terms of x. So our data points and scaling coefficients become x =

(0.1, 0.3, 0.5, 0.75, 0.9)T and c5 = ((1, 3), 2, 5, 4, 6)T , respectively. Thus, we start with

level k = n = 5, and we repeat the algorithm n− r times, where r is the number of non-

lifted points which is set to be r = 2. We can start the algorithm by calculating interval

42 Chapter 3. Second generation wavelets: lifting

●

●

●

●

●

●

1
2

3
4

5
6

x

y

0.10.1 0.3 0.750.5 0.9

Figure 3.1: Scatter plot of one dimensional toy data.

widths at level k = 5:

I5,1 = x2 − x1 = 0.3− 0.1 = 0.2, I5,2 = (x3 − x1)/2 = (0.5− 0.1)/2 = 0.2,

I5,3 = (0.75− 0.3)/2 = 0.225, I5,4 = (0.9− 0.5)/2 = 0.2,

I5,5 = x5 − x4 = 0.9− 0.75 = 0.15.

Thus, we find the areas for the different points to be I5 =

(0.200, 0.200, 0.225, 0.200, 0.150)T .

We start our lifting transform from stage 5 (k = 5), and lift the point which has the

minimum area, so we lift point 5 (j5 = 5), x5 = 0.9, with the area of I5,5 = 0.15. It has

just one neighbour, c5,4 = 4, so our neighbourhood space at level 5 is J5 = {4}, and the

prediction weight is a54 = 1.

Hence, our prediction for the function value f(x5) is, from Equation (3.4),

y5,5 =
∑
i∈J5

a5i c5,i = 1× 4 = 4,

so we can find the detail coefficient from Equation (3.6),

d5 = c5,5 − y5,5 = 6− 4 = 2.

Thus, our first predicted value at x5 is 2, so we can remove the point x5. We should

update interval widths for the neighbours using Equation (3.8), so interval widths at level

n− 1 = 4 are

I4 = (0.200, 0.200, 0.225, 0.350, 0.000)T .

To discriminate the lifted point, we replace the interval width for the lifted point at stage

4 with 0 (I4,5). After updating the interval widths, we should calculate the weight (bki) for

the update stage using Equation (3.10):

b54 =
0.150× 0.350

0.3502
= 0.43,

3.4. Example: LOCAAT on one dimensional data 43

and we can update the neighbours using Equation (3.9):

c4,4 = c5,4 + b54d5 = 4 + 0.43× 2 = 4.86.

Thus, our updated data set is c4 = ((1, 3), 2, 5, 4.86, 2)T .

We repeat the process for the next points to be lifted (next narrowest interval). The

minimum interval width is 0.2 at stage k = 4, but there are two points with the same

interval width, x1 and x2. We take the one on the left side, so we lift x1 = 0.1 (j4 = 1).

Another problem in this stage is we have two observations c4,1 = (1, 3) for the point

x1 = 0.1, so we need to do some modifications. The mean of the scaling coefficients at

c4,1 is 2; the neighbourhood space at level 4 is J4 = {2}, and the prediction weight is

a42 = 1. Then

y4,1 =
∑
i∈J4

a4i c4,i = 1× 2 = 2,

so our prediction for the point x1 is 2. We can find detail coefficients for both observations

using

d1 = c4,1 − y4,1 = (1, 3)− 2 = (−1, 1).

Note that this is not a vector subtraction; we take the difference of each observation from

the predicted curve. In the update stage, the mean of detail coefficients at x1 (which is 0)

is used.

We next update the interval widths at stage n− 2 = 3:

I3 = (0.000, 0.400, 0.225, 0.350, 0.000)T ,

and b42 = 0.5, so updated scaling coefficients are c3 = ((−1, 1), 2, 5, 4.86, 2)T .

For the stage k = 3, we lift x3 = 0.5 (j3 = 3) with the interval width I3,3 = 0.225.

The neighbourhood space at level 3 is J3 = {2, 4}, and the prediction weights are a3 =

{0.444, 0.556}. The prediction weights, a3, come from the regression estimate, so we can

simply find our weights by

a32 =
xjk − xjk−1
xjk+1 − xjk−1

=
0.5− 0.3

0.75− 0.3
≈ 0.444,

a34 = 1− a32 ≈ 0.556.

Then

y3,3 =
∑
i∈J3

a3i c3,i = 0.444× 2 + 0.556× 4.86 ≈ 3.59,

and

d3 = c3,3 − y3,3 = 5− 3.59 ≈ 1.41.

The updated interval widths are

I2 = (0.000, 0.500, 0.000, 0.475, 0.000)T ,

44 Chapter 3. Second generation wavelets: lifting

and b32 ≈ 0.237, and b34 ≈ 0.225, so our updated scaling coefficients are c2 =

((−1, 1), 2.33, 1.41, 5.18, 2)T .

Thus, we find our final output. For the inverse transform, we use the mean of the

repeated observations, so our initial vector is c2 ≈ (0, 2.33, 1.41, 5.18, 2)T .

3.4.2 Reconstruction

The forward transform is followed by the inverse transform. The final lifted point was x3
in the forward transform, so we first update neighbours for this point, and then we predict

the scaling coefficient for x3. Thus, using Equation (3.12), the update stage for the inverse

transform is

c3,2 = c2,2 − b32d3 = 2.33− 0.237× 1.41 = 2

c3,4 = c2,4 − b34d3 = 5.18− 0.225× 1.41 = 4.86,

and prediction stage for the inverse transform is

c3,3 = d3 +
∑
i∈J3

a3i c3,i = 1.41 + 0.444× 2 + 0.556× 4.86 = 5.

After the first inverse step, our output is c3 = (0, 2, 5, 4.86, 2)T . We repeat the same

process for the next inverse step. The previous lifted point in the forward transform was

x1. Since we had two observations for the first grid point, we would take the mean of

the detail coefficients at this stage, so d1 = 0. Thus, the updated function value for the

neighbour is

c4,2 = c3,2 − b42d1 = 2− 0.5× 0 = 2,

and prediction stage for the inverse transform is

c4,1 = d1 +
∑
i∈J4

a4i c4,i = 0 + 1× 2 = 2.

Our new output is c4 = (2, 2, 5, 4.86, 2), and the last inverse step is

c5,4 = c4,4 − b54d5 = 4.86− 0.43× 2 = 4,

and prediction stage for the inverse transform is

c5,5 = d5 +
∑
i∈J5

a5i c5,i = 2 + 1× 4 = 6.

Thus, our new output is c5 = (2, 2, 5, 4, 6)T . As can be seen, we get the original ordered

data set with a slight difference. While the first data point had two different observations

in the forward transform, we now have one function value for the first data point which is

the mean of function values for the first observation in the original data set.

3.5. Adaptive lifting 45

3.5 Adaptive lifting

3.5.1 Introduction

In this thesis, we propose an algorithm to find where exactly clustering occurs in a dendro-

gram in Chapters 5 , 6 and 7 based on the LOCAAT algorithm described in Section 3.3.

Another available lifting method is adaptive lifting which we briefly discuss in this sec-

tion. The benefits of the adaptive lifting method is that many different prediction methods

are tried at each step, and the one which gives the smallest absolute value of the wavelet

coefficient is chosen to improve the sparsity. Other advantages are that the adaptive lifting

algorithm is computationally efficient, and the algorithm can easily work with multiple

observations at one value of x.

The idea behind the adaptive lifting is finding the efficient representative of a signal

by setting the ‘wavelet functions’. Thus, a few different adaptive lifting methods based on

even/odd splits of the data were proposed by Claypoole et al. (2003), Piella & Heijmans

(2002), and Trappe & Liu (2000). However, in this section, we discuss the later work

depending on the LOCAAT algorithm by Nunes et al. (2006). First, we briefly describe

the previous adaptive lifting algorithms.

Claypoole et al. (2003) offered an adaptive lifting algorithm in image compression.

In terms of the proposed algorithm, adaptation is done in the prediction step, but they

reverse the algorithm steps. First, they do the update stage, so they get scaling coefficients

and quantize them. Then using the quantized scaling coefficients, they do prediction

using linear predictors from the (1, N) branch of the Cohen-Daubechies-Feauveau family.

Hence, detail coefficients are obtained.

Piella & Heijmans (2002) proposed an adaptive lifting algorithm, and they also start

the algorithm with the update stage. However, their method does the adaptation in the

update stage which is different from Claypoole et al. (2003). The prediction step remains

stable.

Trappe & Liu (2000) added adaptiveness into the prediction step. They use Wiener

filtering to minimize the l2-norm of the signal. When used on an AR(2) process which

had correlation, this adaptive method was used to remove the correlation. In addition, if

the AR(2) process was corrupted by Gaussian noise, this method was used to denoise the

process.

3.5.2 Adaptive LOCAAT algorithm

The previous adaptive algorithms explained above were based on general lifting algo-

rithm. In this section, we focus on the adaptive lifting algorithm proposed by Nunes et al.

(2006) which is based on LOCAAT. They start the algorithm by ordering the grid points.

46 Chapter 3. Second generation wavelets: lifting

Then they set the intervals, and they can decide the point to be lifted. Details of these

steps can be found in Section 3.3.

The next step is the prediction step which works differently than LOCAAT. In adaptive

lifting, the prediction step is based on three different regression methods (linear, quadratic

and cubic regression) and two different neighbour configurations (closest neighbours and

symmetrical neighbours). Thus, there are 3 × 2 = 6 different choices for the prediction

step. They choose the combination of the sort of regression and neighbourhood configu-

ration with the smallest detail coefficient in absolute value.

The final step in the forward lifting transform is the update stage. In this step, they

update the intervals and scaling coefficients for neighbours using the same procedure

with LOCAAT algorithm. The rest of the scaling coefficients remain the same. Then they

replicate these steps for other points to be lifted (choosing which point to lift, compute

detail coefficients, update interval widths and scaling coefficients for neighbours).

To invert the lifting transform, it is not enough to know the detail and scaling coeffi-

cients. Some information used in the forward transformation should be stored: the type

of regression, the order of lifting the points, the location of scaling coefficients which are

not lifted, the vector of updated interval lengths, the vector of interval lengths for lifted

points and list of neighbours used in each step. Using the stored information, update and

prediction stage for the last lifted point can be undone. After updating detail and scaling

coefficients, interval lengths and the list of lifted points, they continue taking the inverse

transform for the second last lifted point. Inversion continues step-by-step until they undo

all points in the list of lifted points.

The adaptive lifting algorithm introduced by Nunes et al. (2006) can also deal with

data sets which include multiple ‘y’ signals at a certain ‘x’ value. If we have this kind

of data set, we need to modify the algorithm. Details of modifications were given in

Section 3.3.4. Further information about adaptive lifting can be found in Nunes et al.

(2006).

3.6 Non-decimated lifting

3.6.1 Introduction

Another available lifting algorithm is ‘non-decimated lifting’ (NLT). In Chapter 6, we

will propose an algorithm based on NLT which finds the probability of being clustered

for each possible cluster in a dendrogram. Thus, it is important to understand the idea

behind NLT.

The non-decimated wavelet transform (NDWT) was described in Section 2.9.2, but

the wavelet transform has limitations: the length of the data set is supposed to be 2J , and

3.6. Non-decimated lifting 47

data grids should be equally spaced. However, real data sets do not generally satisfy these

assumptions. In this case, we can use NLT proposed by Knight & Nason (2009). NLT also

depends on LOCAAT (Jansen et al., 2001) details of which can be found in Section 3.3.

In NLT, there is no limitation on either the length of the data set or spacing of grid

points, and it creates detail coefficients at each location and scale. Even though there are

no formal scales in lifting, Jansen et al. (2009) discussed how to set artificial resolution

levels in lifting. Since we start the lifting algorithm with sorted data sets, we can allocate

the first half of the coefficients with the finest level to the highest level, the first half of the

remaining coefficients to the next level and so on. Details of generating artificial levels

can be found in Jansen et al. (2009).

3.6.2 The non-decimated lifting algorithm

In this section, we discuss the details of NLT algorithm which is also based on LOCAAT.

The difference is in the split step. As we discussed in Section 3.3, the lifted point is the

one which has the narrowest interval at each step, but in NLT, the order of lifted points is

chosen differently.

Before starting the algorithm, we define paths/trajectories. A path is an ordered list

of signals to be lifted. For example, the first path is T1 = (xo1 , xo2 , . . . , xon), where n is

the number of signals, and (o1, o2, . . . on) is the permutation of the indices of the signals

(permutation of (1, . . . n)).

The split step is followed by the prediction step which is exactly the same as in LO-

CAAT: predict the lifted point using its neighbours and find detail coefficients. The last

step is the update step. In this step, we update the neighbours which are used in the pre-

diction step, and update the corresponding interval widths. The inversion step is also the

same as in LOCAAT: we invert the algorithm using the reverse order of lifted points.

Setting the path is not the only characteristic of NLT. Another important feature of

the algorithm is that we choose P different paths, T1, . . . , TP . It means we repeat the

algorithm P times, and each time we use the path Tp in the split step (p ∈ {1, . . . , P}).

How should we choose the paths? We have n signals, and these signals can be ordered

n! ways, so we have n! possible of paths. However, it is hard to use all possibilities;

because of that, we choose a computationally efficient number of paths (P paths). For

each path, we apply the algorithm, and we obtain detail coefficients. It means we obtain

several different detail coefficients for each location. If we set artificial levels, we have

several wavelet coefficients for each location in each level. On the contrary, we obtain just

one wavelet coefficient for each location in NDWT. This is the main difference between

NDWT and NLT.

48 Chapter 3. Second generation wavelets: lifting

3.6.3 Risk estimation of averaged estimator of g

When we use NLT to solve the nonparametric regression problem, we should apply one

shrinkage method to each of the P sets of coefficients obtained from lifting with different

paths. Then we need to invert the transform to obtain the estimate of the function g,

defined in Equation (3.1) separately for each path, Tp. Knight & Nason (2009) proposed

the estimate of g at location x by ĝ(p)(x), where p ∈ {1, . . . , P} and the average estimator

of g as ˆ̄g(x), where they take the mean of ĝ(p)(x) to find the average estimate of g:

ˆ̄g(xi) =
1

P

P∑
p=1

ĝ(p)(xi), (3.15)

where i ∈ {1, . . . , n}, and p ∈ {1, . . . , P}.
To see the performance of ˆ̄g, we should find the AMSE of ˆ̄g:

AMSE(ˆ̄g, g) = E

[
1

n

n∑
i=1

{
ˆ̄g(xi)− g(xi)

}2]
,

=
1

n

n∑
i=1

E{ˆ̄g(xi)− g(xi)}2. (3.16)

Using Equation (3.15), we can find

ˆ̄g(xi)− g(xi) =
1

P

P∑
p=1

{ĝ(p)(xi)− g(xi)}, (3.17)

and by combining Equations (3.16) and (3.17), we find

AMSE(ˆ̄g, g) =
1

P 2

P∑
p=1

1

n

n∑
i=1

E{ĝ(p)(xi)− g(xi)}2

+
1

P 2

P∑
t=1

P∑
k=1
k 6=t

1

n

n∑
i=1

E
[{
ĝ(t)(xi)− g(xi)

}{
ĝ(k)(xi)− g(xi)

}]
. (3.18)

The second part of Equation (3.18) can be written as

ACovE(g(t), g(k), g) =
1

n

n∑
i=1

E
[{
ĝ(t)(xi)− g(xi)

}{
ĝ(k)(xi)− g(xi)

}]
, (3.19)

where t 6= k ∈ {1, . . . , P}, and ACovE represents the average covariance er-

ror. Estimators ĝ(t) and ĝ(k) should be unbiased estimators of g, so we can show

ACovE(g(t), g(k), g) = ACovE(g(k), g(t), g) for all t 6= k. By combining Equa-

tions (3.16), (3.18) and (3.19), we can rewrite the formula for AMSE as

AMSE(ˆ̄g, g) =
1

P 2

P∑
p=1

AMSE(ĝ(p), g) +
1

P 2

P∑
t=1

P∑
k=1
k 6=t

ACovE(g(t), g(k), g). (3.20)

3.7. Simulation study 49

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P
P

ol
yn

om
ia

l

Figure 3.2: Piecewise polynomial (PPolynomial) test function.

While the first term in the overall risk given in Equation (3.20) represents the risks of the

separate estimators ĝ(p), where p ∈ {1, . . . , P}, the second term represents the covariance

structure of estimators. Thus, the covariance structure of the estimators does have a place

in finding the overall risk.

So far we have summarized three different lifting methods: LOCAAT, adaptive lifting

and NLT. We can check the performance of each method using some artificial data sets,

so we carry out a simulation study in the following section to compare the behaviour of

various lifting methods and wavelet transforms.

3.7 Simulation study

In this section, we carry out a simulation study using different wavelet transforms (discrete

wavelet transform (DWT) and non-decimated wavelet transform (NDWT)) and lifting

methods (LOCAAT, adaptive lifting and NLT). DWT, NDWT, adaptive lifting and NLT

are available in R, so we use wavethresh package (Nason, 2016) for DWT and NDWT,

adlift package (Nunes & Knight, 2017) for adaptive lifting and nlt package (Knight &

Nunes, 2012) for NLT, and LOCAAT algorithm is implemented by ourselves.

In this study, we compare wavelets and lifting methods using DJ functions (Blocks,

Bumps, Heavisine and Doppler) generated by Donoho & Johnstone (1994) and the piece-

wise polynomial function (PPolynomial) generated by Nason & Silverman (1994) in

terms of their average mean squared error (AMSE). DJ functions were illustrated in Sec-

tion 2.10.2 (Figure 2.6), and PPolynomial function is shown in Figure 3.2. We use the

Haar wavelet transform for both DWT and NDWT and empirical Bayesian thresholding

given in Section 2.10.3 (available in package EbayesThresh; Silverman, 2012) for each

method. The signal-noise-ratio (SNR) is fixed at 8, and the number of paths, P , for NLT is

50 Chapter 3. Second generation wavelets: lifting

Test functions

Blocks Bumps Heavisine Doppler PPolynomial

Wavelets DWT 92 266 166 452 0.291

NDWT 54 170 70 211 0.120

LOCAAT 229 294 113 238 0.176

Adaptive lifting 160 261 80 222 0.121

NLT 117 157 67 138 0.088

Table 3.1: Comparison of wavelet transforms and lifting methods. Different wavelet

transforms (DWT and NDWT) and various lifting methods (LOCAAT, Adaptive lifting

and NLT) are compared in terms of AMSE. Results are multiplied by 1000.

●

●●●

●

●●●

●●

●

●

●

●

●

●

●

●
●

●●
●●

●

●
●
●
●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●
●

●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●●●
●
●

●
●
●

●

●

●
●
●

●●●

●

●
●●

●●
●

●
●

●

●●

●

●
●

●

●
●●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

1e
−

04
2e

−
04

3e
−

04
4e

−
04

Piecewise polynomial function

jitter

M
S

E

W 0 0.001 0.1 0.2 0.4 0.6 0.8 1

Figure 3.3: The comparison of PPolynomial function after adding different amount

of jitter. Jitter axis shows how much jitter is added. The Haar wavelet transforma-

tion with empirical Bayesian thresholding is labelled with jitter=W. When jitter= 0,

there is no jitter added to the LOCAAT algorithm. From left to right, jitters are

0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8, and 1.

set at 10. For each function, we have applied 1000 replicates, and results are summarized

in Table 3.1.

The results in Table 3.1 depict that while the smallest AMSE for Blocks function is

found by NDWT, NLT finds the smallest AMSE for other functions. Within the lifting

methods, NLT always finds the smallest AMSE, and adaptive lifting follows the NLT, and

NDWT gives lower AMSE values than DWT for all test functions.

Another simulation compares results from the LOCAAT algorithm with empirical

Bayesian thresholding after adding some jitter to the grid points, creating 1000 replicate

data sets. Different amount of jitter is added, and the results are compared by box plots

in Figures 3.3 and 3.4. DWT results for each function is also added to the box plot com-

parison. In this comparison study, DWT also finds much smaller AMSE for the Bumps

function and much higher AMSE for the Doppler function. Each box plot for each func-

3.8. Lifting on multidimensional data 51

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●
●
●●

●

●

●

●

●
●

●

0.
20

0.
25

0.
30

0.
35

0.
40

Bumps function

jitter

M
S

E

W 0 0.001 0.1 0.2 0.4 0.6 0.8 1

●
●

●●●

●

●
●●
●
●

●
●
●●

●

●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

●
●

●
●
●●

●●

●●● ●●
●●
●
●●●

●

●

●

●

●●

●

●

●
●●

●

●
●
●●
●● ●

●

●●

●

●

●

●●●●●
●

●

●

●

●
●

●●

●

●
●●
●

●

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Blocks function

jitter

M
S

E

W 0 0.001 0.1 0.2 0.4 0.6 0.8 1

●●

●●

●

●

●
●

●

●

●

●

●

●●●●

●●●●

●

●

●

●
●●●
●
●●
● ●

●●●● ●
●

●

●

●

●

●

●
●

●

●●●●●

●
●

●

●

●

●
●

●

●
●●

●

●

●●

●

●

●
●
●
●

●
●
●
●

0.
2

0.
3

0.
4

0.
5

Doppler function

jitter

M
S

E

W 0 0.001 0.1 0.2 0.4 0.6 0.8 1

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●
●●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●●
●

●

●●

●

●

●

●

●
●

●
●●●●●

●

●

●

●

●●

●

●

●●●

●

●

0.
05

0.
10

0.
15

0.
20

0.
25

Heavisine function

jitter

M
S

E

W 0 0.001 0.1 0.2 0.4 0.6 0.8 1

Figure 3.4: The comparison of DJ functions after adding different amount of jitter. Jitter

axis shows how much jitter is added. The Haar wavelet transformation with empirical

Bayesian thresholding is labelled with jitter=W. When jitter= 0, there is no jitter added

to the LOCAAT algorithm. From left to right, jitters are 0.001, 0.01, 0.1, 0.2, 0.4, 0.6, 0.8,

and 1.

tion illustrates that AMSE slightly changes as the amount of jitter changes, but there is

no clear pattern. It is also seen from figures that jittering does not have any effect on the

accuracy of the estimates obtained from denoising the lifted data.

3.8 Lifting on multidimensional data

In previous sections, we discussed lifting methods if we have data sets with one-

dimensional locations, x ∈ R. However, the lifting method can be used for any “spatial-

like” data, x ∈ Rd. The only thing we need is to define the neighbourhood structure. Thus,

in this section, we discuss the lifting method based on Voronoi-polygons (for two dimen-

sional data) and the lifting method depending on trees and graphs proposed by Jansen

et al. (2009).

52 Chapter 3. Second generation wavelets: lifting

3.8.1 Lifting in two dimensions

The method of lifting in two dimensions proposed by Jansen et al. (2009) is also based

on the LOCAAT algorithm. Before explaining the algorithm, we need to give a brief

explanation of the terms which we use.

Assume that we have a set of data sites in the plane, and the appropriate region of

the plane is shown by Ω. A set of points in Ω which are closer to a specific data site

than any other create the Voronoi cell for that specific data site. The boundary of Voronoi

cells is created by sketching a perpendicular line from all midpoint of lines bordering two

data sites. Two data sites can be neighbours if their Voronoi cells share an edge, and all

neighbours of the site create the Delaunay triangulation. In this method, the aim is to find

the Delaunay triangulation at each step.

Algorithm steps

If we have two-dimensional data, the application of the LOCAAT algorithm given in

Section 3.3 changes slightly. Thus, these differences are listed and discussed in detail:

1. The integral of the initial scaling function φk,i, Ik,i, is the area of the Voronoi cell

of the data site xi, where i ∈ {1, . . . , n}, and k ∈ {n, n− 1, . . . , r + 1}, where r is

the number of non-lifted Voronoi cells, defined by the researcher.

2. Choosing the point to lift. We lift the site i whose Voronoi cell has the smallest area

(jk = i). Thus, we choose

jk = arg min
i∈{1,...,n}

Ik,i. (3.21)

3. Setting neighbours, Jk, of the lifted site, by choosing all sites whose Voronoi cells

share an edge with that of site xjk .

4. Prediction step using neighbour interpolation. When we lift the site jk with neigh-

bours Jk, the prediction weights are

aki =
|Wjk,i|
|Wjk |

,

where Wjk represents the area of the jkth cell, and Wjk,i is the piece of Wjk which

is created by points whose closest site is site i after site jk, where i ∈ Jk. To predict

the value of the site jk and the detail coefficient, we use Equations (3.4) and (3.6),

respectively.

5. Update stage. In this stage we update integrated initial scaling function values and

scaling coefficients for neighbours using Equations (3.8) and (3.9), respectively.

Update weights are also given by Equation (3.10).

3.8. Lifting on multidimensional data 53

6. Remove lifted site jk, and update Voronoi polygons. After site jk is removed, we

update site i, where i ∈ Jk. The part of the Voronoi cell of site i, Wjk,i, is the piece

of new Voronoi cell of the site i.

7. Go to step 2, and repeat the algorithm n− r times.

3.8.2 Lifting in three or more dimensions

Assume that we have a data set with multidimensional locations, x ∈ Rd, where d >

2. In this case, Voronoi polygons are hard to use because the number of neighbours is

high for each point, and this is computationally infeasible. That is why we should use

another approach proposed by Jansen et al. (2009). They suggest lifting based on trees

and graphs. As a basis of their approach, they use minimal spanning tree (MST) because

of computational efficiency, but any tree basis can be used.

Algorithm steps

The lifting scheme on trees and graphs also depend on the LOCAAT algorithm. In this

section, we discuss how we can arrange the algorithm if we have tree or graph based data

sets:

1. Defining the initial scaling function. We start by defining scaling function, φki, and

its integral. The scaling function is defined as

φk,i =

{
1, at node i

0, at other nodes,

where i ∈ {1, . . . , n}, k ∈ {n, n−1, . . . , r+1}, where r is the number of non-lifted

data points which is defined by the researcher, and n is the number of nodes (the

sum of the number of leaves, internal nodes and the root) on the tree. We define

the initial integrated function as sum of the weighted function value at node i. Our

weights in tree based data set are based on the lengths of the edges between node i

and its immediate neighbours, and the initial integrated function, Ik,i, is the sum of

the edge lengths between node i and its immediate neighbours.

2. Determining lifting point, jk. At each stage k, we lift node i with the smallest Ik,i.

3. Setting neighbours. We can set neighbours at stage k, Jk, as immediate neighbours

of node i, or we can even include second-order or higher-order neighbours to the

Jk.

4. Prediction of wavelet coefficients. To predict the wavelet coefficient at node jk,

we need to find prediction weights, aki , where i ∈ Jk. Jansen et al. (2009) used

54 Chapter 3. Second generation wavelets: lifting

inverse distance prediction weights to calculate prediction weights, so they defined

aki = sδ−1jk,i
, where δjk,i is the distance between node jk to its ith neighbour, and s is

a scalar which makes
∑

i∈Jk a
k
i = 1. Equations (3.4) and (3.6) are used to find the

estimate of function value and detail coefficient at node jk, respectively. If node jk
has just one neighbour, i, the value at node i is taken as the prediction value at node

jk.

5. Update stage. We update initial integrated scaling function, Ik−1,i, and update

weights, bki , using Equations (3.8) and (3.10), respectively.

6. Update the neighbourhood form. We exclude the lifted point, jk, and we adjust the

spanning tree. To do this, we change the link between nodes which are straight

link to node jk. Let’s say that lifted node jk has neighbours which are indexed

by i1, . . . , im. After removing node jk, we renew the link between node jk and

neighbours i` (` ∈ {1, . . . ,m}) by the connection of the minimum spanning tree of

neighbours indicated by i` (` ∈ {1, . . . ,m}).

7. Go to step 2, and repeat the algorithm n− r times.

To illustrate, we use a tree structured toy data set and apply each step of the forward and

inverse transform in detail in Section 3.9.

3.8.3 Modification for multiple values at a single node

We described in Section 3.3.4 how the LOCAAT algorithm deals with a single grid point

when it has multiple function values. In tree structured data sets, the grid points are both

leaves and internal nodes from the tree. Thus, we need to carefully discuss the meaning

of having multiple function values for a single node. In some data sets, the edge length

between some nodes might be zero which creates the problem of having multiple function

values for a single node. In this case, we need to do some modifications.

If the point to be lifted has some neighbours with zero edge length, we still treat the

nodes zero distance away as neighbours, so each time we just lift one node. To be able

to do this, we set the prediction weights as aki = s, where the distance between the lifted

node jk to its ith neighbour is δjk,i = 0. Another case is that the initial integrated function

values, Ik,i, might be zero too. This means that the lifted point, xjk , has multiple data

points. In this case, we set the update weights as bki = 1, so we add/remove the estimation

error (detail coefficient) from the function value for the neighbour which has Ik,i = 0.

If a neighbour has multiple data points, the edge lengths between that node and some of

its neighbours are zero. Assume that we set the neighbourhood space from the first order

neighbours. Thus, we do not interest in the second or higher degree order neighbours even

though they have zero edge lengths from the node in our neighbourhood space. Thus, we

3.9. Example: LOCAAT on tree structured data 55

xi Jk ek ck

1 {7} {0.118} 0

2 {7} {0.118} 0

3 {9} {0.632} 0

4 {8} {0.401} 0

5 {8} {0.401} 0

6 {10} {0.855} 0

7 {1, 2, 9} {0.118, 0.118, 0.514} 0.059

8 {4, 5, 10} {0.401, 0.401, 0.454} 0.201

9 {7, 3, 11} {0.514, 0.632, 2.521} 0.255

10 {8, 6, 11} {0.454, 0.855, 2.298} 0.339

11 {10, 9} {2.298, 2.521} 1.254

Table 3.2: The summary of the tree structured toy data given in Table 5.1.

update the neighbours using the same method with the LOCAAT algorithm. At the end

of the lifting transformation, we have n− r detail coefficients and r scaling coefficients.

3.9 Example: LOCAAT on tree structured data

3.9.1 Forward transform

For illustrative purposes, we use the toy data which will be given later in Section 5.2 (see

Table 5.1), and the joined pairs for each agglomeration step and the corresponding edge

lengths will be summarized in Table 5.6. The function values for each node are found

as yn = (0, 0, 0, 0, 0, 0, 0.059, 0.201, 0.255, 0.339, 1.254)T , where the first six entries are

for the leaves which are zero. The details of building the tree and how we can find the

function values will be explained in Example 5.4.1.

Since there are six leaves (m = 6), there are n = 2m − 1 nodes, so n = 11. We

take the initial function values yn as our initial scaling coefficients, so cn = c11 =

(0, 0, 0, 0, 0, 0, 0.059, 0.201, 0.255, 0.339, 1.254)T , and we set the number of non-lifted

points to be r = 2. We label the nodes with xi and edge lengths with ek,p, where

i ∈ {1, 2, . . . , n}, p ∈ {1, . . . , h}, where h is the length of Jk, and Jk is the neigh-

bourhood space at level k. Thus, we start with level k = n = 11, and we repeat the

algorithm n− r times. To be able to apply the lifting algorithm, the summary of this tree

structured data is tabulated in Table 3.2, and its dendrogram is illustrated in Figure 3.5.

We can start the algorithm by calculating the initial integrated function values for each

node, Ik,i, for level k = 11:

Ik,i =
h∑

p=1

ek,p,

where h is the number of neighbours at level k. Thus,

56 Chapter 3. Second generation wavelets: lifting

4 5 6 1 2 3

H
ei

gh
t

11

10

8

9

7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 3.5: The dendrogram of the tree structured toy data given in Table 5.1. Internal

nodes are labelled with the agglomeration order starting from m+ 1.

I11 = (0.118, 0.118, 0.632, 0.401, 0.401, 0.855, 0.750, 1.256, 3.667, 3.607, 4.819)T . We can

next choose the point to be lifted, jk = j11, which is the min{I11,i}, so we lift node 1,

j11 = 1, with I11,1 = 0.118 and the function value, c11,1 = 0. It has just one neighbour,

node 7, with the function value for the node 7, c11,7 = 0.059. Our neighbourhood space

at level 11 is J11 = {7}, and the prediction weight is a111 = 1.

Hence, our prediction for the function value f(x1) is from Equation (3.4),

y11,1 = a111 c11,7 = 1× 0.059 = 0.059,

so we can find the detail coefficient from Equation (3.6),

d1 = c11,1 − y11,1 = 0− 0.059 = −0.059.

Thus, our first predicted value and detail coefficient at x1 are 0.059 and −0.059, respec-

tively. We can remove the lifted node 1 and update the linkage between neighbours. Thus,

the neighbourhood space for the node 7 includes node {2, 9} after updating the linkage

since we removed the node 1 from the space. We should update the initial integrated

function values for the neighbours using Equation (3.8), so I10,7 = I11,7 + 1 × I11,1 =

0.750+1×0.118 = 0.868. Thus, the initial integrated function values at level n−1 = 10

are

I10 = (0.000, 0.118, 0.632, 0.401, 0.401, 0.855, 0.868, 1.256, 3.667, 3.607, 4.819)T .

To discriminate the lifted point, we replace the initial integrated function value for the

lifted node at stage 10 with 0 (I10,1). Note that we removed the lifted point, so the next

node to lift is j10 = arg min{I10} 6= 0. We need to calculate the weight (bkp) for the

3.9. Example: LOCAAT on tree structured data 57

k jk Jk ak djk bk ck−1,Jk

11 1 {7} {1} −0.059 {0.136} {0.051}
10 2 {7} {1} −0.051 {0.120} {0.045}
9 4 {8} {1} −0.201 {0.242} {0.152}
8 5 {8} {1} −0.152 {0.195} {0.122}
7 3 {9} {1} −0.255 {0.147} {0.218}
6 6 {10} {1} −0.339 {0.192} {0.274}
5 7 {9} {1} −0.173 {0.187} {0.186}
4 8 {10} {1} −0.152 {0.316} {0.226}
3 11 {10, 9} {0.523, 0.477} 1.047 {0.317, 0.262} {0.558, 0.460}

Table 3.3: Lifting results for the tree structured toy data given in Table 5.1.

update stage using Equation (3.10):

b111 =
0.118× 0.868

0.8682
= 0.136,

and we can update the neighbours using Equation (3.9):

c10,7 = c11,7 + b111 d1 = 0.059 + 0.136× (−0.059) = 0.051.

Thus, our updated data set is c10 = (−0.059, 0, 0, 0, 0, 0, 0.051, 0.201, 0.255, 0.339, 1.254)T .

We repeat the process n − r times. The numerical results for the following stages

are calculated and presented in Table 3.3. Thus, we find our final output. For the inverse

transform, our initial vector is

c2 = (−0.059,−0.051,−0.255,−0.201,−0.152,−0.339,−0.173,−0.152, 0.460, 0.262, 1.047)T .

3.9.2 Reconstruction

After completing the forward transform, we can follow by our inverse transform. The final

lifted node, jk, was the node 11 in the forward transform, so we first update neighbours

for this node, and then we predict the scaling coefficient for the node 11. Thus, using

Equation (3.12), the update stage for the inverse transform is

c3,10 = c2,10 − b31d11 = 0.558− 0.317× 1.047 = 0.226

c3,9 = c2,9 − b32d11 = 0.460− 0.262× 1.047 = 0.186,

and prediction stage for the inverse transform is

c3,11 = d11 +
h=2∑
p=1

a3pc3,J3,p = 1.047 + 0.523× 0.226 + 0.477× 0.186 = 1.254.

After the first inverse step, our output is

c3 = (−0.059,−0.051,−0.255,−0.201,−0.152,−0.339,−0.173,−0.152, 0.186, 0.226, 1.254)T .

58 Chapter 3. Second generation wavelets: lifting

We repeat the same process for the next inverse step. The previous lifted point in the

forward transform was the node 8. Thus, the updated function value for the neighbour is

c4,10 = c3,10 − b41d8 = 0.226− 0.316× (−0.152) = 0.274,

and prediction stage for the inverse transform is

c4,8 = d8 + a41c4,10 = −0.152 + 1× 0.274 = 0.122.

The updated scaling coefficients at level 4 is

c4 = (−0.059,−0.051,−0.255,−0.201,−0.152,−0.339,−0.173, 0.122, 0.186, 0.274, 1.254)T .

We repeat the inverse transform using the output of the forward transform summarized in

Table 3.3 until we reach the finest resolution level n − 1 = 11. Thus, our new output at

level 11 is c11 = (0, 0, 0, 0, 0, 0, 0.059, 0.201, 0.255, 0.339, 1.254)T . As can be seen, we

exactly get the same original node values.

Chapter 4

Phylogenetic tree reconstruction

4.1 Introduction

In Chapter 5, we shall develop an algorithm based on the lifting algorithm described in

Chapter 3 to decide where we need to cut a tree to find the classification scheme, and we

shall introduce a different version of the proposed method, which is applicable to phylo-

genetic trees, in Chapter 7. Thus, we discuss different phylogenetic tree reconstruction

methods available in the literature in this chapter which guide us in Chapter 7. There

are some available sources which discuss each step of phylogenetic tree reconstruction in

detail such as Durbin (1998) and Isaev (2006).

Phylogenetic trees describe the relationship between species since any set of species

are related in terms of evolutionary theory. Evolutionary theory explains the reason of

sharing similar DNA sequences by various organisms: common ancestors of these organ-

isms had evolutionary mutations. These mutations can occur in two ways: insertion or

deletion of nucleotides from DNA sequences.

Phylogenetic trees can be in two forms: rooted and unrooted trees. Rooted trees illus-

trate that evolution starts from a single node named the root (ancestor of all current leaves)

and continues to the leaves (tips/terminal nodes/operational taxonomic units (OTUs)) via

internal nodes (ancestors of specific group of leaves), where a node is the endpoint of an

edge. Leaves are labelled using the name of species. While rooted trees give the direc-

tion of the evolution, unrooted trees do not. Unrooted trees just illustrate the evolutionary

connection among the OTUs.

In phylogenetic trees, if an edge branches, this edge is called a parent edge, and it

splits into two daughter edges. The length of the edge is obtained using the product of

the length of the time interval and a specific evolutionary rate which indicates how fast

the species or genes evolve. The length of the edge symbolizes the dissimilarity between

species or sequences. If a tree has a branching pattern, this pattern is called a labelled

tree topology. However, such a labelled tree topology does not include the lengths of the

59

60 Chapter 4. Phylogenetic tree reconstruction

branches. In a rooted tree, if there are n leaves, there are n − 1 internal nodes, 2n − 1

nodes and 2n− 2 edges excluding the root edge.

Phylogenetic trees are usually assumed to be binary while early ones were not. Early

trees were constructed using the morphological similarities between OTUs; in the last

few decades, however, phylogenetic trees have been constructed using gene and protein

sequences. One of the characteristics of gene divergence is that it can occur either because

of speciation (a new species occurs at the end of the evolutionary stage) or gene duplica-

tion (a part of the DNA, which has a gene, is duplicated). With cases of speciation and

gene duplication, diverged genes are named orthologues and paralogues, respectively.

In this chapter, phylogenetic tree construction methods are described. Trees can be

built with different methods, so the chapter starts with the main construction steps in

Section 4.2. This section is followed by different phylogenetic reconstruction methods,

parsimony and distance methods, in Section 4.3. In Section 4.4, evolutionary models

are explained which help us to understand a final phylogenetic tree construction method,

called probabilistic methods, described in Section 4.5.

4.2 Phylogenetic reconstruction

The main steps to reconstruct phylogenetic trees are summarized by Isaev (2006):

1. Choice of a family of homologous sequences as OTUs. Phylogenetic tree recon-

struction starts with protein or gene sequences as we discussed in Section 4.1. How

should we choose these sequences? The choice of sequences is important to find

an informative tree. Species tend to look like each other if they have strong phylo-

genetic signals, so these kind of sequences should be chosen. If sequences do not

have the strong phylogenetic signals, we may end up with an uninformative tree.

2. Arranging sequences. Sequences need to be aligned, and there are many multiple

sequence alignment (MSA) methods and available software tools for them. The

most popular progressive alignment software tool is ClustalW (Thompson et al.,

1994); some other progressive alignment methods were proposed by Hogeweg &

Hesper (1984), Feng & Doolittle (1987), Taylor (1988) and Notredame et al. (2000).

There are also iteration based methods. The most commonly referenced software

in the literature is MUSCLE (Edgar, 2004), which is similar to MAFFT (Katoh

et al., 2002) and PRRP (Gotoh, 1996). Sequences can be aligned using one of

these MSA procedures, and reduced aligned sequences are found to start the tree

reconstruction. For example, assume that we have DNA sequences for four different

species labelled as α, β, γ and δ given in Table 4.1a, and the multiple aligned

4.3. Phylogenetic reconstruction methods 61

α : ATCATG

β : ATCAG

γ : ACTT

δ : ATCTTT

(a) DNA sequences.

α : A T C A T G

β : A T C A - G

γ : A - C T T -

δ : A T C T T T

(b) Aligned sequences.

α : ACA

β : ACA

γ : ACT

δ : ACT

(c) Reduced aligned sequences.

Table 4.1: Toy DNA data set with alignment process.

α

β δ

γ

Figure 4.1: Unrooted tree of the toy DNA data set.

sequences in Table 4.1b are obtained. A simple way to reach the reduced multiple

alignments is removing gaps from sequence alignments (Table 4.1c).

3. Construction of the tree topology. This step is the most challenging one. From the

toy example, it is obvious that we will cluster α and β together and γ and δ together.

Thus, we have the topology of the tree given in Figure 4.1, but to find the length of

the edge and the place of the root, we need extra information which we discuss in

the following sections.

4.3 Phylogenetic reconstruction methods

The number of OTUs in real data sets is large, so analysing these data sets is not easy.

Therefore, there are some methods designed to make it easier to analyze reduced aligned

sequences. These methods can be categorized in three groups:

1. Parsimony methods,

2. Distance methods,

3. Probabilistic methods (relying on maximum likelihood).

4.3.1 Parsimony methods

Parsimony methods find rooted tree topologies, but they do not find branch lengths. In

these methods, the ancestral sequences for the root and internal nodes are found. Basi-

cally, the total cost for each possible topology is computed, and the optimal topology to

construct the tree is chosen. The optimal topology (called the parsimonious topology) is

the one which has the smallest cost.

62 Chapter 4. Phylogenetic tree reconstruction

The simplest way to define the cost function is counting the number of substitutions

between root, internal nodes and leaves. Assume that we have some number of sequences.

Possible sequences are allocated to the root. Using the minimal number of substitu-

tions between root and internal nodes, new sequences for internal nodes are found whose

lengths are the same as the ancestral sequence. This process is repeated until the desired

number of leaves is obtained. For each possible topology, the cost function can be found

in this way.

Other methods of defining cost functions are using Fitch’s algorithm (Fitch, 1971) or

the branch and bound algorithm. If the number of leaves (N) is reasonable, all possible

topologies can be found, and the cost function can be calculated using Fitch’s algorithm.

However, if N is large, finding all possible topologies will not be computationally feasi-

ble. In this case, a sample from the topology space is used to discover a nearer optimal

topology. Finding cost functions just for the sample space may cause us to miss the opti-

mal topology, so instead of using Fitch’s algorithm, the optimal topology can be detected

using the branch and bound algorithm when N is large. Details of both Fitch’s algorithm

and the branch and bound algorithm can be found in Durbin (1998).

4.3.2 Distance methods

The next method in phylogenetic reconstruction is distance methods. The idea is that

phylogenetic trees can be constructed by distances between sequences in a reduced mul-

tiple alignment, and depending on the method used, either rooted or unrooted trees can

be obtained. A well-known way to create distances is to use the “pseudodistances” which

are defined later in this section. The distance between ith and jth sequences in the dataset

is represented by dij , and the values {dij} satisfy the conditions

• dij > 0, for all i 6= j,

• dij = 0, where i = j,

• dij = dji, where i 6= j,

• the triangular inequality exists: dij ≤ dik + dkj, where i 6= j 6= k.

(4.1)

Using distance methods, branch lengths are also calculated. Popular methods to generate

rooted and unrooted trees are the clustering method UPGMA and the neighbour joining

algorithm, respectively. These two distance based phylogenetic tree reconstruction meth-

ods are summarized in the following subsections.

Clustering method: UPGMA — Hierarchical clustering with average linkage

The clustering method UPGMA (the unweighted pair group method using arithmetic av-

erages) was presented by Sokal & Michener (1958), and UPGMA is the well known

4.3. Phylogenetic reconstruction methods 63

statistical clustering method: hierarchical clustering with average linkage. This method is

easy to apply. The construction of the tree starts from leaves and continues to the root via

internal nodes. Leaves are set at height zero, and UPGMA combines sequences in two

clusters in each stage. Hence, a new internal node is added to the tree, and the distance

between clusters can be found using

dij =
1

N(Ci)N(Cj)

∑
x∈Ci,y∈Cj

dxy, (4.2)

where N(Ci) and N(Cj) are the number of OTUs in clusters Ci and Cj , respectively.

In the first stage, each OTU (xi, i ∈ N) is appointed to a separate cluster (Ci, i ∈ N),

and then two clusters are chosen with the minimum distance, d(Ci, Cj), where i 6= j.

A new cluster, CN+1 is created which includes Ci and Cj , and distances between CN+1

and remaining clusters are computed using Equation (4.2). Also a new OTU, xN+1 is

appointed to the new internal node which is the parent node of xi and xj , and distances

between xN+1 and other OTUs are calculated. At the end of stage one, there are N − 1

OTUs. This process is repeated until just two clusters remain. Denote the last two clusters

Ck and Cn. Then these two clusters, Ck and Cn, are connected with the root of the tree,

and the edges between the root and these two clusters have length d(Ck, Cn)/2.

Example 4.3.1. Assume that we have the distance matrix for four different sequences,

x1, . . . , x4, and it is given as

x1 x2 x3 x4

x1 0 32 12 32

x2 32 0 32 4

x3 12 32 0 32

x4 32 4 32 0

.

The minimum distance between clusters is d(C2, C4) = 4, and the new cluster is C5 =

{C2, C4}. The distances between C5 and other clusters (C1 and C3) are

d(C1, C5) =
1

1× 2
(d(C1, C2) + d(C1, C4)) =

32 + 32

2
= 32,

d(C3, C5) =
1

1× 2
(d(C3, C2) + d(C3, C4)) =

32 + 32

2
= 32,

so the new OTU x5 is placed above the OTUs x2 and x4 by the height of d(x2, x4)/2 = 2.

The sub-tree is given in Figure 4.2a. We can continue to construct the rest of the tree. The

updated distance matrix is
x1 x3 x5

x1 0 12 32

x3 12 0 32

x5 32 32 0

,

64 Chapter 4. Phylogenetic tree reconstruction

x5

x2 x4

2 2

(a) First stage of UPGMA.

2 2

14

6 6

10

x2 x4 x1 x3
x5 x6

x7

(b) Last stage of UPGMA.

Figure 4.2: Phylogenetic tree reconstruction by UPGMA. The algorithm is based on the

distance matrix in Example 4.3.1.

and the minimum distance between clusters is d(C1, C3) = 12. The new cluster is C6 =

{C1, C3}, and the distances between C6 and C5 is

d(C5, C6) =
1

2× 2
(d(C1, C2) + d(C1, C4) + d(C3, C2) + d(C3, C4))

=
32 + 32 + 32 + 32

4
= 32,

so the new OTU x6 is placed above the OTUs x1 and x3 by the height of d(x1, x3)/2 = 6.

There are two clusters left: C5 and C6. These two clusters are combined under the

cluster C7, and the root (OTU x7) is placed above the OTUs x5 and x6 by the height of

d(x5, x6)/2 = 16. Thus, the rooted tree for this data set is given in Figure 4.2b.

Ultrametric property and molecular clock assumption of distances The UPGMA

algorithm constructs a rooted tree, but it may not build a correct tree if the ultrametricity

condition does not hold. The distances dij are called ultrametric for three sequences from

the data space, xi, xj, xk if distances dij , dik and djk are either all equal or two of them

are equal and the third one is smaller.

The evolution of species or sequences with constant evolution rates through times

is explained by rooted trees holding the ultrametric property. This property is named

the molecular clock assumption, and if a tree holds this condition, this tree is called a

molecular clock tree. Hence, these kind of trees imply that the total time between any

node in the tree and leaves does not vary depending on the choice of path. If the molecular

clock assumption holds, a correct tree will be obtained by the UPGMA.

Neighbour-joining algorithm

Another assumption of the UPGMA method is additivity. During the discussion of the

molecular clock assumption, additivity is also discussed implicitly. Additivity of the dis-

tance function d holds if and only if two of the distances dij + dkl, dik + djl, dil + djk

are equal and greater than the third one for each set of four OTUs xi, xj , xk and xl.

This condition is called the four-point condition. In Figure 4.3, the four-point condition

4.3. Phylogenetic reconstruction methods 65

is illustrated. The top-left plot illustrates the topology we are interested in. The sum of

the distances between species are equal in top-right and bottom-left figures, and they are

greater than the final figure (bottom-right one).

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

α

β

γ

δ

Figure 4.3: Four-point condition. Top-left: The topology we are interested in. Other

topologies given in this figure show how many different way we can find the total length

of the tree.

In some cases, the molecular clock assumption can fail, but the additivity property

can hold. In these cases, instead of reconstructing the tree by the UPGMA method, the

neighbour-joining algorithm introduced by Saitou & Nei (1987) and clarified by Studier

& Keppler (1988) should be used. The neighbour-joining algorithm works iteratively.

In each step, a pair of OTUs is replaced by a new OTU (parent node), and the distance

between nodes is computed. This process is repeated until N = 3 OTUs remain because

there is only one unrooted tree topology for the final three OTUs, and branch lengths for

the final tree topology can be found using

dk` =
1

2
(di` + dj` − dij) , (4.3)

where i and j are OTUs which have the same parent node k, and ` represents any other

node in the tree. Thus, in each iteration step, the linkage between nodes is stored, and as

a final step, the tree is built by linking nodes.

To apply the algorithm, an estimated tree-length is calculated for each possible topol-

ogy, and the estimated tree-length is defined as

Dij = dij − (ri + rj), (4.4)

where i, j = 1 . . . N, i < j, and

ri =
1

N − 2

N∑
k=1

dik.

The nodes xi and xj with minimal Dij are connected by a parent node, xN+1. Then the

66 Chapter 4. Phylogenetic tree reconstruction

distances between OTUs xi and xj and internal node xN+1 are computed using

dN+1 i =
1

2
(dij + ri − rj),

dN+1 j =
1

2
(dij + rj − ri),

and the distances between the new node, xN+1 and other nodes x` (where ` 6= i, j) are

computed using

dN+1 ` =
1

2
(di` + dj` − dij).

At the end of the first iteration, the new OTU list is {x`, xN+1 : ` 6= i, j}. This procedure

is repeated until three OTUs are left. The distances between the final three OTUs are

calculated using Equation (4.3), and the tree is built by linking each iteration step.

Example 4.3.2. Assume that we have the following distance matrix for five different se-

quences:
x1 x2 x3 x4 x5

x1 0 4 7 5 6

x2 4 0 5 3 4

x3 7 5 0 5 4

x4 5 3 5 0 4

x5 6 4 4 4 0

.

This distance matrix satisfies the four-point condition, so we can apply the neighbour-

joining algorithm to build the tree. First, ri, i ∈ {1, . . . , N = 5} are calculated as

r1 =
22

3
, r2 =

16

3
, r3 = 7, r4 =

17

3
, r5 = 6.

Then the following matrix D (estimated tree length) is obtained using Equation (4.4):

D x1 x2 x3 x4 x5

x1 −26/3 −22/3 −8 −22/3

x2 −22/3 −8 −22/3

x3 −23/3 −9

x4 −23/3

.

From the matrix D, the minimum value is D35 = −9, so OTUs x3 and x5 are replaced by

the new OTU x6. The OTU x6 is located by the following distances from OTUs x3 and x5

as

d63 =
1

2
(d35 + r3 − r5) =

5

2
,

d65 =
1

2
(d35 + r5 − r3) =

3

2
.

4.3. Phylogenetic reconstruction methods 67

The distance between x6 and other nodes, x1, x2, x4 are calculated. These distances are

d61 =
1

2
(d31 + d51 − d35) =

9

2
,

d62 =
1

2
(d32 + d52 − d35) =

5

2
,

d64 =
1

2
(d34 + d54 − d35) =

5

2
,

so the new distance matrix is for OTUs x1, x2, x4, x6 is

x1 x2 x4 x6

x1 0 4 5 9/2

x2 4 0 3 5/2

x4 5 3 0 5/2

x6 9/2 5/2 5/2 0

.

The process is repeated using the new distance matrix, so

r1 =
27

4
, r2 =

19

4
, r4 =

21

4
, r6 =

19

4
,

and
D x1 x2 x4 x6

x1 −15/2 −7 −7

x2 −7 −7

x4 −15/2

.

The minimum D = −15/2, so we can group either x1 and x2 or x4 and x6. We group x4

and x6, and the new OTU x7 is located at the distance 3/2 from x4 and at the distance 1

from x6. We also calculate the distance d71 and d72, and we set the distance matrix for

OTUs x1, x2, x7 as
x1 x2 x7

x1 0 4 7/2

x2 4 0 3/2

x7 7/2 3/2 0

.

As a final step, a new OTU, x8 is set, and distances d81, d82, d87 are calculated using

Equation (4.3). Thus, distances d81, d82 and d87 are found as 3, 1 and 1/2, respectively,

and the reconstructed tree is given in Figure 4.4.

The generated tree clearly shows that the four-point condition is satisfied by the set

of distances {dij}. However, in reality, neither the four-point condition nor the triangu-

lar equality is easy to verify. Instead of using these set of distances, a “pseudodistance”

68 Chapter 4. Phylogenetic tree reconstruction

x3 5/2

x5
3/2

1

x4

3/2

x2
1

x1
3

1/2

Figure 4.4: Phylogenetic tree reconstruction using neighbour-joining algorithm. The

algorithm is based on the distance matrix in Example 4.3.2.

function is used to reconstruct the tree. A “pseudodistance” function can be defined us-

ing the assumptions on distances, given in Equation (4.1). If all assumptions hold ex-

cept the triangle inequality, this distance function is a “pseudodistance” function. Hence,

the neighbour-joining algorithm reconstructs the tree using a “pseudodistance” function.

However, if a tree is constructed using a “pseudodistance” matrix which does not satisfy

the four-point condition, some problems can be observed such as obtaining more than one

tree, having negative branch lengths, or obtaining a different distance matrix from the one

in the beginning.

Another point to be raised here is how to construct a rooted tree using the neighbour-

joining algorithm. Note that the four-point condition is satisfied directly if any distance

function is ultrametric. When the neighbour-joining algorithm is applied to an ultrametric

distance function, after the tree is constructed, the root of the tree can be placed such that

the total length of the branches from the root to each leaf should be equal.

The next phylogenetic reconstruction method is a probabilistic method which is based

on evolutionary models, so we continue with a brief summary of some main evolutionary

models in the following section before we discuss the probabilistic method in Section 4.5.

4.4 Evolutionary Models

In this section, evolutionary models are described briefly. Details of these models can be

found in Isaev (2006) and Durbin (1998). Evolutionary models are required to understand

the substitution process in DNA, RNA and amino acid sequences. If DNA sequences are

considered, almost all evolutionary models assume that nucleotide sites are independent.

DNA sequences are built by four different nucleotides: adenine (A), thymine (T), gua-

nine (G) and cytosine (C), and we illustrate the nucleotide space as Q = {A,C,G, T}.
Evolutionary models are constructed via a transition probability matrix. These matrices

denote the probability of state change in time, so the structure of the transition probability

4.4. Evolutionary Models 69

matrices is

P (t) =

pAA(t) pAC(t) pAG(t) pAT (t)

pCA(t) pCC(t) pCG(t) pCT (t)

pGA(t) pGC(t) pGG(t) pGT (t)

pTA(t) pTC(t) pTG(t) pTT (t)

4×4

, (4.5)

where pij > 0, i, j ∈ Q, and
∑

j∈Q pij(t) = 1 for each i ∈ Q. Any pij(t) from P (t)

denotes the probability of state change from site i to j in time t.

One of the assumptions on evolutionary models is that when a site has nucleotide i

at time t, the probability of change from nucleotide i to nucleotide j at time t + τ only

depends on i, j and τ (τ ≥ 0), so it can be written as

pij(t+ τ) =
∑
k∈Q

pik(t)pkj(τ),

where i, j ∈ Q, and this can be written in matrix notation as

P (t+ τ) = P (t)P (τ),

and assume that P (0) = I4, and I4 is the identity matrix. These assumptions lead us the

following theorem.

Theorem 4.4.1. (Isaev, 2006, p. 124) The transition probabilities matrix, P (t) can be

defined as

P (t) = exp(tQ), (4.6)

where Q is a 4× 4 matrix and has a specific form for each different evolutionary model.

Isaev (2006) defined the exponential of a matrix as

exp(H) = In +H +
H2

2!
+
H3

3!
+ · · · =

∞∑
k=0

Hk

k!
,

where H is a n× n matrix. The proof of Theorem 4.4.1 can be found in Isaev (2006).

A number of different evolutionary models have been proposed each with its own

matrix Q. We now describe the main ones.

4.4.1 The Jukes-Cantor (JC) model

One of the earliest evolutionary models was introduced by Jukes & Cantor (1969), and

this model is given as

Q =

−3α/4 α/4 α/4 α/4

α/4 −3α/4 α/4 α/4

α/4 α/4 −3α/4 α/4

α/4 α/4 α/4 −3α/4

 ,

70 Chapter 4. Phylogenetic tree reconstruction

where α > 0 is the evolutionary rate. Since Q is known, P (t) can be found via Equa-

tion (4.6). Thus,

pii(t) =
1

4
+

3

4
exp(−tα), i ∈ Q = {A,C,G, T},

pij(t) =
1

4
− 1

4
exp(−tα), i 6= j, i, j ∈ Q = {A,C,G, T}.

JC model assumes that the rate of transitions and transversions are equal to each other,

where transitions stand for the nucleotide substitutions from purine to purine (A and G)

or pyrimidine to pyrimidine (C and T), and transversions are the nucleotide substitutions

between purine and pyrimidine. This model also assumes that the nucleotide equilibrium

frequencies equal to each other (πA = πC = πG = πT = 1/4). However, in reality,

transitions occur more than transversions.

4.4.2 The Kimura model

The Kimura model (Kimura, 1980) generalizes the JC model by giving different rates to

transitions and transversions. This model is given as

Q =

−(2β + α)/4 β/4 α/4 β/4

β/4 −(2β + α)/4 β/4 α/4

α/4 β/4 −(2β + α)/4 β/4

β/4 α/4 β/4 −(2β + α)/4

 ,
where α > 0 is the evolutionary rate, and β > 0. Using Equation (4.6), P (t) is given by

pii(t) =
1

4
+

1

4
exp(−tβ) +

1

2
exp

(
−t(β + α)

2

)
, where i ∈ Q = {A,C,G, T},

pAC(t) = pCA(t) = pAT (t) = pTA(t) = pCG(t) = pGC(t)

= pGT (t) = pTG(t) =
1

4
− 1

4
exp(−tβ),

pAG(t) = pGA(t) = pCT (t) = pTC(t) =
1

4
+

1

4
exp(−tβ)− 1

2
exp

(
−t(β + α)

2

)
.

Even though Kimura model is a popular model, it is not realistic either because it shares

one of the assumption done by JC model: equilibrium frequencies are equal (πA = πC =

πG = πT = 1/4).

4.4.3 Felsenstein model

Felsenstein (1981) introduced another model which is also a general version of the JC

model. This model is

Q =

−α(πC + πG + πT) απC απG απT

απA −α(πA + πG + πT) απG απT

απA απC −α(πA + πC + πT) απT

απA απC απG −α(πA + πC + πG)

 ,

4.5. Probabilistic methods 71

where α > 0 is the evolutionary rate, and πi > 0, i ∈ Q = {A,C,G, T} are parameters

with
∑

k∈Q πk = 1. Using Equation (4.6), P (t) is found to be

pii(t) = πi + (1− πi) exp(−tα), for all i, where i ∈ Q = {A,C,G, T},

pij(t) = πj − exp(−tα)πj, for all i 6= j.

While Kimura model brings a solution to equality assumption on transition and transver-

sion rates, Felsenstein model suggests a solution to equality assumption on equilibrium

frequencies. Thus, Felsenstein model is not realistic either.

4.4.4 The Hasegawa-Kishino-Yano (HKY) model

Hasegawa et al. (1985) generalized the Felsenstein model. The HKY model defines differ-

ent transitions and transversions rates along with different equilibrium rates, so the HKY

model is a generalized version of all other three models (JC, Kimura and Felsenstein)

which we described earlier. The HKY model is

Q =

−(βπC + απG + βπT) βπC απG βπT

βπA −(βπA + απG + βπT) βπG απT

απA βπC −(απA + βπC + βπT) βπT

βπA απC βπG −(βπA + απC + βπG)

 ,

where α > 0 is the evolutionary rate, β > 0, and πi > 0, i ∈ Q = {A,C,G, T}
are parameters with

∑
k∈Q πk = 1. Using Equation (4.6), P (t) can be found, but this

probability matrix is not as simple as others to write down. Thus, we do not include it

here. The full version of the matrix can be found in Hasegawa et al. (1985).

4.5 Probabilistic methods

In Section 4.3, parsimony and distance methods were described to construct the phy-

logenetic tree using reduced multiple alignment of DNA sequences. In this section,

we present maximum likelihood method (probabilistic method), based on evolutionary

models described in Section 4.4, to build phylogenetic trees. The earliest OTUs and

the reduced multiple aligned sequences are represented by M = {x1, . . . , xN} and

D = {x̂1, . . . , x̂N}, respectively. To start the method, one of the evolutionary meth-

ods is chosen, and this method assumes that the molecular clock assumption holds for

DNA sequences, D, and the time tree is constructed, where branch lengths are time inter-

vals; evolution of DNA sequences occurred via substitutions, so there were no deletions

or insertions, and evolution in each site is independent and identical to other sites; the

substitution process is described via a selected evolutionary model; and the parameters α

and β in evolutionary models can vary from branch to branch.

72 Chapter 4. Phylogenetic tree reconstruction

u1 u2

u5

u3 u4

u6

α = ACA β = ACA γ = ACT δ = ACT

Figure 4.5: Constructed tree via probabilistic methods. Rooted tree for D = (x̂1, . . . , x̂4)

= (α, β, γ, δ). u·: time interval between two nodes.

To build the time tree via maximum likelihood method, the likelihood function of

the aligned data gives the topology of the molecular clock tree, T . For each possible

molecular clock tree, the likelihood function, L(D|T) is calculated, and the optimal tree

is the one having the maximal likelihood.

Branch lengths of the time tree can be computed using maximum likelihood method.

We assume that the time tree satisfies the molecular clock assumption, but evolution can

be faster in some branches than others. Since there is no information on evolutionary

speed, it is not easy to calculate branch lengths. To be able to find branch lengths, time

intervals can be scaled by evolutionary rates. Hence, distance matrices between aligned

OTUs can be set via probabilistic methods.

Setting the likelihood function and distance matrices are explained using the toy data

given in Table 4.1a and its reduced form as given in Table 4.1c. The rooted tree, T for

this data is given in Figure 4.5. The likelihood function, L(D|T) can be written via site

specific likelihood functions, Li(D|T), where i ∈ {1, . . . , n}, and n is the length of the

reduced alignment of sequences. Thus,

L1(D|T) =
∑

i,j,k∈Q

ϕipij(u5)pik(u6)pjA(u1)pjA(u2)pkA(u3)pkA(u4),

L2(D|T) =
∑

i,j,k∈Q

ϕipij(u5)pik(u6)pjC(u1)pjC(u2)pkC(u3)pkC(u4),

L3(D|T) =
∑

i,j,k∈Q

ϕipij(u5)pik(u6)pjA(u1)pjA(u2)pkT (u3)pkT (u4),

where ϕ denotes the stationary distribution of chosen evolutionary model, u is for the time

interval, and L(D|T) is

L(D|T) =
∏

i∈{1,...,n}

Li(D|T).

Since the likelihood function is known, distance between OTUs, d(x̂`, x̂j), can be calcu-

lated by maximizing L(D|T), where `, j ∈ {1, . . . , N}. Derivation of distances can be

found in Isaev (2006).

4.6. Discussion 73

4.6 Discussion

To construct phylogenetic trees, one of the parsimony, distance and probabilistic methods

can be used. Each one has some advantages or disadvantages. Parsimony methods are

computationally efficient since they do not need to find the branch lengths, but they are not

model based methods. Thus, there are some concerns on not having assumptions behind

them. Distance methods are also computationally efficient methods, and they can even

deal with large data sets easily. They are model based methods, so assumptions behind

these methods are clear. The probabilistic methods are also based on models, so there is no

confusion on their assumptions. However, they are not computationally efficient because

of the process of finding branch lengths. Since distance methods are computationally

efficient and have clear assumptions, we will use one of the distance based methods later

in Chapter 7.

74 Chapter 4. Phylogenetic tree reconstruction

Chapter 5

Automatic cluster detection by lifting

5.1 Introduction

Using clustering methods, related objects are grouped in the same cluster. One of the well

known clustering algorithms is called hierarchical clustering. The aim of introducing hi-

erarchical clustering is to consider how the lifting algorithm can be applied to a tree built

by the hierarchical clustering algorithm. Hierarchical clustering is a common methodol-

ogy in statistics, so more details can be found in, for example, Mardia et al. (1979) and

Manly (2004).

One of the open questions in hierarchical clustering is how many clusters exist, or

where we will “cut the tree”. Even though many cluster validity indices are proposed in

the literature, this topic still catches the interest of researchers. There are also some stud-

ies offering a comparison of these indices; for example, Arbelaitz et al. (2013) recently

compared 30 different cluster validity indices. All the available indices find the number

of clusters, but we would like to explore if the number of clusers can be decided automat-

ically. This automatic decision allows us to examine where exactly clustering happens in

a dendrogram. To reach this goal, a new method is proposed which is created using the

lifting algorithm for tree-structured data introduced by Jansen et al. (2009).

This chapter starts with a brief summary of hierarchical clustering in Section 5.2, then

some of the recent cluster validity indices or the ones mostly referenced in the literature

are described in Section 5.3. After that, how we can apply lifting method to a tree pro-

duced by hierarchical clustering is discussed in Section 5.4. We next compare the perfor-

mance of our lifting algorithm and the partitioning found by other cluster validity indices

using four different simulated data structures and a real data set in Sections 5.5 and 5.6,

respectively. Finally, we discuss our findings briefly in Section 5.7.

75

76 Chapter 5. Automatic cluster detection by lifting

index component 1st dimension 2nd dimension

1 1 -1.033 1.085

2 1 -0.963 0.990

3 1 -0.645 0.587

4 2 1.010 -0.808

5 2 1.160 -1.180

6 2 0.471 -0.674

Table 5.1: Tree structured toy data.

5.2 Agglomerative hierarchical clustering

There are two different hierarchical clustering methods: agglomerative and divisive hi-

erarchical methods. In this research, our main interest is the agglomerative hierarchical

method. The algorithm starts with the distance matrix and each object being in a separate

cluster. Then in each agglomeration step, the closest clusters are merged.

In hierarchical clustering, there are three main possible linkage methods: closest-

neighbour (single linkage), furthest-neighbour (complete linkage) and average linkage.

When two clusters are merged, the distance matrix is updated in terms of the choice of

linkage method. Thus, the distances between the new cluster and the others are found by

choosing the smallest distance between clusters when closest-neighbour linkage method

is used. For example, assume that there is a data set, x1, . . . , x5, and the distance between

x1 and x3, d13 is the smallest. Thus, x1 and x3 are merged in the first agglomeration

step, and we denote this new cluster with x6. The distance between x6 and x2, d62, is

min{d12, d32}, and distances between the new cluster and other data points, d64 and d65,

are updated in the same way. If the furthest-neighbour linkage or average linkage is used,

the distance between x6 and x2, d62, is max{d12, d32} or
1

2
{d12 + d32}, respectively.

Toy Data: For illustrative purposes, a tree structured (multidimensional) toy data set is

created and shown in Table 5.1. Two-component normally distributed data set in R2 is

generated, and each component includes three observations.

We build the tree for the toy data hierarchically using Euclidean distances and com-

plete linkage. The Euclidean distance matrix is computed and is given in Table 5.2 (it can

be easily computed using the dist() function in R), and objects can be clustered hierar-

chically using the hclust() function in the stats package (R Core Team, 2017) in R. The

corresponding dendrogram is given in Figure 5.1. Blue labels for the internal nodes rep-

resent the agglomeration order, and internal nodes are labelled starting from n+ 1, where

n is the number of objects in the data, so n = 6, and the possible clustering schemes for

this dendrogram are given in Table 5.3.

After building a dendrogram of a data set, it is not always easy to know where to

5.2. Agglomerative hierarchical clustering 77

1 2 3 4 5

2 0.118

3 0.632 0.514

4 2.785 2.669 2.164

5 3.153 3.036 2.526 0.401

6 2.314 2.197 1.684 0.555 0.855

Table 5.2: Euclidean distance matrix for the toy data in Table 5.1.

4 5 6 1 2 3

H
ei

gh
t

11

10

8

9

7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Figure 5.1: The dendrogram of the toy

data in Table 5.1. Nodes are labelled

by the agglomeration order starting from

n+ 1.

13 21 7 9 23 24 3 1 5 4 22 2 25 11 14 12 15 17 19 16 6 8 20 10 18

0
1

2
3

4
5

H
ei

gh
t

Figure 5.2: An example of a complicated

dendrogram.

k Dj where j ∈ {1, . . . , k}
1 {1,2,3,4,5,6}
2 {1,2,3}, {4,5,6}
3 {1,2,3}, {4,5}, {6}
4 {1,2}, {3}, {4,5}, {6}
5 {1,2}, {3}, {4}, {5}, {6}
6 {1}, {2}, {3}, {4}, {5}, {6}.

Table 5.3: Clustering scheme for the toy data in Table 5.1.

cut the tree. For example, we can say where to cut the tree just seeing the dendrogram

in Figure 5.1, but if we have a more complicated dendrogram such as the one given in

Figure 5.2, it will not be easy to find how many clusters we have. Thus, we need some

methods which tell us which partition represents the data better. To address this question,

some methods called internal cluster validity indices are proposed in the literature. Since

each of these indices returns one of the possible partitioning, we may also need to evaluate

how well this partition captures true clusters when we have a labelled data. Thus, this

78 Chapter 5. Automatic cluster detection by lifting

evaluation can be done using one of the external cluster validity scores from the literature.

In Section 5.3, we discuss both internal indices and external scores in detail.

5.3 Cluster validity indices

Cluster validity indices can be divided into two categories: internal indices and external

scores. Internal indices are used to find the best partitioning after applying the clustering

algorithm. Then external scores are used to measure how well the true components are

captured by clustering if the true partition of the data is known.

In the literature, many internal and external scores are available, so we pick five

different internal indices from the recently developed and the most commonly refer-

enced indices: Calinski and Harabasz index (Calinski & Harabasz, 1974), Hartigan in-

dex (Hartigan, 1975), Silhouette statistic (Rousseeuw, 1987), Krzanowski and Lai index

(Krzanowski & Lai, 1988) and Gap statistic (Tibshirani et al., 2001). All these internal

indices are available in the NbClust package (Charrad et al., 2014) in R. Even though

we are interested in hierarchically built trees, to see the performance of a different clus-

tering method, we include the model-based clustering method (Fraley & Raftery, 2002)

which uses mixture of normal distributions in our study. It is available in the mclust pack-

age (Fraley et al., 2012) in R. We compare the performance of these internal indices and

model-based clustering in terms of six external scores: Wallace indices (Wallace, 1983)

and the Fowlkes and Mallows index (Fowlkes & Mallows, 1983) which are available

in the profdpm package (Shotwell, 2013), the adjusted Rand index (Hubert & Arabie,

1985) which is available in the mclust package, purity index (Rendón et al., 2011) which

is available in the IntNMF package (Chalise et al., 2016) and adjusted variation informa-

tion (Vinh et al., 2010). These internal indices and external scores are discussed in detail

later in this section.

5.3.1 Internal indices

Internal index calculations are based on between-cluster sum of squares (BSS) and

within-cluster sum of squares (WSS), so we need to define BSS and WSS with some

notation which are used in the discussion of various indices. We define

k : number of clusters,

n : number of objects,

p : number of variables,

Dj : cluster j which includes indices of data points in it,

where j ∈ {1, . . . , k},
xi : ith data point in data x, x ∈ Rp and i ∈ {1, . . . , n},

5.3. Cluster validity indices 79

nj : number of elements in cluster Dj,

d(xi, x`) : the distance between ith and `th data points, i, ` ∈ {1, . . . , n},
cj : the centroid of data points in the cluster Dj , so

cj = n−1j

∑
i∈Dj

xi,

x̄ : mean of all elements,

WSS(k) =
∑k

j=1

∑
i∈Dj

(xi − cj)(xi − cj)T ,

BSS(k) =
∑k

j=1 nj(cj − x̄)(cj − x̄)T .

We refer internal cluster validity indices as CVIs in the later part of this chapter and the

following chapters.

Calinski and Harabasz index (CH)

The Calinski and Harabasz index (CH) was proposed by Calinski & Harabasz (1974) and

is defined as

CH(k) =
tr(BSS(k))/(k − 1)

tr(WSS(k))/(n− k)
, (5.1)

where k > 1.

If the similar objects are clustered together, WSS(k) will be small, and BSS(k) will

be high. If we scale BSS(k) and WSS(k) in terms of their degrees of freedom, we can

take the proportion of BSS and WSS, and CH(k) takes its maximum value when large

distances occur between clusters. Thus, the optimal number of clusters is the k which

maximizes CH(k).

We illustrate how we can decide the optimal number of clusters using the CH index

for the toy data, given in Table 5.1. So for each possible clustering scheme in Table 5.3,

we calculate the CH index, then the clustering scheme with the maximum CH index is the

“best” partitioning.

The CH index calculation is shown in detail for k = 2:

n = 6,

D1 = {1, 2, 3}, D2 = {4, 5, 6},
n1 = 3, n2 = 3,

c1 = (−0.881, 0.887), c2 = (0.881,−0.887),

x̄ = (0, 0),

WSS(k = 2) =
∑2

j=1

∑
i∈Dj

(xi − cj)(xi − cj)T

=

[
0.348 −0.269

−0.269 0.278

]
,

tr(WSS(k = 2)) = 0.626,

80 Chapter 5. Automatic cluster detection by lifting

BSS(k = 2) =
∑2

j=1 nj(cj − x̄)(cj − x̄)T

=

[
4.652 −4.687

−4.687 4.722

]
,

tr(BSS(k = 2)) = 9.374,

CH(k = 2) =
tr(BSS(k = 2))/(2− 1)

tr(WSS(k = 2))/(6− 2)
= 59.918.

For each possible clustering scheme, k ∈ {2, . . . , 5}, the CH index is calculated and

found to be {59.918, 47.472, 75.519, 359.549}, respectively. Hence, the maximum CH

index is computed for k = 5. The optimal number of clusters for the toy data is five

where one of the clusters includes {x1, x2}, and all the other data points are clustered

separately.

Hartigan index (H)

The Hartigan index (H) was proposed by Hartigan (1975). The index is defined as

H(k) =

{
tr(WSS(k))

tr(WSS(k + 1))
− 1

}
× (n− k − 1), (5.2)

where k ∈ {2, . . . , (n− 2)}.
If objects in cluster k are similar, WSS(k) will be small. Thus, we need to start from

one cluster and add more clusters if H(k + 1) is large enough. This occurs if and only

if WSS(k + 1) is small enough. Hartigan (1975) suggested that the optimal number

of clusters is the smallest k which makes H(k) ≤ 10, but Milligan & Cooper (1985)

proposed another stopping rule which increases the performance of the index: the optimal

number of clusters is the k which maximizes H(k).

Using the toy data in Table 5.1, we compute the H index for each possible clustering

scheme, given in Table 5.3. We already calculated WSS(k = 2) in the illustration of the

CH index. To find H(k = 2), we need to find WSS(k = 3) using the clustering scheme

for k = 3. Thus,

D1 = {1, 2, 3}, D2 = {4, 5}, D3 = {6},
n1 = 3, n2 = 2, n3 = 1,

c1 = (−0.881, 0.887), c2 = (1.085,−0.994), c3 = (0.471,−0.674),

tr(WSS(k = 3)) = tr
(∑3

j=1

∑
i∈Dj

(xi − cj)(xi − cj)T
)

= 0.306,

H(k = 2) =

{
tr(WSS(k = 2))

tr(WSS(k = 3))
− 1

}
× (6− 2− 1)

=

{
0.626

0.306
− 1

}
× 3 = 3.129.

The same procedure is repeated for other clustering schemes, k ∈ {2, . . . , 4}, so H indices

5.3. Cluster validity indices 81

can be found as {3.129, 5.001, 11.594}, respectively. The best partition found by the H

index is for k = 4 since the k which maximizes H(k) is four.

Krzanowski and Lai index (KL)

The Kranowski and Lai index (KL) (Krzanowski & Lai, 1988) is defined as

KL(k) =

∣∣∣∣ DIFF(k)

DIFF(k + 1)

∣∣∣∣ , (5.3)

where k ≥ 2, and

DIFF(k) = (k − 1)2/p tr(WSS(k − 1))− k2/p tr(WSS(k)).

The KL index is similar to the CH index. Krzanowski & Lai (1988) discussed that

WSS(k) will be reduced by k2/p if xis are independently uniformly distributed. If k∗

is the optimal number of clusters, DIFF(k) will be positive large numbers for k < k∗,

and DIFF(k) will be smaller (it can even take negative values) for k > k∗. Thus, the

optimal number of clusters, k, is the one which maximizes KL(k).

Using the toy data in Table 5.1, we show how we can find the KL index for k = 2. To

compute the KL index, we need to calculate WSS(k = 1), WSS(k = 2) and WSS(k =

3). Since the last two WSS are calculated in previous indices, we only need to compute

the WSS(k = 1), so

p = 2,

D1 = {1, 2, 3, 4, 5, 6},
c1 = (0, 0),

tr(WSS(k = 1)) = tr
(∑1

j=1

∑
i∈Dj

(xi − cj)(xi − cj)T
)

= 10.000,

DIFF(k = 2) = tr(WSS(1))− 2(tr(WSS(2))) = 8.748,

DIFF(k = 3) = 2(tr(WSS(2)))− 3(tr(WSS(3))) = 0.333,

KL(k = 2) =

∣∣∣∣ 8.748

−0.919

∣∣∣∣ = 26.294.

Similarly, we compute the KL index for each clustering scheme, k ∈ {2, . . . , 5}, and

find as {26.294, 0.585, 1.804, 9.075}, respectively. The maximum KL index is found for

k = 2, so the KL index finds the best partition of the toy data as two clusters.

Silhouette statistic

The silhouette statistic (Rousseeuw, 1987) is defined as

Sil(k) =
1

n

n∑
i=1

s(i), (5.4)

82 Chapter 5. Automatic cluster detection by lifting

where

s(i) =
b(i)− a(i)

max{a(i), b(i)}
,

a(i) =
1

nj − 1

∑
`∈Dj

d(xi, x`),

b(i) = minDs∈D\Dj

{
1

ns

∑
`∈Ds

d(xi, x`)

}
.

Here, a(i) is the average distance between the ith point and the other points in its

cluster, and b(i) is the average distance between the ith point and the points from the

nearest cluster. The silhouette statistic computes how well the ith object is clustered, so

high s(i) shows how strong the clustering is.

The silhouette statistic is defined in the range [−1, 1]. The maximum index means the

best partition, and also the silhouette statistic is not defined for k = 1.

To be able to work on the toy data in Table 5.1, we need Euclidean distance matrix of

the toy data in Table 5.2.

If k = 2, and i = 1,

a(1) =
1

2

∑
`∈D1

d(x1, x`) =
1

2
(0.118 + 0.632) = 0.375,

b(1) = minD2∈D\D1

{
1

3

∑
`∈D2

d(x1, x`)

}
=

1

3
(2.785 + 3.153 + 2.314) = 2.751,

s(1) =
b(1)− a(1)

max{a(1), b(1)}
=

2.751− 0.375

2.751
= 0.864.

When we repeat these calculations for other data points in the data set, we find a =

(0.375, 0.316, 0.573, 0.478, 0.628, 0.705), b = (2.751, 2.634, 2.124, 2.540, 2.905, 2.065)

and s = (0.864, 0.880, 0.730, 0.812, 0.784, 0.659). The silhouette statistic for two clusters

is the average of s(i), so Sil(k = 2) = 0.788. We need to find the silhouette statistic for

each possible partition to investigate the optimal number of clusters, so for k ∈ {2, . . . , 5},
Sil = {0.788, 0.694, 0.732, 0.931}, respectively. Hence, the silhouette statistic suggests

that the best partition will be obtained if the toy data set is partitioned into five clusters

(max(Sil) = Sil(k = 5) = 0.931).

Gap statistic

The Gap statistic was proposed by Tibshirani et al. (2001). It computes the amount of

change between the expectation of the WSS(k) of the data set coming from a suitable

reference distribution and WSS(k) of the original data set as k increases. The optimal

number of clusters is the k which maximizes the Gap statistic, so the Gap statistic is

defined as

Gap(k) = E {log(WSS∗B(k))} − log(WSS(k)), (5.5)

5.3. Cluster validity indices 83

where WSS∗B(k) is the within sum of squares for B reference data sets coming from the

reference distribution, and

E {log(WSS∗B(k))} ≈ 1

B

∑
b∈{1,...,B}

log(WSS∗b (k)).

Tibshirani et al. (2001) suggested two methods for creating reference data sets. The

simplest way is generating B data sets from a uniform distribution in the range of the

observed data. The second way is generating data from a uniform distribution but over a

box defined by the principal components of the data.

Computation of the Gap statistic can be summarized as follows:

• For each possible clustering scheme, WSS(k) is computed, where k ∈
{1, . . . , (n− 1)}.

• We generate B reference data sets. Each data set is clustered, then for each pos-

sible partitioning, WSS∗b is calculated where b ∈ {1, . . . , B}. After that, we can

calculate the Gap statistic, given in Equation (5.5).

• We need to also compute the standard deviation of log(WSS∗b) which is defined as

sdk =

 1

B

∑
b∈{1,...,B}

log(WSS∗b (k))− 1

B

∑
b∈{1,...,B}

log(WSS∗b (k))

2
1/2

.

• The optimal number of clusters is the smallest k such that

Gap(k) ≥ Gap(k + 1)− sk+1,

where sk = sdk
√

1 + 1/B.

For the toy data in Table 5.1, the Gap statistic offers that the best partition of the

data set is found when the data set is partitioned into two clusters. The Gap statistics

for each possible cluster are Gap = {−0.414, 0.387, 0.296, 0.517, 1.003}, where sk =

{0.177, 0.131, 0.153, 0.174, 0.385} and k ∈ {1, . . . , 5}.

Discussion

All the indices reported in this section show high performances to find the best partition-

ing in clustering. However, their performance differs depending on the data structure and

the clustering method. In the literature, there are some studies which compare different

internal indices. One of the commonly referenced studies was carried out by Milligan &

Cooper (1985). In their study, they reported that the CH index captured the true com-

ponents better within 30 different indices. Arbelaitz et al. (2013) recently published a

84 Chapter 5. Automatic cluster detection by lifting

new comparison study, where they also compared 30 different indices including the CH

index and the Sil statistic. They found that the Sil statistic performed better than others,

and discussed that while the CH index performed better for the noiseless data and for

the k-means clustering algorithm, the performance of the Sil statistic was better with the

hierarchical clustering algorithm.

Another index is the H index. The stopping rule for the H index suggested by Hartigan

(1975) includes an arbitrary number, and it decreases the performance of the index. In this

study, we use the stopping rule offered by Milligan & Cooper (1985), so the estimated

number of clusters (k) is the one which maximizes H(k). Another concern on the H index

is we can not calculate the index for H(k = n− 1). There are also some concerns on the

KL index. Krzanowski & Lai (1988) discussed that the efficiency of the index was lower

for data sets having unequally sized true components or for data sets in high dimensions.

The final index discussed in this section is the Gap statistic. Tibshirani et al. (2001)

noted that the performance of the Gap statistic was high for well separated clusters, but

if there is an overlap, or components are close to each other, its performance is poor. It

generally ends up with one cluster. Sugar & James (2003) also found that its performance

for exponentially distributed data was low.

By this point of the study, we have summarized some of the available internal indices

in the literature which finds the number of clusters in hierarchically built trees, but we

would like to also see the behaviour of another clustering method. Thus, we include the

mixture model-based clustering to our study, and describe it in the following section.

5.3.2 Model-based clustering (Mclust)

Fraley & Raftery (2002) introduced mixture models in hierarchical clustering. They as-

sume that the best partitioning is the one maximizing the classification likelihood, which

is defined as

LCL (θ1, . . . , θk; `1, . . . , `n) =
n∏

i=1

f`i (xi|θ`i) ,

where xi is the given data point (i ∈ {1, . . . , n}), k is the number of clusters, `i illustrates

the cluster of xi, θ`i are the parameters for the cluster `i, and f`i is the probability density

function for the cluster `i. In general, any suitable distribution can be used to obtain the

f`i .

In Fraley & Raftery (2002), the density function, f`i comes from multivariate normal

(Gaussian) distribution, so the density function, φ(xi;µ`i ,Σ`i), is defined as

φ(xi;µ`i ,Σ`i) =
exp{−1/2(xi − µ`i)

TΣ−1`i
(xi − µ`i)}√

det(2πΣ`i)
,

where µ`i and Σ`i are the mean and variance of the cluster `i, respectively, and param-

eter (θ`i = {µ`i ,Σ`i}) estimates are done using the EM algorithm for a fixed number

5.3. Cluster validity indices 85

Components, Cj

C1 C2 . . . C` ni·

C
lu

st
er

s,
D

i D1 n11 n12 . . . n1` n1·

D2 n21 n22 . . . n2` n2·
...

...
...

...
...

...

Dk nk1 nk2 . . . nk` nk·

n·j n·1 n·2 . . . n·` n

(a)

Components, Cj

C1 C2 C3 C4 C5 ni·

C
lu

st
er

s,
D

i D1 2 0 3 0 0 5

D2 0 0 0 5 0 5

D3 0 5 2 0 0 7

D4 3 0 0 0 5 8

n·j 5 5 5 5 5 25

(b)

Table 5.4: Structure of a contingency table. (a): general form of a contingency table. (b):

a contingency table of a toy data set.

of clusters; details of the parameter estimates can be found in Fraley & Raftery (2002).

Mclust method decides which pairs are merged in each agglomeration step by looking at

the amount of increase in classification likelihood for each possible cluster. The clusters

which make maximum increase on the classification likelihood are merged in that ag-

glomeration stage. Then the number of clusters is found using the Bayesian information

criteria (BIC). For each clustering pattern, 2, . . . , k, BIC is calculated, and the partition

with the maximum BIC is found as the representative clustering pattern of the data set by

Mclust.

Model based hierarchical clustering is available in the mclust package (Fraley et al.,

2012) in R. We cluster the toy data in Table 5.1 using the mclust package, and we find

three clusters as D1 = {x1, x2, x3}, D2 = {x4, x5} and D3 = {x6}.

5.3.3 External scores

Internal indices and Mclust find the number of clusters, but they do not give any informa-

tion about the performance of the partitioning found by the method of interest. We wish to

measure how well the partitioning is estimated by these methods if we know the “truth” of

the data. External scores measure how close the partition done by the clustering method

is to the real partition, so external scores are partition similarity measures. Six different

external scores from the literature are picked to compare the success of the partition found

by internal indices.

External scores are calculated using contingency tables. A general table is given in

Table 5.4a with the notation used when we introduce external scores. True groups are

called components (Cj, where j ∈ {1, . . . , `}), and the labels after applying a clustering

method are called clusters (Di, where i ∈ {1, . . . , k}). Let nij be the number of objects

classified to cluster Di which are truly from component Cj , ni· be the number of objects

in cluster Di, n·j be the number of objects in component Cj , and n be the total number

of objects. In addition, we provide the contingency table of a toy data set in Table 5.4b

86 Chapter 5. Automatic cluster detection by lifting

which is used to illustrate the calculation of each external score.

Fowlkes and Mallows index

Fowlkes & Mallows (1983) introduced an external score to check the performance of a

clustering, and we call this score further this point as CC. It is defined as

CC =

∑k
i=1

∑`
j=1

(
nij

2

)√∑k
i=1

(
ni·
2

)∑`
j=1

(
n·j
2

) , (5.6)

and later on Wallace (1983) proposed two other scores based on CC score. We call these

scores CompCheck and ClustCheck

The idea is that if a component is divided into small clusters, clustering performance

should be treated as high. Thus, we do not need to give any penalty for sub-clustering.

Firstly, Wallace (1983) checked if objects which really belong together are clustered to-

gether:

CompCheck =

∑k
i=1

∑`
j=1

(
nij

2

)∑`
j=1

(
n·j
2

) , (5.7)

where CompCheck ∈ [0, 1]. If CompCheck is large, objects from the same components

are clustered together. However, if all components are clustered together, CompCheck

will also be equal to one. Thus, Wallace (1983) also considered if objects which are

clustered together come from the same components, he defined

ClustCheck =

∑k
i=1

∑`
j=1

(
nij

2

)∑k
i=1

(
ni·
2

) , (5.8)

where ClustCheck ∈ [0, 1]. If ClustCheck is large, objects which belong together are

placed in the same cluster.

For an illustrative purposes, we can use the toy data in Table 5.4b, so

CompCheck = 38/50 = 0.760,

ClustCheck = 38/69 = 0.551,

CC =
√

0.760× 0.551 = 0.647.

By the CC measure, we can see that the similarity between the partitioning done by the

clustering method and the true components is around 65%.

Adjusted Rand index

Rand (1971) proposed the Rand index to measure the agreement between two partitions,

and it is defined as

RI =

(
n
2

)
+
∑

i,j n
2
ij −

1

2

(∑
i n

2
i· +

∑
j n

2
·j

)
(
n
2

) ,

5.3. Cluster validity indices 87

where RI ∈ [0, 1]. However, the expected value of the Rand index varies from one parti-

tion to the other. Thus, Hubert & Arabie (1985) introduced the adjusted Rand index (ARI)

which is the normalized version of the Rand index, and it is defined as

ARI =
RI−E{RI}

max(RI)− E{RI}
.

Hubert & Arabie (1985) assumed that partitioning illustrated in a contingency table (e.g.

Table 5.4a) came from a hypergeometric distribution. Hence, they derived the expectation

of the Rand index as

E{RI} = 1 + 2

[
k∑

i=1

(
ni·

2

)∑̀
j=1

(
n·j
2

)]
/

(
n

2

)2

−

[
k∑

i=1

(
ni·

2

)
+
∑̀
j=1

(
n·j
2

)]
/

(
n

2

)
.

Thus, the simplified definition of the ARI is

ARI =

∑
i,j

(
nij

2

)
−
[∑

i

(
ni·
2

)∑
j

(
n·j
2

)]
/
(
n
2

)
1

2

[∑
i

(
ni·
2

)
+
∑

j

(
n·j
2

)]
−
[∑

i

(
ni·
2

)∑
j

(
n·j
2

)]
/
(
n
2

) , (5.9)

where ARI ∈ [0, 1]. If ARI gets close to one, similarity between true partition and the

partition done by clustering method is high.

The adjusted Rand index for the small data in Table 5.4b can be computed as∑
i,j

(
nij

2

)
=

(
2
2

)
+
(
3
2

)
+ · · ·+

(
3
2

)
+
(
5
2

)
= 38,∑

i

(
ni·
2

)
=

(
5
2

)
+ · · ·+

(
8
2

)
= 69,∑

j

(
n·j
2

)
=

(
5
2

)
+ · · ·+

(
5
2

)
= 50,

ARI =
38− 69× 50/300

1/2× (69 + 50)− 69× 50/300
= 0.552.

For this example, the data are partitioned into four clusters, and the adjusted Rand index

for the partitioning of the data shows 55% similarity with the true classification of the

data.

Purity index

The purity index (Rendón et al., 2011) takes the average purity for each cluster Di from

the same component, Cj , and purity is defined as the maximum number of elements

clustered together. Hence, the purity index is defined as

Purity =
1

n

k∑
i=1

max
j
|Di ∩ Cj|, (5.10)

where Purity ∈ [0, 1]. If Purity is close to one, the similarity between the clustering and

the true component structure is high.

88 Chapter 5. Automatic cluster detection by lifting

The purity index for the contingency table in Table 5.4b is

Purity = 1/25(3 + 5 + 5 + 5) = 0.72.

Hence, the classification done by the clustering method shows 72% similarity with the

true components of the data summarized in Table 5.4b.

Adjusted variation information

The variation information (Meilă, 2007) is an entropy based index which explains the

amount of information lost or achieved in clustering, and it is defined as

VI(C,D) = H(C) + H(D)− 2 I(C,D), (5.11)

where H(C), H(D) and I(C,D) are the entropy of true components, C, the entropy of

clusters, D, and the mutual information between true components and clusters, respec-

tively. The definition of H(C), H(D) and I(C,D) are

H(C) = −
∑`

j=1

n·j
n

log2

(n·j
n

)
,

H(D) = −
∑k

i=1

ni·

n
log2

(ni·

n

)
,

I(C,D) =
∑

i,j

nij

n
log2

(
nij/n

ni·/n× n·j/n

)
.

(5.12)

We can simplify Equation (5.11) using Equation (5.12), so VI can be defined as

VI = −
∑
i,j

nij

n
[log2(nij/ni·) + log2(nij/n·j)] , (5.13)

where VI ≤ log2(n). Meilă (2007) suggested that we can normalize VI by log2(n)

(NVI =
1

log2(n)
VI), but Vinh et al. (2010) proposed that the joint entropy, H(C,D)

is a stricter limit than the log2(n). Thus, in this work, we normalize the VI index by

H(C,D) (NVI =
1

H(C,D)
VI, NVI ∈ [0, 1]). VI is a metric index, so we also need to

apply adjustment procedure after normalization step. Vinh et al. (2010) adjusted the VI

index using the procedure proposed by Hubert & Arabie (1985) (index−E{index}
max(index)−E{index}), so

the adjusted variation information is

AVI =
NVI−E{NVI}
1− E{NVI}

=
I(C,D)− E{I(C,D)}

1

2
[H(C) + H(D)]− E{I(C,D)}

. (5.14)

The expectation of mutual information is derived by Vinh et al. (2009), and it is formu-

lated as

E {I(C,D)} =
∑
i,j

min{ni·,n·j}∑
nij=max{ni·
+n·j−n,0}

nij

n
log

(
nijn

ni·n·j

)
ni·!n·j!(n− ni·)!(n− n·j)!

n!nij!(ni· − nij)!(n·j − nij)!(n− ni· − n·j − nij)!
.

5.3. Cluster validity indices 89

Components, Cj

nij/n C1 C2 C3 C4 C5 ni·/n

C
lu

st
er

s,
D

i D1 0.08 0 0.12 0 0 0.20

D2 0 0 0 0.20 0 0.20

D3 0 0.20 0.08 0 0 0.28

D4 0.12 0 0 0 0.20 0.32

n·j/n 0.20 0.20 0.20 0.20 0.20 1.00

Table 5.5: Tabulated nij/n for the toy data in Table 5.4b.

After applying the adjustment process, we break the metric property of VI, so AVI mea-

sures how much of the true partitioning captured by the partitioning done by a clustering

algorithm.

As an example, VI is calculated for the partition in Table 5.4b. For easy computation,

the values nij/n are tabulated in Table 5.5.

Hence, AVI is

AVI =
I(C,D)− E {I(C,D)}

1

2
[H(C) + H(D)]− E {I(C,D)}

=
1.581− 0.456

1

2
[2.321 + 1.970]− 0.456

= 0.666,

where H(C) = 2.321, H(D) = 1.970, I(C,D) = 1.581 and E {I(C,D)} = 0.456. In

terms of the AVI, true components and the partitioning done by the clustering algorithm

show 66% similarity.

Discussion

In clustering, if there are labelled data, we can check how well the clustering algorithm

performed. In this section, we discuss six of these partition similarity scores in detail.

Fowlkes & Mallows (1983) proposed a score (CC) which combines two different scores

proposed by Wallace (1983): CompCheck measures how well the objects coming from

the same component are clustered together, and ClustCheck measures if the objects clus-

tered together are really coming from the same component. Thus, CC does not give any

penalty if one component is divided into many clusters. However, Hubert & Arabie (1985)

claimed that all partition similarity scores including CC should be corrected by chance,

and they proposed the adjusted Rand index (ARI) which measures the agreement between

two partitions. Another index is Purity (Rendón et al., 2011) which measures the average

of the maximum number of objects clustered together, so Purity does not account the

small size clusters. The final score we discussed is the variation information (VI) (Meilă,

2007). VI is a metric score, and it measures the amount of information lost or gained

by clustering. Then Vinh et al. (2010) proposed the adjusted variation information (AVI)

which allows us to break the metric property and to comment on how much of the true

partitioning is captured by the clustering algorithm. We check the similarity between the

90 Chapter 5. Automatic cluster detection by lifting

partitioning found by a clustering method and the “truth” of the toy data in Table 5.4b

using different external scores. While Purity finds 70% similarity between the clusters

and the “truth”, the similarity found by ARI is around 55%. Thus, the higher similarity

found by Purity might be the result of the allocation by chance. Other scores, CC and

AVI, are around 65%.

5.4 Lifting the results of hierarchical clustering

In previous section, we discussed different cluster validity indices which find the number

of clusters in a data set, and check the similarity between classification done by a cluster-

ing method and the true components. In this section, we propose a new method based on

lifting which finds the location of each cluster on a hierarchically built tree.

5.4.1 Cluster selection by denoising of compactness

Jansen et al. (2009) proposed a method to use lifting on trees; details of their algorithm

are given in Section 3.8.2. Hence, to apply the lifting algorithm on a tree, the neighbour-

hood structure and the lengths of the edges between each node and its neighbours in each

agglomeration step need to be known. We also need a function value for each node. Since

we can easily compute the edge lengths and merged nodes in each agglomeration step of

the hierarchical clustering algorithm, we need to create a meaningful function value for

each node. In some cases, there may be a suitable value available within the context of

the data set. However, we wish to present a more generic methodology, and hence, we

seek a function value which can always be used. One option is a compactness score.

We assume that each node in a tree is a candidate of a cluster, so to be able to calculate

the compactness for each node, the distance between the midpoint of the cluster and each

point in the cluster (each leaf under the node of interest) is calculated. The mean of these

distances is used as a measure of compactness.

Let cluster Di contain ni· observations {xi1 , . . . , xini·
} ∈ Rp, and the centroid of

clusterDi is D̄i = n−1i·
∑ni·

k=1 xik . We then let the Euclidean distance between the centroid

D̄i and observation xik be

δi,ik =
∥∥D̄i − xik

∥∥
2
.

We can then define the compactness γi of cluster Di to be the mean distance of the points

in Di from D̄i, so

γi =
1

ni·

ni·∑
k=1

δi,ik . (5.15)

Let continue the example in Section 5.2. If the first cluster (first agglomeration order)

5.4. Lifting the results of hierarchical clustering 91

includes x1 and x3, the compactness of first cluster, γ1, will be

γ1 =
δ11 + δ13

2
,

where

δ11 =

√(
x1,1 −

x1,1 + x3,1
2

)2

+

(
x1,2 −

x1,2 + x3,2
2

)2

,

δ13 =

√(
x3,1 −

x1,1 + x3,1
2

)2

+

(
x3,2 −

x1,2 + x3,2
2

)2

,

where xi,j is the jth coordinate of ith data point. The second cluster (second agglomera-

tion order) includes the first cluster {x1, x3} and x2, so the compactness of second cluster,

γ2, is

γ2 =
δ21 + δ23 + δ22

3
,

where

δ21 =

√(
x1,1 −

x1,1 + x3,1 + x2,1
3

)2

+

(
x1,2 −

x1,2 + x3,2 + x2,2
3

)2

,

δ23 =

√(
x3,1 −

x1,1 + x3,1 + x2,1
3

)2

+

(
x3,2 −

x1,2 + x3,2 + x2,2
3

)2

,

δ22 =

√(
x2,1 −

x1,1 + x3,1 + x2,1
3

)2

+

(
x2,2 −

x1,2 + x3,2 + x2,2
3

)2

.

Note that in an agglomerative cluster analysis, the clusters are nested, and hence a cluster

Di has sub-clusters contained in it (unless Di is just a single observation).

After calculating the compactness for each cluster, the lifting algorithm described in

Section 3.8.2 can be applied to the tree using the compactness γi as the function value at

node i. In our algorithm, we apply the lifting algorithm using the first order neighbours,

and we create the initial branch lengths using the height of each node found by hierarchical

clustering. After lifting a node in the tree, we remove the lifted node from the tree. We

need to relink the tree, and we do this by linking the neighbours of the removed (lifted)

node using the minimum spanning tree of the remaining nodes. After applying the lifting

algorithm, we denoise the lifted compactness values using one of the wavelet shrinkage

methods described in Section 2.10. In this study, we use the empirical Bayesian wavelet

shrinkage method, where the parameters are estimated using their marginal maximum

likelihood estimators, and the threshold is estimated using the posterior median. Details

of this method is discussed in Section 2.10.3, and it is available in the EbayesThresh
package in R (Silverman, 2012). To apply Bayesian thresholding, we can set artificial

levels using the idea explained in Section 3.6.1. Since Bayesian thresholding has the

normality assumption with σ2 = 1, we can normalize detail coefficients using the variance

term defined in Equation (3.13). After denoising the detail coefficients, if the coefficient

92 Chapter 5. Automatic cluster detection by lifting

Internal node Joined pairs Branch lengths

7 1 2 0.118 0.118

8 4 5 0.401 0.401

9 7 3 0.514 0.632

10 8 6 0.454 0.855

11 10 9 2.298 2.521

Table 5.6: Hierarchical clustering results for the toy data in Table 5.1.

for the root is greater than λ, this means that there is a considerable divergence between

its neighbours. Then we check all the nodes in the tree. If the denoised detail coefficients

for any node and all its child nodes are less than or equal to λ, we assume that one cluster

is located at this node. Thus, we consider any divergence between clusters less than or

equal to λ as noise.

One possible choice for λ is zero, so if any cluster and all its sub-clusters are denoised

to zero, we do not allow any divergence between neighbours; hence, all the objects are

placed in the centroid of the cluster they are allocated to. However, there might be small

departures from the centroid of clusters, and our choice of λ places these objects into

separate clusters. We may end up having high number of clusters just because of forcing

the algorithm to cluster only the ones located in the centroid of each cluster. To avoid this

problem, allowing small departures from the centroid can be logical. Thus, we need to

choose the threshold λ. For now, we shall choose λmanually; we shall consider automatic

choice of λ later in Chapter 6.

Example 5.4.1. The toy data in Table 5.1 is used in this example.

The first step of the algorithm introduced in Section 5.4 is to cluster the data hierar-

chically. In this case, we use Euclidean distances and complete linkage. The process of

building the tree is explained in Section 5.3. As seen in Figure 5.1, we can easily obtain

the information we need to apply the lifting algorithm to this tree because all we need

to know is which pairs are joined and branch lengths at each agglomeration step. These

details are tabulated and given in Table 5.6.

After withdrawing the information we need from hierarchical clustering, we need one

more variable to apply lifting on a tree: the compactness for each cluster (internal node)

which is calculated using Equation (5.15). Here, compactness for the clusters are found

to be γ = (0.059, 0.201, 0.255, 0.339, 1.254), respectively. We can apply lifting algorithm

given in Section 3.8.2 to this tree, then we can denoise the lifted compactness values by

applying the Bayesian wavelet shrinkage method, given in Section 2.10.3. After denoising

the compactness values, the tree is given in Figure 5.3a. Internal nodes are labelled with

denoised detail coefficient for each cluster.

Using the denoised detail coefficients, we can decide where to cut the tree. If any

5.4. Lifting the results of hierarchical clustering 93

4 5 6 1 2 3

H
ei

gh
t

0.883

0

0

0

0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(a)

4 5 6 1 2 3

H
ei

gh
t

0

0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(b)

Figure 5.3: Illustration of the toy data in Table 5.1 with the results of our lifting method.

(a): the labelled dendrogram with the denoised detail coefficients. (b): the clustering

pattern found by our lifting method.

internal node and all its child nodes are denoised to zero or less than zero, we can treat

them as one cluster. Under the light of this information, the tree is cut and illustrated in

Figure 5.3b after cutting the tree. As it is seen, the tree is cut from the exact height of each

cluster, and two clusters are found.

5.4.2 Dealing with outliers

When hierarchical clustering is applied, all objects within the range of the data are clus-

tered, but data can have some outliers. How will we treat these outliers?

When the dendrogram of a data is drawn, any outlier in the data can be detected easily.

Other internal indices (some of them are discussed in Section 5.3.1) find the optimal

number of clusters, and they suggest that we can cut the tree from a certain height which

gives the number of clusters we found. However, they do not point the exact height of

each cluster. Because of that even if they treat any data point as an outlier, they create

separate clusters. However, when we apply the lifting algorithm to find clusters on the

tree, outliers are not clustered at all. Thus, if any objects in a data set are not clustered,

they are treated as outliers.

We report the results of the clustering with the lifting algorithm in two slightly differ-

ent ways.

• In the first version, we create one separate cluster for all outliers. If the algorithm

detects k clusters, we will have one more cluster for outliers, so we have k + 1

clusters in total. We refer to this version as “Lifting”.

• In the second version, we remove outliers. Thus, we have k clusters which is the

94 Chapter 5. Automatic cluster detection by lifting

optimal number of clusters found by the lifting algorithm. We refer to this version

as “Lifting2”.

We create the second version to explore the effect of removing outliers from the data set

to our clustering scheme. We will observe if there is any difference between these two

arrangements in comparison studies done in Sections 5.5 and 5.6.

5.5 Simulation study

In this section, we apply our Lifting algorithm, introduced in Section 5.3.3, to some syn-

thetic data sets, and we compare the performance of our algorithm with other CVIs, given

in Section 5.3.1. For this purpose, four different data structures are created for our simu-

lation study. Two of them are mixtures of normally distributed data with five-component

in two dimensions. One of these two normally distributed data sets has bigger variation in

each component than the other. The third data set is structured as concentric circles with

three-component in two dimensions. The final data set includes six different components

in two dimension, and this data consists of non-normally distributed components. Data

sets generated are given in Table 5.7, and some notations we used to generate these data

structures are

xijk : jth element in kth dimension of ith component of data set x,

xi·k : kth dimension of ith component of data set x,

xij· : jth element of ith component of data set x,

x··k : kth dimension of data set x,

y ∼ N2(02, I2), and yk is the kth dimension of data set y,

z ∼ N(0, 1),

a : the equally spaced sequence from −2 to 8 by 0.05.

After generating data structures, we standardize each data set (x··k = x··k−mean(x··k)
sd(x··k)

,

where k ∈ {1, 2}), and scatter plots of these simulated data sets are given in Figure 5.4.

In our simulation study, we use hierarchical clustering with single linkage, and the number

of the replicate data sets per data structure is set at 1000. We summarize the results by

comparing the clustering results which are produced by different CVIs and our Lifting

algorithm. In addition, the partition done by the CVIs and our Lifting algorithm are

compared in terms of external cluster validity scores, given in Section 5.3.3.

We use the NbClust package (Charrad et al., 2014) in R for the CH index, H index

and KL index, and Sil statistic, so we need to carefully decide the upper boundary for

the number of clusters since this choice has a considerable effect on results. We set the

maximum number of clusters as 50, but we define the upper boundary for the Gap statistic

lower (15) because the bootstrapping step in the Gap statistic increases the time cost of the

5.5. Simulation study 95

First data set Second data set Third data set Fourth data set

Σ = diag(0.3, 0.3) Σ = diag(0.6, 0.6) Σ = diag(0.005, 2)

x1 ∼ N2(02,Σ) x1 =
y√∑2
j=1 y

2
j

x1·1 = z,

x2 ∼ N2((4,−6),Σ) x2 = 2
y√∑2
j=1 y

2
j

x1·2 = z2 +N(0, 0.2)

x3 ∼ N2((4, 0),Σ) x3 ∼ N2(02,Σ) x2·1 = z − 3,

x4 ∼ N2((0,−6),Σ) x2·2 = 12− (z2 +N(0, 0.2))

x5 ∼ N2((2,−3),Σ) x3·1 = z − 6.5,

x3·2 = z3 +N(0, 0.3)− 10

x4·1 = z − 5.5,

x4·2 = z3 +N(0, 0.3)− 15

x5 ∼ N2((1,−10), I2)

x6.1 = a,

x6.2 = sin(a) +N(0, 0.3)− 20.

Table 5.7: The formula used to generate simulated data structures.

●
●

●

● ●
●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●
●

●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●
●●

● ●

●

●●

●
● ●

●

●

●

●
●

●●
●

●●

●

●
●●
●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●
●

●
●

●
●●●

●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●
●●

●
●

● ●
●

●

●

●● ●
●●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●
●

●●●
●

●●

●

● ●

●
●

●●● ●
●

●●

●

●

●
● ●

●

●

● ●●

●

●
● ●● ●

●

●

●

●
●

●●

●

●

●
●

●
●●

●●
● ●

●

● ●

●
● ●

●

●
●

● ●● ●●

●
●

●● ● ●
●

●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●●

●

●
●● ● ●

●

●●
●

●
●●

● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●
●●

● ●

●

●
●●●

●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●
●

●
●

●●

●

● ●
●

●

●
●

●

●●

●
●
●

● ●
●● ●

●● ●
●

●
●

●
●

●
●

●●
●

● ●
●● ●

●
●●
●

●
●

●

●

●●

●

●

●
●

●

●
●
●

●● ●
●

●

●

●
●
●●

●
● ●

●

●●
●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●
●

● ●●
●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●●

●

●● ●

●

●
●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●
●

●●● ●● ●

●● ●

●

●
●

●
● ●

●

●

●

●
●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●●●

●
●

●
●

● ●●●
● ●
●

●
●
●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●
●

●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●
●

●
●●

●
●

● ●

●
●

●
●●● ●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●● ●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●
●

●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●

●●

●
●

●

●
●

●

● ●
●

●
● ●

●

●

●● ●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●
●

●

● ●
●
●●

●
●● ●

●●

●
●

●
●

●

●

●

●● ●
●●

●

●

●

● ●

●

●
●

●
● ●

●
●

●

●●

●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●
● ●

●

●

● ●●

●

●
● ●● ●

●

●

●

●
●

●●

●

●

●

●

●
●●

●●
● ●

●

● ●

●
● ●

●

●

●
● ●● ●
●

●
●

●● ● ●
●

●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●
●

● ● ●

●

●●

●
●

●●
● ●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
●●

● ●

●

●
●

●●
●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●
●

●

●
●

●

●
●

●

●
●

●
●

●● ●

●● ●
●

●
●

●
●

●
●

●●
●

● ●
●●

●
●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

● ●

●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●
●

●

●●
●●

●

●● ●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●● ●● ●

●● ●

●

●
●

●

● ●

●

●

●

●
●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

● ●●●
● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

● ●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●●
●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●● ●

●

●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

● ●●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

● ●

●

●

●

●

●●
●

●●●●
●

●●●
●
●

●
●

●●●●
●●●
●

● ●● ●
●●●●●●●●●●●
●
●●

●
●● ●●●● ●

●●
●
●●●●
●
●
●

●
●

● ●●●● ●●
●●

●
●●●●●●
●
●●●●●●
●●

●
●●●●●●●●●●● ●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●
●●●

●

●
●
●●●●●●

●●
●

●●
●

●●
●
●

● ●●●
●●●

●●
●
● ●●●●●●●●● ●●

●
●
●●

●

●
●●●

●
●●●●
●●

●
●

●

●

●●●●
●

●●

−2 −1 0 1 2

−
2

−
1

0
1

2

●●
● ●●●●

●

●●● ●● ●● ●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●●● ●
●● ●●●●● ●● ●●●●

●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●● ●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●● ●●●●
●

●●● ●●
●

● ●
●

● ●●●● ●●●●
●

●●●●● ●●●
●

●●●
● ●● ●●
● ●

●●●
●

●●●●●● ●
●

●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●
●

●
● ●

●
●●●

●
●● ●

●
●

●● ●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

● ●●●● ●●
●●●● ●●●● ●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●● ●●
●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●

●

● ●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●● ●●●●●
●

●●●●● ●

●

● ●●● ●●● ●●

●

●

●

●●●●●● ●●●●●●

●

●

●

●

●●

●

●
●

●● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●● ●●●
●

●●●●●●●● ●●●●

●● ●
●

●●
●

●

●

●

●
●●

● ●●●●
●

●
●

● ●●
●

●● ●
●●

●
●

●

●

●●●

●

●

●

●●●● ●●●
●

●
●● ●● ● ●●●●● ●●●●● ●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ● ●● ●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●
●

●●●
●

●
●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●● ● ●

●
●●● ● ●●●

●

●
● ●●

●
● ● ●●

● ● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●● ●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●●
●●●●●●● ●●●

●
● ●●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●●
●● ●●

● ●
●● ●●● ●●● ●●●● ●●

●
●●

●●
●

● ●● ●●
●

●●● ●● ● ●● ●●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●● ●●● ●●●●

● ●●
●

●●●
●●●

●
●●● ●●● ●

● ●● ●●●● ●●
●● ●● ●●● ●●●●
●
●●● ●●● ● ●● ●● ●●●●●●

●
●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ● ●●● ●●●

●
● ●

●●● ●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●● ● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●●
● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−
4

−
2

0
2

Figure 5.4: Scatter plots of four simulated data sets from different data structures.

Top left: five-component normally distributed data set with small variation. Top-right:

five-component normally distributed data set with larger variation. Bottom-left: three-

component concentric circle data set. Bottom-right: six-component non-normally dis-

tributed data set.

study. Another arrangement for the Gap statistic is the choice of reference data sets. We

pick the simplest way proposed by Tibshirani et al. (2001): they are generated uniformly

96 Chapter 5. Automatic cluster detection by lifting

over the range of the data, and the number of reference data sets is set at 10. Even though

the Gap statistic is available in NbClust package, we use the Gap statistic implemented in

clusterGenomics package (Nilsen & Lingjaerde, 2013) in R which allows us to choose

which method we use to generate reference data sets.

5.5.1 Five-component normally distributed data with low variance

The first simulation is the five-component normally distributed data with small variation.

In this case, the size of the each component is 200, and threshold, λ is set at 0.2. Fig-

ure 5.5 illustrates the simulation results for this data. The Gap statistic shows the poorest

performance for this data structure, and the partition found by this index varies in a large

range. However, variation of the partitions found by Mclust, the CH index and the KL

index are almost zero, and the similarity measures (external validity scores) demonstrate

that the performance of these methods are high. Other methods also capture the parti-

tions with high performance, but there are some variations. For our Lifting method, the

reason of the small variation is using the same constant threshold for each run. Lifting2

illustrates that removing the outlier cluster does not make any clear change.

The number of clusters we found for each CVI is illustrated with a bar chart given in

Figure 5.6. The maximum number of clusters found by our Lifting method is taken as an

upper boundary. The vertical axis shows the percentage of replicates. The Gap statistic

generally finds the number of clusters less than the true component number, and Mclust

always partitions the data into five clusters. However, other methods generally find the

number of clusters in the range [6, 10]. Lifting also mostly partitions the data set in the

range [6, 10] clusters, but when we remove the outlier cluster, Lifting2 finds the number

of clusters either five (by around 40% of the replicates) or in the range [6, 10] (by around

40% of the replicates).

Table 5.8 tabulates the average number of clusters and average similarity measures

which help to easily compare the performance of the indices. This tabulated results clearly

shows that while the performance of the Gap statistic is much lower than the other indices,

the highest similarity measures are found by Mclust. Mclust is a parametric method which

assumes normally distributed data, so this result was expected because all the components

are normally distributed in this data set. Our Lifting method also captures clusters with

high performance. In Lifting, the average number of clusters is found as eight where one

of the clusters includes just outliers. When we remove the outlier cluster, the performance

of the Lifting2 method slightly increases.

Finally, scatter plots are drawn for each CVI using just one replicate. This illustration

gives an idea about what kind of partitioning is done by different CVIs. This compari-

son is demonstrated in Figure 5.7 which illustrates that all the methods capture the main

5.5. Simulation study 97

●●●

●●

●

●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●●●●

●

●

●●●

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●

●

●●

●

●●

●●

●●●●

●

●●●●●●●

●

●

●●●

●

●●●●●

●

●

●

●●●●●

●●

●●

●

●

●●●●●

●

●●●●●

●

●

●●

●

●

●●

●

●●

●

●●●●●●●

●

●

●

●

●●
P

u
ri

ty

Mclust CH H KL Sil Gap Lifting Lifting2

0.2
0.4
0.6
0.8
1.0

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●

●

●●●●●●●●

●●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●

●●●●

●●

●●●●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●
●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●●●●●●●

●●

●●●

●

●

●●●

●

●

●

●●●

●

●●●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●●●●
●●●
●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●
●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●●
●●●●
●●●
●
●●●●

●

●●
●
●●●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●●●●●●●●●●
●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●
●●●
●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●●
●●●●

●

●

●●

●●

●●●●●●
●●●
●
●●●●

●

●●
●●●
●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●●

●●

●

●●

●

●●●
●
●●●●●●●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●●●●●●●●●

●●

●●●●●●●●●● ●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●
●●●

●●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●●

●

●

●●

●

●

●

●●●

●●

●●●

●

●

●●●

●

●

●

●●●

●

●●●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●
●
●●●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●
●●
●

●

●●●●●●

●

●●●

●

●●

●

●●●
●

●

●

●

●●●●●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●
●●
●

A
V

I

0.0
0.2
0.4
0.6
0.8
1.0

●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●

●

●●●●

●
●
●
●●
●●●
●
●●

●

●
●
●
●●

●
●
●●

●●
●

●

●

●
●

●

●

●
●●●●
●

●

●●

●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●
●

●●●
●
●
●

●

●
●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●
●

●●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●
●

●

●

●
●●●●●●
●

●

●

●
●●●

●
●●
●

●

●
●
●●
●

●

●

●●●
●●●

●

●
●
●●
●
●

●

●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●
●
●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●
●
●

●

●

●

●●
●

●

●
●

●
●●

●

●
●

●

●●
●
●

●●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●
●

●

●

●●

●

●●

●
●
●●

●

●

●

●●

●

●●
●

●

●
●
●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●●

●

●
●

●
●

●
●

●
●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●●

C
o

m
p

C
h

e
c
k

0.85

0.90

0.95

1.00

●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●●

●

●●

●

●●●

●

●

●●●

●

●

●●●●●●●

●

●

●

●●

●

●●●●●

●

●●●●●●●●●●

●

●

●●

●

●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●
●

●

●●

●

●

●

●●●

●

●●●●●●●●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●
●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●
●

●

●●

●

●

●

●●●

●

●●●●●●●●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●
●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

C
lu

s
tC

h
e

c
k

0.2

0.4

0.6

0.8

1.0

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●

●

●●●●●●●●

●●

●●●●●●●●●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●

●●●●

●●

●●●●●

●

●

●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●●●

●●

●

●

●●●

●●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●●

●

●

●●

●

●

●

●
●●●
●

●●

●●●

●

●

●●●

●

●

●

●●●

●

●●●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●
●
●
●
●●
●
●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●
●

●●

●●

●
●●●●●
●

●

●●
●
●●●●

●

●

●

●

●

●

●●●●●●
●●●●

●

●

●

●

●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●
●
●●●●
●●●

●

●●●●

●

●●
●
●●●

●

●●
●
●●●●
●

●

●

●

●●

●

●

●

●●●●
●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●
●
●
●
●●
●
●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●

●

●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●
●

●●

●●

●
●●●●●
●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●
●
●●●●
●●●

●

●●●●

●

●●
●
●●●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●
●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

C
C

0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.5: Box plot: the comparison of CVIs for the five-component normally distributed

data with low variance.

clusters except the Sil and the Gap statistics. The Gap statistic does not partition the data,

and it finds one big cluster. We have noticed that the Gap statistic is tended to find a big

cluster, and it also finds a quite different partitioning when the reference data set changes.

The same study is repeated by clustering the data set using complete linkage, and we

observe that the performance of the CVIs slightly increases except the KL index. Even

98 Chapter 5. Automatic cluster detection by lifting

Index Mclust CH H KL Sil Gap Lifting Lifting2

N 5 9 9 14 7 3 8 7

Purity 0.999 0.985 0.845 0.951 0.881 0.506 0.937 0.759

ARI 0.998 0.976 0.815 0.921 0.853 0.373 0.916 0.921

AVI 0.993 0.961 0.837 0.899 0.870 0.519 0.946 0.954

CompCheck 0.998 0.987 0.988 0.975 0.993 1.000 0.979 0.988

ClustCheck 0.998 0.978 0.778 0.943 0.837 0.430 0.914 0.914

CC 0.998 0.982 0.871 0.950 0.903 0.633 0.942 0.946

Table 5.8: The comparison of CVIs for the five-component normally distributed data with

low variance. First row is for the average number of clusters, and others are for the

average similarity scores.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−4
5
6−10

11−15
16−20
21+

M
clu

st
CH H KL Sil

Gap
Lif

tin
g

Lif
tin

g2
0

20

40

60

80

100

Figure 5.6: Bar chart: the comparison of number of clusters for the five-component nor-

mally distributed data with low variance. Legends illustrate the number of cluster range.

Vertical axis shows the percentage of replicates, and the horizontal axis is for the different

CVIs.

though the performance of our Lifting method slightly decreases, it still captures the high

percentage of the true components. We also repeat the study by picking a different upper

boundary for the number of clusters for the CH index, H index, KL index, and Sil statistic.

The performance of these indices slightly decreases, and we provide the comparison of

the tabulated results in Appendix A.

5.5. Simulation study 99

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Mclust

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

CH

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

H

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

KL

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●
●

●
●

● ●●●
● ●
●

●
●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●
●

●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●
●●● ●

●

●

●

●

●●
●
●●

●

●●
●●

●

●

● ●

●● ●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Sil

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
●●● ●

●
●

●

●

●
●●●

●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●
●●

●
●

●
●

●

●

●

●● ●
●●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●
●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●
● ●

●

●

●●●

●

●
● ●● ●

●

●

●

●
●

●●

●

●

●
●

●
●●

●●
● ●

●

● ●

●
● ●

●

●

●
● ●● ●●

●
●

●● ● ●
●

●

●

●
●

●●

● ●
●●

●●
●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●●

●

●
●● ● ●

●

●●

●
●

●●
● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●
●●

● ●

●

●
●

●●
●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

● ●
●

●

●
●

●

●
●

●

●
●

● ●
●● ●

●● ●
●

●
●

●
●

●
●

●●
●

● ●
●● ●

●
●●
●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●●

●

● ●

●

●●
●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●
●

● ●●
●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●● ●● ●

●● ●

●

●
●

●
● ●

●

●

●

●
●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●
●

●
●

● ●●●
● ●
●

●
●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●
●

●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●
●●● ●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●● ●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Gap

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting2

Figure 5.7: A single realisation of the five-component normally distributed data with low

variance. Scatter plots illustrate the clustering solution chosen by various methods.

100 Chapter 5. Automatic cluster detection by lifting

5.5.2 Five-component normally distributed data with larger varia-

tion

Our second data structure is the five-component normally distributed data set with larger

variation. The size of the each component is 200 in this data set, and the threshold is cho-

sen as 0.3. Simulation results for this data structure are summarized in Figure 5.8. Vari-

ation of the partitions found by Mclust is almost zero again, and the similarity measures

demonstrate that the performance of Mclust is high. Our Lifting method also partitions the

data successfully, but high variation is observed. The Sil and Gap statistics fail to cluster

this data set since the external scores for these indices are around zero. The performance

of other indices are close to zero, but the average scores for the Lifting is slightly higher

than others. In addition, Lifting2 illustrates that removing the outlier cluster increases the

similarity measures slightly.

Bar charts illustrating the number of clusters found by CVIs for this data structure are

given in Figure 5.9. Mclust always partitions the data into five clusters. The Sil statistic

generally finds the number of clusters to be less than five, and the Gap statistic always

partitions the data less than five clusters. The variation of the number of clusters in other

methods is high. We can check the average number of clusters and average similarity

measures from Table 5.9. Mclust gives the highest similarity measures, and our Lifting

method and the CH index follow Mclust. High performance of Mclust was also expected

for this data structure since all the components come from normal distributions. The Gap

statistic repeats its behaviour seen in the previous data structure, and it fails to partition

the data. We can also check the scatter plot (Figure 5.10) for one replicate of the simulated

data to have an idea what kind of partitions are done by different CVIs. Mclust and our

Lifting methods capture the main five clusters, and other methods either combine two or

three main components together or just find one main cluster.

We also repeat this study after applying the complete linkage in clustering stage. We

notice that the performance of the CH index, H index and Sil statistic dramatically in-

creases. There is almost no difference on the performance of our Lifting method. We

also set the upper boundary for the number of clusters as 15, and we notice that the per-

formance of the CH index, H index, KL index and the Sil index is around zero, so this

proves the importance of the boundary choice us. The related tables for these extra set-

tings are given in Appendix A.

5.5. Simulation study 101

●●

●●●●●
●●●●●●

●●●●●●●●
●●●●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

P
u

ri
ty

Mclust CH H KL Sil Gap Lifting Lifting2

0.2
0.4
0.6
0.8
1.0

●●

●●●●●●●●●●● ●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●

●

●●●●●●●●●●● ●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●●
●●

●

●●●
●
●●●●●●
●
●●●●●

●

●●●●●●

●

●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●● ●●
●●

●

●●●
●
●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●●

A
V

I

0.0

0.2

0.4

0.6

0.8

●●

●

●

●
●

●●

●
●●
●●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●
●

●
●

●
●
●

●

●
●

●
●

●●

●

●
●
●

●

●

●

●

●

●●
●

C
o

m
p

C
h

e
c
k

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

C
lu

s
tC

h
e

c
k

0.2

0.4

0.6

0.8

1.0

●●

●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

C
C

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.8: Box plot: the comparison of CVIs for the five-component normally distributed

data with larger variation.

102 Chapter 5. Automatic cluster detection by lifting

Index Mclust CH H KL Sil Gap Lifting Lifting2

N 5 38 37 39 2 1 19 18

Purity 0.981 0.724 0.595 0.712 0.205 0.200 0.750 0.627

ARI 0.953 0.588 0.424 0.573 0.005 0.000 0.629 0.646

AVI 0.879 0.544 0.418 0.533 0.004 0.001 0.690 0.719

CompCheck 0.962 0.876 0.883 0.874 0.997 1.000 0.856 0.891

ClustCheck 0.962 0.612 0.470 0.595 0.203 0.199 0.678 0.679

CC 0.962 0.718 0.628 0.708 0.448 0.447 0.744 0.760

Table 5.9: The comparison of CVIs for the five-component normally distributed data with

larger variation. First row is for the average number of clusters, and others are for the

average similarity scores.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−4
5
6−10
11−15
16−20

21−25
26−30
31−35
36+

M
clu

st
CH H KL Sil

Gap
Lif

tin
g

Lif
tin

g2
0

20

40

60

80

100

Figure 5.9: Bar chart: the comparison of number of clusters for the five-component nor-

mally distributed data with larger variation. Legends illustrate the number of cluster

range. Vertical axis shows the percentage of replicates, and the horizontal axis is for the

different CVIs.

5.5. Simulation study 103

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Mclust

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●●

●

●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●●

!

"

#

$
%

&
'

●
●

●
●

●

●●

−2 −1 0 1 2

−2

−1

0

1

CH

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●
●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●●

●

●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
●

●

●

●

●

● ●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

!

"#

●
●

$ %

&'

●
●

●

●●

●

−2 −1 0 1 2

−2

−1

0

1

H

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●●

●

●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●●

!

"

#

$
%

&
'

●
●

●
●

●

●●

−2 −1 0 1 2

−2

−1

0

1

KL

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●

●●

●
●

●
●

●

●

●● ●
●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●

●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●

● ●

●

●

● ●●

●

●
● ●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●●
●●
● ●

●

● ●

●
● ●

●

●

●
● ●

● ●
●

●
●

●
● ● ●

●
●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●● ●

●
● ●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

● ●●●
● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●
●

●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Sil

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●

●●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●

●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●

● ●

●

●

● ●●

●

●
● ●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●●
●●
● ●

●

● ●

●
● ●

●

●

●
● ●

● ●
●

●
●

●
● ● ●

●
●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●● ●

●
● ●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

● ●●●
● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●
●

●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Gap

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●

●

●

●

● !●

●

"

●

#

$
%&

'
●

●
●

●

●●
●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting2

Figure 5.10: A single realisation of the five-component normally distributed data with

larger variation. Scatter plots illustrate the clustering solution chosen by various meth-

ods.

104 Chapter 5. Automatic cluster detection by lifting

5.5.3 Three-component concentric circle data

Our third data structure is the three-component concentric circle data. The size of the

component in the middle is 500, and the size of the other two components are 200. The

threshold parameter is set at 0.78. Box plot comparison for this data structure in Fig-

ure 5.11 illustrates that variation of the partitions found by Mclust is low. However, the

similarity measures demonstrate that the performance of Mclust is not good for this data

structure because Mclust’s assumption of normally-distributed data is grossly violated in

this case. Thus, Mclust could not capture the clusters well for this data. The variation of

the number of clusters is higher for our Lifting method, but the similarity measures are

higher than the Mclust. For this data structure, the CH index, H index, KL index, Gap

statistic and Sil statistic do better partitioning with high similarity measures. The number

of replicates where our Lifting method finds outliers are low, so the Lifting and Lifting2

results are mostly the same.

Bar charts representing the number of partitions are shown in Figure 5.12. Mclust

always partitions the data into the range [7, 9] clusters, and the Sil statistic generally finds

the number of clusters to be less than the true number of components, three. The number

of clusters found by other methods varies. Over 40% of the replicates, the CH and H

indices find the number of clusters in the range [4, 6] while the Gap statistic clusters over

70% of the replicates in this range. The KL index most commonly partitions the data into

three clusters (40% of the replicates). We can check the average number of clusters and

average similarity measures from Table 5.10. The average number of clusters found by

the Sil statistic is three, and it shows the lowest performance within the CVIs to capture

the true components in terms of all similarity scores. The highest similarity measure is

generally calculated for the H index while the lowest one is calculated for Mclust. The

average similarity measures for the CH index, Gap statistic and KL index are always

high (e.g. ARI is above 90%). The average similarity measure for our Lifting method

is lower than other CVIs. To see what kind of partition these methods do, we can check

scatter plots for each method for just one replicate, given in Figure 5.13. Mclust finds

high number of clusters, and it also combines the right part of the middle and outer circle

components. This explains its poor classification for this data structure. Since the middle

and outer circle components do not come from a normal distribution, Mclust presents

a low performance. We can also have an idea why other CVIs perform better than the

Lifting. As it is seen from Figure 5.13 which illustrates the partitioning for a single

realisation of the concentric circles data structure, the Lifting finds fewer or equal number

of clusters than the CH, H and KL indices and the Gap statistic, where the CH index, H

index and Gap statistic do the same partitioning for this replicate. These indices divide just

one true component into many clusters, but our Lifting method divides both the middle

5.5. Simulation study 105

●●

●

●●
●
●

●

●

●●

●●

●●

●●
●
●

●

●●●

●●

●●

●●●●

●●

●

●●

●

●●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●●●

●●

●

●●●●●

●●●

●

●●

●
●
●
●

●●

●
●●
●

●

●●●

●
●

●●●●●●●●●●●●●●●●

●

●

P
u

ri
ty

Mclust CH H KL Sil Gap Lifting Lifting2

0.5
0.6
0.7
0.8
0.9
1.0

●●●
●
●●

●

●●

●

●●
●
●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●
●
●
●
●
●●●
●●●

●●●●●●●●●●

●
●●
●
●

●

●●●●

●

●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●●●

●

●
●●●
●
●

●
●
●●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●●
●●●●●●
●●●

●

●
●
●

●

●●●

●

●●●

●

●●●●

●●

●
●

●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●●

●
●
●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●●●
●

●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●●

●● ●●

●
●

●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●●

●
●
●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●●●
●

●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●●

●●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●●●●●●●●●●●●●●● ●●●●●
●
●●●●
●●●●
●

●
●●●●●
● ●●●●●●●●●●●

●●
●
●
●

●

●

●● ●●

A
V

I

0.0
0.2
0.4
0.6
0.8
1.0

●

●●●

●●

●●

●●●

●

●●●●●●●●●●

●
●●

●

●

●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●●●

●

●

●●●
●
●

●

●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●●●●
●●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●

●
●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●

●

●●

●

●

●●
●
●●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●
●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●

●

●
●

●
●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●●
●

●

●

●

●●

●

●

●●
●
●●●

●

●
●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●●

●●

●●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

C
o

m
p

C
h

e
c
k

0.4

0.6

0.8

1.0

●
●●
●●●●

●

●
●●●
●
●●
●
●
●●
●
●●

●●●
●●●●

●

●●●
●●●●●●●●●●●●●●●●

●

●

C
lu

s
tC

h
e

c
k

0.4
0.5
0.6
0.7
0.8
0.9
1.0

●●●●●
●
●
●

●

●●

●

●●
●
●●●●

●

●●●
●

●

●

●

●●●●●●

●

●●●●
●

●

●
●●
●
●●
●
●
●
●
●●

●●

●●
●
●
●
●
●●
●
●●●

●●

●●●●●●●●●●

●
●●
●
●

●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●●●

●

●
●●●
●
●

●
●
●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●
●●●●●
●●
●
●

●

●
●

●

●

●●●

●

●●●

●

●●●●

●

●

●

●
●
●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●
●

●●●●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●

●
●
●
●
●

●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●

●●●
●

●

●

●

●●

●
●

●

●●●●

●
●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●●

●
●

●●

●

●●

●

●●

●●●●●●

●

●

●
●

●●●●●

●
●

●

●●

●

●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●
●

●●●●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●
●

●

●●●●

●
●
●
●
●

●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●

●●●
●

●

●

●

●●

●
●

●

●●●●

●
●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●●

●
●

●●

●

●●

●

●●

●●●●●●

●

●

●
●

●●●●●

●
●

●

●●

●

●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●

●

●

●

●●

●

●

C
C

0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.11: Box plot: the comparison of CVIs for the three-component concentric circle

data.

and outer circle components into two separate clusters. Thus, capturing two components

increases the performance of other indices. In addition, the Sil statistic finds two clusters

by combining two components into one cluster, so not dividing any component into many

small clusters increases its performance to capture the true components when we compare

with our Lifting methods.

106 Chapter 5. Automatic cluster detection by lifting

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−2
3
4−6

7−9
10+

M
clu

st
CH H KL Sil

Gap
Lif

tin
g

Lif
tin

g2
0

20

40

60

80

100

Figure 5.12: Bar chart: the comparison of number of clusters for the three-component

concentric circle data. Legends illustrate the number of cluster range. Vertical axis shows

the percentage of replicates, and the horizontal axis is for the different CVIs.

Index Mclust CH H KL Sil Gap Lifting Lifting2

N 9 7 6 8 3 5 4 4

Purity 0.894 1.000 1.000 1.000 0.781 0.999 0.797 0.789

ARI 0.280 0.926 0.959 0.947 0.533 0.943 0.458 0.458

AVI 0.366 0.763 0.882 0.846 0.530 0.903 0.543 0.543

CompCheck 0.293 0.913 0.952 0.939 0.992 0.935 0.888 0.888

ClustCheck 0.832 1.000 1.000 1.000 0.628 0.999 0.684 0.684

CC 0.494 0.956 0.975 0.968 0.788 0.966 0.758 0.758

Table 5.10: The comparison of CVIs for the three-component concentric circle data. First

row is for the average number of clusters, and others are for the average similarity scores.

We have also tried a low choice of upper boundary for the number of clusters for

the CH index, H index, KL index and Sil statistic, but for this data structure, the perfor-

mance of indices do not show much difference. The results are tabulated and given in

Appendix A.

5.5. Simulation study 107

●

●
●

●

●

●

●
●

●●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

Mclust

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

CH

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

H

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

KL

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●
●

●●●●
●

●●●
●
●
●

●
●●●●
●●●
●

●
●● ●

●●●●●●●●●●●
●
●●

●
●●●●●●●

●●
●
●●●●
●
●
●

●
●

●●
●●● ●●
●●

●
●●
●●●●
●
●●●●●●
●●

●
●●●●●●●●●
●● ●●●●●●●●●●●●●

●
●
●●●●●●●

●●
●●●●●●●
●●●

●

●
●
●
●
●●●●
●●

●
●●

●
●●
●
●

● ●●●
●●●

●●

●
● ●●●●●●
●●● ●●

●
●
●●

●

●
●●●

●
●●●●
●●

●
●

●

●

●●●●
●

●●

−2 −1 0 1 2

−2

−1

0

1

2

Sil

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

Gap

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●● ●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

Lifting

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●● ●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

Lifting2

Figure 5.13: A single realisation of the three-component concentric circle data. Scatter

plots illustrate the clustering solution chosen by various methods.

108 Chapter 5. Automatic cluster detection by lifting

5.5.4 Six-component non-normally distributed data

Our final data structure is the six-component non-normally distributed data. In this data

structure, there are five non-normal components with size 200, and one normally dis-

tributed data component with size 500 which is the one having the elliptic shape. The

threshold parameter is set at 0.145, and box plot comparison of simulation results are

summarized in Figure 5.14. When different CVIs are compared for this data structure, it

is obviously seen that the Gap statistic fails to partition the data (e.g. AVI ≈ 0.1). The

performance of the H index, KL index and Sil statistic are lower than others, and the sim-

ilarity scores for the Sil statistic change in wide range. The similarity measures for other

methods are high, but the highest similarity measures are calculated for the CH index,

then our Lifting method follows it. When the outlier cluster is removed, the performance

of our Lifting method slightly increases.

Bar charts, given in Figure 5.15, demonstrate that the Gap statistic mostly finds the

number of clusters to be fewer than the true component number in almost all the repli-

cates. Mclust always finds the number of clusters to be in the range [7, 11], and the number

of clusters found by other indices except the Sil statistic and our Lifting methods are also

mostly in this range. The average number of partitions and similarity measures can be

seen in Table 5.11. It is obvious that the Gap statistic fails because the average number

of clusters is two, and the average similarity measures are low (e.g. ARI ≈ 0.1). If we

compare the CVIs in terms of the different similarity measures, the highest similarity mea-

sures are seen in the CH index, then the Lifting2 method follows the CH index. Results

for our Lifting method are also close to those of the Lifting2. Scatter plot comparison

for one replicate is also checked for this data structure to see what kind of partitioning is

done by each CVI, and given in Figure 5.16. From this comparison study, the Sil statistic,

KL index and Gap statistic show the poorest performance by clustering all components

in one cluster, and this explains why the similarity measures for the KL index are slightly

lower than others. We also have an idea why the performance of the H index is lower in

the simulation study. The H index combines the closer components in one cluster, so it

fails to capture true components if they are close to each other. The scatter plot for Mclust

indicates that Mclust behaves differently in tails of the four components located on the

left and top of the plot. Finally, these plots show why similarity measures for our Lifting

methods are found slightly lower than the CH index. Our Lifting methods divide one of

the components in two sub-clusters while the CH index captures this component in one

cluster.

For this data structure, different upper boundary choice (set at 15) does not have a con-

siderable effect on the performance of the CH index, H index, KL index and Sil statistic,

and Appendix A includes the tabulated similarity scores for different CVIs.

5.5. Simulation study 109

●

●

●

●

●
●●

●

●

●

●●●

●●

●

●●

●●

●

●●●●

●

●●

●

●●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●●●●

●●●

●

●

●●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●●●

●●

●

●●

●

●

●●

●

●●●

●●

●

●

●●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●

●●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●●●

●

●

●

●

●

●●

●●

●

●●

●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●

● ●

●

●

●●

●●●●●●●●●●

●●

●●●

●

●

●

●●●

●

●

●●●

●●

●

●●●●

●●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●●●●

●

●●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●●●

●●

●

●●●

●●

●

●

●●●●●●

●●

●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●●

P
u

ri
ty

Mclust CH H KL Sil Gap Lifting Lifting2

0.4
0.5
0.6
0.7
0.8
0.9
1.0

●●●
●
●
●●
●
●

●

●

●

●

●

●●

●●
●
●

●

●●●●
●

●

●

●●●

●

●

●●
●

●

●

●
●
●
●●●
●●●●
●

●

●●●●
●

●

●

●●

●

●

●

●

●
●

●

●●●
●●

●

●

●

●

●

●●

●
●

●

●●●
●

●

●●
●●

●

●●

●

●

●

●●●●

●

●

●

●●

●●●●

●●

●

●●●●●●●●●

●●

●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●●

●●

●●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●●●●●●●●

●

●●●●●

●●

●●●

●

●●●●

●

●●●

●

●
●

●●

●

●●●●

●

●●

●

●●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●●
●●●
●●
●●●
●●●●●
●

●

●
●●●

●

●●●●●
●
●●●●

●

●
●
●

●
●

●

●
●
●●●
●
●●●●
●●●
●
●●
●
●●
●●

●

●●
●●
●

●

●
●
●●
●●●

●
●
●●
●
●●●
●

●

●
●
●

●●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●

●●●●
●

●

●●●
●●

●

●●●

●●

●

●

●●●●●
●

●

●
●
●●

●

●

●

●

●

●●●
●

●
●

●●●

●

●
●●●

●●

●

●
●

●●●

●

●

●

●●

●●●●

●●

●

●●●●●●●●●

●●

●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●●

●●

●●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●●●●●●●●

●

●●●●●

●●

●●●

●

●●●●

●

●●●

●

●
●

●●

●

●●●●

●

●●

●

●●

●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●●●
●●
●
●●●●

●
●●
●

●
●●●●●
●
●
●●
●
● ●

●
●●●
●●●●
●●●●●

●

●●

●

●●●●●
●●●
●
●
●
●●

A
V

I

0.0
0.2
0.4
0.6
0.8
1.0

●
●●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●
●

●

●●●

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●●

●●

●

●
●

●●

●

●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●

●●

●

●

●

●

●

●

●
●

●●

●
●
●
●●
●

●

●
●

●

●

●

●●●

●●
●

●

●

●
●
●
●●

●
●

●
●
●

●
●
●

●

●
●

●
●

●

●
●●

●
●

●

●●
●

●

●

●

●●

●

●

●

●●

●●●●

●

●

●●
●●
●●

●

●

●●

●

●

●

●
●●
●

●

●

●
●

●●

●
●

●

●

●
●

●
●●

●
●

●

●

●

●
●
●
●●●●

●
●

●●

●

●

●
●
●

●

●

●

●

●●

●
●
●●●
●

●

●
●

●

●

●●

●
●

●

●●●

●
●

●

●
●●●
●●
●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●
●

●

●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●

●

●
●

●

●
●
●

●

●
●
● ●

●

●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

C
o

m
p

C
h

e
c
k

0.6

0.7

0.8

0.9

1.0

●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●●●●

●●

●●●●●

●

●●●●●●●●●●●●●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●

●●

●

●●

●●

●●

●

●●●●●

●

●

●●●

●●

●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●●●

●●

●

●●

●

●●●

●

●

●

●●

●●●●●●●●●

●

●●●●●

●●

●●●●●●●

●

●●●

●

●
●

●●

●

●●●●

●

●●

●

●●

●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●

●

●

●●●●
●
●●●

●

●●●●

●

●●
●

●

●●●●●●●
●
●●●●

●

●●●●
●

●

●●●
●

●

●
●
●●●●●
●
●●

●

●●●●

●

●●●●
●

●

●●

●
●

●●●●●

●

●
●●●●
●

●

●

●

●

●●

●

●●●

●

●●●●
●

●

●

●●
●●●●●●●●
●

●

●●●
●

●

●●

●

●

●●●
●
●●

●

●

●

●

●●●

●

●

●●●●
●
●●●

●

●●●●●●
●

●

●●●●●●●
●
●●●●●●●●
●

●

●●●
●
●
●
●●●●●
●
●●

●

●●●●

●

●●●●
●

●

●●

●
●

●●●●●

●

●
●●●●
●

●

●

●

●●●●●

●

●●●●
●

●

●

●●
●●●●●●●●
●

●

●●●
●

●

●●

●

●●●
●
●●

●

●

●

●

C
lu

s
tC

h
e

c
k

0.2

0.4

0.6

0.8

1.0

●●
●

●
●
●●

●
●

●

●

●

●

●

●●

●●
●

●

●

●●
●●

●

●

●

●●●

●

●

●●
●

●

●

●

●
●

●●●
●●●●

●

●

●
●●●
●

●

●

●
●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●●

●●●●

●●

●

●●●●●●●●●

●●

●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●●

●

●●●●●

●

●●●

●

●

●●

●

●

●

●

●●

●●

●

●●●●●

●

●

●●●

●●

●●●

●

●

●●●

●

●●●

●

●

●

●●●●●●●

●

●●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●●●●●●●●●

●

●●●●●

●●

●●●

●

●●●●

●

●●● ●

●

●
●

●●

●

●●●●

●

●●

●

●●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●●●

●

●●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●●
●
●●

●●●●●
●

●
●

●

●

●●
●

●

●●●●

●

●
●
●●●

●

●

●
●

●

●

●

●
●●
●●
●
●●
●●●
●
●

●
●
●
●
●●●●

●

●
●
●
●
●

●

●
●
●●●●●

●●●

●

●

●
●●●

●

●

●
●

●●

C
C

0.5
0.6
0.7
0.8
0.9
1.0

Figure 5.14: Box plot: the comparison of CVIs for the six-component non-normally dis-

tributed data.

110 Chapter 5. Automatic cluster detection by lifting

Index Mclust CH H KL Sil Gap Lifting Lifting2

N 9 9 7 13 6 2 22 21

Purity 0.943 0.915 0.767 0.810 0.706 0.404 0.976 0.856

ARI 0.873 0.931 0.767 0.774 0.611 0.118 0.899 0.909

AVI 0.770 0.908 0.763 0.746 0.596 0.161 0.893 0.906

CompCheck 0.836 0.993 0.994 0.981 0.995 1.000 0.874 0.888

ClustCheck 0.968 0.910 0.722 0.783 0.658 0.273 0.974 0.974

CC 0.899 0.949 0.841 0.858 0.774 0.505 0.921 0.929

Table 5.11: The comparison of CVIs for the six-component non-normally distributed data.

First row is for the average number of clusters, and others are for the average similarity

scores.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−5
6
7−11
12−16
17−21

22−26
27−31
32−36
37−41
42+

M
clu

st
CH H KL Sil

Gap
Lif

tin
g

Lif
tin

g2
0

20

40

60

80

100

Figure 5.15: Bar chart: the comparison of number of clusters for the six non-normally

distributed components data. Legends illustrate the number of cluster range. Vertical axis

shows the percentage of replicates, and the horizontal axis is for the different CVIs.

5.5. Simulation study 111

●● ●●●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●●● ●● ●●●●● ●●● ●●● ●●●●●● ●●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●● ●●● ●●● ●●●● ●
● ●●●● ●●●●●●● ●●● ●

●●●●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●●●

−2 −1 0 1 2

−4

−2

0

2

Mclust

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●●●●●

● ●
●

●
●

−2 −1 0 1 2

−4

−2

0

2

CH

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

● ●

−2 −1 0 1 2

−4

−2

0

2

H

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●●●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●●●●●●●
●

●●●●● ●

●

● ●●● ●●●●●

●

●

●

●●●●●● ●●●●●●

●

●

●
●●

●

●
●

●
● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●●
●●●

●
●●●●●●●● ●●●●

●● ●
●

●●

●
●

●

●

●

●●
●

●●●●

●

●

●
● ●●

●
●● ●

●●
●

●
●

●

●●●

●

●

●

●●
●● ●●●

●

●
●

● ●● ● ●
●●●● ●●●●●●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●
●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ●●

●●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●

●
●●●

●
●

●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●

● ● ●
●

●●● ● ●●●

●

●
● ●●

●
● ●●

●
●

● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●●●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●
●

●●●●●●● ●●●
●

● ●
●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●
●
●● ●

●
● ●

●● ●●● ●●● ●●●●●●
●

●●
●●

●
● ●● ●●

●
●●● ●●
● ●● ●

●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●●

●●● ●●●●
● ●●

●
●●●

●●● ●
●●● ●●● ●

● ●● ●●●● ●●
●

● ●● ●●● ●●●
●

●
●●● ●●● ● ●● ●●
●●●●●●
●

●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ●

●●● ●●●
●

● ●
●●●

●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●●● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●
● ● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−4

−2

0

2

KL

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●●●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●●●●●●●
●

●●●●● ●

●

● ●●● ●●●●●

●

●

●

●●●●●● ●●●●●●

●

●

●
●●

●

●
●

●
● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●●
●●●

●
●●●●●●●● ●●●●

●● ●
●

●●

●
●

●

●

●

●●
●

●●●●

●

●

●
● ●●

●
●● ●

●●
●

●
●

●

●●●

●

●

●

●●
●● ●●●

●

●
●

● ●● ● ●
●●●● ●●●●●●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●
●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ●●

●●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●

●
●●●

●
●

●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●

● ● ●
●

●●● ● ●●●

●

●
● ●●

●
● ●●

●
●

● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●●●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●
●

●●●●●●● ●●●
●

● ●
●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●
●
●● ●

●
● ●

●● ●●● ●●● ●●●●●●
●

●●
●●

●
● ●● ●●

●
●●● ●●
● ●● ●

●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●●

●●● ●●●●
● ●●

●
●●●

●●● ●
●●● ●●● ●

● ●● ●●●● ●●
●

● ●● ●●● ●●●
●

●
●●● ●●● ● ●● ●●
●●●●●●
●

●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ●

●●● ●●●
●

● ●
●●●

●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●●● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●
● ● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−4

−2

0

2

Sil

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●

●

●●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●●●●●●●
●

●●●●● ●

●

● ●●● ●●●●●

●

●

●

●●●●●● ●●●●●●

●

●

●

●

●●

●

●
●

●
● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●●
●●●

●
●●●●●●●● ●●●●

●● ●
●

●●

●
●

●

●

●

●●
●

●●●●

●

●

●
● ●●

●
●● ●

●●
●

●
●

●

●●●

●

●

●

●●
●● ●●●

●

●
●

● ●● ● ●
●●●● ●●●●●●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●
●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ●●

●●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●

●
●●●

●
●

●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●

● ● ●
●

●●● ● ●●●

●

●
● ●●

●
● ●●

●
●

● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●●●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●
●

●●●●●●● ●●●
●

● ●
●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●
●
●● ●

●
● ●

●● ●●● ●●● ●●●●●●
●

●●
●●

●
● ●● ●●

●
●●● ●●
● ●● ●

●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●●

●●● ●●●●
● ●●

●
●●●

●●● ●
●●● ●●● ●

● ●● ●●●● ●●
●

● ●● ●●● ●●●
●

●
●●● ●●● ● ●● ●●
●●●●●●
●

●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ●

●●● ●●●
●

● ●
●●●

●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●●● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●
● ● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−4

−2

0

2

Gap

●●
● ●●●●●●● ●

● ●●
●●●● ●●●

●
● ●●

●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
● ●

●
●● ●●●●●

●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●● ●●● ●●

●
●●● ●●●● ●

●●● ●●●●● ●●●
●

●●●
● ●● ●●
● ●

●●●
●

●●●●●● ●●●●●●
● ●

●

●●

●●●
●

●
●
●●
● ●

●●

−2 −1 0 1 2

−4

−2

0

2

Lifting

●●
● ●●●●●●● ●

● ●●
●●●● ●●●

●
● ●●

●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
● ●

●
●● ●●●●●

●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●● ●●● ●●

●
●●● ●●●● ●

●●● ●●●●● ●●●
●

●●●
● ●● ●●
● ●

●●●
●

●●●●●● ●●●●●●
● ●

●

●●●

●●

 !
"

●

#$%
●

&'
●●

●●

−2 −1 0 1 2

−4

−2

0

2

Lifting2

Figure 5.16: A single realisation of the six-component non-normally distributed data.

Scatter plots illustrate the clustering solution chosen by various methods.

112 Chapter 5. Automatic cluster detection by lifting

FL

−2 −1 0 1 2

●

●
●●

●

● ●●

●

●

●
●●

● ●

●

●●

●●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●
● ●

●

● ●●

●

●

●
● ●

● ●

●

●●

● ●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2

−1

0

1

2

●

●
● ●

●

●● ●

●

●

●
●●

●●

●

●●

● ●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2

−1

0

1

2

●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW ●

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●

●

●
●● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL
−2

−1

0

1

2

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3

−2

−1

0

1

●

●
●
● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

●
●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●
●

● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

Crabs data

Figure 5.17: Pairs plots of scaled morphological features of crabs data.

5.6 Real data example

We also apply our method to a real data set, and we repeat the comparison study done

in the previous section. The crabs data set (Campbell & Mahon, 1974) is used, and it is

available in the MASS package in R (Venables & Ripley, 2002). It includes five morpho-

logical measurements of 200 crabs: frontal lobe size (FL), carapace length (CL), carapace

width (CW), body depth (BD) and rear width (RW). There are four different groups of

crabs formed by their colors (blue and orange) and gender (male and female) (size of

50). The data set is scaled by the size of the carapace of each crab (
√
CL× CW), so we

use four different scaled morphological measurements of crabs for clustering purposes:

frontal lobe size, carapace length, body depth and rear width. The data set is standardized

xk =
xk −mean(xk)

sd(xk)
, where k ∈ {1, 2, 3, 4}, and xk is the kth measurement of the crabs

data, x. Scatter plots of scaled morphological features of the crabs data are given in Fig-

ure 5.17. To be able to apply the Lifting algorithm, crabs are clustered using a hierarchical

clustering algorithm with complete linkage. In this way, joined pairs and the edge lengths

of joined pairs in each cluster in each agglomeration step are obtained. The final feature

we need to have is the compactness value for each internal node which can be calculated

using Equation (5.15). When the Lifting algorithm is applied to the crabs data, the tree

in Figure 5.18 is built. Some internal nodes are labelled with the denoised detail coeffi-

cients. These nodes with all the internal nodes below these nodes are denoised as zero or

less than zero. This means we can treat all the nodes below these labelled nodes as one

cluster, so we find where we cut the tree. Thus, our Lifting method finds eight clusters

for the crabs data where one cluster is for the outliers. A comparative table for each CVI

5.6. Real data example 113

10
1

10
5

10
3

15
2

19
1

19
8

15
3

10
6

18
2

19
7

17
4

19
9

18
1

19
4

10
2

10
4

12
3

10
7

11
7

11
1

16
1

19
3

19
0

18
6

19
5

14
3

14
9

12
7

11
5

12
1

12
6

14
0

13
1

13
4

13
8

11
2

13
5

14
8

13
9

11
4

13
0

14
6

15
0

14
1

14
4

14
5

14
2

11
3

13
3

13
2

14
7

11
6

11
9

10
9

12
2

12
9

13
7

12
0

12
4

13
6

12
8

12
5

18
4

18
7

19
6

16
2

18
5

15
5

20
0

17
2

19
2

15
1

15
4

16
4

15
7

15
9

16
0

16
3

16
9

17
7

17
5

16
6

17
9

16
7

16
8

17
3

15
8

16
5

17
0

17
8

18
3

17
1

18
0

17
6

11
0

18
9

10
8

11
8

15
6

18
8 1 16 89 6 90 10
0 96 67 92 88 12 79 94 98 99 82 85 69 71 83 87 56 68 51 53 58 72 64 54 91 76 86 57 95 66 93 7 77 84 73 97 65 70 52 63 59 62 78 81 10 74 60 3 75 17 18 14 15 19 11 2 80 55 4 9 5 61 48 49 45 22 39 50 23 30 38 8 47 32 44 34 40 31 24 27 43 46 33 37 13 36 41 25 29 21 20 26 42 28 35

0

0
0

0 0

0

0

Figure 5.18: Clustering crabs data by Lifting. Labels in square boxes in internal nodes

are the denoised detail coefficients.

Index Mclust CH H KL Sil Gap Lifting Lifting2

N 4 2 4 9 2 5 8 7

Purity 0.900 0.500 0.825 0.890 0.500 0.850 0.890 0.688

ARI 0.760 0.486 0.619 0.573 0.486 0.620 0.593 0.597

AVI 0.800 0.640 0.695 0.645 0.640 0.704 0.673 0.678

CompCheck 0.838 0.990 0.746 0.519 0.990 0.621 0.571 0.577

ClustCheck 0.803 0.490 0.689 0.874 0.490 0.751 0.825 0.825

CC 0.820 0.696 0.717 0.673 0.696 0.710 0.686 0.690

Table 5.12: The comparison of CVIs for crabs data. First row is for the number of clusters,

and others are for the similarity scores.

in terms of the external validity scores is also generated and given in Table 5.12. The Sil

statistic and CH index find the same partitioning, and their performance are poor in terms

of the external validity scores. The partition done by Mclust has the highest similarity

with true components, and the performance of the Gap statistic follows Mclust. All the

CVIs except the CH index and Sil statistic find slightly different partitioning for the crabs

data. We can see the partitioning done by each CVI from the scatter plots generated and

demonstrated in Figure 5.19. The one titled as “CH” is for the CH index and Sil statistic.

114 Chapter 5. Automatic cluster detection by lifting

FL

−2 −1 0 1 2

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

● ●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

−3 −2 −1 0 1

−2
0

1
2

●

●
● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●● ●
● ●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

−2
−1

0
1

2

●

●

●
● ●

●

●

●

●
●

●
●

●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

RW ●

●

●
● ●

●

●

●

●
●

●
●

●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ● ●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●
●● ●

●

●

●
●

●
●

●

●● ●
●
●

●
● ●●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ●●

●●

●
●

●

● ●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●

●

●● ●
●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●
●●

●
●●

●

●
CL

−2
0

1
2

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●●
●

●

●
● ●

●
●●

●

●

−2 0 1 2

−3
−1

0
1

●

●
●
● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

● ●●●
●

●

●

●

●● ●

●

●●●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

● ●● ●
●

●

●

●

●●●

●

●● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

−2 0 1 2

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●● ●●
●

●

●

●

● ●●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●●

●

BD

Mclust

FL

−2 −1 0 1 2

●
●●

●

● ●●

●

●

●
●●

● ●

●

●●

●●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●
● ●

●

● ●●

●

●

●
● ●

● ●

●

●●

● ●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

−3 −2 −1 0 1

−2
0

1
2

●
● ●

●

●● ●

●

●

●
●●

●●

●

●●

● ●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

●● ●
● ●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

−2
−1

0
1

2

●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

● RW
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ● ●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●
●● ●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●● ●
●
●

●
● ●●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ●●

●●

●
●

●

● ●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

●
●

●

●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●

●

●● ●
●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
● ●

●
●

●

●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●
●●

●
●●

●

CL

−2
0

1
2

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●
●●

●

●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●●

●
●

●

●

●●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●●
●

●

●
● ●

●
●●

●

−2 0 1 2

−3
−1

0
1

●
●
● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●●

● ●●●
●

●

●

●

●● ●

●

●●●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

●

●

●

●●

●

●

●

●

●

●

●●

● ●● ●
●

●

●

●

●●●

●

●● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

−2 0 1 2

●
●

● ●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●● ●●
●

●

●

●

● ●●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●●

BD

CH

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

H

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

KL

FL

−2 −1 0 1 2

●●

●

●

●●
●

●

●

●

●●● ●

●●●●
●●

●

●●

●
●

●

●●

●●

●
●●●

●
●

●

●

●
● ●

●

●

●●●

●

●

●

●●●●

●●●●
●●
●

● ●

●
●

●

● ●

●●

●
●● ●

●
●

●

●

●

−3 −2 −1 0 1

−2
0

1
2

● ●

●

●

●●●

●

●

●

● ● ●
●

●●●●
● ●

●

● ●

●
●

●

●●

●●

●
● ●●

●
●

●

●

●

−2
−1

0
1

2

●● ●

●

●
●

● ●
●

●
●
●●
●

●

●
●●

●●●

●
●

●

●●

●
●

●

●

●

●
●
●

●

●

● ●●

RW ● ● ●

●

●
●

●●
●

●
●

●●
●
●

●
●●

●● ●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

● ●●

● ●●

●

●
●

●●
●
●

●
● ●

●
●

●
●●

● ●●

●
●

●

●●

●
●
●

●

●

●
●
●

●

●

●●●

●

●

●

● ●●●

●

●
●●

●●
● ●

●

●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●●●

●

●
● ●
●●

● ●
●

●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

● CL

−2
0

1
2

●

●

●

● ●●●

●

●
●●
● ●

● ●
●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

−2 0 1 2

−3
−1

0
1

●

●
●

●

●●● ●

● ●
●
●
●

●
●●
●●

●

●
●

●

●

●

●● ●
●●●

●

●
●●

● ●

●

●●

●

●
●

●

●●●●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●

●● ●
●●●

●

●
●●

●●

●

●●

−2 0 1 2

●

●
●

●

●●●●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●

●●●
●●●

●

●
● ●

● ●

●

●●

BD

Gap

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

Lifting

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

Lifting2

Figure 5.19: Pairs plots for different internal indices for crabs data. “CH”: for the both

CH index and Sil statistic.

5.7. Summary 115

5.7 Summary

In this chapter, we propose a new method which is based on LOCAAT algorithm to decide

where to cut a tree built by hierarchical clustering. The method we proposed in Section 5.4

is computationally efficient, and it makes no parametric assumption. Since the tree is

built agglomeratively, the distances higher on the tree have some uncertainties. Thus,

we can denoise the tree using the LOCAAT algorithm. To be able to apply this idea to

hierarchical clustering, we create compactness for each node which is the mean Euclidean

distance of each data point from the centroid of their cluster. Hence, if we denoise the

lifted compactness values (detail coefficients) for the nodes located in the higher part of

the tree with the denoised detail coefficients of all the nodes below those nodes less than

or equal to a threshold, we can treat them as one cluster. For now, we can manually

pick a small number as the threshold, but we will discuss how we can pick a threshold

automatically later in Chapter 6.

A simulation study in Section 5.5 shows that the performance of our method is always

high. If a data set includes normally distributed components, Mclust always shows the

highest performance. As Mclust is a model-based clustering algorithm, this result was

expected. For non-Gaussian data sets, we could also construct an equivalent model-based

clustering algorithm if we knew the distribution of the data set. However, new methods

would need to be constructed for each data set, and these methods would be sensitive to

mis-specification of the underlying distributions.

In the simulation study, we use single linkage method, and we observe that if a data

set consists of normally distributed components with large variance, all internal cluster

validity indices (CVIs) struggle to partition the data. However, if we build the tree with

complete linkage, their performances are higher. Some results are added in Appendix A

after building the tree with complete linkage. Mclust clusters almost all data points cor-

rectly, but also our Lifting method has a high performance in this case. If we check the

scatter plots for just one replicate, our Lifting method found some outliers and some small

groups located at outer part of the true components.

When we apply our algorithm to the circle data, we point out that Mclust shows poor

performance in this data structure. Other indices perform slightly better than our method.

The scatter plot for one replicate illustrates that other indices capture two components, and

they just divide the outer circle into small clusters. However, our Lifting method divides

the inner and outer circle components into two clusters. This decreases its performance

because some data points gather together, and their distance to the bigger part of the

component is high. Thus, our Lifting method captures them in separate clusters.

When we check the final simulation study with the six-component data which has the

unique shape, the CH index shows the best performance. The performance of our Lifting

116 Chapter 5. Automatic cluster detection by lifting

method is close to the CH index. If we check the box plot comparison for the number

of clusters found by different CVIs, the variation is higher in the CH index. There is a

lower variation in our Lifting method, and the reason of the variation in our method is the

constant threshold we use for all replicates. If we check scatter plots just for one replicate

of the simulated data, we see why the performance of our Lifting method is lower than

the CH index. Our Lifting method divides one of the components into two sub-clusters.

Hence, if we have a normal shaped data or well separated data, all indices perform

well, but if we have a unique shape data or components that are closer to each other, some

of the indices do not capture true components. For the real data set, the performance of

each index is different than each other.

We also need to note that the available R packages for the cluster validation indices

summarized in Section 5.3.1 need to have an upper boundary for the number of clusters.

If we do not set an upper boundary, the calculation will take more time especially for the

Gap statistic. Thus, the upper boundary should be carefully picked since it has a serious

effect on results. However, the Lifting algorithm does not have a boundary. It picks the

best partition over all possible partitioning to be done.

Next to the feature of capturing the true components efficiently, the Lifting also finds

the exact height of each cluster. Other indices just return the number of clusters, then we

need to see the dendrogram of the data to find where we need to cut the tree. However,

the Lifting has a multiple cutting point where each point is for different clusters, so we

cut the tree from the exact height of each cluster.

Chapter 6

Generalisation of the threshold choice

6.1 Introduction

In Chapter 5, we discussed how we can apply the lifting algorithm to find the number

of clusters for multidimensional data sets. The aim of our Lifting algorithm is to find

the number of clusters and where exactly clustering happens in a dendrogram automati-

cally, but the algorithm proposed in Chapter 5 is only semi-automatic because we need

to manually pick a threshold to allow small departures from the centroid of each cluster.

In this chapter, we discuss how our algorithm can pick this threshold automatically. In

this way, we reach our goal: automatically finding clusters by lifting. In addition, we

also discuss how to apply our Lifting algorithm with a generalized threshold choice using

non-decimated lifting (NLT) algorithm, described in Section 3.6.

In this chapter, we start with an explanation of the updated version of our Lifting

method proposed in Chapter 5. In Section 6.2, we detail the updated version of our

Lifting method to detect the number of clusters automatically. Then we introduce how

to modify our Lifting algorithm using NLT algorithm in Section 6.3. The updated results

for the artificial data sets generated in Section 5.5 and the real data set used in Section 5.6

follow in Sections 6.4 and 6.5, respectively. We complete the chapter with a discussion of

findings in Section 6.6.

6.2 A method of picking a threshold

Lifting is a decompisition method proposed by Sweldens (1998), and a detailed summary

was given in Chapter 3. We proposed a new method to identify the number of clusters

automatically by lifting in Chapter 5. Our Lifting method is used to denoise the com-

pactness value for each node in a dendrogram, where we define the average distance from

the centroid of a cluster as compactness, γi, defined in Equation (5.15). In Chapter 5, if

all denoised detail coefficients of a node and all nodes below it are less than or equal to

117

118 Chapter 6. Generalisation of the threshold choice

zero, we assume that all objects below this node come from the same cluster. However,

some departures from the centroid can be observed. In this case, we can pick a small

threshold manually, so if the denoised detail coefficients of a node and all its child nodes

are less than or equal to the chosen threshold, the objects below it create one cluster. This

threshold can be regarded as a tuning parameter. So far the threshold is picked manually.

If we find a way to allow our Lifting method to pick the threshold itself, we will no longer

require manual intervention in the algorithm.

We can pick this threshold using some of the thresholding methods we summarized

in Section 2.10. One of them is the universal threshold; details can be found in Sec-

tion 2.10.2. If we limit the divergence between close neighbours to the universal threshold

amount, we will allow a weighted standard deviation amount of divergence between close

neighbours. However, denoised detail coefficients are a sparse set, so there is no enough

information to estimate the variance. We propose that we can find the place of the clus-

ters using denoised compactness values instead of using denoised detail coefficients. This

means that any departure from the centroid of a cluster less than or equal to λ is treated

as noise. We then regard any cluster which has a denoised compactness less than or equal

to λ, and whose sub-clusters also have denoised compactness less than or equal to λ, as

a cluster in our final solution. Thus, after denoising the detail coefficients, we can apply

the reverse lifting transform, explained in Section 3.3.2 to obtain denoised compactness

for each cluster. The final step is to find which clusters have denoised compactness value

less than or equal to a threshold, λ, which can be automatically picked by limiting depar-

ture from the centroid to the universal threshold amount, so we allow a weighted standard

deviation amount of departure from the centroid. We call this version of our algorithm as

‘ALifting’ (‘A’ stands for automatic choice of the threshold). The universal threshold, λu,

and the estimate of the standard deviation, s, are defined in Equations (2.39) and (2.40),

respectively. Hence, we threshold the denoised compactness values assuming that all of

them are coming from the same resolution level. The estimator of the standard deviation

is defined as

s =

√√√√ 1

n− 1

n∑
i=1

[
γ̂i − ¯̂γ

]2
, (6.1)

where γ̂i are the denoised compactness values, ¯̂γ is the average of the denoised compact-

ness values, and n is the number of nodes including the leaves in a dendrogram. Even

though we compute s using all the nodes in the tree, we know that γ̂i are zero for leaves.

Thus, we can rearrange Equation (6.1) by splitting the summation term into two parts. We

know that the first n+1
2

entries of γ̂i are for leaves, and the rest of them are for the internal

nodes. In the light of this information, we can easily see that
∑n

i=1 γ̂i =
∑n

i=(n+1
2

+1) γ̂i,

6.2. A method of picking a threshold 119

and ¯̂γ = 1
n

∑n
i=1 γ̂i = 1

n

∑n
i=(n+1

2
+1) γ̂i. Hence, Equation (6.1) becomes

s2 =
1

n− 1

n+1
2∑

i=1

[
γ̂i − ¯̂γ

]2
+

n∑
i=(n+1

2
+1)

[
γ̂i − ¯̂γ

]2
=

1

n− 1

n+1
2∑

i=1

[
−¯̂γ
]2

+
n∑

i=(n+1
2

+1)

[
γ̂i − ¯̂γ

]2
=

1

n− 1

n∑

i=(n+1
2

+1)

γ̂2i − n¯̂γ2

s =

√√√√√√ 1

n− 1

n∑

i=(n+1
2

+1)

γ̂2i − n¯̂γ2

. (6.2)

Each thresholded denoised compactness value, γ̂∗, is the corresponding denoised com-

pactness value:

γ̂∗ =

 0, if γ̂ ≤ λu

γ̂, if γ̂ > λu,
(6.3)

where γ̂ is the denoised compactness value.

We note that one option would be to exclude leaves from the estimate of the standard

deviation, but this creates a large variation which leads us having few clusters. Thus, the

probability of including different objects into the same clusters is high. In addition, our

ALifting method even denoises the node values for leaves, so we need to include leaves

to the estimate of the standard deviation to be consistent. We could also use the MAD,

given in Equation (2.41), as an estimate of the standard deviation, but MAD is designed

to ignore large values and hence is not a good estimate for the standard deviation in our

method.

Example 6.2.1. We continue Example 5.4.1. While the method we proposed in Chap-

ter 5 finds clusters using the denoised detail coefficients, in this section, we use the

denoised node values to find where exactly clustering happens. The dendrogram

is given in Figure 6.1a, and each node is labelled with the compactness and de-

noised compactness values, which are γ = (0.059, 0.201, 0.255, 0.339, 1.254) and γ̂ =

(0.228, 0.278, 0.228, 0.278, 1.137), respectively. These are the node values for inter-

nal nodes in agglomeration order. Each leaf can create one cluster alone, so we use

each possible clustering scheme in a dendrogram to find the best representative clus-

tering scheme for a data set. Thus, we threshold the denoised compactness values,

γ̂ = (0, 0, 0, 0, 0, 0, 0.228, 0.278, 0.228, 0.278, 1.137), where the first six entries of γ̂ are

the denoised compactness values for leaves. Since compactness is defined as the average

120 Chapter 6. Generalisation of the threshold choice

1.254
1.137

0.339
0

0.201
0

0.255
0

0.059
0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

H
ei

gh
t

4 5 6 1 2 3

(a)

0

0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

H
ei

gh
t

4 5 6 1 2 3

(b)

Figure 6.1: Illustration of the toy data in Table 5.1 with the results of our ALifting method.

(a): the labelled dendrogram with the compactness (pink) and denoised compactness

values (green). (b): clustering pattern found by our ALifting method, and labels for

denoised compactness values.

distance from the centroid, both compactness and denoised compactness values for leaves

are zero.

After finding γ̂, we need to find the universal threshold, λu, for these denoised com-

pactness values, so the λu is

λu = s
√

2 log(n) = 0.336×
√

2 log(11) = 0.737,

where n = 11, and s is

s =

√√√√ 1

10

{
11∑
i=7

γ̂2i − 11¯̂γ2

}
= 0.336,

where ¯̂γ = 0.195. Thus, if any γ̂ is less than or equal to λu, we will set them to zero.

In this example, we find γ̂∗ = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.137) and the same clustering

scheme found in Example 5.4.1. The dendrogram of the data is given in Figure 6.1b, and

we label the clusters found by the denoised compactness values.

6.3 Automatic cluster detection by non-decimated lifting

Our proposed ALifting algorithm based on the LOCAAT algorithm detects where cluster-

ing occurs in a dendrogram, and we can also make a small modification on our algorithm

and create a new algorithm based on the non-decimated lifting (NLT) algorithm described

in Section 3.6.

6.3. Automatic cluster detection by non-decimated lifting 121

The difference in the NLT algorithm is the order in which the points are lifted. Before

starting the algorithm, we know which point to be lifted (path/trajectory) in each stage.

Thus, the LOCAAT algorithm is applied using the known path which is one permutation

of the nodes in the tree including leaves. This process is repeated P times using a different

path for each repetition, where P is the number of paths given by the researcher. The NLT

algorithm covered in Section 3.6 was for one dimensional data sets. To apply the NLT

algorithm on tree-structured data sets, we can still use the same LOCAAT algorithm for

multidimensional data sets discussed in Section 3.8 by simply changing the process of

finding which node to be lifted. We can find one permutation of the nodes in the tree

including leaves and set the last r entries of the path to be non-lifted nodes, where r

is defined by the researcher. Then we can apply our ALifting algorithm proposed in

Section 6.2, and we can repeat the algorithm P times using a different path each time.

At the end of the NLT for the tree-structured data sets, we have P denoised compactness

values for each node, and we have a different clustering results for each path. Thus, we

need to pick the best representative of the clustering structure for the data set of interest

within these P results, and we consider two methods to find the overall clustering result.

1. If any node is found as a cluster by our algorithm with the automatic choice of

threshold in all P repetitions, we can regard that node as a cluster. However, this

may result in few small clusters since we do not allow any variation which may be

caused by the permutation stage of the NLT algorithm.

2. Another option is that we can compute the probability of being a cluster for each

node in the tree. Suzuki & Shimodaira (2006) proposed an R package called pv-
clust which assigns a probability for each possible cluster on a tree built by hier-

archical clustering. They take two different probabilities into account: the boot-

strap probabilities (BP) and approximately unbiased (AU) probabilities. The BP is

calculated building the tree many times over bootstrap sampled data and counting

how many times that node appears in bootstrap sampling (Efron, 1979; Felsenstein,

1985a). Another option, AU, is calculated using multiscale bootstrapping devel-

oped by Efron et al. (1996), Shimodaira (2002) and Shimodaira (2004). In our NLT

method, we compute the probability of being clustered using a similar procedure to

BP.

In our ALifting algorithm, if any node with all its daughter nodes have a compact-

ness less than or equal to a threshold, λu, we consider that one possible cluster is

located in this node. Assume that we have n nodes including the leaves and P paths.

Then the clustering result of our algorithm for each path is

cij =

{
0, if γ̂ij ≤ λuj

1, if γ̂ij > λuj ,

122 Chapter 6. Generalisation of the threshold choice

where cij denotes the decision of having a cluster at node i in path j (i = 1, . . . , n

and j = 1, . . . , P), {γ̂ij} are the denoised compactness values, and λuj is the uni-

versal threshold for the path j. Our algorithm places one cluster at node i in path j

if cij = 0. The probability of having a cluster at node i over all paths, pi, is

pi = 1− 1

P

P∑
j=1

cij. (6.4)

If node i with all its daughter nodes have p· ≥ θ, where θ ∈ [0, 1] is the chosen

probability of acceptance defined by the researcher, there is a possible cluster at

node i with probability pi.

The choice of P has a significant role in our NLT algorithm. There are n! different paths

for the lifting order, so lower P values may increase the chance of placing a cluster at

a node with a high probability, or they may increase the chance of neglecting a possible

clustering scheme because of the low probability of placing a cluster in some nodes.

Example 6.3.1. We continue Example 6.2.1 given in previous section to illustrate the

working structure of our NLT algorithm. There are six data points in this toy data set,

so leaves are labelled from one to six, and the internal nodes are labelled with their

agglomeration order starting from seven. The compactness value for each node, {γi}, is

lifted using our NLT algorithm for tree-structured data sets. For illustrative purposes, we

set the number of paths, P , and the clustering probability, θ at 10 and 0.5, respectively.

For each path, the denoised compactness values, {γ̂ij}, the universal threshold, {λuj }
and the clustering decision indicator, {cij}, are found and given in Table 6.1. The final

row of the table illustrates the probability of having a cluster at each node, {pi}. The

dendrogram of the toy data is illustrated in Figure 6.2a. Each node in this dendrogram

is labelled with the clustering probability and the agglomeration order. The clustering

probability for the root is 0.4 which is a low probability to set a cluster at this node. The

clustering probability for the root is less than θ, so the color of this node is changed from

green to red. Using the threshold θ = 0.5, we find the same clustering pattern found

in Example 6.2.1, where we applied our ALifting algorithm, and the possible clustering

pattern found by our NLT algorithm is displayed in Figure 6.2b.

6.3. Automatic cluster detection by non-decimated lifting 123

Path
Results

Nodes

λuj1 2 3 4 5 6 7 8 9 10 11

γi 0 0 0 0 0 0 0.059 0.201 0.255 0.339 1.254

1
γ̂i1 0 0 0 0 0 0 0.716 0.217 0.241 0.255 1.117

0.802
ci1 0 0 0 0 0 0 0 0 0 0 1

2
γ̂i2 0 0 0 0 0 0 0.268 0.426 0.386 0.226 0.965

0.663
ci2 0 0 0 0 0 0 0 0 0 0 1

3
γ̂i3 0 0 0 0 0 0 0.212 0.801 0.200 0.743 0.519

0.690
ci3 0 0 0 0 0 0 0 1 0 1 0

4
γ̂i4 0 0 0 0 0 0 0.836 0.243 0.783 0.290 0.525

0.719
ci4 0 0 0 0 0 0 1 0 1 0 0

5
γ̂i5 0 0 0 0 0 0 0.597 0.435 0.580 0.457 0.516

0.600
ci5 0 0 0 0 0 0 0 0 0 0 0

6
γ̂i6 0 0 0 0 0 0 0.371 0.621 0.392 0.607 0.505

0.593
ci6 0 0 0 0 0 0 0 1 0 1 0

7
γ̂i7 0 0 0 0 0 0 0.543 0.123 0.559 0.531 0.607

0.606
ci7 0 0 0 0 0 0 0 0 0 0 1

8
γ̂i8 0 0 0 0 0 0 0.109 0.107 0.228 0.290 1.286

0.832
ci8 0 0 0 0 0 0 0 0 0 0 1

9
γ̂i9 0 0 0 0 0 0 -0.064 0.195 0.124 0.413 1.260

0.842
ci9 0 0 0 0 0 0 0 0 0 0 1

10
γ̂i10 0 0 0 0 0 0 0.074 0.139 0.272 0.258 1.242

0.804
ci10 0 0 0 0 0 0 0 0 0 0 1

pi 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.8 0.9 0.8 0.4

Table 6.1: Tabulated results of our NLT algorithm for the toy data in Table 5.1.

0.4
11

1
10

1
8

0.8
9

0.8
7

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

H
ei

gh
t

4 5 6 1 2 3

(a)

1
10

0.8
9

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

H
ei

gh
t

4 5 6 1 2 3

(b)

Figure 6.2: Illustration of the toy data in Table 5.1 with the results of our NLT algo-

rithm. (a): the labelled dendrogram with the clustering probability (green or red) and the

agglomeration order (blue). (b): clustering pattern found by our NLT algorithm.

124 Chapter 6. Generalisation of the threshold choice

6.4 Simulation study

The ALifting method is applied to the same data sets given in Section 5.5, and results

are compared to the results discussed in Section 5.5. In Section 5.5, the threshold, λ,

was picked manually, and we summarized the results of our algorithm by comparing

with some other available internal cluster validity indices (CVIs) in the literature which

were summarized in Section 5.3.1. In this section, the comparison study includes the

CVI which showed the best performance for each data structure in Section 5.3.1, Mclust,

Lifting and Lifting2. To be consistent with the notations we used in Section 5.3.1, Lifting

and Lifting2 represent the results for the choice of λ used in that section. We also add the

results for our Lifting and Lifting2 methods when we pick λ = 0, and we call these results

ZLifting and ZLifting2, respectively, where ‘Z’ stands for the zero threshold, λ = 0.

To explore the effect of the automatic choice of the threshold, the updated version of

our Lifting and Lifting2 methods, labelled as ALifting and ALifting2, respectively, are

included to the comparison study. The final method we compare in this study is our NLT

algorithm, labelled as NLT, and we set the number of paths, P , to 100 and the clustering

probability threshold, θ, to 0.5. Higher choice of P increases the time taken to analyze

large data sets; because of that we pick a value of P which does not make a significant

reduction in the computational efficiency. In addition, we have checked the performance

of the methods on several data sets with various values of P up to 1000 for one replicate,

and we notice that after P = 100 the probability of placing a cluster for each node is

reasonably stable. Thus, the choice of P = 100 is a reasonable choice for the data

structures we use in this study. We compare the performance of different methods in

terms of different external scores explained in Section 5.3.3.

6.4.1 Five-component normally distributed data with low variance

In Section 5.5.1, we discussed this data structure in detail, and λ was fixed at 0.2 for this

data structure. The highest performance within the CVIs was for the CH index, so we

include the CH index results in the comparison study. Box plots comparing the different

partitioning methods are shown in Figure 6.3. The performance of ZLifting and ZLifting2

are close to zero in terms of different external scores. Thus, these results support the

idea of needing a threshold. When we compare our Lifting and ALifting methods, we

observe that small variation occurred in partitioning the data by our Lifting method is

almost zero in ALifting method, and also there is a slight increase on the proportion

of capturing the true components by ALifting and ALifting2 compared to our Lifting

and Lifting2 methods, respectively. In addition, our NLT algorithm behaves similar to

ALifting algorithm by locating clusters in each run with high percentage (> 0.90). We

6.4. Simulation study 125

Index Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

N 5 9 128 127 8 7 7 6 6

Purity 0.999 0.985 0.937 0.823 0.937 0.759 0.997 0.807 0.998

ARI 0.998 0.976 0.148 0.178 0.916 0.921 0.989 0.994 0.993

AVI 0.993 0.961 0.453 0.493 0.946 0.954 0.984 0.992 0.989

CompCheck 0.998 0.987 0.108 0.120 0.979 0.988 0.984 0.993 0.991

ClustCheck 0.998 0.978 0.783 1.000 0.914 0.914 0.998 0.998 0.998

CC 0.998 0.982 0.289 0.342 0.942 0.946 0.991 0.995 0.994

Table 6.2: Updated results of the comparison of CVIs for the five-component normally

distributed data with low variance. First row is for the average number of clusters, and

others are for the average similarity scores.

can also check the average of external scores for each CVI from Table 6.2. ZLifting

partitions the data into many clusters; because of that its performance is low. On the other

side, we see that ALifting and NLT methods capture the 99% of the true partitioning in

terms of ARI which is the highest performance after Mclust. While we set λ = 0.2 in our

Lifting method, Figure 6.4 shows that λ picked by our ALifting algorithm varies for each

repetition, and the median choice for the λ is 0.33. Hence, this suggests a reason for the

variation of the partition found by our Lifting algorithm.

When we check Figure 6.5, the variation of the number of clusters found by our Lift-

ing method decreases with ALifting and NLT methods. Over 90% of 1000 repetition,

ALifting finds the number of clusters within the range [6−10]. To have an idea what kind

of partitioning each CVI and our methods do, we can check the scatter plot comparison

for one realisation from Figure 6.6. Both Lifting and ALifting capture the main clusters,

and both of them find some small outlier clusters (having two objects in each). Our NLT

algorithm finds the same partitioning with ALifting algorithm, and we also provide a den-

drogram of the data set including the clustering pattern found for one repetition by our

NLT algorithm in Figure 6.7. The top part of the dendrogram is labelled with clustering

probabilities and the clustering pattern found for θ = 0.5. Its clearly seen that our NLT

algorithm places the clusters with high probability, and it is the only possible pattern the

algorithm can pick.

126 Chapter 6. Generalisation of the threshold choice

●●●

●●

●

●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●●
●
●
●●●●

●●●●●●●●●●●
●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●●

●

●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●●

●

●

●

●●●●●

●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●●

●●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●●●●●

●

●●●

●

●●●●●●

●

●●●●

●

●●

●

●●

●●

●●●●

●

●●●●●●●

●

●

●●●

●

●●●●●

●

●

●

●●●●●

●●

●●

●

●

●●●●●

●

●●●●●

●

●

●●

●

●

●●

●

●●

●

●●●●●●●

●

●

●

●

●●

●●●●●●●●●●●●●● ●

●●

●●●

●●●●

●

●●

●

●●●

●

●●

●

●●●●

●●●

●●

●

●●●

●●●

●

●●●●●

●●●●

●

●●

●

●●●●

●●

●●●

●

●●

●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P
u

ri
ty

Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

0.2
0.4
0.6
0.8
1.0

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●

●

●●●●●●●●

●●

●●●●●●●●●●

●●
●
●

●

●
●
●●●●

●

●
●●●●●●

●●
●
●

●

●

●●●●

●

●
●●●●
●
●

●

●

●●●●
●●
●
●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●
●●●●●●

●

●●●
●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●●
●●●●
●●●
●
●●●●

●

●●
●
●●●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●●●●
●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●
●●●
●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●●
●●●●
●●●
●
●●●●

●

●●
●●●
●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●●●●●
●● ●●●●●●

●● ●●●●●
●●●●●●●●●●●●●●●

A
R

I

0.2

0.4

0.6

0.8

1.0

●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●

●

●●
●

●

●●●●●●
●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●
●●●●●●●●

●●

●●●●●●
●
●●●

●●
●
●●●●●
●●●●●

●
●
●
●●●●●
●●
●●
●●

●

●●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●
●
●●●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●

●
●●

●

●●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●
●
●●●

●

●●●●

●

●●●

●

●●●●●

●

●●●

●

●●
●
●●

●●
●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

A
V

I

0.4
0.5
0.6
0.7
0.8
0.9
1.0

●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●
●
●

●
●
●
●●●●●●

●

●
●●●●●● ●●

●
●

●
●
●
●●●●●

●

●
●●●●
●
●

●

●

●●●
●
●●●●●
●●
●●●●●●●●
●●●●
●

●●
●●●●
●●
●
●●●
●●●●

●

●●●
●●●
●
●●●●
●
●●
●●
●●●

●

●●●●
●

●
●●
●●●●
●
●

●●
●
●●
●●●

●

●●●●●●●●●●●●●●●
●●

●

●
●●
●●●●●●

●
●

●

●

●
●
●●●
●●●●
●●● ●

●

●●●●
●
●●●●●●●●●
●●●●●●●
●●●●●
●
●
●●
●●●●
●
●
●
●●●●
●●

●
●●●●●●
●

●
●●●
●
●●●
●
●●●●

●

●●
●
●
●●
●●●
●
●
●
●●
●●
●
●●
●
●●
●

●●●●●●●●●●●●●●
●●●

●

●
●
●●●●●●●
●●
●
●

●
●

●●●●●●
●●●●
●
●
●● ●●

●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●●● ●
●●
●●●●●●●●●●●●●●●●●●●●●

C
o

m
p

C
h

e
c
k

0.2

0.4

0.6

0.8

1.0

●●●

●

●

●

●

●●●●●

●

●●●●●●

●

●●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●●●●●

●

●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●
●●
●●●

●●●

●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●
●●●
●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●●●●

●

●●

●

●●●●●●●●●

●

●

●●

●●

●●●●●●●
●●●
●●●●

●

●●●●●●

●

●●●●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●

C
lu

s
tC

h
e

c
k

0.4

0.6

0.8

1.0

●●●

●

●

●

●●

●●

●

●

●

●●

●

●●●●●●●●

●

●●

●

●●●●●●●

●

●

●●●

●●●●●●●

●●

●●●●●●

●●

●

●●●●

●

●●●●●●●●

●●

●●●●●●●●●●

●
●

●
●
●

●

●●●
●●

●
●

●

●
●

●

●
●●●●●

●

●

●●●●
●●
●
●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●
●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●
●

●●

●●

●
●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●●
●●●●
●●●
●
●●●●

●

●●
●
●●●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●● ●

●

●●●●
●●●●●●●

●

●●

●

●

●

●●

●

●●

●

●

●

●●
●
●

●

●●

●

●

●

●●●

●

●●●●●●●
●
●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●
●
●●●●
●●

●

●

●●

●●●

●

●●

●

●

●

●●

●

●●●●

●●

●●

●●

●●●
●●●
●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●
●
●●

●

●●

●

●●
●●
●●●●●

●

●

●●

●●

●●●●●●
●●●
●
●●●●

●

●●
●●
●●

●

●●
●
●●●●●

●

●

●

●●

●

●

●

●●●●●

●

●●●●●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●●●●

●

●●

●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●

C
C

0.2

0.4

0.6

0.8

1.0

Figure 6.3: Updated box plot: the comparison of CVIs for the five-component normally

distributed data with low variance.

6.4. Simulation study 127

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

T
hr

es
ho

ld
, λ

0.30

0.35

0.40

0.45

0.50

Figure 6.4: The variation of λ for the five-component normally distributed data with low

variance.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−4
5
6−10

11−15
16−20
21+

M
clu

st
CH

ZLif
tin

g

ZLif
tin

g2

Lif
tin

g

Lif
tin

g2

ALif
tin

g

ALif
tin

g2

NLT
0

20

40

60

80

100

Figure 6.5: Updated bar chart: the comparison of number of clusters for the five-

component normally distributed data with low variance. Legends illustrate the number of

cluster range. Vertical axis shows the percentage of replicates, and the horizontal axis is

for the different CVIs.

128 Chapter 6. Generalisation of the threshold choice

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Mclust

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

CH

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
●●● ●

●
●

●

●

●
●●●

●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●
●●

●
●

●
●

●

●

●

●● ●
●●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●
●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●
● ●

●

●

●●●

●

●
● ●● ●

●

●

●

●
●

●●

●

●

●
●

●
●●

●●
● ●

●

● ●

●
● ●

●

●

●
● ●● ●●

●
●

●● ● ●
●

●

●

●
●

●●

● ●
●●

●●
●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●●

●

●
●● ● ●

●

●●

●
●

●●
● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●
●●

● ●

●

●
●

●●
●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

● ●
●

●

●
●

●

●
●

●

●
●

● ●
●● ●

●● ●
●

●
●

●
●

●
●

●●
●

● ●
●● ●

●
●●
●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●●

●

● ●

●

●●
●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●
●

● ●●
●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●● ●● ●

●● ●

●

●
●

●
● ●

●

●

●

●
●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●
●

●
●

● ●●●
● ●
●

●
●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●
●

●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●
●●● ●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●● ●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ZLifting

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●● ●

●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●
●

●
●●●

●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
●●● ●

●
●

●

●

●
●●●

●

●

●

●

●
●

● ●
●

●
●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●
●●

●
●

●
●

●

●

●

●● ●
●●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●
●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●
● ●

●

●

●●●

●

●
● ●● ●

●

●

●

●
●

●●

●

●

●
●

●
●●

●●
● ●

●

● ●

●
● ●

●

●

●
● ●● ●●

●
●

●● ● ●
●

●

●

●
●

●●

● ●
●●

●●
●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●●
●

●

●

●
● ●

●

●

●

●●

●●

●

●

●

●●

●

●
●● ● ●

●

●●

●
●

●●
● ●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●
●
●

●
●●

● ●

●

●
●

●●
●

●

●

●

●
●

●

●
●●

● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

● ●
●

●

●
●

●

●
●

●

●
●

● ●
●● ●

●● ●
●

●
●

●
●

●
●

●●
●

● ●
●● ●

●
●●
●

●

●
●

●

●●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●
●
●●

●

● ●

●

●●
●

●

●

●
●●

●
●

●

●

●
●

●
●

●
●●

●

●
●

●
●

●

●
●

● ●●
●

●

●
●●

●
●

●
●

●

●
●

●

●

●

●●
●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●●

●
●

● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●
●

●
●

●

●
●

●
●●

●●

●

●● ●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●●● ●● ●

●● ●

●

●
●

●
● ●

●

●

●

●
●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●●●

●
●

●
●

● ●●●
● ●
●

●
●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●
●

●
●

●

● ●
●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●
●

●

●

●

●
●

● ●

●●
●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●
● ●●

●

●

●

●

●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●
●●● ●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●● ●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ZLifting2

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting2

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ALifting

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●
●

●

−2 −1 0 1 2

−2

−1

0

1

ALifting2

●
●

●

● ●

●●

●

●
●

●

●

●

●

●

●●●
●

●● ●

●

●

●●

●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●

●●
●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●
●

●

●
●●

●● ●
●

●

●
● ●

●
●●

●
●●
●

●

●

● ●
●● ●

●
●

●
●

●
●

●

●●
●

●

●●
●

●

●

●

●

●

●●●

●

●●

●

●
●

●

●
●

●

●

●
●
●●

●
●

●

●
●

●

● ●
●

●
● ●●

●
●

●
●

●

●

●
●

●

●

●
●●

●

●
●●

●

●
●

●

●

●●
● ●●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

NLT

Figure 6.6: Updated results for a single realisation of the five-component normally dis-

tributed data with low variance. Scatter plots illustrate the clustering solution chosen by

different methods.

6.4. Simulation study 129

92
1

98
7

96
3

95
5

98
6

82
2

80
6

81
7

87
5

90
0

83
1

80
7

83
3

90
5

80
2

85
5

98
5

96
7

83
2

95
7

96
5

96
6

87
9

81
0

85
3

88
8

89
5

84
4

82
0

80
5

82
1

90
2

81
3

90
7

81
5

89
7

95
8

95
9

92
6

94
7

95
4

93
7

95
1

99
0

99
1

84
1

85
6

88
0

86
6

92
4

83
0

94
6

91
0

88
4

80
1

90
3

97
5

97
7

99
8

96
1

97
4

84
9

87
3

89
8

95
0

85
7

98
4

81
4

92
8

97
9

82
5

87
4

92
2

84
7

10
00 85

0
84

2
93

5
90

1
82

4
86

2
92

5
83

5
92

0
98

3
85

2
99

9
87

0
89

2
93

1
99

5
91

4
89

4
88

9
99

2
85

1
88

6
90

6
91

8
93

6
81

2
97

8
87

8
88

3
83

9
85

8
94

5
98

8
99

3
84

6
93

8
98

1
89

1
89

9
84

0
94

3
91

1
98

9
80

9
83

6
92

9
91

9
94

8
98

0
98

2
86

4
81

1
94

9
91

5
86

1
93

9
96

9
97

2
86

9
87

2
86

0
80

3
86

5
87

1
89

0
80

4
82

8
81

6
95

6
99

6
92

7
81

9
82

3
88

5
97

3
89

3
87

6
89

6
86

7
93

4
97

6
82

7
96

2
94

2
85

9
94

1
96

8
83

4
94

0
90

8
93

2
83

8
86

8
99

4
92

3
96

0
84

5
80

8
91

7
99

7
84

3
90

4
95

3
95

2
82

9
96

4
88

7
82

6
84

8
88

2
91

6
85

4
81

8
91

3
87

7
86

3
93

3
91

2
88

1
93

0
94

4
97

1 71 13
3

19
6

20
0

18
0

15
6 43 23 14
1 56 90 14
3

12
7 24 16
4 62 21 12
6

16
6

19
7 34 19
0 89 10
5 73 17
7

16
8

13
6 92 95 17 28 12
8

16
5 53 54 41 12
5 31 17
5

11
3

13
9

11
0 13 63 29 17
6

19
2 5 52 85 10
7

10
0

10
8 79 10
4 64 97 36 81 47 13
0 22 32 11
1

12
0

19
5 20 35 11
4

18
2 69 39 16 6 14
6 76 65 11
6

11
8 80 10
9

12
3

15
8

14
2

10
3

14
9

13
1

18
5 1 46 77 37 12
4 18 96 9 30 18
6

13
8 2 44 11
7 7 57 16
7

10
2 50 70 14
8

15
3

18
4 10 72 12
2 84 14
5

19
4

18
7 91 38 15
5 75 87 66 13
2

16
2 11 60 98 16
1 4

15
2 86 15
7 99 59 82 14
0 12 42 19 48 13
4

17
4 3

16
9

13
5

13
7

10
6 88 93 18
3 68 14
4 33 18
9

15
4 67 15
9 94 15
1

18
8

17
0

16
3 40 78 74 17
3

19
8 15 55 83 45 11
5

11
9

18
1 58 19
9 61 15
0 8 14 25 10
1

11
2

17
2

14
7

17
9

17
8 49 51 27 16
0

19
1

12
1

12
9 26 90
9

19
3

17
1

83
7

40
1

53
8

46
3

53
3

46
9

43
0

54
0

44
2

50
0

56
6

53
7

54
3

41
9

41
1

48
2

51
4

47
2

48
4

59
2

42
5

47
5

49
7

52
0

45
4

45
5

59
3

50
5

55
3

56
2

45
2

43
2

54
5

56
5

51
9

44
3

56
0

46
4

47
4

49
2

49
0

57
6

44
1

49
4

47
7

51
2

52
9

58
3

40
6

42
4

52
8

53
1

57
5

59
6

45
0

59
8

46
1

60
0

59
9

42
1

57
9

46
2

56
4

52
5

44
9

53
0

42
3

50
6

55
5

52
6

43
4

48
7

51
0

40
9

48
9

48
0

41
6

51
7

58
0

50
9

42
8

40
4

57
7

58
5

45
8

52
1

42
9

44
6

47
1

57
2

57
3

58
1

52
2

46
7

54
2

44
0

52
4

50
1

58
7

40
3

54
1

51
3

47
6

52
7

41
3

50
8

43
9

57
0

42
6

56
9

46
5

49
3

47
9

53
2

51
1

57
1

40
2

59
7

53
6

58
9

40
5

45
6

49
6

50
4

47
3

47
8

48
5

59
1

45
9

46
8

59
4

54
4

50
2

56
3

51
8

55
2

55
9

54
7

58
8

53
9

58
4

54
6

44
8

43
6

46
0

58
6

43
5

57
8

45
7

46
6

43
7

54
8

58
2

57
4

44
4

42
0

43
8

55
8

48
8

51
6

59
0

59
5

42
2

56
1

40
7

41
4

41
0

49
9

49
8

53
5

41
2

45
3

41
8

56
7

40
8

54
9

48
3

55
4

49
5

50
3

56
8

43
1

52
3

47
0

55
0

41
5

48
1

50
7

43
3

53
4

44
5

51
5

55
6

49
1

55
7

42
7

45
1

41
7

25
4

39
5

35
7

20
2

37
6

21
5

23
9

25
8

35
3

20
4

20
3

26
0

28
0

32
8

27
9

29
2

36
5

24
7

29
6

22
1

26
7

38
0

32
2

34
8

36
9

22
0

34
7

35
4

24
1

30
7

33
0

22
9

23
3

35
0

26
1

26
3

32
5

20
7

26
2

33
7

33
2

38
5

27
3

22
8

32
4

34
9

39
7

21
4

36
1

21
0

29
1

20
9

26
6

29
7

39
8

37
8

39
9

25
7

32
1

23
2

20
6

39
3

39
4

21
1

39
6

36
7

40
0

22
7

28
8

30
4

21
8

37
4

29
0

28
5

25
9

30
1

36
0

31
9

20
1

28
1

39
2

27
5

33
9

29
3

36
4

26
9

38
3

35
6

27
2

36
8

38
2

22
3

23
7

23
8

27
4

38
9

26
4

28
3

24
8

29
9

37
9

39
1

21
6

29
5

26
8

30
0

26
5

30
3

23
1

21
3

27
0

25
3

37
0

33
6

35
1

35
8

38
4

24
4

33
8

34
1

31
7

33
3

24
3

32
6

27
8

32
9

25
0

37
5

23
5

30
2

29
8

35
2

36
6

33
1

25
6

38
1

27
1

34
2

21
9

31
4

25
2

22
6

33
5

35
9

31
0

31
1

28
7

31
8

24
6

37
1

23
0

28
9

35
5

31
2

36
2

30
9

38
6

38
7

34
6

23
4

31
5

31
6

33
4

30
6

30
8

34
5

25
5

21
7

29
4

32
0

36
3

38
8

32
7

24
2

32
3

22
5

25
1

30
5

34
4

24
9

37
7

20
8

34
0

34
3

24
0

28
4

24
5

37
3

28
6

37
2

20
5

28
2

22
2

21
2

23
6

39
0

22
4

31
3

27
7

44
7

55
1

71
2

71
3

73
4

62
5

78
7

71
9

63
8

64
4

68
4

68
0

78
2

72
0

76
5

63
3

74
2

67
6

70
7

75
4

79
7

67
1

70
2

76
6

63
9

70
4

72
1

79
4

79
5

61
5

68
9

64
7

69
8

64
6

63
1

78
6

62
2

66
1

70
0

75
1

62
6

65
8

67
7

65
1

65
7

69
3

68
1

76
3

76
9

65
6

66
4

71
1

73
6

78
8

61
3

61
0

65
3

72
8

63
0

70
1

77
3

60
4

64
8

61
4

70
9

74
4

71
0

63
2

64
1

74
5

62
3

72
5

68
5

79
9

69
6

66
0

67
5

78
5

79
0

75
3

79
1

69
7

77
9

68
2

61
8

70
3

76
7

74
0

78
9

69
0

77
4

62
4

61
7

66
2

74
1

73
2

75
0

69
1

75
2

72
9

76
8

78
3

62
7

65
9

60
2

79
2

76
0

63
7

66
6

62
0

75
5

68
8

67
8

79
8

75
7

67
0

77
1

63
6

66
5

74
3

63
5

72
2

72
3

74
6

62
8

61
9

60
5

66
3

75
6

79
3

69
5

79
6

65
2

60
7

63
4

61
1

70
6

73
3

64
9

64
0

78
0

70
8

76
4

77
5

69
2

60
6

80
0

77
6

62
9

76
2

67
3

73
7

64
2

60
1

76
1

74
8

60
8

61
2

65
4

69
4

77
8

67
4

74
7

71
4

77
2

64
5

75
9

64
3

72
7

73
8

60
3

66
9

74
9

68
3

60
9

77
0

67
2

75
8

66
7

77
7

78
4

70
5

73
5

68
7

71
8

73
9

61
6

67
9

65
0

73
1

71
7

71
5

78
1

69
9

66
8

73
0

72
4

72
6

62
1

65
5

71
6

97
0

48
6

68
6

27
6

0

0

0

0

0

0
0

0

0

00
0

1
1

1

11
1

1

1

1
1 1

1 1

1

1

Figure 6.7: The dendrogram of our NLT algorithm for one realisation of the five-

component normally distributed data with low variance. Internal nodes are labelled with

the clustering probabilities colored with green, p ≥ θ, or red, p < θ.

130 Chapter 6. Generalisation of the threshold choice

Index Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

N 5 38 127 126 19 18 21 20 21

Purity 0.981 0.724 0.929 0.809 0.750 0.627 0.925 0.762 0.936

ARI 0.953 0.588 0.148 0.174 0.629 0.646 0.831 0.856 0.842

AVI 0.879 0.544 0.445 0.480 0.690 0.719 0.818 0.853 0.823

CompCheck 0.962 0.876 0.106 0.117 0.856 0.891 0.835 0.873 0.835

ClustCheck 0.962 0.612 0.809 0.991 0.678 0.679 0.902 0.904 0.918

CC 0.962 0.718 0.291 0.337 0.744 0.760 0.866 0.887 0.875

Table 6.3: Updated results of the comparison of CVIs for the five-component normally

distributed data with larger variation. First row is for the average number of clusters,

and others are for the average similarity scores.

6.4.2 Five-component normally distributed data with larger varia-

tion

The detailed discussion for different CVIs and our Lifting method for this data structure

can be found in Section 5.5.2. The threshold, λ, was fixed at 0.3 for our Lifting method.

The highest performance within the CVIs for this data structure was also for the CH index,

so we include the results of the CH index in the comparison study in this section. Box

plots comparing the different partitioning methods are shown in Figure 6.8. ZLifting and

ZLifting2 also show poor performance for this data structure. While there is some varia-

tion in terms of capturing the true components by ALifting method, this variation range

is narrower than our Lifting method. This small variation is disappeared with our NLT

algorithm. We also observe a considerable increase on the proportion of capturing the

true components by ALifting and ALifting2 compared to Lifting and Lifting2 methods,

respectively. When we check the average of external scores for each CVI from Table 6.3,

we see the increase on ALifting and NLT methods, and they capture over 80% of the

true partitioning in terms of ARI which is the highest performance after Mclust for this

data structure. We can also see the variation of λ picked by ALifting algorithm for each

repetition in Figure 6.9. While we set λ = 0.3 in our Lifting method, Figure 6.9 shows

that λ varies around 0.67. Our choice of λ for our Lifting method was much smaller than

the ones algorithm picked, so the variation of the number of clusters found by our Lifting

method is explained in this way.

When we check Figure 6.10, the variation of the number of clusters found by ALifting

or NLT is similar to our Lifting method, but as we discuss above, their performances are

higher than our Lifting method. When we compare the partitioning done by different

CVIs and our methods using scatter plots for one realisation from Figure 6.11, Lifting,

ALifting and NLT capture the main clusters, and they find some outliers and some small

clusters. Next to the scatter plot, we also present the dendrogram of the data set including

6.4. Simulation study 131

●●

●●●●●
●●●●●●

●
●
●●
●

●
●
●●
●●●
●●●

●●
●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●
●●●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●

●●●●●●
●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●
●
●●●

●

●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●
●●●●●●●●●●●●

●
●
●●
●●●●●●●●●●●●●●
●●

●

●●●●●●●●
●
●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●
●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●
●●●
●●●●●●●●
●
●●●
●●●●●●●●●●
●●●●
●●●●●●●●●

P
u

ri
ty

Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

0.2
0.4
0.6
0.8
1.0

●●

●●●●●●●●●●●

●
●
●
●●●
●

●●
●●
●
●●●●
●●●●●●●
●●●
●●●

●
●
●
●●●●

●
●
●●
●
●●●●
●
●●●●●●●●●●●

●
●●●
●
●
●●●●●●
●

●
●
●●●
●●●●●
●●●●●
●●●●●●●●●●
●●●
●
●●●●●
●●
●
●●●●●
●●●●●
●

●
●
●●
●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●
●

●●●
●

●

●●●
●
●
●●●●●
●

●
●
●

●●●
●●●●
●
●●●●●●
●●
●●●
●
●●
●
●
●
●
●●●●
●●●●●
●
●●●
●
●●●
●●●●
●●●
●
●●●●●●●●
●
●
●●●

●

●●●●●●●
●●●
●

●
●

●
●●●
●●
●
●●●●
●●
●●
●●●
●
●
●●●●●
●●●●●
●
●

●
●
●●
●
●
●
●
●●●●●
●
●

●
●●●
●●●●
●
●●●●●
●●●●●
●●
●●●
●●●

●
●●●●●
●●
●
●●●●●●●
●●
●●
●

●
●
●●
●●●●●●●●●●●
●
●●●●
●●●●●●
●●●●●
●

●●●●

●
●●
●
●
●
●●
●
●●
●
●

●

●
●
●●●●●●●●
●●●●●
●
●●

●●●
●
●●
●
●
●
●
●●●
●●●●●●
●
●
●
●●

●●
●●●●
●

●
●●●
●●
●●●●●●●●
●
●
●●●

●

●●●●●●●
●

●●
●
●

●
●

●
●●●
●●
●
●●●●
●●
●
●
●●●
●
●
●●●●●
●●●●●
●
● ●●●●●

●
●●●●●●●
●●●●
●
●●●●●●
●
●●●
●
●
●●●
●●●
●
●●●●●●●

●●●
●
●
●
●
●●
●●●●
●●●●●
●
●●●●●●
●●●●●
●●●●
●
●●●●●
●
●●●
●●●●
●●
●●
●●
●
●●
●●
●

●
●●●●●●●●
●●●●

●
●●●●
●
●●●●
●●●●●●●
●

●
●
●●●●●●
●
●●●●
●
●

●
●●●●
●●●●
●●●●

●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●

●

●●●●●●●●●●●

●●●●●●●●●●●

●●●●●●●●

●

●●
●●

●

●●●
●
●●●●●●
●
●●●●●

●

●●●●●●

●

●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●● ●●
●●

●

●●●
●
●●●●●●
●
●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●

●

●●●●●●●●●●●●●●

●●

●●●●●

●●●●●
●●●●●●● ●●●●●●●●●●●

●●●●●●●●
●●●●●●●
●
●
●●
●
●
●
●●
●
●●
●
●●●●●●●●●●●●●●●●●
●
●●
●●
●●●●
●●●●●●●●●
●
●●●●●●
●●●●●●●

●

A
V

I

0.0

0.2

0.4

0.6

0.8

●●
●
●
●●●●
●●●●●●

●

●●
●
●
●
●
●●●●
●

●●
●
●●●●

●●
●●
●
●●●●●●
●
●●●●●●●●
●●●
●●●

●●
●
●●●●

●●
●●
●
●●●●●●
●
●●●●●●●●
●●●●●

●●●●
●●●

●
●●
●●

●●
●●
●●

●

●
●
●
●
●●● ●●

●●●●

●

●
●
●

●●●●●●●●
●
●●
●●

●●●

C
o

m
p

C
h

e
c
k

0.2

0.4

0.6

0.8

1.0

●●

●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●
●
●●●●●●●
●
●

●

●●●●
●●●●
●
●●●
●●●●●●●●
●●
●
●●●
●●
●●●
●
●
●●●
●●●
●●
●
●●●●●
●●
●

●

●

●
●●●●●●●●●
●●
●
●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●
●
●●
●
●
●
●●
●●●●●●●●●
●
●●●●
●

●
●
●●●●

●

●●●●
●●●●●●●●●●
●

●

●
●
●

●
●●●●●
●
●●

●
●●●●
●
●●
●
●●●
●
●●●
●
●●●●●●●●●●
●●●
●
●

●●
●
●

●
●

●

●
●
●●
●
●●●
●●
●●
●

●●
●
●

●
●●●●●●●●●

●●●●
●
●
●●●●●●●
●
●

●

●●●●
●●●●
●
●●●
●●●●●●●●
●●
●
●●●
●●
●●●
●
●
●●●
●●●
●●
●
●●●●●
●●
●

●

●
●
●●●●●●●●●
●●
●
●●●●●●●
●
●●●●●●
●●●●●●●●
●
●●
●
●●
●
●
●
●
●●●●●●●●●●
●
●●●●
●

●●

●●●●

●

●●●●
●●●●●●●●●●
●

●

●
●
●

●
●●●●●
●
●●

●
●●●●
●
●●
●
●●●
●
●●●
●
●●●●●●●●●●
●●●
●
●

●●
●
●

●
●

●

●
●
●●
●
●●●
●●
●●
●

●●
●
●

●
●●●●●●●●●

●

●

●
●
●
●

●●●●●●●
●●●●●●●

●

●●●●
●
●●●

●

●●
●●
●

●●
●
●●●●●●●
●●●
●●●●
●
●
●

●

●

●
●●●●●●●●●
●
●●
●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●●●
●●●●●
●●●●

●

●●
●
●
●
●
●●●●
●

●●●●●●●
●●
●●●

●
●
●●●●
●
●

●

●●
●●●●
●

●

●●●
●

●
●
●
●●●
●●●
●●●●●

●

C
lu

s
tC

h
e

c
k

0.2

0.4

0.6

0.8

1.0

●●

●
●
●●●

●●

●
●
●●●●●●●●●
●
●

●
●
●●●

●
●
●
●
●●●●●●●

●
●●●●
●
●●
●
●●
●

●
●●●
●
●●●
●●
●●●●●
●●
●●●●●●●●
●●
●
●●●●●
●●●●
●●●
●●●●●
●

●
●●
●●●●
●
●
●●●●●
●
●●●●
●●●●●●●●●●●
●

●●●
●●
●
●
●
●
●●●●●
●

●
●
●

●●●●●●
●
●●●●●●
●●
●●
●
●●
●
●
●
●
●●●●
●●●●●
●
●●●
●
●●●
●●●●
●●●●●
●●●●●●
●
●
●●●

●

●●●●
●●●
●●●●
●

●
●●●
●●●●●●●
●●●
●●●
●
●
●●●●●
●●●●●
●
●

●
●
●●
●
●
●
●●●●●
●

●
●●●
●
●●●
●
●
●●●●●
●●●●●
●●
●●●
●●
●
●●●●●
●●●
●●●●
●●●●●
●

●
●
●●●●●
●●●●●●●
●
●●●●
●●●●
●
●●●●●●
●

●●●●●●●
●
●
●●●●
●
●

●

●
●
●●●
●●●●
●
●●●●●
●
●
●
●●
●
●●
●
●
●
●
●
●
●
●●●●●●
●
●●
●●

●●●
●●●
●

●
●●
●
●
●●
●●●●●●
●
●
●●●

●

●●●●●●●
●●
●
●

●
●

●
●●●
●●●●●●●
●●●
●●●
●
●
●●●●●
●●●●●
●
● ●●●●●●●●●●●●●

●●●
●●●●●●●●
●
●●●
●
●●
●●●●●
●
●●
●
●●
●
●

●●●
●

●
●
●
●●
●●●●
●●●●●

●
●
●●●●●
●●●●
●●
●●●
●
●●●●●
●
●●●
●●●●
●●
●●
●●
●
●●
●●
●

●
●●●●●●
●
●
●
●●
●
●
●●●
●●●●●●
●●●●●●●
●

●
●●●●●●●
●
●●●
●
●
●

●

●●●
●●●●●
●●●●

●

C
C

0.2

0.4

0.6

0.8

1.0

Figure 6.8: Updated box plot: the comparison of CVIs for the five-component normally

distributed data with larger variation.

the clustering pattern found for one repetition by our NLT algorithm in Figure 6.12; it

also places the clusters with high probability for this data structure.

132 Chapter 6. Generalisation of the threshold choice

●

●
●

●

●

●

●

T
hr

es
ho

ld
, λ

0.5

0.6

0.7

0.8

Figure 6.9: The variation of λ for the five-component normally distributed data with

larger variation.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−4
5
6−10
11−15
16−20

21−25
26−30
31−35
36+

M
clu

st
CH

ZLif
tin

g

ZLif
tin

g2

Lif
tin

g

Lif
tin

g2

ALif
tin

g

ALif
tin

g2

NLT
0

20

40

60

80

100

Figure 6.10: Updated bar chart: the comparison of number of clusters for the five-

component normally distributed data with larger variation. Legends illustrate the number

of cluster range. Vertical axis shows the percentage of replicates, and the horizontal axis

is for the different CVIs.

6.4. Simulation study 133

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Mclust

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●
●

●

●

●

●●●

●

●●

●

●

●●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

● ●
●●

●

●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●●

!

"

#

$
%

&
'

●
●

●
●

●

●●

−2 −1 0 1 2

−2

−1

0

1

CH

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●

●●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●

●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●

● ●

●

●

● ●●

●

●
● ●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●●
●●
● ●

●

● ●

●
● ●

●

●

●
● ●

● ●
●

●
●

●
● ● ●

●
●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●● ●

●
● ●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

● ●●●
● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●
●

●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ZLifting

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

● ●
●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●●
●

●

●

●

●

●
●

●

●● ●

●

●
● ●● ●

●

●

●

●

●

●●●
●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●
●

●

● ●
●
●●

●
●●●

●●

●
●

●
●

●

●

●

●● ●
●

●

●

●

●

● ●

●

●
●

●
●●

●
●

●

●●

●

●
●

●

●
●●

●

● ●

●
●

●●● ●

●

●●

●

●

●

● ●

●

●

● ●●

●

●
● ●

● ●
●

●

●

●
●

●●

●

●

●

●

●

●●
●●
● ●

●

● ●

●
● ●

●

●

●
● ●

● ●
●

●
●

●
● ● ●

●
●

●

●
●

●●

● ●
●●

●● ●

●

●● ●

●

●

●
●

●

●

●

● ●●●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●
●●

● ●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

● ●

●

●●

●

●

●●
●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●
●

●

●
●

●
●●

● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●
● ●

●

●

●

●

●
●

●●
●

●
● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●

●● ●

●
● ●

●

●
●

●
●

●
●

●●
●

● ●
●●

●
●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●
●

●●

●

●
●

●

●●
●

●

●

●
●●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●

●

●

●
●

● ●●
●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●●

●

●
● ● ●●
●

●
● ●

●
●

●

●

●●
●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
● ●● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●

● ●

●
●

●

●●●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●●

●
●

●
●

● ●●●
● ●
●

●
●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

● ●●

●

●●

●
●

●

●

●
●

● ●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●
●

●

●
●●

●

●

●

●

●

●●
●
●●

●
●

●●
●●

●

●

● ●

●
●

●

●

●

● ●●
●●

●●●

●

●

●
●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ZLifting2

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●

●

●

●

● !●

●

"

●

#

$
%&

'
●

●
●

●

●●
●

●

−2 −1 0 1 2

−2

−1

0

1

Lifting2

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

ALifting

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●

●

●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●

●

●

●

● !●

●

"

●

#

$
%&

'
●

●
●

●

●●
●

●

−2 −1 0 1 2

−2

−1

0

1

ALifting2

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●● ●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

● ●
●●

●

● ●

●

●

●

●
●

●●
●

●●

●

●

●
●

●

●

●

●
●●

●● ●
●

●

●
● ●

●

●●
●

●
●

●

●

●

● ●

●● ●

●
●

●

●

●
●

●

●●

●
●

●●
●

●

●

●

●

●●●

●

●●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●●

●

●
●

●
●●

● ●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

NLT

Figure 6.11: Updated results for a single realisation of the five-component normally dis-

tributed data with larger variation. Scatter plots illustrate the clustering solution chosen

by different methods.

134 Chapter 6. Generalisation of the threshold choice

19
6

20
0

18
0

15
6 43 23 14
1 56 90 14
3

12
7 24 16
4 62 15
0

86
3

93
3

91
2 61 8 68 14
4 33 18
9

15
4 67 15
9 94 15
1

18
8 40 78 90
9 74 17
3

19
8

17
0 98 16
1 4

15
2 86 60 21 12
6

16
6

19
7 34 19
0 89 10
5 73 17
7

16
8

13
6 92 95 17 28 12
8

16
5 53 54 41 12
5 31 17
5

11
3

13
9

11
0 13 63 12
3

15
8

14
2

10
3

14
9

13
1

18
5 1 46 77 37 12
4 18 96 9 30 18
6 29 17
6

19
2 5 52 85 10
7

10
0

10
8 79 10
4 64 97 36 81 47 13
0 22 32 11
1

12
0

19
5 20 35 11
4

18
2 69 39 16 6 14
6 76 65 11
6

11
8 80 10
9

13
8 2 44 11
7 7 57 16
7

10
2 50 70 14
8

15
3

18
4 10 72 12
2

14
5

19
4

18
7 91 84 38 15
5 75 87 66 13
2

16
2 11 15
7 99 59 82 14
0 12 42 19 48 13
4

17
4

13
5

13
7

10
6 88 16
3 3

16
9

18
3 93 15 55 83 45 11
5

11
9

18
1 58 19
9

88
1 14 25 10
1

11
2

14
7

17
9

49
7

52
0

45
4

45
5

59
3

50
5

55
3

56
2

45
2

43
2

54
5

56
5

51
9

53
7

54
3

41
9

41
1

48
2

51
4

47
2

48
4

59
2

42
5

47
5

44
3

56
0

46
4

47
4

49
2

49
0

57
6

44
1

49
4

47
7

51
2

52
9

58
3

40
6

42
4

52
8

53
1

57
5

59
6

45
0

59
8

46
1

60
0

59
9

42
1

57
9

46
2

56
4

52
5

44
9

53
0

42
3

50
6

55
5

52
6

43
4

48
7

51
0

40
9

48
9

48
0

41
6

51
7

58
0

50
9

42
8

40
4

57
7

58
5

45
8

52
1

42
9

44
6

44
0

52
4

47
6

52
7

41
3

50
8

50
1

58
7

40
3

54
1

51
3

47
1

57
2

57
3

58
1

52
2

46
7

54
2

46
5

49
3

47
9

53
2

42
6

56
9

43
9

57
0

51
1

57
1

40
2

43
0

54
0

44
2

50
0

56
6

53
6

58
9

40
5

45
6

49
6

50
4

47
3

47
8

48
5

59
1

45
9

46
8

59
4

54
4

50
2

56
3

51
8

55
2

55
9

59
7

53
9

58
4

54
6

44
8

43
6

54
7

58
8

46
0

58
6

43
5

57
8

57
4

54
8

58
2

45
7

46
6

43
7

44
4

48
8

42
0

43
8

55
8

51
6

59
0

59
5

42
2

56
1

40
7

41
4

41
0

49
9

49
8

53
5

41
2

45
3

41
8

56
7

40
8

54
9

48
3

55
4

47
0

55
0

41
5

48
1

50
7

49
5

50
3

56
8

43
1

52
3

44
5

51
5

43
3

53
4

55
7

83
7

55
6

25
4

39
5

35
7

20
2

37
6

21
5

23
9

25
8

35
3

20
4

20
3

26
0

28
0

32
8

27
9

29
2

36
5

24
7

29
6

22
1

26
7

32
2

34
8

36
9

22
0

34
7

35
4

38
0

24
1

20
7

26
2

33
7

30
7

33
0

22
9

23
3

35
0

26
1

26
3

32
5

33
2

38
5

27
3

22
8

32
4

34
9

39
7

21
4

21
0

29
1

20
9

26
6

29
7

39
8

37
8

39
9

25
7

32
1

23
2

20
6

36
1

39
3

39
4

21
8

37
4

29
0

28
5

21
1

39
6

36
7

40
0

22
7

28
8

30
4

25
9

30
1

36
0

31
9

20
1

28
1

39
2

27
5

33
9

29
3

36
4

26
9

38
3

35
6

27
2

36
8

38
2

22
3

23
7

23
8

27
4

38
9

26
5

30
3

23
1

21
3

27
0

25
3

37
0

33
6

21
6

29
5

26
8

30
0

26
4

28
3

24
8

29
9

37
9

39
1

35
1

35
8

38
4

24
4

33
8

34
1

31
7

33
3

24
3

32
6

27
8

32
9

25
0

37
5

23
5

30
2

29
8

35
2

36
6

33
1

25
6

38
1

27
1

34
2

21
9

31
4

25
2

22
6

33
5

35
9

31
8

95
3

31
0

31
1

28
7

36
2

91
3

28
9

35
5

31
2

30
9

38
6

38
7

34
6

23
4

31
5

31
6

33
4

30
6

24
6

37
1

23
0

30
8

34
5

25
5

21
7

32
0

36
3

38
8

32
7

24
2

32
3

29
4

22
5

72
4

25
1

30
5

90
4

34
4

24
9

37
7

93
9

96
9

86
1

87
8

88
3

83
9

85
8

94
5

98
8

99
3

89
1

89
9

84
6

93
8

98
1

84
0

94
3

91
1

98
9

80
9

83
6

92
9

91
9

94
8

98
0

98
2

86
4

81
1

94
9

91
5

97
2

86
9

87
2

86
0

80
3

86
5

87
1

89
0

80
4

82
8

81
6

95
6

99
6

92
7

81
9

82
3

88
5

97
3

92
1

98
7

96
3

95
5

98
6

82
2

87
3

89
8

95
0

85
7

98
4

81
4

92
8

97
9

82
5

87
4

92
2

84
7

10
00 85

0
80

6
81

7
87

5
90

0
83

1
80

7
83

3
90

5
80

2
85

5
98

5
96

7
83

2
95

7
96

5
96

6
87

9
81

0
85

3
88

8
89

5
84

4
82

0
80

5
82

1
90

2
81

3
90

7
81

5
89

7
95

8
95

9
92

6
94

7
95

4
93

7
95

1
99

0
99

1
84

1
85

6
88

0
86

6
92

4
83

0
94

6
91

0
88

4
80

1
90

3
97

5
97

7
99

8
96

1
97

4
84

9
84

2
93

5
90

1
82

4
86

2
92

5
83

5
92

0
98

3
85

2
99

9
87

0
89

2
88

9
99

2
85

1
88

6
90

6
93

1
99

5
91

4
46

3
89

4
91

8
93

6
81

2
97

8
16

0
19

1
89

3
87

6
89

6
66

8
99

4
73

0
83

8
86

8
86

7
93

4
97

6
82

7
17

8
96

2
53

3
87

7
96

4
94

2
85

9
94

1
96

8
83

4
94

0
90

8
93

2
80

8
91

7
99

7
84

3
92

3
96

0
84

5
20

8
95

2
46

9
34

0
34

3
24

0
24

5
88

7
82

9
42

7
94

4
49

1
28

4
82

6
84

8
88

2
91

6
85

4
68

0
78

2
72

0
76

5
66

2
74

1
73

2
75

0
69

1
75

2
72

9
76

8
78

3
62

7
65

9
60

2
79

2
76

0
63

7
66

6
63

3
74

2
67

1
67

6
70

7
75

4
79

7
70

2
76

6
63

9
70

4
72

1
79

4
61

5
68

9
79

5
64

7
69

8
64

6
63

1
78

6
62

2
66

1
70

0
75

1
62

6
65

8
67

7
65

1
65

7
69

3
68

1
76

3
76

9
65

6
66

4
71

1
73

6
78

8
61

3
61

0
65

3
72

8
63

0
70

1
77

3
60

4
64

8
61

4
70

9
74

4
71

0
63

2
64

1
74

5
62

3
72

5
68

5
79

9
69

6
66

0
67

5
78

5
79

0
75

3
79

1
69

7
77

9
68

2
61

8
70

3
76

7
74

0
78

9
69

0
77

4
62

4
61

7
62

0
75

5
68

8
67

8
79

8
75

7
67

0
77

1
63

6
66

5
74

3
63

5
72

2
72

3
74

6
62

8
61

9
60

5
66

3
60

7
63

4
61

1
70

6
73

3
64

9
64

0
78

0
75

6
79

3
69

5
79

6
65

2
70

8
76

4
77

5
69

2
60

6
80

0
77

6
62

9
76

2
67

3
73

7
64

2
60

1
76

1
74

8
60

8
61

2
65

4
69

4
77

8
67

4
74

7
71

4
77

2
64

5
75

9
64

3
72

7
73

8
60

3
66

9
74

9
68

3
60

9
77

0
67

2
75

8
66

7
77

7
78

4
70

5
73

5
68

7
64

4
68

4
62

5
78

7
71

9
63

8
71

8
73

9
61

6
67

9
81

8
22

4
69

9
37

3
97

0
65

0
73

1
41

7
93

0
17

2
71

7 49 51 28
6

37
2

20
5

45
1

71
2

71
3

73
4

71
5

78
1 27 28
2

22
2

12
1

12
9 26 21
2

23
6

72
6

39
0 71 13
3

97
1

65
5

62
1

19
3

40
1

53
8

17
1

31
3

27
7

44
7

55
1

71
6

48
6

68
6

27
6

0

0

0

0

00
0000
0
000
00
000
1

1

1
1

1 1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

Figure 6.12: The dendrogram of our NLT algorithm for one realisation of the five-

component normally distributed data with larger variation. Internal nodes are labelled

with the clustering probabilities colored with green, p ≥ θ, or red, p < θ.

6.4. Simulation study 135

Index Mclust H ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

N 9 6 142 141 4 4 20 20 20

Purity 0.894 1.000 0.978 0.450 0.797 0.789 1.000 0.821 1.000

ARI 0.280 0.959 0.033 0.035 0.458 0.458 0.316 0.316 0.315

AVI 0.366 0.882 0.292 0.301 0.543 0.543 0.568 0.569 0.567

CompCheck 0.293 0.952 0.030 0.030 0.888 0.888 0.280 0.280 0.279

ClustCheck 0.832 1.000 0.911 1.000 0.684 0.684 1.000 1.000 1.000

CC 0.494 0.975 0.164 0.172 0.758 0.758 0.529 0.529 0.528

Table 6.4: Updated results of the comparison of CVIs for the three-component concentric

circle data. First row is for the average number of clusters, and others are for the average

similarity scores.

6.4.3 Three-component concentric circle data

The details of the circle data are discussed in detail in Section 5.5.3, and the threshold, λ,

was fixed at 0.78. The highest performance within the CVIs for this data structure was for

the H index, so we include the H index results in the comparison study in this section. Box

plots comparing the different partitioning methods are shown in Figure 6.13. ZLifting

method finds many small clusters as expected, so allowing some departures from the

centroid may help us to increase the performance of our algorithm. Box plot comparison

illustrates that the wide range of variation occurred in partitioning the data by our Lifting

method is almost zero in ALifting and our NLT methods, but their performances are

lower than our Lifting method in terms of ARI. On the other hand, AVI tells that Lifting,

ALifting and NLT methods show similar performance to capture the true components, and

tabulated average of AVI scores in Table 6.4 support our discussion. All of the external

scores we compare agree that the highest performance of capturing true components is

shown by the H index. We can also see the variation of λ picked by the algorithm for

each repetition in Figure 6.14. While we set λ = 0.78 in our Lifting method, Figure 6.14

shows that λ varies around 0.42. Our choice of λ for our Lifting method was much higher

than the ones algorithm picked itself. Thus, ALifting algorithm underestimates the choice

of λ for this data structure. Even though ALifting algorithm decreases the variation of the

number of clusters found by our Lifting method, it finds a high number of clusters.

Figure 6.15 illustrates that ALifting and our NLT methods cluster the circle data over

ten clusters in all 1000 repetitions. We can check one possible partitioning found by

each method to visualize how these high number of clusters are located, so a scatter plot

comparison is given in Figure 6.16. While our Lifting method separates the middle and

outer circle components into couple of different clusters, ALifting and NLT divide these

components into many small clusters. We also provide the labelled dendrogram showing

the clustering scheme found by our NLT algorithm for one repetition in Figure 6.17;

136 Chapter 6. Generalisation of the threshold choice

●●

●

●●
●
●

●

●

●●

●●

●●

●●
●
●

●

●●●

●●

●●

●●●●

●●

●

●●

●

●●

●

●●

●●

●

●

●
●

●

●●

●

●

●

●

●●●

●●

●

●●●●●

●●●

●

●●

●
●
●
●

●●

●
●●
●

●

●●●

●
●

●●●●●●●
●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

P
u

ri
ty

Mclust H ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

0.5
0.6
0.7
0.8
0.9
1.0

●●●
●
●●

●

●●

●

●●
●
●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●
●
●
●
●
●●●
●●●

●
●●
●
●

●

●●●●

●

●
●
●

●

●

●

●
●

●

●
●

●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●
●
●●
●●●●
●
●●●
●
●●●●●●
●
●●●●●
●

●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●
●
●●●●●●●●●
●
●●
●●●●
●
●●●●
●
●●●●●●
●
●●●●●
●

●●

●
●

●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●●

●
●
●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●●●
●

●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●●

●● ●●

●
●

●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●●●

●

●●●●●

●

●●●●●

●

●●●●

●

●●●

●●
●

●●

●

●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●

●●

●

●

●

●●●●

●
●
●

●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●●●
●

●●●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●●●

●

●●●●

●

●●●

●●

●

●

●●●●

●

●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●●●●●

●●

●●

●●●
●
●●●●●

●●●
●●●●●● ●

●
●●●●●●●

A
R

I

0.0
0.2
0.4
0.6
0.8
1.0

●●●●●●●●●●●●●●● ●●●●●
●
●●●●
●●●●
●

●
●●●●●
●

●●●

●

●●●
●

●● ●●

●

●●●●●

●

●●● ●●●●●●●● ●●●●●●●●●

A
V

I

0.0
0.2
0.4
0.6
0.8
1.0

●

●●●

●●

●●

●●●

●

●
●●
●
●

●

●●
●
●

●

●
●
●

●

●

●

●
●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●
●●●●
●●●●●●●
●
●●●●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●
●●●
●●●
●
●●●●
●
●●●●●●
●
●●●●●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●●

●

●
●
●●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●
●
●●

●

●
●

●
●

●●

●

●
●

●

●

●●●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●●
●
●●
●

●

●
●

●●

●

●

●●
●
●●●

●

●
●
●●

●

●

●

●
●

●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●●
●
●

●●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●●

●

●

●

●●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●●

●●
●●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●
●●

●

●
●
●●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●
●
●●

●

●
●

●
●

●●

●

●
●

●

●

●●●

●

●

●

●
●

●

●●

●
●

●●

●

●

●

●

●●
●
●●
●

●

●
●

●●

●

●

●●
●
●●●

●

●
●
●●

●

●

●

●
●

●●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●
●

●

●

●●
●
●

●●

●

●
●

●

●

●

●●

●

●
●
●

●

●
●●

●

●

●

●●
●

●

●

●

●●
●
●

●

●

●

●
●

●

●

●

●●

●●
●●

●●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●●●
●●●●●●

●●●
●●●●●● ●●●●●●●●●

C
o

m
p

C
h

e
c
k

0.0
0.2
0.4
0.6
0.8
1.0

●
●●
●●●●

●

●
●●●
●
●●
●
●
●●
●
●●

●●●
●●●●

●

●●●

●

●●
●
●
●
●

●

●●●●
●
●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

C
lu

s
tC

h
e

c
k

0.4
0.5
0.6
0.7
0.8
0.9
1.0

●●●●●
●
●●

●

●●

●

●●
●
●●●●

●

●●●●

●

●

●

●●●●●●

●

●●●●●

●

●●●●
●●●●●●●●

●●

●●
●
●
●
●
●●●
●●●

●●

●●●
●
●

●

●●●●

●
●
●
●

●

●

●

●
●

●

●
●

●●
●
●●●●●●
●●●●
●●●
●
●
●●●●●●
●

●●●●
●
●●
●
●
●●●●●●●
●
●
●
●●
●

●●
●
●●●●

●

●●
●●●
●

●●
●
●●●●●●
●●●●
●●●
●
●
●●●●●●
●

●●●
●●●
●
●
●●
●●●●
●●●
●
●
●
●●
●

●●●
●
●●●
●●

●

●●
●●●

●

●

●

●

●
●
●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●●●

●●

●
●

●●●●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●
●
●
●
●

●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●

●●●●

●

●

●

●●

●
●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●●

●●

●●

●

●●

●

●●

●●●●●●

●
●

●
●

●●●●●

●●
●

●●

●

●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●
●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●
●

●●●

●

●●

●

●

●●

●●●

●

●●

●

●●

●

●●

●

●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●●●●

●

●●●

●●●

●●

●
●

●●●●●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●●●●

●
●
●
●
●

●●●●●●●●

●

●

●

●●●

●

●●●●●●

●

●

●●●●●

●

●

●

●●●●

●

●●

●

●●

●●●●

●

●

●

●●

●
●

●

●●●●

●●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●●●●

●

●●●

●●

●

●

●

●●●●

●

●

●●

●

●

●

●●●

●

●●

●

●●●●●●●

●

●

●

●

●●●

●

●●●

●

●●●●●●

●

●●

●●

●●

●

●●

●

●●

●●●●●●

●
●

●
●

●●●●●

●●
●

●●

●

●●●●●

●

●●●●●●●●

●

●

●

●

●●●

●

●●●●●●●

●
●

●●●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●●●●●●●●

●

●

●

●
●
●

●

●●

●

●

●●●
●●●●●●

●●●
●●●●●● ●●●●●●

C
C

0.2

0.4

0.6

0.8

1.0

Figure 6.13: Updated box plot: the comparison of CVIs for the three-component concen-

tric circle data.

the behaviour of the algorithm does not also change for this data structure. It places

the possible clusters with a high probability. Overall, the H index still captures the true

components with the highest performance (AVI≈ 0.88).

6.4. Simulation study 137

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

T
hr

es
ho

ld
, λ

0.40

0.45

0.50

Figure 6.14: The variation of λ for the three-component concentric circle data.

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−2
3
4−6

7−9
10+

M
clu

st
H

ZLif
tin

g

ZLif
tin

g2

Lif
tin

g

Lif
tin

g2

ALif
tin

g

ALif
tin

g2

NLT
0

20

40

60

80

100

Figure 6.15: Updated bar chart: the comparison of number of clusters for the three-

component concentric circle data. Legends illustrate the number of cluster range. Vertical

axis shows the percentage of replicates, and the horizontal axis is for the different CVIs.

138 Chapter 6. Generalisation of the threshold choice

●

●
●

●

●

●

●
●

●●
●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●
●
●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

Mclust

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

H

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●●●
●

●●●
●
●
●

●
●●●●
●●●
●

●
●● ●

●●●●●●●●●●●
●
●●

●
●●●●●●●

●●
●
●●●●
●
●
●

●
●

●●
●●● ●●
●●

●
●●
●●●●
●
●●●●●●
●●

●
●●●●●●●●●
●● ●●●●●●●●●●●●●

●
●
●●●●●●●

●●
●●●●●●●
●●●

●

●
●
●
●
●●●●
●●

●
●●

●
●●
●
●

● ●●●
●●●

●●

●
● ●●●●●●
●●● ●●

●
●
●●

●

●
●●●

●
●●●●
●●

●
●

●

●

●●●●
●

●●

−2 −1 0 1 2

−2

−1

0

1

2

ZLifting

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

● ●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●
●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●●●
●

●●●
●
●
●

●
●●●●
●●●
●

●
●● ●

●●●●●●●●●●●
●
●●

●
●●●●●●●

●●
●
●●●●
●
●
●

●
●

●●
●●● ●●
●●

●
●●
●●●●
●
●●●●●●
●●

●
●●●●●●●●●
●● ●●●●●●●●●●●●●

●
●
●●●●●●●

●●
●●●●●●●
●●●

●

●
●
●
●
●●●●
●●

●
●●

●
●●
●
●

● ●●●
●●●

●●

●
● ●●●●●●
●●● ●●

●
●
●●

●

●
●●●

●
●●●●
●●

●
●

●

●

●●●●
●

●●

−2 −1 0 1 2

−2

−1

0

1

2

ZLifting2

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●● ●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

Lifting

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●
●

●● ●

●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

● ●
● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●● ●● ●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

−2 −1 0 1 2

−2

−1

0

1

2

Lifting2

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●●

●

●
●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●●

●

●●

●

●●

●●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●
●● ●
●

●

●

●
●

●●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

● ●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

ALifting

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●●

●●

●

●
●●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●●●●

●

●●

●

●●

●●
●

●

●

●
●

●

●
●

●
●

●
●

●

●

●●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●
●

●

●
●

●
●● ●
●

●

●

●
●

●●

●
●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

ALifting2

●

●●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●●
●●

●

●●
●

●●●

●

●

●

●●

●●●
●

●

●

●●
●

●

●
●

●
●● ●

●●

●

●

●
●

●

●

●

●
●

●

●●
●

●

●

●
●

●
● ●●●●

●
●

●
●●

●
●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ● ●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●●

●

●

●

−2 −1 0 1 2

−2

−1

0

1

2

NLT

Figure 6.16: Updated results for a single realisation of the three-component concentric

circle data. Scatter plots illustrate the clustering solution chosen by different methods.

6.4. Simulation study 139

29 24
7 8

22
9

44
0

33
7

15
3

37
9

13
2

33
8 56 49 18
5

24
4 77 24
2

39
4

49
4

27
3 40 19
3

15
2

26
5 58 38
4 62 46
0

26
8

40
3

46
9

23
9

39
3

26
0 30 78 37
2

28
3 39 32
5

45
8

12
0

26
3 35 48
7 10 16
5

33
0 13 34
4

13
1

39
7

41
7

44
9

37
6

39
8

19
8

34
7

42
0

20
7

26
7

32
7 46 21 23
8

18
1

19
7

40
9

20
3

22
0 33 32
2

48
9

28
4

47
7 98 34
1

17
6 9

17
1

43
8

24
8

42
9

14
0 2 22 43 20
8

42
8 63 47
6

42
7

50
0

30
3

28
2

44
8 76 23
7

44
1 37 14 26 31
3 71 74 38
9

13
6 38 21
3

29
6 28 26
4

33
6

37
0 36 15
7

49
8

13
3

15
0

42
5

23
1

12
5 17 30
0

12
6

13
5

19
0

43
6 12 26
2

25
3

35
1 65 48
6

45
3

21
4

39
1

35
8

40
4

49
1 15 27
0

22
2

36
9

44
7

20
5

14
3 92 44
2

17
7

46
3

28
6

19
5

21
6

10
1

29
1

15
9 88 45
4

17
8

11
5

19
6

35
7

48
2 67 35
3

49
7 53 25
8

41
9

21
5

33
2

34
8 47 36
1 66 49
2

20
4

38
0 51 20
2 24 86 39
9

41
6

32
1

23
2

17
0

25
2

11
8

14
1

33
1

14
7

24
9

35
9 1

33
3

36
6

40
1

30
9

46
6

27
6

27
8

31
0

37
4

26
9

47
9 83 15
5

10
8

38
2

25
1

48
8

10
5

24
6

28
9 6

15
1 18 16
7

47
8

40
7 84 21
2

48
1

36
4

28
1

35
6

17
3

24
5

23
6

13
9 85 30
2

29
4

43
9

25
0

15
4

40
0

38
7

11
2

19
2

28
8

14
5

19
4

47
3

16
0

25
9

31
9

38
1

32
9

13
8

44
4

21
8

45
2

15
6

41
5

22
3

29
3

46
2

37
7

41
0

47
0

17
4

43
2

36
7

31
4

32
6 27 30
4

41
1

46
5

40
2

14
8

45
0

25
6

33
9

21
9

17
9

18
6 41 16
8

38
6

46
8

34
3

12
3

16
1

29
8

16
2

30
5 99 30
1

43
1 42 94 75 14
4

49
9

11
3

18
4

23
4 44 22
4

31
2 19 69 45
7

11
4 81 33
4

18
8

35
5

36
0

23
0

49
6

10
0

43
7

42
4

43
3

22
7

39
6

17
2 95 12
7

32
0

35
2

34
2

18
3

28
7 11 27
5

42
2

11
9

48
5 45 31
6

37
5

41
4

46
1

24
3

31
8

23
5

42
1 87 45
1

49
5

37
1

27
2

45
9 5

34
6 55 31
5

16
4 20 11
1

18
2

36
2 93 30
6

48
3 52 90 44
3 32 39
2 48 80 23 20
9

34
0

11
6

12
2

21
1

12
8

16
9 59 20
0

29
0

42
6

13
4

19
1

40
6

21
0 34 20
6

28
5

40
5

24
0

10
9 68 36
8

31
7

18
7

45
6 64 47
1 16 15
8 89 16
3

14
6

27
1

20
1

38
3

49
3

46
7

11
0 25 31
1

34
9

37
8

10
4

19
9 3

39
5

25
4

25
7 72 22
6

45
5

29
7

49
0

13
7

48
4

35
4

43
4

26
6 57 38
8

42
3 97 10
7

33
5

24
1 60 10
6

36
5

38
5

18
9

27
9

35
0

37
3

44
6

41
8

29
5

12
4

32
4

48
0 50 70 7 13
0

26
1

46
4

23
3 61 41
3 82 44
5

18
0

10
3

12
9

11
7

47
2

30
7

22
1

28
0

22
8

36
3

47
4

14
9

43
0

27
4 91 32
3

43
5 79 25
5

10
2

41
2

12
1

47
5 4 54 22
5

30
8

34
5 73 31 39
0 96 29
2

40
8

21
7

32
8

16
6

14
2

17
5

27
7

29
9

72
7

77
1

72
3

84
1

81
2

79
8

86
1

78
6

76
0

70
4

85
2

85
7

77
4

87
3

89
8

74
0

77
8

76
8

88
8

76
7

88
9

73
3

85
4

85
9

84
4

86
3

87
0

79
4

85
1

81
4

88
2

76
9

73
9

74
7

83
0

73
6

78
1

72
0

72
2

73
2

81
1

82
0

89
5

73
5

71
6

80
0

75
0

75
7

86
7

80
2

84
8

85
3

77
0

80
8

70
6

84
6

77
6

76
5

78
0

80
9

81
6

81
8

88
4

76
4

79
7

80
4

77
9

72
9

87
6

89
2

78
5

80
7

70
5

75
2

79
9

70
9

73
0

88
6

73
7

82
4

71
8

79
6

78
4

74
4

81
7

70
7

82
2

80
3

84
9

84
2

82
3

85
8

83
1

88
5

74
6

77
7

70
1

83
6

87
7

73
4

89
0

78
9

80
5

77
3

86
6

89
7

79
2

79
5

72
1

82
6

71
7

86
8

75
4

72
8

71
0

77
2

84
5

89
4

88
7

71
3

82
5

75
3

81
0

73
1

81
3

87
5

83
9

74
1

82
8

86
5

79
1

76
3

70
2

75
9

78
2

84
0

73
8

83
8

85
5

83
5

83
7

80
6

78
8

79
3

77
5

78
7

76
6

83
2

86
2

71
1

78
3

71
9

74
8

83
4

71
5

75
5

74
2

71
2

74
5

81
5

81
9

87
4

70
3

86
9

88
3

76
1

85
0

72
4

86
4

76
2

79
0

84
3

82
7

88
1

75
8

89
9

75
6

70
8

72
5

80
1

71
4

89
6

90
0

85
6

74
3

88
0

84
7

87
9

74
9

75
1

72
6

86
0

89
1

87
2

82
1

82
9

87
1

87
8

83
3

89
3

58
7

68
4

69
7

61
3

66
5

51
4

65
3

55
6

62
8

63
6

59
5

64
2

66
6

60
2

57
6

60
6

64
0

60
7

65
4

52
4

67
9

50
7

58
9

62
6

63
2

57
5

55
7

62
3

56
8

58
0

65
1

65
2

55
1

56
2

53
1

67
0

65
0

54
1

53
5

62
2

53
4

60
8

60
0

62
5

69
0

69
4

52
9

60
4

59
8

55
9

56
6

69
2

54
7

59
6

66
0

57
8

67
1

54
3

51
5

54
0

54
5

57
4

64
7

65
8

64
3

59
9

62
9

65
7

56
0

60
5

50
2

55
5

64
9

52
1

62
1

62
4

50
9

57
2

65
9

53
6

58
3

68
6

56
9

51
8

53
8

66
3

70
0

52
8

63
8

59
1

50
3

66
8

69
8

64
5

55
8

66
7

62
7

64
1

67
2

63
9

63
5

68
5

56
5

61
4

51
1

52
6

67
7

63
0

52
2

52
7

64
6

54
6

68
9

57
0

68
2

68
3

69
5

54
9

56
7

57
1

53
7

69
9

58
5

56
1

68
0

57
7

52
3

50
4

54
2

59
4

67
4

63
1

56
4

59
0

61
2

68
8

51
9

62
0

53
3

56
3

59
3

60
9

69
6

55
2

58
1

66
9

65
6

63
4

64
4

59
2

61
0

66
4

53
0

66
2

67
6

60
1

67
3

69
3

50
1

67
5

58
4

60
3

52
0

63
3

54
8

68
1

53
2

53
9

64
8

66
1

54
4

61
9

65
5

61
5

51
6

55
4

59
7

50
6

58
6

61
1

58
2

61
6

55
3

57
9

58
8

68
7

51
0

63
7

51
7

57
3

61
8

69
1

67
8

50
5

51
2

51
3

52
5

61
7

50
8

55
0

0

0

0

000 0

00 00

1 1
1

1 1 1
1 1

1

1

1

1

1

1
1

1

1
1

1

1

0.75

Figure 6.17: The dendrogram of our NLT algorithm for one realisation of the three-

component concentric circle data. Internal nodes are labelled with the clustering proba-

bilities colored with green, p ≥ θ, or red, p < θ.

140 Chapter 6. Generalisation of the threshold choice

Index Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

N 9 9 168 167 22 21 13 12 13

Purity 0.943 0.915 0.961 0.889 0.976 0.856 0.996 0.868 0.996

ARI 0.873 0.931 0.100 0.115 0.899 0.909 0.949 0.953 0.950

AVI 0.770 0.908 0.461 0.490 0.893 0.906 0.929 0.936 0.931

CompCheck 0.836 0.993 0.070 0.075 0.874 0.888 0.923 0.929 0.925

ClustCheck 0.968 0.910 0.817 1.00 0.974 0.974 0.997 0.997 0.997

CC 0.899 0.949 0.238 0.272 0.921 0.929 0.959 0.963 0.960

Table 6.5: Updated results of the comparison of CVIs for the six-component non-normally

distributed data. First row is for the average number of clusters, and others are for the

average similarity scores.

6.4.4 Six-component non-normally distributed data

The final artificial data structure we discuss is the one given in Section 5.5.4. We also

update our results for this data set adding the results for our ZLifting, ALifting and NLT

algorithms. The highest performance within the CVIs for this data structure was for the

CH index, so we include the CH index results in the comparison study. In addition, the

results of Mclust and our Lifting methods, λ = 0.145, take their place in this comparative

study. Box plots comparing the different partitioning methods are shown in Figure 6.18.

ZLifting method also finds high number of clusters in this data structure, so we check the

thresholded results to see if there is any improvement of capturing the true components.

The box plots illustrate that there is almost no variation observed in partitioning the data

by ALifting method, and the proportion of capturing the true components of the data

structure is higher than our Lifting method. The similar results with the ones for ALifting

are found for our NLT algorithm. When we check the average of external scores for

each CVI from Table 6.5, we see that ALifting and NLT capture around 95% of the true

partitioning in terms of ARI. Thus, the best performance for this data set is found by our

ALifting and NLT methods.

The average number of clusters is also much smaller than our Lifting method, and

we also see that the number of clusters are not varied as our Lifting method as seen

in Figure 6.19. In 70% of 1000 repetitions, both ALifting and our NLT algorithm find

number of clusters within the range [12−16]. When we check one example of partitioning

in Figure 6.20, ALifting method captures all of the components. It just divides one of the

components into three parts (the one placed in the lower right part of the plot). It finds

fewer outliers than our Lifting method, and it captures the tails of one of the components

placed in the upper left part of the plot better than the CH index. In this example, our

NLT algorithm behaves between ALifting and the CH index. While it behaves similar

with ALifting generally, it could not capture the tails of one of the component like the

6.4. Simulation study 141

●

●

●

●

●

●●

●

●

●
●●●●

●●●
●
●
●
●●
●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●

●

●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●

●

●●●●●●●

● ●

●

●

●●

●●●●●●●●●●

●●

●●●

●

●

●

●●●

●

●

●●●

●●

●

●●●●

●●

●

●●

●

●

●●●●

●

●●

●

●

●

●

●

●●●●●

●●●●

●

●●

●●●●●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●●●

●●

●

●●●

●●

●

●

●●●●●●

●●

●

●

●●

●●

●●●

●

●

●●

●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●●

●

●

●

●●

●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●

P
u

ri
ty

Mclust CH ZLifting ZLifting2 Lifting Lifting2 ALifting ALifting2 NLT

0.6
0.7
0.8
0.9
1.0

●●●
●
●
●●
●
●

●

●

●

●

●

●●

●●
●
●

●

●●●●
●

●

●

●●●

●

●

●●
●

●

●

●
●
●
●●●
●●●●
●

●

●●●●
●

●

●

●●

●

●

●

●

●
●

●

●●●
●●

●

●

●

●

●

●●

●
●

●

●●●
●

●

●●
●●

●

●●

●

●

●

●●●●

●

●

●
●●●●●
●●●●●●●●●●●

●

●●
●
●●●●●
●
●●
●
●●●●●●●●

●

●●

●

●

●

●
●●
●●●
●●
●●●
●●●●●
●

●

●
●●●

●

●●●●●
●
●●●●

●

●
●
●

●
●

●

●
●
●●●
●
●●●●
●●●
●
●●
●
●●
●●

●

●●
●●
●

●

●
●
●●
●●●

●
●
●●
●
●●●
●

●

●
●
●

●●

●●●
●
●●
●
●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●●●●●●●●●●●● ●●●●●●●●●●●

A
R

I

0.2

0.4

0.6

0.8

1.0

●

●●●
●
●

●

●
●●

●●

●

●●●

●●

●

●

●●●●●
●

●

●
●
●
●

●

●

●

●

●

●
●
●
●

●

●

●●
●

●

●
●●●

●●

●

●
●

●●
●

●

●

●

●

●
●
●
●
●

●●●
●
●

●

●

●●
●
●●
●

●●●●

●

●
●●

●

●
●●●
●●
●
●●

●

● ●

●

●●●
●
●●
●

●●●●●

●

●
●

●

●●●
●●
●●●

●

●
●
●●

●●●●●●●
●●●●●● ●●●●●●●●● ●●●●●●●●

A
V

I

0.5
0.6
0.7
0.8
0.9
1.0

●●●●
●

●
●

●

●
●

●

●●

●●
●

●●
●
●●
●

●●●

●

●

●●
●

●

●

●

●
●
●●
●●

●

●

●
●●●

●

●●●

●

●

●

●

●

●●●
●●

●

●

●

●●
●●
●●
●
●●

●●

●

●

●

●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●
●●●●●●●●●

●

●●●
●
●●●●●●●●
●
●●●●●●●●

●

●●●

●●
●

●

●

●

●
●
●

●

●●

●
●●●
●

●
●

●
●
●
●

●
●
●●●

●

●

●

●
●
●

●

●

●●●
●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●
●
●

●

●

●

●

●●

●

●
●

●

●
●
●
●

●
●

●

●●

●

●●●
●●
●

●
●
●●

●

●●●

●

●
●● ●●

●
●

●

●
●●●

●

●

●
●●●
●

●
●

●

●

●
●

●
●
●●

●

●

●

●●
●

●●

●

●●
●
●
●

●
●

●
●

●
●

●

●

●
●
●

●

●

●
●
●

●
●
●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●
●
●

●

●●
●●
●

●
●
●●

●

●●●
●

●
●
●

●●●●●●
●
●●●

●

●●●●●
●●●●●●
●●●●●●●●

●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

C
o

m
p

C
h

e
c
k

0.2

0.4

0.6

0.8

1.0

●
●
●
●
●
●
●●●●●●●●●

●
●●●●

●

●
●

●●

●●
●

●

●

●●●●

●

●●●

●

●●●●

●

●●

●

●

●●●●●●●

●

●●●●

●

●●●●

●

●

●●●
●

●

●
●
●●●●●
●

●●

●

●
●
●●

●

●●
●
●
●

●

●●

●

●

●●●●●

●

●
●●
●●●

●

●

●

●

●●

●

●●●

●

●●●
●
●

●

●

●
●
●
●●●●
●●●

●

●

●●●
●

●

●●

●

●

●●●

●

●●

●

●

●

●

●●
●

●

●

●●●●

●

●●●

●

●●●●●●

●

●

●●●●●●●

●

●●●●●●●●

●

●

●●●
●
●
●
●●●●●
●

●●

●

●●
●●

●

●●
●
●
●

●

●●

●

●

●●●●●

●

●
●●
●●●

●

●

●

●●●●●

●

●●●
●
●

●

●

●
●
●
●●●●
●●●

●

●

●●●
●

●

●●

●

●●●

●

●●

●

●

●

● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●

C
lu

s
tC

h
e

c
k

0.5
0.6
0.7
0.8
0.9
1.0

●●●
●
●
●●
●
●

●

●

●

●

●

●●

●●
●
●

●

●●●●
●

●

●

●●●

●

●

●●
●

●

●

●
●
●
●●●
●●●●
●

●

●●●●
●

●

●

●●

●

●

●

●

●
●

●

●●●
●●

●

●

●

●

●
●●
●
●

●

●●●
●

●

●●●
●●

●

●●

●

●

●

●

●●●●

●

●

●
●●●
●●
●●●●●●

●

●

●
●
●●●●●
●
●●●●●●

●

●●

●

●

●
●●
●●
●
●●
●●●●●●
●
●

●

●

●●●

●

●●●●
●
●
●●●●

●

●
●●

●

●

●

●
●●
●●●●●
●●●●
●
●●
●
●●
●●●

●

●
●
●●
●

●

●●
●●●●●
●●●
●
●
●
●●●

●

●
●●
●●

●●●
●
●●
●
●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●

C
C

0.2

0.4

0.6

0.8

1.0

Figure 6.18: Updated box plot: the comparison of CVIs for the six-component non-

normally distributed data.

CH index. Another illustration is done by drawing the labelled dendrogram of the data

set including the clustering pattern found by our NLT algorithm, given in Figure 6.21.

It locates the clusters at each node with high probability, but the probability of placing

a cluster at one of the node is 0.42 which is close to θ = 0.5. We may merge two sub-

clusters under this node if we follow a different path.

142 Chapter 6. Generalisation of the threshold choice

P
er

ce
nt

ag
e

fr
eq

ue
nc

y

1−5
6
7−11
12−16
17−21

22−26
27−31
32−36
37−41
42+

M
clu

st
CH

ZLif
tin

g

ZLif
tin

g2

Lif
tin

g

Lif
tin

g2

ALif
tin

g

ALif
tin

g2

NLT
0

20

40

60

80

100

Figure 6.19: Updated bar chart: the comparison of number of clusters for the six-

component non-normally distributed data. Legends illustrate the number of cluster range.

Vertical axis shows the percentage of replicates, and the horizontal axis is for the different

CVIs.

We can also see the variation of λ picked by our ALifting algorithm for each repetition

in Figure 6.22. While we set λ = 0.145 in our Lifting method, Figure 6.22 shows that

λ varies around 0.3. Our choice of λ for our Lifting method was lower than the ones

algorithm picked itself, so the performance of our Lifting method shows some variation

for each repetition. Thus, the variation of the number of clusters found by our Lifting

method is decreased by ALifting method, and the performance of the algorithm is slightly

increased.

6.4. Simulation study 143

●● ●●●●●●●● ●●●●● ●●●● ●●● ●●● ●● ●●●●● ●●●● ●●●●● ●● ●●●●● ●●● ●●● ●●●●●● ●●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●● ●●● ●●● ●●●● ●
● ●●●● ●●●●●●● ●●● ●

●●●●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●●●

−2 −1 0 1 2

−4

−2

0

2

Mclust

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●●●●●

● ●
●

●
●

−2 −1 0 1 2

−4

−2

0

2

CH

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●

●

●●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●●●●●●●
●

●●●●● ●

●

● ●●● ●●●●●

●

●

●

●●●●●● ●●●●●●

●

●

●

●

●●

●

●
●

●
● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●●
●●●

●
●●●●●●●● ●●●●

●● ●
●

●●

●
●

●

●

●

●●
●

●●●●

●

●

●
● ●●

●
●● ●

●●
●

●
●

●

●●●

●

●

●

●●
●● ●●●

●

●
●

● ●● ● ●
●●●● ●●●●●●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●
●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ●●

●●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●

●
●●●

●
●

●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●

● ● ●
●

●●● ● ●●●

●

●
● ●●

●
● ●●

●
●

● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●●●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●
●

●●●●●●● ●●●
●

● ●
●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●
●
●● ●

●
● ●

●● ●●● ●●● ●●●●●●
●

●●
●●

●
● ●● ●●

●
●●● ●●
● ●● ●

●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●●

●●● ●●●●
● ●●

●
●●●

●●● ●
●●● ●●● ●

● ●● ●●●● ●●
●

● ●● ●●● ●●●
●

●
●●● ●●● ● ●● ●●
●●●●●●
●

●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ●

●●● ●●●
●

● ●
●●●

●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●●● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●
● ● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−4

−2

0

2

ZLifting

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●

●

●●●●
● ●

●

●
●

●● ●●●●●●●
●

●●
● ●●

●
●

●●

●

●●●

●

●●●●●●● ●●

●
●●●

●

●
●

● ●
●

●●●
●

●● ●
●

●
●●●● ●●●●● ●●●● ●●●● ●●● ●

●

●●●●●● ●

●

●●
●

●●●●● ●●
●●●● ●●●●●●

●

●● ●●●●●●
●

●●●
●

●●● ●
●

●●●
●

●●●●●● ●

●

●●●●

●

●●
● ●

●●●●●● ●●● ●●●
●

●●●●●●●●● ●●●●●●

●

●●
●●

●●●● ●●●● ●●●●

●

●●● ●
●

●●●●●

●
●●● ●●

●

●

● ●●
●

●
●

●●
●●

●● ●
●

●●● ●

●

●●
●

●

●

●

●
●●

●
●

●
●●● ●●●●

●

●●●

●

●
●

●● ●●● ●● ●●

●

● ●●●●
●

●●● ●●●●● ●●● ●●
●

● ●

●

● ●●●

●

● ●●

●
●●

●

●●● ●

●

●●●●● ●●●●●●●
●

●●●●● ●

●

● ●●● ●●●●●

●

●

●

●●●●●● ●●●●●●

●

●

●

●

●●

●

●
●

●
● ●●

●

●●●●●

●

●

●●● ●●●●●●● ●●●
●

●●
●●●

●
●●●●●●●● ●●●●

●● ●
●

●●

●
●

●

●

●

●●
●

●●●●

●

●

●
● ●●

●
●● ●

●●
●

●
●

●

●●●

●

●

●

●●
●● ●●●

●

●
●

● ●● ● ●
●●●● ●●●●●●●

●

●

●●●

●

●
●●●● ●●

●

●● ●● ●●

●

●
●●● ●●● ●
●●●●●●●●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

● ●●●●

●

●●●

●

●●

●

●

●

● ●
●

●

●
●● ●● ●●

●●●●●●●● ●●●

●
●● ●●● ●

●

●
●●●

●

●●●
●●●

●

●●
●●

●

●

●
●●●

●
●

●●●
●●● ●● ●●●

●●● ●●●● ●●● ●● ●● ● ●● ●
● ●●●

●
●●

● ● ●
●

●●● ● ●●●

●

●
● ●●

●
● ●●

●
●

● ●
●●

●
●●●●● ●

●
●●
●

● ●●
●

●
●

●
● ●● ●●● ●

●
●● ●

● ●●●
●

●
●

●●●● ●●● ●
●

● ●●●
●

●●●
●● ●●

●
●●●

●

●● ●●●●
●

●●●● ●●●
●●

●●
●

● ●●
●●● ●

●
●

● ●
● ●●●●● ●●●● ● ●● ●● ● ●●

●
●

●
●● ●●●

● ●● ●● ● ●●
●●

● ●●
●

●●●●●●● ●●●
●

● ●
●●

●
●●●
●●●●●

●●●●
●●●●
●

●
●

●●●
●
●● ●

●
● ●

●● ●●● ●●● ●●●●●●
●

●●
●●

●
● ●● ●●

●
●●● ●●
● ●● ●

●●● ●●●
●

● ●
● ●●●●

●
● ●

●

●
●●● ●

● ●●●●● ●
● ●●●●

●●● ●●●●
● ●●

●
●●●

●●● ●
●●● ●●● ●

● ●● ●●●● ●●
●

● ●● ●●● ●●●
●

●
●●● ●●● ● ●● ●●
●●●●●●
●

●● ●●● ●●

●

●
● ●●● ●● ●●● ● ●● ●●●●

● ●●● ● ●●
●● ●

●●● ●●●
●

● ●
●●●

●●●
●●

●● ●●●● ●● ●● ●●
● ●●

●
●●●●● ●●●● ● ●

●
●

●
● ●●● ●● ●●● ●● ●●●● ●●

●
●

●●
●

● ●●●
●

●
● ●●

●●●
● ● ●● ●●● ●●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●
●●●

−2 −1 0 1 2

−4

−2

0

2

ZLifting2

●●
● ●●●●●●● ●

● ●●
●●●● ●●●

●
● ●●

●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
● ●

●
●● ●●●●●

●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●● ●●● ●●

●
●●● ●●●● ●

●●● ●●●●● ●●●
●

●●●
● ●● ●●
● ●

●●●
●

●●●●●● ●●●●●●
● ●

●

●●

●●●
●

●
●
●●
● ●

●●

−2 −1 0 1 2

−4

−2

0

2

Lifting

●●
● ●●●●●●● ●

● ●●
●●●● ●●●

●
● ●●

●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
● ●

●
●● ●●●●●

●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●● ●●
●

● ●●● ●●●● ●●●

●

● ●
● ●●●● ●●● ●●

●
●●● ●●●● ●

●●● ●●●●● ●●●
●

●●●
● ●● ●●
● ●

●●●
●

●●●●●● ●●●●●●
● ●

●

●●●

●●

 !
"

●

#$%
●

&'
●●

●●

−2 −1 0 1 2

−4

−2

0

2

Lifting2

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●●●●●

● ●
●

●

●●

−2 −1 0 1 2

−4

−2

0

2

ALifting

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●●●●●

● ●
●

●

●

●●

−2 −1 0 1 2

−4

−2

0

2

ALifting2

●●
● ●●●●

●

●●● ●
● ●●

●●●● ●●●
●

● ●●
●

● ●●● ●● ●●●●● ●
●● ●

●● ●●●●● ●● ●●●●
●

●
●

● ●
●

●● ●●●●●
●●

●

●●
● ●● ●● ●● ●●●● ●●● ●●●●● ●● ●● ●●●● ●●●●● ●●●●● ●

●

● ●●●●● ●●
●

● ●●● ●●●● ●●●● ●
● ●●●●

●

●●● ●●
●

●●

●

● ●●●● ●
●●●

●
●●●●● ●●●

●
●●●

● ●● ●●
● ●

●●●
●

●●●●●● ●

●
●●●●●

● ●
●

●●

●

−2 −1 0 1 2

−4

−2

0

2

NLT

Figure 6.20: Updated results for a single realisation of the six-component non-normally

distributed data. Scatter plots illustrate the clustering solution chosen by different meth-

ods.

144 Chapter 6. Generalisation of the threshold choice

71
2

72
6

66
8

70
5

63
8

77
7

67
2

72
0

67
3

73
7

65
0

68
8

69
5

75
6

68
9

70
4

61
5

64
6

72
1

69
1

61
8

66
4

65
1

73
2

75
0

64
7

65
8

63
3

67
1

65
6

69
8

79
4

61
3

78
8

77
9

70
3

71
1

73
6

75
3

79
1

69
3

74
2

62
6

68
2

69
7

79
5

67
4

74
9

62
2

63
1

79
7

78
6

62
7

76
0

60
2

65
9

63
7

67
7

76
6

70
2

71
0

64
4

76
2

66
1

70
0

70
7

65
7

61
0

67
6

75
4

75
1

65
3

69
4

77
8

75
2

66
2

75
9

66
9

74
1

78
3

69
9

62
3

72
5

72
9

76
8

71
4

64
1

69
6

72
7

73
8

60
3

64
3

74
5

60
5

67
5

78
5

62
4

69
0

77
4

66
3

79
9

60
8

77
5

60
1

61
6

60
6

72
8

77
6

80
0

74
8

76
1

61
2

66
6

79
2

68
1

76
3

74
4

63
9

70
9

76
9

62
8

77
2

64
5

66
5

67
0

66
0

63
6

68
5

67
9

68
4

65
4

76
4

61
7

65
2

74
3

79
8

72
2

67
8

79
0

73
1

63
5

75
7

75
5

79
6

69
2

64
2

62
0

79
3

76
7

72
3

74
6

68
3

77
1

74
7

72
4

78
1

63
0

74
0

70
1

71
9

78
7

77
3

78
9

62
9

61
4

62
5

63
2

64
8

77
0

62
1

60
4

61
9

75
8

60
9

66
7

68
6

70
8

78
0

65
5

71
5

64
9

70
6

73
3

60
7

61
1

63
4

71
8

78
4

64
0

73
5

71
3

73
0

73
9

78
2

68
7

76
5

71
7

68
0

50
0

52
7

47
6

50
8

44
2

52
4

41
3

44
8

58
6

55
8

54
0

56
6

53
9

54
6

58
4

44
0

46
0

43
5

58
8

43
6

41
8

55
6

40
9

43
4

40
3

48
9

51
0

54
1

42
5

47
5

50
1

40
4

57
7

58
5

53
0

58
7

46
4

56
2

51
8

55
2

49
0

45
5

49
7

56
5

51
4

53
7

41
9

47
2

50
5

52
0

59
3

45
4

55
3

54
3

47
4

49
2

57
6

48
4

59
2

42
3

50
6

55
5

42
8

44
5

44
9

52
6

57
1

57
4

46
1

52
2

41
5

50
7

59
4

59
1

53
2

46
8

50
2

51
9

45
9

56
0

40
2

58
0

40
6

59
8

59
6

42
4

53
1

57
5

52
8

41
1

48
2

45
0

59
9

44
3

45
2

57
3

58
1

50
9

51
1

43
2

54
5

56
3

55
7

46
2

57
9

56
4

52
5

44
4

60
0

46
7

54
2

47
9

49
3

46
5

47
8

55
9

59
5

53
8

54
4

47
3

48
5

48
1

41
6

51
7

53
6

58
9

40
5

45
6

47
0

49
6

42
6

57
2

47
1

50
4

56
9

48
8

59
0

59
7

45
7

46
6

43
9

42
1

42
0

43
8

51
2

52
9

47
7

57
8

44
1

49
4

58
3

51
5

42
9

45
8

44
6

52
1

48
0

48
7

51
3

41
0

49
9

45
3

54
7

46
9

41
7

43
0

57
0

58
2

43
7

55
0

41
2

53
5

51
6

54
8

41
4

40
1

49
8

27
6

42
2

56
1

48
3

43
1

49
5

52
3

50
3

55
4

40
7

53
3

54
9

49
1

56
7

40
8

53
4

56
8

42
7

46
3

48
6

43
3

84
7

12
78

12
96 95

2
11

32
12

83 89
8

92
8

10
00 83

4
12

64
11

65
12

74
11

40 96
7

12
06

12
88

12
50

10
20

12
81 90

7
10

07
11

52 82
1

10
70

10
52

11
54 89

5
12

90
11

28
12

86 83
1

95
7

12
56 91

1
10

50
11

20
12

97
11

27
12

99
10

61 82
8

87
1

82
2

11
82

10
96

12
54 99

6
10

88 84
0

81
1

98
2

12
10 96

8
11

49
11

48
10

11
10

64 80
4

94
5

10
41

11
26

12
36 95

5
10

23
11

25 98
1

96
9

97
3

11
18

10
06

11
04

12
84

12
82 92

2
85

6
98

9
11

02
10

13
12

00
12

23 88
8

10
49

11
37

11
99

11
30 85

8
10

47
10

21
10

14 92
6

98
7

12
52 80

5
10

05 98
8

10
35

10
09

11
62

12
92 88

2
92

1
98

6
12

17 83
3

12
25 95

9
12

05 85
3

10
02 90

6
12

12
11

57
10

34 87
4

91
7

11
64 81

2
98

4
95

0
11

63 84
1

85
1

87
8

95
1

10
44

12
46

12
87

10
01 84

5
12

37
10

42 81
8

12
26

10
97

12
48 86

0
10

22
11

23 82
5

12
08 80

8
92

3
10

74 94
7

93
7

85
2

10
60 87

0
86

3
94

4
88

5
91

2
10

12 86
5

89
4

80
3

10
39

10
51 95

6
93

1
12

02
11

17 82
7

12
40

10
72

12
27

10
08

10
04 84

2
11

45
10

46
11

94
10

40
10

38
11

92
10

89 97
5

99
3

10
24 88

4
11

77
11

98
10

67
11

07
11

56 81
6

12
21 91

9
84

4
91

5
11

76
10

37
12

77 96
5

12
38 89

7
12

09 80
2

10
15

11
51

12
47 88

3
12

67 84
9

11
69

12
80

11
39 81

9
99

9
85

4
90

2
10

75
10

84
10

55
11

24
11

34 90
3

89
1

94
8

10
80 86

1
11

19 84
6

12
63

10
76 85

5
12

93
11

46
12

61 80
6

12
55

12
69

12
18 84

8
11

58 97
7

12
43 90

5
12

58 89
9

98
5

11
95

12
95

11
01

11
85 96

3
12

34
11

00
11

03
11

84
12

11
11

42 99
2

11
41 99

1
10

29 92
4

91
8

10
77

10
87

12
35

11
08 91

4
93

3
97

1
11

50
11

22
11

90
10

30
12

57
11

47
12

94 86
9

11
74

11
79 83

6
86

6
11

59 90
0

12
19 95

8
81

7
96

6
87

2
11

61
13

00 83
9

92
9

94
9

12
14 95

4
11

05
10

27
12

33 88
6

11
66

12
59 93

9
99

8
10

68
10

78 86
7

98
0

12
45

10
86

11
73

12
13

10
58

12
89 92

7
12

91
11

38
11

89
10

10
10

16
12

39
10

03
11

93
11

78
12

76 94
6

12
68 94

1
11

81 96
1

10
62 80

1
10

91 89
0

11
88

12
22

11
97 94

0
11

13 86
2

10
45

11
68

12
65

10
32

12
16 93

5
11

36
11

43 88
1

10
56 87

6
11

16
10

43 85
0

92
5

97
9

97
8

93
6

97
2

10
65 99

5
90

1
10

93
10

92
12

85
10

53 80
9

10
59 81

0
11

83
12

53
12

79 88
9

11
67

10
73

12
20

10
98

12
32 87

5
81

5
11

10
10

66
11

15 93
8

82
6

11
96

12
72 87

9
10

36
10

57
12

31 80
7

84
3

85
7

90
8

11
21

11
60

11
55 99

4
12

60 83
5

11
86 82

4
99

0
11

14
10

79
11

75 85
9

11
44 82

9
11

11
12

03
11

06
10

85
11

72 97
4

11
91 83

2
12

41 98
3

11
09

10
90 96

0
11

31 91
6

11
35 99

7
81

3
10

25
10

95
12

49
10

31
10

71
11

33
12

15
12

30
12

71
12

73 88
7

10
82

12
07 86

8
10

26
10

48 93
2

90
4

12
75 82

3
89

2
10

63 92
0

93
4

97
6

89
3

96
2

87
3

87
7

89
6

10
18 83

0
10

99 91
0

10
83

10
28

12
01

12
51 86

4
11

29
12

04
12

42
10

81
11

71
12

98 82
0

94
3

94
2

12
29 83

8
10

54
11

53 90
9

10
17

10
33

10
94 81

4
93

0
12

44
10

69
12

24 95
3

88
0

96
4

11
12

12
62 97

0
11

87
11

80
12

70 91
3

11
70

10
19

12
28

12
66 83

7
24

3
35

3
25

8
29

8
31

7
23

9
27

1
34

2
23

7
21

5
23

8
21

7
33

3
36

1
38

2
24

4
26

8
25

5
30

0
20

5
28

3
33

9
35

6
28

9
26

9
36

4
34

6
38

6
38

7
38

3
31

2
35

5
27

5
36

0
36

8
20

1
39

2
30

9
29

3
31

0
38

8
34

5
21

6
38

4
35

8
30

8
35

1
31

1
29

5
34

1
22

3
28

5
28

1
22

5
29

9
24

8
35

4
36

9
22

0
34

7
39

4
24

1
32

8
34

8
25

9
37

4
40

0
31

9
22

7
36

7
21

1
23

2
28

8
30

1
39

6
37

8
39

9
25

7
20

3
30

4
26

0
26

7
33

7
39

8
27

2
35

9
37

0
37

9
21

8
29

0
20

6
32

2
28

0
39

1
28

6
31

5
33

4
23

4
31

6
22

4
25

3
26

4
33

8
30

6
25

0
32

0
27

8
32

9
27

9
29

2
30

7
26

2
21

3
22

1
36

5
21

0
29

1
23

1
24

7
39

7
20

7
26

6
29

7
29

6
20

9
24

6
37

5
23

0
26

5
30

3
27

3
33

0
21

4
32

5
26

3
33

2
38

5
22

8
34

9
32

1
22

9
32

4
38

0
27

0
20

8
33

6
28

2
37

1
36

2
37

2
31

3
25

2
28

7
36

3
30

2
36

6
25

1
23

5
35

2
32

6
25

6
38

1
33

1
23

3
39

3
26

1
35

0
20

4
27

4
38

9
27

7
37

6
39

5
37

7
24

9
20

2
25

4
35

7
21

2
29

4
31

4
31

8
32

3
24

5
32

7
24

2
21

9
34

4
22

2
23

6
34

0
34

3
22

6
33

5
24

0
30

5
37

3
28

4
19

3
45

1
16

6
19

7
18

6
10

0
13

0 2 69 18
5 81 18
2 21 12
6

11
4 9 30 13
1

10
5 20 10
8 36 39 18 96 37 12
4 34 89 19
0 95 92 73 12
0 50 11
1

16
7 57 16
4 70 18
1 47 32 19
5 16 22 35 15
3

14
8

18
4 76 65 14
6 6 17 13
6

17
7

10
2

12
3

15
8

10
3

14
9 24 84 72 11
7

11
6

11
8

10
9 28 16
8 54 80 90 12
7

14
2

19
6

14
3 88 10
7 93 85 91 10
6

13
7 4

15
7 98 16
1 60 77 46 86 1 18
7

14
5

19
4 29 19
2 97 17
6

10
4 64 5 52 79 15
2 45 11
9

11
5 14 99 26 15
6

20
0

18
0

13
5 25 10
1

17
4 7 75 66 87 12
2

16
5 44 13
2 10 12
8 63 16
3

17
0 62 11
0

12
5 13 53 94 15
1 83 16
2 12 42 38 13
8 31 19 82 15
4 11 48 41 13
9 59 17
5

11
3

14
0 33 51 17
2

17
1 43 49 18
9 67 15
9 55 15
5

12
9

13
4 15 14
7 40 78 74 14
4

16
9

17
3

12
1

18
8

19
8 68 17
8 3

17
9

19
9 58 23 18
3 61 27 71 16
0

19
1 56 15
0

14
1 8

11
2

73
4

39
0

13
3

14
46

14
47

14
45

14
44

14
48

14
50

14
51

14
53

14
42

14
43

14
40

14
41

14
78

14
79

14
80

14
82

14
85

14
86

14
84

14
87

14
83

14
88

14
89

14
81

14
90

14
91

14
92

14
96

14
97

14
94

14
95

14
99

15
00

15
01

14
98

14
75

14
76

14
74

14
77

14
73

14
93

14
59

14
61

14
55

14
57

14
60

14
62

14
63

14
65

14
67

14
68

14
69

14
70

14
54

14
56

14
71

14
52

14
64

14
49

14
66

14
58

14
10

14
11

14
09

14
08

14
13

14
14

14
12

13
97

13
98

13
96

14
00

14
02

13
99

14
04

14
05

14
06

14
07

14
01

13
94

13
95

13
82

13
83

13
84

13
86

13
87

13
88

13
79

13
80

13
78

13
81

13
77

13
85

13
89

13
92

13
93

13
91

13
90

14
23

14
24

14
25

14
20

14
21

14
19

14
18

14
16

14
22

14
26

14
27

14
29

14
30

14
34

14
35

14
33

14
36

14
37

14
31

14
32

14
39

14
38

14
28

14
03

14
15

14
17

13
06

13
07

13
08

13
10

13
11

13
09

13
13

13
12

13
02

13
04

13
03

13
05

13
01

13
14

13
23

13
24

13
19

13
20

13
21

13
17

13
18

13
16

13
27

13
28

13
26

13
29

13
15

13
51

13
52

13
54

13
50

13
53

13
55

13
48

13
49

13
61

13
62

13
63

13
66

13
67

13
68

13
65

13
64

13
58

13
59

13
57

13
60

13
73

13
74

13
75

13
70

13
71

13
69

13
76

13
72

13
37

13
38

13
39

13
36

13
35

13
33

13
34

13
45

13
46

13
47

13
44

13
43

13
41

13
42

13
30

13
32

13
31

13
56

13
40

14
72

13
22

13
25 71

6
44

7
55

1

0

0

0

00

00.42
00

01
1

1

1

1

1

1

1 1 111

Figure 6.21: The dendrogram of our NLT algorithm for one realisation of the six-

component non-normally distributed data. Internal nodes are labelled with the clustering

probabilities colored with green, p ≥ θ, or red, p < θ.

●●

●●

●

T
hr

es
ho

ld
, λ

0.24

0.26

0.28

0.30

0.32

0.34

0.36

Figure 6.22: The variation of λ for the six-component non-normally distributed data.

6.5. Real data example 145

Index Mclust Gap Lifting Lifting2 ALifting ALifting2 NLT

N 4 5 8 7 8 7 4

Purity 0.900 0.850 0.890 0.688 0.860 0.693 0.825

ARI 0.760 0.620 0.593 0.597 0.611 0.615 0.619

AVI 0.800 0.704 0.673 0.678 0.683 0.689 0.695

CompCheck 0.838 0.671 0.571 0.577 0.642 0.649 0.746

ClustCheck 0.803 0.751 0.825 0.825 0.765 0.765 0.689

CC 0.820 0.710 0.686 0.690 0.701 0.704 0.717

Table 6.6: Updated results of the comparison of CVIs for crabs data.

6.5 Real data example

Results for the crabs data, used in Section 5.6 are updated and summarized in this section.

The details of the data can be found in Section 5.6. In our Lifting method, we set the

threshold to zero, so our ZLifting and Lifting methods are the same. We compare the

results of Mclust, the Gap statistic (which had the highest performance in Section 5.6),

Lifting, Lifting2, ALifting and ALifting2. In addition, we also add the results of our NLT

algorithm in this comparison study by setting θ = 0.5 and P = 1000. Even though the

high number of paths (P = 1000) increases the computational load, we would like to

decrease the probability of locating a wrong cluster by a high choice of P . The threshold,

λ, found by our ALifting method is 0.67. Even though λ is noticeably larger than the

threshold we picked for our Lifting method, Table 6.6 illustrates that the performance of

ALifting is not much different than our Lifting method. There is only a small increase in

the performance of ALifting compared to our Lifting algorithm, and the number of clus-

ters found by both Lifting and ALifting algorithms are the same. Lifting and ALifting

methods find one cluster more than Lifting2 and ALifting2, so there are some outliers

captured by both methods. We notice that within our proposed methods, the NLT algo-

rithm has the highest performance in terms of the similarity measures. In addition, both

our NLT algorithm and Mclust find four clusters, but the partitioning can be different

since Mclust is a different clustering method. Overall, the performance of capturing the

true components by the Gap statistic and our NLT algorithm are almost the same. ALift-

ing finds seven clusters and some outliers, and this can be seen from the dendrogram of

the data, given in Figure 6.23a. Clusters found by ALifting are highlighted in the dendro-

gram, and the nodes, where clustering happen, are labelled with the denoised compactness

values. We also produce a dendrogram with the clustering pattern and labelled with the

clustering probabilities for our NLT algorithm, given in Figure 6.23b. We can easily see

that the number of small clusters found by Lifting and ALifting is eliminated by our NLT

algorithm. The probability of having a cluster at node 396 is 0.511 which is just above

θ = 0.5. When we compare the partitioning found by ALifting and NLT, ALifting divides

146 Chapter 6. Generalisation of the threshold choice

10
1

10
5

10
3

15
2

19
1

19
8

15
3

10
6

18
2

19
7

17
4

19
9

18
1

19
4

10
2

10
4

12
3

10
7

11
7

11
1

16
1

19
3

19
0

18
6

19
5

14
3

14
9

12
7

11
5

12
1

12
6

14
0

13
1

13
4

13
8

11
2

13
5

14
8

13
9

11
4

13
0

14
6

15
0

14
1

14
4

14
5

14
2

11
3

13
3

13
2

14
7

11
6

11
9

10
9

12
2

12
9

13
7

12
0

12
4

13
6

12
8

12
5

18
4

18
7

19
6

16
2

18
5

15
5

20
0

17
2

19
2

15
1

15
4

16
4

15
7

15
9

16
0

16
3

16
9

17
7

17
5

16
6

17
9

16
7

16
8

17
3

15
8

16
5

17
0

17
8

18
3

17
1

18
0

17
6

11
0

18
9

10
8

11
8

15
6

18
8 1 16 89 6 90 10
0 96 67 92 88 12 79 94 98 99 82 85 69 71 83 87 56 68 51 53 58 72 64 54 91 76 86 57 95 66 93 7 77 84 73 97 65 70 52 63 59 62 78 81 10 74 60 3 75 17 18 14 15 19 11 2 80 55 4 9 5 61 48 49 45 22 39 50 23 30 38 8 47 32 44 34 40 31 24 27 43 46 33 37 13 36 41 25 29 21 20 26 42 28 35

0 0

0
0

0

0

0

(a) ALifting.
10

1
10

5
10

3
15

2
19

1
19

8
15

3
10

6
18

2
19

7
17

4
19

9
18

1
19

4
10

2
10

4
12

3
10

7
11

7
11

1
16

1
19

3
19

0
18

6
19

5
14

3
14

9
12

7
11

5
12

1
12

6
14

0
13

1
13

4
13

8
11

2
13

5
14

8
13

9
11

4
13

0
14

6
15

0
14

1
14

4
14

5
14

2
11

3
13

3
13

2
14

7
11

6
11

9
10

9
12

2
12

9
13

7
12

0
12

4
13

6
12

8
12

5
18

4
18

7
19

6
16

2
18

5
15

5
20

0
17

2
19

2
15

1
15

4
16

4
15

7
15

9
16

0
16

3
16

9
17

7
17

5
16

6
17

9
16

7
16

8
17

3
15

8
16

5
17

0
17

8
18

3
17

1
18

0
17

6
11

0
18

9
10

8
11

8
15

6
18

8 1 16 89 6 90 10
0 96 67 92 88 12 79 94 98 99 82 85 69 71 83 87 56 68 51 53 58 72 64 54 91 76 86 57 95 66 93 7 77 84 73 97 65 70 52 63 59 62 78 81 10 74 60 3 75 17 18 14 15 19 11 2 80 55 4 9 5 61 48 49 45 22 39 50 23 30 38 8 47 32 44 34 40 31 24 27 43 46 33 37 13 36 41 25 29 21 20 26 42 28 35

0.069
399

0.247
398

0.511
396

0.765
392 0.925

389

0.744
394

0.857
3910.914

388

0.987
380

0.949
382

0.86
379

0.277
397

0.597
395

0.686
393

0.905
386

0.87
385

0.754
390

0.948
383

0.918
387

0.971
3840.976

381

0.511
396

0.744
394

0.597
395

0.918
387

(b) NLT.

Figure 6.23: The dendrogram of the crabs data including clustering pattern found by

ALifting and NLT. (a): internal nodes are labelled with the denoised compactness values.

(b): internal nodes are labelled with the agglomeration order colored with light blue and

the clustering probabilities colored with green, p ≥ θ, or red, p < θ.

this cluster into two clusters where NLT also gives a higher chance to locate clusters at

nodes 392 (p = 0.765) and 389 (p = 0.925). Another visual comparison is made by pairs

plots, given in Figure 6.24.

We have also tabulated the number of crabs allocated to different clusters by Mclust,

the Gap statistic, our NLT algorithm and ALifting in terms of true components, and given

in Tables 6.7a , 6.7c , 6.7d and 6.7b, respectively. While the rows illustrate the partitioning

found by different methods (Clusters, Di), the columns illustrate the true partitioning of

the crabs data (Components, Cj). Thus, column names are the combination of the colors

(Blue (B), Orange (O)) and gender (Female (F), Male (M)) of crabs. We have noticed

that all of them do similar partitioning, but ALifting finds some small sub-clusters for

orange crabs. Thus, the performance of ALifting is lower than others, and we also need

to remember that cluster D1 includes outliers found by ALifting (Table 6.7b). While all

four methods differentiate different colored crabs, none of them perfectly differentiate the

crabs in terms of their gender.

6.5. Real data example 147

Components, Cj

BM BF OM OF

C
lu

st
er

s,
D

i D1 13 50 0 1

D2 37 0 0 0

D3 0 0 6 49

D4 0 0 44 0

(a) Mclust.

Components, Cj

BM BF OM OF

C
lu

st
er

s,
D

i

D1 1 0 0 0

D2 0 0 0 2

D3 0 0 6 5

D4 0 0 4 10

D5 16 50 0 0

D6 33 0 0 0

D7 0 0 3 33

D8 0 0 37 0

(b) ALifting.

Components, Cj

BM BF OM OF

C
lu

st
er

s,
D

i D1 16 50 0 0

D2 33 0 0 0

D3 1 0 3 35

D4 0 0 10 15

D5 0 0 37 0

(c) The Gap statistic.

Components, Cj

BM BF OM OF

C
lu

st
er

s,
D

i D1 16 50 0 0

D2 33 0 0 0

D3 1 0 3 35

D4 0 0 47 15

(d) NLT.

Table 6.7: Tabulated number of objects in each cluster found by various methods in terms

of true clusters of the crabs data.

148 Chapter 6. Generalisation of the threshold choice

FL

−2 −1 0 1 2

●

●
●●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

● ●●
●

●

●
●

●● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

● ●

●
● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●●
●●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●●

●

●

−3 −2 −1 0 1

−2
0

1
2

●

●
● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●● ●
● ●

●
●

●

●

●

●

●

●

●● ●
●

●

●
●

●●●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

● ●●

●

●

−2
−1

0
1

2

●

●

●
● ●

●

●

●

●
●

●
●

●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●●●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

RW ●

●

●
● ●

●

●

●

●
●

●
●

●

●● ●
●

●
●
●●●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ● ●

●●

●
●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●
●● ●

●

●

●
●

●
●

●

●● ●
●
●

●
● ●●

●

● ●
●

●

●

●
●

●
●

●

●

●

●

●●

●

●

● ●

●

● ●●

●●

●
●

●

● ●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●

●
●

●

●

●● ●
●

●

●
● ●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●
●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

●●
●

●

●

●
●●

●
●●

●

●
CL

−2
0

1
2

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●
●

●

●

●●
●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●●
●

●

●
● ●

●
●●

●

●

−2 0 1 2

−3
−1

0
1

●

●
●
● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

● ●●●
●

●

●

●

●● ●

●

●●●

●

●

●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

● ●● ●
●

●

●

●

●●●

●

●● ●

●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

−2 0 1 2

●

●
●

● ●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●●

●● ●●
●

●

●

●

● ●●

●

●●●

●

●

●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●

●
●●

●

BD

Mclust

FL

−2 −1 0 1 2

●●

●

●

●●
●

●

●

●

●●● ●

●●●●
●●

●

●●

●
●

●

●●

●●

●
●●●

●
●

●

●

●
● ●

●

●

●●●

●

●

●

●●●●

●●●●
●●
●

● ●

●
●

●

● ●

●●

●
●● ●

●
●

●

●

●

−3 −2 −1 0 1

−2
0

1
2

● ●

●

●

●●●

●

●

●

● ● ●
●

●●●●
● ●

●

● ●

●
●

●

●●

●●

●
● ●●

●
●

●

●

●

−2
−1

0
1

2

●● ●

●

●
●

● ●
●

●
●
●●
●

●

●
●●

●●●

●
●

●

●●

●
●

●

●

●

●
●
●

●

●

● ●●

RW ● ● ●

●

●
●

●●
●

●
●

●●
●
●

●
●●

●● ●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

● ●●

● ●●

●

●
●

●●
●
●

●
● ●

●
●

●
●●

● ●●

●
●

●

●●

●
●
●

●

●

●
●
●

●

●

●●●

●

●

●

● ●●●

●

●
●●

●●
● ●

●

●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●●●

●

●
● ●
●●

● ●
●

●
●

●

●

●

●

● ●
●●

●

●

●
●

●

●
●

●

●

●

●

●

● CL

−2
0

1
2

●

●

●

● ●●●

●

●
●●
● ●

● ●
●

●
●

●

●

●

●

●●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●

−2 0 1 2

−3
−1

0
1

●

●
●

●

●●● ●

● ●
●
●
●

●
●●
●●

●

●
●

●

●

●

●● ●
●●●

●

●
●●

● ●

●

●●

●

●
●

●

●●●●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●

●● ●
●●●

●

●
●●

●●

●

●●

−2 0 1 2

●

●
●

●

●●●●

●●
●

●
●

●
●●

●●
●

●
●

●

●

●

●●●
●●●

●

●
● ●

● ●

●

●●

BD

Gap

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1
−2

0
1

2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

Lifting

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

Lifting2

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

ALifting

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

ALifting2

FL

−2 −1 0 1 2

●

●

●

●●

●

● ●

●●

●

●
●

●
●

●●

●

●
●

●●

●●●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

● ● ●
●

●

●
●

●

●
●

●

−3 −2 −1 0 1

−2
0

1
2

●

●

●

● ●

●

●●

●●

●

●
●

●
●

●●

●

●
●

● ●

●● ●
●

●

●
●

●

●
●

●

−2
−1

0
1

2

●
●

●
●

●
●

●
●

●

●●

●

●

●●
●●● ●●

●●
●●
●

●

●

●

●

●

●
●●

RW
●

●

●
●

●
●

●
●

●

● ●

●

●

●●
●● ●● ●

● ●
● ●

●
●

●

●

●

●

●
●●

●
●

●
●

●
●

●
●
●

●●

●

●

●●
●●● ● ●

● ●
●●
●

●

●

●

●

●

●
●●

●

● ●
●
●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
● ●

● ●

● ●
●

●

●

● ●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●
●●
●

CL

−2
0

1
2

●

●●
●

●

●

●●
●●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●●

●

−2 0 1 2

−3
−1

0
1

●

● ●
●

●

●●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
● ●

● ●

● ●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

● ●
●

●

●
●●
●

−2 0 1 2

●

●●
●

●

● ●
●

●
●

●
●

●

●

●
●●

●

●
●

●

●●

●

●

●●
●

●

●
●●

● BD

NLT

Figure 6.24: Illustration of partitions found by different CVIs for the crabs data.

6.6. Summary 149

6.6 Summary

In Chapter 5, we proposed a new method which automatically finds the number of clus-

ters in hierarchical clustering, and it also showed us exactly where clustering happens in a

dendrogram. The proposed method was based on the LOCAAT algorithm. The idea was

to find a general node value for each node in a tree and denoise these node values by lift-

ing. Thus, we suggested that we could use compactness values for each node, where we

defined the compactness as the average distance from the centroid. Then if the denoised

detail coefficients of a node and all its child nodes were zero or less than zero, we could

highlight this node to be exactly where one of the clusters happened. Denoising to zero

means all the objects below that node are placed in the centroid of the cluster, but we can

allow some departures from the centroid since some of the objects can be close enough

to the ones located in the centroid. Thus, we need to allow small departures from the

centroid. In Chapter 5, we picked the allowed magnitude of these small departures man-

ually. However, we prefer the algorithm to choose the tolerance parameter itself since we

would like our algorithm to place clusters automatically in a dendrogram. Hence, in this

chapter, we suggest that we can threshold the denoised compactness values using the idea

of universal thresholding which is explained in Section 2.10.2. We apply this idea to the

simulated data sets and real data set introduced in Chapter 5, and results are summarized

in Sections 6.4 and 6.5. In simulation study, we have done 1000 replication, and we set

the same threshold for each replicate when we apply our Lifting method. However, the

threshold may vary from one replicate to another one, and picking the threshold automat-

ically gets over this problem. Thus, we eliminate the arbitrary choice of a threshold by

ALifting method.

In this chapter, as well as comparing Lifting and ALifting, we also include ZLifting

(our Lifting method with zero threshold) in the comparison study. The results of ZLifting

support the idea of needing a threshold. It always finds high number of clusters in a data

set which means ZLifting finds small sized many clusters, but some of these clusters can

be combined. In this case, the idea of setting a threshold either manually or automatically

appears. Since manual choice of a threshold is an arbitrary choice, we can allow the al-

gorithm to pick the threshold itself. Our findings show that the automatic choice of the

threshold considerably increases the performance of our Lifting method. Results indicate

that ALifting method finds the best representative partitioning to true components after

Mclust for the five-component normally distributed data set. The best performance was

already expected for these data sets from Mclust since true components are normally dis-

tributed. For three-component concentric circle data, the performance of the algorithm

slightly increases in terms of AVI, but the average number of clusters increases. Thus,

in our Lifting method, we set the threshold parameter higher than what ALifting method

150 Chapter 6. Generalisation of the threshold choice

finds. The performance for the final simulation setting, six-component non-normally dis-

tributed data, increases substantially. When we applied our Lifting method, the best re-

sults were found for the CH index. However, now, ALifting method obtains the best

results for this data structure; it clusters over 90% of true components correctly. For the

real data set, the performance of the algorithm increases, and it finds a similar partition

found by the Gap statistic which has the highest similarity scores after Mclust.

In this chapter, we also propose the application of our algorithm using non-decimated

lifting transform (NLT) instead of using the standard LOCAAT algorithm. This provides

us with a different perspective to consider the location of possible clusters calculating a

probability of placing a cluster for each node. Thus, we have a chance to see how strongly

a cluster can be located on a node in the tree by this version of our algorithm. When

we check the results for each data structure, it finds the similar results to our ALifting

algorithm.

We have also tried different settings in the denoising stage: denoising with and without

artificial levels and normalization. We notice that assuming all detail coefficients come

from the same resolution level and applying Bayesian thresholding in this situation gives

the same results as applying Bayesian thresholding after setting artificial levels in the way

presented by Jansen et al. (2009). We have also tried the case of ignoring the normal-

ization step for Bayesian thresholding since Bayesian threshold assumes that the detail

coefficients come from a normal distribution with σ2 = 1, as explained in Section 2.10.3.

We find that normalization does not have an effect on denoising with artificial levels, but

if we denoise without artificial levels, normalization of the detail coefficients decreases

the performance of our algorithm slightly. However, assuming that the detail coefficients

come from the normal distribution with the required variance still gives the same results

with other settings.

Overall, our ALifting and NLT methods find exactly where clustering happens in hi-

erarchical clustering. Their performance for catching true components are always high

and are close to each other, but if a data set is uniquely shaped, they achieve the best

performance when we compare with other CVIs.

Chapter 7

Lifting on phylogenetic trees

7.1 Introduction

The relationships between different species are explained by phylogenetic trees; a de-

tailed discussion on phylogenetic trees and their basic properties was given in Chapter 4.

One popular question in phylogenetics is also to explore which organisms share the same

ancestor, which links well with our question in Chapter 5: where exactly does clustering

happen on a binary tree? A binary tree is tree structured data, where each node has at

most two child nodes. Hence, we can apply the algorithm we proposed in Chapter 5 and

expanded in Chapter 6 to phylogenetic trees.

In terms of phylogenetics, the purpose of our algorithm is to find where exactly the

cluster of related species are located using DNA sequences of different organisms. As

long as we have DNA sequences of different organisms, we can easily modify our al-

gorithm. Thus, in this chapter, we discuss how we rearrange the algorithm proposed in

Chapter 6 to find coherent clusters of species. After we describe these modifications in

Section 7.2, we continue with a sequence based simulation study and the application of

the algorithm on a real data set in Sections 7.3 and 7.4, respectively. We also check the

behaviour of our algorithm on cophylogenetic data sets in Section 7.5, where we first give

a small background discussion on cophylogeny and continue with the application of our

algorithm on two different real data sets. We finalize the chapter with a discussion of the

behaviour of our algorithm on phylogenetic data sets in Section 7.6.

7.2 Finding number of clusters for phylogenetic data

In this section, we introduce a modified version of the algorithm given in Chapter 6 which

we can use to analyze phylogenetic data sets. The proposed algorithm finds where exactly

clustering happens by denoising a tree using the ALifting algorithm. When we talk about

phylogenetic data sets, we basically refer to DNA sequences constructed by four different

151

152 Chapter 7. Lifting on phylogenetic trees

Species DNA sequences

s1 A C A A T T C T C G G G C G A C C T G A

s2 A C G G A G C C C T A A T T A C C T A C

0 0 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 1 1

Table 7.1: A small example of DNA sequences. The length of aligned sequences are

equal to 20. The third row shows the comparison of sequences: the position of different

nucleotides coded as 1 and the matching nucleotides coded as 0.

nucleotides: adenine (A), thymine (T), guanine (G) and cytosine (C). Thus, our data sets

are a number of sequences of different lengths constructed by various combinations of the

four letters, A, T, G and C. To have a better understanding of the process, we start with an

explanation of building a tree using the DNA sequences.

Firstly, we need to align sequences. An alignment procedure was explained in Sec-

tion 4.2, and sequences can be aligned using MUSCLE (Edgar, 2004). The package ape
(Paradis et al., 2004) in R allows us to call MUSCLE. Secondly, the distance matrix needs

to be determined for the aligned sequences, which could be measured using one of two

methods:

1. Matching distances. We find the pairwise matching distances between sequences

by counting the number of loci which have different nucleotides. Thus, the pairwise

matching distances between sequences, si and sj , are defined as

dsisj =

√√√√∑̀
k=1

1k, (7.1)

where

1k =

{
1, sik 6= sjk

0, sik = sjk,

where sik is the nucleotide at locus k in ith sequence, i, j ∈ {1, . . . , n}, n is the

number of sequences, and ` is the length of sequences after alignment including

gaps. We also need to note that sequences may have some gaps after alignment.

If there are any gaps in any position in any sequence, those loci are coded as zero

since we do not have the exact information for them.

We can illustrate how to find the matching distances between sequences using a

toy data set. Assume that we have two aligned sequences such as the example in

Table 7.1, where the third row illustrates the coded comparison of two sequences

s1 and s2. If two sequences share the same nucleotide in the same position, we will

code by zero, else we will code by one. There are 12 loci labelled as one. Thus, the

matching distance between species s1 and s2 is

ds1s2 =
√

12 ≈ 3.464.

7.2. Finding number of clusters for phylogenetic data 153

2. Phylogenetic distances. Another option of distance matrix calculation is to use one

of the evolutionary models described in Section 4.4. Phylogenetic distances can be

easily calculated using the dist.dna() function in the ape package (Paradis et al.,

2004) in R.

Thirdly, we can build phylogenetic trees using hierarchical clustering. Building the tree

provides two fundamental properties required for our algorithm: which species are joined

in each agglomeration stage and branch lengths between each node in the tree. The final

condition of our algorithm is a node value for each node in the tree. Some data sets may

come with a node value, but it is not always possible. Thus, we propose two different

node values for phylogenetic trees:

1. Compactness. We proposed a node value called compactness in Section 5.4. Our

definition of compactness was the average Euclidean distances from the centroid of

each cluster. We can still use the same definition for the compactness for phyloge-

netic data sets, but we need to do some pre-processing since DNA sequences are

not points in Rp. We start the algorithm with DNA sequences, so we need to find

the position of these sequences in some representative space. In this stage, we use

multidimensional scaling (MDS) to find coordinates of a point representing each

sequence in the space. To do this, we need to check eigenvalues to find how many

dimensions are needed to explain our data. Eigenvalues can easily be checked using

the eigen() function, and MDS can be applied using the cmdscale() function in R.

Then we can compute compactness for each cluster (each node in the tree) using

Equation (5.15).

2. Dissimilarity score. We propose that dissimilarity scores can be used as a node

value for phylogenetic trees. We basically compute the dissimilarities between each

sequence under the node of interest. We compute n − 1 different scores for a tree

since there are n− 1 nodes in a rooted tree. Thus, we can compute the dissimilarity

score for the node h, Dish, (h ∈ {1, . . . , n− 1}) in a tree using

Dish =
1

`

∑̀
k=1

1k, (7.2)

where

1k =

{
1, if any sik 6= sjk,

0, if all sik = sjk,

where sik is the nucleotide at locus k in ith sequence, si ∈ Ωh, and sj ∈ Ωh \ si, Ωh

represents the sequence space for sequences under the node h, and ` is the length

of sequences after alignment including gaps. We treat gaps in aligned sequences in

the same way we discussed earlier.

154 Chapter 7. Lifting on phylogenetic trees

Assume that two aligned sequences given in Table 7.1 share the same last common

ancestor (LCA). In this case, the dissimilarity score for this node is the average

number of loci where these two sequences have different nucleotides, so using the

third row of Table 7.1,

Dis = 12/20 = 0.60.

After finding node values, we are able to apply our Lifting algorithm for multidimensional

data sets introduced in Section 5.4.1 to phylogenetic data. For multidimensional data

sets, we proposed that we could use the compactness value as a node value. Then we

found the lifting transformation of compactness values by applying the lifting algorithm

described in Section 3.8.2. The lifting process was followed by a denoising stage using

the Bayesian wavelet shrinkage approach discussed in Section 2.10.3. In this way, we

obtained the denoised detail coefficients for each node in the tree. After denoising the

tree, we proposed that if any node, including all the nodes below it had denoised detail

coefficients less than or equal to a threshold, λ, we could treat them as one cluster since

all the species under that node would be placed around the centroid of the cluster. In

addition, we proposed ALifting algorithm which automatically picks the threshold, λ,

in Section 6.2. In ALifting, we find the clustering pattern using denoised compactness

values instead of using denoised detail coefficients. We will use the same procedure

for phylogenetic trees if compactness values are used as node values. In the case of

using dissimilarity scores as node values, the procedure is the same, but interpretation of

results is slightly different. Assume that we apply the ALifting algorithm. If a node in

a phylogenetic tree with all the nodes below that node have denoised dissimilarity scores

less than or equal to λ, we will interpret that all the species under that node create one

cluster since they share similar DNA sequences.

Example 7.2.1. To illustrate the mechanism of our algorithm on phylogenetic data sets,

we generate a toy data set which includes aligned DNA sequences of ten species with

length of 20. The aligned sequences are illustrated in Table 7.2. We will illustrate the

case if we use matching distances and dissimilarity scores as node values. To find the

distances between each pair, we count the different nucleotides in the same position of

sequences as we illustrate in Table 7.1 for DNA sequences of species s1 and s2. For

illustrative purposes, we can repeat the process for species e.g. s3 and s9. Table 7.3

depicts the loci of different nucleotides for species s3 and s9, so the matching distance

between these two species is d39 = 1.

After finding distances between each pair, the distance matrix, D, is generated and

7.2. Finding number of clusters for phylogenetic data 155

Species DNA sequences

s1 A C A A T T C T C G G G C G A C C T G A

s2 A C G G A G C C C T A A T T A C C T A C

s3 A G G A T A T C C G A G T T A C T T G C

s4 A G A A T A T T T G A A T T A C T C A A

s5 C C G A C A C T T G A G T G A T C C C C

s6 A C G G A T C C C C A A T T A T C T A C

s7 A C A A T A T C C G A G T C A C C T G A

s8 A C G A T A T T T G A G T T G C C T G A

s9 A G G A T A T C C G A G T T A C C T G C

s10 A C G G A T C C C C A A T T A T C T A C

Table 7.2: Toy phylogenetic data. The length of aligned sequences are equal to 20.

Species DNA sequences

s3 A G G A T A T C C G A G T T A C T T G C

s9 A G G A T A T C C G A G T T A C C T G C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Table 7.3: Aligned species s3 and s9. The third row shows the comparison of sequences:

the position of different nucleotides coded as 1 and the matching nucleotides coded as 0.

given in Equation (7.3).

D =

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

s1 0.000 3.464 3.162 3.317 3.317 3.464 2.449 2.828 3.000 3.464

s2 3.464 0.000 3.000 3.464 3.464 1.732 3.162 3.317 2.828 1.732

s3 3.162 3.000 0.000 2.646 3.317 3.162 2.236 2.449 1.000 3.162

s4 3.317 3.464 2.646 0.000 3.317 3.606 2.828 2.646 2.828 3.606

s5 3.317 3.464 3.317 3.317 0.000 3.317 3.317 3.000 3.162 3.317

s6 3.464 1.732 3.162 3.606 3.317 0.000 3.317 3.464 3.000 0.000

s7 2.449 3.162 2.236 2.828 3.317 3.317 0.000 2.236 2.000 3.317

s8 2.828 3.317 2.449 2.646 3.000 3.464 2.236 0.000 2.236 3.464

s9 3.000 2.828 1.000 2.828 3.162 3.000 2.000 2.236 0.000 3.000

s10 3.464 1.732 3.162 3.606 3.317 0.000 3.317 3.464 3.000 0.000

.

(7.3)

Since we have the distance matrix, we can easily build the phylogenetic tree using hierar-

chical clustering, and we use complete linkage in this illustration. The tree is built using

the hclust() function in R and given in Figure 7.1a.

Before starting the ALifting algorithm, we compute dissimilarity scores for each node

in the tree. The first joined pair on the phylogenetic tree is s6 and s10, and they gen-

erate node 11. The dissimilarity score for node 11 is based on the number of different

nucleotides in the same position of each species under node 11. Sequences for species

156 Chapter 7. Lifting on phylogenetic trees

s3 s9 s7 s8 s4 s1 s5 s6 s10 s2

0
1

2
3

4

Agglomeration Order

19

1817

16

15
14

12

13

11

(a)

s3 s9 s7 s8 s4 s1 s5 s6 s10 s2

0
1

2
3

4

Dissimilarity Score
Denoised Dissimilarity Score

1
0.77

0.9
0.858

0.75
0

0.55
0

0.4
00.25

0

0.05
0

0.15
0

0
0

(b)

Figure 7.1: Illustration of the toy phylogenetic data with the results of our ALifting

method. (a): the nodes are labelled with the agglomeration order started from n+1 = 11,

where n = 10. (b): the nodes are labelled with the results of our ALifting method.

Species DNA sequences

s6 A C G G A T C C C C A A T T A T C T A C

s10 A C G G A T C C C C A A T T A T C T A C

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 7.4: Aligned species s6 and s10. The third row shows the comparison of sequences:

the position of different nucleotides coded as 1 and the matching nucleotides coded as 0.

s6 and s10 with the sign vector which spots the place of different nucleotides between

these two sequences are given in Table 7.4. These two sequences are identical, so the

dissimilarity score for node 11 is Dis11 = 0/20 = 0.

We find dissimilarity scores for each node using the same method. If an internal node

in a tree includes more than two species, calculations will be exactly the same. For ex-

ample, Figure 7.1a illustrates that node 11 and species s2 join in the third agglomeration

stage and generate node 13. Node 13 has three species (s6, s10 and s2) under it. The sign

vector for these species is given in Table 7.5. Thus, the dissimilarity score for node 13 is

Dis13 = 3/20 = 0.15.

The dissimilarity scores for each node in agglomeration order are found as

(0.00, 0.05, 0.15, 0.25, 0.40, 0.55, 0.75, 0.90, 1.00). Now, we can apply our ALifting al-

gorithm, given in Section 6.2. The first part of our ALifting algorithm is to denoise the

tree by lifting algorithm. Thus, the denoised tree is obtained, and given in Figure 7.1b,

where internal nodes are labelled with the dissimilarity scores and the denoised dissimi-

7.3. Simulation study 157

Species DNA sequences

s6 A C G G A T C C C C A A T T A T C T A C

s10 A C G G A T C C C C A A T T A T C T A C

s2 A C G G A G C C C T A A T T A C C T A C

0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Table 7.5: Aligned species s6, s10 and s2. The fourth row shows the comparison of se-

quences: the position of different nucleotides coded as 1 and the matching nucleotides

coded as 0.

s3 s9 s7 s8 s4 s1 s5 s6 s10 s2

0
1

2
3

4

Denoised Dissimilarity Score

0

0

0
1

2
3

4
0

1
2

3
4

0
1

2
3

4
0

1
2

3
4

0
1

2
3

4
0

1
2

3
4

0
1

2
3

4
0

1
2

3
4

Figure 7.2: The clustering scheme found for the toy phylogenetic data by our ALifting

method.

larity scores for each cluster. Then, using the denoised dissimilarity scores, we can decide

where to cut the tree. If any dissimilarity score is less than or equal to λ = 0.821, we will

set them as zero. Thus, if any node and all its child nodes are set as zero, we can treat

them as one cluster. Under the light of this information, the tree is cut and illustrated

in Figure 7.2. The tree is cut from the exact height of each cluster, and two clusters are

found. One of the species is also found to be an outlier, and it is not clustered.

7.3 Simulation study

To see the behaviour of our algorithm, we present a sequence base simulation study. We

generate a number of DNA sequences for a fixed topology of a tree. To generate se-

quences, we need a base tree, so we randomly generate a tree. Then we simulate DNA

sequences using the generated tree. Thus, we need two different stages before starting

the application of our algorithm: generating a fixed topology of a tree and simulating

158 Chapter 7. Lifting on phylogenetic trees

sequences based on the generated tree. To find the base tree, Hudson (2002) proposed a

method (ms) based on the Wright-Fisher algorithm introduced by Ewens (1979). Thus,

we generate the base tree via ms implemented in the ms() function in the phyclust pack-

age (Chen, 2011) in R. The details of ms are discussed in Section 7.3.1. Then we continue

with the procedure of generating sequences based on the tree generated by ms. We use

Seq-Gen (Rambaut & Grassly, 1997) which generates sequences using different evolu-

tionary models, which is also available as the seqgen() function in the phyclust package

(Chen, 2011) in R. The process of generating sequences is discussed in Section 7.3.2.

Then we present the result of our algorithm for the simulated DNA sequences in Sec-

tion 7.3.3.

7.3.1 Finding base tree structure

In population genetics, one of the preferred models is the Wright-Fisher model (Ewens,

1979) because of its mathematical convenience. It is based on Markov chain theory.

The simple case of the Wright-Fisher model is a population without selective differences,

where the population size is fixed at N . The Wright-Fisher model assumes that if there

are N individuals in Generation 0, there will also be N individuals in Generation 1. In

addition, there are 2N genes in the population since each individual has two genes in each

locus. If we focus on a locus “B”, two possible alleles may occur: “B1” and “B2”. The

possible genotypes at this locus are B1B1, B1B2 and B2B2. Thus, we can focus on one

of the genes in each locus. Assume that X is the number of B1 genes in any generation,

so X ∈ {0, 1, . . . , 2N}. The number of B1 genes in generation t are shown by X(t).

Using the Wright-Fisher model, we can estimate the number of “B1” genes in gen-

eration t + 1, denoted by X(t + 1), by sampling with replacement the “B1” genes in

generation t. Thus, X(t + 1) is a binomial random variable and pij be the probability of

having j number B1 genes in generation t+1 when the number of B1 genes in generation

t is i. Then pij is defined as

pij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

, (7.4)

where X(t) = i, X(t + 1) = j and i, j ∈ {0, 1, . . . , 2N}. Each individual in Generation

0 produces many gametes, and individuals in Generation 1 are drawn from this gametes

pool randomly. Thus, the probability of picking any gene from the Generation 0 is equally

likely with probability 1/(2N).

Hudson (2002) proposed a method, ms, based on standard coalescent theory and the

Wright-Fisher model, to simulate some evolving populations. Coalescent theory deals

with parameter estimation in population genetics (i.e. time of the last common ancestor,

population size when coalescence happened, and information about the extinction or mi-

7.3. Simulation study 159

gration of the population). The topology of the genealogy can be randomly chosen, so

picking any topology is equally likely, but coalescent times (branch lengths) are exponen-

tially distributed. Thus, for k individuals, k ∈ {1, . . . , n} (n� N),

P (no coalescence 1 generation back) =
k−1∏
`=0

exp

{
− `

2N

}

≤ exp

{
−
(
k
2

)
2N

}
,

and

P (no coalescence t generations back) ≤ exp

{
−
(
k
2

)
t

2N

}
.

In addition, the expected time of coalescence for k individuals is

E(coalescent time for k individuals) =
1(
k
2

) .
The ms function generates a random tree topology using the Wright-Fisher model

and assumes that branch lengths are exponentially distributed with mean
(
k
2

)−1
. Then it

randomly places a number of mutations, θ, in each branch, where θ ∼ Po(µτ); here µ is

the mutation rate and τ is the branch length.

We can also consider another type of base tree in our study by generating isolated

populations. This can be done considering some sub-populations which allow migration

between each other. One well-known model of migration is the island model (Wright,

1943), which assumes that a large population can contain many sub-populations, and

they have geographical distance between each other like islands. Each sub-population

is considered as a large population, so the migration between them can not easily be

recognized. Assume that the frequency rate of B1 and B2 alleles differ for each sub-

population, and the frequency of alleles between migrants is equal to the average number

of alleles between sub-populations, p̄ for B1 and q̄ for B2. The migration rate, m, is the

probability that a randomly picked allele from any sub-population belongs to a migrant.

Thus, at time t, a randomly chosen allele may come from the same population at time

t− 1 with probability 1−m, or from a migrant with probability m. Hence, the frequency

of allele B1 at time t is defined as

pt = pt−1(1−m) + p̄m,

where pt−1 is the frequency of B1 allele in generation t − 1, and this can be generalized

for a number of generations as

pt = p̄+ (p0 − p̄)(1−m)t,

where p0 is the initial frequency of B1 allele in the considered sub-population.

160 Chapter 7. Lifting on phylogenetic trees

After building a tree with the desired evolutionary history, we need to generate se-

quences using the tree as a base tree in our simulation study. Thus, we continue with the

discussion how to generate DNA sequences in the following section.

7.3.2 Generating sequences

In DNA sequence generation, we use Seq-Gen (Rambaut & Grassly, 1997) which shares

the same idea with the probabilistic matrix approach proposed by Schoöniger & Haeseler

(1995). Seq-Gen offers a number of evolutionary model choices, and it also offers site-

specific rate heterogeneity.

Schoöniger & Haeseler (1995) picked the HKY model (Hasegawa et al., 1985) as a

base evolutionary model for their method since it is the general version of all other mod-

els. The HKY model and its transition probability matrix were defined in Section 4.4.4.

The software needs the length of the sequences, transition/transversion rate (α/β), nu-

cleotide frequencies (πi, i ∈ {A,C,G, T}) and a base tree which includes branch lengths.

Schoöniger & Haeseler (1995) defined

τ = −t
∑
i

πiqii, (7.5)

where τ is the number of substitutions during time t, and {qii} are the diagonal elements

of the matrixQ for the HKY model, defined in Section 4.4.4. Since we start the procedure

of generating sequences with a base tree, we know the expected number of substitutions

between time t and t + 1, τ , and branch lengths coming from the base tree. Thus, we

can find the time parameter, t, from Equation (7.5), and then we can easily calculate the

transition probabilities as explained in Section 4.4.4.

To generate sequences, Seq-Gen randomly allocates a sequence to the root with the

desired length of the sequence. Then it evolves the tree until it reaches the leaves using

the given parameters. Using the allocated sequence for the root, Seq-Gen computes the

transition probabilities for the first position in the sequence and changes the nucleotide

in the first position with the specified transition probability. Assume that nucleotide i is

placed in the first position. The nucleotide i is replaced by nucleotide j ∈ {A,C,G, T}
with the probability of pij(t). This process is repeated for each position in the sequence

in turn. Thus, the simulated sequence for the next generation is found, and the procedure

is repeated until the sequences for tips are found.

Site-specific rate heterogeneity choice needs a different transition probability calcula-

tion. Yang (1993) proposed a maximum likelihood method to generate sequences, where

substitution rates differ over sites and come from a Gamma distribution. The mean of the

distribution is fixed at one, requiring the shape and scale parameters to be equal to each

other. Thus, allowing site-specific rate heterogeneity choice in Seq-Gen needs one more

parameter to be specified, which is the shape parameter for the Gamma distribution.

7.3. Simulation study 161

7.3.3 Simulation results

In simulation settings, we generate three different tree-structures using ms which are

given in Figure 7.3. Two of them are generated including only mutations in their evo-

lutionary history using the same parameters with different seeds, and there is no infor-

mation for true classification in these settings. These trees are referred as the first and

second base trees with no sub-populations. Both trees include 100 species, and mutation

parameter is set at 0.2 in units of 2N generations, where N is the population size. For the

third tree (referred as a population with three sub-populations), we add more complica-

tion, and we generate 30 sequences by taking migration into account along with mutation.

Mutation and migration parameters are set at 2 and 1, respectively, and three equal size

sub-populations are generated. When we evaluate populations with migration history in

terms of classification idea, we consider sub-populations as true components, and com-

pare our classifications to this “truth”. Thus, we can check the performance of different

classification methods using external classification scores, introduced in Section 5.3.3

(e.g. purity index). After building the tree of interest, DNA sequences are generated by

Seq-Gen. The Kimura 2-parameter model is used with transition/transversion rate 2, and

the length of sequences is fixed at 9000. For each base tree, 1000 replicates are generated,

so for each replicate, a new set of sequences is generated with the same parameters. We

start our algorithm with the simulated DNA sequences, so we rebuild the tree within our

algorithm using one of the distance measures defined in Section 7.2. In this simulation

study, the partitioning results found by other internal cluster validity indices (CVIs), de-

scribed in Section 5.3.1, are based on the same tree built within our algorithm, and we

use the same distance matrix used in our algorithm for model-based clustering (Mclust).

We set the upper boundary for the internal indices as 50 and 20 for the data sets with no

sub-populations and for the one with three sub-populations, respectively. However, for

the Gap statistic, we set the upper boundary for all three different tree settings at 10 to

limit the computational cost.

Within our algorithm, we have explored different linkage methods (single and com-

plete linkage), different evolution models and different resolution level status (denoising

with artificial levels and without artificial levels). We notice that these different settings

have almost no effect on the results. Thus, we discuss one of these settings in detail in

this section. We present the results for the case of building the tree with single linkage

and denoising the node values by setting artificial levels. In the MDS step, we find that

a relatively high dimension explains the data with no sub-populations better, so the di-

mension is set at 15 for both the first and second base tree with no sub-populations. For

the tree which includes three sub-populations, the data can be explained with much lower

dimension, so the dimension is set at four. We label our algorithms when we use compact-

162 Chapter 7. Lifting on phylogenetic trees

s2 s88
s5 s52
s78
s63
s67
s9 s26
s29
s95
s89
s68
s81
s85
s91
s47
s59
s3 s41
s77
s20
s33
s62
s15
s93
s4 s11
s6 s45
s32
s36
s90
s49
s1 s22
s44
s76
s92
s16
s28
s69
s55
s46
s99
s21
s38
s86
s8 s70
s51
s61
s18
s66
s79
s98
s24
s100
s10
s13
s83
s56
s60
s27
s25
s82
s23
s19
s39
s71
s34
s97
s14
s80
s87
s43
s72
s42
s75
s96
s30
s50
s65
s7 s54
s48
s17
s31
s58
s74
s40
s84
s64
s73
s94
s37
s53
s35
s12
s57

s26
s33
s28
s68
s42
s78
s39
s25
s94
s14
s7 s80
s56
s29
s61
s63
s49
s99
s96
s16
s81
s18
s65
s69
s43
s71
s12
s75
s91
s76
s30
s83
s6 s34
s36
s13
s41
s92
s46
s9 s72
s4 s57
s8 s95
s23
s50
s3 s5 s47
s44
s22
s66
s38
s37
s27
s87
s48
s10
s82
s85
s54
s1 s15
s32
s73
s74
s55
s88
s19
s20
s70
s24
s51
s79
s84
s97
s40
s59
s17
s90
s53
s31
s62
s11
s98
s35
s77
s2 s93
s67
s52
s86
s60
s58
s21
s64
s100
s45
s89

s19
s16
s18
s14
s15
s26
s29
s12
s17
s6 s8 s3 s9 s2 s4 s1 s5 s27
s28
s21
s22
s7 s10
s23
s24
s30
s25
s13
s11
s20

Figure 7.3: Simulation tree settings. The tree setting from left to right: the first and second

base trees having mutation history (with no sub-population), and the population with a

migration history (with three sub-population), respectively.

ness as a node value as Lifting-1, ALifting-1 and NLT-1; Lifting-2, ALifting-2 and NLT-2

are for the results of our algorithms when we use dissimilarity scores as a node value.

While we set the threshold to zero in the ones labelled as Lifting, the algorithm picks the

threshold automatically in the ones labelled as ALifting using the procedure described in

Section 6.2. For NLT algorithms, we set the number of trajectories, P , to 100 and the

threshold for the probability of acceptance, θ, to 0.5.

Simulation results for the first base tree with no sub-populations

Using the proposed algorithm for DNA sequences, given in Section 7.2, we compare the

number of clusters found by different CVIs and Mclust. The detailed explanation of CVIs

and Mclust can be found in Sections 5.3.1 and 5.3.2, respectively. Note that we do not

know the true classification, so we can not check the performance of each method using

external scores. Thus, we only compare how many different types of species exist. We

do this comparison when we build the tree by the matching and phylogenetic distances.

The comparison is done using box plots, and the results are given in Figure 7.4. We label

each box plot with the median of the number of clusters found by each method, and the

labels are placed on the right side of each box plot with blue color. Figure 7.4 illustrates

that the CH and Sil indices fail to cluster species since they find the number of clusters

either 50 or close to 50 which is the upper boundary of the number of clusters we set for

these indices. A discussion of issues relating to the choice of the upper boundary can be

found in Section 5.5. The Gap statistic also has the tendency to find one cluster, so it

7.3. Simulation study 163

● ●

●

●

●

●●●

●
●●●
●●●●●●
●
●
●
●
●

●

●

●● ●●●●●●●

M
a

tc
h

in
g

.D
is

t

8

50

29
27

47

1

23

8 8

14

5 5

Mclust CH H KL Sil Gap Lifting−1 ALifting−1 NLT−1 Lifting−2 ALifting−2 NLT−2

0

10

20

30

40

50

● ●

●●

●

●●●●●●●●●●●●●●●●●● ●●●

●●●●●●
●
●

●

●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

P
h
y
lo

.D
is

t

7

50

3

15

47

1

11

6 6

10

5 5

0

10

20

30

40

50

Figure 7.4: The comparison of number of clusters found by different methods for the first

base tree with no sub-populations. The top row: matching distances are used to build the

trees. The bottom row: phylogenetic distances are used to build the trees.

fails to cluster the species. When we build the tree using the matching distances, the H

and KL indices also find a high number of small clusters. However, the partition found

by these indices are quite different when we build the tree with phylogenetic distances.

Mclust finds a similar clustering scheme with both the matching and the phylogenetic

distances. Lifting algorithms find high number of clusters, but the number of clusters

decreases when the algorithm thresholds the denoised node values (ALifting). When we

build the tree with matching distances, the thresholds found by ALifting-1 and ALifting-

2 algorithms vary around 15.69 and 0.39, respectively. The thresholds for the tree built

by phylogenetic distances for ALifting-1 and ALifting-2 algorithms vary around 0.09

and 0.40, respectively. The final method is our NLT method. The comparison done by

box plots clearly shows that the behaviour of our NLT algorithm is similar to ALifting

algorithm. The only difference is that when we build the tree with matching distances,

there are some variations on ALifting-1 results. However, these variations are extinct with

164 Chapter 7. Lifting on phylogenetic trees

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

CH

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

H

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

KL
s1

2
s5

7
s3

5
s5

3
s3

7
s9

4
s6

4
s7

3
s4

0
s8

4
s7

4
s3

1
s5

8
s1

7
s4

8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Sil

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Gap

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Lifting−1

0

−5.086
−0.643

0 0

0
0

0

0

0

0

−1.302

−0.067

−3.676

−5.658

−10.512

0

−3.24
−0.527

0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

ALifting−1

0

0

0

0 0 0

0 0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

NLT−1
000

00
0.032

0.999
1

1

0.986
11

0.707

1 11

0.967

1

0.071

1 1

0.999

1

1

0.986 0.707 0.967

1 1

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Lifting−2

0

−0.1340

0

0

0

0
0

0

−0.079

0
0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

ALifting−2

0

0 0 0
0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

NLT−2
000

00.788
1

1
1

1

1
11

0.999

1 11

1

1

1

1 1

0.788

1 0.999 1
1

Figure 7.5: The comparison of clustering scheme found by different CVIs with matching

distances for the first base tree with no sub-populations. Lifting-1 and Lifting-2: nodes are

labelled with denoised detail coefficients. ALifting-1 and ALifting-2: nodes are labelled

with denoised compactness and denoised dissimilarity scores, respectively. NLT-1 and

NLT-2: nodes are labelled with the clustering probabilities colored with green, p ≥ θ, or

red, p < θ.

NLT-1 algorithm.

Figure 7.4 illustrates that each CVI finds the same number of clusters in almost all

replicates, so there are few variations on the number of clusters. Thus, we can eas-

ily compare the partitions found by different CVIs by dendrograms. Dendrograms af-

ter building trees with matching distances and phylogenetic distances are shown in Fig-

ures 7.5 and 7.6, respectively. Since there are some variations on the number of clus-

ters for Lifting-1 and Lifting-2 algorithms, we illustrate the partition found by the first

replicate in these dendrograms. We also see exactly where clustering happens in these

7.3. Simulation study 165

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

CH

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

H

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

KL

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Sil

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Gap

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Lifting−1

0

−0.078

−0.038

−0.009

−0.04 0 −0.071
0

0
−0.094

0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

ALifting−1

0

0

0 0 0

0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

NLT−1
0

00

00.001

0.84

1
1

1

1

11

1

1 11

1

1

0.908

1 1

0.84

1

1 1 1

0.908

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

Lifting−2

0

−0.24

−0.097

0

−0.172−0.012

0

0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

ALifting−2

0

0

0 0 0

0

s1
2

s5
7

s3
5

s5
3

s3
7

s9
4

s6
4

s7
3

s4
0

s8
4

s7
4

s3
1

s5
8

s1
7

s4
8 s7 s5
4

s6
5

s3
0

s5
0

s7
5

s9
6

s4
2

s4
3

s7
2

s3
4

s9
7

s7
1

s8
0

s8
7

s1
4

s1
9

s3
9

s2
3

s2
7

s2
5

s8
2

s5
6

s6
0

s1
3

s8
3

s1
0

s2
4

s1
00 s1

8
s6

6
s9

8
s7

9
s5

1
s6

1 s8 s7
0

s3
8

s8
6

s2
1

s4
6

s9
9

s5
5

s2
8

s6
9

s1
6

s7
6

s9
2

s4
4

s4
9 s1 s2
2

s3
6

s9
0

s3
2

s4
5 s6 s4 s1
1

s1
5

s9
3

s6
2

s2
0

s3
3

s7
7 s3 s4
1

s4
7

s5
9

s9
1

s8
1

s8
5

s6
8

s8
9

s2
9

s9
5 s9 s2
6

s6
3

s6
7

s7
8 s5 s5
2 s2 s8
8

NLT−2
0

00

00.706

1

1
1

1

1

11

1

1 11

1

1

1

1 1

0.706

1 1 1

1

Figure 7.6: The comparison of clustering scheme found by different CVIs with phyloge-

netic distances for the first base tree with no sub-populations. Lifting-1 and Lifting-2:

nodes are labelled with denoised detail coefficients. ALifting-1 and ALifting-2: nodes

are labelled with denoised compactness and denoised dissimilarity scores, respectively.

NLT-1 and NLT-2: nodes are labelled with the clustering probabilities colored with green,

p ≥ θ, or red, p < θ.

dendrograms.

166 Chapter 7. Lifting on phylogenetic trees

●

●

●
●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●

●

●●●●●●

●

●

●●

●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●

●

●

●

●

●

●●●●

●●

●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●

●●

●●●

●

●●●

●

●●

●●

●

●●●●

●●●●●●●●●

●

●

●●

●●● ●●●●●●●

●

●

●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●

●●

●

●

●●

●

●●●●

●●●●●

●

●●

●

●●●

●

●●●●

●●●

●●●●

●

●●

●

●●●●

●●

●●

●

●

●

●●●●●●●●

●●●

●

●●

●●

●

●●●●●●●●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

M
a

tc
h

in
g

.D
is

t

7

48

32

28

47

6

19

9 9

15

6 6

Mclust CH H KL Sil Gap Lifting−1 ALifting−1 NLT−1 Lifting−2 ALifting−2 NLT−2

0

10

20

30

40

50

●

●

●

●

●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●

●●

●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●

●●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●

●

●●●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●●●●●

●

●●●●

●

●

●

●●

●

●

●

●●●

●

●●●●●●●●●●●●

●

●●

●●

●●●●●●●●

●

●●●

●

●●●●●●

●●

●●●

●

●●●

●

●●●●

●

●●●●●●●

●

●●

●●

●●●●●●●

●

●

P
h
y
lo

.D
is

t

7

48

4

28

42

1

9

5 5

10

6 6

0

10

20

30

40

50

Figure 7.7: The comparison of number of clusters found by different methods for the

second base tree with no sub-populations. The top row: matching distances are used to

build the trees. The bottom row: phylogenetic distances are used to build the trees.

Simulation results for the second base tree with no sub-populations

We generate a new base tree using the same parameters with a different seed for the

first base tree with no sub-populations. As it is seen in Figure 7.3, they have similar tree

structures. Thus, we would like to check the behaviour of different methods on two similar

tree structures. We repeat the comparison study done for the first tree structure with no

sub-populations to this tree setting, and Figure 7.7 shows the box plot comparison for the

number of clusters found by different methods. It is clearly seen that results are similar to

the previous tree structure. Each method finds a similar number of clusters for both trees,

and if any method fails to partition the data in previous tree setting, it could not partition

this tree either. The behaviour of our methods are almost same in both settings.

7.3. Simulation study 167

V1

−10 10

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

0 10 30

−3
0

−1
0

10

●●●●●●●●●●●●●●●●●

●●●● ●●
●●●●●●●

−1
0

10

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

V2
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●● V3

−1
5

−5
5

●●●●●●●●●

●
●●●●●
●●

●●●● ●●●●●●●●●

−30 −10 10

0
10

30

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

−15 −5 5

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●

V4

Figure 7.8: The comparison of pairs plots for the simulated population with three sub-

populations. Different sub-populations are illustrated with different color, and matching

distance matrix is used.

Simulation results with three abstract sub-populations

The final simulated data set is for a population with migration history. In this setting, we

provide a comparison study similar to the ones we have done for multidimensional data

sets (e.g. see Section 5.5). Using the sub-populations as components, we can check the

performance of different clustering scheme found by different methods. We generate a

population which has three sub-populations, and each of them is size of ten. We provide

the multidimensional representation of the population in R4 in Figure 7.8.

First we build the tree using matching distances, and then we also repeat the study with

phylogenetic distances to see how the methods are affected by different distance methods.

When we build the tree with matching distances, the tabulated results of the average num-

ber of clusters in 1000 replicates is given in Table 7.6. The results clearly show that the

CH index and Sil statistic fail to partition the data. Both of them found 19 clusters which

is just below the upper boundary for these indices. Mclust captures the sub-populations

with the highest performance, then the Gap statistic follows it. When our algorithm picks

its threshold, the performance of ALifting-1, ALifting-2, NLT-1 and NLT-2 are exactly

the same. Thus, we combine them in one column and label it as ALifting/NLT. Within

our algorithms, Lifting-2 shows better performance than others, so setting the threshold,

λ, to zero gives better performance than other version of our algorithms. This means that

the variation of the data is high, so the universal threshold is overestimated. When we

build the tree with phylogenetic distances, the performance of Mclust and ALifting/NLT

do not change (see Table 7.7). However, the performance of other methods slightly in-

168 Chapter 7. Lifting on phylogenetic trees

Index Mclust CH H KL Sil Gap Lifting-1 Lifting-2 ALifting/NLT

N 5 19 5 8 19 4 7 7 3

Purity 0.933 0.967 0.886 0.945 0.967 0.866 0.898 0.960 0.733

ARI 0.629 0.112 0.577 0.482 0.111 0.582 0.470 0.528 0.491

AVI 0.668 0.242 0.634 0.563 0.236 0.642 0.553 0.624 0.592

CompCheck 0.607 0.095 0.623 0.456 0.094 0.665 0.457 0.470 0.778

ClustCheck 0.891 0.808 0.812 0.886 0.809 0.790 0.829 0.939 0.590

CC 0.736 0.277 0.706 0.613 0.276 0.716 0.613 0.663 0.677

Table 7.6: The comparison of CVIs with matching distances for the simulated population

with three sub-populations. First row is for the average number of clusters, and others

are for the average similarity scores. ALifting/NLT is for ALifting-1, ALifting-2, NLT-1

and NLT-2.

Index Mclust CH H KL Sil Gap Lifting-1 Lifting-2 ALifting/NLT

N 5 19 5 6 19 5 4 4 3

Purity 0.933 0.967 0.933 0.936 0.966 0.931 0.936 0.937 0.733

ARI 0.629 0.122 0.629 0.604 0.112 0.625 0.722 0.706 0.491

AVI 0.668 0.253 0.668 0.650 0.238 0.666 0.732 0.723 0.592

CompCheck 0.607 0.103 0.607 0.581 0.095 0.607 0.709 0.691 0.778

ClustCheck 0.891 0.814 0.891 0.891 0.809 0.887 0.911 0.909 0.590

CC 0.736 0.287 0.736 0.715 0.277 0.733 0.804 0.792 0.677

Table 7.7: The comparison of CVIs with phylogenetic distances for the simulated popu-

lation with three sub-populations. First row is for the average number of clusters, and

others are for the average similarity scores. ALifting/NLT is for ALifting-1, ALifting-2,

NLT-1 and NLT-2.

creases, and the best performance comes from Lifting-2. To see the partitions found by

different methods, we provide the dendrogram comparison of different methods by high-

lighting the clusters for one replicate. The dendrogram which is built using phylogenetic

distances are given in Figure 7.9, and the one with the matching distances are given in

Figure 7.10. These figures clearly show that the performance of these algorithms is not

affected by choice of distance method. Our ALifting/NLT methods combine two compo-

nents on the right part of the dendrogram in one cluster, and this decreases its performance

when we compare with the H index, KL index and Gap statistic. In addition, our NLT-1

and NLT-2 algorithms locate the clusters with high probabilities all the time. We label the

top 10 nodes with the clustering probability which clearly show the high probability of

being clustered. We can also check the pairs plots for the methods which find different

partitioning for one replicate. As we discussed above the performance of the algorithms

are not affected by different distance methods, so we just illustrate the pairs plots com-

parison for one setting. In addition, we exclude the partitions found by the CH index

7.3. Simulation study 169

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

CH

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

H

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

KL

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

Sil

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

Gap

s2
4

s3
0

s2
5

s1
3

s2
0

s1
1

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s2 s4 s3 s9 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
6

s1
8

Lifting−1

−0.122

−0.128
0 −0.054

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

ALifting−1

0

0

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

NLT−1
0.02

0.03
0.99

1

1
1

11
11 1

0.99

1

1

s1
3

s1
1

s2
0

s2
4

s3
0

s2
3

s2
5 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s2 s4 s3 s9 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
6

s1
8

s1
9

Lifting−2

−0.181

−0.309

−0.023 −0.099

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

ALifting−2

0

0

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

NLT−2
0

0.12
0.99

1

1
1

11
11 1

0.99

1

1

Figure 7.9: The comparison of clustering scheme found by different CVIs with phyloge-

netic distances for the simulated population with three sub-populations. Lifting-1 and

Lifting-2: nodes are labelled with denoised detail coefficients. ALifting-1 and ALifting-2:

nodes are labelled with denoised compactness and denoised dissimilarity scores, respec-

tively. NLT-1 and NLT-2: nodes are labelled with the clustering probabilities colored with

green, p ≥ θ, or red, p < θ.

and the Sil statistic because of their failure of clustering, and we just provide one pairs

plots for the ones find the same clustering pattern. Lifting-1 and Lifting-2 also behaves

similarly, so we include the pairs plots for Lifting-1. This pairs plots comparison is given

in Figure 7.11. The pairs plots clearly illustrate that two components are combined in one

cluster by our ALifting/NLT methods, and Lifting-1 finds some small clusters because it

does not allow any departure from the centroid of each cluster. Finally, Mclust and the

Gap statistic show better performance than others by clustering different components into

different clusters. They tend to cluster some species belong to one cluster into a separate

170 Chapter 7. Lifting on phylogenetic trees

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

CH

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

H

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

KL
s1

3
s2

0
s1

1
s2

5
s2

4
s3

0
s2

3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

Sil

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

Gap

s2
4

s3
0

s2
5

s1
3

s2
0

s1
1

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s2 s4 s3 s9 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
6

s1
8

Lifting−1

−7.041

−25.632

−3.23
−0.067

0
−1.89

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

ALifting−1

0

0

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

NLT−1
0

0.01
0.97

1

1

1
1

1
11

1

0.97

1

1

s1
3

s1
1

s2
0

s2
4

s3
0

s2
3

s2
5 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s2 s4 s3 s9 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
6

s1
8

s1
9

Lifting−2

−0.111

−0.417

0 0

0

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

ALifting−2

0

0

0

s1
3

s2
0

s1
1

s2
5

s2
4

s3
0

s2
3 s7 s1
0

s2
1

s2
2

s2
7

s2
8 s1 s5 s3 s9 s2 s4 s8 s6 s1
2

s1
7

s2
6

s2
9

s1
4

s1
5

s1
9

s1
8

s1
6

NLT−2
0

0.06
0.96

1

0.98

1
1

1
11

1

0.96

1

0.98

Figure 7.10: The comparison of clustering scheme found by different CVIs with matching

distances for the simulated population with three sub-populations. Lifting-1 and Lifting-

2: nodes are labelled with denoised detail coefficients. ALifting-1 and ALifting-2: nodes

are labelled with denoised compactness and denoised dissimilarity scores, respectively.

NLT-1 and NLT-2: nodes are labelled with the clustering probabilities colored with green,

p ≥ θ, or red, p < θ.

cluster if they locate further than the other species from their true cluster. To check the

robustness of each method, box plots of external scores for each CVI are provided. This

comparison is also done using two different distance measures in the clustering stage: Fig-

ures 7.12 and 7.13 illustrate the phylogenetic and matching distance results, respectively.

The box plot comparison clearly shows that the CH index and Sil statistic always perform

poorly, and the results of the KL index and Gap statistic have a high variation when we

apply clustering with matching distances. Our Lifting-1 also has a high variation because

of the threshold choice (λ = 0), but this variation disappears with the automatic threshold

7.3. Simulation study 171

V1

−10 10

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

0 10 30

−3
0

0
20●●●●●●●●●●●●●●●●●

●●●● ●●
●●●●●●●

−1
0

10
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

V2
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●● V3

−1
5

−5
5

●●●●●●●●●

●
●●●●●
●●

●●●● ●●●●●●●●●

−30 −10 10

0
10

30

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

−15 −5 5

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●

V4

Mclust

V1

−10 10

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

0 10 30

−3
0

0
20●●●●●●●●●●●●●●●●●

●●●● ●●
●●●●●●●

−1
0

10

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

V2
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●● V3

−1
5

−5
5

●●●●●●●●●

●
●●●●●
●●

●●●● ●●●●●●●●●

−30 −10 10

0
10

30

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

−15 −5 5

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●

V4

Gap

V1

−10 10

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

0 10 30

−3
0

0
20●●●●●●●●●●●●●●●●●

●●●● ●●
●●●●●●●

−1
0

10

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

V2
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●● V3

−1
5

−5
5

●●●●●●●●●

●
●●●●●
●●

●●●● ●●●●●●●●●

−30 −10 10

0
10

30

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

−15 −5 5

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●

V4

Lifting−1

V1

−10 10

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●

0 10 30

−3
0

0
20●●●●●●●●●●●●●●●●●

●●●● ●●
●●●●●●●

−1
0

10

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

V2
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●●

●●●●●●●●●

●
●●●●●
●●

●●●●●●●●●●●●● V3

−1
5

−5
5

●●●●●●●●●

●
●●●●●
●●

●●●● ●●●●●●●●●

−30 −10 10

0
10

30

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●

●●

●●●●●●●

−15 −5 5

●●●●●●●●●●●●●●●●●
●●●●

●●

●●●●●●●

V4

ALifting−2

Figure 7.11: The comparison of pairs plots of the simulated population with three sub-

populations. Matching distances are used in clustering. The one labelled as Gap is for the

H index, the KL index and the Gap statistic, and ALifting-2 is for ALifting-1, ALifting-2,

NLT-1 and NLT-2.

choice by ALifting/NLT.

The comparison study illustrates that Lifting-1 and Lifting-2 show the highest perfor-

mance when we build the tree by phylogenetic distances, and ALifting/NLT has a low

performance. This clearly shows that our variance estimate is not robust, so if we find a

better variance estimate, we will have a better threshold rule for our ALifting/NLT algo-

rithms. To see the choice of the threshold, we consider different variance estimates. The

current version of our algorithm finds the variance estimate using sample variance defined

in Equation (6.1) over all the nodes, including leaves, in the tree of interest. We compare

the estimate of variance including and excluding leaves, and we also estimate the variance

by MAD, given in Equation (2.41). We tabulate the results of ALifting-1 and ALifting-2

when we build the tree using phylogenetic distances in Table 7.8. The tabulated results

clearly show that MAD estimates are close to zero, so if we use MAD estimate, the uni-

versal threshold will be close to zero which will create small clusters like Lifting-1 and

Lifting-2. Thus, the sample variance estimate as we already use gives a better variance

172 Chapter 7. Lifting on phylogenetic trees

Including leaves Excluding leaves

Methods ALifting-1 ALifting-2 ALifting-1 ALifting-2

σ̂
MAD 0 0 0.0008 0.045

s 0.039 0.098 0.054 0.1265

Table 7.8: The comparison of different variance estimation settings.

Distance measure ALifting-1 ALifting-2

Phylo.Dist. [0.106, 0.117] [0.268, 0.289]

Matching.Dist. [14.666, 15.268] [0.267, 0.287]

Table 7.9: The range of λ for different versions of ALifting algorithm. Phylo.Dist: phylo-

genetic distances, and Matching.Dist: matching distances.

estimate compared to MAD. We currently include leaves, and we discuss above that we

overestimate variance in this way. However, excluding the leaves provides much higher

variance. Thus, our way of finding variance estimate gives the best estimate within these

different settings. To see the performance of our algorithm, we halve the variance esti-

mate, and we notice that it slightly increases the performance of our algorithms. Thus, an

estimate within the range [s/2, s) may give a better threshold for our ALifting/NLT algo-

rithms. The range of λ found by our ALifting algorithm with different distance measures

and different node values are tabulated and given in Table 7.9. Thus, it is clearly seen

that the threshold varies between each replicate, and finding the proper threshold estimate

reduces the chance of small clusters.

Overall, the variation tends to be high in small data sets which means we overestimate

the threshold, λ. The outcome of overestimation is to find an uninformative clustering

pattern of the data of interest. Thus, we can consider using our Lifting method with zero

threshold (λ = 0) which provides a better clustering pattern than our ALifting and NLT

methods.

7.3. Simulation study 173

●●

● ●●●●●●●●●●●●●

●● ●●

P
u

ri
ty

Mclust CH H KL Sil Gap Lifting−1 Lifting−2 ALifting/NLT

0.75
0.80
0.85
0.90
0.95

●
●
●●●●

●

●●●

●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●
●
●●●●●

●

●●●●●●

●

●●

●

●

●●

●

●
●●
●
●●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●● ●●

●

●

●

●●●

●

●

●
●

●

●●●

●●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●●●

●●

●●

●

●

●

●

●●●●

●

●

●
●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●
●●

●●●●

●

●

●●

●●

●
●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●
●

●

●

●●

●

●

●●●●●

●●●●

●●

●

●●

●

●

●●●

●●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

A
R

I

0.1
0.2
0.3
0.4
0.5
0.6
0.7

●
●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●●●

●

●
●●●
●●
●●
●
●
●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●● ●●

●

●

●

●●●

●

●

●

●

●

●●●

●●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●●●

●●

●●

●

●

●

●

●●●●

●

●

●

●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●

●●

●●●●

●

●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●●●●●

●●●●

●
●

●

●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

A
V

I

0.2
0.3
0.4
0.5
0.6
0.7
0.8

●
●
●●●●

●

●●●

●

●

●
●

●
●

●

●●●●

●

●

●

●

●

●
●
●●●●●

●

●●●●●●

●

●●

●

●

●●

●

●●●
●●●

●

●

●

●●●●
●

●

●

●

●

●

●
●

●

●

●●

●
●
●
●
●

●

●
●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●

●●●●

●●

●

●●●●

●

●●

●●●

●
●

●

●
●

●

●
●●
●

●

●

●●●●

●

●●●●●●●

●●●

●

●

●●●●●●●

●●

●●●●●●

●

●●●●

●

●●●●

●

●

●

●●●●●●

●
●
●●

●

●●●

●

●●

●

●●

●

●●

●●

●●●●●●●●●●●

●●

●●●●●

●

●

●

●●

●

●●

●

●●
●
●

●●●●

●

●●●●●●●●●

●

●

●

C
o

m
p

C
h

e
c
k

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

●

●●
●

●

●●
●

●

●
●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●
●
●●

●
●
●●

●
●

●

●

●

●●

●

●

●
●●

●

●

●

●

●●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●
●

●
●

●
●

●●
●

●

●●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●

●●●●

●●

●

●●●●

●

●●

●●●

●●●●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●● ●●

●
●

●

●●●

●

●●

●

●

●●●

●●●

●

●●●●●

●●

●●●

●
●
●
●

●

●●

●

●●

●●●

●●
●●

●

●

●

●

●●●●●●

●

●●●

●

●●

●●●●
●
●

●

●

●

●

●●●●●

●
●

●●●

●

●

●
●

●●●●●●

●

●

●●

●●

●●

●

●●
●
●●●
●

●

●●
●

●

●

●
●

●

●●●

●
●●
●

●●●●●●●

●

●

●

●●

●

●●

●

●

●●●●●

●●●●

●●
●

●●

●

●

●●●

●●

●

●
●
●

●

●

●●
●
●

●●

●●
●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

C
lu

s
tC

h
e

c
k

0.6

0.7

0.8

0.9

●
●
●●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●
●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●●

●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●

●

●●●●●●

●●

●●●

●●●●

●●

●

●●●●

●

●●

●●●

●●●●

●

●●●●

●

●

●●●●

●

●●●●●

●

●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●● ●●

●

●

●

●●●

●

●

●
●

●

●●●

●●●

●

●●●

●

●

●●

●●●

●

●

●

●

●

●●

●

●●

●●●

●●

●●

●

●

●

●

●●●●

●

●

●
●●

●

●

●●

●●●●

●

●

●

●

●

●

●●●●●

●

●

●●●

●

●

●

●
●●

●●●●

●

●

●●

●●

●
●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●
●

●

●

●●

●

●

●●●●●

●●●●

●●

●

●●

●

●

●●●

●●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●

●

●●

●●

●

●●●

●

●

●

●

C
C

0.3
0.4
0.5
0.6
0.7
0.8

Figure 7.12: Box plot: the comparison of CVIs with phylogenetic distances for simulated

population with three sub-populations. ALifting/NLT is for ALifting-1, ALifting-2, NLT-1

and NLT-2.

174 Chapter 7. Lifting on phylogenetic trees

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

P
u

ri
ty

Mclust CH H KL Sil Gap Lifting−1 Lifting−2 ALifting/NLT

0.70
0.75
0.80
0.85
0.90
0.95

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●
●
●

●

●

●
●●
●
●
●
●●

●●

●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●●

●
●
●
●
●
●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●●●
●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●●

●●

●●●

●

●

●●●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●
●

●
●

●●

●

●

●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●

●

●

●
●●●

A
R

I

0.1
0.2
0.3
0.4
0.5
0.6
0.7

●●●●●●●●●●●

●●

●●●●●
●

●

●

●●
●

●

●

●

●●●

●

●

●●
●

●●●●

●

●

●

●

●●
●
●●

●

●

●
●●●●

●

●

●●
●●
●●●

●

●
●●●
●
●●

●
●

●●

●

●●●●●

●

●

●●
●●

●

●

●

●

●

●

●

●

●●
●

●

●●●●●

●

●●●●

●

●

●

●
●●●
●

●

●
●

●

●

●

●

●●●●●

●
●

●●

●●

●
●
●

●
●●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●

●●

●

●

●

●●●
●
●●
●
●●

●●●

●

●

●

●

●

●

●

●
●

●

●●●
●●
●

●

●
●
●
●
●●

●

●

●
●●●●●●●●

●

●●

●

●

●

●●

●

●
●
●

●

●

●
●

●

●●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●

●

●

●

●●●●

A
V

I

0.2
0.3
0.4
0.5
0.6
0.7
0.8

●●●●●●●●●●●●●●●●●●●●

●●

●●●●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●●

●●

●

●

●
●●

●●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●●●

●

●

●●●

●●●

●

●

●

●

●

●●

●

●●

●

●

●

●●●●

●

●

●●

●●

●●●

●

●

●●●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●●

●

●●

●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●●

●

●●

●

●

●

●

●
●

●
●●●●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●●●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●●●

●

●

●

●●

●

●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

C
o

m
p

C
h

e
c
k

0.2

0.4

0.6

0.8

●●

●

●

●

●

●
●
●●
●

●

●
●
●

●●●●●

●

●
●●

●
●

●

●●●

●

●

●●

●

●

●

●●

●
●

●●

●
●●●
●

●

●

●

●

●●●

●
●

●●●●●

●

●

●

●

●
●

●●●●●

●

●

●●

●●

●

●

●●●
●

●

●●

●
●●●

●

●
●

●

●
●●

●

●●

●

●●

●●●●●

●
●●

●●

●●●

●
●

●●●

●

●●
●

●

●●●●●●●●

●

●●●

●●

●

●
●

●

●
●

●

●●●

●

●
●●●●●●●●●●

●

●●●

●●●

●
●
●

●●

●

●●●●●●●
●

●

●

●

●●

●

●

●●●

●●
●
●

●

●●

●

●

●

●●
●
●

●

●

●

●●●●●●●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●

●●

●

●

●●
●
●

●

●●●

●

●●

●

●●
●●●
●

●

●

●

●

●

●

●

●
●
●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●
●
●

●

●●

●

●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

C
lu

s
tC

h
e

c
k

0.5

0.6

0.7

0.8

0.9

●●●●●●●●●●●

●●

●●●●●

●

●

●

●

●
●●

●

●

●

●●

●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●●

●
●
●
●
●
●

●

●

●●

●

●

●

●

●●●

●

●

●●●

●●●
●

●

●●

●

●●

●

●●

●

●

●

●●●●

●

●

●●

●●

●●●

●

●

●●●

●

●●

●

●

●●

●

●●●●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●
●

●
●

●●

●

●

●
●●
●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●●●●●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●
●●●

●

●

●

●

●

●

●

●
●●●

C
C

0.3
0.4
0.5
0.6
0.7
0.8

Figure 7.13: Box plot: the comparison of CVIs with matching distances for the simulated

population with three sub-populations. ALifting/NLT is for ALifting-1, ALifting-2, NLT-1

and NLT-2.

7.4. Real data 175

Distance Mclust CH KL Gap Lifting-1 ALifting-1 NLT-1 Lifting-2 NLT-2

Matching.Dist 9 17 39 13 14 11 10 13 8

Phylo.Dist 7 14 13 13 10 11 7 10 9

Table 7.10: The comparison of number of clusters found by different CVIs for the HIV-1

data. The column labelled as Gap is for the H index, Sil statistic and Gap statistic, and

the column labelled as NLT-2 is for both NLT-2 and ALifting-2. Matching.Dist is for the

matching distances, and Phylo.Dist is for the phylogenetic distances.

7.4 Real data

We also apply our Lifting algorithm to a real HIV-1 data set (Salazar-Gonzalez

et al., 2009), which is available via GenBank (Benson et al., 2005) (accession num-

bers: FJ495818—FJ495826, FJ495937—FJ495943, FJ496000—FJ496007, FJ496072—

FJ496085 and FJ496145—FJ496214). The data were collected longitudinally from 12

infected individuals, ten males and two females. Nine of the subjects come from the US

(WITO, SUMA, WEAU, TRJO, 04013226, 04013396, CH40, CH58 and CH77) and three

of them come from Zambia (ZM246F, ZM247F and ZM249M); the female subjects are

from Zambia (ZM246F and ZM247F). In addition, the number of records for each subject

varies with 108 full-length HIV-1 genome sequences in total. In the study, there are two

types of viruses. While US subjects carry one type of the virus (type B), Zambian subjects

have the second type of the HIV-1 virus (type C).

We analyze the HIV-1 data, using different CVIs and our Lifting algorithms. The HIV-

1 sequences are not aligned, so we align using MUSCLE software before starting any

analysis. In the MDS step, the dimension is set to 15, and the Kimura 2-parameter model

is used in phylogenetic distance calculation. Note that when we build a dendrogram, we

do not use exact branch lengths. Fixing the difference between each agglomeration stage

at one unit helps us to see the clustering pattern easily.

Table 7.10 illustrates that the KL and CH indices find a large number of clusters when

we build the tree with matching distances. The dendrogram (Figure 7.14) illustrates that

these indices do not cluster some of the sequences.

The clustering scheme found by the H index, Gap statistic and Sil statistic is the same,

and their behaviour does not change when we build the tree with phylogenetic distances.

They cluster each subject in separate clusters, but they cluster one of the Zambian sub-

jects (ZM247F) into two separate clusters. The behaviour of the CH and KL indices are

the same as the H index, Gap statistic and Sil statistic when we build the tree with phy-

logenetic distances. Figure 7.15 illustrates that the only difference is that the CH index

does not cluster one of the sequences for one of the US subjects (WITO). Mclust algo-

rithm finds a different clustering scheme than other CVIs. As discussed in Section 5.3.2,

176 Chapter 7. Lifting on phylogenetic trees

CH
ZM

24
7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

KL

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Gap

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Lifting−1

−0.051−6.174
−8.758

−0.299

0

−10.389
−6.208−7.063−16.749−9.062−0.215−11.04

−18.294

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ALifting−1

0
0

0

0

0 0 0 0 0 0
0

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

NLT−1
0

1

1

1
1

0
0

0

0

0

0

0

0
1111

1 1 11

1

1

1
1 1 1 1 1 1

1

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Lifting−2

−0.034
−0.061

−0.095

0

−0.063
−0.037−0.065−0.151−0.0880 −0.128

−0.205

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

NLT−2
0

0

1

1
1

0
0

0

0

0

1

1

1
1111

1 1 11

1

1

1

1 1 1 1
1

ZM
24

7F

ZM
24

6F

ZM
24

9M

W
IT

O

S
U

M
A

W
E

AU

C
H

40

TR
JO

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Figure 7.14: The comparison of clustering scheme found by different CVIs with matching

distances for the HIV-1 data. Lifting-1 and Lifting-2: nodes are labelled with the denoised

detail coefficients. ALifting-1: nodes are labelled with the denoised compactness values.

NLT-1 and NLT-2: nodes are labelled with the clustering probability. The dendrogram

titled as Gap is for the H index, Sil statistic and Gap statistic, and the one titled as NLT-2

is for both NLT-2 and ALifting-2.

Mclust is a model-based clustering algorithm while the other CVIs discussed in this study

and our algorithm are based on hierarchical clustering. When we check the partitioning

found by Mclust using matching distances, it clusters four of the US subjects together

(CH58, 04013396, TRJO and SUMA) and clusters the other subjects individually. Mclust

clusters six of the US subjects together (CH40, CH58, 04013396, TRJO, WEAU and

SUMA) using phylogenetic distances.

Our Lifting-1 and Lifting-2 algorithms behave similarly to the H index and Sil statis-

tic. Thus, they cluster each individual into separate clusters. Lifting-1 and Lifting-2 do

7.4. Real data 177

Gap

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Lifting−1

−0.021
−0.042

−0.051

−0.001

−0.041

−0.028

−0.047
−0.049−0.028

−0.053

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ALifting−1

0
0

0

0

0
0

0

0
0 0

0

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

NLT−1

0

1

1

1
1

1

0

0

0

0

0

1

1

1

1

11

1
1 11

1 1

1

1
1 1

1

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Lifting−2

−0.044
−0.091

−0.132

−0.007

−0.133

−0.107

−0.19
−0.203−0.123

−0.242

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

NLT−2

0

0

1

1
1

1

0

0

0

0

0

0

1

1

1

11

1
1 11

1

1

1

1

1

1
1 1

1

ZM
24

7F

ZM
24

6F

ZM
24

9M

S
U

M
A

W
E

AU

C
H

40

TR
JO

W
IT

O

C
H

58

04
01

32
26

C
H

77

04
01

33
96

Figure 7.15: The comparison of clustering scheme found by different CVIs with phyloge-

netic distances for the HIV-1 data. Lifting-1 and Lifting-2: nodes are labelled with the

denoised detail coefficients. ALifting-1: nodes are labelled with the denoised compact-

ness values. NLT-1 and NLT-2: nodes are labelled with the clustering probability. The

dendrogram titled as Gap is for the other CVIs (the CH index, H index, KL index, Sil

statistic and Gap statistic), and the one titled as NLT-2 is for both NLT-2 and ALifting-2.

not cluster some of the sequences when we build the tree with matching distances, but

our algorithm clusters all of the sequences by automatically picking its threshold. While

ALifting-1 clusters subjects WITO and SUMA into one cluster and other subjects into

separate clusters, the clustering scheme found by ALifting-2 and NLT-2 is slightly dif-

ferent. They cluster female Zambian subjects (ZM246F and ZM247F) together, and they

cluster four US subjects together (WITO, SUMA, WEAU and CH40), and NLT-1 also

behaves differently. It clusters all Zambian subjects into one cluster and each US sub-

ject into separate cluster. When we build the tree with phylogenetic distances, ALifting-1

178 Chapter 7. Lifting on phylogenetic trees

clusters subjects SUMA and WEAU together. ALifting-2 and NLT-2 behave similar to

the partitioning found by ALifting-2 with matching distances. The only difference is that

three US subjects (SUMA, WEAU and CH40) are clustered together, so the subject WITO

is also clustered separately in this version of the algorithm. The behaviour of NLT-1 is

that next to clustering all Zambian subjects together, it also clusters four US subjects to-

gether (SUMA, WEAU, CH40 and TRJO). In addition, Figures 7.15 and 7.14 illustrate

that our NLT algorithm always find the same clustering pattern whichever lifting order it

follows, so the probability of placing a cluster at a node is either zero or one. When we use

matching distances to build the tree, the thresholds found by ALifting-1 and ALifting-2

algorithms are λ = 11.78 and λ = 0.12, respectively. The thresholds for the tree built by

phylogenetic distances for ALifting-1 and ALifting-2 algorithms vary around λ = 0.04

and λ = 0.13, respectively.

7.5 Applying Lifting to cophylogenetic data

7.5.1 Introduction to cophylogeny

In previous sections, we worked on one phylogenetic tree, but one of the popular topics

in evolutionary biology is to explore interaction between hosts and their parasites. Thus,

hosts and parasites have interacting evolutionary trees showing cophylogenetic patterns.

Fahrenholz (1913) proposed that the phylogeny of parasites mirrors their hosts, and this

statement is known as Fahrenholz rule. Thus, it is assumed that there is synchronized

speciation between parasites and their hosts (cospeciation) which means host and parasite

trees are identical. However, there were no adequate methods to test the cospeciation

of host-parasite relationships until Hafner & Nadler (1988) offered a test to identify if

there is evidence of cospeciation between hosts and their parasites. There are also many

other methods to test for cospeciation between hosts and their parasites. These methods

are mainly divided into two groups: event-based methods and distance or topology-based

methods.

Event-based methods use different coevolutionary events to find the phylogenetic as-

sociation between hosts and their parasites. The first event is cospeciation which occurrs

when interacting trees have completely congruent phylogenies. Congruency means both

hosts and parasites share an identical topology. Thus, two trees can be congruent even if

the speciation of hosts and parasites occur at different times. There are, however, some

conditions which reduce the congruency, and this reduction creates new coevolutionary

events: parasites can connect with a new host (host-switch), a speciation can occur only

on parasites (duplication), a speciation can occur only on hosts (inertia), or a parasite can

go extinct (sorting). Before we review different event-based methods, we can illustrate

7.5. Applying Lifting to cophylogenetic data 179

Host tree

1

2

3

4

5

6

1.5 1 0.5 0

Time

Parasite tree

1

2

3

4

5

6

0.0 0.5 1.0 1.5

Time

(a) Cospeciation, complete congruence.

Host tree

1

2

3

4

5

6

1.5 1 0.5 0

Time

Parasite tree

1

2

3

4

5

6

0.0 0.1 0.2 0.3

Time

(b) Congruence.
Host tree

1

4

3

6

2

5

3 2 1 0

Time

Parasite tree

1

2

3

4

5

6

0.0 0.1 0.2 0.3

Time

(c) Incongruence.

Figure 7.16: The illustration of coevolutionary events. Hosts are labelled from one to six,

and their corresponding parasites share the same label as their hosts.

the different coevolutionary events on a toy data set. We randomly generate a host tree

including six species, and for illustrative purposes, we create a copy of the host tree to

act as the parasite tree. Thus, Figure 7.16a illustrates perfect cospeciation since both trees

are identical in terms of both the topology and the time. We scale the branch lengths of

the parasite tree and keep the same host tree. Figure 7.16b, hence, illustrates a congru-

ence between host and parasites, but there is not a cospeciation event because they are

not identical in terms of the time. There is also host-switch in this tree since parasites

evolve much quicker than hosts. Finally, Figure 7.16c depicts the incongruence; they do

not share the topology. If we carefully check this tree, we can observe each of the event

separately in some part of the tree.

Event-based methods find which events have occurred in connected species. The first

method in this group is the parsimony method proposed by Brooks (1988). Parasites

are treated as character states of hosts, then the congruent and incongruent sections of

the host-parasite phylogenies are determined. A second method, reconciliation analysis,

was introduced by Page (1990), where the host-parasite association is taken as a link-

180 Chapter 7. Lifting on phylogenetic trees

age. This method is implemented in different tools; Component (Page, 1993) finds the

best possible coevolutionary structure by minimizing the duplication, inertia and sorting

events and maximizing the cospeciation event, but it ignores the host-switch event. Then

TreeMap (Page, 1994) maximizes the cospeciation and minimizes the host-switch events,

but it falsely models the events. Jungle (Charleston, 1998), implemented in TreeMap2, of-

fers a better coevolutionary history of host-parasite taking the host-switch events into ac-

count. Another tool is Tarzan (Merkle & Middendorf, 2005) which allows the researcher

to define the age of each node of the parasite tree, but it does not give the optimal coevo-

lutionary history. Then Jane (Conow et al., 2010) is implemented which does not only

consider the uncertainty of time on the parasite tree, but it also considers the uncertainty

on the host tree. The next tool, TreeFitter (Ronquist, 1995), is the first implementation

which gives a different cost function for each event, then it minimizes the total cost to

find the optimal number of events which is occurred in the host-parasite interaction. The

final method we describe in this group is a Bayesian approach (Huelsenbeck et al., 2000)

which finds the coevolutionary relationship between hosts and parasites using their DNA

sequences while the other methods we described assume that the phylogenies of the host

and parasite trees are known. This Bayesian approach analyzes a mixture model for host-

shift speciation and DNA substitution models to find a coevolutionary history of hosts and

parasites.

The distance-based or topology-based methods test the hyphothesis that host and par-

asite trees are statistically independent. Distance-based methods were introduced by

Hafner et al. (1994), who find the distance matrices of hosts and parasites using their

aligned DNA sequences. Then they count the number of similar genetic events from

these matrices. Finally, they apply a Mantel test to find if there is a significant correlation

between host and parasite distance matrices. This method works for the statistically de-

pendent case, but it can not deal with the phylogenetic dependency. Related species share

the similar phenotypes with their last common ancestors or even with the earliest ancestor

which take place in their evolutionary history, so this creates the phylogenetic dependency

between species (Felsenstein, 1985b). Another method, ParaFit (Legendre et al., 2002),

obtains the distance matrices from either DNA sequences or a built tree, and it can deal

with any kind of coevolutionary events including the cases when a host has more than

one parasite interaction. However, this method can not also deal with the phylogenetic

dependency of a data set. Another method, introduced by Hommola et al. (2009), is a per-

mutation test of the hypothesis that hosts and parasites evolve independently when host

and parasite trees have an association linkage. They check the occurrence of cospeciation

by calculating the Pearson correlation between host and parasite distances taking into ac-

count the host-parasite associations. Another distance based method, MRCAlink (MRCA

for the most recent common ancestor; Schardl et al., 2008), evaluates the occurrence of

7.5. Applying Lifting to cophylogenetic data 181

cospeciation using the reduced distance matrices of parasites and hosts by removing the

independent hosts and parasites from the matrices.

Next to bitrophic interacted trees, there are higher-order phylogenetic systems.

Mramba et al. (2013) proposed a metod to explore the coevolutionary on three interacted

phylogenetic trees. They only take the interactions which create a triangle into account,

and they calculate p-values for each possible two trees. Recently, an improved version

of their method was proposed by Nooney et al. (2017). Their method is applicable to

higher-order systemes including phylogenetic networks, and they calculate one efficient

p-value which is an improved version of the permutation statistic offered by Hommola

et al. (2009).

Methods to evaluate evidence of coevolutionary history are summarized above. There

are reviews which provide detailed comparison of different methods provided by Vienne

et al. (2013) and Filipiak et al. (2016). Vienne et al. (2013) concluded that while event-

based methods test the congruence between host and parasite trees, distance-based meth-

ods test the independence or similarity of trees. They also concluded that host-shift events

are more likely to occur than cospeciation.

7.5.2 Application

In Section 7.2, we proposed the application of our Lifting method introduced in Sec-

tion 5.4 to phylogenetic trees. Since our method is applicable to phylogenetic trees, we

can apply it to interacting trees as an explanatory tool to investigate which clades of a

phylogenetic system may show signs of cospeciation. In this study, we only focus on bi-

trophic trees. We assume that host and parasite trees are two independent trees, and apply

our Lifting method separately to both trees using phylogenetic distances. When we built

the trees with hierarchical clustering, the tree topologies were quite different from the

ones generated in previous studies. Hence, we build the trees using the neighbour-joining

(NJ) algorithm, described in Section 4.3.2 which is available in ape (Paradis et al., 2004)

in R (nj() function). Using our algorithm, we aim to supply a visualization tool which

shows where the related species of hosts and related parasites are located on their trees,

and we link the clusters on the host tree with the clusters on the parasite tree if these

clusters include parasites of the clustered hosts. Hence, we aim to check if there are any

pattern between host and parasite trees in terms of congruency. The results of analyzing

two well-known cophylogenetic data sets in the literature are presented in this section.

Pocket gophers and their chewing lice

One commonly used data set is pocket gophers and their chewing lice (Hafner et al.,

1994). Pocket gophers live the most of their life alone in tunnels, so they do not interact

182 Chapter 7. Lifting on phylogenetic trees

BursariusA

BursariusB

Breviceps

Personatus

Trichopus

Castanops

Merriami

Bulleri

Cavator

Underwoodi

Cherriei

Heterodus

Hispidus

Bottae

Talpoides

Host tree

Barbarae

Geomydis

Panamensis

Perotensis

Cherrieri

Actuosi

Ewingi

Minor

Chapini

Setzeri

Minor

Actuosi

Costaricensis

Nadleri

Expansus

Texanus

Oklahomensis

Parasite tree

Figure 7.17: Phylogenetic trees of pocket gophers (hosts, left) and their chewing lice

(parasites, right) with their interactions shown by blue dashed lines.

much with other gophers which decreases the chance of host-shift event. This data set

played significant role in the development of cophylogenetic analysis, and it includes the

DNA sequences of length 379 for a particular gene (mitochondrial cytochrome oxidaze

subunit I (COI)) of 15 pocket gophers and their 17 chewing lice. This data is available via

GenBank (Benson et al., 2005) (accession numbers for hosts and parasites: L32682.1 —

L32696.1 and L32665.1 — L32681.1, respectively). Phylogenetic trees of pocket gophers

and their chewing lice are given in Figure 7.17, and their interactions are shown by blue

lines.

In this data set, we have only a portion of the DNA sequence of each specie, so vari-

ation between species is low. In this case, if we use our ALifting algorithm which auto-

matically picks the threshold, we are likely to overestimate the threshold because of the

lack of differences between sequences, which probably leads us to have one big cluster

per tree. Thus, it is more appropriate not to allow any departure from the centroid of each

cluster or any variation between sequences belonging to the same cluster after denoising if

we define the function values as compactness values or dissimilarity scores, respectively.

We, therefore, produce results for our Lifting algorithm by setting the threshold, λ, to zero

and using phylogenetic distances with the Kimura-2 parameter model. Different function

values, dissimilarity scores or compactness values, do not materially change the outcome

of our Lifting algorithm in this data set. Phylogenetic trees of pocket gophers and their

7.5. Applying Lifting to cophylogenetic data 183

0.126 0.095 0.063 0.032 0

Time

Host tree

16

22

20

21

12

13

2

8

14

4

7

3

5

10

6

15

11

1

9

2

1

5

1
2

2

8

12

13

4

1

7

9

3

14

9

1

5

10

6

15

11

Parasite tree

0 0.038 0.077 0.115 0.154

Time

24

29

23

25

Figure 7.18: Clustered pocket gophers (hosts, left) and their chewing lice (parasites,

right) by our Lifting algorithm. Clustered nodes are labelled with the agglomeration

order starting from n+ 1, where n is the number of species.

chewing lice with our Lifting results are presented in Figure 7.18. In this figure, instead

of labelling tips with species’ names, we number them. There are 15 pocket gophers, so

we enumerate tips from 1 to 15. We also give the same numbers to the chewing lice which

infest each pocket gopher. For example, the chewing lice which infest the pocket gopher

numbered as one are labelled as one. Note that there are 17 chewing lice because two

pocket gophers are infested by two different chewing lice. These are the ones labelled

as “9” and “1”, so two parasites are labelled as “1” and another two of them as “9”. We

link clusters between trees with a labelled blue arrow if the cluster on the parasite tree

includes any of the parasites of the species in the cluster on the host tree, and the labels on

the arrows illustrate how many species are shared in the connected clusters. If there are no

shared species, those clusters remain unconnected. Our Lifting algorithm finds a similar

clustering pattern on both trees. If we look carefully, we will see that if a node on the host

tree has the same speciation structure as a node on the parasite tree, a cluster is located

at those nodes. For example, nodes 20 and 21 on the host tree have the same speciation

structure as nodes 25 and 23 on the parasite tree, respectively. Thus, there is congruence

in these parts of the trees. In addition, another cluster located at node 16 on the host tree is

connected to node 24 on the parasite tree. Even though the cluster on the parasite tree in-

cludes two more parasites, the parasites of the corresponding hosts are branched together

184 Chapter 7. Lifting on phylogenetic trees

C. pacifica

V. lepta

C. magnifica

C. kilmeri

E. extenta

V. gigas

C. elongata

C. florida

C. phaseoliformis

Host tree

E. extenta

V. gigas

C. kilmeri

C. elongata

C. pacifica

V. lepta

C. florida

C. phaseoliformis

C. magnifica

Parasite tree

Figure 7.19: Phylogenetic trees of deep sea clams (hosts, left) and their bacteria (para-

sites, right) with their interactions shown by blue dashed lines.

and are clustered together. Overall our algorithm finds a clustering pattern on the parasite

tree which highly mirrors the clustering pattern on the host tree, and identify the pasts of

the tree which show evidence of cospeciation.

Deep sea clams and their sulfur-oxidizing bacteria

The second cophylogenetic data set is about deep sea clams and their sulfur-oxidizing

endosymbiotic bacteria, published by Peek et al. (1998). Deep sea clams need sulfur-

oxidizing bacteria for their nutrients which are transmitted via eggs. Thus, a strong co-

phylogeny pattern is expected. In this data set, there are 9 clams and their 9 bacteria,

and the mitochondrial COI DNA sequences of length 516 for the clams and the small

subunit (16S) sequences of length 1433 for the bacteria are provided which are available

via GenBank (Benson et al., 2005) (accession numbers for hosts: AF008274, AF035941,

AF008272, AF008281, AF008295, AF008283, AF008266, AF008264, AF035942, and

for parasites: AF035719 — AF035727). Phylogenetic trees of the deep sea clams and

their bacteria are given in Figure 7.19, where their interactions are shown by blue lines.

We present the clustering pattern found by our Lifting algorithm with the same settings

with the pocket gophers and their chewing lice data set for this cophylogenetic data set.

Phylogenetic trees after applying our Lifting algorithm are given in Figure 7.20. We find

that if the hosts and parasites share the same speciation structure, they are clustered to-

7.5. Applying Lifting to cophylogenetic data 185

0.05 0.038 0.025 0.013 0

Time

Host tree

10

13

11

5

9

3

2

7

8

1

4

6

2

2

2

7

8

2

1

5

9

4

6

3

Parasite tree

0 0.006 0.012 0.019 0.025

Time

10

13

14

Figure 7.20: Clustered deep sea clams (hosts, left) and their bacteria (parasites, right) by

our Lifting algorithm. Clustered nodes are labelled with the agglomeration order starting

from n+ 1, where n is the number of species.

gether as it happened for the pocket gophers and their chewing lice data set. Nodes 11 and

10 cluster the hosts of parasites at nodes 14 and 13, respectively, where these hosts and

parasites are branched in the same way as each other. The speciation which is happened

at node 13 on the host tree is different than the one at node 10 on the parasite tree, but

we find that there is not such a large difference between the clams labelled “7” and “8”

and their bacteria. Thus, we also find a similar clustering pattern for the clams and their

bacteria.

186 Chapter 7. Lifting on phylogenetic trees

7.6 Summary

In Section 5.4, we discussed how we can apply the lifting algorithm to a clustering of a

multidimensional data set, and in this chapter, we propose a way of applying our Lifting

algorithm to phylogenetic data sets (DNA sequences). To apply our Lifting algorithm, we

need three basic inputs: joined pairs, the distances between nodes, and node values. The

first two features come from the hierarchical clustering step, and we proposed a node value

called compactness in Section 5.4. For phylogenetic data sets, we can still use this type of

node value after assigning coordinates for each sequence using MDS. We also introduce

another node value for phylogenetic data sets: dissimilarity scores. Basically, we check

each locus for all sequences under the node of interest in turn, and we count the number

of loci having different nucleotides. We also examine the effect of different distance

computing methods (matching and phylogenetic distances) to our Lifting algorithm in

this chapter.

The application of our Lifting algorithm on phylogenetic data sets is illustrated using

simulated data sets and a real data set. We simulate DNA sequences using Seq-Gen
(Rambaut & Grassly, 1997), but we need a base tree to generate the sequences. We

simulate a base tree using ms (Hudson, 2002). In the simulation study, we create three

base trees. Two of them are generated using the same parameters with different seeds, and

we just take mutation into account as an evolution history. The aim is to see how different

trees can be generated with the same parameters, and how our Lifting algorithms behave

on these trees. In the third tree, we consider migration along with mutation as an evolution

history. The structure of these trees are given in Figure 7.3. We find that the choice of

evolution model in the sequence generation step does not affect the performance of our

Lifting algorithms. Thus, we only discuss the case when we generate sequences under the

Kimura 2-parameter model.

For two trees with no sub-populations (having only mutation history), the comparison

study is done using different internal cluster validity indices (CVIs) and Mclust explained

in Sections 5.3.1 and 5.3.2, respectively. We observe that the CH, KL and H indices and

Sil statistic fail to cluster the data. They find a high number of small clusters. The number

of clusters found by the CH index and the Sil statistic are close to the upper boundary

choice for these methods. Thus, these results clarify the importance of the upper bound-

ary choice for these methods. The H and KL indices perform better when we build the

tree with phylogenetic distances. While the KL index still finds small size clusters, the H

index performs very differently, and it clusters diverged species into the same cluster (see

Figure 7.6). The Gap statistic also attempts to cluster diverged species together, but when

we build the second base tree having mutation history with phylogenetic distances, it finds

the same clustering structure as ALifting-1. Our Lifting algorithms are not affected much

7.6. Summary 187

by different distance computing methods. When we set the threshold to zero (Lifting-1

and Lifting-2), we find a high number of small clusters with some outliers. When the

algorithm automatically picks the threshold (ALifting-1 and ALifting-2), our algorithm

finds more compact clusters (see Figures 7.5 and 7.6). Our NLT-1 and NLT-2 algorithms

find the same classification with high probabilities as our ALifting-1 and ALifting-2 al-

gorithms, respectively.

The final simulated tree-structure illustrates a population which has migration and

mutation history, and we use sub-populations as true components for this data structure.

Thus, we can check the performance of each method using external scores described in

Section 5.3.3. We notice that the choice of distance measure has a significant role for

this data structure. When we build the tree with matching distances, results of the Gap

statistic and KL index have a high variation. However, they cluster sub-populations with

a high performance by building trees with phylogenetic distances. For the CH index and

Sil statistic, results do not change; they fail to partition this data structure. Mclust always

clusters the data with high performance (ARI≈ 63%), but our Lifting-1 and Lifting-2

show the highest performance when we build the tree with phylogenetic distances. We

notice that ALifting/NLT overestimate the threshold, λ, for small data sets because the

variation between sequences are low, so our Lifting algorithms by setting λ to zero per-

form better.

Another comparison study is done for a real HIV-1 data set (Salazar-Gonzalez et al.,

2009). While CVIs attempt to cluster each individual in separate clusters, Mclust and

ALifting/NLT find different partitions. Here, the question was if we would like to parti-

tion the data in terms of their gender or nationality or different subjects, or if we would

like to find where mutation happened in time. Using ALifting/NLT, we find the possible

point in the time where speciation happens. Thus, we believe that this can be helpful for

other scientists doing genetic based studies. This study can be helpful to track possible

speciation in time.

Finally, we examine the behaviour of our algorithm on cophylogenetic data sets using

two different real data sets: pocket gophers and their chewing lice (Hafner et al., 1994)

and deep sea clams and their sulfur-oxidizing bacteria (Peek et al., 1998). In this part of

the study, we demonstrate the clustering pattern found by both host and parasite trees. Our

Lifting algorithm automatically clusters species together if any group of hosts shares the

same branching pattern with their parasites. Thus, this visualization tool will be helpful

for a researcher who wishes to investigate the congruency between hosts and parasites in

a data set where cospeciation has been detected.

188 Chapter 7. Lifting on phylogenetic trees

Chapter 8

Discussion

In this thesis, we have proposed a new algorithm which automatically detects where clus-

tering happens in a dendrogram by denoising some generalized node values. We gener-

alized the algorithm which could be used on any multidimensional data set by defining

the node value as the average distance from the centroid of each possible cluster (com-

pactness), or it could be applied to phylogenetic data sets (DNA sequences) either using

compactness or dissimilarity score as a node value. The dissimilarity score was defined

as the average number of loci in which at least one of them does not share the same

nucleotide (excluding gaps) between sequences under the node of interest.

Our proposed algorithms were discussed in Chapters 5 , 6 and 7. In the first part of

Chapter 5, we also discussed some internal cluster validity indices (CVIs) in the literature

which find the number of clusters for hierarchically built trees. Even though our focus

was hierarchically built trees, we also included mixture model-based clustering (Mclust)

in our simulations to see the performance of another clustering method in comparison

to our algorithms. We also presented some available similarity scores which check the

performance of different methods if we know the true partitioning of a data set.

Within different CVIs, we noticed that the CH index had a higher performance than

other indices in terms of capturing true components, but when there was a high variation

in a data set or overlapping components, it showed a low performance. It tended to find

a high number of clusters. Its performance in high dimensional data sets was also low

since it found many small size clusters. Overall, all indices captured true components

with a high performance if they were well separated, and the data were defined in low

dimensions. In opposite cases, none of them easily partitioned the data: the Gap statistic

tended to find one big cluster, and other CVIs tended to find a high number of clusters.

Even though this behaviour of the Gap statistic is applicable to overlapping components,

we observed that it does not even guarantee to show a high performance for well-separated

data sets. In addition, all CVIs we are aware of find the number of clusters in a data set, so

by cutting a tree from any height which gives the found number of clusters, we can reach

189

190 Chapter 8. Discussion

the clustering pattern. We also noticed that during the implementation of CVIs, we need

to give an upper boundary for the number of clusters. We recognized that the different

upper boundary choices change the clustering pattern.

When we checked the performance of Mclust, we noticed that its performance was

the highest one if the components could be explained by the normal distribution. How-

ever, it tended to cluster a high number of objects from different components together

for uniquely shaped data sets such as concentric circles or the non-normally distributed

data sets (see Section 5.5). Mixture model-based clustering may even deal with these data

structures if a new model is defined, and if the clustering algorithm based on the new

model is implemented which increases the computational complexity of the algorithm,

and it requires a new model to be specified for each data set.

In the clustering literature, there are also many cluster validity scores, and we dis-

cussed some of them in Section 5.3.3. CompCheck and ClustCheck (Fowlkes & Mal-

lows, 1983) had a poor performance alone because CompCheck only looked at if the

objects from the same component were clustered together in any number of clusters. If all

the objects are clustered together, CompCheck will be equal to one, so it can not be used

alone to check the performance of any index. Thus, using CC, the product of CompCheck

and ClustCheck, is a better choice. The benefit of CC is that it does not penalize small

clusters, so if a component is divided into small clusters without mixing elements from

different components, it will return a high score which is appropriate in some applications.

The next score is Purity (Rendón et al., 2011), which can overestimate the performance

since it does not check if any cluster combines objects from different components. We

notice that other two indices, the adjusted Rand index (ARI; Hubert & Arabie, 1985) and

adjusted variation information (AVI; Vinh et al., 2010), behave similarly to CC, but these

indices include an adjustment process to allow for the degree of clustering which might

occur by chance, which makes them have a slightly lower score than CC.

We proposed a new method (Lifting) which locates clusters in a dendrogram based on

a denoising method, the lifting “one coefficient at a time” (LOCAAT) algorithm, in Sec-

tion 5.4. The lifting algorithm on trees needs three features: joined pairs, branch lengths

and a function value for each node. The first two features can be easily obtained during

the process of building the trees. In this study, we built the trees using hierarchical clus-

tering. Some data sets may come with a node value, but one is not always available. Thus,

to obtain the third requirement of our algorithm, we proposed a generalized node value

for multidimensional data sets called compactness, which was defined as the average dis-

tance from the centroid of each possible group in a tree. If the denoised detail coefficients

of a node and all its child nodes are less than or equal to a threshold, we declare that

node to be a cluster. We concluded a simulation study to compare our algorithm, other

CVIs and Mclust in terms of various cluster validity scores using four different artificial

191

data structures in two-dimensional space and a real data set. Two artificial data structures

included five normally distributed components, where components had a low variation in

one structure and had a larger variation in the other structure which created some overlaps

between different components. The other two data structures were more complex; one

of them consisted of three concentric circles, and the other one included six irregularly

shaped components in total. Finally, we checked the performance of our Lifting algorithm

using the well known crabs data set (Campbell & Mahon, 1974).

Simulation results and the results of crabs data set showed that our Lifting method

partitioned the data well in terms of the cluster validity scores. When the data sets in-

cluded normally distributed components, Mclust always showed the highest performance

as expected, and some CVIs (the CH, H and KL indices) showed slightly better results

than our Lifting method. When the variation increased within the components, there was

some overlap between the components. In this case, the performance of other CVIs de-

creased, and our Lifting method performed better than them. For the concentric circle

data set, Mclust failed to partition the data; it tended to combine objects from different

components into the same cluster. The CH, H and KL indices performed similarly and

captured the two main components into separate clusters while they divided one com-

ponent into many clusters. Our Lifting method tended to divide two main components

into small clusters which decreased its performance. The reason was we were setting a

constant threshold which was used for each replicate. However, the variation changed in

each replicate of the simulation study, so fixing a threshold at a certain value decreased the

performance of our algorithm. Our findings for the final data structure, non-normally dis-

tributed six-component data set, showed that the CH index performed slightly better than

our Lifting method, and other CVIs either failed to partition or had a high variation be-

tween replicates. Overall, Mclust showed a better performance than some of the indices,

but it had a weak performance especially for capturing the tails of different components.

In Chapter 6, we presented an updated version of our Lifting method (ALifting). Our

ALifting method estimated the threshold for each data set, so we omitted the process of

artificial threshold setting. We proposed that if the denoised compactness values of a

node and all its child nodes are less than or equal to the universal threshold (weighted

variation), we place a cluster at this node. The performance of our ALifting algorithm for

the artificial data structures was much higher than other methods. It showed the highest

performance after Mclust for normally distributed data structures. Its performance for the

six-component uniquely shaped data structure noticeably increased, and it captured the

true components with the highest similarity scores. For the three-component concentric

circle data structure, its performance did not change much. Thus, our ALifting algorithm

underestimated the threshold for this specific data structure; we may need to consider

different variance estimation methods.

192 Chapter 8. Discussion

In Chapter 6, we also proposed a method based on the non-decimated lifting (NLT)

algorithm. In NLT, the LOCAAT algorithm is repeated P times using a different per-

mutation order of nodes for lifting. Thus, in each repetition, if we apply our ALifting

algorithm, we will have P different clustering results. We can summarize the P cluster-

ing results by the proportion of times the node in P repetitions. In this way, we proposed

a method which gives a probability of placing a cluster at each node. If the clustering

probability of a node and all its child nodes are higher than or equal to a chosen proba-

bility of acceptance, θ ∈ [0, 1], we place a cluster at this node. Its behaviour was similar

to our ALifting algorithm when we set θ at 0.5 with high probabilities. In this version of

our algorithm, we need to choose P carefully since high P is the only way to reduce the

possible variation on clustering caused by the permutation stage of our NLT algorithm.

Our methods are also applicable to phylogenetic data sets, based on DNA sequences.

In Chapter 7, we presented how to apply our algorithms to DNA sequences. Phylogenetic

trees are binary trees, so we can apply our proposed algorithms for multidimensional data

sets easily to phylogenetic data sets. We proposed that we can use two different distance

measures to build trees: matching distances which count the number of loci having dif-

ferent nucleotides between a pair of DNA sequences, and phylogenetic distances using an

evolutionary model. After building the tree hierarchically, we can still use compactness

as a node value, but we need to apply multidimensional scaling to find the position of

each sequence in Rp, where we decide p by checking eigenvalues. We also suggested a

second approach which calculates the dissimilarity score for each node in the tree. For

all the sequences under a node, we count the number of loci for which any species has a

different nucleotide in that position.

We produced three different artificial phylogenetic data sets. First two of them had

only mutation history and included 100 species, and the only differences was the seed we

used to simulate sequences. We aimed to see how different trees could be built using the

same parameters. The third of them had 30 species having migration history in addition

to the mutation history. We found that CVIs failed to cluster phylogenetic data sets with

only mutation history with matching distance, but if we build the tree with phylogenetic

distances, the H index and Gap statistic find a clustering pattern. Our algorithms always

clustered the data, and when we checked the dendrogram illustrations, the groups identi-

fied looked like a good summary of these data sets. These two artificial data sets were not

labelled, so we could not check the performance of different methods. However, the third

data set included three sub-populations. We compared the performance of different meth-

ods using similarity scores. The CH index and Sil statistic failed to partition the data, and

the partitions found by the KL index and Gap statistic when we built the tree were highly

variable especially with matching distances. Mclust and the H index always performed

well with little or no variation. For this data structure, we found that when we built the

193

tree with phylogenetic distances, our method with zero threshold showed the best per-

formance. However, there was variation between each replicate of the simulation study

because of the manual choice of the threshold. Our ALifting and NLT methods always

found the same pattern with any distance method and any node value. However, their

performances were lower than others. This showed that for small data sets our ALifting

and NLT methods tended to overestimate the threshold. Using a tuning parameter on the

variance estimate, the performance of our algorithms noticeably increased. Hence, if a

more robust variance estimate can be found, the performance of our algorithms can be

high for any type of data structure.

Application of different methods including our algorithm to a HIV-1 data set (Salazar-

Gonzalez et al., 2009) showed that while other CVIs tended to group different individuals

into different clusters, our algorithms and Mclust clustered some individuals together. In

this data set, we had the region information. However, we need to question whether we

want to find a clustering pattern showing different regions or different individuals, or if

there are any signs which show some individuals share the similar viruses. Our algorithm

found a different clustering pattern which suggested that some individuals branched to-

gether.

In Chapter 7, we also investigated the behaviour of our method on cophylogenetic

data sets. We analyzed two well known real data sets: pocket gophers and their chewing

lice (Hafner et al., 1994) and deep sea clams and their sulfur-oxidizing bacteria (Peek

et al., 1998). The aim was not to identify any speciation events. We would like to provide

a visualization tool which may help other researchers to summarize these type of data

sets. We applied our algorithm separately to both host and parasite trees, so interactions

between these trees were not counted. Both data sets are small data sets, so our ALifting

and NLT methods would find a single large cluster. Thus, we applied our algorithm with

zero threshold. We found that our algorithm clustered the congruent part of parasites and

hosts.

In this study, we only explored the usage of lifting in clustering on binary trees, but it

will be also interesting to explore how a lifting-based clustering idea can be applied on a

network. Binary trees branch from a root, so we can apply our algorithm starting from the

root. If our method does not identify a cluster at the root, we check the next generation

and so on. Thus, we have a starting point and a ruled branching pattern. However, in a

network, we do not have any starting point to check where we can place a cluster, and we

do not know in which order branching occurs.

194 Chapter 8. Discussion

Appendix A

Extra plots for Chapters 5 and 6

In Section 5.5, four different simulation studies are set. Some extra plots and tables are

given with different settings in the following sections. We repeat the simulation study

with 1000 replicates for the five-component normally distributed data sets with complete

linkage, and we also repeat the simulation study for all four different data settings if we

set the upper boundary at 15 for the CH, H and KL indices and Sil statistic. For the Gap

statistic, we also set the upper boundary at 15, and ten reference data sets are generated

over the range of the data as we applied in Section 5.5. We use four different versions of

our proposed clustering algorithm. The one labelled as ZLifting is for our Lifting algo-

rithm with zero threshold (λ = 0), introduced in Section 5.4. We set a different arbitrary

λ for each data structure in Lifting while ALifting picks the threshold automatically (see

Section 6.2). The final version of our algorithm is NLT, introduced in Section 6.3. In NLT,

the probability of acceptance and the number of paths are set at θ = 0.5 and P = 100,

respectively. Each figure and table are labelled with the settings we used. Brief discussion

for each setting can be found in Section 5.5.

195

196 Appendix A. Extra plots for Chapters 5 and 6

A.1 Five-component normally distributed data with low

variance

Index Mclust CH H KL Sil Gap ZLifting Lifting ALifting NLT

N 5 5 5 25 5 3 59 4 14 16

Purity 0.999 0.995 0.989 0.953 0.993 0.674 0.998 0.808 0.998 0.998

ARI 0.998 0.985 0.980 0.442 0.984 0.588 0.216 0.773 0.623 0.536

AVI 0.993 0.970 0.965 0.556 0.968 0.587 0.579 0.889 0.797 0.761

CompCheck 0.998 0.986 0.988 0.409 0.988 0.993 0.147 0.978 0.510 0.421

ClustCheck 0.998 0.991 0.982 0.951 0.987 0.670 0.999 0.722 0.997 0.998

CC 0.998 0.988 0.985 0.578 0.987 0.770 0.382 0.838 0.712 0.647

Table A.1: The comparison of CVIs for the five-component normally distributed data

with low variance (complete linkage, limit=50). First row is for the average number of

clusters, and others are for the average similarity scores. For Lifting, the threshold λ is

set at 0.2.

Index Mclust CH H KL Sil Gap ALifting ALifting2 NLT

N 5 8 8 8 6 3 7 6 6

Purity 0.999 0.961 0.833 0.912 0.875 0.506 0.997 0.807 0.998

ARI 0.998 0.948 0.800 0.883 0.846 0.373 0.989 0.994 0.993

AVI 0.993 0.942 0.827 0.881 0.865 0.519 0.984 0.992 0.989

CompCheck 0.998 0.990 0.990 0.990 0.994 1.000 0.984 0.993 0.991

ClustCheck 0.998 0.945 0.762 0.894 0.830 0.430 0.998 0.998 0.998

CC 0.998 0.964 0.862 0.928 0.899 0.633 0.991 0.995 0.994

Table A.2: The comparison of CVIs for the five-component normally distributed data with

low variance (single linkage, limit=15). First row is for the average number of clusters,

and others are for the average similarity scores.

A.2. Five-component normally distributed data with larger variation 197

A.2 Five-component normally distributed data with

larger variation

Index Mclust CH H KL Sil Gap ZLifting Lifting ALifting NLT

N 5 6 5 7 5 1 54 5 21 23

Purity 0.981 0.929 0.846 0.768 0.888 0.233 0.972 0.778 0.966 0.968

ARI 0.953 0.810 0.752 0.563 0.794 0.038 0.217 0.663 0.451 0.394

AVI 0.993 0.970 0.965 0.556 0.968 0.041 0.561 0.764 0.681 0.661

CompCheck 0.962 0.823 0.879 0.726 0.875 0.993 0.150 0.868 0.346 0.294

ClustCheck 0.962 0.880 0.764 0.723 0.810 0.229 0.969 0.662 0.962 0.966

CC 0.998 0.988 0.985 0.578 0.987 0.465 0.380 0.753 0.576 0.532

Table A.3: The comparison of CVIs for the five-component normally distributed data with

larger variation (complete linkage, limit=50). First row is for the average number of

clusters, and others are for the average similarity scores. For Lifting, the threshold λ is

set at 0.3.

Index Mclust CH H KL Sil Gap ALifting ALifting2 NLT

N 5 7 11 12 2 1 21 20 21

Purity 0.981 0.248 0.236 0.252 0.201 0.200 0.925 0.762 0.936

ARI 0.953 0.044 0.027 0.043 0.000 0.000 0.831 0.856 0.842

AVI 0.879 0.059 0.037 0.058 0.000 0.001 0.818 0.853 0.823

CompCheck 0.962 0.983 0.974 0.972 0.998 1.000 0.835 0.873 0.835

ClustCheck 0.962 0.220 0.212 0.219 0.199 0.199 0.902 0.904 0.918

CC 0.962 0.462 0.453 0.459 0.446 0.447 0.866 0.887 0.875

Table A.4: The comparison of CVIs for the five-component normally distributed data with

larger variation (single linkage, limit=15). First row is for the average number of clusters,

and others are for the average similarity scores.

198 Appendix A. Extra plots for Chapters 5 and 6

A.3 Three-component concentric circle data

Index Mclust CH H KL Sil Gap ALifting ALifting2 NLT

N 9 7 5 6 2 5 20 20 20

Purity 0.894 1.000 1.000 1.000 0.778 0.999 1.000 0.821 1.000

ARI 0.280 0.926 0.968 0.963 0.532 0.943 0.316 0.316 0.315

AVI 0.366 0.763 0.898 0.876 0.532 0.903 0.568 0.569 0.567

CompCheck 0.293 0.913 0.963 0.957 1.000 0.935 0.280 0.280 0.279

ClustCheck 0.832 1.000 1.000 1.000 0.622 0.999 1.000 1.000 1.000

CC 0.494 0.956 0.981 0.978 0.789 0.966 0.529 0.529 0.528

Table A.5: The comparison of CVIs for the three-component concentric circle data (single

linkage, limit=15). First row is for the average number of clusters, and others are for the

average similarity scores.

A.4 Six-component non-normally distributed data

Index Mclust CH H KL Sil Gap ALifting ALifting2 NLT

N 9 9 7 7 6 2 13 12 13

Purity 0.943 0.913 0.767 0.765 0.705 0.404 0.996 0.868 0.996

ARI 0.873 0.929 0.767 0.730 0.611 0.118 0.949 0.953 0.950

AVI 0.770 0.906 0.763 0.714 0.595 0.161 0.929 0.936 0.931

CompCheck 0.836 0.993 0.994 0.994 0.995 1.000 0.923 0.929 0.925

ClustCheck 0.968 0.907 0.721 0.731 0.657 0.273 0.997 0.997 0.997

CC 0.899 0.947 0.841 0.832 0.773 0.505 0.959 0.963 0.960

Table A.6: The comparison of CVIs for the six-component non-normally distributed data

(single linkage, limit=15). First row is for the average number of clusters, and others are

for the average similarity scores.

Bibliography

Arbelaitz, O., Gurrutxaga, I., Muguerza, J., PéRez, J. M., & Perona, I. (2013). An ex-

tensive comparative study of cluster validity indices. Pattern Recognition, 46(1), pp.

243–256.

Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2005).

GenBank. Nucleic Acids Research, 33(Database issue), pp. D34–D38.

Brooks, D. R. (1988). Macroevolutionary comparisons of host and parasite phylogenies.

Annual Review of Ecology and Systematics, 19(1), pp. 235–259.

Calinski, T. & Harabasz, J. (1974). A dendrite method for cluster analysis. Communica-

tions in Statistics, 3(1), pp. 1–27.

Campbell, N. A. & Mahon, R. J. (1974). A multivariate study of variation in two species

of rock crab of genus Leptograpsus. Australian Journal of Zoology, 22, pp. 417–425.

Chalise, P., Raghavan, R., & Fridley, B. (2016). IntNMF: Integrative Clustering of Mul-

tiple Genomic Dataset. R package version 1.1.

Charleston, M. A. (1998). Jungles: a new solution to the host/parasite phylogeny recon-

ciliation problem. Mathematical Biosciences, 149(2), pp. 191–223.

Charrad, M., Ghazzali, N., Boiteau, V., & Niknafs, A. (2014). NbClust: an R package

for determining the relevant number of clusters in a data set. Journal of Statistical

Software, 61(6), pp. 1–36.

Chen, W.-C. (2011). Overlapping codon model, phylogenetic clustering, and alternative

partial expectation conditional maximization algorithm. Ph.D. Dissertation, Iowa State

University.

Chui, C. K. (1997). Wavelets: A Mathematical Tool for Signal Processing. Philadelphia:

Society for Industrial and Applied Mathematics.

Claypoole, R., Davis, G., Sweldens, W., & Baraniuk, R. (2003). Nonlinear wavelet trans-

forms for image coding via lifting. IEEE Transactions on Image Processing, 12(12),

pp. 1449–1459.

199

200 Bibliography

Coifman, R. & Donoho, D. (1995). Translation-invariant de-noising. In A. Antoniadis &

G. Oppenheim (Eds.), Wavelets and Statistics: Lecture Notes in Statistics, volume 103

(pp. 125–150). New York: Springer.

Conow, C., Fielder, D., Ovadia, Y., & Libeskind-Hadas, R. (2010). Jane: a new tool for

the cophylogeny reconstruction problem. Algorithms for Molecular Biology, 5(1), 16.

Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: Society for Industrial and

Applied Mathematics.

Donoho, D. L. & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3), pp. 425–455.

Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., & Picard, D. (1995). Wavelet shrink-

age: Asymptopia? Journal of the Royal Statistical Society. Series B (Methodological),

57(2), pp. 301–369.

Durbin, R. D. (1998). Biological Sequence Analysis: Probabilistic Models of Proteins

and Nucleic Acids. Cambridge: Cambridge University Press.

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and

high throughput. Nucleic Acids Research, 32(5), pp. 1792–1797.

Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annuals of

Statistics, 7(1), pp. 1–26.

Efron, B., Halloran, E., & Holmes, S. (1996). Bootstrap confidence levels for phyloge-

netic trees. Proceedings of the National Academy of Sciences of the United States of

America, 93(23), pp. 13429–13434.

Ewens, W. (1979). Mathematical Population Genetics, volume 9 of Biomathematics.

Berlin: Springer.

Fahrenholz, H. (1913). Ectoparasiten und abstammungslehre. Zoologischer Anzeiger, 41,

pp. 371–374.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood

approach. Journal of Molecular Evolution, 17(6), pp. 368–376.

Felsenstein, J. (1985a). Confidence limits on phylogenies: an approach using the boot-

strap. Evolution, 39(4), pp. 783–791.

Felsenstein, J. (1985b). Phylogenies and the comparative method. The American Natu-

ralist, 125(1), pp. 1–15.

Bibliography 201

Feng, D. & Doolittle, R. F. (1987). Progressive sequence alignment as a prerequisitetto

correct phylogenetic trees. Journal of Molecular Evolution, 25(4), pp. 351–360.

Filipiak, A., Zaja̧c, K., Kübler, D., & Kramarz, P. (2016). Coevolution of host-parasite as-

sociations and methods for studying their cophylogeny. Invertebrate Survival Journal,

13, pp. 56–65.

Fitch, W. M. (1971). Toward defining the course of evolution: Minimum change for a

specific tree topology. Systematic Zoology, 20(4), pp. 406–416.

Fowlkes, E. B. & Mallows, C. L. (1983). A method for comparing two hierarchical

clusterings. Journal of the American Statistical Association, 78(383), pp. 553–569.

Fraley, C. & Raftery, A. E. (2002). Model-based clustering, discriminant analysis and

density estimation. Journal of the American Statistical Association, 97, pp. 611–631.

Fraley, C., Raftery, A. E., Murphy, T. B., & Scrucca, L. (2012). mclust Version 4 for

R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density

Estimation.

Gotoh, O. (1996). Significant improvement in accuracy of multiple protein sequence

alignments by iterative refinement as assessed by reference to structural alignments.

Journal of Molecular Biology, 264(4), pp. 823–838.

Hafner, M. S. & Nadler, S. A. (1988). Phylogenetic trees support the coevolution of

parasites and their hosts. Nature, 332, pp. 258–259.

Hafner, M. S., Sudman, P., Villablanca, F., Spradling, T., Demastes, J. W., & Nadler,

S. A. (1994). Disparate rates of molecular evolution in cospeciating hosts and parasites.

Science, 265, pp. 1087–1090.

Hartigan, J. A. (1975). Clustering Algorithms. New York: J. Wiley & Sons.

Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a

molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), pp.

160–174.

Hogeweg, P. & Hesper, B. (1984). The alignment of sets of sequences and the construction

of phyletic trees: an integrated method. Journal of Molecular Evolution, 20(2), pp.

175–186.

Hommola, K., Smith, J. E., Qiu, Y., & Gilks, W. R. (2009). A permutation test of host-

parasite cospeciation. Molecular Biology and Evolution, 26(7), pp. 1457–1468.

202 Bibliography

Hubert, L. & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2(1), pp.

193–218.

Hudson, R. R. (2002). Generating samples under a Wright-Fisher neutral model of genetic

variation. Bioinformatics, 18(2), pp. 337–338.

Huelsenbeck, J. P., Rannala, B., & Larget, B. (2000). A Bayesian framework for the

analysis of cospeciation. Evolution, 54(2), pp. 352–364.

Isaev, A. (2006). Introduction to Mathematical Methods in Bioinformatics. Berlin:

Springer.

Jansen, M., Nason, G. P., & Silverman, B. W. (2001). Scattered data smoothing by em-

pirical Bayesian shrinkage of second-generation wavelet coefficients. In International

Symposium on Optical Science and Technology, volume 4478 (pp. 87–97).

Jansen, M., Nason, G. P., & Silverman, B. W. (2009). Multiscale methods for data on

graphs and irregular multidimensional situations. Journal of the Royal Statistical Soci-

ety. Series B (Statistical Methodology), 71(1), pp. 97–125.

Johnstone, I. M. & Silverman, B. W. (2005). Ebayesthresh: R programs for empirical

Bayes thresholding. Journal of Statistical Software, 12(8), pp. 1–38.

Jukes, T. H. & Cantor, C. R. (1969). Evolution of protein molecules. In H. Munro (Ed.),

Mammalian Protein Metabolism (pp. 21–132). Academic Press.

Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid

multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research,

30(14), pp. 3059–3066.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substi-

tutions through comparative studies of nucleotide sequences. Journal of Molecular

Evolution, 16(2), pp. 111–120.

Knight, M. & Nunes, M. (2012). nlt: A Nondecimated Lifting Transform for Signal

Denoising. R package version 2.1-3.

Knight, M. I. & Nason, G. P. (2009). A nondecimated lifting transform. Statistics and

Computing, 19(1), pp. 1–16.

Krzanowski, W. J. & Lai, Y. T. (1988). A criterion for determining the number of groups

in a data set using sum-of-squares clustering. Biometrics, 44(1), pp. 23–34.

Legendre, P., Desdevises, Y., & Bazin, E. (2002). A statistical test for hostparasite coevo-

lution. Systematic Biology, 51(2), pp. 217–234.

Bibliography 203

Mallat, S. (1998). A Wavelet Tour of Signal Processing. San Diego: Academic Press.

Manly, B. F. J. (2004). Multivariate Statistical Methods: A Primer. Boca Raton, FL:

Chapman & Hall/CRC Press, third edition.

Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate Analysis. London: Aca-

demic Press.

Meilă, M. (2007). Comparing clusterings—an information based distance. Journal of

Multivariate Analysis, 98(5), pp. 873–895.

Merkle, D. & Middendorf, M. (2005). Reconstruction of the cophylogenetic history of

related phylogenetic trees with divergence timing information. Theory in Biosciences,

123(4), pp. 277–299.

Milligan, G. & Cooper, M. (1985). An examination of procedures for determining the

number of clusters in a data set. Psychometrika, 50, pp. 159–179.

Mramba, L., Barber, S., Hommola, K., Dyer, L., Wilson, J., Forister, M., & Gilks, W. R.

(2013). Permutation tests for analyzing cospeciation in multiple phylogenies: applica-

tions in tri-trophic ecology. Statistical Applications in Genetics and Molecular Biology,

12, pp. 1–23.

Nason, G. (2016). wavethresh: Wavelets Statistics and Transforms. R package version

4.6.8.

Nason, G. P. (2008). Wavelet Methods in Statistics with R. New York: Springer Sci-

ence+Business Media.

Nason, G. P. & Silverman, B. W. (1994). The discrete wavelet transform in S. Journal of

Computational and Graphical Statistics, 3(2), pp. 163–191.

Nason, G. P. & Silverman, B. W. (1995). The stationary wavelet transform and some sta-

tistical applications. In A. Antoniadis & G. Oppenheim (Eds.), Wavelets and Statistics:

Lecture Notes in Statistics, volume 103 (pp. 281–300). New York: Springer-Verlag.

Nilsen, G. & Lingjaerde, O. C. (2013). clusterGenomics: Identifying Clusters in Ge-

nomics Data by Recursive Partitioning. R package version 1.0.

Nooney, C., Barber, S., Gusnanto, A., & Gilks, W. R. (2017). A statistical method for

analysing cospeciation in tritrophic ecology using electrical circuit theory. Statistical

Applications in Genetics and Molecular Biology, 16(5-6), pp. 349–365.

204 Bibliography

Notredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: a novel method for fast

and accurate multiple sequence alignment. Journal of Molecular Biology, 302(1), pp.

205–217.

Nunes, M. & Knight, M. (2017). adlift: An Adaptive Lifting Scheme Algorithm. R package

version 1.3-3.

Nunes, M. A., Knight, M. I., & Nason, G. P. (2006). Adaptive lifting for nonparametric

regression. Statistics and Computing, 16(2), pp. 143–159.

Nunes, M. A. & Nason, G. P. (2004). Stopping times in adaptive lifting. Technical Report

05: 15, Department of Mathematics, University of Bristol, UK.

Page, R. D. M. (1990). Component analysis: a valiant failure? Cladistics, 6(2), pp.

119–136.

Page, R. D. M. (1993). Users’s Manual for Component, version 2.0. The Natural History

Museum, London, UK.

Page, R. D. M. (1994). Parallel phylogenies: reconstructing the history of host-parasite

assemblages. Cladistics, 10, pp. 155–173.

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and

evolution in R language. Bioinformatics, 20, pp. 289–290.

Peek, A. S., Feldman, R. A., Lutz, R. A., & Vrijenhoek, R. C. (1998). Cospeciation of

chemoautotrophic bacteria and deep sea clams. Proceedings of the National Academy

of Sciences of the United States of America, 95(17), pp. 9962–9966.

Pickands, James, I. (1967). Maxima of stationary Gaussian processes. Zeitschrift fr

Wahrscheinlichkeitstheorie und Verwandte Gebiete, 7(3), pp. 190–223.

Piella, G. & Heijmans, H. (2002). Adaptive lifting schemes with perfect reconstruction.

IEEE Transactions on Signal Processing, 50(7), pp. 1620–1630.

R Core Team (2017). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Rambaut, A. & Grassly, N. C. (1997). Seq-Gen: an application for the Monte Carlo sim-

ulation of DNA sequence evolution along phylogenetic trees. Computer Applications

in the Biosciences, 13(3), pp. 235–238.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical Association, 66(336), pp. 846–850.

Bibliography 205

Rendón, E., Abundez, I., Arizmendi, A., & Quiroz, E. (2011). Internal versus external

cluster validation indexes. International Journal of Computers and Communications,

5(1), pp. 27–34.

Ronquist, F. (1995). Reconstructing the history of host-parasite associations using gener-

alised parsimony. Cladistics, 11, pp. 73–89.

Rousseeuw, P. (1987). Silhouettes: a graphical aid to the interpretation and validation of

cluster analysis. Journal of Computational and Applied Mathematics, 20(1), pp. 53–65.

Saitou, N. & Nei, M. (1987). The neighbor-joining method: a new method for recon-

structing phylogenetic trees. Molecular Biology and Evolution, 4(4), pp. 406–425.

Salazar-Gonzalez, J. F., Salazar, M. G., Keele, B. F., Learn, G. H., Giorgi, E. E., Li,

H., Decker, J. M., Wang, S., Baalwa, J., Kraus, M. H., Parrish, N. F., Shaw, K. S.,

Guffey, M., Bar, K. J., Davis, K. L., Ochsenbauer-Jambor, C., Kappes, J. C., Saag,

M. S., Cohen, M. S., Mulenga, J., Derdeyn, C. A., Allen, S., Hunter, E., Markowitz,

M., Hraber, P., Perelson, A. S., Bhattacharya, T., Haynes, B. F., Korber, B. T., Hahn,

B. H., & Shaw, G. M. (2009). Genetic identity, biological phenotype, and evolutionary

pathways of transmitted/founder viruses in acute and early HIV-1 infection. Journal of

Experimental Medicine, 206(6), pp. 1273–1289.

Schardl, C. L., Craven, K. D., Speakman, S., Stromberg, A., Lindstrom, A., & Yoshida, R.

(2008). A novel test for host-symbiont codivergence indicates ancient origin of fungal

endophytes in grasses. Systematic Biology, 57(3), pp. 483–498.

Schoöniger, M. & Haeseler, A. v. (1995). Simulating efficiently the evolution of DNA

sequences. Bioinformatics, 11(1), pp. 111–115.

Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection.

Systematic Biology, 51(3), pp. 492–508.

Shimodaira, H. (2004). Approximately unbiased tests of regions using multistep-

multiscale bootstrap resampling. The Annuals of Statistics, 32(6), pp. 2616–2641.

Shotwell, M. S. (2013). profdpm: an R package for MAP estimation in a class of conju-

gate product partition models. Journal of Statistical Software, 53(8), pp. 1–18.

Silverman, B. W. (2012). EbayesThresh: Empirical Bayes Thresholding and Related

Methods. R package version 1.3.2.

Sokal, R. R. & Michener, C. D. (1958). A statistical method for evaluating systematic

relationships. University of Kansas Scientific Bulletin, 28, pp. 1409–1438.

206 Bibliography

Studier, J. A. & Keppler, K. J. (1988). A note on the neighbor-joining algorithm of Saitou

and Nei. Molecular Biology and Evolution, 5(6), pp. 729–731.

Sugar, C. A. & James, G. M. (2003). Finding the number of clusters in a dataset:

An information-theoretic approach. Journal of the American Statistical Association,

98(463), pp. 750–763.

Suzuki, R. & Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty

in hierarchical clustering. Bioinformatics, 22(12), pp. 1540–1542.

Sweldens, W. (1998). The lifting scheme: A construction of second generation wavelets.

SIAM Journal Mathematical Analysis, 29(2), pp. 511–546.

Taylor, W. R. (1988). A flexible method to align large numbers of biological sequences.

Journal of Molecular Evolution, 28(1), pp. 161–169.

Thompson, J., Higgins, D., & Gibson, T. (1994). CLUSTAL W: improving the sensitiv-

ity of progressive multiple sequence alignment through sequence weighting, position-

specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), pp.

4673–4680.

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a

data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology), 63(2), pp. 411–423.

Trappe, W. K. & Liu, K. J. R. (2000). Denoising via adaptive lifting schemes. In A. Al-

droubi, A. F. Laine, & M. A. Unser (Eds.), Proceedings of SPIE, Wavelet Applications

in Signal and Image Processing VIII, volume 4119 (pp. 302–312).

Venables, W. N. & Ripley, B. D. (2002). Modern Applied Statistics with S. New York:

Springer, fourth edition.

Vidakovic, B. (1999). Statistical Modeling by Wavelets. New York: J. Wiley.

Vienne, D. M., Refrégier, G., López-Villavicencio, M., Tellier, A., Hood, M. E., & Gi-

raud, T. (2013). Cospeciation vs host-shift speciation: methods for testing, evidence

from natural associations and relation to coevolution. New Phytologist, 198(2), pp.

347–385.

Vinh, N. X., Epps, J., & Bailey, J. (2009). Information theoretic measures for cluster-

ings comparison: Is a correction for chance necessary? In Proceedings of the 26th

Annual International Conference on Machine Learning, ICML ’09 (pp. 1073–1080).

New York, NY, USA: ACM.

Bibliography 207

Vinh, N. X., Epps, J., & Bailey, J. (2010). Information theoretic measures for clusterings

comparison: variants, properties, normalization and correction for chance. Journal of

Machine Learning Research, 11, pp. 2837–2854.

Wallace, D. L. (1983). A method for comparing two hierarchical clusterings: Comment.

Journal of the American Statistical Association, 78(383), pp. 569–576.

Wright, S. (1943). Isolation by distance. Genetics, 28(2), pp. 114–138.

Yang, Z. (1993). Maximum-likelihood estimation of phylogeny from DNA sequences

when substitution rates differ over sites. Molecular Biology and Evolution, 10(6), pp.

1396–1401.

	Acknowledgements
	Abstract
	Contents
	List of figures
	List of tables
	Introduction
	Thesis overview

	Wavelets
	Introduction
	Multiscale analysis
	Discrete Haar wavelets
	Matrix representation

	Haar wavelets
	Scaling and translation notation
	Fine-scale approximation
	Computing coarser-scale c from finer-scale ones
	The difference between scale approximations-wavelets

	Multiresolution analysis
	Multiresolution analysis (MRA)
	Projection notation
	The dilation equation and wavelet construction

	Vanishing moments
	Daubechies' compactly supported wavelets
	The general (fast) discrete wavelet transform
	The forward discrete wavelet transform
	Filtering, dyadic decimation, downsampling
	Inverse discrete wavelet transform

	Boundary condition
	Non-decimated wavelets
	The -decimated wavelet transform
	Non-decimated (stationary) wavelet transform (NDWT)

	Wavelet shrinkage
	The Oracle
	Universal thresholding
	Bayesian wavelet shrinkage
	Non-decimated wavelet shrinkage

	Simulation study for wavelets

	Second generation wavelets: lifting
	Introduction
	Lifting
	LOCAAT
	Forward transform of the LOCAAT
	Reconstruction of the LOCAAT
	The variance definition of lifting coefficients
	Modification for multiple values at a single grid point

	Example: LOCAAT on one dimensional data
	Forward transform
	Reconstruction

	Adaptive lifting
	Introduction
	Adaptive LOCAAT algorithm

	Non-decimated lifting
	Introduction
	The non-decimated lifting algorithm
	Risk estimation of averaged estimator of g

	Simulation study
	Lifting on multidimensional data
	Lifting in two dimensions
	Lifting in three or more dimensions
	Modification for multiple values at a single node

	Example: LOCAAT on tree structured data
	Forward transform
	Reconstruction

	Phylogenetic tree reconstruction
	Introduction
	Phylogenetic reconstruction
	Phylogenetic reconstruction methods
	Parsimony methods
	Distance methods

	Evolutionary Models
	The Jukes-Cantor (JC) model
	The Kimura model
	Felsenstein model
	The Hasegawa-Kishino-Yano (HKY) model

	Probabilistic methods
	Discussion

	Automatic cluster detection by lifting
	Introduction
	Agglomerative hierarchical clustering
	Cluster validity indices
	Internal indices
	Model-based clustering (Mclust)
	External scores

	Lifting the results of hierarchical clustering
	Cluster selection by denoising of compactness
	Dealing with outliers

	Simulation study
	Five-component normally distributed data with low variance
	Five-component normally distributed data with larger variation
	Three-component concentric circle data
	Six-component non-normally distributed data

	Real data example
	Summary

	Generalisation of the threshold choice
	Introduction
	A method of picking a threshold
	Automatic cluster detection by non-decimated lifting
	Simulation study
	Five-component normally distributed data with low variance
	Five-component normally distributed data with larger variation
	Three-component concentric circle data
	Six-component non-normally distributed data

	Real data example
	Summary

	Lifting on phylogenetic trees
	Introduction
	Finding number of clusters for phylogenetic data
	Simulation study
	Finding base tree structure
	Generating sequences
	Simulation results

	Real data
	Applying Lifting to cophylogenetic data
	Introduction to cophylogeny
	Application

	Summary

	Discussion
	Extra plots for Chapters 5 and 6
	Five-component normally distributed data with low variance
	Five-component normally distributed data with larger variation
	Three-component concentric circle data
	Six-component non-normally distributed data

	Bibliography

